1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 // For example: 4 + (x + 5) -> x + (4 + 5)
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/BasicAliasAnalysis.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/IR/PatternMatch.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils/Local.h"
66 using namespace reassociate
;
67 using namespace PatternMatch
;
69 #define DEBUG_TYPE "reassociate"
71 STATISTIC(NumChanged
, "Number of insts reassociated");
72 STATISTIC(NumAnnihil
, "Number of expr tree annihilated");
73 STATISTIC(NumFactor
, "Number of multiplies factored");
76 /// Print out the expression identified in the Ops list.
77 static void PrintOps(Instruction
*I
, const SmallVectorImpl
<ValueEntry
> &Ops
) {
78 Module
*M
= I
->getModule();
79 dbgs() << Instruction::getOpcodeName(I
->getOpcode()) << " "
80 << *Ops
[0].Op
->getType() << '\t';
81 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
83 Ops
[i
].Op
->printAsOperand(dbgs(), false, M
);
84 dbgs() << ", #" << Ops
[i
].Rank
<< "] ";
89 /// Utility class representing a non-constant Xor-operand. We classify
90 /// non-constant Xor-Operands into two categories:
91 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
93 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
95 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
96 /// operand as "E | 0"
97 class llvm::reassociate::XorOpnd
{
101 bool isInvalid() const { return SymbolicPart
== nullptr; }
102 bool isOrExpr() const { return isOr
; }
103 Value
*getValue() const { return OrigVal
; }
104 Value
*getSymbolicPart() const { return SymbolicPart
; }
105 unsigned getSymbolicRank() const { return SymbolicRank
; }
106 const APInt
&getConstPart() const { return ConstPart
; }
108 void Invalidate() { SymbolicPart
= OrigVal
= nullptr; }
109 void setSymbolicRank(unsigned R
) { SymbolicRank
= R
; }
115 unsigned SymbolicRank
;
119 XorOpnd::XorOpnd(Value
*V
) {
120 assert(!isa
<ConstantInt
>(V
) && "No ConstantInt");
122 Instruction
*I
= dyn_cast
<Instruction
>(V
);
125 if (I
&& (I
->getOpcode() == Instruction::Or
||
126 I
->getOpcode() == Instruction::And
)) {
127 Value
*V0
= I
->getOperand(0);
128 Value
*V1
= I
->getOperand(1);
130 if (match(V0
, m_APInt(C
)))
133 if (match(V1
, m_APInt(C
))) {
136 isOr
= (I
->getOpcode() == Instruction::Or
);
141 // view the operand as "V | 0"
143 ConstPart
= APInt::getNullValue(V
->getType()->getScalarSizeInBits());
147 /// Return true if V is an instruction of the specified opcode and if it
148 /// only has one use.
149 static BinaryOperator
*isReassociableOp(Value
*V
, unsigned Opcode
) {
150 auto *I
= dyn_cast
<Instruction
>(V
);
151 if (I
&& I
->hasOneUse() && I
->getOpcode() == Opcode
)
152 if (!isa
<FPMathOperator
>(I
) || I
->isFast())
153 return cast
<BinaryOperator
>(I
);
157 static BinaryOperator
*isReassociableOp(Value
*V
, unsigned Opcode1
,
159 auto *I
= dyn_cast
<Instruction
>(V
);
160 if (I
&& I
->hasOneUse() &&
161 (I
->getOpcode() == Opcode1
|| I
->getOpcode() == Opcode2
))
162 if (!isa
<FPMathOperator
>(I
) || I
->isFast())
163 return cast
<BinaryOperator
>(I
);
167 void ReassociatePass::BuildRankMap(Function
&F
,
168 ReversePostOrderTraversal
<Function
*> &RPOT
) {
171 // Assign distinct ranks to function arguments.
172 for (auto &Arg
: F
.args()) {
173 ValueRankMap
[&Arg
] = ++Rank
;
174 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg
.getName() << "] = " << Rank
178 // Traverse basic blocks in ReversePostOrder.
179 for (BasicBlock
*BB
: RPOT
) {
180 unsigned BBRank
= RankMap
[BB
] = ++Rank
<< 16;
182 // Walk the basic block, adding precomputed ranks for any instructions that
183 // we cannot move. This ensures that the ranks for these instructions are
184 // all different in the block.
185 for (Instruction
&I
: *BB
)
186 if (mayBeMemoryDependent(I
))
187 ValueRankMap
[&I
] = ++BBRank
;
191 unsigned ReassociatePass::getRank(Value
*V
) {
192 Instruction
*I
= dyn_cast
<Instruction
>(V
);
194 if (isa
<Argument
>(V
)) return ValueRankMap
[V
]; // Function argument.
195 return 0; // Otherwise it's a global or constant, rank 0.
198 if (unsigned Rank
= ValueRankMap
[I
])
199 return Rank
; // Rank already known?
201 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
202 // we can reassociate expressions for code motion! Since we do not recurse
203 // for PHI nodes, we cannot have infinite recursion here, because there
204 // cannot be loops in the value graph that do not go through PHI nodes.
205 unsigned Rank
= 0, MaxRank
= RankMap
[I
->getParent()];
206 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
&& Rank
!= MaxRank
; ++i
)
207 Rank
= std::max(Rank
, getRank(I
->getOperand(i
)));
209 // If this is a 'not' or 'neg' instruction, do not count it for rank. This
210 // assures us that X and ~X will have the same rank.
211 if (!match(I
, m_Not(m_Value())) && !match(I
, m_Neg(m_Value())) &&
212 !match(I
, m_FNeg(m_Value())))
215 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V
->getName() << "] = " << Rank
218 return ValueRankMap
[I
] = Rank
;
221 // Canonicalize constants to RHS. Otherwise, sort the operands by rank.
222 void ReassociatePass::canonicalizeOperands(Instruction
*I
) {
223 assert(isa
<BinaryOperator
>(I
) && "Expected binary operator.");
224 assert(I
->isCommutative() && "Expected commutative operator.");
226 Value
*LHS
= I
->getOperand(0);
227 Value
*RHS
= I
->getOperand(1);
228 if (LHS
== RHS
|| isa
<Constant
>(RHS
))
230 if (isa
<Constant
>(LHS
) || getRank(RHS
) < getRank(LHS
))
231 cast
<BinaryOperator
>(I
)->swapOperands();
234 static BinaryOperator
*CreateAdd(Value
*S1
, Value
*S2
, const Twine
&Name
,
235 Instruction
*InsertBefore
, Value
*FlagsOp
) {
236 if (S1
->getType()->isIntOrIntVectorTy())
237 return BinaryOperator::CreateAdd(S1
, S2
, Name
, InsertBefore
);
239 BinaryOperator
*Res
=
240 BinaryOperator::CreateFAdd(S1
, S2
, Name
, InsertBefore
);
241 Res
->setFastMathFlags(cast
<FPMathOperator
>(FlagsOp
)->getFastMathFlags());
246 static BinaryOperator
*CreateMul(Value
*S1
, Value
*S2
, const Twine
&Name
,
247 Instruction
*InsertBefore
, Value
*FlagsOp
) {
248 if (S1
->getType()->isIntOrIntVectorTy())
249 return BinaryOperator::CreateMul(S1
, S2
, Name
, InsertBefore
);
251 BinaryOperator
*Res
=
252 BinaryOperator::CreateFMul(S1
, S2
, Name
, InsertBefore
);
253 Res
->setFastMathFlags(cast
<FPMathOperator
>(FlagsOp
)->getFastMathFlags());
258 static Instruction
*CreateNeg(Value
*S1
, const Twine
&Name
,
259 Instruction
*InsertBefore
, Value
*FlagsOp
) {
260 if (S1
->getType()->isIntOrIntVectorTy())
261 return BinaryOperator::CreateNeg(S1
, Name
, InsertBefore
);
263 if (auto *FMFSource
= dyn_cast
<Instruction
>(FlagsOp
))
264 return UnaryOperator::CreateFNegFMF(S1
, FMFSource
, Name
, InsertBefore
);
266 return UnaryOperator::CreateFNeg(S1
, Name
, InsertBefore
);
269 /// Replace 0-X with X*-1.
270 static BinaryOperator
*LowerNegateToMultiply(Instruction
*Neg
) {
271 assert((isa
<UnaryOperator
>(Neg
) || isa
<BinaryOperator
>(Neg
)) &&
272 "Expected a Negate!");
273 // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
274 unsigned OpNo
= isa
<BinaryOperator
>(Neg
) ? 1 : 0;
275 Type
*Ty
= Neg
->getType();
276 Constant
*NegOne
= Ty
->isIntOrIntVectorTy() ?
277 ConstantInt::getAllOnesValue(Ty
) : ConstantFP::get(Ty
, -1.0);
279 BinaryOperator
*Res
= CreateMul(Neg
->getOperand(OpNo
), NegOne
, "", Neg
, Neg
);
280 Neg
->setOperand(OpNo
, Constant::getNullValue(Ty
)); // Drop use of op.
282 Neg
->replaceAllUsesWith(Res
);
283 Res
->setDebugLoc(Neg
->getDebugLoc());
287 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
288 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
289 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
290 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
291 /// even x in Bitwidth-bit arithmetic.
292 static unsigned CarmichaelShift(unsigned Bitwidth
) {
298 /// Add the extra weight 'RHS' to the existing weight 'LHS',
299 /// reducing the combined weight using any special properties of the operation.
300 /// The existing weight LHS represents the computation X op X op ... op X where
301 /// X occurs LHS times. The combined weight represents X op X op ... op X with
302 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined
303 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
304 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
305 static void IncorporateWeight(APInt
&LHS
, const APInt
&RHS
, unsigned Opcode
) {
306 // If we were working with infinite precision arithmetic then the combined
307 // weight would be LHS + RHS. But we are using finite precision arithmetic,
308 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
309 // for nilpotent operations and addition, but not for idempotent operations
310 // and multiplication), so it is important to correctly reduce the combined
311 // weight back into range if wrapping would be wrong.
313 // If RHS is zero then the weight didn't change.
314 if (RHS
.isMinValue())
316 // If LHS is zero then the combined weight is RHS.
317 if (LHS
.isMinValue()) {
321 // From this point on we know that neither LHS nor RHS is zero.
323 if (Instruction::isIdempotent(Opcode
)) {
324 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
325 // weight of 1. Keeping weights at zero or one also means that wrapping is
327 assert(LHS
== 1 && RHS
== 1 && "Weights not reduced!");
328 return; // Return a weight of 1.
330 if (Instruction::isNilpotent(Opcode
)) {
331 // Nilpotent means X op X === 0, so reduce weights modulo 2.
332 assert(LHS
== 1 && RHS
== 1 && "Weights not reduced!");
333 LHS
= 0; // 1 + 1 === 0 modulo 2.
336 if (Opcode
== Instruction::Add
|| Opcode
== Instruction::FAdd
) {
337 // TODO: Reduce the weight by exploiting nsw/nuw?
342 assert((Opcode
== Instruction::Mul
|| Opcode
== Instruction::FMul
) &&
343 "Unknown associative operation!");
344 unsigned Bitwidth
= LHS
.getBitWidth();
345 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
346 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
347 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
348 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
349 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
350 // which by a happy accident means that they can always be represented using
352 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
353 // the Carmichael number).
355 /// CM - The value of Carmichael's lambda function.
356 APInt CM
= APInt::getOneBitSet(Bitwidth
, CarmichaelShift(Bitwidth
));
357 // Any weight W >= Threshold can be replaced with W - CM.
358 APInt Threshold
= CM
+ Bitwidth
;
359 assert(LHS
.ult(Threshold
) && RHS
.ult(Threshold
) && "Weights not reduced!");
360 // For Bitwidth 4 or more the following sum does not overflow.
362 while (LHS
.uge(Threshold
))
365 // To avoid problems with overflow do everything the same as above but using
367 unsigned CM
= 1U << CarmichaelShift(Bitwidth
);
368 unsigned Threshold
= CM
+ Bitwidth
;
369 assert(LHS
.getZExtValue() < Threshold
&& RHS
.getZExtValue() < Threshold
&&
370 "Weights not reduced!");
371 unsigned Total
= LHS
.getZExtValue() + RHS
.getZExtValue();
372 while (Total
>= Threshold
)
378 using RepeatedValue
= std::pair
<Value
*, APInt
>;
380 /// Given an associative binary expression, return the leaf
381 /// nodes in Ops along with their weights (how many times the leaf occurs). The
382 /// original expression is the same as
383 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
385 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
389 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
391 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
393 /// This routine may modify the function, in which case it returns 'true'. The
394 /// changes it makes may well be destructive, changing the value computed by 'I'
395 /// to something completely different. Thus if the routine returns 'true' then
396 /// you MUST either replace I with a new expression computed from the Ops array,
397 /// or use RewriteExprTree to put the values back in.
399 /// A leaf node is either not a binary operation of the same kind as the root
400 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
401 /// opcode), or is the same kind of binary operator but has a use which either
402 /// does not belong to the expression, or does belong to the expression but is
403 /// a leaf node. Every leaf node has at least one use that is a non-leaf node
404 /// of the expression, while for non-leaf nodes (except for the root 'I') every
405 /// use is a non-leaf node of the expression.
408 /// expression graph node names
418 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
419 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
421 /// The expression is maximal: if some instruction is a binary operator of the
422 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
423 /// then the instruction also belongs to the expression, is not a leaf node of
424 /// it, and its operands also belong to the expression (but may be leaf nodes).
426 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
427 /// order to ensure that every non-root node in the expression has *exactly one*
428 /// use by a non-leaf node of the expression. This destruction means that the
429 /// caller MUST either replace 'I' with a new expression or use something like
430 /// RewriteExprTree to put the values back in if the routine indicates that it
431 /// made a change by returning 'true'.
433 /// In the above example either the right operand of A or the left operand of B
434 /// will be replaced by undef. If it is B's operand then this gives:
438 /// + + | A, B - operand of B replaced with undef
444 /// Note that such undef operands can only be reached by passing through 'I'.
445 /// For example, if you visit operands recursively starting from a leaf node
446 /// then you will never see such an undef operand unless you get back to 'I',
447 /// which requires passing through a phi node.
449 /// Note that this routine may also mutate binary operators of the wrong type
450 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
451 /// of the expression) if it can turn them into binary operators of the right
452 /// type and thus make the expression bigger.
453 static bool LinearizeExprTree(Instruction
*I
,
454 SmallVectorImpl
<RepeatedValue
> &Ops
) {
455 assert((isa
<UnaryOperator
>(I
) || isa
<BinaryOperator
>(I
)) &&
456 "Expected a UnaryOperator or BinaryOperator!");
457 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I
<< '\n');
458 unsigned Bitwidth
= I
->getType()->getScalarType()->getPrimitiveSizeInBits();
459 unsigned Opcode
= I
->getOpcode();
460 assert(I
->isAssociative() && I
->isCommutative() &&
461 "Expected an associative and commutative operation!");
463 // Visit all operands of the expression, keeping track of their weight (the
464 // number of paths from the expression root to the operand, or if you like
465 // the number of times that operand occurs in the linearized expression).
466 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
467 // while A has weight two.
469 // Worklist of non-leaf nodes (their operands are in the expression too) along
470 // with their weights, representing a certain number of paths to the operator.
471 // If an operator occurs in the worklist multiple times then we found multiple
472 // ways to get to it.
473 SmallVector
<std::pair
<Instruction
*, APInt
>, 8> Worklist
; // (Op, Weight)
474 Worklist
.push_back(std::make_pair(I
, APInt(Bitwidth
, 1)));
475 bool Changed
= false;
477 // Leaves of the expression are values that either aren't the right kind of
478 // operation (eg: a constant, or a multiply in an add tree), or are, but have
479 // some uses that are not inside the expression. For example, in I = X + X,
480 // X = A + B, the value X has two uses (by I) that are in the expression. If
481 // X has any other uses, for example in a return instruction, then we consider
482 // X to be a leaf, and won't analyze it further. When we first visit a value,
483 // if it has more than one use then at first we conservatively consider it to
484 // be a leaf. Later, as the expression is explored, we may discover some more
485 // uses of the value from inside the expression. If all uses turn out to be
486 // from within the expression (and the value is a binary operator of the right
487 // kind) then the value is no longer considered to be a leaf, and its operands
490 // Leaves - Keeps track of the set of putative leaves as well as the number of
491 // paths to each leaf seen so far.
492 using LeafMap
= DenseMap
<Value
*, APInt
>;
493 LeafMap Leaves
; // Leaf -> Total weight so far.
494 SmallVector
<Value
*, 8> LeafOrder
; // Ensure deterministic leaf output order.
497 SmallPtrSet
<Value
*, 8> Visited
; // For sanity checking the iteration scheme.
499 while (!Worklist
.empty()) {
500 std::pair
<Instruction
*, APInt
> P
= Worklist
.pop_back_val();
501 I
= P
.first
; // We examine the operands of this binary operator.
503 for (unsigned OpIdx
= 0; OpIdx
< I
->getNumOperands(); ++OpIdx
) { // Visit operands.
504 Value
*Op
= I
->getOperand(OpIdx
);
505 APInt Weight
= P
.second
; // Number of paths to this operand.
506 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op
<< " (" << Weight
<< ")\n");
507 assert(!Op
->use_empty() && "No uses, so how did we get to it?!");
509 // If this is a binary operation of the right kind with only one use then
510 // add its operands to the expression.
511 if (BinaryOperator
*BO
= isReassociableOp(Op
, Opcode
)) {
512 assert(Visited
.insert(Op
).second
&& "Not first visit!");
513 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op
<< " (" << Weight
<< ")\n");
514 Worklist
.push_back(std::make_pair(BO
, Weight
));
518 // Appears to be a leaf. Is the operand already in the set of leaves?
519 LeafMap::iterator It
= Leaves
.find(Op
);
520 if (It
== Leaves
.end()) {
521 // Not in the leaf map. Must be the first time we saw this operand.
522 assert(Visited
.insert(Op
).second
&& "Not first visit!");
523 if (!Op
->hasOneUse()) {
524 // This value has uses not accounted for by the expression, so it is
525 // not safe to modify. Mark it as being a leaf.
527 << "ADD USES LEAF: " << *Op
<< " (" << Weight
<< ")\n");
528 LeafOrder
.push_back(Op
);
532 // No uses outside the expression, try morphing it.
534 // Already in the leaf map.
535 assert(It
!= Leaves
.end() && Visited
.count(Op
) &&
536 "In leaf map but not visited!");
538 // Update the number of paths to the leaf.
539 IncorporateWeight(It
->second
, Weight
, Opcode
);
541 #if 0 // TODO: Re-enable once PR13021 is fixed.
542 // The leaf already has one use from inside the expression. As we want
543 // exactly one such use, drop this new use of the leaf.
544 assert(!Op
->hasOneUse() && "Only one use, but we got here twice!");
545 I
->setOperand(OpIdx
, UndefValue::get(I
->getType()));
548 // If the leaf is a binary operation of the right kind and we now see
549 // that its multiple original uses were in fact all by nodes belonging
550 // to the expression, then no longer consider it to be a leaf and add
551 // its operands to the expression.
552 if (BinaryOperator
*BO
= isReassociableOp(Op
, Opcode
)) {
553 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op
<< " (" << It
->second
<< ")\n");
554 Worklist
.push_back(std::make_pair(BO
, It
->second
));
560 // If we still have uses that are not accounted for by the expression
561 // then it is not safe to modify the value.
562 if (!Op
->hasOneUse())
565 // No uses outside the expression, try morphing it.
567 Leaves
.erase(It
); // Since the value may be morphed below.
570 // At this point we have a value which, first of all, is not a binary
571 // expression of the right kind, and secondly, is only used inside the
572 // expression. This means that it can safely be modified. See if we
573 // can usefully morph it into an expression of the right kind.
574 assert((!isa
<Instruction
>(Op
) ||
575 cast
<Instruction
>(Op
)->getOpcode() != Opcode
576 || (isa
<FPMathOperator
>(Op
) &&
577 !cast
<Instruction
>(Op
)->isFast())) &&
578 "Should have been handled above!");
579 assert(Op
->hasOneUse() && "Has uses outside the expression tree!");
581 // If this is a multiply expression, turn any internal negations into
582 // multiplies by -1 so they can be reassociated.
583 if (Instruction
*Tmp
= dyn_cast
<Instruction
>(Op
))
584 if ((Opcode
== Instruction::Mul
&& match(Tmp
, m_Neg(m_Value()))) ||
585 (Opcode
== Instruction::FMul
&& match(Tmp
, m_FNeg(m_Value())))) {
587 << "MORPH LEAF: " << *Op
<< " (" << Weight
<< ") TO ");
588 Tmp
= LowerNegateToMultiply(Tmp
);
589 LLVM_DEBUG(dbgs() << *Tmp
<< '\n');
590 Worklist
.push_back(std::make_pair(Tmp
, Weight
));
595 // Failed to morph into an expression of the right type. This really is
597 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op
<< " (" << Weight
<< ")\n");
598 assert(!isReassociableOp(Op
, Opcode
) && "Value was morphed?");
599 LeafOrder
.push_back(Op
);
604 // The leaves, repeated according to their weights, represent the linearized
605 // form of the expression.
606 for (unsigned i
= 0, e
= LeafOrder
.size(); i
!= e
; ++i
) {
607 Value
*V
= LeafOrder
[i
];
608 LeafMap::iterator It
= Leaves
.find(V
);
609 if (It
== Leaves
.end())
610 // Node initially thought to be a leaf wasn't.
612 assert(!isReassociableOp(V
, Opcode
) && "Shouldn't be a leaf!");
613 APInt Weight
= It
->second
;
614 if (Weight
.isMinValue())
615 // Leaf already output or weight reduction eliminated it.
617 // Ensure the leaf is only output once.
619 Ops
.push_back(std::make_pair(V
, Weight
));
622 // For nilpotent operations or addition there may be no operands, for example
623 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
624 // in both cases the weight reduces to 0 causing the value to be skipped.
626 Constant
*Identity
= ConstantExpr::getBinOpIdentity(Opcode
, I
->getType());
627 assert(Identity
&& "Associative operation without identity!");
628 Ops
.emplace_back(Identity
, APInt(Bitwidth
, 1));
634 /// Now that the operands for this expression tree are
635 /// linearized and optimized, emit them in-order.
636 void ReassociatePass::RewriteExprTree(BinaryOperator
*I
,
637 SmallVectorImpl
<ValueEntry
> &Ops
) {
638 assert(Ops
.size() > 1 && "Single values should be used directly!");
640 // Since our optimizations should never increase the number of operations, the
641 // new expression can usually be written reusing the existing binary operators
642 // from the original expression tree, without creating any new instructions,
643 // though the rewritten expression may have a completely different topology.
644 // We take care to not change anything if the new expression will be the same
645 // as the original. If more than trivial changes (like commuting operands)
646 // were made then we are obliged to clear out any optional subclass data like
649 /// NodesToRewrite - Nodes from the original expression available for writing
650 /// the new expression into.
651 SmallVector
<BinaryOperator
*, 8> NodesToRewrite
;
652 unsigned Opcode
= I
->getOpcode();
653 BinaryOperator
*Op
= I
;
655 /// NotRewritable - The operands being written will be the leaves of the new
656 /// expression and must not be used as inner nodes (via NodesToRewrite) by
657 /// mistake. Inner nodes are always reassociable, and usually leaves are not
658 /// (if they were they would have been incorporated into the expression and so
659 /// would not be leaves), so most of the time there is no danger of this. But
660 /// in rare cases a leaf may become reassociable if an optimization kills uses
661 /// of it, or it may momentarily become reassociable during rewriting (below)
662 /// due it being removed as an operand of one of its uses. Ensure that misuse
663 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
664 /// leaves and refusing to reuse any of them as inner nodes.
665 SmallPtrSet
<Value
*, 8> NotRewritable
;
666 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
667 NotRewritable
.insert(Ops
[i
].Op
);
669 // ExpressionChanged - Non-null if the rewritten expression differs from the
670 // original in some non-trivial way, requiring the clearing of optional flags.
671 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
672 BinaryOperator
*ExpressionChanged
= nullptr;
673 for (unsigned i
= 0; ; ++i
) {
674 // The last operation (which comes earliest in the IR) is special as both
675 // operands will come from Ops, rather than just one with the other being
677 if (i
+2 == Ops
.size()) {
678 Value
*NewLHS
= Ops
[i
].Op
;
679 Value
*NewRHS
= Ops
[i
+1].Op
;
680 Value
*OldLHS
= Op
->getOperand(0);
681 Value
*OldRHS
= Op
->getOperand(1);
683 if (NewLHS
== OldLHS
&& NewRHS
== OldRHS
)
684 // Nothing changed, leave it alone.
687 if (NewLHS
== OldRHS
&& NewRHS
== OldLHS
) {
688 // The order of the operands was reversed. Swap them.
689 LLVM_DEBUG(dbgs() << "RA: " << *Op
<< '\n');
691 LLVM_DEBUG(dbgs() << "TO: " << *Op
<< '\n');
697 // The new operation differs non-trivially from the original. Overwrite
698 // the old operands with the new ones.
699 LLVM_DEBUG(dbgs() << "RA: " << *Op
<< '\n');
700 if (NewLHS
!= OldLHS
) {
701 BinaryOperator
*BO
= isReassociableOp(OldLHS
, Opcode
);
702 if (BO
&& !NotRewritable
.count(BO
))
703 NodesToRewrite
.push_back(BO
);
704 Op
->setOperand(0, NewLHS
);
706 if (NewRHS
!= OldRHS
) {
707 BinaryOperator
*BO
= isReassociableOp(OldRHS
, Opcode
);
708 if (BO
&& !NotRewritable
.count(BO
))
709 NodesToRewrite
.push_back(BO
);
710 Op
->setOperand(1, NewRHS
);
712 LLVM_DEBUG(dbgs() << "TO: " << *Op
<< '\n');
714 ExpressionChanged
= Op
;
721 // Not the last operation. The left-hand side will be a sub-expression
722 // while the right-hand side will be the current element of Ops.
723 Value
*NewRHS
= Ops
[i
].Op
;
724 if (NewRHS
!= Op
->getOperand(1)) {
725 LLVM_DEBUG(dbgs() << "RA: " << *Op
<< '\n');
726 if (NewRHS
== Op
->getOperand(0)) {
727 // The new right-hand side was already present as the left operand. If
728 // we are lucky then swapping the operands will sort out both of them.
731 // Overwrite with the new right-hand side.
732 BinaryOperator
*BO
= isReassociableOp(Op
->getOperand(1), Opcode
);
733 if (BO
&& !NotRewritable
.count(BO
))
734 NodesToRewrite
.push_back(BO
);
735 Op
->setOperand(1, NewRHS
);
736 ExpressionChanged
= Op
;
738 LLVM_DEBUG(dbgs() << "TO: " << *Op
<< '\n');
743 // Now deal with the left-hand side. If this is already an operation node
744 // from the original expression then just rewrite the rest of the expression
746 BinaryOperator
*BO
= isReassociableOp(Op
->getOperand(0), Opcode
);
747 if (BO
&& !NotRewritable
.count(BO
)) {
752 // Otherwise, grab a spare node from the original expression and use that as
753 // the left-hand side. If there are no nodes left then the optimizers made
754 // an expression with more nodes than the original! This usually means that
755 // they did something stupid but it might mean that the problem was just too
756 // hard (finding the mimimal number of multiplications needed to realize a
757 // multiplication expression is NP-complete). Whatever the reason, smart or
758 // stupid, create a new node if there are none left.
759 BinaryOperator
*NewOp
;
760 if (NodesToRewrite
.empty()) {
761 Constant
*Undef
= UndefValue::get(I
->getType());
762 NewOp
= BinaryOperator::Create(Instruction::BinaryOps(Opcode
),
763 Undef
, Undef
, "", I
);
764 if (NewOp
->getType()->isFPOrFPVectorTy())
765 NewOp
->setFastMathFlags(I
->getFastMathFlags());
767 NewOp
= NodesToRewrite
.pop_back_val();
770 LLVM_DEBUG(dbgs() << "RA: " << *Op
<< '\n');
771 Op
->setOperand(0, NewOp
);
772 LLVM_DEBUG(dbgs() << "TO: " << *Op
<< '\n');
773 ExpressionChanged
= Op
;
779 // If the expression changed non-trivially then clear out all subclass data
780 // starting from the operator specified in ExpressionChanged, and compactify
781 // the operators to just before the expression root to guarantee that the
782 // expression tree is dominated by all of Ops.
783 if (ExpressionChanged
)
785 // Preserve FastMathFlags.
786 if (isa
<FPMathOperator
>(I
)) {
787 FastMathFlags Flags
= I
->getFastMathFlags();
788 ExpressionChanged
->clearSubclassOptionalData();
789 ExpressionChanged
->setFastMathFlags(Flags
);
791 ExpressionChanged
->clearSubclassOptionalData();
793 if (ExpressionChanged
== I
)
796 // Discard any debug info related to the expressions that has changed (we
797 // can leave debug infor related to the root, since the result of the
798 // expression tree should be the same even after reassociation).
799 replaceDbgUsesWithUndef(ExpressionChanged
);
801 ExpressionChanged
->moveBefore(I
);
802 ExpressionChanged
= cast
<BinaryOperator
>(*ExpressionChanged
->user_begin());
805 // Throw away any left over nodes from the original expression.
806 for (unsigned i
= 0, e
= NodesToRewrite
.size(); i
!= e
; ++i
)
807 RedoInsts
.insert(NodesToRewrite
[i
]);
810 /// Insert instructions before the instruction pointed to by BI,
811 /// that computes the negative version of the value specified. The negative
812 /// version of the value is returned, and BI is left pointing at the instruction
813 /// that should be processed next by the reassociation pass.
814 /// Also add intermediate instructions to the redo list that are modified while
815 /// pushing the negates through adds. These will be revisited to see if
816 /// additional opportunities have been exposed.
817 static Value
*NegateValue(Value
*V
, Instruction
*BI
,
818 ReassociatePass::OrderedSet
&ToRedo
) {
819 if (auto *C
= dyn_cast
<Constant
>(V
))
820 return C
->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C
) :
821 ConstantExpr::getNeg(C
);
823 // We are trying to expose opportunity for reassociation. One of the things
824 // that we want to do to achieve this is to push a negation as deep into an
825 // expression chain as possible, to expose the add instructions. In practice,
826 // this means that we turn this:
827 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
828 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
829 // the constants. We assume that instcombine will clean up the mess later if
830 // we introduce tons of unnecessary negation instructions.
832 if (BinaryOperator
*I
=
833 isReassociableOp(V
, Instruction::Add
, Instruction::FAdd
)) {
834 // Push the negates through the add.
835 I
->setOperand(0, NegateValue(I
->getOperand(0), BI
, ToRedo
));
836 I
->setOperand(1, NegateValue(I
->getOperand(1), BI
, ToRedo
));
837 if (I
->getOpcode() == Instruction::Add
) {
838 I
->setHasNoUnsignedWrap(false);
839 I
->setHasNoSignedWrap(false);
842 // We must move the add instruction here, because the neg instructions do
843 // not dominate the old add instruction in general. By moving it, we are
844 // assured that the neg instructions we just inserted dominate the
845 // instruction we are about to insert after them.
848 I
->setName(I
->getName()+".neg");
850 // Add the intermediate negates to the redo list as processing them later
851 // could expose more reassociating opportunities.
856 // Okay, we need to materialize a negated version of V with an instruction.
857 // Scan the use lists of V to see if we have one already.
858 for (User
*U
: V
->users()) {
859 if (!match(U
, m_Neg(m_Value())) && !match(U
, m_FNeg(m_Value())))
862 // We found one! Now we have to make sure that the definition dominates
863 // this use. We do this by moving it to the entry block (if it is a
864 // non-instruction value) or right after the definition. These negates will
865 // be zapped by reassociate later, so we don't need much finesse here.
866 Instruction
*TheNeg
= cast
<Instruction
>(U
);
868 // Verify that the negate is in this function, V might be a constant expr.
869 if (TheNeg
->getParent()->getParent() != BI
->getParent()->getParent())
872 bool FoundCatchSwitch
= false;
874 BasicBlock::iterator InsertPt
;
875 if (Instruction
*InstInput
= dyn_cast
<Instruction
>(V
)) {
876 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(InstInput
)) {
877 InsertPt
= II
->getNormalDest()->begin();
879 InsertPt
= ++InstInput
->getIterator();
882 const BasicBlock
*BB
= InsertPt
->getParent();
884 // Make sure we don't move anything before PHIs or exception
886 while (InsertPt
!= BB
->end() && (isa
<PHINode
>(InsertPt
) ||
887 InsertPt
->isEHPad())) {
888 if (isa
<CatchSwitchInst
>(InsertPt
))
889 // A catchswitch cannot have anything in the block except
890 // itself and PHIs. We'll bail out below.
891 FoundCatchSwitch
= true;
895 InsertPt
= TheNeg
->getParent()->getParent()->getEntryBlock().begin();
898 // We found a catchswitch in the block where we want to move the
899 // neg. We cannot move anything into that block. Bail and just
900 // create the neg before BI, as if we hadn't found an existing
902 if (FoundCatchSwitch
)
905 TheNeg
->moveBefore(&*InsertPt
);
906 if (TheNeg
->getOpcode() == Instruction::Sub
) {
907 TheNeg
->setHasNoUnsignedWrap(false);
908 TheNeg
->setHasNoSignedWrap(false);
910 TheNeg
->andIRFlags(BI
);
912 ToRedo
.insert(TheNeg
);
916 // Insert a 'neg' instruction that subtracts the value from zero to get the
918 Instruction
*NewNeg
= CreateNeg(V
, V
->getName() + ".neg", BI
, BI
);
919 ToRedo
.insert(NewNeg
);
923 // See if this `or` looks like an load widening reduction, i.e. that it
924 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't
925 // ensure that the pattern is *really* a load widening reduction,
926 // we do not ensure that it can really be replaced with a widened load,
927 // only that it mostly looks like one.
928 static bool isLoadCombineCandidate(Instruction
*Or
) {
929 SmallVector
<Instruction
*, 8> Worklist
;
930 SmallSet
<Instruction
*, 8> Visited
;
932 auto Enqueue
= [&](Value
*V
) {
933 auto *I
= dyn_cast
<Instruction
>(V
);
934 // Each node of an `or` reduction must be an instruction,
936 return false; // Node is certainly not part of an `or` load reduction.
937 // Only process instructions we have never processed before.
938 if (Visited
.insert(I
).second
)
939 Worklist
.emplace_back(I
);
940 return true; // Will need to look at parent nodes.
944 return false; // Not an `or` reduction pattern.
946 while (!Worklist
.empty()) {
947 auto *I
= Worklist
.pop_back_val();
949 // Okay, which instruction is this node?
950 switch (I
->getOpcode()) {
951 case Instruction::Or
:
952 // Got an `or` node. That's fine, just recurse into it's operands.
953 for (Value
*Op
: I
->operands())
955 return false; // Not an `or` reduction pattern.
958 case Instruction::Shl
:
959 case Instruction::ZExt
:
960 // `shl`/`zext` nodes are fine, just recurse into their base operand.
961 if (!Enqueue(I
->getOperand(0)))
962 return false; // Not an `or` reduction pattern.
965 case Instruction::Load
:
966 // Perfect, `load` node means we've reached an edge of the graph.
969 default: // Unknown node.
970 return false; // Not an `or` reduction pattern.
977 /// Return true if it may be profitable to convert this (X|Y) into (X+Y).
978 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction
*Or
) {
979 // Don't bother to convert this up unless either the LHS is an associable add
980 // or subtract or mul or if this is only used by one of the above.
981 // This is only a compile-time improvement, it is not needed for correctness!
982 auto isInteresting
= [](Value
*V
) {
983 for (auto Op
: {Instruction::Add
, Instruction::Sub
, Instruction::Mul
,
985 if (isReassociableOp(V
, Op
))
990 if (any_of(Or
->operands(), isInteresting
))
993 Value
*VB
= Or
->user_back();
994 if (Or
->hasOneUse() && isInteresting(VB
))
1000 /// If we have (X|Y), and iff X and Y have no common bits set,
1001 /// transform this into (X+Y) to allow arithmetics reassociation.
1002 static BinaryOperator
*convertOrWithNoCommonBitsToAdd(Instruction
*Or
) {
1003 // Convert an or into an add.
1004 BinaryOperator
*New
=
1005 CreateAdd(Or
->getOperand(0), Or
->getOperand(1), "", Or
, Or
);
1006 New
->setHasNoSignedWrap();
1007 New
->setHasNoUnsignedWrap();
1010 // Everyone now refers to the add instruction.
1011 Or
->replaceAllUsesWith(New
);
1012 New
->setDebugLoc(Or
->getDebugLoc());
1014 LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New
<< '\n');
1018 /// Return true if we should break up this subtract of X-Y into (X + -Y).
1019 static bool ShouldBreakUpSubtract(Instruction
*Sub
) {
1020 // If this is a negation, we can't split it up!
1021 if (match(Sub
, m_Neg(m_Value())) || match(Sub
, m_FNeg(m_Value())))
1024 // Don't breakup X - undef.
1025 if (isa
<UndefValue
>(Sub
->getOperand(1)))
1028 // Don't bother to break this up unless either the LHS is an associable add or
1029 // subtract or if this is only used by one.
1030 Value
*V0
= Sub
->getOperand(0);
1031 if (isReassociableOp(V0
, Instruction::Add
, Instruction::FAdd
) ||
1032 isReassociableOp(V0
, Instruction::Sub
, Instruction::FSub
))
1034 Value
*V1
= Sub
->getOperand(1);
1035 if (isReassociableOp(V1
, Instruction::Add
, Instruction::FAdd
) ||
1036 isReassociableOp(V1
, Instruction::Sub
, Instruction::FSub
))
1038 Value
*VB
= Sub
->user_back();
1039 if (Sub
->hasOneUse() &&
1040 (isReassociableOp(VB
, Instruction::Add
, Instruction::FAdd
) ||
1041 isReassociableOp(VB
, Instruction::Sub
, Instruction::FSub
)))
1047 /// If we have (X-Y), and if either X is an add, or if this is only used by an
1048 /// add, transform this into (X+(0-Y)) to promote better reassociation.
1049 static BinaryOperator
*BreakUpSubtract(Instruction
*Sub
,
1050 ReassociatePass::OrderedSet
&ToRedo
) {
1051 // Convert a subtract into an add and a neg instruction. This allows sub
1052 // instructions to be commuted with other add instructions.
1054 // Calculate the negative value of Operand 1 of the sub instruction,
1055 // and set it as the RHS of the add instruction we just made.
1056 Value
*NegVal
= NegateValue(Sub
->getOperand(1), Sub
, ToRedo
);
1057 BinaryOperator
*New
= CreateAdd(Sub
->getOperand(0), NegVal
, "", Sub
, Sub
);
1058 Sub
->setOperand(0, Constant::getNullValue(Sub
->getType())); // Drop use of op.
1059 Sub
->setOperand(1, Constant::getNullValue(Sub
->getType())); // Drop use of op.
1062 // Everyone now refers to the add instruction.
1063 Sub
->replaceAllUsesWith(New
);
1064 New
->setDebugLoc(Sub
->getDebugLoc());
1066 LLVM_DEBUG(dbgs() << "Negated: " << *New
<< '\n');
1070 /// If this is a shift of a reassociable multiply or is used by one, change
1071 /// this into a multiply by a constant to assist with further reassociation.
1072 static BinaryOperator
*ConvertShiftToMul(Instruction
*Shl
) {
1073 Constant
*MulCst
= ConstantInt::get(Shl
->getType(), 1);
1074 auto *SA
= cast
<ConstantInt
>(Shl
->getOperand(1));
1075 MulCst
= ConstantExpr::getShl(MulCst
, SA
);
1077 BinaryOperator
*Mul
=
1078 BinaryOperator::CreateMul(Shl
->getOperand(0), MulCst
, "", Shl
);
1079 Shl
->setOperand(0, UndefValue::get(Shl
->getType())); // Drop use of op.
1082 // Everyone now refers to the mul instruction.
1083 Shl
->replaceAllUsesWith(Mul
);
1084 Mul
->setDebugLoc(Shl
->getDebugLoc());
1086 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1087 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1088 // handling. It can be preserved as long as we're not left shifting by
1090 bool NSW
= cast
<BinaryOperator
>(Shl
)->hasNoSignedWrap();
1091 bool NUW
= cast
<BinaryOperator
>(Shl
)->hasNoUnsignedWrap();
1092 unsigned BitWidth
= Shl
->getType()->getIntegerBitWidth();
1093 if (NSW
&& (NUW
|| SA
->getValue().ult(BitWidth
- 1)))
1094 Mul
->setHasNoSignedWrap(true);
1095 Mul
->setHasNoUnsignedWrap(NUW
);
1099 /// Scan backwards and forwards among values with the same rank as element i
1100 /// to see if X exists. If X does not exist, return i. This is useful when
1101 /// scanning for 'x' when we see '-x' because they both get the same rank.
1102 static unsigned FindInOperandList(const SmallVectorImpl
<ValueEntry
> &Ops
,
1103 unsigned i
, Value
*X
) {
1104 unsigned XRank
= Ops
[i
].Rank
;
1105 unsigned e
= Ops
.size();
1106 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
].Rank
== XRank
; ++j
) {
1109 if (Instruction
*I1
= dyn_cast
<Instruction
>(Ops
[j
].Op
))
1110 if (Instruction
*I2
= dyn_cast
<Instruction
>(X
))
1111 if (I1
->isIdenticalTo(I2
))
1115 for (unsigned j
= i
-1; j
!= ~0U && Ops
[j
].Rank
== XRank
; --j
) {
1118 if (Instruction
*I1
= dyn_cast
<Instruction
>(Ops
[j
].Op
))
1119 if (Instruction
*I2
= dyn_cast
<Instruction
>(X
))
1120 if (I1
->isIdenticalTo(I2
))
1126 /// Emit a tree of add instructions, summing Ops together
1127 /// and returning the result. Insert the tree before I.
1128 static Value
*EmitAddTreeOfValues(Instruction
*I
,
1129 SmallVectorImpl
<WeakTrackingVH
> &Ops
) {
1130 if (Ops
.size() == 1) return Ops
.back();
1132 Value
*V1
= Ops
.pop_back_val();
1133 Value
*V2
= EmitAddTreeOfValues(I
, Ops
);
1134 return CreateAdd(V2
, V1
, "reass.add", I
, I
);
1137 /// If V is an expression tree that is a multiplication sequence,
1138 /// and if this sequence contains a multiply by Factor,
1139 /// remove Factor from the tree and return the new tree.
1140 Value
*ReassociatePass::RemoveFactorFromExpression(Value
*V
, Value
*Factor
) {
1141 BinaryOperator
*BO
= isReassociableOp(V
, Instruction::Mul
, Instruction::FMul
);
1145 SmallVector
<RepeatedValue
, 8> Tree
;
1146 MadeChange
|= LinearizeExprTree(BO
, Tree
);
1147 SmallVector
<ValueEntry
, 8> Factors
;
1148 Factors
.reserve(Tree
.size());
1149 for (unsigned i
= 0, e
= Tree
.size(); i
!= e
; ++i
) {
1150 RepeatedValue E
= Tree
[i
];
1151 Factors
.append(E
.second
.getZExtValue(),
1152 ValueEntry(getRank(E
.first
), E
.first
));
1155 bool FoundFactor
= false;
1156 bool NeedsNegate
= false;
1157 for (unsigned i
= 0, e
= Factors
.size(); i
!= e
; ++i
) {
1158 if (Factors
[i
].Op
== Factor
) {
1160 Factors
.erase(Factors
.begin()+i
);
1164 // If this is a negative version of this factor, remove it.
1165 if (ConstantInt
*FC1
= dyn_cast
<ConstantInt
>(Factor
)) {
1166 if (ConstantInt
*FC2
= dyn_cast
<ConstantInt
>(Factors
[i
].Op
))
1167 if (FC1
->getValue() == -FC2
->getValue()) {
1168 FoundFactor
= NeedsNegate
= true;
1169 Factors
.erase(Factors
.begin()+i
);
1172 } else if (ConstantFP
*FC1
= dyn_cast
<ConstantFP
>(Factor
)) {
1173 if (ConstantFP
*FC2
= dyn_cast
<ConstantFP
>(Factors
[i
].Op
)) {
1174 const APFloat
&F1
= FC1
->getValueAPF();
1175 APFloat
F2(FC2
->getValueAPF());
1178 FoundFactor
= NeedsNegate
= true;
1179 Factors
.erase(Factors
.begin() + i
);
1187 // Make sure to restore the operands to the expression tree.
1188 RewriteExprTree(BO
, Factors
);
1192 BasicBlock::iterator InsertPt
= ++BO
->getIterator();
1194 // If this was just a single multiply, remove the multiply and return the only
1195 // remaining operand.
1196 if (Factors
.size() == 1) {
1197 RedoInsts
.insert(BO
);
1200 RewriteExprTree(BO
, Factors
);
1205 V
= CreateNeg(V
, "neg", &*InsertPt
, BO
);
1210 /// If V is a single-use multiply, recursively add its operands as factors,
1211 /// otherwise add V to the list of factors.
1213 /// Ops is the top-level list of add operands we're trying to factor.
1214 static void FindSingleUseMultiplyFactors(Value
*V
,
1215 SmallVectorImpl
<Value
*> &Factors
) {
1216 BinaryOperator
*BO
= isReassociableOp(V
, Instruction::Mul
, Instruction::FMul
);
1218 Factors
.push_back(V
);
1222 // Otherwise, add the LHS and RHS to the list of factors.
1223 FindSingleUseMultiplyFactors(BO
->getOperand(1), Factors
);
1224 FindSingleUseMultiplyFactors(BO
->getOperand(0), Factors
);
1227 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1228 /// This optimizes based on identities. If it can be reduced to a single Value,
1229 /// it is returned, otherwise the Ops list is mutated as necessary.
1230 static Value
*OptimizeAndOrXor(unsigned Opcode
,
1231 SmallVectorImpl
<ValueEntry
> &Ops
) {
1232 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1233 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1234 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1235 // First, check for X and ~X in the operand list.
1236 assert(i
< Ops
.size());
1238 if (match(Ops
[i
].Op
, m_Not(m_Value(X
)))) { // Cannot occur for ^.
1239 unsigned FoundX
= FindInOperandList(Ops
, i
, X
);
1241 if (Opcode
== Instruction::And
) // ...&X&~X = 0
1242 return Constant::getNullValue(X
->getType());
1244 if (Opcode
== Instruction::Or
) // ...|X|~X = -1
1245 return Constant::getAllOnesValue(X
->getType());
1249 // Next, check for duplicate pairs of values, which we assume are next to
1250 // each other, due to our sorting criteria.
1251 assert(i
< Ops
.size());
1252 if (i
+1 != Ops
.size() && Ops
[i
+1].Op
== Ops
[i
].Op
) {
1253 if (Opcode
== Instruction::And
|| Opcode
== Instruction::Or
) {
1254 // Drop duplicate values for And and Or.
1255 Ops
.erase(Ops
.begin()+i
);
1261 // Drop pairs of values for Xor.
1262 assert(Opcode
== Instruction::Xor
);
1264 return Constant::getNullValue(Ops
[0].Op
->getType());
1267 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+2);
1275 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1276 /// instruction with the given two operands, and return the resulting
1277 /// instruction. There are two special cases: 1) if the constant operand is 0,
1278 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1280 static Value
*createAndInstr(Instruction
*InsertBefore
, Value
*Opnd
,
1281 const APInt
&ConstOpnd
) {
1282 if (ConstOpnd
.isNullValue())
1285 if (ConstOpnd
.isAllOnesValue())
1288 Instruction
*I
= BinaryOperator::CreateAnd(
1289 Opnd
, ConstantInt::get(Opnd
->getType(), ConstOpnd
), "and.ra",
1291 I
->setDebugLoc(InsertBefore
->getDebugLoc());
1295 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1296 // into "R ^ C", where C would be 0, and R is a symbolic value.
1298 // If it was successful, true is returned, and the "R" and "C" is returned
1299 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1300 // and both "Res" and "ConstOpnd" remain unchanged.
1301 bool ReassociatePass::CombineXorOpnd(Instruction
*I
, XorOpnd
*Opnd1
,
1302 APInt
&ConstOpnd
, Value
*&Res
) {
1303 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1304 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1305 // = (x & ~c1) ^ (c1 ^ c2)
1306 // It is useful only when c1 == c2.
1307 if (!Opnd1
->isOrExpr() || Opnd1
->getConstPart().isNullValue())
1310 if (!Opnd1
->getValue()->hasOneUse())
1313 const APInt
&C1
= Opnd1
->getConstPart();
1314 if (C1
!= ConstOpnd
)
1317 Value
*X
= Opnd1
->getSymbolicPart();
1318 Res
= createAndInstr(I
, X
, ~C1
);
1319 // ConstOpnd was C2, now C1 ^ C2.
1322 if (Instruction
*T
= dyn_cast
<Instruction
>(Opnd1
->getValue()))
1323 RedoInsts
.insert(T
);
1327 // Helper function of OptimizeXor(). It tries to simplify
1328 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1331 // If it was successful, true is returned, and the "R" and "C" is returned
1332 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1333 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1334 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1335 bool ReassociatePass::CombineXorOpnd(Instruction
*I
, XorOpnd
*Opnd1
,
1336 XorOpnd
*Opnd2
, APInt
&ConstOpnd
,
1338 Value
*X
= Opnd1
->getSymbolicPart();
1339 if (X
!= Opnd2
->getSymbolicPart())
1342 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1343 int DeadInstNum
= 1;
1344 if (Opnd1
->getValue()->hasOneUse())
1346 if (Opnd2
->getValue()->hasOneUse())
1350 // (x | c1) ^ (x & c2)
1351 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1352 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1353 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1355 if (Opnd1
->isOrExpr() != Opnd2
->isOrExpr()) {
1356 if (Opnd2
->isOrExpr())
1357 std::swap(Opnd1
, Opnd2
);
1359 const APInt
&C1
= Opnd1
->getConstPart();
1360 const APInt
&C2
= Opnd2
->getConstPart();
1361 APInt
C3((~C1
) ^ C2
);
1363 // Do not increase code size!
1364 if (!C3
.isNullValue() && !C3
.isAllOnesValue()) {
1365 int NewInstNum
= ConstOpnd
.getBoolValue() ? 1 : 2;
1366 if (NewInstNum
> DeadInstNum
)
1370 Res
= createAndInstr(I
, X
, C3
);
1372 } else if (Opnd1
->isOrExpr()) {
1373 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1375 const APInt
&C1
= Opnd1
->getConstPart();
1376 const APInt
&C2
= Opnd2
->getConstPart();
1379 // Do not increase code size
1380 if (!C3
.isNullValue() && !C3
.isAllOnesValue()) {
1381 int NewInstNum
= ConstOpnd
.getBoolValue() ? 1 : 2;
1382 if (NewInstNum
> DeadInstNum
)
1386 Res
= createAndInstr(I
, X
, C3
);
1389 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1391 const APInt
&C1
= Opnd1
->getConstPart();
1392 const APInt
&C2
= Opnd2
->getConstPart();
1394 Res
= createAndInstr(I
, X
, C3
);
1397 // Put the original operands in the Redo list; hope they will be deleted
1399 if (Instruction
*T
= dyn_cast
<Instruction
>(Opnd1
->getValue()))
1400 RedoInsts
.insert(T
);
1401 if (Instruction
*T
= dyn_cast
<Instruction
>(Opnd2
->getValue()))
1402 RedoInsts
.insert(T
);
1407 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1408 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1410 Value
*ReassociatePass::OptimizeXor(Instruction
*I
,
1411 SmallVectorImpl
<ValueEntry
> &Ops
) {
1412 if (Value
*V
= OptimizeAndOrXor(Instruction::Xor
, Ops
))
1415 if (Ops
.size() == 1)
1418 SmallVector
<XorOpnd
, 8> Opnds
;
1419 SmallVector
<XorOpnd
*, 8> OpndPtrs
;
1420 Type
*Ty
= Ops
[0].Op
->getType();
1421 APInt
ConstOpnd(Ty
->getScalarSizeInBits(), 0);
1423 // Step 1: Convert ValueEntry to XorOpnd
1424 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1425 Value
*V
= Ops
[i
].Op
;
1427 // TODO: Support non-splat vectors.
1428 if (match(V
, m_APInt(C
))) {
1432 O
.setSymbolicRank(getRank(O
.getSymbolicPart()));
1437 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1438 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1439 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1440 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1441 // when new elements are added to the vector.
1442 for (unsigned i
= 0, e
= Opnds
.size(); i
!= e
; ++i
)
1443 OpndPtrs
.push_back(&Opnds
[i
]);
1445 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1446 // the same symbolic value cluster together. For instance, the input operand
1447 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1448 // ("x | 123", "x & 789", "y & 456").
1450 // The purpose is twofold:
1451 // 1) Cluster together the operands sharing the same symbolic-value.
1452 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1453 // could potentially shorten crital path, and expose more loop-invariants.
1454 // Note that values' rank are basically defined in RPO order (FIXME).
1455 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1456 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1457 // "z" in the order of X-Y-Z is better than any other orders.
1458 llvm::stable_sort(OpndPtrs
, [](XorOpnd
*LHS
, XorOpnd
*RHS
) {
1459 return LHS
->getSymbolicRank() < RHS
->getSymbolicRank();
1462 // Step 3: Combine adjacent operands
1463 XorOpnd
*PrevOpnd
= nullptr;
1464 bool Changed
= false;
1465 for (unsigned i
= 0, e
= Opnds
.size(); i
< e
; i
++) {
1466 XorOpnd
*CurrOpnd
= OpndPtrs
[i
];
1467 // The combined value
1470 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1471 if (!ConstOpnd
.isNullValue() &&
1472 CombineXorOpnd(I
, CurrOpnd
, ConstOpnd
, CV
)) {
1475 *CurrOpnd
= XorOpnd(CV
);
1477 CurrOpnd
->Invalidate();
1482 if (!PrevOpnd
|| CurrOpnd
->getSymbolicPart() != PrevOpnd
->getSymbolicPart()) {
1483 PrevOpnd
= CurrOpnd
;
1487 // step 3.2: When previous and current operands share the same symbolic
1488 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1489 if (CombineXorOpnd(I
, CurrOpnd
, PrevOpnd
, ConstOpnd
, CV
)) {
1490 // Remove previous operand
1491 PrevOpnd
->Invalidate();
1493 *CurrOpnd
= XorOpnd(CV
);
1494 PrevOpnd
= CurrOpnd
;
1496 CurrOpnd
->Invalidate();
1503 // Step 4: Reassemble the Ops
1506 for (unsigned int i
= 0, e
= Opnds
.size(); i
< e
; i
++) {
1507 XorOpnd
&O
= Opnds
[i
];
1510 ValueEntry
VE(getRank(O
.getValue()), O
.getValue());
1513 if (!ConstOpnd
.isNullValue()) {
1514 Value
*C
= ConstantInt::get(Ty
, ConstOpnd
);
1515 ValueEntry
VE(getRank(C
), C
);
1518 unsigned Sz
= Ops
.size();
1520 return Ops
.back().Op
;
1522 assert(ConstOpnd
.isNullValue());
1523 return ConstantInt::get(Ty
, ConstOpnd
);
1530 /// Optimize a series of operands to an 'add' instruction. This
1531 /// optimizes based on identities. If it can be reduced to a single Value, it
1532 /// is returned, otherwise the Ops list is mutated as necessary.
1533 Value
*ReassociatePass::OptimizeAdd(Instruction
*I
,
1534 SmallVectorImpl
<ValueEntry
> &Ops
) {
1535 // Scan the operand lists looking for X and -X pairs. If we find any, we
1536 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1538 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1540 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1541 Value
*TheOp
= Ops
[i
].Op
;
1542 // Check to see if we've seen this operand before. If so, we factor all
1543 // instances of the operand together. Due to our sorting criteria, we know
1544 // that these need to be next to each other in the vector.
1545 if (i
+1 != Ops
.size() && Ops
[i
+1].Op
== TheOp
) {
1546 // Rescan the list, remove all instances of this operand from the expr.
1547 unsigned NumFound
= 0;
1549 Ops
.erase(Ops
.begin()+i
);
1551 } while (i
!= Ops
.size() && Ops
[i
].Op
== TheOp
);
1553 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound
<< "]: " << *TheOp
1557 // Insert a new multiply.
1558 Type
*Ty
= TheOp
->getType();
1559 Constant
*C
= Ty
->isIntOrIntVectorTy() ?
1560 ConstantInt::get(Ty
, NumFound
) : ConstantFP::get(Ty
, NumFound
);
1561 Instruction
*Mul
= CreateMul(TheOp
, C
, "factor", I
, I
);
1563 // Now that we have inserted a multiply, optimize it. This allows us to
1564 // handle cases that require multiple factoring steps, such as this:
1565 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1566 RedoInsts
.insert(Mul
);
1568 // If every add operand was a duplicate, return the multiply.
1572 // Otherwise, we had some input that didn't have the dupe, such as
1573 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1574 // things being added by this operation.
1575 Ops
.insert(Ops
.begin(), ValueEntry(getRank(Mul
), Mul
));
1582 // Check for X and -X or X and ~X in the operand list.
1584 if (!match(TheOp
, m_Neg(m_Value(X
))) && !match(TheOp
, m_Not(m_Value(X
))) &&
1585 !match(TheOp
, m_FNeg(m_Value(X
))))
1588 unsigned FoundX
= FindInOperandList(Ops
, i
, X
);
1592 // Remove X and -X from the operand list.
1593 if (Ops
.size() == 2 &&
1594 (match(TheOp
, m_Neg(m_Value())) || match(TheOp
, m_FNeg(m_Value()))))
1595 return Constant::getNullValue(X
->getType());
1597 // Remove X and ~X from the operand list.
1598 if (Ops
.size() == 2 && match(TheOp
, m_Not(m_Value())))
1599 return Constant::getAllOnesValue(X
->getType());
1601 Ops
.erase(Ops
.begin()+i
);
1605 --i
; // Need to back up an extra one.
1606 Ops
.erase(Ops
.begin()+FoundX
);
1608 --i
; // Revisit element.
1609 e
-= 2; // Removed two elements.
1611 // if X and ~X we append -1 to the operand list.
1612 if (match(TheOp
, m_Not(m_Value()))) {
1613 Value
*V
= Constant::getAllOnesValue(X
->getType());
1614 Ops
.insert(Ops
.end(), ValueEntry(getRank(V
), V
));
1619 // Scan the operand list, checking to see if there are any common factors
1620 // between operands. Consider something like A*A+A*B*C+D. We would like to
1621 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1622 // To efficiently find this, we count the number of times a factor occurs
1623 // for any ADD operands that are MULs.
1624 DenseMap
<Value
*, unsigned> FactorOccurrences
;
1626 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1627 // where they are actually the same multiply.
1628 unsigned MaxOcc
= 0;
1629 Value
*MaxOccVal
= nullptr;
1630 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1631 BinaryOperator
*BOp
=
1632 isReassociableOp(Ops
[i
].Op
, Instruction::Mul
, Instruction::FMul
);
1636 // Compute all of the factors of this added value.
1637 SmallVector
<Value
*, 8> Factors
;
1638 FindSingleUseMultiplyFactors(BOp
, Factors
);
1639 assert(Factors
.size() > 1 && "Bad linearize!");
1641 // Add one to FactorOccurrences for each unique factor in this op.
1642 SmallPtrSet
<Value
*, 8> Duplicates
;
1643 for (unsigned i
= 0, e
= Factors
.size(); i
!= e
; ++i
) {
1644 Value
*Factor
= Factors
[i
];
1645 if (!Duplicates
.insert(Factor
).second
)
1648 unsigned Occ
= ++FactorOccurrences
[Factor
];
1654 // If Factor is a negative constant, add the negated value as a factor
1655 // because we can percolate the negate out. Watch for minint, which
1656 // cannot be positivified.
1657 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Factor
)) {
1658 if (CI
->isNegative() && !CI
->isMinValue(true)) {
1659 Factor
= ConstantInt::get(CI
->getContext(), -CI
->getValue());
1660 if (!Duplicates
.insert(Factor
).second
)
1662 unsigned Occ
= ++FactorOccurrences
[Factor
];
1668 } else if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(Factor
)) {
1669 if (CF
->isNegative()) {
1670 APFloat
F(CF
->getValueAPF());
1672 Factor
= ConstantFP::get(CF
->getContext(), F
);
1673 if (!Duplicates
.insert(Factor
).second
)
1675 unsigned Occ
= ++FactorOccurrences
[Factor
];
1685 // If any factor occurred more than one time, we can pull it out.
1687 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc
<< "]: " << *MaxOccVal
1691 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1692 // this, we could otherwise run into situations where removing a factor
1693 // from an expression will drop a use of maxocc, and this can cause
1694 // RemoveFactorFromExpression on successive values to behave differently.
1695 Instruction
*DummyInst
=
1696 I
->getType()->isIntOrIntVectorTy()
1697 ? BinaryOperator::CreateAdd(MaxOccVal
, MaxOccVal
)
1698 : BinaryOperator::CreateFAdd(MaxOccVal
, MaxOccVal
);
1700 SmallVector
<WeakTrackingVH
, 4> NewMulOps
;
1701 for (unsigned i
= 0; i
!= Ops
.size(); ++i
) {
1702 // Only try to remove factors from expressions we're allowed to.
1703 BinaryOperator
*BOp
=
1704 isReassociableOp(Ops
[i
].Op
, Instruction::Mul
, Instruction::FMul
);
1708 if (Value
*V
= RemoveFactorFromExpression(Ops
[i
].Op
, MaxOccVal
)) {
1709 // The factorized operand may occur several times. Convert them all in
1711 for (unsigned j
= Ops
.size(); j
!= i
;) {
1713 if (Ops
[j
].Op
== Ops
[i
].Op
) {
1714 NewMulOps
.push_back(V
);
1715 Ops
.erase(Ops
.begin()+j
);
1722 // No need for extra uses anymore.
1723 DummyInst
->deleteValue();
1725 unsigned NumAddedValues
= NewMulOps
.size();
1726 Value
*V
= EmitAddTreeOfValues(I
, NewMulOps
);
1728 // Now that we have inserted the add tree, optimize it. This allows us to
1729 // handle cases that require multiple factoring steps, such as this:
1730 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1731 assert(NumAddedValues
> 1 && "Each occurrence should contribute a value");
1732 (void)NumAddedValues
;
1733 if (Instruction
*VI
= dyn_cast
<Instruction
>(V
))
1734 RedoInsts
.insert(VI
);
1736 // Create the multiply.
1737 Instruction
*V2
= CreateMul(V
, MaxOccVal
, "reass.mul", I
, I
);
1739 // Rerun associate on the multiply in case the inner expression turned into
1740 // a multiply. We want to make sure that we keep things in canonical form.
1741 RedoInsts
.insert(V2
);
1743 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1744 // entire result expression is just the multiply "A*(B+C)".
1748 // Otherwise, we had some input that didn't have the factor, such as
1749 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1750 // things being added by this operation.
1751 Ops
.insert(Ops
.begin(), ValueEntry(getRank(V2
), V2
));
1757 /// Build up a vector of value/power pairs factoring a product.
1759 /// Given a series of multiplication operands, build a vector of factors and
1760 /// the powers each is raised to when forming the final product. Sort them in
1761 /// the order of descending power.
1763 /// (x*x) -> [(x, 2)]
1764 /// ((x*x)*x) -> [(x, 3)]
1765 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1767 /// \returns Whether any factors have a power greater than one.
1768 static bool collectMultiplyFactors(SmallVectorImpl
<ValueEntry
> &Ops
,
1769 SmallVectorImpl
<Factor
> &Factors
) {
1770 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1771 // Compute the sum of powers of simplifiable factors.
1772 unsigned FactorPowerSum
= 0;
1773 for (unsigned Idx
= 1, Size
= Ops
.size(); Idx
< Size
; ++Idx
) {
1774 Value
*Op
= Ops
[Idx
-1].Op
;
1776 // Count the number of occurrences of this value.
1778 for (; Idx
< Size
&& Ops
[Idx
].Op
== Op
; ++Idx
)
1780 // Track for simplification all factors which occur 2 or more times.
1782 FactorPowerSum
+= Count
;
1785 // We can only simplify factors if the sum of the powers of our simplifiable
1786 // factors is 4 or higher. When that is the case, we will *always* have
1787 // a simplification. This is an important invariant to prevent cyclicly
1788 // trying to simplify already minimal formations.
1789 if (FactorPowerSum
< 4)
1792 // Now gather the simplifiable factors, removing them from Ops.
1794 for (unsigned Idx
= 1; Idx
< Ops
.size(); ++Idx
) {
1795 Value
*Op
= Ops
[Idx
-1].Op
;
1797 // Count the number of occurrences of this value.
1799 for (; Idx
< Ops
.size() && Ops
[Idx
].Op
== Op
; ++Idx
)
1803 // Move an even number of occurrences to Factors.
1806 FactorPowerSum
+= Count
;
1807 Factors
.push_back(Factor(Op
, Count
));
1808 Ops
.erase(Ops
.begin()+Idx
, Ops
.begin()+Idx
+Count
);
1811 // None of the adjustments above should have reduced the sum of factor powers
1812 // below our mininum of '4'.
1813 assert(FactorPowerSum
>= 4);
1815 llvm::stable_sort(Factors
, [](const Factor
&LHS
, const Factor
&RHS
) {
1816 return LHS
.Power
> RHS
.Power
;
1821 /// Build a tree of multiplies, computing the product of Ops.
1822 static Value
*buildMultiplyTree(IRBuilderBase
&Builder
,
1823 SmallVectorImpl
<Value
*> &Ops
) {
1824 if (Ops
.size() == 1)
1827 Value
*LHS
= Ops
.pop_back_val();
1829 if (LHS
->getType()->isIntOrIntVectorTy())
1830 LHS
= Builder
.CreateMul(LHS
, Ops
.pop_back_val());
1832 LHS
= Builder
.CreateFMul(LHS
, Ops
.pop_back_val());
1833 } while (!Ops
.empty());
1838 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1840 /// Given a vector of values raised to various powers, where no two values are
1841 /// equal and the powers are sorted in decreasing order, compute the minimal
1842 /// DAG of multiplies to compute the final product, and return that product
1845 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase
&Builder
,
1846 SmallVectorImpl
<Factor
> &Factors
) {
1847 assert(Factors
[0].Power
);
1848 SmallVector
<Value
*, 4> OuterProduct
;
1849 for (unsigned LastIdx
= 0, Idx
= 1, Size
= Factors
.size();
1850 Idx
< Size
&& Factors
[Idx
].Power
> 0; ++Idx
) {
1851 if (Factors
[Idx
].Power
!= Factors
[LastIdx
].Power
) {
1856 // We want to multiply across all the factors with the same power so that
1857 // we can raise them to that power as a single entity. Build a mini tree
1859 SmallVector
<Value
*, 4> InnerProduct
;
1860 InnerProduct
.push_back(Factors
[LastIdx
].Base
);
1862 InnerProduct
.push_back(Factors
[Idx
].Base
);
1864 } while (Idx
< Size
&& Factors
[Idx
].Power
== Factors
[LastIdx
].Power
);
1866 // Reset the base value of the first factor to the new expression tree.
1867 // We'll remove all the factors with the same power in a second pass.
1868 Value
*M
= Factors
[LastIdx
].Base
= buildMultiplyTree(Builder
, InnerProduct
);
1869 if (Instruction
*MI
= dyn_cast
<Instruction
>(M
))
1870 RedoInsts
.insert(MI
);
1874 // Unique factors with equal powers -- we've folded them into the first one's
1876 Factors
.erase(std::unique(Factors
.begin(), Factors
.end(),
1877 [](const Factor
&LHS
, const Factor
&RHS
) {
1878 return LHS
.Power
== RHS
.Power
;
1882 // Iteratively collect the base of each factor with an add power into the
1883 // outer product, and halve each power in preparation for squaring the
1885 for (unsigned Idx
= 0, Size
= Factors
.size(); Idx
!= Size
; ++Idx
) {
1886 if (Factors
[Idx
].Power
& 1)
1887 OuterProduct
.push_back(Factors
[Idx
].Base
);
1888 Factors
[Idx
].Power
>>= 1;
1890 if (Factors
[0].Power
) {
1891 Value
*SquareRoot
= buildMinimalMultiplyDAG(Builder
, Factors
);
1892 OuterProduct
.push_back(SquareRoot
);
1893 OuterProduct
.push_back(SquareRoot
);
1895 if (OuterProduct
.size() == 1)
1896 return OuterProduct
.front();
1898 Value
*V
= buildMultiplyTree(Builder
, OuterProduct
);
1902 Value
*ReassociatePass::OptimizeMul(BinaryOperator
*I
,
1903 SmallVectorImpl
<ValueEntry
> &Ops
) {
1904 // We can only optimize the multiplies when there is a chain of more than
1905 // three, such that a balanced tree might require fewer total multiplies.
1909 // Try to turn linear trees of multiplies without other uses of the
1910 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1912 SmallVector
<Factor
, 4> Factors
;
1913 if (!collectMultiplyFactors(Ops
, Factors
))
1914 return nullptr; // All distinct factors, so nothing left for us to do.
1916 IRBuilder
<> Builder(I
);
1917 // The reassociate transformation for FP operations is performed only
1918 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1919 // to the newly generated operations.
1920 if (auto FPI
= dyn_cast
<FPMathOperator
>(I
))
1921 Builder
.setFastMathFlags(FPI
->getFastMathFlags());
1923 Value
*V
= buildMinimalMultiplyDAG(Builder
, Factors
);
1927 ValueEntry NewEntry
= ValueEntry(getRank(V
), V
);
1928 Ops
.insert(llvm::lower_bound(Ops
, NewEntry
), NewEntry
);
1932 Value
*ReassociatePass::OptimizeExpression(BinaryOperator
*I
,
1933 SmallVectorImpl
<ValueEntry
> &Ops
) {
1934 // Now that we have the linearized expression tree, try to optimize it.
1935 // Start by folding any constants that we found.
1936 Constant
*Cst
= nullptr;
1937 unsigned Opcode
= I
->getOpcode();
1938 while (!Ops
.empty() && isa
<Constant
>(Ops
.back().Op
)) {
1939 Constant
*C
= cast
<Constant
>(Ops
.pop_back_val().Op
);
1940 Cst
= Cst
? ConstantExpr::get(Opcode
, C
, Cst
) : C
;
1942 // If there was nothing but constants then we are done.
1946 // Put the combined constant back at the end of the operand list, except if
1947 // there is no point. For example, an add of 0 gets dropped here, while a
1948 // multiplication by zero turns the whole expression into zero.
1949 if (Cst
&& Cst
!= ConstantExpr::getBinOpIdentity(Opcode
, I
->getType())) {
1950 if (Cst
== ConstantExpr::getBinOpAbsorber(Opcode
, I
->getType()))
1952 Ops
.push_back(ValueEntry(0, Cst
));
1955 if (Ops
.size() == 1) return Ops
[0].Op
;
1957 // Handle destructive annihilation due to identities between elements in the
1958 // argument list here.
1959 unsigned NumOps
= Ops
.size();
1962 case Instruction::And
:
1963 case Instruction::Or
:
1964 if (Value
*Result
= OptimizeAndOrXor(Opcode
, Ops
))
1968 case Instruction::Xor
:
1969 if (Value
*Result
= OptimizeXor(I
, Ops
))
1973 case Instruction::Add
:
1974 case Instruction::FAdd
:
1975 if (Value
*Result
= OptimizeAdd(I
, Ops
))
1979 case Instruction::Mul
:
1980 case Instruction::FMul
:
1981 if (Value
*Result
= OptimizeMul(I
, Ops
))
1986 if (Ops
.size() != NumOps
)
1987 return OptimizeExpression(I
, Ops
);
1991 // Remove dead instructions and if any operands are trivially dead add them to
1992 // Insts so they will be removed as well.
1993 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction
*I
,
1994 OrderedSet
&Insts
) {
1995 assert(isInstructionTriviallyDead(I
) && "Trivially dead instructions only!");
1996 SmallVector
<Value
*, 4> Ops(I
->operands());
1997 ValueRankMap
.erase(I
);
1999 RedoInsts
.remove(I
);
2000 llvm::salvageDebugInfo(*I
);
2001 I
->eraseFromParent();
2003 if (Instruction
*OpInst
= dyn_cast
<Instruction
>(Op
))
2004 if (OpInst
->use_empty())
2005 Insts
.insert(OpInst
);
2008 /// Zap the given instruction, adding interesting operands to the work list.
2009 void ReassociatePass::EraseInst(Instruction
*I
) {
2010 assert(isInstructionTriviallyDead(I
) && "Trivially dead instructions only!");
2011 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I
->dump());
2013 SmallVector
<Value
*, 8> Ops(I
->operands());
2014 // Erase the dead instruction.
2015 ValueRankMap
.erase(I
);
2016 RedoInsts
.remove(I
);
2017 llvm::salvageDebugInfo(*I
);
2018 I
->eraseFromParent();
2019 // Optimize its operands.
2020 SmallPtrSet
<Instruction
*, 8> Visited
; // Detect self-referential nodes.
2021 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2022 if (Instruction
*Op
= dyn_cast
<Instruction
>(Ops
[i
])) {
2023 // If this is a node in an expression tree, climb to the expression root
2024 // and add that since that's where optimization actually happens.
2025 unsigned Opcode
= Op
->getOpcode();
2026 while (Op
->hasOneUse() && Op
->user_back()->getOpcode() == Opcode
&&
2027 Visited
.insert(Op
).second
)
2028 Op
= Op
->user_back();
2030 // The instruction we're going to push may be coming from a
2031 // dead block, and Reassociate skips the processing of unreachable
2032 // blocks because it's a waste of time and also because it can
2033 // lead to infinite loop due to LLVM's non-standard definition
2035 if (ValueRankMap
.find(Op
) != ValueRankMap
.end())
2036 RedoInsts
.insert(Op
);
2042 /// Recursively analyze an expression to build a list of instructions that have
2043 /// negative floating-point constant operands. The caller can then transform
2044 /// the list to create positive constants for better reassociation and CSE.
2045 static void getNegatibleInsts(Value
*V
,
2046 SmallVectorImpl
<Instruction
*> &Candidates
) {
2047 // Handle only one-use instructions. Combining negations does not justify
2048 // replicating instructions.
2050 if (!match(V
, m_OneUse(m_Instruction(I
))))
2053 // Handle expressions of multiplications and divisions.
2054 // TODO: This could look through floating-point casts.
2056 switch (I
->getOpcode()) {
2057 case Instruction::FMul
:
2058 // Not expecting non-canonical code here. Bail out and wait.
2059 if (match(I
->getOperand(0), m_Constant()))
2062 if (match(I
->getOperand(1), m_APFloat(C
)) && C
->isNegative()) {
2063 Candidates
.push_back(I
);
2064 LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I
<< '\n');
2066 getNegatibleInsts(I
->getOperand(0), Candidates
);
2067 getNegatibleInsts(I
->getOperand(1), Candidates
);
2069 case Instruction::FDiv
:
2070 // Not expecting non-canonical code here. Bail out and wait.
2071 if (match(I
->getOperand(0), m_Constant()) &&
2072 match(I
->getOperand(1), m_Constant()))
2075 if ((match(I
->getOperand(0), m_APFloat(C
)) && C
->isNegative()) ||
2076 (match(I
->getOperand(1), m_APFloat(C
)) && C
->isNegative())) {
2077 Candidates
.push_back(I
);
2078 LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I
<< '\n');
2080 getNegatibleInsts(I
->getOperand(0), Candidates
);
2081 getNegatibleInsts(I
->getOperand(1), Candidates
);
2088 /// Given an fadd/fsub with an operand that is a one-use instruction
2089 /// (the fadd/fsub), try to change negative floating-point constants into
2090 /// positive constants to increase potential for reassociation and CSE.
2091 Instruction
*ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction
*I
,
2094 assert((I
->getOpcode() == Instruction::FAdd
||
2095 I
->getOpcode() == Instruction::FSub
) && "Expected fadd/fsub");
2097 // Collect instructions with negative FP constants from the subtree that ends
2099 SmallVector
<Instruction
*, 4> Candidates
;
2100 getNegatibleInsts(Op
, Candidates
);
2101 if (Candidates
.empty())
2104 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2105 // resulting subtract will be broken up later. This can get us into an
2106 // infinite loop during reassociation.
2107 bool IsFSub
= I
->getOpcode() == Instruction::FSub
;
2108 bool NeedsSubtract
= !IsFSub
&& Candidates
.size() % 2 == 1;
2109 if (NeedsSubtract
&& ShouldBreakUpSubtract(I
))
2112 for (Instruction
*Negatible
: Candidates
) {
2114 if (match(Negatible
->getOperand(0), m_APFloat(C
))) {
2115 assert(!match(Negatible
->getOperand(1), m_Constant()) &&
2116 "Expecting only 1 constant operand");
2117 assert(C
->isNegative() && "Expected negative FP constant");
2118 Negatible
->setOperand(0, ConstantFP::get(Negatible
->getType(), abs(*C
)));
2121 if (match(Negatible
->getOperand(1), m_APFloat(C
))) {
2122 assert(!match(Negatible
->getOperand(0), m_Constant()) &&
2123 "Expecting only 1 constant operand");
2124 assert(C
->isNegative() && "Expected negative FP constant");
2125 Negatible
->setOperand(1, ConstantFP::get(Negatible
->getType(), abs(*C
)));
2129 assert(MadeChange
== true && "Negative constant candidate was not changed");
2131 // Negations cancelled out.
2132 if (Candidates
.size() % 2 == 0)
2135 // Negate the final operand in the expression by flipping the opcode of this
2137 assert(Candidates
.size() % 2 == 1 && "Expected odd number");
2138 IRBuilder
<> Builder(I
);
2139 Value
*NewInst
= IsFSub
? Builder
.CreateFAddFMF(OtherOp
, Op
, I
)
2140 : Builder
.CreateFSubFMF(OtherOp
, Op
, I
);
2141 I
->replaceAllUsesWith(NewInst
);
2142 RedoInsts
.insert(I
);
2143 return dyn_cast
<Instruction
>(NewInst
);
2146 /// Canonicalize expressions that contain a negative floating-point constant
2147 /// of the following form:
2148 /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2149 /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2150 /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2152 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2153 /// input instruction.
2154 Instruction
*ReassociatePass::canonicalizeNegFPConstants(Instruction
*I
) {
2155 LLVM_DEBUG(dbgs() << "Combine negations for: " << *I
<< '\n');
2158 if (match(I
, m_FAdd(m_Value(X
), m_OneUse(m_Instruction(Op
)))))
2159 if (Instruction
*R
= canonicalizeNegFPConstantsForOp(I
, Op
, X
))
2161 if (match(I
, m_FAdd(m_OneUse(m_Instruction(Op
)), m_Value(X
))))
2162 if (Instruction
*R
= canonicalizeNegFPConstantsForOp(I
, Op
, X
))
2164 if (match(I
, m_FSub(m_Value(X
), m_OneUse(m_Instruction(Op
)))))
2165 if (Instruction
*R
= canonicalizeNegFPConstantsForOp(I
, Op
, X
))
2170 /// Inspect and optimize the given instruction. Note that erasing
2171 /// instructions is not allowed.
2172 void ReassociatePass::OptimizeInst(Instruction
*I
) {
2173 // Only consider operations that we understand.
2174 if (!isa
<UnaryOperator
>(I
) && !isa
<BinaryOperator
>(I
))
2177 if (I
->getOpcode() == Instruction::Shl
&& isa
<ConstantInt
>(I
->getOperand(1)))
2178 // If an operand of this shift is a reassociable multiply, or if the shift
2179 // is used by a reassociable multiply or add, turn into a multiply.
2180 if (isReassociableOp(I
->getOperand(0), Instruction::Mul
) ||
2182 (isReassociableOp(I
->user_back(), Instruction::Mul
) ||
2183 isReassociableOp(I
->user_back(), Instruction::Add
)))) {
2184 Instruction
*NI
= ConvertShiftToMul(I
);
2185 RedoInsts
.insert(I
);
2190 // Commute binary operators, to canonicalize the order of their operands.
2191 // This can potentially expose more CSE opportunities, and makes writing other
2192 // transformations simpler.
2193 if (I
->isCommutative())
2194 canonicalizeOperands(I
);
2196 // Canonicalize negative constants out of expressions.
2197 if (Instruction
*Res
= canonicalizeNegFPConstants(I
))
2200 // Don't optimize floating-point instructions unless they are 'fast'.
2201 if (I
->getType()->isFPOrFPVectorTy() && !I
->isFast())
2204 // Do not reassociate boolean (i1) expressions. We want to preserve the
2205 // original order of evaluation for short-circuited comparisons that
2206 // SimplifyCFG has folded to AND/OR expressions. If the expression
2207 // is not further optimized, it is likely to be transformed back to a
2208 // short-circuited form for code gen, and the source order may have been
2209 // optimized for the most likely conditions.
2210 if (I
->getType()->isIntegerTy(1))
2213 // If this is a bitwise or instruction of operands
2214 // with no common bits set, convert it to X+Y.
2215 if (I
->getOpcode() == Instruction::Or
&&
2216 shouldConvertOrWithNoCommonBitsToAdd(I
) && !isLoadCombineCandidate(I
) &&
2217 haveNoCommonBitsSet(I
->getOperand(0), I
->getOperand(1),
2218 I
->getModule()->getDataLayout(), /*AC=*/nullptr, I
,
2220 Instruction
*NI
= convertOrWithNoCommonBitsToAdd(I
);
2221 RedoInsts
.insert(I
);
2226 // If this is a subtract instruction which is not already in negate form,
2227 // see if we can convert it to X+-Y.
2228 if (I
->getOpcode() == Instruction::Sub
) {
2229 if (ShouldBreakUpSubtract(I
)) {
2230 Instruction
*NI
= BreakUpSubtract(I
, RedoInsts
);
2231 RedoInsts
.insert(I
);
2234 } else if (match(I
, m_Neg(m_Value()))) {
2235 // Otherwise, this is a negation. See if the operand is a multiply tree
2236 // and if this is not an inner node of a multiply tree.
2237 if (isReassociableOp(I
->getOperand(1), Instruction::Mul
) &&
2239 !isReassociableOp(I
->user_back(), Instruction::Mul
))) {
2240 Instruction
*NI
= LowerNegateToMultiply(I
);
2241 // If the negate was simplified, revisit the users to see if we can
2242 // reassociate further.
2243 for (User
*U
: NI
->users()) {
2244 if (BinaryOperator
*Tmp
= dyn_cast
<BinaryOperator
>(U
))
2245 RedoInsts
.insert(Tmp
);
2247 RedoInsts
.insert(I
);
2252 } else if (I
->getOpcode() == Instruction::FNeg
||
2253 I
->getOpcode() == Instruction::FSub
) {
2254 if (ShouldBreakUpSubtract(I
)) {
2255 Instruction
*NI
= BreakUpSubtract(I
, RedoInsts
);
2256 RedoInsts
.insert(I
);
2259 } else if (match(I
, m_FNeg(m_Value()))) {
2260 // Otherwise, this is a negation. See if the operand is a multiply tree
2261 // and if this is not an inner node of a multiply tree.
2262 Value
*Op
= isa
<BinaryOperator
>(I
) ? I
->getOperand(1) :
2264 if (isReassociableOp(Op
, Instruction::FMul
) &&
2266 !isReassociableOp(I
->user_back(), Instruction::FMul
))) {
2267 // If the negate was simplified, revisit the users to see if we can
2268 // reassociate further.
2269 Instruction
*NI
= LowerNegateToMultiply(I
);
2270 for (User
*U
: NI
->users()) {
2271 if (BinaryOperator
*Tmp
= dyn_cast
<BinaryOperator
>(U
))
2272 RedoInsts
.insert(Tmp
);
2274 RedoInsts
.insert(I
);
2281 // If this instruction is an associative binary operator, process it.
2282 if (!I
->isAssociative()) return;
2283 BinaryOperator
*BO
= cast
<BinaryOperator
>(I
);
2285 // If this is an interior node of a reassociable tree, ignore it until we
2286 // get to the root of the tree, to avoid N^2 analysis.
2287 unsigned Opcode
= BO
->getOpcode();
2288 if (BO
->hasOneUse() && BO
->user_back()->getOpcode() == Opcode
) {
2289 // During the initial run we will get to the root of the tree.
2290 // But if we get here while we are redoing instructions, there is no
2291 // guarantee that the root will be visited. So Redo later
2292 if (BO
->user_back() != BO
&&
2293 BO
->getParent() == BO
->user_back()->getParent())
2294 RedoInsts
.insert(BO
->user_back());
2298 // If this is an add tree that is used by a sub instruction, ignore it
2299 // until we process the subtract.
2300 if (BO
->hasOneUse() && BO
->getOpcode() == Instruction::Add
&&
2301 cast
<Instruction
>(BO
->user_back())->getOpcode() == Instruction::Sub
)
2303 if (BO
->hasOneUse() && BO
->getOpcode() == Instruction::FAdd
&&
2304 cast
<Instruction
>(BO
->user_back())->getOpcode() == Instruction::FSub
)
2307 ReassociateExpression(BO
);
2310 void ReassociatePass::ReassociateExpression(BinaryOperator
*I
) {
2311 // First, walk the expression tree, linearizing the tree, collecting the
2312 // operand information.
2313 SmallVector
<RepeatedValue
, 8> Tree
;
2314 MadeChange
|= LinearizeExprTree(I
, Tree
);
2315 SmallVector
<ValueEntry
, 8> Ops
;
2316 Ops
.reserve(Tree
.size());
2317 for (unsigned i
= 0, e
= Tree
.size(); i
!= e
; ++i
) {
2318 RepeatedValue E
= Tree
[i
];
2319 Ops
.append(E
.second
.getZExtValue(),
2320 ValueEntry(getRank(E
.first
), E
.first
));
2323 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I
, Ops
); dbgs() << '\n');
2325 // Now that we have linearized the tree to a list and have gathered all of
2326 // the operands and their ranks, sort the operands by their rank. Use a
2327 // stable_sort so that values with equal ranks will have their relative
2328 // positions maintained (and so the compiler is deterministic). Note that
2329 // this sorts so that the highest ranking values end up at the beginning of
2331 llvm::stable_sort(Ops
);
2333 // Now that we have the expression tree in a convenient
2334 // sorted form, optimize it globally if possible.
2335 if (Value
*V
= OptimizeExpression(I
, Ops
)) {
2337 // Self-referential expression in unreachable code.
2339 // This expression tree simplified to something that isn't a tree,
2341 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V
<< '\n');
2342 I
->replaceAllUsesWith(V
);
2343 if (Instruction
*VI
= dyn_cast
<Instruction
>(V
))
2344 if (I
->getDebugLoc())
2345 VI
->setDebugLoc(I
->getDebugLoc());
2346 RedoInsts
.insert(I
);
2351 // We want to sink immediates as deeply as possible except in the case where
2352 // this is a multiply tree used only by an add, and the immediate is a -1.
2353 // In this case we reassociate to put the negation on the outside so that we
2354 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2355 if (I
->hasOneUse()) {
2356 if (I
->getOpcode() == Instruction::Mul
&&
2357 cast
<Instruction
>(I
->user_back())->getOpcode() == Instruction::Add
&&
2358 isa
<ConstantInt
>(Ops
.back().Op
) &&
2359 cast
<ConstantInt
>(Ops
.back().Op
)->isMinusOne()) {
2360 ValueEntry Tmp
= Ops
.pop_back_val();
2361 Ops
.insert(Ops
.begin(), Tmp
);
2362 } else if (I
->getOpcode() == Instruction::FMul
&&
2363 cast
<Instruction
>(I
->user_back())->getOpcode() ==
2364 Instruction::FAdd
&&
2365 isa
<ConstantFP
>(Ops
.back().Op
) &&
2366 cast
<ConstantFP
>(Ops
.back().Op
)->isExactlyValue(-1.0)) {
2367 ValueEntry Tmp
= Ops
.pop_back_val();
2368 Ops
.insert(Ops
.begin(), Tmp
);
2372 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I
, Ops
); dbgs() << '\n');
2374 if (Ops
.size() == 1) {
2376 // Self-referential expression in unreachable code.
2379 // This expression tree simplified to something that isn't a tree,
2381 I
->replaceAllUsesWith(Ops
[0].Op
);
2382 if (Instruction
*OI
= dyn_cast
<Instruction
>(Ops
[0].Op
))
2383 OI
->setDebugLoc(I
->getDebugLoc());
2384 RedoInsts
.insert(I
);
2388 if (Ops
.size() > 2 && Ops
.size() <= GlobalReassociateLimit
) {
2389 // Find the pair with the highest count in the pairmap and move it to the
2390 // back of the list so that it can later be CSE'd.
2393 // if c*e is the most "popular" pair, we can express this as
2396 unsigned BestRank
= 0;
2397 std::pair
<unsigned, unsigned> BestPair
;
2398 unsigned Idx
= I
->getOpcode() - Instruction::BinaryOpsBegin
;
2399 for (unsigned i
= 0; i
< Ops
.size() - 1; ++i
)
2400 for (unsigned j
= i
+ 1; j
< Ops
.size(); ++j
) {
2402 Value
*Op0
= Ops
[i
].Op
;
2403 Value
*Op1
= Ops
[j
].Op
;
2404 if (std::less
<Value
*>()(Op1
, Op0
))
2405 std::swap(Op0
, Op1
);
2406 auto it
= PairMap
[Idx
].find({Op0
, Op1
});
2407 if (it
!= PairMap
[Idx
].end()) {
2408 // Functions like BreakUpSubtract() can erase the Values we're using
2409 // as keys and create new Values after we built the PairMap. There's a
2410 // small chance that the new nodes can have the same address as
2411 // something already in the table. We shouldn't accumulate the stored
2412 // score in that case as it refers to the wrong Value.
2413 if (it
->second
.isValid())
2414 Score
+= it
->second
.Score
;
2417 unsigned MaxRank
= std::max(Ops
[i
].Rank
, Ops
[j
].Rank
);
2418 if (Score
> Max
|| (Score
== Max
&& MaxRank
< BestRank
)) {
2425 auto Op0
= Ops
[BestPair
.first
];
2426 auto Op1
= Ops
[BestPair
.second
];
2427 Ops
.erase(&Ops
[BestPair
.second
]);
2428 Ops
.erase(&Ops
[BestPair
.first
]);
2433 // Now that we ordered and optimized the expressions, splat them back into
2434 // the expression tree, removing any unneeded nodes.
2435 RewriteExprTree(I
, Ops
);
2439 ReassociatePass::BuildPairMap(ReversePostOrderTraversal
<Function
*> &RPOT
) {
2440 // Make a "pairmap" of how often each operand pair occurs.
2441 for (BasicBlock
*BI
: RPOT
) {
2442 for (Instruction
&I
: *BI
) {
2443 if (!I
.isAssociative())
2446 // Ignore nodes that aren't at the root of trees.
2447 if (I
.hasOneUse() && I
.user_back()->getOpcode() == I
.getOpcode())
2450 // Collect all operands in a single reassociable expression.
2451 // Since Reassociate has already been run once, we can assume things
2452 // are already canonical according to Reassociation's regime.
2453 SmallVector
<Value
*, 8> Worklist
= { I
.getOperand(0), I
.getOperand(1) };
2454 SmallVector
<Value
*, 8> Ops
;
2455 while (!Worklist
.empty() && Ops
.size() <= GlobalReassociateLimit
) {
2456 Value
*Op
= Worklist
.pop_back_val();
2457 Instruction
*OpI
= dyn_cast
<Instruction
>(Op
);
2458 if (!OpI
|| OpI
->getOpcode() != I
.getOpcode() || !OpI
->hasOneUse()) {
2462 // Be paranoid about self-referencing expressions in unreachable code.
2463 if (OpI
->getOperand(0) != OpI
)
2464 Worklist
.push_back(OpI
->getOperand(0));
2465 if (OpI
->getOperand(1) != OpI
)
2466 Worklist
.push_back(OpI
->getOperand(1));
2468 // Skip extremely long expressions.
2469 if (Ops
.size() > GlobalReassociateLimit
)
2472 // Add all pairwise combinations of operands to the pair map.
2473 unsigned BinaryIdx
= I
.getOpcode() - Instruction::BinaryOpsBegin
;
2474 SmallSet
<std::pair
<Value
*, Value
*>, 32> Visited
;
2475 for (unsigned i
= 0; i
< Ops
.size() - 1; ++i
) {
2476 for (unsigned j
= i
+ 1; j
< Ops
.size(); ++j
) {
2477 // Canonicalize operand orderings.
2478 Value
*Op0
= Ops
[i
];
2479 Value
*Op1
= Ops
[j
];
2480 if (std::less
<Value
*>()(Op1
, Op0
))
2481 std::swap(Op0
, Op1
);
2482 if (!Visited
.insert({Op0
, Op1
}).second
)
2484 auto res
= PairMap
[BinaryIdx
].insert({{Op0
, Op1
}, {Op0
, Op1
, 1}});
2486 // If either key value has been erased then we've got the same
2487 // address by coincidence. That can't happen here because nothing is
2488 // erasing values but it can happen by the time we're querying the
2490 assert(res
.first
->second
.isValid() && "WeakVH invalidated");
2491 ++res
.first
->second
.Score
;
2499 PreservedAnalyses
ReassociatePass::run(Function
&F
, FunctionAnalysisManager
&) {
2500 // Get the functions basic blocks in Reverse Post Order. This order is used by
2501 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2502 // blocks (it has been seen that the analysis in this pass could hang when
2503 // analysing dead basic blocks).
2504 ReversePostOrderTraversal
<Function
*> RPOT(&F
);
2506 // Calculate the rank map for F.
2507 BuildRankMap(F
, RPOT
);
2509 // Build the pair map before running reassociate.
2510 // Technically this would be more accurate if we did it after one round
2511 // of reassociation, but in practice it doesn't seem to help much on
2512 // real-world code, so don't waste the compile time running reassociate
2514 // If a user wants, they could expicitly run reassociate twice in their
2515 // pass pipeline for further potential gains.
2516 // It might also be possible to update the pair map during runtime, but the
2517 // overhead of that may be large if there's many reassociable chains.
2522 // Traverse the same blocks that were analysed by BuildRankMap.
2523 for (BasicBlock
*BI
: RPOT
) {
2524 assert(RankMap
.count(&*BI
) && "BB should be ranked.");
2525 // Optimize every instruction in the basic block.
2526 for (BasicBlock::iterator II
= BI
->begin(), IE
= BI
->end(); II
!= IE
;)
2527 if (isInstructionTriviallyDead(&*II
)) {
2531 assert(II
->getParent() == &*BI
&& "Moved to a different block!");
2535 // Make a copy of all the instructions to be redone so we can remove dead
2537 OrderedSet
ToRedo(RedoInsts
);
2538 // Iterate over all instructions to be reevaluated and remove trivially dead
2539 // instructions. If any operand of the trivially dead instruction becomes
2540 // dead mark it for deletion as well. Continue this process until all
2541 // trivially dead instructions have been removed.
2542 while (!ToRedo
.empty()) {
2543 Instruction
*I
= ToRedo
.pop_back_val();
2544 if (isInstructionTriviallyDead(I
)) {
2545 RecursivelyEraseDeadInsts(I
, ToRedo
);
2550 // Now that we have removed dead instructions, we can reoptimize the
2551 // remaining instructions.
2552 while (!RedoInsts
.empty()) {
2553 Instruction
*I
= RedoInsts
.front();
2554 RedoInsts
.erase(RedoInsts
.begin());
2555 if (isInstructionTriviallyDead(I
))
2562 // We are done with the rank map and pair map.
2564 ValueRankMap
.clear();
2565 for (auto &Entry
: PairMap
)
2569 PreservedAnalyses PA
;
2570 PA
.preserveSet
<CFGAnalyses
>();
2574 return PreservedAnalyses::all();
2579 class ReassociateLegacyPass
: public FunctionPass
{
2580 ReassociatePass Impl
;
2583 static char ID
; // Pass identification, replacement for typeid
2585 ReassociateLegacyPass() : FunctionPass(ID
) {
2586 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2589 bool runOnFunction(Function
&F
) override
{
2590 if (skipFunction(F
))
2593 FunctionAnalysisManager DummyFAM
;
2594 auto PA
= Impl
.run(F
, DummyFAM
);
2595 return !PA
.areAllPreserved();
2598 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
2599 AU
.setPreservesCFG();
2600 AU
.addPreserved
<AAResultsWrapperPass
>();
2601 AU
.addPreserved
<BasicAAWrapperPass
>();
2602 AU
.addPreserved
<GlobalsAAWrapperPass
>();
2606 } // end anonymous namespace
2608 char ReassociateLegacyPass::ID
= 0;
2610 INITIALIZE_PASS(ReassociateLegacyPass
, "reassociate",
2611 "Reassociate expressions", false, false)
2613 // Public interface to the Reassociate pass
2614 FunctionPass
*llvm::createReassociatePass() {
2615 return new ReassociateLegacyPass();