[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / Reassociate.cpp
blob888edc4d69a80cc5d9a391dbb92c8085b2bf84ed
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 // For example: 4 + (x + 5) -> x + (4 + 5)
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/BasicAliasAnalysis.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/IR/PatternMatch.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <utility>
65 using namespace llvm;
66 using namespace reassociate;
67 using namespace PatternMatch;
69 #define DEBUG_TYPE "reassociate"
71 STATISTIC(NumChanged, "Number of insts reassociated");
72 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
73 STATISTIC(NumFactor , "Number of multiplies factored");
75 #ifndef NDEBUG
76 /// Print out the expression identified in the Ops list.
77 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
78 Module *M = I->getModule();
79 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
80 << *Ops[0].Op->getType() << '\t';
81 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
82 dbgs() << "[ ";
83 Ops[i].Op->printAsOperand(dbgs(), false, M);
84 dbgs() << ", #" << Ops[i].Rank << "] ";
87 #endif
89 /// Utility class representing a non-constant Xor-operand. We classify
90 /// non-constant Xor-Operands into two categories:
91 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
92 /// C2)
93 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
94 /// constant.
95 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
96 /// operand as "E | 0"
97 class llvm::reassociate::XorOpnd {
98 public:
99 XorOpnd(Value *V);
101 bool isInvalid() const { return SymbolicPart == nullptr; }
102 bool isOrExpr() const { return isOr; }
103 Value *getValue() const { return OrigVal; }
104 Value *getSymbolicPart() const { return SymbolicPart; }
105 unsigned getSymbolicRank() const { return SymbolicRank; }
106 const APInt &getConstPart() const { return ConstPart; }
108 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
109 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
111 private:
112 Value *OrigVal;
113 Value *SymbolicPart;
114 APInt ConstPart;
115 unsigned SymbolicRank;
116 bool isOr;
119 XorOpnd::XorOpnd(Value *V) {
120 assert(!isa<ConstantInt>(V) && "No ConstantInt");
121 OrigVal = V;
122 Instruction *I = dyn_cast<Instruction>(V);
123 SymbolicRank = 0;
125 if (I && (I->getOpcode() == Instruction::Or ||
126 I->getOpcode() == Instruction::And)) {
127 Value *V0 = I->getOperand(0);
128 Value *V1 = I->getOperand(1);
129 const APInt *C;
130 if (match(V0, m_APInt(C)))
131 std::swap(V0, V1);
133 if (match(V1, m_APInt(C))) {
134 ConstPart = *C;
135 SymbolicPart = V0;
136 isOr = (I->getOpcode() == Instruction::Or);
137 return;
141 // view the operand as "V | 0"
142 SymbolicPart = V;
143 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
144 isOr = true;
147 /// Return true if V is an instruction of the specified opcode and if it
148 /// only has one use.
149 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
150 auto *I = dyn_cast<Instruction>(V);
151 if (I && I->hasOneUse() && I->getOpcode() == Opcode)
152 if (!isa<FPMathOperator>(I) || I->isFast())
153 return cast<BinaryOperator>(I);
154 return nullptr;
157 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
158 unsigned Opcode2) {
159 auto *I = dyn_cast<Instruction>(V);
160 if (I && I->hasOneUse() &&
161 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
162 if (!isa<FPMathOperator>(I) || I->isFast())
163 return cast<BinaryOperator>(I);
164 return nullptr;
167 void ReassociatePass::BuildRankMap(Function &F,
168 ReversePostOrderTraversal<Function*> &RPOT) {
169 unsigned Rank = 2;
171 // Assign distinct ranks to function arguments.
172 for (auto &Arg : F.args()) {
173 ValueRankMap[&Arg] = ++Rank;
174 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
175 << "\n");
178 // Traverse basic blocks in ReversePostOrder.
179 for (BasicBlock *BB : RPOT) {
180 unsigned BBRank = RankMap[BB] = ++Rank << 16;
182 // Walk the basic block, adding precomputed ranks for any instructions that
183 // we cannot move. This ensures that the ranks for these instructions are
184 // all different in the block.
185 for (Instruction &I : *BB)
186 if (mayBeMemoryDependent(I))
187 ValueRankMap[&I] = ++BBRank;
191 unsigned ReassociatePass::getRank(Value *V) {
192 Instruction *I = dyn_cast<Instruction>(V);
193 if (!I) {
194 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
195 return 0; // Otherwise it's a global or constant, rank 0.
198 if (unsigned Rank = ValueRankMap[I])
199 return Rank; // Rank already known?
201 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
202 // we can reassociate expressions for code motion! Since we do not recurse
203 // for PHI nodes, we cannot have infinite recursion here, because there
204 // cannot be loops in the value graph that do not go through PHI nodes.
205 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
206 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
207 Rank = std::max(Rank, getRank(I->getOperand(i)));
209 // If this is a 'not' or 'neg' instruction, do not count it for rank. This
210 // assures us that X and ~X will have the same rank.
211 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
212 !match(I, m_FNeg(m_Value())))
213 ++Rank;
215 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
216 << "\n");
218 return ValueRankMap[I] = Rank;
221 // Canonicalize constants to RHS. Otherwise, sort the operands by rank.
222 void ReassociatePass::canonicalizeOperands(Instruction *I) {
223 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
224 assert(I->isCommutative() && "Expected commutative operator.");
226 Value *LHS = I->getOperand(0);
227 Value *RHS = I->getOperand(1);
228 if (LHS == RHS || isa<Constant>(RHS))
229 return;
230 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
231 cast<BinaryOperator>(I)->swapOperands();
234 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
235 Instruction *InsertBefore, Value *FlagsOp) {
236 if (S1->getType()->isIntOrIntVectorTy())
237 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
238 else {
239 BinaryOperator *Res =
240 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
241 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
242 return Res;
246 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
247 Instruction *InsertBefore, Value *FlagsOp) {
248 if (S1->getType()->isIntOrIntVectorTy())
249 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
250 else {
251 BinaryOperator *Res =
252 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
253 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
254 return Res;
258 static Instruction *CreateNeg(Value *S1, const Twine &Name,
259 Instruction *InsertBefore, Value *FlagsOp) {
260 if (S1->getType()->isIntOrIntVectorTy())
261 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
263 if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp))
264 return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore);
266 return UnaryOperator::CreateFNeg(S1, Name, InsertBefore);
269 /// Replace 0-X with X*-1.
270 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
271 assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
272 "Expected a Negate!");
273 // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
274 unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
275 Type *Ty = Neg->getType();
276 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
277 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
279 BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
280 Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
281 Res->takeName(Neg);
282 Neg->replaceAllUsesWith(Res);
283 Res->setDebugLoc(Neg->getDebugLoc());
284 return Res;
287 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
288 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
289 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
290 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
291 /// even x in Bitwidth-bit arithmetic.
292 static unsigned CarmichaelShift(unsigned Bitwidth) {
293 if (Bitwidth < 3)
294 return Bitwidth - 1;
295 return Bitwidth - 2;
298 /// Add the extra weight 'RHS' to the existing weight 'LHS',
299 /// reducing the combined weight using any special properties of the operation.
300 /// The existing weight LHS represents the computation X op X op ... op X where
301 /// X occurs LHS times. The combined weight represents X op X op ... op X with
302 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined
303 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
304 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
305 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
306 // If we were working with infinite precision arithmetic then the combined
307 // weight would be LHS + RHS. But we are using finite precision arithmetic,
308 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
309 // for nilpotent operations and addition, but not for idempotent operations
310 // and multiplication), so it is important to correctly reduce the combined
311 // weight back into range if wrapping would be wrong.
313 // If RHS is zero then the weight didn't change.
314 if (RHS.isMinValue())
315 return;
316 // If LHS is zero then the combined weight is RHS.
317 if (LHS.isMinValue()) {
318 LHS = RHS;
319 return;
321 // From this point on we know that neither LHS nor RHS is zero.
323 if (Instruction::isIdempotent(Opcode)) {
324 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
325 // weight of 1. Keeping weights at zero or one also means that wrapping is
326 // not a problem.
327 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
328 return; // Return a weight of 1.
330 if (Instruction::isNilpotent(Opcode)) {
331 // Nilpotent means X op X === 0, so reduce weights modulo 2.
332 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
333 LHS = 0; // 1 + 1 === 0 modulo 2.
334 return;
336 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
337 // TODO: Reduce the weight by exploiting nsw/nuw?
338 LHS += RHS;
339 return;
342 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
343 "Unknown associative operation!");
344 unsigned Bitwidth = LHS.getBitWidth();
345 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
346 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
347 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
348 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
349 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
350 // which by a happy accident means that they can always be represented using
351 // Bitwidth bits.
352 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
353 // the Carmichael number).
354 if (Bitwidth > 3) {
355 /// CM - The value of Carmichael's lambda function.
356 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
357 // Any weight W >= Threshold can be replaced with W - CM.
358 APInt Threshold = CM + Bitwidth;
359 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
360 // For Bitwidth 4 or more the following sum does not overflow.
361 LHS += RHS;
362 while (LHS.uge(Threshold))
363 LHS -= CM;
364 } else {
365 // To avoid problems with overflow do everything the same as above but using
366 // a larger type.
367 unsigned CM = 1U << CarmichaelShift(Bitwidth);
368 unsigned Threshold = CM + Bitwidth;
369 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
370 "Weights not reduced!");
371 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
372 while (Total >= Threshold)
373 Total -= CM;
374 LHS = Total;
378 using RepeatedValue = std::pair<Value*, APInt>;
380 /// Given an associative binary expression, return the leaf
381 /// nodes in Ops along with their weights (how many times the leaf occurs). The
382 /// original expression is the same as
383 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
384 /// op
385 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
386 /// op
387 /// ...
388 /// op
389 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
391 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
393 /// This routine may modify the function, in which case it returns 'true'. The
394 /// changes it makes may well be destructive, changing the value computed by 'I'
395 /// to something completely different. Thus if the routine returns 'true' then
396 /// you MUST either replace I with a new expression computed from the Ops array,
397 /// or use RewriteExprTree to put the values back in.
399 /// A leaf node is either not a binary operation of the same kind as the root
400 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
401 /// opcode), or is the same kind of binary operator but has a use which either
402 /// does not belong to the expression, or does belong to the expression but is
403 /// a leaf node. Every leaf node has at least one use that is a non-leaf node
404 /// of the expression, while for non-leaf nodes (except for the root 'I') every
405 /// use is a non-leaf node of the expression.
407 /// For example:
408 /// expression graph node names
410 /// + | I
411 /// / \ |
412 /// + + | A, B
413 /// / \ / \ |
414 /// * + * | C, D, E
415 /// / \ / \ / \ |
416 /// + * | F, G
418 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
419 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
421 /// The expression is maximal: if some instruction is a binary operator of the
422 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
423 /// then the instruction also belongs to the expression, is not a leaf node of
424 /// it, and its operands also belong to the expression (but may be leaf nodes).
426 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
427 /// order to ensure that every non-root node in the expression has *exactly one*
428 /// use by a non-leaf node of the expression. This destruction means that the
429 /// caller MUST either replace 'I' with a new expression or use something like
430 /// RewriteExprTree to put the values back in if the routine indicates that it
431 /// made a change by returning 'true'.
433 /// In the above example either the right operand of A or the left operand of B
434 /// will be replaced by undef. If it is B's operand then this gives:
436 /// + | I
437 /// / \ |
438 /// + + | A, B - operand of B replaced with undef
439 /// / \ \ |
440 /// * + * | C, D, E
441 /// / \ / \ / \ |
442 /// + * | F, G
444 /// Note that such undef operands can only be reached by passing through 'I'.
445 /// For example, if you visit operands recursively starting from a leaf node
446 /// then you will never see such an undef operand unless you get back to 'I',
447 /// which requires passing through a phi node.
449 /// Note that this routine may also mutate binary operators of the wrong type
450 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
451 /// of the expression) if it can turn them into binary operators of the right
452 /// type and thus make the expression bigger.
453 static bool LinearizeExprTree(Instruction *I,
454 SmallVectorImpl<RepeatedValue> &Ops) {
455 assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
456 "Expected a UnaryOperator or BinaryOperator!");
457 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
458 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
459 unsigned Opcode = I->getOpcode();
460 assert(I->isAssociative() && I->isCommutative() &&
461 "Expected an associative and commutative operation!");
463 // Visit all operands of the expression, keeping track of their weight (the
464 // number of paths from the expression root to the operand, or if you like
465 // the number of times that operand occurs in the linearized expression).
466 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
467 // while A has weight two.
469 // Worklist of non-leaf nodes (their operands are in the expression too) along
470 // with their weights, representing a certain number of paths to the operator.
471 // If an operator occurs in the worklist multiple times then we found multiple
472 // ways to get to it.
473 SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
474 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
475 bool Changed = false;
477 // Leaves of the expression are values that either aren't the right kind of
478 // operation (eg: a constant, or a multiply in an add tree), or are, but have
479 // some uses that are not inside the expression. For example, in I = X + X,
480 // X = A + B, the value X has two uses (by I) that are in the expression. If
481 // X has any other uses, for example in a return instruction, then we consider
482 // X to be a leaf, and won't analyze it further. When we first visit a value,
483 // if it has more than one use then at first we conservatively consider it to
484 // be a leaf. Later, as the expression is explored, we may discover some more
485 // uses of the value from inside the expression. If all uses turn out to be
486 // from within the expression (and the value is a binary operator of the right
487 // kind) then the value is no longer considered to be a leaf, and its operands
488 // are explored.
490 // Leaves - Keeps track of the set of putative leaves as well as the number of
491 // paths to each leaf seen so far.
492 using LeafMap = DenseMap<Value *, APInt>;
493 LeafMap Leaves; // Leaf -> Total weight so far.
494 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
496 #ifndef NDEBUG
497 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
498 #endif
499 while (!Worklist.empty()) {
500 std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
501 I = P.first; // We examine the operands of this binary operator.
503 for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
504 Value *Op = I->getOperand(OpIdx);
505 APInt Weight = P.second; // Number of paths to this operand.
506 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
507 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
509 // If this is a binary operation of the right kind with only one use then
510 // add its operands to the expression.
511 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
512 assert(Visited.insert(Op).second && "Not first visit!");
513 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
514 Worklist.push_back(std::make_pair(BO, Weight));
515 continue;
518 // Appears to be a leaf. Is the operand already in the set of leaves?
519 LeafMap::iterator It = Leaves.find(Op);
520 if (It == Leaves.end()) {
521 // Not in the leaf map. Must be the first time we saw this operand.
522 assert(Visited.insert(Op).second && "Not first visit!");
523 if (!Op->hasOneUse()) {
524 // This value has uses not accounted for by the expression, so it is
525 // not safe to modify. Mark it as being a leaf.
526 LLVM_DEBUG(dbgs()
527 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
528 LeafOrder.push_back(Op);
529 Leaves[Op] = Weight;
530 continue;
532 // No uses outside the expression, try morphing it.
533 } else {
534 // Already in the leaf map.
535 assert(It != Leaves.end() && Visited.count(Op) &&
536 "In leaf map but not visited!");
538 // Update the number of paths to the leaf.
539 IncorporateWeight(It->second, Weight, Opcode);
541 #if 0 // TODO: Re-enable once PR13021 is fixed.
542 // The leaf already has one use from inside the expression. As we want
543 // exactly one such use, drop this new use of the leaf.
544 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
545 I->setOperand(OpIdx, UndefValue::get(I->getType()));
546 Changed = true;
548 // If the leaf is a binary operation of the right kind and we now see
549 // that its multiple original uses were in fact all by nodes belonging
550 // to the expression, then no longer consider it to be a leaf and add
551 // its operands to the expression.
552 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
553 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
554 Worklist.push_back(std::make_pair(BO, It->second));
555 Leaves.erase(It);
556 continue;
558 #endif
560 // If we still have uses that are not accounted for by the expression
561 // then it is not safe to modify the value.
562 if (!Op->hasOneUse())
563 continue;
565 // No uses outside the expression, try morphing it.
566 Weight = It->second;
567 Leaves.erase(It); // Since the value may be morphed below.
570 // At this point we have a value which, first of all, is not a binary
571 // expression of the right kind, and secondly, is only used inside the
572 // expression. This means that it can safely be modified. See if we
573 // can usefully morph it into an expression of the right kind.
574 assert((!isa<Instruction>(Op) ||
575 cast<Instruction>(Op)->getOpcode() != Opcode
576 || (isa<FPMathOperator>(Op) &&
577 !cast<Instruction>(Op)->isFast())) &&
578 "Should have been handled above!");
579 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
581 // If this is a multiply expression, turn any internal negations into
582 // multiplies by -1 so they can be reassociated.
583 if (Instruction *Tmp = dyn_cast<Instruction>(Op))
584 if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) ||
585 (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) {
586 LLVM_DEBUG(dbgs()
587 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
588 Tmp = LowerNegateToMultiply(Tmp);
589 LLVM_DEBUG(dbgs() << *Tmp << '\n');
590 Worklist.push_back(std::make_pair(Tmp, Weight));
591 Changed = true;
592 continue;
595 // Failed to morph into an expression of the right type. This really is
596 // a leaf.
597 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
598 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
599 LeafOrder.push_back(Op);
600 Leaves[Op] = Weight;
604 // The leaves, repeated according to their weights, represent the linearized
605 // form of the expression.
606 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
607 Value *V = LeafOrder[i];
608 LeafMap::iterator It = Leaves.find(V);
609 if (It == Leaves.end())
610 // Node initially thought to be a leaf wasn't.
611 continue;
612 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
613 APInt Weight = It->second;
614 if (Weight.isMinValue())
615 // Leaf already output or weight reduction eliminated it.
616 continue;
617 // Ensure the leaf is only output once.
618 It->second = 0;
619 Ops.push_back(std::make_pair(V, Weight));
622 // For nilpotent operations or addition there may be no operands, for example
623 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
624 // in both cases the weight reduces to 0 causing the value to be skipped.
625 if (Ops.empty()) {
626 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
627 assert(Identity && "Associative operation without identity!");
628 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
631 return Changed;
634 /// Now that the operands for this expression tree are
635 /// linearized and optimized, emit them in-order.
636 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
637 SmallVectorImpl<ValueEntry> &Ops) {
638 assert(Ops.size() > 1 && "Single values should be used directly!");
640 // Since our optimizations should never increase the number of operations, the
641 // new expression can usually be written reusing the existing binary operators
642 // from the original expression tree, without creating any new instructions,
643 // though the rewritten expression may have a completely different topology.
644 // We take care to not change anything if the new expression will be the same
645 // as the original. If more than trivial changes (like commuting operands)
646 // were made then we are obliged to clear out any optional subclass data like
647 // nsw flags.
649 /// NodesToRewrite - Nodes from the original expression available for writing
650 /// the new expression into.
651 SmallVector<BinaryOperator*, 8> NodesToRewrite;
652 unsigned Opcode = I->getOpcode();
653 BinaryOperator *Op = I;
655 /// NotRewritable - The operands being written will be the leaves of the new
656 /// expression and must not be used as inner nodes (via NodesToRewrite) by
657 /// mistake. Inner nodes are always reassociable, and usually leaves are not
658 /// (if they were they would have been incorporated into the expression and so
659 /// would not be leaves), so most of the time there is no danger of this. But
660 /// in rare cases a leaf may become reassociable if an optimization kills uses
661 /// of it, or it may momentarily become reassociable during rewriting (below)
662 /// due it being removed as an operand of one of its uses. Ensure that misuse
663 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
664 /// leaves and refusing to reuse any of them as inner nodes.
665 SmallPtrSet<Value*, 8> NotRewritable;
666 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
667 NotRewritable.insert(Ops[i].Op);
669 // ExpressionChanged - Non-null if the rewritten expression differs from the
670 // original in some non-trivial way, requiring the clearing of optional flags.
671 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
672 BinaryOperator *ExpressionChanged = nullptr;
673 for (unsigned i = 0; ; ++i) {
674 // The last operation (which comes earliest in the IR) is special as both
675 // operands will come from Ops, rather than just one with the other being
676 // a subexpression.
677 if (i+2 == Ops.size()) {
678 Value *NewLHS = Ops[i].Op;
679 Value *NewRHS = Ops[i+1].Op;
680 Value *OldLHS = Op->getOperand(0);
681 Value *OldRHS = Op->getOperand(1);
683 if (NewLHS == OldLHS && NewRHS == OldRHS)
684 // Nothing changed, leave it alone.
685 break;
687 if (NewLHS == OldRHS && NewRHS == OldLHS) {
688 // The order of the operands was reversed. Swap them.
689 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
690 Op->swapOperands();
691 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
692 MadeChange = true;
693 ++NumChanged;
694 break;
697 // The new operation differs non-trivially from the original. Overwrite
698 // the old operands with the new ones.
699 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
700 if (NewLHS != OldLHS) {
701 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
702 if (BO && !NotRewritable.count(BO))
703 NodesToRewrite.push_back(BO);
704 Op->setOperand(0, NewLHS);
706 if (NewRHS != OldRHS) {
707 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
708 if (BO && !NotRewritable.count(BO))
709 NodesToRewrite.push_back(BO);
710 Op->setOperand(1, NewRHS);
712 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
714 ExpressionChanged = Op;
715 MadeChange = true;
716 ++NumChanged;
718 break;
721 // Not the last operation. The left-hand side will be a sub-expression
722 // while the right-hand side will be the current element of Ops.
723 Value *NewRHS = Ops[i].Op;
724 if (NewRHS != Op->getOperand(1)) {
725 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
726 if (NewRHS == Op->getOperand(0)) {
727 // The new right-hand side was already present as the left operand. If
728 // we are lucky then swapping the operands will sort out both of them.
729 Op->swapOperands();
730 } else {
731 // Overwrite with the new right-hand side.
732 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
733 if (BO && !NotRewritable.count(BO))
734 NodesToRewrite.push_back(BO);
735 Op->setOperand(1, NewRHS);
736 ExpressionChanged = Op;
738 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
739 MadeChange = true;
740 ++NumChanged;
743 // Now deal with the left-hand side. If this is already an operation node
744 // from the original expression then just rewrite the rest of the expression
745 // into it.
746 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
747 if (BO && !NotRewritable.count(BO)) {
748 Op = BO;
749 continue;
752 // Otherwise, grab a spare node from the original expression and use that as
753 // the left-hand side. If there are no nodes left then the optimizers made
754 // an expression with more nodes than the original! This usually means that
755 // they did something stupid but it might mean that the problem was just too
756 // hard (finding the mimimal number of multiplications needed to realize a
757 // multiplication expression is NP-complete). Whatever the reason, smart or
758 // stupid, create a new node if there are none left.
759 BinaryOperator *NewOp;
760 if (NodesToRewrite.empty()) {
761 Constant *Undef = UndefValue::get(I->getType());
762 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
763 Undef, Undef, "", I);
764 if (NewOp->getType()->isFPOrFPVectorTy())
765 NewOp->setFastMathFlags(I->getFastMathFlags());
766 } else {
767 NewOp = NodesToRewrite.pop_back_val();
770 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
771 Op->setOperand(0, NewOp);
772 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
773 ExpressionChanged = Op;
774 MadeChange = true;
775 ++NumChanged;
776 Op = NewOp;
779 // If the expression changed non-trivially then clear out all subclass data
780 // starting from the operator specified in ExpressionChanged, and compactify
781 // the operators to just before the expression root to guarantee that the
782 // expression tree is dominated by all of Ops.
783 if (ExpressionChanged)
784 do {
785 // Preserve FastMathFlags.
786 if (isa<FPMathOperator>(I)) {
787 FastMathFlags Flags = I->getFastMathFlags();
788 ExpressionChanged->clearSubclassOptionalData();
789 ExpressionChanged->setFastMathFlags(Flags);
790 } else
791 ExpressionChanged->clearSubclassOptionalData();
793 if (ExpressionChanged == I)
794 break;
796 // Discard any debug info related to the expressions that has changed (we
797 // can leave debug infor related to the root, since the result of the
798 // expression tree should be the same even after reassociation).
799 replaceDbgUsesWithUndef(ExpressionChanged);
801 ExpressionChanged->moveBefore(I);
802 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
803 } while (true);
805 // Throw away any left over nodes from the original expression.
806 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
807 RedoInsts.insert(NodesToRewrite[i]);
810 /// Insert instructions before the instruction pointed to by BI,
811 /// that computes the negative version of the value specified. The negative
812 /// version of the value is returned, and BI is left pointing at the instruction
813 /// that should be processed next by the reassociation pass.
814 /// Also add intermediate instructions to the redo list that are modified while
815 /// pushing the negates through adds. These will be revisited to see if
816 /// additional opportunities have been exposed.
817 static Value *NegateValue(Value *V, Instruction *BI,
818 ReassociatePass::OrderedSet &ToRedo) {
819 if (auto *C = dyn_cast<Constant>(V))
820 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
821 ConstantExpr::getNeg(C);
823 // We are trying to expose opportunity for reassociation. One of the things
824 // that we want to do to achieve this is to push a negation as deep into an
825 // expression chain as possible, to expose the add instructions. In practice,
826 // this means that we turn this:
827 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
828 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
829 // the constants. We assume that instcombine will clean up the mess later if
830 // we introduce tons of unnecessary negation instructions.
832 if (BinaryOperator *I =
833 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
834 // Push the negates through the add.
835 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
836 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
837 if (I->getOpcode() == Instruction::Add) {
838 I->setHasNoUnsignedWrap(false);
839 I->setHasNoSignedWrap(false);
842 // We must move the add instruction here, because the neg instructions do
843 // not dominate the old add instruction in general. By moving it, we are
844 // assured that the neg instructions we just inserted dominate the
845 // instruction we are about to insert after them.
847 I->moveBefore(BI);
848 I->setName(I->getName()+".neg");
850 // Add the intermediate negates to the redo list as processing them later
851 // could expose more reassociating opportunities.
852 ToRedo.insert(I);
853 return I;
856 // Okay, we need to materialize a negated version of V with an instruction.
857 // Scan the use lists of V to see if we have one already.
858 for (User *U : V->users()) {
859 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
860 continue;
862 // We found one! Now we have to make sure that the definition dominates
863 // this use. We do this by moving it to the entry block (if it is a
864 // non-instruction value) or right after the definition. These negates will
865 // be zapped by reassociate later, so we don't need much finesse here.
866 Instruction *TheNeg = cast<Instruction>(U);
868 // Verify that the negate is in this function, V might be a constant expr.
869 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
870 continue;
872 bool FoundCatchSwitch = false;
874 BasicBlock::iterator InsertPt;
875 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
876 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
877 InsertPt = II->getNormalDest()->begin();
878 } else {
879 InsertPt = ++InstInput->getIterator();
882 const BasicBlock *BB = InsertPt->getParent();
884 // Make sure we don't move anything before PHIs or exception
885 // handling pads.
886 while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
887 InsertPt->isEHPad())) {
888 if (isa<CatchSwitchInst>(InsertPt))
889 // A catchswitch cannot have anything in the block except
890 // itself and PHIs. We'll bail out below.
891 FoundCatchSwitch = true;
892 ++InsertPt;
894 } else {
895 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
898 // We found a catchswitch in the block where we want to move the
899 // neg. We cannot move anything into that block. Bail and just
900 // create the neg before BI, as if we hadn't found an existing
901 // neg.
902 if (FoundCatchSwitch)
903 break;
905 TheNeg->moveBefore(&*InsertPt);
906 if (TheNeg->getOpcode() == Instruction::Sub) {
907 TheNeg->setHasNoUnsignedWrap(false);
908 TheNeg->setHasNoSignedWrap(false);
909 } else {
910 TheNeg->andIRFlags(BI);
912 ToRedo.insert(TheNeg);
913 return TheNeg;
916 // Insert a 'neg' instruction that subtracts the value from zero to get the
917 // negation.
918 Instruction *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
919 ToRedo.insert(NewNeg);
920 return NewNeg;
923 // See if this `or` looks like an load widening reduction, i.e. that it
924 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't
925 // ensure that the pattern is *really* a load widening reduction,
926 // we do not ensure that it can really be replaced with a widened load,
927 // only that it mostly looks like one.
928 static bool isLoadCombineCandidate(Instruction *Or) {
929 SmallVector<Instruction *, 8> Worklist;
930 SmallSet<Instruction *, 8> Visited;
932 auto Enqueue = [&](Value *V) {
933 auto *I = dyn_cast<Instruction>(V);
934 // Each node of an `or` reduction must be an instruction,
935 if (!I)
936 return false; // Node is certainly not part of an `or` load reduction.
937 // Only process instructions we have never processed before.
938 if (Visited.insert(I).second)
939 Worklist.emplace_back(I);
940 return true; // Will need to look at parent nodes.
943 if (!Enqueue(Or))
944 return false; // Not an `or` reduction pattern.
946 while (!Worklist.empty()) {
947 auto *I = Worklist.pop_back_val();
949 // Okay, which instruction is this node?
950 switch (I->getOpcode()) {
951 case Instruction::Or:
952 // Got an `or` node. That's fine, just recurse into it's operands.
953 for (Value *Op : I->operands())
954 if (!Enqueue(Op))
955 return false; // Not an `or` reduction pattern.
956 continue;
958 case Instruction::Shl:
959 case Instruction::ZExt:
960 // `shl`/`zext` nodes are fine, just recurse into their base operand.
961 if (!Enqueue(I->getOperand(0)))
962 return false; // Not an `or` reduction pattern.
963 continue;
965 case Instruction::Load:
966 // Perfect, `load` node means we've reached an edge of the graph.
967 continue;
969 default: // Unknown node.
970 return false; // Not an `or` reduction pattern.
974 return true;
977 /// Return true if it may be profitable to convert this (X|Y) into (X+Y).
978 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
979 // Don't bother to convert this up unless either the LHS is an associable add
980 // or subtract or mul or if this is only used by one of the above.
981 // This is only a compile-time improvement, it is not needed for correctness!
982 auto isInteresting = [](Value *V) {
983 for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul,
984 Instruction::Shl})
985 if (isReassociableOp(V, Op))
986 return true;
987 return false;
990 if (any_of(Or->operands(), isInteresting))
991 return true;
993 Value *VB = Or->user_back();
994 if (Or->hasOneUse() && isInteresting(VB))
995 return true;
997 return false;
1000 /// If we have (X|Y), and iff X and Y have no common bits set,
1001 /// transform this into (X+Y) to allow arithmetics reassociation.
1002 static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) {
1003 // Convert an or into an add.
1004 BinaryOperator *New =
1005 CreateAdd(Or->getOperand(0), Or->getOperand(1), "", Or, Or);
1006 New->setHasNoSignedWrap();
1007 New->setHasNoUnsignedWrap();
1008 New->takeName(Or);
1010 // Everyone now refers to the add instruction.
1011 Or->replaceAllUsesWith(New);
1012 New->setDebugLoc(Or->getDebugLoc());
1014 LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n');
1015 return New;
1018 /// Return true if we should break up this subtract of X-Y into (X + -Y).
1019 static bool ShouldBreakUpSubtract(Instruction *Sub) {
1020 // If this is a negation, we can't split it up!
1021 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
1022 return false;
1024 // Don't breakup X - undef.
1025 if (isa<UndefValue>(Sub->getOperand(1)))
1026 return false;
1028 // Don't bother to break this up unless either the LHS is an associable add or
1029 // subtract or if this is only used by one.
1030 Value *V0 = Sub->getOperand(0);
1031 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
1032 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
1033 return true;
1034 Value *V1 = Sub->getOperand(1);
1035 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
1036 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
1037 return true;
1038 Value *VB = Sub->user_back();
1039 if (Sub->hasOneUse() &&
1040 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1041 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
1042 return true;
1044 return false;
1047 /// If we have (X-Y), and if either X is an add, or if this is only used by an
1048 /// add, transform this into (X+(0-Y)) to promote better reassociation.
1049 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
1050 ReassociatePass::OrderedSet &ToRedo) {
1051 // Convert a subtract into an add and a neg instruction. This allows sub
1052 // instructions to be commuted with other add instructions.
1054 // Calculate the negative value of Operand 1 of the sub instruction,
1055 // and set it as the RHS of the add instruction we just made.
1056 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
1057 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
1058 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1059 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1060 New->takeName(Sub);
1062 // Everyone now refers to the add instruction.
1063 Sub->replaceAllUsesWith(New);
1064 New->setDebugLoc(Sub->getDebugLoc());
1066 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
1067 return New;
1070 /// If this is a shift of a reassociable multiply or is used by one, change
1071 /// this into a multiply by a constant to assist with further reassociation.
1072 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1073 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1074 auto *SA = cast<ConstantInt>(Shl->getOperand(1));
1075 MulCst = ConstantExpr::getShl(MulCst, SA);
1077 BinaryOperator *Mul =
1078 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1079 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1080 Mul->takeName(Shl);
1082 // Everyone now refers to the mul instruction.
1083 Shl->replaceAllUsesWith(Mul);
1084 Mul->setDebugLoc(Shl->getDebugLoc());
1086 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1087 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1088 // handling. It can be preserved as long as we're not left shifting by
1089 // bitwidth - 1.
1090 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1091 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1092 unsigned BitWidth = Shl->getType()->getIntegerBitWidth();
1093 if (NSW && (NUW || SA->getValue().ult(BitWidth - 1)))
1094 Mul->setHasNoSignedWrap(true);
1095 Mul->setHasNoUnsignedWrap(NUW);
1096 return Mul;
1099 /// Scan backwards and forwards among values with the same rank as element i
1100 /// to see if X exists. If X does not exist, return i. This is useful when
1101 /// scanning for 'x' when we see '-x' because they both get the same rank.
1102 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1103 unsigned i, Value *X) {
1104 unsigned XRank = Ops[i].Rank;
1105 unsigned e = Ops.size();
1106 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1107 if (Ops[j].Op == X)
1108 return j;
1109 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1110 if (Instruction *I2 = dyn_cast<Instruction>(X))
1111 if (I1->isIdenticalTo(I2))
1112 return j;
1114 // Scan backwards.
1115 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1116 if (Ops[j].Op == X)
1117 return j;
1118 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1119 if (Instruction *I2 = dyn_cast<Instruction>(X))
1120 if (I1->isIdenticalTo(I2))
1121 return j;
1123 return i;
1126 /// Emit a tree of add instructions, summing Ops together
1127 /// and returning the result. Insert the tree before I.
1128 static Value *EmitAddTreeOfValues(Instruction *I,
1129 SmallVectorImpl<WeakTrackingVH> &Ops) {
1130 if (Ops.size() == 1) return Ops.back();
1132 Value *V1 = Ops.pop_back_val();
1133 Value *V2 = EmitAddTreeOfValues(I, Ops);
1134 return CreateAdd(V2, V1, "reass.add", I, I);
1137 /// If V is an expression tree that is a multiplication sequence,
1138 /// and if this sequence contains a multiply by Factor,
1139 /// remove Factor from the tree and return the new tree.
1140 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1141 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1142 if (!BO)
1143 return nullptr;
1145 SmallVector<RepeatedValue, 8> Tree;
1146 MadeChange |= LinearizeExprTree(BO, Tree);
1147 SmallVector<ValueEntry, 8> Factors;
1148 Factors.reserve(Tree.size());
1149 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1150 RepeatedValue E = Tree[i];
1151 Factors.append(E.second.getZExtValue(),
1152 ValueEntry(getRank(E.first), E.first));
1155 bool FoundFactor = false;
1156 bool NeedsNegate = false;
1157 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1158 if (Factors[i].Op == Factor) {
1159 FoundFactor = true;
1160 Factors.erase(Factors.begin()+i);
1161 break;
1164 // If this is a negative version of this factor, remove it.
1165 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1166 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1167 if (FC1->getValue() == -FC2->getValue()) {
1168 FoundFactor = NeedsNegate = true;
1169 Factors.erase(Factors.begin()+i);
1170 break;
1172 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1173 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1174 const APFloat &F1 = FC1->getValueAPF();
1175 APFloat F2(FC2->getValueAPF());
1176 F2.changeSign();
1177 if (F1 == F2) {
1178 FoundFactor = NeedsNegate = true;
1179 Factors.erase(Factors.begin() + i);
1180 break;
1186 if (!FoundFactor) {
1187 // Make sure to restore the operands to the expression tree.
1188 RewriteExprTree(BO, Factors);
1189 return nullptr;
1192 BasicBlock::iterator InsertPt = ++BO->getIterator();
1194 // If this was just a single multiply, remove the multiply and return the only
1195 // remaining operand.
1196 if (Factors.size() == 1) {
1197 RedoInsts.insert(BO);
1198 V = Factors[0].Op;
1199 } else {
1200 RewriteExprTree(BO, Factors);
1201 V = BO;
1204 if (NeedsNegate)
1205 V = CreateNeg(V, "neg", &*InsertPt, BO);
1207 return V;
1210 /// If V is a single-use multiply, recursively add its operands as factors,
1211 /// otherwise add V to the list of factors.
1213 /// Ops is the top-level list of add operands we're trying to factor.
1214 static void FindSingleUseMultiplyFactors(Value *V,
1215 SmallVectorImpl<Value*> &Factors) {
1216 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1217 if (!BO) {
1218 Factors.push_back(V);
1219 return;
1222 // Otherwise, add the LHS and RHS to the list of factors.
1223 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1224 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1227 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1228 /// This optimizes based on identities. If it can be reduced to a single Value,
1229 /// it is returned, otherwise the Ops list is mutated as necessary.
1230 static Value *OptimizeAndOrXor(unsigned Opcode,
1231 SmallVectorImpl<ValueEntry> &Ops) {
1232 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1233 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1234 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1235 // First, check for X and ~X in the operand list.
1236 assert(i < Ops.size());
1237 Value *X;
1238 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^.
1239 unsigned FoundX = FindInOperandList(Ops, i, X);
1240 if (FoundX != i) {
1241 if (Opcode == Instruction::And) // ...&X&~X = 0
1242 return Constant::getNullValue(X->getType());
1244 if (Opcode == Instruction::Or) // ...|X|~X = -1
1245 return Constant::getAllOnesValue(X->getType());
1249 // Next, check for duplicate pairs of values, which we assume are next to
1250 // each other, due to our sorting criteria.
1251 assert(i < Ops.size());
1252 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1253 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1254 // Drop duplicate values for And and Or.
1255 Ops.erase(Ops.begin()+i);
1256 --i; --e;
1257 ++NumAnnihil;
1258 continue;
1261 // Drop pairs of values for Xor.
1262 assert(Opcode == Instruction::Xor);
1263 if (e == 2)
1264 return Constant::getNullValue(Ops[0].Op->getType());
1266 // Y ^ X^X -> Y
1267 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1268 i -= 1; e -= 2;
1269 ++NumAnnihil;
1272 return nullptr;
1275 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1276 /// instruction with the given two operands, and return the resulting
1277 /// instruction. There are two special cases: 1) if the constant operand is 0,
1278 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1279 /// be returned.
1280 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1281 const APInt &ConstOpnd) {
1282 if (ConstOpnd.isNullValue())
1283 return nullptr;
1285 if (ConstOpnd.isAllOnesValue())
1286 return Opnd;
1288 Instruction *I = BinaryOperator::CreateAnd(
1289 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1290 InsertBefore);
1291 I->setDebugLoc(InsertBefore->getDebugLoc());
1292 return I;
1295 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1296 // into "R ^ C", where C would be 0, and R is a symbolic value.
1298 // If it was successful, true is returned, and the "R" and "C" is returned
1299 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1300 // and both "Res" and "ConstOpnd" remain unchanged.
1301 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1302 APInt &ConstOpnd, Value *&Res) {
1303 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1304 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1305 // = (x & ~c1) ^ (c1 ^ c2)
1306 // It is useful only when c1 == c2.
1307 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1308 return false;
1310 if (!Opnd1->getValue()->hasOneUse())
1311 return false;
1313 const APInt &C1 = Opnd1->getConstPart();
1314 if (C1 != ConstOpnd)
1315 return false;
1317 Value *X = Opnd1->getSymbolicPart();
1318 Res = createAndInstr(I, X, ~C1);
1319 // ConstOpnd was C2, now C1 ^ C2.
1320 ConstOpnd ^= C1;
1322 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1323 RedoInsts.insert(T);
1324 return true;
1327 // Helper function of OptimizeXor(). It tries to simplify
1328 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1329 // symbolic value.
1331 // If it was successful, true is returned, and the "R" and "C" is returned
1332 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1333 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1334 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1335 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1336 XorOpnd *Opnd2, APInt &ConstOpnd,
1337 Value *&Res) {
1338 Value *X = Opnd1->getSymbolicPart();
1339 if (X != Opnd2->getSymbolicPart())
1340 return false;
1342 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1343 int DeadInstNum = 1;
1344 if (Opnd1->getValue()->hasOneUse())
1345 DeadInstNum++;
1346 if (Opnd2->getValue()->hasOneUse())
1347 DeadInstNum++;
1349 // Xor-Rule 2:
1350 // (x | c1) ^ (x & c2)
1351 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1352 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1353 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1355 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1356 if (Opnd2->isOrExpr())
1357 std::swap(Opnd1, Opnd2);
1359 const APInt &C1 = Opnd1->getConstPart();
1360 const APInt &C2 = Opnd2->getConstPart();
1361 APInt C3((~C1) ^ C2);
1363 // Do not increase code size!
1364 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1365 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1366 if (NewInstNum > DeadInstNum)
1367 return false;
1370 Res = createAndInstr(I, X, C3);
1371 ConstOpnd ^= C1;
1372 } else if (Opnd1->isOrExpr()) {
1373 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1375 const APInt &C1 = Opnd1->getConstPart();
1376 const APInt &C2 = Opnd2->getConstPart();
1377 APInt C3 = C1 ^ C2;
1379 // Do not increase code size
1380 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1381 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1382 if (NewInstNum > DeadInstNum)
1383 return false;
1386 Res = createAndInstr(I, X, C3);
1387 ConstOpnd ^= C3;
1388 } else {
1389 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1391 const APInt &C1 = Opnd1->getConstPart();
1392 const APInt &C2 = Opnd2->getConstPart();
1393 APInt C3 = C1 ^ C2;
1394 Res = createAndInstr(I, X, C3);
1397 // Put the original operands in the Redo list; hope they will be deleted
1398 // as dead code.
1399 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1400 RedoInsts.insert(T);
1401 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1402 RedoInsts.insert(T);
1404 return true;
1407 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1408 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1409 /// necessary.
1410 Value *ReassociatePass::OptimizeXor(Instruction *I,
1411 SmallVectorImpl<ValueEntry> &Ops) {
1412 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1413 return V;
1415 if (Ops.size() == 1)
1416 return nullptr;
1418 SmallVector<XorOpnd, 8> Opnds;
1419 SmallVector<XorOpnd*, 8> OpndPtrs;
1420 Type *Ty = Ops[0].Op->getType();
1421 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1423 // Step 1: Convert ValueEntry to XorOpnd
1424 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1425 Value *V = Ops[i].Op;
1426 const APInt *C;
1427 // TODO: Support non-splat vectors.
1428 if (match(V, m_APInt(C))) {
1429 ConstOpnd ^= *C;
1430 } else {
1431 XorOpnd O(V);
1432 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1433 Opnds.push_back(O);
1437 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1438 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1439 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1440 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1441 // when new elements are added to the vector.
1442 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1443 OpndPtrs.push_back(&Opnds[i]);
1445 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1446 // the same symbolic value cluster together. For instance, the input operand
1447 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1448 // ("x | 123", "x & 789", "y & 456").
1450 // The purpose is twofold:
1451 // 1) Cluster together the operands sharing the same symbolic-value.
1452 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1453 // could potentially shorten crital path, and expose more loop-invariants.
1454 // Note that values' rank are basically defined in RPO order (FIXME).
1455 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1456 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1457 // "z" in the order of X-Y-Z is better than any other orders.
1458 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1459 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1462 // Step 3: Combine adjacent operands
1463 XorOpnd *PrevOpnd = nullptr;
1464 bool Changed = false;
1465 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1466 XorOpnd *CurrOpnd = OpndPtrs[i];
1467 // The combined value
1468 Value *CV;
1470 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1471 if (!ConstOpnd.isNullValue() &&
1472 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1473 Changed = true;
1474 if (CV)
1475 *CurrOpnd = XorOpnd(CV);
1476 else {
1477 CurrOpnd->Invalidate();
1478 continue;
1482 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1483 PrevOpnd = CurrOpnd;
1484 continue;
1487 // step 3.2: When previous and current operands share the same symbolic
1488 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1489 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1490 // Remove previous operand
1491 PrevOpnd->Invalidate();
1492 if (CV) {
1493 *CurrOpnd = XorOpnd(CV);
1494 PrevOpnd = CurrOpnd;
1495 } else {
1496 CurrOpnd->Invalidate();
1497 PrevOpnd = nullptr;
1499 Changed = true;
1503 // Step 4: Reassemble the Ops
1504 if (Changed) {
1505 Ops.clear();
1506 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1507 XorOpnd &O = Opnds[i];
1508 if (O.isInvalid())
1509 continue;
1510 ValueEntry VE(getRank(O.getValue()), O.getValue());
1511 Ops.push_back(VE);
1513 if (!ConstOpnd.isNullValue()) {
1514 Value *C = ConstantInt::get(Ty, ConstOpnd);
1515 ValueEntry VE(getRank(C), C);
1516 Ops.push_back(VE);
1518 unsigned Sz = Ops.size();
1519 if (Sz == 1)
1520 return Ops.back().Op;
1521 if (Sz == 0) {
1522 assert(ConstOpnd.isNullValue());
1523 return ConstantInt::get(Ty, ConstOpnd);
1527 return nullptr;
1530 /// Optimize a series of operands to an 'add' instruction. This
1531 /// optimizes based on identities. If it can be reduced to a single Value, it
1532 /// is returned, otherwise the Ops list is mutated as necessary.
1533 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1534 SmallVectorImpl<ValueEntry> &Ops) {
1535 // Scan the operand lists looking for X and -X pairs. If we find any, we
1536 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1537 // scan for any
1538 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1540 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1541 Value *TheOp = Ops[i].Op;
1542 // Check to see if we've seen this operand before. If so, we factor all
1543 // instances of the operand together. Due to our sorting criteria, we know
1544 // that these need to be next to each other in the vector.
1545 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1546 // Rescan the list, remove all instances of this operand from the expr.
1547 unsigned NumFound = 0;
1548 do {
1549 Ops.erase(Ops.begin()+i);
1550 ++NumFound;
1551 } while (i != Ops.size() && Ops[i].Op == TheOp);
1553 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1554 << '\n');
1555 ++NumFactor;
1557 // Insert a new multiply.
1558 Type *Ty = TheOp->getType();
1559 Constant *C = Ty->isIntOrIntVectorTy() ?
1560 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1561 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1563 // Now that we have inserted a multiply, optimize it. This allows us to
1564 // handle cases that require multiple factoring steps, such as this:
1565 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1566 RedoInsts.insert(Mul);
1568 // If every add operand was a duplicate, return the multiply.
1569 if (Ops.empty())
1570 return Mul;
1572 // Otherwise, we had some input that didn't have the dupe, such as
1573 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1574 // things being added by this operation.
1575 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1577 --i;
1578 e = Ops.size();
1579 continue;
1582 // Check for X and -X or X and ~X in the operand list.
1583 Value *X;
1584 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1585 !match(TheOp, m_FNeg(m_Value(X))))
1586 continue;
1588 unsigned FoundX = FindInOperandList(Ops, i, X);
1589 if (FoundX == i)
1590 continue;
1592 // Remove X and -X from the operand list.
1593 if (Ops.size() == 2 &&
1594 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1595 return Constant::getNullValue(X->getType());
1597 // Remove X and ~X from the operand list.
1598 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1599 return Constant::getAllOnesValue(X->getType());
1601 Ops.erase(Ops.begin()+i);
1602 if (i < FoundX)
1603 --FoundX;
1604 else
1605 --i; // Need to back up an extra one.
1606 Ops.erase(Ops.begin()+FoundX);
1607 ++NumAnnihil;
1608 --i; // Revisit element.
1609 e -= 2; // Removed two elements.
1611 // if X and ~X we append -1 to the operand list.
1612 if (match(TheOp, m_Not(m_Value()))) {
1613 Value *V = Constant::getAllOnesValue(X->getType());
1614 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1615 e += 1;
1619 // Scan the operand list, checking to see if there are any common factors
1620 // between operands. Consider something like A*A+A*B*C+D. We would like to
1621 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1622 // To efficiently find this, we count the number of times a factor occurs
1623 // for any ADD operands that are MULs.
1624 DenseMap<Value*, unsigned> FactorOccurrences;
1626 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1627 // where they are actually the same multiply.
1628 unsigned MaxOcc = 0;
1629 Value *MaxOccVal = nullptr;
1630 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1631 BinaryOperator *BOp =
1632 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1633 if (!BOp)
1634 continue;
1636 // Compute all of the factors of this added value.
1637 SmallVector<Value*, 8> Factors;
1638 FindSingleUseMultiplyFactors(BOp, Factors);
1639 assert(Factors.size() > 1 && "Bad linearize!");
1641 // Add one to FactorOccurrences for each unique factor in this op.
1642 SmallPtrSet<Value*, 8> Duplicates;
1643 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1644 Value *Factor = Factors[i];
1645 if (!Duplicates.insert(Factor).second)
1646 continue;
1648 unsigned Occ = ++FactorOccurrences[Factor];
1649 if (Occ > MaxOcc) {
1650 MaxOcc = Occ;
1651 MaxOccVal = Factor;
1654 // If Factor is a negative constant, add the negated value as a factor
1655 // because we can percolate the negate out. Watch for minint, which
1656 // cannot be positivified.
1657 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1658 if (CI->isNegative() && !CI->isMinValue(true)) {
1659 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1660 if (!Duplicates.insert(Factor).second)
1661 continue;
1662 unsigned Occ = ++FactorOccurrences[Factor];
1663 if (Occ > MaxOcc) {
1664 MaxOcc = Occ;
1665 MaxOccVal = Factor;
1668 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1669 if (CF->isNegative()) {
1670 APFloat F(CF->getValueAPF());
1671 F.changeSign();
1672 Factor = ConstantFP::get(CF->getContext(), F);
1673 if (!Duplicates.insert(Factor).second)
1674 continue;
1675 unsigned Occ = ++FactorOccurrences[Factor];
1676 if (Occ > MaxOcc) {
1677 MaxOcc = Occ;
1678 MaxOccVal = Factor;
1685 // If any factor occurred more than one time, we can pull it out.
1686 if (MaxOcc > 1) {
1687 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1688 << '\n');
1689 ++NumFactor;
1691 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1692 // this, we could otherwise run into situations where removing a factor
1693 // from an expression will drop a use of maxocc, and this can cause
1694 // RemoveFactorFromExpression on successive values to behave differently.
1695 Instruction *DummyInst =
1696 I->getType()->isIntOrIntVectorTy()
1697 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1698 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1700 SmallVector<WeakTrackingVH, 4> NewMulOps;
1701 for (unsigned i = 0; i != Ops.size(); ++i) {
1702 // Only try to remove factors from expressions we're allowed to.
1703 BinaryOperator *BOp =
1704 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1705 if (!BOp)
1706 continue;
1708 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1709 // The factorized operand may occur several times. Convert them all in
1710 // one fell swoop.
1711 for (unsigned j = Ops.size(); j != i;) {
1712 --j;
1713 if (Ops[j].Op == Ops[i].Op) {
1714 NewMulOps.push_back(V);
1715 Ops.erase(Ops.begin()+j);
1718 --i;
1722 // No need for extra uses anymore.
1723 DummyInst->deleteValue();
1725 unsigned NumAddedValues = NewMulOps.size();
1726 Value *V = EmitAddTreeOfValues(I, NewMulOps);
1728 // Now that we have inserted the add tree, optimize it. This allows us to
1729 // handle cases that require multiple factoring steps, such as this:
1730 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1731 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1732 (void)NumAddedValues;
1733 if (Instruction *VI = dyn_cast<Instruction>(V))
1734 RedoInsts.insert(VI);
1736 // Create the multiply.
1737 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1739 // Rerun associate on the multiply in case the inner expression turned into
1740 // a multiply. We want to make sure that we keep things in canonical form.
1741 RedoInsts.insert(V2);
1743 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1744 // entire result expression is just the multiply "A*(B+C)".
1745 if (Ops.empty())
1746 return V2;
1748 // Otherwise, we had some input that didn't have the factor, such as
1749 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1750 // things being added by this operation.
1751 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1754 return nullptr;
1757 /// Build up a vector of value/power pairs factoring a product.
1759 /// Given a series of multiplication operands, build a vector of factors and
1760 /// the powers each is raised to when forming the final product. Sort them in
1761 /// the order of descending power.
1763 /// (x*x) -> [(x, 2)]
1764 /// ((x*x)*x) -> [(x, 3)]
1765 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1767 /// \returns Whether any factors have a power greater than one.
1768 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1769 SmallVectorImpl<Factor> &Factors) {
1770 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1771 // Compute the sum of powers of simplifiable factors.
1772 unsigned FactorPowerSum = 0;
1773 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1774 Value *Op = Ops[Idx-1].Op;
1776 // Count the number of occurrences of this value.
1777 unsigned Count = 1;
1778 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1779 ++Count;
1780 // Track for simplification all factors which occur 2 or more times.
1781 if (Count > 1)
1782 FactorPowerSum += Count;
1785 // We can only simplify factors if the sum of the powers of our simplifiable
1786 // factors is 4 or higher. When that is the case, we will *always* have
1787 // a simplification. This is an important invariant to prevent cyclicly
1788 // trying to simplify already minimal formations.
1789 if (FactorPowerSum < 4)
1790 return false;
1792 // Now gather the simplifiable factors, removing them from Ops.
1793 FactorPowerSum = 0;
1794 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1795 Value *Op = Ops[Idx-1].Op;
1797 // Count the number of occurrences of this value.
1798 unsigned Count = 1;
1799 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1800 ++Count;
1801 if (Count == 1)
1802 continue;
1803 // Move an even number of occurrences to Factors.
1804 Count &= ~1U;
1805 Idx -= Count;
1806 FactorPowerSum += Count;
1807 Factors.push_back(Factor(Op, Count));
1808 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1811 // None of the adjustments above should have reduced the sum of factor powers
1812 // below our mininum of '4'.
1813 assert(FactorPowerSum >= 4);
1815 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1816 return LHS.Power > RHS.Power;
1818 return true;
1821 /// Build a tree of multiplies, computing the product of Ops.
1822 static Value *buildMultiplyTree(IRBuilderBase &Builder,
1823 SmallVectorImpl<Value*> &Ops) {
1824 if (Ops.size() == 1)
1825 return Ops.back();
1827 Value *LHS = Ops.pop_back_val();
1828 do {
1829 if (LHS->getType()->isIntOrIntVectorTy())
1830 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1831 else
1832 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1833 } while (!Ops.empty());
1835 return LHS;
1838 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1840 /// Given a vector of values raised to various powers, where no two values are
1841 /// equal and the powers are sorted in decreasing order, compute the minimal
1842 /// DAG of multiplies to compute the final product, and return that product
1843 /// value.
1844 Value *
1845 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder,
1846 SmallVectorImpl<Factor> &Factors) {
1847 assert(Factors[0].Power);
1848 SmallVector<Value *, 4> OuterProduct;
1849 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1850 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1851 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1852 LastIdx = Idx;
1853 continue;
1856 // We want to multiply across all the factors with the same power so that
1857 // we can raise them to that power as a single entity. Build a mini tree
1858 // for that.
1859 SmallVector<Value *, 4> InnerProduct;
1860 InnerProduct.push_back(Factors[LastIdx].Base);
1861 do {
1862 InnerProduct.push_back(Factors[Idx].Base);
1863 ++Idx;
1864 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1866 // Reset the base value of the first factor to the new expression tree.
1867 // We'll remove all the factors with the same power in a second pass.
1868 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1869 if (Instruction *MI = dyn_cast<Instruction>(M))
1870 RedoInsts.insert(MI);
1872 LastIdx = Idx;
1874 // Unique factors with equal powers -- we've folded them into the first one's
1875 // base.
1876 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1877 [](const Factor &LHS, const Factor &RHS) {
1878 return LHS.Power == RHS.Power;
1880 Factors.end());
1882 // Iteratively collect the base of each factor with an add power into the
1883 // outer product, and halve each power in preparation for squaring the
1884 // expression.
1885 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1886 if (Factors[Idx].Power & 1)
1887 OuterProduct.push_back(Factors[Idx].Base);
1888 Factors[Idx].Power >>= 1;
1890 if (Factors[0].Power) {
1891 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1892 OuterProduct.push_back(SquareRoot);
1893 OuterProduct.push_back(SquareRoot);
1895 if (OuterProduct.size() == 1)
1896 return OuterProduct.front();
1898 Value *V = buildMultiplyTree(Builder, OuterProduct);
1899 return V;
1902 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1903 SmallVectorImpl<ValueEntry> &Ops) {
1904 // We can only optimize the multiplies when there is a chain of more than
1905 // three, such that a balanced tree might require fewer total multiplies.
1906 if (Ops.size() < 4)
1907 return nullptr;
1909 // Try to turn linear trees of multiplies without other uses of the
1910 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1911 // re-use.
1912 SmallVector<Factor, 4> Factors;
1913 if (!collectMultiplyFactors(Ops, Factors))
1914 return nullptr; // All distinct factors, so nothing left for us to do.
1916 IRBuilder<> Builder(I);
1917 // The reassociate transformation for FP operations is performed only
1918 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1919 // to the newly generated operations.
1920 if (auto FPI = dyn_cast<FPMathOperator>(I))
1921 Builder.setFastMathFlags(FPI->getFastMathFlags());
1923 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1924 if (Ops.empty())
1925 return V;
1927 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1928 Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1929 return nullptr;
1932 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1933 SmallVectorImpl<ValueEntry> &Ops) {
1934 // Now that we have the linearized expression tree, try to optimize it.
1935 // Start by folding any constants that we found.
1936 Constant *Cst = nullptr;
1937 unsigned Opcode = I->getOpcode();
1938 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1939 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1940 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1942 // If there was nothing but constants then we are done.
1943 if (Ops.empty())
1944 return Cst;
1946 // Put the combined constant back at the end of the operand list, except if
1947 // there is no point. For example, an add of 0 gets dropped here, while a
1948 // multiplication by zero turns the whole expression into zero.
1949 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1950 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1951 return Cst;
1952 Ops.push_back(ValueEntry(0, Cst));
1955 if (Ops.size() == 1) return Ops[0].Op;
1957 // Handle destructive annihilation due to identities between elements in the
1958 // argument list here.
1959 unsigned NumOps = Ops.size();
1960 switch (Opcode) {
1961 default: break;
1962 case Instruction::And:
1963 case Instruction::Or:
1964 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1965 return Result;
1966 break;
1968 case Instruction::Xor:
1969 if (Value *Result = OptimizeXor(I, Ops))
1970 return Result;
1971 break;
1973 case Instruction::Add:
1974 case Instruction::FAdd:
1975 if (Value *Result = OptimizeAdd(I, Ops))
1976 return Result;
1977 break;
1979 case Instruction::Mul:
1980 case Instruction::FMul:
1981 if (Value *Result = OptimizeMul(I, Ops))
1982 return Result;
1983 break;
1986 if (Ops.size() != NumOps)
1987 return OptimizeExpression(I, Ops);
1988 return nullptr;
1991 // Remove dead instructions and if any operands are trivially dead add them to
1992 // Insts so they will be removed as well.
1993 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1994 OrderedSet &Insts) {
1995 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1996 SmallVector<Value *, 4> Ops(I->operands());
1997 ValueRankMap.erase(I);
1998 Insts.remove(I);
1999 RedoInsts.remove(I);
2000 llvm::salvageDebugInfo(*I);
2001 I->eraseFromParent();
2002 for (auto Op : Ops)
2003 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
2004 if (OpInst->use_empty())
2005 Insts.insert(OpInst);
2008 /// Zap the given instruction, adding interesting operands to the work list.
2009 void ReassociatePass::EraseInst(Instruction *I) {
2010 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
2011 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
2013 SmallVector<Value *, 8> Ops(I->operands());
2014 // Erase the dead instruction.
2015 ValueRankMap.erase(I);
2016 RedoInsts.remove(I);
2017 llvm::salvageDebugInfo(*I);
2018 I->eraseFromParent();
2019 // Optimize its operands.
2020 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
2021 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2022 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
2023 // If this is a node in an expression tree, climb to the expression root
2024 // and add that since that's where optimization actually happens.
2025 unsigned Opcode = Op->getOpcode();
2026 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
2027 Visited.insert(Op).second)
2028 Op = Op->user_back();
2030 // The instruction we're going to push may be coming from a
2031 // dead block, and Reassociate skips the processing of unreachable
2032 // blocks because it's a waste of time and also because it can
2033 // lead to infinite loop due to LLVM's non-standard definition
2034 // of dominance.
2035 if (ValueRankMap.find(Op) != ValueRankMap.end())
2036 RedoInsts.insert(Op);
2039 MadeChange = true;
2042 /// Recursively analyze an expression to build a list of instructions that have
2043 /// negative floating-point constant operands. The caller can then transform
2044 /// the list to create positive constants for better reassociation and CSE.
2045 static void getNegatibleInsts(Value *V,
2046 SmallVectorImpl<Instruction *> &Candidates) {
2047 // Handle only one-use instructions. Combining negations does not justify
2048 // replicating instructions.
2049 Instruction *I;
2050 if (!match(V, m_OneUse(m_Instruction(I))))
2051 return;
2053 // Handle expressions of multiplications and divisions.
2054 // TODO: This could look through floating-point casts.
2055 const APFloat *C;
2056 switch (I->getOpcode()) {
2057 case Instruction::FMul:
2058 // Not expecting non-canonical code here. Bail out and wait.
2059 if (match(I->getOperand(0), m_Constant()))
2060 break;
2062 if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
2063 Candidates.push_back(I);
2064 LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
2066 getNegatibleInsts(I->getOperand(0), Candidates);
2067 getNegatibleInsts(I->getOperand(1), Candidates);
2068 break;
2069 case Instruction::FDiv:
2070 // Not expecting non-canonical code here. Bail out and wait.
2071 if (match(I->getOperand(0), m_Constant()) &&
2072 match(I->getOperand(1), m_Constant()))
2073 break;
2075 if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
2076 (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
2077 Candidates.push_back(I);
2078 LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
2080 getNegatibleInsts(I->getOperand(0), Candidates);
2081 getNegatibleInsts(I->getOperand(1), Candidates);
2082 break;
2083 default:
2084 break;
2088 /// Given an fadd/fsub with an operand that is a one-use instruction
2089 /// (the fadd/fsub), try to change negative floating-point constants into
2090 /// positive constants to increase potential for reassociation and CSE.
2091 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
2092 Instruction *Op,
2093 Value *OtherOp) {
2094 assert((I->getOpcode() == Instruction::FAdd ||
2095 I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
2097 // Collect instructions with negative FP constants from the subtree that ends
2098 // in Op.
2099 SmallVector<Instruction *, 4> Candidates;
2100 getNegatibleInsts(Op, Candidates);
2101 if (Candidates.empty())
2102 return nullptr;
2104 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2105 // resulting subtract will be broken up later. This can get us into an
2106 // infinite loop during reassociation.
2107 bool IsFSub = I->getOpcode() == Instruction::FSub;
2108 bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
2109 if (NeedsSubtract && ShouldBreakUpSubtract(I))
2110 return nullptr;
2112 for (Instruction *Negatible : Candidates) {
2113 const APFloat *C;
2114 if (match(Negatible->getOperand(0), m_APFloat(C))) {
2115 assert(!match(Negatible->getOperand(1), m_Constant()) &&
2116 "Expecting only 1 constant operand");
2117 assert(C->isNegative() && "Expected negative FP constant");
2118 Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
2119 MadeChange = true;
2121 if (match(Negatible->getOperand(1), m_APFloat(C))) {
2122 assert(!match(Negatible->getOperand(0), m_Constant()) &&
2123 "Expecting only 1 constant operand");
2124 assert(C->isNegative() && "Expected negative FP constant");
2125 Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
2126 MadeChange = true;
2129 assert(MadeChange == true && "Negative constant candidate was not changed");
2131 // Negations cancelled out.
2132 if (Candidates.size() % 2 == 0)
2133 return I;
2135 // Negate the final operand in the expression by flipping the opcode of this
2136 // fadd/fsub.
2137 assert(Candidates.size() % 2 == 1 && "Expected odd number");
2138 IRBuilder<> Builder(I);
2139 Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
2140 : Builder.CreateFSubFMF(OtherOp, Op, I);
2141 I->replaceAllUsesWith(NewInst);
2142 RedoInsts.insert(I);
2143 return dyn_cast<Instruction>(NewInst);
2146 /// Canonicalize expressions that contain a negative floating-point constant
2147 /// of the following form:
2148 /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2149 /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2150 /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2152 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2153 /// input instruction.
2154 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
2155 LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
2156 Value *X;
2157 Instruction *Op;
2158 if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
2159 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2160 I = R;
2161 if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
2162 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2163 I = R;
2164 if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
2165 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2166 I = R;
2167 return I;
2170 /// Inspect and optimize the given instruction. Note that erasing
2171 /// instructions is not allowed.
2172 void ReassociatePass::OptimizeInst(Instruction *I) {
2173 // Only consider operations that we understand.
2174 if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2175 return;
2177 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2178 // If an operand of this shift is a reassociable multiply, or if the shift
2179 // is used by a reassociable multiply or add, turn into a multiply.
2180 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2181 (I->hasOneUse() &&
2182 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2183 isReassociableOp(I->user_back(), Instruction::Add)))) {
2184 Instruction *NI = ConvertShiftToMul(I);
2185 RedoInsts.insert(I);
2186 MadeChange = true;
2187 I = NI;
2190 // Commute binary operators, to canonicalize the order of their operands.
2191 // This can potentially expose more CSE opportunities, and makes writing other
2192 // transformations simpler.
2193 if (I->isCommutative())
2194 canonicalizeOperands(I);
2196 // Canonicalize negative constants out of expressions.
2197 if (Instruction *Res = canonicalizeNegFPConstants(I))
2198 I = Res;
2200 // Don't optimize floating-point instructions unless they are 'fast'.
2201 if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2202 return;
2204 // Do not reassociate boolean (i1) expressions. We want to preserve the
2205 // original order of evaluation for short-circuited comparisons that
2206 // SimplifyCFG has folded to AND/OR expressions. If the expression
2207 // is not further optimized, it is likely to be transformed back to a
2208 // short-circuited form for code gen, and the source order may have been
2209 // optimized for the most likely conditions.
2210 if (I->getType()->isIntegerTy(1))
2211 return;
2213 // If this is a bitwise or instruction of operands
2214 // with no common bits set, convert it to X+Y.
2215 if (I->getOpcode() == Instruction::Or &&
2216 shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) &&
2217 haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1),
2218 I->getModule()->getDataLayout(), /*AC=*/nullptr, I,
2219 /*DT=*/nullptr)) {
2220 Instruction *NI = convertOrWithNoCommonBitsToAdd(I);
2221 RedoInsts.insert(I);
2222 MadeChange = true;
2223 I = NI;
2226 // If this is a subtract instruction which is not already in negate form,
2227 // see if we can convert it to X+-Y.
2228 if (I->getOpcode() == Instruction::Sub) {
2229 if (ShouldBreakUpSubtract(I)) {
2230 Instruction *NI = BreakUpSubtract(I, RedoInsts);
2231 RedoInsts.insert(I);
2232 MadeChange = true;
2233 I = NI;
2234 } else if (match(I, m_Neg(m_Value()))) {
2235 // Otherwise, this is a negation. See if the operand is a multiply tree
2236 // and if this is not an inner node of a multiply tree.
2237 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2238 (!I->hasOneUse() ||
2239 !isReassociableOp(I->user_back(), Instruction::Mul))) {
2240 Instruction *NI = LowerNegateToMultiply(I);
2241 // If the negate was simplified, revisit the users to see if we can
2242 // reassociate further.
2243 for (User *U : NI->users()) {
2244 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2245 RedoInsts.insert(Tmp);
2247 RedoInsts.insert(I);
2248 MadeChange = true;
2249 I = NI;
2252 } else if (I->getOpcode() == Instruction::FNeg ||
2253 I->getOpcode() == Instruction::FSub) {
2254 if (ShouldBreakUpSubtract(I)) {
2255 Instruction *NI = BreakUpSubtract(I, RedoInsts);
2256 RedoInsts.insert(I);
2257 MadeChange = true;
2258 I = NI;
2259 } else if (match(I, m_FNeg(m_Value()))) {
2260 // Otherwise, this is a negation. See if the operand is a multiply tree
2261 // and if this is not an inner node of a multiply tree.
2262 Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2263 I->getOperand(0);
2264 if (isReassociableOp(Op, Instruction::FMul) &&
2265 (!I->hasOneUse() ||
2266 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2267 // If the negate was simplified, revisit the users to see if we can
2268 // reassociate further.
2269 Instruction *NI = LowerNegateToMultiply(I);
2270 for (User *U : NI->users()) {
2271 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2272 RedoInsts.insert(Tmp);
2274 RedoInsts.insert(I);
2275 MadeChange = true;
2276 I = NI;
2281 // If this instruction is an associative binary operator, process it.
2282 if (!I->isAssociative()) return;
2283 BinaryOperator *BO = cast<BinaryOperator>(I);
2285 // If this is an interior node of a reassociable tree, ignore it until we
2286 // get to the root of the tree, to avoid N^2 analysis.
2287 unsigned Opcode = BO->getOpcode();
2288 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2289 // During the initial run we will get to the root of the tree.
2290 // But if we get here while we are redoing instructions, there is no
2291 // guarantee that the root will be visited. So Redo later
2292 if (BO->user_back() != BO &&
2293 BO->getParent() == BO->user_back()->getParent())
2294 RedoInsts.insert(BO->user_back());
2295 return;
2298 // If this is an add tree that is used by a sub instruction, ignore it
2299 // until we process the subtract.
2300 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2301 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2302 return;
2303 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2304 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2305 return;
2307 ReassociateExpression(BO);
2310 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2311 // First, walk the expression tree, linearizing the tree, collecting the
2312 // operand information.
2313 SmallVector<RepeatedValue, 8> Tree;
2314 MadeChange |= LinearizeExprTree(I, Tree);
2315 SmallVector<ValueEntry, 8> Ops;
2316 Ops.reserve(Tree.size());
2317 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2318 RepeatedValue E = Tree[i];
2319 Ops.append(E.second.getZExtValue(),
2320 ValueEntry(getRank(E.first), E.first));
2323 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2325 // Now that we have linearized the tree to a list and have gathered all of
2326 // the operands and their ranks, sort the operands by their rank. Use a
2327 // stable_sort so that values with equal ranks will have their relative
2328 // positions maintained (and so the compiler is deterministic). Note that
2329 // this sorts so that the highest ranking values end up at the beginning of
2330 // the vector.
2331 llvm::stable_sort(Ops);
2333 // Now that we have the expression tree in a convenient
2334 // sorted form, optimize it globally if possible.
2335 if (Value *V = OptimizeExpression(I, Ops)) {
2336 if (V == I)
2337 // Self-referential expression in unreachable code.
2338 return;
2339 // This expression tree simplified to something that isn't a tree,
2340 // eliminate it.
2341 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2342 I->replaceAllUsesWith(V);
2343 if (Instruction *VI = dyn_cast<Instruction>(V))
2344 if (I->getDebugLoc())
2345 VI->setDebugLoc(I->getDebugLoc());
2346 RedoInsts.insert(I);
2347 ++NumAnnihil;
2348 return;
2351 // We want to sink immediates as deeply as possible except in the case where
2352 // this is a multiply tree used only by an add, and the immediate is a -1.
2353 // In this case we reassociate to put the negation on the outside so that we
2354 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2355 if (I->hasOneUse()) {
2356 if (I->getOpcode() == Instruction::Mul &&
2357 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2358 isa<ConstantInt>(Ops.back().Op) &&
2359 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2360 ValueEntry Tmp = Ops.pop_back_val();
2361 Ops.insert(Ops.begin(), Tmp);
2362 } else if (I->getOpcode() == Instruction::FMul &&
2363 cast<Instruction>(I->user_back())->getOpcode() ==
2364 Instruction::FAdd &&
2365 isa<ConstantFP>(Ops.back().Op) &&
2366 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2367 ValueEntry Tmp = Ops.pop_back_val();
2368 Ops.insert(Ops.begin(), Tmp);
2372 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2374 if (Ops.size() == 1) {
2375 if (Ops[0].Op == I)
2376 // Self-referential expression in unreachable code.
2377 return;
2379 // This expression tree simplified to something that isn't a tree,
2380 // eliminate it.
2381 I->replaceAllUsesWith(Ops[0].Op);
2382 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2383 OI->setDebugLoc(I->getDebugLoc());
2384 RedoInsts.insert(I);
2385 return;
2388 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2389 // Find the pair with the highest count in the pairmap and move it to the
2390 // back of the list so that it can later be CSE'd.
2391 // example:
2392 // a*b*c*d*e
2393 // if c*e is the most "popular" pair, we can express this as
2394 // (((c*e)*d)*b)*a
2395 unsigned Max = 1;
2396 unsigned BestRank = 0;
2397 std::pair<unsigned, unsigned> BestPair;
2398 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2399 for (unsigned i = 0; i < Ops.size() - 1; ++i)
2400 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2401 unsigned Score = 0;
2402 Value *Op0 = Ops[i].Op;
2403 Value *Op1 = Ops[j].Op;
2404 if (std::less<Value *>()(Op1, Op0))
2405 std::swap(Op0, Op1);
2406 auto it = PairMap[Idx].find({Op0, Op1});
2407 if (it != PairMap[Idx].end()) {
2408 // Functions like BreakUpSubtract() can erase the Values we're using
2409 // as keys and create new Values after we built the PairMap. There's a
2410 // small chance that the new nodes can have the same address as
2411 // something already in the table. We shouldn't accumulate the stored
2412 // score in that case as it refers to the wrong Value.
2413 if (it->second.isValid())
2414 Score += it->second.Score;
2417 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2418 if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2419 BestPair = {i, j};
2420 Max = Score;
2421 BestRank = MaxRank;
2424 if (Max > 1) {
2425 auto Op0 = Ops[BestPair.first];
2426 auto Op1 = Ops[BestPair.second];
2427 Ops.erase(&Ops[BestPair.second]);
2428 Ops.erase(&Ops[BestPair.first]);
2429 Ops.push_back(Op0);
2430 Ops.push_back(Op1);
2433 // Now that we ordered and optimized the expressions, splat them back into
2434 // the expression tree, removing any unneeded nodes.
2435 RewriteExprTree(I, Ops);
2438 void
2439 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2440 // Make a "pairmap" of how often each operand pair occurs.
2441 for (BasicBlock *BI : RPOT) {
2442 for (Instruction &I : *BI) {
2443 if (!I.isAssociative())
2444 continue;
2446 // Ignore nodes that aren't at the root of trees.
2447 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2448 continue;
2450 // Collect all operands in a single reassociable expression.
2451 // Since Reassociate has already been run once, we can assume things
2452 // are already canonical according to Reassociation's regime.
2453 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2454 SmallVector<Value *, 8> Ops;
2455 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2456 Value *Op = Worklist.pop_back_val();
2457 Instruction *OpI = dyn_cast<Instruction>(Op);
2458 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2459 Ops.push_back(Op);
2460 continue;
2462 // Be paranoid about self-referencing expressions in unreachable code.
2463 if (OpI->getOperand(0) != OpI)
2464 Worklist.push_back(OpI->getOperand(0));
2465 if (OpI->getOperand(1) != OpI)
2466 Worklist.push_back(OpI->getOperand(1));
2468 // Skip extremely long expressions.
2469 if (Ops.size() > GlobalReassociateLimit)
2470 continue;
2472 // Add all pairwise combinations of operands to the pair map.
2473 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2474 SmallSet<std::pair<Value *, Value*>, 32> Visited;
2475 for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2476 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2477 // Canonicalize operand orderings.
2478 Value *Op0 = Ops[i];
2479 Value *Op1 = Ops[j];
2480 if (std::less<Value *>()(Op1, Op0))
2481 std::swap(Op0, Op1);
2482 if (!Visited.insert({Op0, Op1}).second)
2483 continue;
2484 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2485 if (!res.second) {
2486 // If either key value has been erased then we've got the same
2487 // address by coincidence. That can't happen here because nothing is
2488 // erasing values but it can happen by the time we're querying the
2489 // map.
2490 assert(res.first->second.isValid() && "WeakVH invalidated");
2491 ++res.first->second.Score;
2499 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2500 // Get the functions basic blocks in Reverse Post Order. This order is used by
2501 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2502 // blocks (it has been seen that the analysis in this pass could hang when
2503 // analysing dead basic blocks).
2504 ReversePostOrderTraversal<Function *> RPOT(&F);
2506 // Calculate the rank map for F.
2507 BuildRankMap(F, RPOT);
2509 // Build the pair map before running reassociate.
2510 // Technically this would be more accurate if we did it after one round
2511 // of reassociation, but in practice it doesn't seem to help much on
2512 // real-world code, so don't waste the compile time running reassociate
2513 // twice.
2514 // If a user wants, they could expicitly run reassociate twice in their
2515 // pass pipeline for further potential gains.
2516 // It might also be possible to update the pair map during runtime, but the
2517 // overhead of that may be large if there's many reassociable chains.
2518 BuildPairMap(RPOT);
2520 MadeChange = false;
2522 // Traverse the same blocks that were analysed by BuildRankMap.
2523 for (BasicBlock *BI : RPOT) {
2524 assert(RankMap.count(&*BI) && "BB should be ranked.");
2525 // Optimize every instruction in the basic block.
2526 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2527 if (isInstructionTriviallyDead(&*II)) {
2528 EraseInst(&*II++);
2529 } else {
2530 OptimizeInst(&*II);
2531 assert(II->getParent() == &*BI && "Moved to a different block!");
2532 ++II;
2535 // Make a copy of all the instructions to be redone so we can remove dead
2536 // instructions.
2537 OrderedSet ToRedo(RedoInsts);
2538 // Iterate over all instructions to be reevaluated and remove trivially dead
2539 // instructions. If any operand of the trivially dead instruction becomes
2540 // dead mark it for deletion as well. Continue this process until all
2541 // trivially dead instructions have been removed.
2542 while (!ToRedo.empty()) {
2543 Instruction *I = ToRedo.pop_back_val();
2544 if (isInstructionTriviallyDead(I)) {
2545 RecursivelyEraseDeadInsts(I, ToRedo);
2546 MadeChange = true;
2550 // Now that we have removed dead instructions, we can reoptimize the
2551 // remaining instructions.
2552 while (!RedoInsts.empty()) {
2553 Instruction *I = RedoInsts.front();
2554 RedoInsts.erase(RedoInsts.begin());
2555 if (isInstructionTriviallyDead(I))
2556 EraseInst(I);
2557 else
2558 OptimizeInst(I);
2562 // We are done with the rank map and pair map.
2563 RankMap.clear();
2564 ValueRankMap.clear();
2565 for (auto &Entry : PairMap)
2566 Entry.clear();
2568 if (MadeChange) {
2569 PreservedAnalyses PA;
2570 PA.preserveSet<CFGAnalyses>();
2571 return PA;
2574 return PreservedAnalyses::all();
2577 namespace {
2579 class ReassociateLegacyPass : public FunctionPass {
2580 ReassociatePass Impl;
2582 public:
2583 static char ID; // Pass identification, replacement for typeid
2585 ReassociateLegacyPass() : FunctionPass(ID) {
2586 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2589 bool runOnFunction(Function &F) override {
2590 if (skipFunction(F))
2591 return false;
2593 FunctionAnalysisManager DummyFAM;
2594 auto PA = Impl.run(F, DummyFAM);
2595 return !PA.areAllPreserved();
2598 void getAnalysisUsage(AnalysisUsage &AU) const override {
2599 AU.setPreservesCFG();
2600 AU.addPreserved<AAResultsWrapperPass>();
2601 AU.addPreserved<BasicAAWrapperPass>();
2602 AU.addPreserved<GlobalsAAWrapperPass>();
2606 } // end anonymous namespace
2608 char ReassociateLegacyPass::ID = 0;
2610 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2611 "Reassociate expressions", false, false)
2613 // Public interface to the Reassociate pass
2614 FunctionPass *llvm::createReassociatePass() {
2615 return new ReassociateLegacyPass();