[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Utils / LoopSimplify.cpp
blobd14c006c803278c4943448518f528e3b6604cb60
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
11 // more effective.
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header. This simplifies a
15 // number of analyses and transformations, such as LICM.
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header). This simplifies transformations such as store-sinking
21 // that are built into LICM.
23 // This pass also guarantees that loops will have exactly one backedge.
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
35 // generated code.
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SetOperations.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/BasicAliasAnalysis.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/InitializePasses.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/LoopUtils.h"
77 using namespace llvm;
79 #define DEBUG_TYPE "loop-simplify"
81 STATISTIC(NumNested , "Number of nested loops split out");
83 // If the block isn't already, move the new block to right after some 'outside
84 // block' block. This prevents the preheader from being placed inside the loop
85 // body, e.g. when the loop hasn't been rotated.
86 static void placeSplitBlockCarefully(BasicBlock *NewBB,
87 SmallVectorImpl<BasicBlock *> &SplitPreds,
88 Loop *L) {
89 // Check to see if NewBB is already well placed.
90 Function::iterator BBI = --NewBB->getIterator();
91 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
92 if (&*BBI == SplitPreds[i])
93 return;
96 // If it isn't already after an outside block, move it after one. This is
97 // always good as it makes the uncond branch from the outside block into a
98 // fall-through.
100 // Figure out *which* outside block to put this after. Prefer an outside
101 // block that neighbors a BB actually in the loop.
102 BasicBlock *FoundBB = nullptr;
103 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
104 Function::iterator BBI = SplitPreds[i]->getIterator();
105 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
106 FoundBB = SplitPreds[i];
107 break;
111 // If our heuristic for a *good* bb to place this after doesn't find
112 // anything, just pick something. It's likely better than leaving it within
113 // the loop.
114 if (!FoundBB)
115 FoundBB = SplitPreds[0];
116 NewBB->moveAfter(FoundBB);
119 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
120 /// preheader, this method is called to insert one. This method has two phases:
121 /// preheader insertion and analysis updating.
123 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
124 LoopInfo *LI, MemorySSAUpdater *MSSAU,
125 bool PreserveLCSSA) {
126 BasicBlock *Header = L->getHeader();
128 // Compute the set of predecessors of the loop that are not in the loop.
129 SmallVector<BasicBlock*, 8> OutsideBlocks;
130 for (BasicBlock *P : predecessors(Header)) {
131 if (!L->contains(P)) { // Coming in from outside the loop?
132 // If the loop is branched to from an indirect terminator, we won't
133 // be able to fully transform the loop, because it prohibits
134 // edge splitting.
135 if (P->getTerminator()->isIndirectTerminator())
136 return nullptr;
138 // Keep track of it.
139 OutsideBlocks.push_back(P);
143 // Split out the loop pre-header.
144 BasicBlock *PreheaderBB;
145 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
146 LI, MSSAU, PreserveLCSSA);
147 if (!PreheaderBB)
148 return nullptr;
150 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
151 << PreheaderBB->getName() << "\n");
153 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
154 // code layout too horribly.
155 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
157 return PreheaderBB;
160 /// Add the specified block, and all of its predecessors, to the specified set,
161 /// if it's not already in there. Stop predecessor traversal when we reach
162 /// StopBlock.
163 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
164 SmallPtrSetImpl<BasicBlock *> &Blocks) {
165 SmallVector<BasicBlock *, 8> Worklist;
166 Worklist.push_back(InputBB);
167 do {
168 BasicBlock *BB = Worklist.pop_back_val();
169 if (Blocks.insert(BB).second && BB != StopBlock)
170 // If BB is not already processed and it is not a stop block then
171 // insert its predecessor in the work list
172 append_range(Worklist, predecessors(BB));
173 } while (!Worklist.empty());
176 /// The first part of loop-nestification is to find a PHI node that tells
177 /// us how to partition the loops.
178 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
179 AssumptionCache *AC) {
180 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
181 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
182 PHINode *PN = cast<PHINode>(I);
183 ++I;
184 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
185 // This is a degenerate PHI already, don't modify it!
186 PN->replaceAllUsesWith(V);
187 PN->eraseFromParent();
188 continue;
191 // Scan this PHI node looking for a use of the PHI node by itself.
192 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
193 if (PN->getIncomingValue(i) == PN &&
194 L->contains(PN->getIncomingBlock(i)))
195 // We found something tasty to remove.
196 return PN;
198 return nullptr;
201 /// If this loop has multiple backedges, try to pull one of them out into
202 /// a nested loop.
204 /// This is important for code that looks like
205 /// this:
207 /// Loop:
208 /// ...
209 /// br cond, Loop, Next
210 /// ...
211 /// br cond2, Loop, Out
213 /// To identify this common case, we look at the PHI nodes in the header of the
214 /// loop. PHI nodes with unchanging values on one backedge correspond to values
215 /// that change in the "outer" loop, but not in the "inner" loop.
217 /// If we are able to separate out a loop, return the new outer loop that was
218 /// created.
220 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
221 DominatorTree *DT, LoopInfo *LI,
222 ScalarEvolution *SE, bool PreserveLCSSA,
223 AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
224 // Don't try to separate loops without a preheader.
225 if (!Preheader)
226 return nullptr;
228 // Treat the presence of convergent functions conservatively. The
229 // transformation is invalid if calls to certain convergent
230 // functions (like an AMDGPU barrier) get included in the resulting
231 // inner loop. But blocks meant for the inner loop will be
232 // identified later at a point where it's too late to abort the
233 // transformation. Also, the convergent attribute is not really
234 // sufficient to express the semantics of functions that are
235 // affected by this transformation. So we choose to back off if such
236 // a function call is present until a better alternative becomes
237 // available. This is similar to the conservative treatment of
238 // convergent function calls in GVNHoist and JumpThreading.
239 for (auto BB : L->blocks()) {
240 for (auto &II : *BB) {
241 if (auto CI = dyn_cast<CallBase>(&II)) {
242 if (CI->isConvergent()) {
243 return nullptr;
249 // The header is not a landing pad; preheader insertion should ensure this.
250 BasicBlock *Header = L->getHeader();
251 assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
253 PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
254 if (!PN) return nullptr; // No known way to partition.
256 // Pull out all predecessors that have varying values in the loop. This
257 // handles the case when a PHI node has multiple instances of itself as
258 // arguments.
259 SmallVector<BasicBlock*, 8> OuterLoopPreds;
260 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
261 if (PN->getIncomingValue(i) != PN ||
262 !L->contains(PN->getIncomingBlock(i))) {
263 // We can't split indirect control flow edges.
264 if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
265 return nullptr;
266 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
269 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
271 // If ScalarEvolution is around and knows anything about values in
272 // this loop, tell it to forget them, because we're about to
273 // substantially change it.
274 if (SE)
275 SE->forgetLoop(L);
277 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
278 DT, LI, MSSAU, PreserveLCSSA);
280 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
281 // code layout too horribly.
282 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
284 // Create the new outer loop.
285 Loop *NewOuter = LI->AllocateLoop();
287 // Change the parent loop to use the outer loop as its child now.
288 if (Loop *Parent = L->getParentLoop())
289 Parent->replaceChildLoopWith(L, NewOuter);
290 else
291 LI->changeTopLevelLoop(L, NewOuter);
293 // L is now a subloop of our outer loop.
294 NewOuter->addChildLoop(L);
296 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
297 I != E; ++I)
298 NewOuter->addBlockEntry(*I);
300 // Now reset the header in L, which had been moved by
301 // SplitBlockPredecessors for the outer loop.
302 L->moveToHeader(Header);
304 // Determine which blocks should stay in L and which should be moved out to
305 // the Outer loop now.
306 SmallPtrSet<BasicBlock *, 4> BlocksInL;
307 for (BasicBlock *P : predecessors(Header)) {
308 if (DT->dominates(Header, P))
309 addBlockAndPredsToSet(P, Header, BlocksInL);
312 // Scan all of the loop children of L, moving them to OuterLoop if they are
313 // not part of the inner loop.
314 const std::vector<Loop*> &SubLoops = L->getSubLoops();
315 for (size_t I = 0; I != SubLoops.size(); )
316 if (BlocksInL.count(SubLoops[I]->getHeader()))
317 ++I; // Loop remains in L
318 else
319 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
321 SmallVector<BasicBlock *, 8> OuterLoopBlocks;
322 OuterLoopBlocks.push_back(NewBB);
323 // Now that we know which blocks are in L and which need to be moved to
324 // OuterLoop, move any blocks that need it.
325 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
326 BasicBlock *BB = L->getBlocks()[i];
327 if (!BlocksInL.count(BB)) {
328 // Move this block to the parent, updating the exit blocks sets
329 L->removeBlockFromLoop(BB);
330 if ((*LI)[BB] == L) {
331 LI->changeLoopFor(BB, NewOuter);
332 OuterLoopBlocks.push_back(BB);
334 --i;
338 // Split edges to exit blocks from the inner loop, if they emerged in the
339 // process of separating the outer one.
340 formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
342 if (PreserveLCSSA) {
343 // Fix LCSSA form for L. Some values, which previously were only used inside
344 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
345 // in corresponding exit blocks.
346 // We don't need to form LCSSA recursively, because there cannot be uses
347 // inside a newly created loop of defs from inner loops as those would
348 // already be a use of an LCSSA phi node.
349 formLCSSA(*L, *DT, LI, SE);
351 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
352 "LCSSA is broken after separating nested loops!");
355 return NewOuter;
358 /// This method is called when the specified loop has more than one
359 /// backedge in it.
361 /// If this occurs, revector all of these backedges to target a new basic block
362 /// and have that block branch to the loop header. This ensures that loops
363 /// have exactly one backedge.
364 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
365 DominatorTree *DT, LoopInfo *LI,
366 MemorySSAUpdater *MSSAU) {
367 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
369 // Get information about the loop
370 BasicBlock *Header = L->getHeader();
371 Function *F = Header->getParent();
373 // Unique backedge insertion currently depends on having a preheader.
374 if (!Preheader)
375 return nullptr;
377 // The header is not an EH pad; preheader insertion should ensure this.
378 assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
380 // Figure out which basic blocks contain back-edges to the loop header.
381 std::vector<BasicBlock*> BackedgeBlocks;
382 for (BasicBlock *P : predecessors(Header)) {
383 // Indirect edges cannot be split, so we must fail if we find one.
384 if (P->getTerminator()->isIndirectTerminator())
385 return nullptr;
387 if (P != Preheader) BackedgeBlocks.push_back(P);
390 // Create and insert the new backedge block...
391 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
392 Header->getName() + ".backedge", F);
393 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
394 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
396 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
397 << BEBlock->getName() << "\n");
399 // Move the new backedge block to right after the last backedge block.
400 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
401 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
403 // Now that the block has been inserted into the function, create PHI nodes in
404 // the backedge block which correspond to any PHI nodes in the header block.
405 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
406 PHINode *PN = cast<PHINode>(I);
407 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
408 PN->getName()+".be", BETerminator);
410 // Loop over the PHI node, moving all entries except the one for the
411 // preheader over to the new PHI node.
412 unsigned PreheaderIdx = ~0U;
413 bool HasUniqueIncomingValue = true;
414 Value *UniqueValue = nullptr;
415 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
416 BasicBlock *IBB = PN->getIncomingBlock(i);
417 Value *IV = PN->getIncomingValue(i);
418 if (IBB == Preheader) {
419 PreheaderIdx = i;
420 } else {
421 NewPN->addIncoming(IV, IBB);
422 if (HasUniqueIncomingValue) {
423 if (!UniqueValue)
424 UniqueValue = IV;
425 else if (UniqueValue != IV)
426 HasUniqueIncomingValue = false;
431 // Delete all of the incoming values from the old PN except the preheader's
432 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
433 if (PreheaderIdx != 0) {
434 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
435 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
437 // Nuke all entries except the zero'th.
438 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
439 PN->removeIncomingValue(e-i, false);
441 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
442 PN->addIncoming(NewPN, BEBlock);
444 // As an optimization, if all incoming values in the new PhiNode (which is a
445 // subset of the incoming values of the old PHI node) have the same value,
446 // eliminate the PHI Node.
447 if (HasUniqueIncomingValue) {
448 NewPN->replaceAllUsesWith(UniqueValue);
449 BEBlock->getInstList().erase(NewPN);
453 // Now that all of the PHI nodes have been inserted and adjusted, modify the
454 // backedge blocks to jump to the BEBlock instead of the header.
455 // If one of the backedges has llvm.loop metadata attached, we remove
456 // it from the backedge and add it to BEBlock.
457 unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
458 MDNode *LoopMD = nullptr;
459 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
460 Instruction *TI = BackedgeBlocks[i]->getTerminator();
461 if (!LoopMD)
462 LoopMD = TI->getMetadata(LoopMDKind);
463 TI->setMetadata(LoopMDKind, nullptr);
464 TI->replaceSuccessorWith(Header, BEBlock);
466 BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
468 //===--- Update all analyses which we must preserve now -----------------===//
470 // Update Loop Information - we know that this block is now in the current
471 // loop and all parent loops.
472 L->addBasicBlockToLoop(BEBlock, *LI);
474 // Update dominator information
475 DT->splitBlock(BEBlock);
477 if (MSSAU)
478 MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
479 BEBlock);
481 return BEBlock;
484 /// Simplify one loop and queue further loops for simplification.
485 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
486 DominatorTree *DT, LoopInfo *LI,
487 ScalarEvolution *SE, AssumptionCache *AC,
488 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
489 bool Changed = false;
490 if (MSSAU && VerifyMemorySSA)
491 MSSAU->getMemorySSA()->verifyMemorySSA();
493 ReprocessLoop:
495 // Check to see that no blocks (other than the header) in this loop have
496 // predecessors that are not in the loop. This is not valid for natural
497 // loops, but can occur if the blocks are unreachable. Since they are
498 // unreachable we can just shamelessly delete those CFG edges!
499 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
500 BB != E; ++BB) {
501 if (*BB == L->getHeader()) continue;
503 SmallPtrSet<BasicBlock*, 4> BadPreds;
504 for (BasicBlock *P : predecessors(*BB))
505 if (!L->contains(P))
506 BadPreds.insert(P);
508 // Delete each unique out-of-loop (and thus dead) predecessor.
509 for (BasicBlock *P : BadPreds) {
511 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
512 << P->getName() << "\n");
514 // Zap the dead pred's terminator and replace it with unreachable.
515 Instruction *TI = P->getTerminator();
516 changeToUnreachable(TI, PreserveLCSSA,
517 /*DTU=*/nullptr, MSSAU);
518 Changed = true;
522 if (MSSAU && VerifyMemorySSA)
523 MSSAU->getMemorySSA()->verifyMemorySSA();
525 // If there are exiting blocks with branches on undef, resolve the undef in
526 // the direction which will exit the loop. This will help simplify loop
527 // trip count computations.
528 SmallVector<BasicBlock*, 8> ExitingBlocks;
529 L->getExitingBlocks(ExitingBlocks);
530 for (BasicBlock *ExitingBlock : ExitingBlocks)
531 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
532 if (BI->isConditional()) {
533 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
535 LLVM_DEBUG(dbgs()
536 << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
537 << ExitingBlock->getName() << "\n");
539 BI->setCondition(ConstantInt::get(Cond->getType(),
540 !L->contains(BI->getSuccessor(0))));
542 Changed = true;
546 // Does the loop already have a preheader? If so, don't insert one.
547 BasicBlock *Preheader = L->getLoopPreheader();
548 if (!Preheader) {
549 Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
550 if (Preheader)
551 Changed = true;
554 // Next, check to make sure that all exit nodes of the loop only have
555 // predecessors that are inside of the loop. This check guarantees that the
556 // loop preheader/header will dominate the exit blocks. If the exit block has
557 // predecessors from outside of the loop, split the edge now.
558 if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
559 Changed = true;
561 if (MSSAU && VerifyMemorySSA)
562 MSSAU->getMemorySSA()->verifyMemorySSA();
564 // If the header has more than two predecessors at this point (from the
565 // preheader and from multiple backedges), we must adjust the loop.
566 BasicBlock *LoopLatch = L->getLoopLatch();
567 if (!LoopLatch) {
568 // If this is really a nested loop, rip it out into a child loop. Don't do
569 // this for loops with a giant number of backedges, just factor them into a
570 // common backedge instead.
571 if (L->getNumBackEdges() < 8) {
572 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
573 PreserveLCSSA, AC, MSSAU)) {
574 ++NumNested;
575 // Enqueue the outer loop as it should be processed next in our
576 // depth-first nest walk.
577 Worklist.push_back(OuterL);
579 // This is a big restructuring change, reprocess the whole loop.
580 Changed = true;
581 // GCC doesn't tail recursion eliminate this.
582 // FIXME: It isn't clear we can't rely on LLVM to TRE this.
583 goto ReprocessLoop;
587 // If we either couldn't, or didn't want to, identify nesting of the loops,
588 // insert a new block that all backedges target, then make it jump to the
589 // loop header.
590 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
591 if (LoopLatch)
592 Changed = true;
595 if (MSSAU && VerifyMemorySSA)
596 MSSAU->getMemorySSA()->verifyMemorySSA();
598 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
600 // Scan over the PHI nodes in the loop header. Since they now have only two
601 // incoming values (the loop is canonicalized), we may have simplified the PHI
602 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
603 PHINode *PN;
604 for (BasicBlock::iterator I = L->getHeader()->begin();
605 (PN = dyn_cast<PHINode>(I++)); )
606 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
607 if (SE) SE->forgetValue(PN);
608 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
609 PN->replaceAllUsesWith(V);
610 PN->eraseFromParent();
611 Changed = true;
615 // If this loop has multiple exits and the exits all go to the same
616 // block, attempt to merge the exits. This helps several passes, such
617 // as LoopRotation, which do not support loops with multiple exits.
618 // SimplifyCFG also does this (and this code uses the same utility
619 // function), however this code is loop-aware, where SimplifyCFG is
620 // not. That gives it the advantage of being able to hoist
621 // loop-invariant instructions out of the way to open up more
622 // opportunities, and the disadvantage of having the responsibility
623 // to preserve dominator information.
624 auto HasUniqueExitBlock = [&]() {
625 BasicBlock *UniqueExit = nullptr;
626 for (auto *ExitingBB : ExitingBlocks)
627 for (auto *SuccBB : successors(ExitingBB)) {
628 if (L->contains(SuccBB))
629 continue;
631 if (!UniqueExit)
632 UniqueExit = SuccBB;
633 else if (UniqueExit != SuccBB)
634 return false;
637 return true;
639 if (HasUniqueExitBlock()) {
640 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
641 BasicBlock *ExitingBlock = ExitingBlocks[i];
642 if (!ExitingBlock->getSinglePredecessor()) continue;
643 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
644 if (!BI || !BI->isConditional()) continue;
645 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
646 if (!CI || CI->getParent() != ExitingBlock) continue;
648 // Attempt to hoist out all instructions except for the
649 // comparison and the branch.
650 bool AllInvariant = true;
651 bool AnyInvariant = false;
652 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
653 Instruction *Inst = &*I++;
654 if (Inst == CI)
655 continue;
656 if (!L->makeLoopInvariant(
657 Inst, AnyInvariant,
658 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) {
659 AllInvariant = false;
660 break;
663 if (AnyInvariant) {
664 Changed = true;
665 // The loop disposition of all SCEV expressions that depend on any
666 // hoisted values have also changed.
667 if (SE)
668 SE->forgetLoopDispositions(L);
670 if (!AllInvariant) continue;
672 // The block has now been cleared of all instructions except for
673 // a comparison and a conditional branch. SimplifyCFG may be able
674 // to fold it now.
675 if (!FoldBranchToCommonDest(BI, /*DTU=*/nullptr, MSSAU))
676 continue;
678 // Success. The block is now dead, so remove it from the loop,
679 // update the dominator tree and delete it.
680 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
681 << ExitingBlock->getName() << "\n");
683 assert(pred_empty(ExitingBlock));
684 Changed = true;
685 LI->removeBlock(ExitingBlock);
687 DomTreeNode *Node = DT->getNode(ExitingBlock);
688 while (!Node->isLeaf()) {
689 DomTreeNode *Child = Node->back();
690 DT->changeImmediateDominator(Child, Node->getIDom());
692 DT->eraseNode(ExitingBlock);
693 if (MSSAU) {
694 SmallSetVector<BasicBlock *, 8> ExitBlockSet;
695 ExitBlockSet.insert(ExitingBlock);
696 MSSAU->removeBlocks(ExitBlockSet);
699 BI->getSuccessor(0)->removePredecessor(
700 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
701 BI->getSuccessor(1)->removePredecessor(
702 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
703 ExitingBlock->eraseFromParent();
707 // Changing exit conditions for blocks may affect exit counts of this loop and
708 // any of its paretns, so we must invalidate the entire subtree if we've made
709 // any changes.
710 if (Changed && SE)
711 SE->forgetTopmostLoop(L);
713 if (MSSAU && VerifyMemorySSA)
714 MSSAU->getMemorySSA()->verifyMemorySSA();
716 return Changed;
719 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
720 ScalarEvolution *SE, AssumptionCache *AC,
721 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
722 bool Changed = false;
724 #ifndef NDEBUG
725 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
726 // form.
727 if (PreserveLCSSA) {
728 assert(DT && "DT not available.");
729 assert(LI && "LI not available.");
730 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
731 "Requested to preserve LCSSA, but it's already broken.");
733 #endif
735 // Worklist maintains our depth-first queue of loops in this nest to process.
736 SmallVector<Loop *, 4> Worklist;
737 Worklist.push_back(L);
739 // Walk the worklist from front to back, pushing newly found sub loops onto
740 // the back. This will let us process loops from back to front in depth-first
741 // order. We can use this simple process because loops form a tree.
742 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
743 Loop *L2 = Worklist[Idx];
744 Worklist.append(L2->begin(), L2->end());
747 while (!Worklist.empty())
748 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
749 AC, MSSAU, PreserveLCSSA);
751 return Changed;
754 namespace {
755 struct LoopSimplify : public FunctionPass {
756 static char ID; // Pass identification, replacement for typeid
757 LoopSimplify() : FunctionPass(ID) {
758 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
761 bool runOnFunction(Function &F) override;
763 void getAnalysisUsage(AnalysisUsage &AU) const override {
764 AU.addRequired<AssumptionCacheTracker>();
766 // We need loop information to identify the loops...
767 AU.addRequired<DominatorTreeWrapperPass>();
768 AU.addPreserved<DominatorTreeWrapperPass>();
770 AU.addRequired<LoopInfoWrapperPass>();
771 AU.addPreserved<LoopInfoWrapperPass>();
773 AU.addPreserved<BasicAAWrapperPass>();
774 AU.addPreserved<AAResultsWrapperPass>();
775 AU.addPreserved<GlobalsAAWrapperPass>();
776 AU.addPreserved<ScalarEvolutionWrapperPass>();
777 AU.addPreserved<SCEVAAWrapperPass>();
778 AU.addPreservedID(LCSSAID);
779 AU.addPreserved<DependenceAnalysisWrapperPass>();
780 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
781 AU.addPreserved<BranchProbabilityInfoWrapperPass>();
782 AU.addPreserved<MemorySSAWrapperPass>();
785 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
786 void verifyAnalysis() const override;
790 char LoopSimplify::ID = 0;
791 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
792 "Canonicalize natural loops", false, false)
793 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
794 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
795 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
796 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
797 "Canonicalize natural loops", false, false)
799 // Publicly exposed interface to pass...
800 char &llvm::LoopSimplifyID = LoopSimplify::ID;
801 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
803 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
804 /// it in any convenient order) inserting preheaders...
806 bool LoopSimplify::runOnFunction(Function &F) {
807 bool Changed = false;
808 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
809 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
810 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
811 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
812 AssumptionCache *AC =
813 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
814 MemorySSA *MSSA = nullptr;
815 std::unique_ptr<MemorySSAUpdater> MSSAU;
816 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
817 if (MSSAAnalysis) {
818 MSSA = &MSSAAnalysis->getMSSA();
819 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
822 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
824 // Simplify each loop nest in the function.
825 for (auto *L : *LI)
826 Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
828 #ifndef NDEBUG
829 if (PreserveLCSSA) {
830 bool InLCSSA = all_of(
831 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
832 assert(InLCSSA && "LCSSA is broken after loop-simplify.");
834 #endif
835 return Changed;
838 PreservedAnalyses LoopSimplifyPass::run(Function &F,
839 FunctionAnalysisManager &AM) {
840 bool Changed = false;
841 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
842 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
843 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
844 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
845 auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
846 std::unique_ptr<MemorySSAUpdater> MSSAU;
847 if (MSSAAnalysis) {
848 auto *MSSA = &MSSAAnalysis->getMSSA();
849 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
853 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
854 // after simplifying the loops. MemorySSA is preserved if it exists.
855 for (auto *L : *LI)
856 Changed |=
857 simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
859 if (!Changed)
860 return PreservedAnalyses::all();
862 PreservedAnalyses PA;
863 PA.preserve<DominatorTreeAnalysis>();
864 PA.preserve<LoopAnalysis>();
865 PA.preserve<ScalarEvolutionAnalysis>();
866 PA.preserve<DependenceAnalysis>();
867 if (MSSAAnalysis)
868 PA.preserve<MemorySSAAnalysis>();
869 // BPI maps conditional terminators to probabilities, LoopSimplify can insert
870 // blocks, but it does so only by splitting existing blocks and edges. This
871 // results in the interesting property that all new terminators inserted are
872 // unconditional branches which do not appear in BPI. All deletions are
873 // handled via ValueHandle callbacks w/in BPI.
874 PA.preserve<BranchProbabilityAnalysis>();
875 return PA;
878 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
879 // below.
880 #if 0
881 static void verifyLoop(Loop *L) {
882 // Verify subloops.
883 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
884 verifyLoop(*I);
886 // It used to be possible to just assert L->isLoopSimplifyForm(), however
887 // with the introduction of indirectbr, there are now cases where it's
888 // not possible to transform a loop as necessary. We can at least check
889 // that there is an indirectbr near any time there's trouble.
891 // Indirectbr can interfere with preheader and unique backedge insertion.
892 if (!L->getLoopPreheader() || !L->getLoopLatch()) {
893 bool HasIndBrPred = false;
894 for (BasicBlock *Pred : predecessors(L->getHeader()))
895 if (isa<IndirectBrInst>(Pred->getTerminator())) {
896 HasIndBrPred = true;
897 break;
899 assert(HasIndBrPred &&
900 "LoopSimplify has no excuse for missing loop header info!");
901 (void)HasIndBrPred;
904 // Indirectbr can interfere with exit block canonicalization.
905 if (!L->hasDedicatedExits()) {
906 bool HasIndBrExiting = false;
907 SmallVector<BasicBlock*, 8> ExitingBlocks;
908 L->getExitingBlocks(ExitingBlocks);
909 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
910 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
911 HasIndBrExiting = true;
912 break;
916 assert(HasIndBrExiting &&
917 "LoopSimplify has no excuse for missing exit block info!");
918 (void)HasIndBrExiting;
921 #endif
923 void LoopSimplify::verifyAnalysis() const {
924 // FIXME: This routine is being called mid-way through the loop pass manager
925 // as loop passes destroy this analysis. That's actually fine, but we have no
926 // way of expressing that here. Once all of the passes that destroy this are
927 // hoisted out of the loop pass manager we can add back verification here.
928 #if 0
929 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
930 verifyLoop(*I);
931 #endif