1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header. This simplifies a
15 // number of analyses and transformations, such as LICM.
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header). This simplifies transformations such as store-sinking
21 // that are built into LICM.
23 // This pass also guarantees that loops will have exactly one backedge.
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SetOperations.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/BasicAliasAnalysis.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/InitializePasses.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/LoopUtils.h"
79 #define DEBUG_TYPE "loop-simplify"
81 STATISTIC(NumNested
, "Number of nested loops split out");
83 // If the block isn't already, move the new block to right after some 'outside
84 // block' block. This prevents the preheader from being placed inside the loop
85 // body, e.g. when the loop hasn't been rotated.
86 static void placeSplitBlockCarefully(BasicBlock
*NewBB
,
87 SmallVectorImpl
<BasicBlock
*> &SplitPreds
,
89 // Check to see if NewBB is already well placed.
90 Function::iterator BBI
= --NewBB
->getIterator();
91 for (unsigned i
= 0, e
= SplitPreds
.size(); i
!= e
; ++i
) {
92 if (&*BBI
== SplitPreds
[i
])
96 // If it isn't already after an outside block, move it after one. This is
97 // always good as it makes the uncond branch from the outside block into a
100 // Figure out *which* outside block to put this after. Prefer an outside
101 // block that neighbors a BB actually in the loop.
102 BasicBlock
*FoundBB
= nullptr;
103 for (unsigned i
= 0, e
= SplitPreds
.size(); i
!= e
; ++i
) {
104 Function::iterator BBI
= SplitPreds
[i
]->getIterator();
105 if (++BBI
!= NewBB
->getParent()->end() && L
->contains(&*BBI
)) {
106 FoundBB
= SplitPreds
[i
];
111 // If our heuristic for a *good* bb to place this after doesn't find
112 // anything, just pick something. It's likely better than leaving it within
115 FoundBB
= SplitPreds
[0];
116 NewBB
->moveAfter(FoundBB
);
119 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
120 /// preheader, this method is called to insert one. This method has two phases:
121 /// preheader insertion and analysis updating.
123 BasicBlock
*llvm::InsertPreheaderForLoop(Loop
*L
, DominatorTree
*DT
,
124 LoopInfo
*LI
, MemorySSAUpdater
*MSSAU
,
125 bool PreserveLCSSA
) {
126 BasicBlock
*Header
= L
->getHeader();
128 // Compute the set of predecessors of the loop that are not in the loop.
129 SmallVector
<BasicBlock
*, 8> OutsideBlocks
;
130 for (BasicBlock
*P
: predecessors(Header
)) {
131 if (!L
->contains(P
)) { // Coming in from outside the loop?
132 // If the loop is branched to from an indirect terminator, we won't
133 // be able to fully transform the loop, because it prohibits
135 if (P
->getTerminator()->isIndirectTerminator())
139 OutsideBlocks
.push_back(P
);
143 // Split out the loop pre-header.
144 BasicBlock
*PreheaderBB
;
145 PreheaderBB
= SplitBlockPredecessors(Header
, OutsideBlocks
, ".preheader", DT
,
146 LI
, MSSAU
, PreserveLCSSA
);
150 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
151 << PreheaderBB
->getName() << "\n");
153 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
154 // code layout too horribly.
155 placeSplitBlockCarefully(PreheaderBB
, OutsideBlocks
, L
);
160 /// Add the specified block, and all of its predecessors, to the specified set,
161 /// if it's not already in there. Stop predecessor traversal when we reach
163 static void addBlockAndPredsToSet(BasicBlock
*InputBB
, BasicBlock
*StopBlock
,
164 SmallPtrSetImpl
<BasicBlock
*> &Blocks
) {
165 SmallVector
<BasicBlock
*, 8> Worklist
;
166 Worklist
.push_back(InputBB
);
168 BasicBlock
*BB
= Worklist
.pop_back_val();
169 if (Blocks
.insert(BB
).second
&& BB
!= StopBlock
)
170 // If BB is not already processed and it is not a stop block then
171 // insert its predecessor in the work list
172 append_range(Worklist
, predecessors(BB
));
173 } while (!Worklist
.empty());
176 /// The first part of loop-nestification is to find a PHI node that tells
177 /// us how to partition the loops.
178 static PHINode
*findPHIToPartitionLoops(Loop
*L
, DominatorTree
*DT
,
179 AssumptionCache
*AC
) {
180 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
181 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ) {
182 PHINode
*PN
= cast
<PHINode
>(I
);
184 if (Value
*V
= SimplifyInstruction(PN
, {DL
, nullptr, DT
, AC
})) {
185 // This is a degenerate PHI already, don't modify it!
186 PN
->replaceAllUsesWith(V
);
187 PN
->eraseFromParent();
191 // Scan this PHI node looking for a use of the PHI node by itself.
192 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
193 if (PN
->getIncomingValue(i
) == PN
&&
194 L
->contains(PN
->getIncomingBlock(i
)))
195 // We found something tasty to remove.
201 /// If this loop has multiple backedges, try to pull one of them out into
204 /// This is important for code that looks like
209 /// br cond, Loop, Next
211 /// br cond2, Loop, Out
213 /// To identify this common case, we look at the PHI nodes in the header of the
214 /// loop. PHI nodes with unchanging values on one backedge correspond to values
215 /// that change in the "outer" loop, but not in the "inner" loop.
217 /// If we are able to separate out a loop, return the new outer loop that was
220 static Loop
*separateNestedLoop(Loop
*L
, BasicBlock
*Preheader
,
221 DominatorTree
*DT
, LoopInfo
*LI
,
222 ScalarEvolution
*SE
, bool PreserveLCSSA
,
223 AssumptionCache
*AC
, MemorySSAUpdater
*MSSAU
) {
224 // Don't try to separate loops without a preheader.
228 // Treat the presence of convergent functions conservatively. The
229 // transformation is invalid if calls to certain convergent
230 // functions (like an AMDGPU barrier) get included in the resulting
231 // inner loop. But blocks meant for the inner loop will be
232 // identified later at a point where it's too late to abort the
233 // transformation. Also, the convergent attribute is not really
234 // sufficient to express the semantics of functions that are
235 // affected by this transformation. So we choose to back off if such
236 // a function call is present until a better alternative becomes
237 // available. This is similar to the conservative treatment of
238 // convergent function calls in GVNHoist and JumpThreading.
239 for (auto BB
: L
->blocks()) {
240 for (auto &II
: *BB
) {
241 if (auto CI
= dyn_cast
<CallBase
>(&II
)) {
242 if (CI
->isConvergent()) {
249 // The header is not a landing pad; preheader insertion should ensure this.
250 BasicBlock
*Header
= L
->getHeader();
251 assert(!Header
->isEHPad() && "Can't insert backedge to EH pad");
253 PHINode
*PN
= findPHIToPartitionLoops(L
, DT
, AC
);
254 if (!PN
) return nullptr; // No known way to partition.
256 // Pull out all predecessors that have varying values in the loop. This
257 // handles the case when a PHI node has multiple instances of itself as
259 SmallVector
<BasicBlock
*, 8> OuterLoopPreds
;
260 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
261 if (PN
->getIncomingValue(i
) != PN
||
262 !L
->contains(PN
->getIncomingBlock(i
))) {
263 // We can't split indirect control flow edges.
264 if (PN
->getIncomingBlock(i
)->getTerminator()->isIndirectTerminator())
266 OuterLoopPreds
.push_back(PN
->getIncomingBlock(i
));
269 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
271 // If ScalarEvolution is around and knows anything about values in
272 // this loop, tell it to forget them, because we're about to
273 // substantially change it.
277 BasicBlock
*NewBB
= SplitBlockPredecessors(Header
, OuterLoopPreds
, ".outer",
278 DT
, LI
, MSSAU
, PreserveLCSSA
);
280 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
281 // code layout too horribly.
282 placeSplitBlockCarefully(NewBB
, OuterLoopPreds
, L
);
284 // Create the new outer loop.
285 Loop
*NewOuter
= LI
->AllocateLoop();
287 // Change the parent loop to use the outer loop as its child now.
288 if (Loop
*Parent
= L
->getParentLoop())
289 Parent
->replaceChildLoopWith(L
, NewOuter
);
291 LI
->changeTopLevelLoop(L
, NewOuter
);
293 // L is now a subloop of our outer loop.
294 NewOuter
->addChildLoop(L
);
296 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
298 NewOuter
->addBlockEntry(*I
);
300 // Now reset the header in L, which had been moved by
301 // SplitBlockPredecessors for the outer loop.
302 L
->moveToHeader(Header
);
304 // Determine which blocks should stay in L and which should be moved out to
305 // the Outer loop now.
306 SmallPtrSet
<BasicBlock
*, 4> BlocksInL
;
307 for (BasicBlock
*P
: predecessors(Header
)) {
308 if (DT
->dominates(Header
, P
))
309 addBlockAndPredsToSet(P
, Header
, BlocksInL
);
312 // Scan all of the loop children of L, moving them to OuterLoop if they are
313 // not part of the inner loop.
314 const std::vector
<Loop
*> &SubLoops
= L
->getSubLoops();
315 for (size_t I
= 0; I
!= SubLoops
.size(); )
316 if (BlocksInL
.count(SubLoops
[I
]->getHeader()))
317 ++I
; // Loop remains in L
319 NewOuter
->addChildLoop(L
->removeChildLoop(SubLoops
.begin() + I
));
321 SmallVector
<BasicBlock
*, 8> OuterLoopBlocks
;
322 OuterLoopBlocks
.push_back(NewBB
);
323 // Now that we know which blocks are in L and which need to be moved to
324 // OuterLoop, move any blocks that need it.
325 for (unsigned i
= 0; i
!= L
->getBlocks().size(); ++i
) {
326 BasicBlock
*BB
= L
->getBlocks()[i
];
327 if (!BlocksInL
.count(BB
)) {
328 // Move this block to the parent, updating the exit blocks sets
329 L
->removeBlockFromLoop(BB
);
330 if ((*LI
)[BB
] == L
) {
331 LI
->changeLoopFor(BB
, NewOuter
);
332 OuterLoopBlocks
.push_back(BB
);
338 // Split edges to exit blocks from the inner loop, if they emerged in the
339 // process of separating the outer one.
340 formDedicatedExitBlocks(L
, DT
, LI
, MSSAU
, PreserveLCSSA
);
343 // Fix LCSSA form for L. Some values, which previously were only used inside
344 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
345 // in corresponding exit blocks.
346 // We don't need to form LCSSA recursively, because there cannot be uses
347 // inside a newly created loop of defs from inner loops as those would
348 // already be a use of an LCSSA phi node.
349 formLCSSA(*L
, *DT
, LI
, SE
);
351 assert(NewOuter
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
352 "LCSSA is broken after separating nested loops!");
358 /// This method is called when the specified loop has more than one
361 /// If this occurs, revector all of these backedges to target a new basic block
362 /// and have that block branch to the loop header. This ensures that loops
363 /// have exactly one backedge.
364 static BasicBlock
*insertUniqueBackedgeBlock(Loop
*L
, BasicBlock
*Preheader
,
365 DominatorTree
*DT
, LoopInfo
*LI
,
366 MemorySSAUpdater
*MSSAU
) {
367 assert(L
->getNumBackEdges() > 1 && "Must have > 1 backedge!");
369 // Get information about the loop
370 BasicBlock
*Header
= L
->getHeader();
371 Function
*F
= Header
->getParent();
373 // Unique backedge insertion currently depends on having a preheader.
377 // The header is not an EH pad; preheader insertion should ensure this.
378 assert(!Header
->isEHPad() && "Can't insert backedge to EH pad");
380 // Figure out which basic blocks contain back-edges to the loop header.
381 std::vector
<BasicBlock
*> BackedgeBlocks
;
382 for (BasicBlock
*P
: predecessors(Header
)) {
383 // Indirect edges cannot be split, so we must fail if we find one.
384 if (P
->getTerminator()->isIndirectTerminator())
387 if (P
!= Preheader
) BackedgeBlocks
.push_back(P
);
390 // Create and insert the new backedge block...
391 BasicBlock
*BEBlock
= BasicBlock::Create(Header
->getContext(),
392 Header
->getName() + ".backedge", F
);
393 BranchInst
*BETerminator
= BranchInst::Create(Header
, BEBlock
);
394 BETerminator
->setDebugLoc(Header
->getFirstNonPHI()->getDebugLoc());
396 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
397 << BEBlock
->getName() << "\n");
399 // Move the new backedge block to right after the last backedge block.
400 Function::iterator InsertPos
= ++BackedgeBlocks
.back()->getIterator();
401 F
->getBasicBlockList().splice(InsertPos
, F
->getBasicBlockList(), BEBlock
);
403 // Now that the block has been inserted into the function, create PHI nodes in
404 // the backedge block which correspond to any PHI nodes in the header block.
405 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
406 PHINode
*PN
= cast
<PHINode
>(I
);
407 PHINode
*NewPN
= PHINode::Create(PN
->getType(), BackedgeBlocks
.size(),
408 PN
->getName()+".be", BETerminator
);
410 // Loop over the PHI node, moving all entries except the one for the
411 // preheader over to the new PHI node.
412 unsigned PreheaderIdx
= ~0U;
413 bool HasUniqueIncomingValue
= true;
414 Value
*UniqueValue
= nullptr;
415 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
416 BasicBlock
*IBB
= PN
->getIncomingBlock(i
);
417 Value
*IV
= PN
->getIncomingValue(i
);
418 if (IBB
== Preheader
) {
421 NewPN
->addIncoming(IV
, IBB
);
422 if (HasUniqueIncomingValue
) {
425 else if (UniqueValue
!= IV
)
426 HasUniqueIncomingValue
= false;
431 // Delete all of the incoming values from the old PN except the preheader's
432 assert(PreheaderIdx
!= ~0U && "PHI has no preheader entry??");
433 if (PreheaderIdx
!= 0) {
434 PN
->setIncomingValue(0, PN
->getIncomingValue(PreheaderIdx
));
435 PN
->setIncomingBlock(0, PN
->getIncomingBlock(PreheaderIdx
));
437 // Nuke all entries except the zero'th.
438 for (unsigned i
= 0, e
= PN
->getNumIncomingValues()-1; i
!= e
; ++i
)
439 PN
->removeIncomingValue(e
-i
, false);
441 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
442 PN
->addIncoming(NewPN
, BEBlock
);
444 // As an optimization, if all incoming values in the new PhiNode (which is a
445 // subset of the incoming values of the old PHI node) have the same value,
446 // eliminate the PHI Node.
447 if (HasUniqueIncomingValue
) {
448 NewPN
->replaceAllUsesWith(UniqueValue
);
449 BEBlock
->getInstList().erase(NewPN
);
453 // Now that all of the PHI nodes have been inserted and adjusted, modify the
454 // backedge blocks to jump to the BEBlock instead of the header.
455 // If one of the backedges has llvm.loop metadata attached, we remove
456 // it from the backedge and add it to BEBlock.
457 unsigned LoopMDKind
= BEBlock
->getContext().getMDKindID("llvm.loop");
458 MDNode
*LoopMD
= nullptr;
459 for (unsigned i
= 0, e
= BackedgeBlocks
.size(); i
!= e
; ++i
) {
460 Instruction
*TI
= BackedgeBlocks
[i
]->getTerminator();
462 LoopMD
= TI
->getMetadata(LoopMDKind
);
463 TI
->setMetadata(LoopMDKind
, nullptr);
464 TI
->replaceSuccessorWith(Header
, BEBlock
);
466 BEBlock
->getTerminator()->setMetadata(LoopMDKind
, LoopMD
);
468 //===--- Update all analyses which we must preserve now -----------------===//
470 // Update Loop Information - we know that this block is now in the current
471 // loop and all parent loops.
472 L
->addBasicBlockToLoop(BEBlock
, *LI
);
474 // Update dominator information
475 DT
->splitBlock(BEBlock
);
478 MSSAU
->updatePhisWhenInsertingUniqueBackedgeBlock(Header
, Preheader
,
484 /// Simplify one loop and queue further loops for simplification.
485 static bool simplifyOneLoop(Loop
*L
, SmallVectorImpl
<Loop
*> &Worklist
,
486 DominatorTree
*DT
, LoopInfo
*LI
,
487 ScalarEvolution
*SE
, AssumptionCache
*AC
,
488 MemorySSAUpdater
*MSSAU
, bool PreserveLCSSA
) {
489 bool Changed
= false;
490 if (MSSAU
&& VerifyMemorySSA
)
491 MSSAU
->getMemorySSA()->verifyMemorySSA();
495 // Check to see that no blocks (other than the header) in this loop have
496 // predecessors that are not in the loop. This is not valid for natural
497 // loops, but can occur if the blocks are unreachable. Since they are
498 // unreachable we can just shamelessly delete those CFG edges!
499 for (Loop::block_iterator BB
= L
->block_begin(), E
= L
->block_end();
501 if (*BB
== L
->getHeader()) continue;
503 SmallPtrSet
<BasicBlock
*, 4> BadPreds
;
504 for (BasicBlock
*P
: predecessors(*BB
))
508 // Delete each unique out-of-loop (and thus dead) predecessor.
509 for (BasicBlock
*P
: BadPreds
) {
511 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
512 << P
->getName() << "\n");
514 // Zap the dead pred's terminator and replace it with unreachable.
515 Instruction
*TI
= P
->getTerminator();
516 changeToUnreachable(TI
, PreserveLCSSA
,
517 /*DTU=*/nullptr, MSSAU
);
522 if (MSSAU
&& VerifyMemorySSA
)
523 MSSAU
->getMemorySSA()->verifyMemorySSA();
525 // If there are exiting blocks with branches on undef, resolve the undef in
526 // the direction which will exit the loop. This will help simplify loop
527 // trip count computations.
528 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
529 L
->getExitingBlocks(ExitingBlocks
);
530 for (BasicBlock
*ExitingBlock
: ExitingBlocks
)
531 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator()))
532 if (BI
->isConditional()) {
533 if (UndefValue
*Cond
= dyn_cast
<UndefValue
>(BI
->getCondition())) {
536 << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
537 << ExitingBlock
->getName() << "\n");
539 BI
->setCondition(ConstantInt::get(Cond
->getType(),
540 !L
->contains(BI
->getSuccessor(0))));
546 // Does the loop already have a preheader? If so, don't insert one.
547 BasicBlock
*Preheader
= L
->getLoopPreheader();
549 Preheader
= InsertPreheaderForLoop(L
, DT
, LI
, MSSAU
, PreserveLCSSA
);
554 // Next, check to make sure that all exit nodes of the loop only have
555 // predecessors that are inside of the loop. This check guarantees that the
556 // loop preheader/header will dominate the exit blocks. If the exit block has
557 // predecessors from outside of the loop, split the edge now.
558 if (formDedicatedExitBlocks(L
, DT
, LI
, MSSAU
, PreserveLCSSA
))
561 if (MSSAU
&& VerifyMemorySSA
)
562 MSSAU
->getMemorySSA()->verifyMemorySSA();
564 // If the header has more than two predecessors at this point (from the
565 // preheader and from multiple backedges), we must adjust the loop.
566 BasicBlock
*LoopLatch
= L
->getLoopLatch();
568 // If this is really a nested loop, rip it out into a child loop. Don't do
569 // this for loops with a giant number of backedges, just factor them into a
570 // common backedge instead.
571 if (L
->getNumBackEdges() < 8) {
572 if (Loop
*OuterL
= separateNestedLoop(L
, Preheader
, DT
, LI
, SE
,
573 PreserveLCSSA
, AC
, MSSAU
)) {
575 // Enqueue the outer loop as it should be processed next in our
576 // depth-first nest walk.
577 Worklist
.push_back(OuterL
);
579 // This is a big restructuring change, reprocess the whole loop.
581 // GCC doesn't tail recursion eliminate this.
582 // FIXME: It isn't clear we can't rely on LLVM to TRE this.
587 // If we either couldn't, or didn't want to, identify nesting of the loops,
588 // insert a new block that all backedges target, then make it jump to the
590 LoopLatch
= insertUniqueBackedgeBlock(L
, Preheader
, DT
, LI
, MSSAU
);
595 if (MSSAU
&& VerifyMemorySSA
)
596 MSSAU
->getMemorySSA()->verifyMemorySSA();
598 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
600 // Scan over the PHI nodes in the loop header. Since they now have only two
601 // incoming values (the loop is canonicalized), we may have simplified the PHI
602 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
604 for (BasicBlock::iterator I
= L
->getHeader()->begin();
605 (PN
= dyn_cast
<PHINode
>(I
++)); )
606 if (Value
*V
= SimplifyInstruction(PN
, {DL
, nullptr, DT
, AC
})) {
607 if (SE
) SE
->forgetValue(PN
);
608 if (!PreserveLCSSA
|| LI
->replacementPreservesLCSSAForm(PN
, V
)) {
609 PN
->replaceAllUsesWith(V
);
610 PN
->eraseFromParent();
615 // If this loop has multiple exits and the exits all go to the same
616 // block, attempt to merge the exits. This helps several passes, such
617 // as LoopRotation, which do not support loops with multiple exits.
618 // SimplifyCFG also does this (and this code uses the same utility
619 // function), however this code is loop-aware, where SimplifyCFG is
620 // not. That gives it the advantage of being able to hoist
621 // loop-invariant instructions out of the way to open up more
622 // opportunities, and the disadvantage of having the responsibility
623 // to preserve dominator information.
624 auto HasUniqueExitBlock
= [&]() {
625 BasicBlock
*UniqueExit
= nullptr;
626 for (auto *ExitingBB
: ExitingBlocks
)
627 for (auto *SuccBB
: successors(ExitingBB
)) {
628 if (L
->contains(SuccBB
))
633 else if (UniqueExit
!= SuccBB
)
639 if (HasUniqueExitBlock()) {
640 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
641 BasicBlock
*ExitingBlock
= ExitingBlocks
[i
];
642 if (!ExitingBlock
->getSinglePredecessor()) continue;
643 BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
644 if (!BI
|| !BI
->isConditional()) continue;
645 CmpInst
*CI
= dyn_cast
<CmpInst
>(BI
->getCondition());
646 if (!CI
|| CI
->getParent() != ExitingBlock
) continue;
648 // Attempt to hoist out all instructions except for the
649 // comparison and the branch.
650 bool AllInvariant
= true;
651 bool AnyInvariant
= false;
652 for (auto I
= ExitingBlock
->instructionsWithoutDebug().begin(); &*I
!= BI
; ) {
653 Instruction
*Inst
= &*I
++;
656 if (!L
->makeLoopInvariant(
658 Preheader
? Preheader
->getTerminator() : nullptr, MSSAU
)) {
659 AllInvariant
= false;
665 // The loop disposition of all SCEV expressions that depend on any
666 // hoisted values have also changed.
668 SE
->forgetLoopDispositions(L
);
670 if (!AllInvariant
) continue;
672 // The block has now been cleared of all instructions except for
673 // a comparison and a conditional branch. SimplifyCFG may be able
675 if (!FoldBranchToCommonDest(BI
, /*DTU=*/nullptr, MSSAU
))
678 // Success. The block is now dead, so remove it from the loop,
679 // update the dominator tree and delete it.
680 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
681 << ExitingBlock
->getName() << "\n");
683 assert(pred_empty(ExitingBlock
));
685 LI
->removeBlock(ExitingBlock
);
687 DomTreeNode
*Node
= DT
->getNode(ExitingBlock
);
688 while (!Node
->isLeaf()) {
689 DomTreeNode
*Child
= Node
->back();
690 DT
->changeImmediateDominator(Child
, Node
->getIDom());
692 DT
->eraseNode(ExitingBlock
);
694 SmallSetVector
<BasicBlock
*, 8> ExitBlockSet
;
695 ExitBlockSet
.insert(ExitingBlock
);
696 MSSAU
->removeBlocks(ExitBlockSet
);
699 BI
->getSuccessor(0)->removePredecessor(
700 ExitingBlock
, /* KeepOneInputPHIs */ PreserveLCSSA
);
701 BI
->getSuccessor(1)->removePredecessor(
702 ExitingBlock
, /* KeepOneInputPHIs */ PreserveLCSSA
);
703 ExitingBlock
->eraseFromParent();
707 // Changing exit conditions for blocks may affect exit counts of this loop and
708 // any of its paretns, so we must invalidate the entire subtree if we've made
711 SE
->forgetTopmostLoop(L
);
713 if (MSSAU
&& VerifyMemorySSA
)
714 MSSAU
->getMemorySSA()->verifyMemorySSA();
719 bool llvm::simplifyLoop(Loop
*L
, DominatorTree
*DT
, LoopInfo
*LI
,
720 ScalarEvolution
*SE
, AssumptionCache
*AC
,
721 MemorySSAUpdater
*MSSAU
, bool PreserveLCSSA
) {
722 bool Changed
= false;
725 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
728 assert(DT
&& "DT not available.");
729 assert(LI
&& "LI not available.");
730 assert(L
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
731 "Requested to preserve LCSSA, but it's already broken.");
735 // Worklist maintains our depth-first queue of loops in this nest to process.
736 SmallVector
<Loop
*, 4> Worklist
;
737 Worklist
.push_back(L
);
739 // Walk the worklist from front to back, pushing newly found sub loops onto
740 // the back. This will let us process loops from back to front in depth-first
741 // order. We can use this simple process because loops form a tree.
742 for (unsigned Idx
= 0; Idx
!= Worklist
.size(); ++Idx
) {
743 Loop
*L2
= Worklist
[Idx
];
744 Worklist
.append(L2
->begin(), L2
->end());
747 while (!Worklist
.empty())
748 Changed
|= simplifyOneLoop(Worklist
.pop_back_val(), Worklist
, DT
, LI
, SE
,
749 AC
, MSSAU
, PreserveLCSSA
);
755 struct LoopSimplify
: public FunctionPass
{
756 static char ID
; // Pass identification, replacement for typeid
757 LoopSimplify() : FunctionPass(ID
) {
758 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
761 bool runOnFunction(Function
&F
) override
;
763 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
764 AU
.addRequired
<AssumptionCacheTracker
>();
766 // We need loop information to identify the loops...
767 AU
.addRequired
<DominatorTreeWrapperPass
>();
768 AU
.addPreserved
<DominatorTreeWrapperPass
>();
770 AU
.addRequired
<LoopInfoWrapperPass
>();
771 AU
.addPreserved
<LoopInfoWrapperPass
>();
773 AU
.addPreserved
<BasicAAWrapperPass
>();
774 AU
.addPreserved
<AAResultsWrapperPass
>();
775 AU
.addPreserved
<GlobalsAAWrapperPass
>();
776 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
777 AU
.addPreserved
<SCEVAAWrapperPass
>();
778 AU
.addPreservedID(LCSSAID
);
779 AU
.addPreserved
<DependenceAnalysisWrapperPass
>();
780 AU
.addPreservedID(BreakCriticalEdgesID
); // No critical edges added.
781 AU
.addPreserved
<BranchProbabilityInfoWrapperPass
>();
782 AU
.addPreserved
<MemorySSAWrapperPass
>();
785 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
786 void verifyAnalysis() const override
;
790 char LoopSimplify::ID
= 0;
791 INITIALIZE_PASS_BEGIN(LoopSimplify
, "loop-simplify",
792 "Canonicalize natural loops", false, false)
793 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
794 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
795 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
796 INITIALIZE_PASS_END(LoopSimplify
, "loop-simplify",
797 "Canonicalize natural loops", false, false)
799 // Publicly exposed interface to pass...
800 char &llvm::LoopSimplifyID
= LoopSimplify::ID
;
801 Pass
*llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
803 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
804 /// it in any convenient order) inserting preheaders...
806 bool LoopSimplify::runOnFunction(Function
&F
) {
807 bool Changed
= false;
808 LoopInfo
*LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
809 DominatorTree
*DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
810 auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
811 ScalarEvolution
*SE
= SEWP
? &SEWP
->getSE() : nullptr;
812 AssumptionCache
*AC
=
813 &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
814 MemorySSA
*MSSA
= nullptr;
815 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
816 auto *MSSAAnalysis
= getAnalysisIfAvailable
<MemorySSAWrapperPass
>();
818 MSSA
= &MSSAAnalysis
->getMSSA();
819 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
822 bool PreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
824 // Simplify each loop nest in the function.
826 Changed
|= simplifyLoop(L
, DT
, LI
, SE
, AC
, MSSAU
.get(), PreserveLCSSA
);
830 bool InLCSSA
= all_of(
831 *LI
, [&](Loop
*L
) { return L
->isRecursivelyLCSSAForm(*DT
, *LI
); });
832 assert(InLCSSA
&& "LCSSA is broken after loop-simplify.");
838 PreservedAnalyses
LoopSimplifyPass::run(Function
&F
,
839 FunctionAnalysisManager
&AM
) {
840 bool Changed
= false;
841 LoopInfo
*LI
= &AM
.getResult
<LoopAnalysis
>(F
);
842 DominatorTree
*DT
= &AM
.getResult
<DominatorTreeAnalysis
>(F
);
843 ScalarEvolution
*SE
= AM
.getCachedResult
<ScalarEvolutionAnalysis
>(F
);
844 AssumptionCache
*AC
= &AM
.getResult
<AssumptionAnalysis
>(F
);
845 auto *MSSAAnalysis
= AM
.getCachedResult
<MemorySSAAnalysis
>(F
);
846 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
848 auto *MSSA
= &MSSAAnalysis
->getMSSA();
849 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
853 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
854 // after simplifying the loops. MemorySSA is preserved if it exists.
857 simplifyLoop(L
, DT
, LI
, SE
, AC
, MSSAU
.get(), /*PreserveLCSSA*/ false);
860 return PreservedAnalyses::all();
862 PreservedAnalyses PA
;
863 PA
.preserve
<DominatorTreeAnalysis
>();
864 PA
.preserve
<LoopAnalysis
>();
865 PA
.preserve
<ScalarEvolutionAnalysis
>();
866 PA
.preserve
<DependenceAnalysis
>();
868 PA
.preserve
<MemorySSAAnalysis
>();
869 // BPI maps conditional terminators to probabilities, LoopSimplify can insert
870 // blocks, but it does so only by splitting existing blocks and edges. This
871 // results in the interesting property that all new terminators inserted are
872 // unconditional branches which do not appear in BPI. All deletions are
873 // handled via ValueHandle callbacks w/in BPI.
874 PA
.preserve
<BranchProbabilityAnalysis
>();
878 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
881 static void verifyLoop(Loop
*L
) {
883 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
886 // It used to be possible to just assert L->isLoopSimplifyForm(), however
887 // with the introduction of indirectbr, there are now cases where it's
888 // not possible to transform a loop as necessary. We can at least check
889 // that there is an indirectbr near any time there's trouble.
891 // Indirectbr can interfere with preheader and unique backedge insertion.
892 if (!L
->getLoopPreheader() || !L
->getLoopLatch()) {
893 bool HasIndBrPred
= false;
894 for (BasicBlock
*Pred
: predecessors(L
->getHeader()))
895 if (isa
<IndirectBrInst
>(Pred
->getTerminator())) {
899 assert(HasIndBrPred
&&
900 "LoopSimplify has no excuse for missing loop header info!");
904 // Indirectbr can interfere with exit block canonicalization.
905 if (!L
->hasDedicatedExits()) {
906 bool HasIndBrExiting
= false;
907 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
908 L
->getExitingBlocks(ExitingBlocks
);
909 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
910 if (isa
<IndirectBrInst
>((ExitingBlocks
[i
])->getTerminator())) {
911 HasIndBrExiting
= true;
916 assert(HasIndBrExiting
&&
917 "LoopSimplify has no excuse for missing exit block info!");
918 (void)HasIndBrExiting
;
923 void LoopSimplify::verifyAnalysis() const {
924 // FIXME: This routine is being called mid-way through the loop pass manager
925 // as loop passes destroy this analysis. That's actually fine, but we have no
926 // way of expressing that here. Once all of the passes that destroy this are
927 // hoisted out of the loop pass manager we can add back verification here.
929 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)