[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Utils / PredicateInfo.cpp
blobbd2b6fafdf2eb6be631e7b5c21493f564864a840
1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the PredicateInfo class.
11 //===----------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/PredicateInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/IR/AssemblyAnnotationWriter.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstIterator.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/DebugCounter.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Transforms/Utils.h"
39 #include <algorithm>
40 #define DEBUG_TYPE "predicateinfo"
41 using namespace llvm;
42 using namespace PatternMatch;
44 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
45 "PredicateInfo Printer", false, false)
46 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
47 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
48 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
49 "PredicateInfo Printer", false, false)
50 static cl::opt<bool> VerifyPredicateInfo(
51 "verify-predicateinfo", cl::init(false), cl::Hidden,
52 cl::desc("Verify PredicateInfo in legacy printer pass."));
53 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
54 "Controls which variables are renamed with predicateinfo");
56 // Maximum number of conditions considered for renaming for each branch/assume.
57 // This limits renaming of deep and/or chains.
58 static const unsigned MaxCondsPerBranch = 8;
60 namespace {
61 // Given a predicate info that is a type of branching terminator, get the
62 // branching block.
63 const BasicBlock *getBranchBlock(const PredicateBase *PB) {
64 assert(isa<PredicateWithEdge>(PB) &&
65 "Only branches and switches should have PHIOnly defs that "
66 "require branch blocks.");
67 return cast<PredicateWithEdge>(PB)->From;
70 // Given a predicate info that is a type of branching terminator, get the
71 // branching terminator.
72 static Instruction *getBranchTerminator(const PredicateBase *PB) {
73 assert(isa<PredicateWithEdge>(PB) &&
74 "Not a predicate info type we know how to get a terminator from.");
75 return cast<PredicateWithEdge>(PB)->From->getTerminator();
78 // Given a predicate info that is a type of branching terminator, get the
79 // edge this predicate info represents
80 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) {
81 assert(isa<PredicateWithEdge>(PB) &&
82 "Not a predicate info type we know how to get an edge from.");
83 const auto *PEdge = cast<PredicateWithEdge>(PB);
84 return std::make_pair(PEdge->From, PEdge->To);
88 namespace llvm {
89 enum LocalNum {
90 // Operations that must appear first in the block.
91 LN_First,
92 // Operations that are somewhere in the middle of the block, and are sorted on
93 // demand.
94 LN_Middle,
95 // Operations that must appear last in a block, like successor phi node uses.
96 LN_Last
99 // Associate global and local DFS info with defs and uses, so we can sort them
100 // into a global domination ordering.
101 struct ValueDFS {
102 int DFSIn = 0;
103 int DFSOut = 0;
104 unsigned int LocalNum = LN_Middle;
105 // Only one of Def or Use will be set.
106 Value *Def = nullptr;
107 Use *U = nullptr;
108 // Neither PInfo nor EdgeOnly participate in the ordering
109 PredicateBase *PInfo = nullptr;
110 bool EdgeOnly = false;
113 // Perform a strict weak ordering on instructions and arguments.
114 static bool valueComesBefore(const Value *A, const Value *B) {
115 auto *ArgA = dyn_cast_or_null<Argument>(A);
116 auto *ArgB = dyn_cast_or_null<Argument>(B);
117 if (ArgA && !ArgB)
118 return true;
119 if (ArgB && !ArgA)
120 return false;
121 if (ArgA && ArgB)
122 return ArgA->getArgNo() < ArgB->getArgNo();
123 return cast<Instruction>(A)->comesBefore(cast<Instruction>(B));
126 // This compares ValueDFS structures. Doing so allows us to walk the minimum
127 // number of instructions necessary to compute our def/use ordering.
128 struct ValueDFS_Compare {
129 DominatorTree &DT;
130 ValueDFS_Compare(DominatorTree &DT) : DT(DT) {}
132 bool operator()(const ValueDFS &A, const ValueDFS &B) const {
133 if (&A == &B)
134 return false;
135 // The only case we can't directly compare them is when they in the same
136 // block, and both have localnum == middle. In that case, we have to use
137 // comesbefore to see what the real ordering is, because they are in the
138 // same basic block.
140 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
141 "Equal DFS-in numbers imply equal out numbers");
142 bool SameBlock = A.DFSIn == B.DFSIn;
144 // We want to put the def that will get used for a given set of phi uses,
145 // before those phi uses.
146 // So we sort by edge, then by def.
147 // Note that only phi nodes uses and defs can come last.
148 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
149 return comparePHIRelated(A, B);
151 bool isADef = A.Def;
152 bool isBDef = B.Def;
153 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
154 return std::tie(A.DFSIn, A.LocalNum, isADef) <
155 std::tie(B.DFSIn, B.LocalNum, isBDef);
156 return localComesBefore(A, B);
159 // For a phi use, or a non-materialized def, return the edge it represents.
160 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const {
161 if (!VD.Def && VD.U) {
162 auto *PHI = cast<PHINode>(VD.U->getUser());
163 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
165 // This is really a non-materialized def.
166 return ::getBlockEdge(VD.PInfo);
169 // For two phi related values, return the ordering.
170 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
171 BasicBlock *ASrc, *ADest, *BSrc, *BDest;
172 std::tie(ASrc, ADest) = getBlockEdge(A);
173 std::tie(BSrc, BDest) = getBlockEdge(B);
175 #ifndef NDEBUG
176 // This function should only be used for values in the same BB, check that.
177 DomTreeNode *DomASrc = DT.getNode(ASrc);
178 DomTreeNode *DomBSrc = DT.getNode(BSrc);
179 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
180 "DFS numbers for A should match the ones of the source block");
181 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
182 "DFS numbers for B should match the ones of the source block");
183 assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
184 #endif
185 (void)ASrc;
186 (void)BSrc;
188 // Use DFS numbers to compare destination blocks, to guarantee a
189 // deterministic order.
190 DomTreeNode *DomADest = DT.getNode(ADest);
191 DomTreeNode *DomBDest = DT.getNode(BDest);
192 unsigned AIn = DomADest->getDFSNumIn();
193 unsigned BIn = DomBDest->getDFSNumIn();
194 bool isADef = A.Def;
195 bool isBDef = B.Def;
196 assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
197 "Def and U cannot be set at the same time");
198 // Now sort by edge destination and then defs before uses.
199 return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
202 // Get the definition of an instruction that occurs in the middle of a block.
203 Value *getMiddleDef(const ValueDFS &VD) const {
204 if (VD.Def)
205 return VD.Def;
206 // It's possible for the defs and uses to be null. For branches, the local
207 // numbering will say the placed predicaeinfos should go first (IE
208 // LN_beginning), so we won't be in this function. For assumes, we will end
209 // up here, beause we need to order the def we will place relative to the
210 // assume. So for the purpose of ordering, we pretend the def is right
211 // after the assume, because that is where we will insert the info.
212 if (!VD.U) {
213 assert(VD.PInfo &&
214 "No def, no use, and no predicateinfo should not occur");
215 assert(isa<PredicateAssume>(VD.PInfo) &&
216 "Middle of block should only occur for assumes");
217 return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
219 return nullptr;
222 // Return either the Def, if it's not null, or the user of the Use, if the def
223 // is null.
224 const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
225 if (Def)
226 return cast<Instruction>(Def);
227 return cast<Instruction>(U->getUser());
230 // This performs the necessary local basic block ordering checks to tell
231 // whether A comes before B, where both are in the same basic block.
232 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
233 auto *ADef = getMiddleDef(A);
234 auto *BDef = getMiddleDef(B);
236 // See if we have real values or uses. If we have real values, we are
237 // guaranteed they are instructions or arguments. No matter what, we are
238 // guaranteed they are in the same block if they are instructions.
239 auto *ArgA = dyn_cast_or_null<Argument>(ADef);
240 auto *ArgB = dyn_cast_or_null<Argument>(BDef);
242 if (ArgA || ArgB)
243 return valueComesBefore(ArgA, ArgB);
245 auto *AInst = getDefOrUser(ADef, A.U);
246 auto *BInst = getDefOrUser(BDef, B.U);
247 return valueComesBefore(AInst, BInst);
251 class PredicateInfoBuilder {
252 // Used to store information about each value we might rename.
253 struct ValueInfo {
254 SmallVector<PredicateBase *, 4> Infos;
257 PredicateInfo &PI;
258 Function &F;
259 DominatorTree &DT;
260 AssumptionCache &AC;
262 // This stores info about each operand or comparison result we make copies
263 // of. The real ValueInfos start at index 1, index 0 is unused so that we
264 // can more easily detect invalid indexing.
265 SmallVector<ValueInfo, 32> ValueInfos;
267 // This gives the index into the ValueInfos array for a given Value. Because
268 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
269 // whether it returned a valid result.
270 DenseMap<Value *, unsigned int> ValueInfoNums;
272 // The set of edges along which we can only handle phi uses, due to critical
273 // edges.
274 DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly;
276 ValueInfo &getOrCreateValueInfo(Value *);
277 const ValueInfo &getValueInfo(Value *) const;
279 void processAssume(IntrinsicInst *, BasicBlock *,
280 SmallVectorImpl<Value *> &OpsToRename);
281 void processBranch(BranchInst *, BasicBlock *,
282 SmallVectorImpl<Value *> &OpsToRename);
283 void processSwitch(SwitchInst *, BasicBlock *,
284 SmallVectorImpl<Value *> &OpsToRename);
285 void renameUses(SmallVectorImpl<Value *> &OpsToRename);
286 void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
287 PredicateBase *PB);
289 typedef SmallVectorImpl<ValueDFS> ValueDFSStack;
290 void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
291 Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
292 bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
293 void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
295 public:
296 PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT,
297 AssumptionCache &AC)
298 : PI(PI), F(F), DT(DT), AC(AC) {
299 // Push an empty operand info so that we can detect 0 as not finding one
300 ValueInfos.resize(1);
303 void buildPredicateInfo();
306 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
307 const ValueDFS &VDUse) const {
308 if (Stack.empty())
309 return false;
310 // If it's a phi only use, make sure it's for this phi node edge, and that the
311 // use is in a phi node. If it's anything else, and the top of the stack is
312 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
313 // the defs they must go with so that we can know it's time to pop the stack
314 // when we hit the end of the phi uses for a given def.
315 if (Stack.back().EdgeOnly) {
316 if (!VDUse.U)
317 return false;
318 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
319 if (!PHI)
320 return false;
321 // Check edge
322 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
323 if (EdgePred != getBranchBlock(Stack.back().PInfo))
324 return false;
326 // Use dominates, which knows how to handle edge dominance.
327 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
330 return (VDUse.DFSIn >= Stack.back().DFSIn &&
331 VDUse.DFSOut <= Stack.back().DFSOut);
334 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
335 const ValueDFS &VD) {
336 while (!Stack.empty() && !stackIsInScope(Stack, VD))
337 Stack.pop_back();
340 // Convert the uses of Op into a vector of uses, associating global and local
341 // DFS info with each one.
342 void PredicateInfoBuilder::convertUsesToDFSOrdered(
343 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
344 for (auto &U : Op->uses()) {
345 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
346 ValueDFS VD;
347 // Put the phi node uses in the incoming block.
348 BasicBlock *IBlock;
349 if (auto *PN = dyn_cast<PHINode>(I)) {
350 IBlock = PN->getIncomingBlock(U);
351 // Make phi node users appear last in the incoming block
352 // they are from.
353 VD.LocalNum = LN_Last;
354 } else {
355 // If it's not a phi node use, it is somewhere in the middle of the
356 // block.
357 IBlock = I->getParent();
358 VD.LocalNum = LN_Middle;
360 DomTreeNode *DomNode = DT.getNode(IBlock);
361 // It's possible our use is in an unreachable block. Skip it if so.
362 if (!DomNode)
363 continue;
364 VD.DFSIn = DomNode->getDFSNumIn();
365 VD.DFSOut = DomNode->getDFSNumOut();
366 VD.U = &U;
367 DFSOrderedSet.push_back(VD);
372 bool shouldRename(Value *V) {
373 // Only want real values, not constants. Additionally, operands with one use
374 // are only being used in the comparison, which means they will not be useful
375 // for us to consider for predicateinfo.
376 return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse();
379 // Collect relevant operations from Comparison that we may want to insert copies
380 // for.
381 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
382 auto *Op0 = Comparison->getOperand(0);
383 auto *Op1 = Comparison->getOperand(1);
384 if (Op0 == Op1)
385 return;
387 CmpOperands.push_back(Op0);
388 CmpOperands.push_back(Op1);
391 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
392 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
393 Value *Op, PredicateBase *PB) {
394 auto &OperandInfo = getOrCreateValueInfo(Op);
395 if (OperandInfo.Infos.empty())
396 OpsToRename.push_back(Op);
397 PI.AllInfos.push_back(PB);
398 OperandInfo.Infos.push_back(PB);
401 // Process an assume instruction and place relevant operations we want to rename
402 // into OpsToRename.
403 void PredicateInfoBuilder::processAssume(
404 IntrinsicInst *II, BasicBlock *AssumeBB,
405 SmallVectorImpl<Value *> &OpsToRename) {
406 SmallVector<Value *, 4> Worklist;
407 SmallPtrSet<Value *, 4> Visited;
408 Worklist.push_back(II->getOperand(0));
409 while (!Worklist.empty()) {
410 Value *Cond = Worklist.pop_back_val();
411 if (!Visited.insert(Cond).second)
412 continue;
413 if (Visited.size() > MaxCondsPerBranch)
414 break;
416 Value *Op0, *Op1;
417 if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
418 Worklist.push_back(Op1);
419 Worklist.push_back(Op0);
422 SmallVector<Value *, 4> Values;
423 Values.push_back(Cond);
424 if (auto *Cmp = dyn_cast<CmpInst>(Cond))
425 collectCmpOps(Cmp, Values);
427 for (Value *V : Values) {
428 if (shouldRename(V)) {
429 auto *PA = new PredicateAssume(V, II, Cond);
430 addInfoFor(OpsToRename, V, PA);
436 // Process a block terminating branch, and place relevant operations to be
437 // renamed into OpsToRename.
438 void PredicateInfoBuilder::processBranch(
439 BranchInst *BI, BasicBlock *BranchBB,
440 SmallVectorImpl<Value *> &OpsToRename) {
441 BasicBlock *FirstBB = BI->getSuccessor(0);
442 BasicBlock *SecondBB = BI->getSuccessor(1);
444 for (BasicBlock *Succ : {FirstBB, SecondBB}) {
445 bool TakenEdge = Succ == FirstBB;
446 // Don't try to insert on a self-edge. This is mainly because we will
447 // eliminate during renaming anyway.
448 if (Succ == BranchBB)
449 continue;
451 SmallVector<Value *, 4> Worklist;
452 SmallPtrSet<Value *, 4> Visited;
453 Worklist.push_back(BI->getCondition());
454 while (!Worklist.empty()) {
455 Value *Cond = Worklist.pop_back_val();
456 if (!Visited.insert(Cond).second)
457 continue;
458 if (Visited.size() > MaxCondsPerBranch)
459 break;
461 Value *Op0, *Op1;
462 if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))
463 : match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
464 Worklist.push_back(Op1);
465 Worklist.push_back(Op0);
468 SmallVector<Value *, 4> Values;
469 Values.push_back(Cond);
470 if (auto *Cmp = dyn_cast<CmpInst>(Cond))
471 collectCmpOps(Cmp, Values);
473 for (Value *V : Values) {
474 if (shouldRename(V)) {
475 PredicateBase *PB =
476 new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge);
477 addInfoFor(OpsToRename, V, PB);
478 if (!Succ->getSinglePredecessor())
479 EdgeUsesOnly.insert({BranchBB, Succ});
485 // Process a block terminating switch, and place relevant operations to be
486 // renamed into OpsToRename.
487 void PredicateInfoBuilder::processSwitch(
488 SwitchInst *SI, BasicBlock *BranchBB,
489 SmallVectorImpl<Value *> &OpsToRename) {
490 Value *Op = SI->getCondition();
491 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
492 return;
494 // Remember how many outgoing edges there are to every successor.
495 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
496 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
497 BasicBlock *TargetBlock = SI->getSuccessor(i);
498 ++SwitchEdges[TargetBlock];
501 // Now propagate info for each case value
502 for (auto C : SI->cases()) {
503 BasicBlock *TargetBlock = C.getCaseSuccessor();
504 if (SwitchEdges.lookup(TargetBlock) == 1) {
505 PredicateSwitch *PS = new PredicateSwitch(
506 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
507 addInfoFor(OpsToRename, Op, PS);
508 if (!TargetBlock->getSinglePredecessor())
509 EdgeUsesOnly.insert({BranchBB, TargetBlock});
514 // Build predicate info for our function
515 void PredicateInfoBuilder::buildPredicateInfo() {
516 DT.updateDFSNumbers();
517 // Collect operands to rename from all conditional branch terminators, as well
518 // as assume statements.
519 SmallVector<Value *, 8> OpsToRename;
520 for (auto DTN : depth_first(DT.getRootNode())) {
521 BasicBlock *BranchBB = DTN->getBlock();
522 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
523 if (!BI->isConditional())
524 continue;
525 // Can't insert conditional information if they all go to the same place.
526 if (BI->getSuccessor(0) == BI->getSuccessor(1))
527 continue;
528 processBranch(BI, BranchBB, OpsToRename);
529 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
530 processSwitch(SI, BranchBB, OpsToRename);
533 for (auto &Assume : AC.assumptions()) {
534 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
535 if (DT.isReachableFromEntry(II->getParent()))
536 processAssume(II, II->getParent(), OpsToRename);
538 // Now rename all our operations.
539 renameUses(OpsToRename);
542 // Given the renaming stack, make all the operands currently on the stack real
543 // by inserting them into the IR. Return the last operation's value.
544 Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
545 ValueDFSStack &RenameStack,
546 Value *OrigOp) {
547 // Find the first thing we have to materialize
548 auto RevIter = RenameStack.rbegin();
549 for (; RevIter != RenameStack.rend(); ++RevIter)
550 if (RevIter->Def)
551 break;
553 size_t Start = RevIter - RenameStack.rbegin();
554 // The maximum number of things we should be trying to materialize at once
555 // right now is 4, depending on if we had an assume, a branch, and both used
556 // and of conditions.
557 for (auto RenameIter = RenameStack.end() - Start;
558 RenameIter != RenameStack.end(); ++RenameIter) {
559 auto *Op =
560 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
561 ValueDFS &Result = *RenameIter;
562 auto *ValInfo = Result.PInfo;
563 ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
564 ? OrigOp
565 : (RenameStack.end() - Start - 1)->Def;
566 // For edge predicates, we can just place the operand in the block before
567 // the terminator. For assume, we have to place it right before the assume
568 // to ensure we dominate all of our uses. Always insert right before the
569 // relevant instruction (terminator, assume), so that we insert in proper
570 // order in the case of multiple predicateinfo in the same block.
571 // The number of named values is used to detect if a new declaration was
572 // added. If so, that declaration is tracked so that it can be removed when
573 // the analysis is done. The corner case were a new declaration results in
574 // a name clash and the old name being renamed is not considered as that
575 // represents an invalid module.
576 if (isa<PredicateWithEdge>(ValInfo)) {
577 IRBuilder<> B(getBranchTerminator(ValInfo));
578 auto NumDecls = F.getParent()->getNumNamedValues();
579 Function *IF = Intrinsic::getDeclaration(
580 F.getParent(), Intrinsic::ssa_copy, Op->getType());
581 if (NumDecls != F.getParent()->getNumNamedValues())
582 PI.CreatedDeclarations.insert(IF);
583 CallInst *PIC =
584 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
585 PI.PredicateMap.insert({PIC, ValInfo});
586 Result.Def = PIC;
587 } else {
588 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
589 assert(PAssume &&
590 "Should not have gotten here without it being an assume");
591 // Insert the predicate directly after the assume. While it also holds
592 // directly before it, assume(i1 true) is not a useful fact.
593 IRBuilder<> B(PAssume->AssumeInst->getNextNode());
594 auto NumDecls = F.getParent()->getNumNamedValues();
595 Function *IF = Intrinsic::getDeclaration(
596 F.getParent(), Intrinsic::ssa_copy, Op->getType());
597 if (NumDecls != F.getParent()->getNumNamedValues())
598 PI.CreatedDeclarations.insert(IF);
599 CallInst *PIC = B.CreateCall(IF, Op);
600 PI.PredicateMap.insert({PIC, ValInfo});
601 Result.Def = PIC;
604 return RenameStack.back().Def;
607 // Instead of the standard SSA renaming algorithm, which is O(Number of
608 // instructions), and walks the entire dominator tree, we walk only the defs +
609 // uses. The standard SSA renaming algorithm does not really rely on the
610 // dominator tree except to order the stack push/pops of the renaming stacks, so
611 // that defs end up getting pushed before hitting the correct uses. This does
612 // not require the dominator tree, only the *order* of the dominator tree. The
613 // complete and correct ordering of the defs and uses, in dominator tree is
614 // contained in the DFS numbering of the dominator tree. So we sort the defs and
615 // uses into the DFS ordering, and then just use the renaming stack as per
616 // normal, pushing when we hit a def (which is a predicateinfo instruction),
617 // popping when we are out of the dfs scope for that def, and replacing any uses
618 // with top of stack if it exists. In order to handle liveness without
619 // propagating liveness info, we don't actually insert the predicateinfo
620 // instruction def until we see a use that it would dominate. Once we see such
621 // a use, we materialize the predicateinfo instruction in the right place and
622 // use it.
624 // TODO: Use this algorithm to perform fast single-variable renaming in
625 // promotememtoreg and memoryssa.
626 void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
627 ValueDFS_Compare Compare(DT);
628 // Compute liveness, and rename in O(uses) per Op.
629 for (auto *Op : OpsToRename) {
630 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
631 unsigned Counter = 0;
632 SmallVector<ValueDFS, 16> OrderedUses;
633 const auto &ValueInfo = getValueInfo(Op);
634 // Insert the possible copies into the def/use list.
635 // They will become real copies if we find a real use for them, and never
636 // created otherwise.
637 for (auto &PossibleCopy : ValueInfo.Infos) {
638 ValueDFS VD;
639 // Determine where we are going to place the copy by the copy type.
640 // The predicate info for branches always come first, they will get
641 // materialized in the split block at the top of the block.
642 // The predicate info for assumes will be somewhere in the middle,
643 // it will get materialized in front of the assume.
644 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
645 VD.LocalNum = LN_Middle;
646 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
647 if (!DomNode)
648 continue;
649 VD.DFSIn = DomNode->getDFSNumIn();
650 VD.DFSOut = DomNode->getDFSNumOut();
651 VD.PInfo = PossibleCopy;
652 OrderedUses.push_back(VD);
653 } else if (isa<PredicateWithEdge>(PossibleCopy)) {
654 // If we can only do phi uses, we treat it like it's in the branch
655 // block, and handle it specially. We know that it goes last, and only
656 // dominate phi uses.
657 auto BlockEdge = getBlockEdge(PossibleCopy);
658 if (EdgeUsesOnly.count(BlockEdge)) {
659 VD.LocalNum = LN_Last;
660 auto *DomNode = DT.getNode(BlockEdge.first);
661 if (DomNode) {
662 VD.DFSIn = DomNode->getDFSNumIn();
663 VD.DFSOut = DomNode->getDFSNumOut();
664 VD.PInfo = PossibleCopy;
665 VD.EdgeOnly = true;
666 OrderedUses.push_back(VD);
668 } else {
669 // Otherwise, we are in the split block (even though we perform
670 // insertion in the branch block).
671 // Insert a possible copy at the split block and before the branch.
672 VD.LocalNum = LN_First;
673 auto *DomNode = DT.getNode(BlockEdge.second);
674 if (DomNode) {
675 VD.DFSIn = DomNode->getDFSNumIn();
676 VD.DFSOut = DomNode->getDFSNumOut();
677 VD.PInfo = PossibleCopy;
678 OrderedUses.push_back(VD);
684 convertUsesToDFSOrdered(Op, OrderedUses);
685 // Here we require a stable sort because we do not bother to try to
686 // assign an order to the operands the uses represent. Thus, two
687 // uses in the same instruction do not have a strict sort order
688 // currently and will be considered equal. We could get rid of the
689 // stable sort by creating one if we wanted.
690 llvm::stable_sort(OrderedUses, Compare);
691 SmallVector<ValueDFS, 8> RenameStack;
692 // For each use, sorted into dfs order, push values and replaces uses with
693 // top of stack, which will represent the reaching def.
694 for (auto &VD : OrderedUses) {
695 // We currently do not materialize copy over copy, but we should decide if
696 // we want to.
697 bool PossibleCopy = VD.PInfo != nullptr;
698 if (RenameStack.empty()) {
699 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
700 } else {
701 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
702 << RenameStack.back().DFSIn << ","
703 << RenameStack.back().DFSOut << ")\n");
706 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
707 << VD.DFSOut << ")\n");
709 bool ShouldPush = (VD.Def || PossibleCopy);
710 bool OutOfScope = !stackIsInScope(RenameStack, VD);
711 if (OutOfScope || ShouldPush) {
712 // Sync to our current scope.
713 popStackUntilDFSScope(RenameStack, VD);
714 if (ShouldPush) {
715 RenameStack.push_back(VD);
718 // If we get to this point, and the stack is empty we must have a use
719 // with no renaming needed, just skip it.
720 if (RenameStack.empty())
721 continue;
722 // Skip values, only want to rename the uses
723 if (VD.Def || PossibleCopy)
724 continue;
725 if (!DebugCounter::shouldExecute(RenameCounter)) {
726 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
727 continue;
729 ValueDFS &Result = RenameStack.back();
731 // If the possible copy dominates something, materialize our stack up to
732 // this point. This ensures every comparison that affects our operation
733 // ends up with predicateinfo.
734 if (!Result.Def)
735 Result.Def = materializeStack(Counter, RenameStack, Op);
737 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
738 << *VD.U->get() << " in " << *(VD.U->getUser())
739 << "\n");
740 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
741 "Predicateinfo def should have dominated this use");
742 VD.U->set(Result.Def);
747 PredicateInfoBuilder::ValueInfo &
748 PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
749 auto OIN = ValueInfoNums.find(Operand);
750 if (OIN == ValueInfoNums.end()) {
751 // This will grow it
752 ValueInfos.resize(ValueInfos.size() + 1);
753 // This will use the new size and give us a 0 based number of the info
754 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
755 assert(InsertResult.second && "Value info number already existed?");
756 return ValueInfos[InsertResult.first->second];
758 return ValueInfos[OIN->second];
761 const PredicateInfoBuilder::ValueInfo &
762 PredicateInfoBuilder::getValueInfo(Value *Operand) const {
763 auto OINI = ValueInfoNums.lookup(Operand);
764 assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
765 assert(OINI < ValueInfos.size() &&
766 "Value Info Number greater than size of Value Info Table");
767 return ValueInfos[OINI];
770 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
771 AssumptionCache &AC)
772 : F(F) {
773 PredicateInfoBuilder Builder(*this, F, DT, AC);
774 Builder.buildPredicateInfo();
777 // Remove all declarations we created . The PredicateInfo consumers are
778 // responsible for remove the ssa_copy calls created.
779 PredicateInfo::~PredicateInfo() {
780 // Collect function pointers in set first, as SmallSet uses a SmallVector
781 // internally and we have to remove the asserting value handles first.
782 SmallPtrSet<Function *, 20> FunctionPtrs;
783 for (auto &F : CreatedDeclarations)
784 FunctionPtrs.insert(&*F);
785 CreatedDeclarations.clear();
787 for (Function *F : FunctionPtrs) {
788 assert(F->user_begin() == F->user_end() &&
789 "PredicateInfo consumer did not remove all SSA copies.");
790 F->eraseFromParent();
794 Optional<PredicateConstraint> PredicateBase::getConstraint() const {
795 switch (Type) {
796 case PT_Assume:
797 case PT_Branch: {
798 bool TrueEdge = true;
799 if (auto *PBranch = dyn_cast<PredicateBranch>(this))
800 TrueEdge = PBranch->TrueEdge;
802 if (Condition == RenamedOp) {
803 return {{CmpInst::ICMP_EQ,
804 TrueEdge ? ConstantInt::getTrue(Condition->getType())
805 : ConstantInt::getFalse(Condition->getType())}};
808 CmpInst *Cmp = dyn_cast<CmpInst>(Condition);
809 if (!Cmp) {
810 // TODO: Make this an assertion once RenamedOp is fully accurate.
811 return None;
814 CmpInst::Predicate Pred;
815 Value *OtherOp;
816 if (Cmp->getOperand(0) == RenamedOp) {
817 Pred = Cmp->getPredicate();
818 OtherOp = Cmp->getOperand(1);
819 } else if (Cmp->getOperand(1) == RenamedOp) {
820 Pred = Cmp->getSwappedPredicate();
821 OtherOp = Cmp->getOperand(0);
822 } else {
823 // TODO: Make this an assertion once RenamedOp is fully accurate.
824 return None;
827 // Invert predicate along false edge.
828 if (!TrueEdge)
829 Pred = CmpInst::getInversePredicate(Pred);
831 return {{Pred, OtherOp}};
833 case PT_Switch:
834 if (Condition != RenamedOp) {
835 // TODO: Make this an assertion once RenamedOp is fully accurate.
836 return None;
839 return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}};
841 llvm_unreachable("Unknown predicate type");
844 void PredicateInfo::verifyPredicateInfo() const {}
846 char PredicateInfoPrinterLegacyPass::ID = 0;
848 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
849 : FunctionPass(ID) {
850 initializePredicateInfoPrinterLegacyPassPass(
851 *PassRegistry::getPassRegistry());
854 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
855 AU.setPreservesAll();
856 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
857 AU.addRequired<AssumptionCacheTracker>();
860 // Replace ssa_copy calls created by PredicateInfo with their operand.
861 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
862 for (Instruction &Inst : llvm::make_early_inc_range(instructions(F))) {
863 const auto *PI = PredInfo.getPredicateInfoFor(&Inst);
864 auto *II = dyn_cast<IntrinsicInst>(&Inst);
865 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
866 continue;
868 Inst.replaceAllUsesWith(II->getOperand(0));
869 Inst.eraseFromParent();
873 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
874 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
875 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
876 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
877 PredInfo->print(dbgs());
878 if (VerifyPredicateInfo)
879 PredInfo->verifyPredicateInfo();
881 replaceCreatedSSACopys(*PredInfo, F);
882 return false;
885 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
886 FunctionAnalysisManager &AM) {
887 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
888 auto &AC = AM.getResult<AssumptionAnalysis>(F);
889 OS << "PredicateInfo for function: " << F.getName() << "\n";
890 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
891 PredInfo->print(OS);
893 replaceCreatedSSACopys(*PredInfo, F);
894 return PreservedAnalyses::all();
897 /// An assembly annotator class to print PredicateInfo information in
898 /// comments.
899 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
900 friend class PredicateInfo;
901 const PredicateInfo *PredInfo;
903 public:
904 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
906 void emitBasicBlockStartAnnot(const BasicBlock *BB,
907 formatted_raw_ostream &OS) override {}
909 void emitInstructionAnnot(const Instruction *I,
910 formatted_raw_ostream &OS) override {
911 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
912 OS << "; Has predicate info\n";
913 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
914 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
915 << " Comparison:" << *PB->Condition << " Edge: [";
916 PB->From->printAsOperand(OS);
917 OS << ",";
918 PB->To->printAsOperand(OS);
919 OS << "]";
920 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
921 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
922 << " Switch:" << *PS->Switch << " Edge: [";
923 PS->From->printAsOperand(OS);
924 OS << ",";
925 PS->To->printAsOperand(OS);
926 OS << "]";
927 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
928 OS << "; assume predicate info {"
929 << " Comparison:" << *PA->Condition;
931 OS << ", RenamedOp: ";
932 PI->RenamedOp->printAsOperand(OS, false);
933 OS << " }\n";
938 void PredicateInfo::print(raw_ostream &OS) const {
939 PredicateInfoAnnotatedWriter Writer(this);
940 F.print(OS, &Writer);
943 void PredicateInfo::dump() const {
944 PredicateInfoAnnotatedWriter Writer(this);
945 F.print(dbgs(), &Writer);
948 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
949 FunctionAnalysisManager &AM) {
950 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
951 auto &AC = AM.getResult<AssumptionAnalysis>(F);
952 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
954 return PreservedAnalyses::all();