1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file promotes memory references to be register references. It promotes
10 // alloca instructions which only have loads and stores as uses. An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/TinyPtrVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
57 #define DEBUG_TYPE "mem2reg"
59 STATISTIC(NumLocalPromoted
, "Number of alloca's promoted within one block");
60 STATISTIC(NumSingleStore
, "Number of alloca's promoted with a single store");
61 STATISTIC(NumDeadAlloca
, "Number of dead alloca's removed");
62 STATISTIC(NumPHIInsert
, "Number of PHI nodes inserted");
64 bool llvm::isAllocaPromotable(const AllocaInst
*AI
) {
65 // Only allow direct and non-volatile loads and stores...
66 for (const User
*U
: AI
->users()) {
67 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
68 // Note that atomic loads can be transformed; atomic semantics do
69 // not have any meaning for a local alloca.
72 } else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
73 if (SI
->getOperand(0) == AI
)
74 return false; // Don't allow a store OF the AI, only INTO the AI.
75 // Note that atomic stores can be transformed; atomic semantics do
76 // not have any meaning for a local alloca.
79 } else if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
)) {
80 if (!II
->isLifetimeStartOrEnd() && !II
->isDroppable())
82 } else if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(U
)) {
83 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI
))
85 } else if (const GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(U
)) {
86 if (!GEPI
->hasAllZeroIndices())
88 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI
))
90 } else if (const AddrSpaceCastInst
*ASCI
= dyn_cast
<AddrSpaceCastInst
>(U
)) {
91 if (!onlyUsedByLifetimeMarkers(ASCI
))
104 using DbgUserVec
= SmallVector
<DbgVariableIntrinsic
*, 1>;
106 SmallVector
<BasicBlock
*, 32> DefiningBlocks
;
107 SmallVector
<BasicBlock
*, 32> UsingBlocks
;
109 StoreInst
*OnlyStore
;
110 BasicBlock
*OnlyBlock
;
111 bool OnlyUsedInOneBlock
;
116 DefiningBlocks
.clear();
120 OnlyUsedInOneBlock
= true;
124 /// Scan the uses of the specified alloca, filling in the AllocaInfo used
125 /// by the rest of the pass to reason about the uses of this alloca.
126 void AnalyzeAlloca(AllocaInst
*AI
) {
129 // As we scan the uses of the alloca instruction, keep track of stores,
130 // and decide whether all of the loads and stores to the alloca are within
131 // the same basic block.
132 for (User
*U
: AI
->users()) {
133 Instruction
*User
= cast
<Instruction
>(U
);
135 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
136 // Remember the basic blocks which define new values for the alloca
137 DefiningBlocks
.push_back(SI
->getParent());
140 LoadInst
*LI
= cast
<LoadInst
>(User
);
141 // Otherwise it must be a load instruction, keep track of variable
143 UsingBlocks
.push_back(LI
->getParent());
146 if (OnlyUsedInOneBlock
) {
148 OnlyBlock
= User
->getParent();
149 else if (OnlyBlock
!= User
->getParent())
150 OnlyUsedInOneBlock
= false;
154 findDbgUsers(DbgUsers
, AI
);
158 /// Data package used by RenamePass().
159 struct RenamePassData
{
160 using ValVector
= std::vector
<Value
*>;
161 using LocationVector
= std::vector
<DebugLoc
>;
163 RenamePassData(BasicBlock
*B
, BasicBlock
*P
, ValVector V
, LocationVector L
)
164 : BB(B
), Pred(P
), Values(std::move(V
)), Locations(std::move(L
)) {}
169 LocationVector Locations
;
172 /// This assigns and keeps a per-bb relative ordering of load/store
173 /// instructions in the block that directly load or store an alloca.
175 /// This functionality is important because it avoids scanning large basic
176 /// blocks multiple times when promoting many allocas in the same block.
177 class LargeBlockInfo
{
178 /// For each instruction that we track, keep the index of the
181 /// The index starts out as the number of the instruction from the start of
183 DenseMap
<const Instruction
*, unsigned> InstNumbers
;
187 /// This code only looks at accesses to allocas.
188 static bool isInterestingInstruction(const Instruction
*I
) {
189 return (isa
<LoadInst
>(I
) && isa
<AllocaInst
>(I
->getOperand(0))) ||
190 (isa
<StoreInst
>(I
) && isa
<AllocaInst
>(I
->getOperand(1)));
193 /// Get or calculate the index of the specified instruction.
194 unsigned getInstructionIndex(const Instruction
*I
) {
195 assert(isInterestingInstruction(I
) &&
196 "Not a load/store to/from an alloca?");
198 // If we already have this instruction number, return it.
199 DenseMap
<const Instruction
*, unsigned>::iterator It
= InstNumbers
.find(I
);
200 if (It
!= InstNumbers
.end())
203 // Scan the whole block to get the instruction. This accumulates
204 // information for every interesting instruction in the block, in order to
205 // avoid gratuitus rescans.
206 const BasicBlock
*BB
= I
->getParent();
208 for (const Instruction
&BBI
: *BB
)
209 if (isInterestingInstruction(&BBI
))
210 InstNumbers
[&BBI
] = InstNo
++;
211 It
= InstNumbers
.find(I
);
213 assert(It
!= InstNumbers
.end() && "Didn't insert instruction?");
217 void deleteValue(const Instruction
*I
) { InstNumbers
.erase(I
); }
219 void clear() { InstNumbers
.clear(); }
222 struct PromoteMem2Reg
{
223 /// The alloca instructions being promoted.
224 std::vector
<AllocaInst
*> Allocas
;
229 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
232 const SimplifyQuery SQ
;
234 /// Reverse mapping of Allocas.
235 DenseMap
<AllocaInst
*, unsigned> AllocaLookup
;
237 /// The PhiNodes we're adding.
239 /// That map is used to simplify some Phi nodes as we iterate over it, so
240 /// it should have deterministic iterators. We could use a MapVector, but
241 /// since we already maintain a map from BasicBlock* to a stable numbering
242 /// (BBNumbers), the DenseMap is more efficient (also supports removal).
243 DenseMap
<std::pair
<unsigned, unsigned>, PHINode
*> NewPhiNodes
;
245 /// For each PHI node, keep track of which entry in Allocas it corresponds
247 DenseMap
<PHINode
*, unsigned> PhiToAllocaMap
;
249 /// For each alloca, we keep track of the dbg.declare intrinsic that
250 /// describes it, if any, so that we can convert it to a dbg.value
251 /// intrinsic if the alloca gets promoted.
252 SmallVector
<AllocaInfo::DbgUserVec
, 8> AllocaDbgUsers
;
254 /// The set of basic blocks the renamer has already visited.
255 SmallPtrSet
<BasicBlock
*, 16> Visited
;
257 /// Contains a stable numbering of basic blocks to avoid non-determinstic
259 DenseMap
<BasicBlock
*, unsigned> BBNumbers
;
261 /// Lazily compute the number of predecessors a block has.
262 DenseMap
<const BasicBlock
*, unsigned> BBNumPreds
;
265 PromoteMem2Reg(ArrayRef
<AllocaInst
*> Allocas
, DominatorTree
&DT
,
267 : Allocas(Allocas
.begin(), Allocas
.end()), DT(DT
),
268 DIB(*DT
.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
269 AC(AC
), SQ(DT
.getRoot()->getParent()->getParent()->getDataLayout(),
275 void RemoveFromAllocasList(unsigned &AllocaIdx
) {
276 Allocas
[AllocaIdx
] = Allocas
.back();
281 unsigned getNumPreds(const BasicBlock
*BB
) {
282 unsigned &NP
= BBNumPreds
[BB
];
284 NP
= pred_size(BB
) + 1;
288 void ComputeLiveInBlocks(AllocaInst
*AI
, AllocaInfo
&Info
,
289 const SmallPtrSetImpl
<BasicBlock
*> &DefBlocks
,
290 SmallPtrSetImpl
<BasicBlock
*> &LiveInBlocks
);
291 void RenamePass(BasicBlock
*BB
, BasicBlock
*Pred
,
292 RenamePassData::ValVector
&IncVals
,
293 RenamePassData::LocationVector
&IncLocs
,
294 std::vector
<RenamePassData
> &Worklist
);
295 bool QueuePhiNode(BasicBlock
*BB
, unsigned AllocaIdx
, unsigned &Version
);
298 } // end anonymous namespace
300 /// Given a LoadInst LI this adds assume(LI != null) after it.
301 static void addAssumeNonNull(AssumptionCache
*AC
, LoadInst
*LI
) {
302 Function
*AssumeIntrinsic
=
303 Intrinsic::getDeclaration(LI
->getModule(), Intrinsic::assume
);
304 ICmpInst
*LoadNotNull
= new ICmpInst(ICmpInst::ICMP_NE
, LI
,
305 Constant::getNullValue(LI
->getType()));
306 LoadNotNull
->insertAfter(LI
);
307 CallInst
*CI
= CallInst::Create(AssumeIntrinsic
, {LoadNotNull
});
308 CI
->insertAfter(LoadNotNull
);
309 AC
->registerAssumption(cast
<AssumeInst
>(CI
));
312 static void removeIntrinsicUsers(AllocaInst
*AI
) {
313 // Knowing that this alloca is promotable, we know that it's safe to kill all
314 // instructions except for load and store.
316 for (Use
&U
: llvm::make_early_inc_range(AI
->uses())) {
317 Instruction
*I
= cast
<Instruction
>(U
.getUser());
318 if (isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
))
321 // Drop the use of AI in droppable instructions.
322 if (I
->isDroppable()) {
323 I
->dropDroppableUse(U
);
327 if (!I
->getType()->isVoidTy()) {
328 // The only users of this bitcast/GEP instruction are lifetime intrinsics.
329 // Follow the use/def chain to erase them now instead of leaving it for
330 // dead code elimination later.
331 for (Use
&UU
: llvm::make_early_inc_range(I
->uses())) {
332 Instruction
*Inst
= cast
<Instruction
>(UU
.getUser());
334 // Drop the use of I in droppable instructions.
335 if (Inst
->isDroppable()) {
336 Inst
->dropDroppableUse(UU
);
339 Inst
->eraseFromParent();
342 I
->eraseFromParent();
346 /// Rewrite as many loads as possible given a single store.
348 /// When there is only a single store, we can use the domtree to trivially
349 /// replace all of the dominated loads with the stored value. Do so, and return
350 /// true if this has successfully promoted the alloca entirely. If this returns
351 /// false there were some loads which were not dominated by the single store
352 /// and thus must be phi-ed with undef. We fall back to the standard alloca
353 /// promotion algorithm in that case.
354 static bool rewriteSingleStoreAlloca(AllocaInst
*AI
, AllocaInfo
&Info
,
355 LargeBlockInfo
&LBI
, const DataLayout
&DL
,
356 DominatorTree
&DT
, AssumptionCache
*AC
) {
357 StoreInst
*OnlyStore
= Info
.OnlyStore
;
358 bool StoringGlobalVal
= !isa
<Instruction
>(OnlyStore
->getOperand(0));
359 BasicBlock
*StoreBB
= OnlyStore
->getParent();
362 // Clear out UsingBlocks. We will reconstruct it here if needed.
363 Info
.UsingBlocks
.clear();
365 for (User
*U
: make_early_inc_range(AI
->users())) {
366 Instruction
*UserInst
= cast
<Instruction
>(U
);
367 if (UserInst
== OnlyStore
)
369 LoadInst
*LI
= cast
<LoadInst
>(UserInst
);
371 // Okay, if we have a load from the alloca, we want to replace it with the
372 // only value stored to the alloca. We can do this if the value is
373 // dominated by the store. If not, we use the rest of the mem2reg machinery
374 // to insert the phi nodes as needed.
375 if (!StoringGlobalVal
) { // Non-instructions are always dominated.
376 if (LI
->getParent() == StoreBB
) {
377 // If we have a use that is in the same block as the store, compare the
378 // indices of the two instructions to see which one came first. If the
379 // load came before the store, we can't handle it.
380 if (StoreIndex
== -1)
381 StoreIndex
= LBI
.getInstructionIndex(OnlyStore
);
383 if (unsigned(StoreIndex
) > LBI
.getInstructionIndex(LI
)) {
384 // Can't handle this load, bail out.
385 Info
.UsingBlocks
.push_back(StoreBB
);
388 } else if (!DT
.dominates(StoreBB
, LI
->getParent())) {
389 // If the load and store are in different blocks, use BB dominance to
390 // check their relationships. If the store doesn't dom the use, bail
392 Info
.UsingBlocks
.push_back(LI
->getParent());
397 // Otherwise, we *can* safely rewrite this load.
398 Value
*ReplVal
= OnlyStore
->getOperand(0);
399 // If the replacement value is the load, this must occur in unreachable
402 ReplVal
= PoisonValue::get(LI
->getType());
404 // If the load was marked as nonnull we don't want to lose
405 // that information when we erase this Load. So we preserve
406 // it with an assume.
407 if (AC
&& LI
->getMetadata(LLVMContext::MD_nonnull
) &&
408 !isKnownNonZero(ReplVal
, DL
, 0, AC
, LI
, &DT
))
409 addAssumeNonNull(AC
, LI
);
411 LI
->replaceAllUsesWith(ReplVal
);
412 LI
->eraseFromParent();
416 // Finally, after the scan, check to see if the store is all that is left.
417 if (!Info
.UsingBlocks
.empty())
418 return false; // If not, we'll have to fall back for the remainder.
420 // Record debuginfo for the store and remove the declaration's
422 for (DbgVariableIntrinsic
*DII
: Info
.DbgUsers
) {
423 if (DII
->isAddressOfVariable()) {
424 DIBuilder
DIB(*AI
->getModule(), /*AllowUnresolved*/ false);
425 ConvertDebugDeclareToDebugValue(DII
, Info
.OnlyStore
, DIB
);
426 DII
->eraseFromParent();
427 } else if (DII
->getExpression()->startsWithDeref()) {
428 DII
->eraseFromParent();
431 // Remove the (now dead) store and alloca.
432 Info
.OnlyStore
->eraseFromParent();
433 LBI
.deleteValue(Info
.OnlyStore
);
435 AI
->eraseFromParent();
439 /// Many allocas are only used within a single basic block. If this is the
440 /// case, avoid traversing the CFG and inserting a lot of potentially useless
441 /// PHI nodes by just performing a single linear pass over the basic block
442 /// using the Alloca.
444 /// If we cannot promote this alloca (because it is read before it is written),
445 /// return false. This is necessary in cases where, due to control flow, the
446 /// alloca is undefined only on some control flow paths. e.g. code like
447 /// this is correct in LLVM IR:
448 /// // A is an alloca with no stores so far
451 /// if (!first_iteration)
455 static bool promoteSingleBlockAlloca(AllocaInst
*AI
, const AllocaInfo
&Info
,
457 const DataLayout
&DL
,
459 AssumptionCache
*AC
) {
460 // The trickiest case to handle is when we have large blocks. Because of this,
461 // this code is optimized assuming that large blocks happen. This does not
462 // significantly pessimize the small block case. This uses LargeBlockInfo to
463 // make it efficient to get the index of various operations in the block.
465 // Walk the use-def list of the alloca, getting the locations of all stores.
466 using StoresByIndexTy
= SmallVector
<std::pair
<unsigned, StoreInst
*>, 64>;
467 StoresByIndexTy StoresByIndex
;
469 for (User
*U
: AI
->users())
470 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
))
471 StoresByIndex
.push_back(std::make_pair(LBI
.getInstructionIndex(SI
), SI
));
473 // Sort the stores by their index, making it efficient to do a lookup with a
475 llvm::sort(StoresByIndex
, less_first());
477 // Walk all of the loads from this alloca, replacing them with the nearest
478 // store above them, if any.
479 for (User
*U
: make_early_inc_range(AI
->users())) {
480 LoadInst
*LI
= dyn_cast
<LoadInst
>(U
);
484 unsigned LoadIdx
= LBI
.getInstructionIndex(LI
);
486 // Find the nearest store that has a lower index than this load.
487 StoresByIndexTy::iterator I
= llvm::lower_bound(
489 std::make_pair(LoadIdx
, static_cast<StoreInst
*>(nullptr)),
491 if (I
== StoresByIndex
.begin()) {
492 if (StoresByIndex
.empty())
493 // If there are no stores, the load takes the undef value.
494 LI
->replaceAllUsesWith(UndefValue::get(LI
->getType()));
496 // There is no store before this load, bail out (load may be affected
497 // by the following stores - see main comment).
500 // Otherwise, there was a store before this load, the load takes its value.
501 // Note, if the load was marked as nonnull we don't want to lose that
502 // information when we erase it. So we preserve it with an assume.
503 Value
*ReplVal
= std::prev(I
)->second
->getOperand(0);
504 if (AC
&& LI
->getMetadata(LLVMContext::MD_nonnull
) &&
505 !isKnownNonZero(ReplVal
, DL
, 0, AC
, LI
, &DT
))
506 addAssumeNonNull(AC
, LI
);
508 // If the replacement value is the load, this must occur in unreachable
511 ReplVal
= PoisonValue::get(LI
->getType());
513 LI
->replaceAllUsesWith(ReplVal
);
516 LI
->eraseFromParent();
520 // Remove the (now dead) stores and alloca.
521 while (!AI
->use_empty()) {
522 StoreInst
*SI
= cast
<StoreInst
>(AI
->user_back());
523 // Record debuginfo for the store before removing it.
524 for (DbgVariableIntrinsic
*DII
: Info
.DbgUsers
) {
525 if (DII
->isAddressOfVariable()) {
526 DIBuilder
DIB(*AI
->getModule(), /*AllowUnresolved*/ false);
527 ConvertDebugDeclareToDebugValue(DII
, SI
, DIB
);
530 SI
->eraseFromParent();
534 AI
->eraseFromParent();
536 // The alloca's debuginfo can be removed as well.
537 for (DbgVariableIntrinsic
*DII
: Info
.DbgUsers
)
538 if (DII
->isAddressOfVariable() || DII
->getExpression()->startsWithDeref())
539 DII
->eraseFromParent();
545 void PromoteMem2Reg::run() {
546 Function
&F
= *DT
.getRoot()->getParent();
548 AllocaDbgUsers
.resize(Allocas
.size());
552 ForwardIDFCalculator
IDF(DT
);
554 for (unsigned AllocaNum
= 0; AllocaNum
!= Allocas
.size(); ++AllocaNum
) {
555 AllocaInst
*AI
= Allocas
[AllocaNum
];
557 assert(isAllocaPromotable(AI
) && "Cannot promote non-promotable alloca!");
558 assert(AI
->getParent()->getParent() == &F
&&
559 "All allocas should be in the same function, which is same as DF!");
561 removeIntrinsicUsers(AI
);
563 if (AI
->use_empty()) {
564 // If there are no uses of the alloca, just delete it now.
565 AI
->eraseFromParent();
567 // Remove the alloca from the Allocas list, since it has been processed
568 RemoveFromAllocasList(AllocaNum
);
573 // Calculate the set of read and write-locations for each alloca. This is
574 // analogous to finding the 'uses' and 'definitions' of each variable.
575 Info
.AnalyzeAlloca(AI
);
577 // If there is only a single store to this value, replace any loads of
578 // it that are directly dominated by the definition with the value stored.
579 if (Info
.DefiningBlocks
.size() == 1) {
580 if (rewriteSingleStoreAlloca(AI
, Info
, LBI
, SQ
.DL
, DT
, AC
)) {
581 // The alloca has been processed, move on.
582 RemoveFromAllocasList(AllocaNum
);
588 // If the alloca is only read and written in one basic block, just perform a
589 // linear sweep over the block to eliminate it.
590 if (Info
.OnlyUsedInOneBlock
&&
591 promoteSingleBlockAlloca(AI
, Info
, LBI
, SQ
.DL
, DT
, AC
)) {
592 // The alloca has been processed, move on.
593 RemoveFromAllocasList(AllocaNum
);
597 // If we haven't computed a numbering for the BB's in the function, do so
599 if (BBNumbers
.empty()) {
602 BBNumbers
[&BB
] = ID
++;
605 // Remember the dbg.declare intrinsic describing this alloca, if any.
606 if (!Info
.DbgUsers
.empty())
607 AllocaDbgUsers
[AllocaNum
] = Info
.DbgUsers
;
609 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
610 AllocaLookup
[Allocas
[AllocaNum
]] = AllocaNum
;
612 // Unique the set of defining blocks for efficient lookup.
613 SmallPtrSet
<BasicBlock
*, 32> DefBlocks(Info
.DefiningBlocks
.begin(),
614 Info
.DefiningBlocks
.end());
616 // Determine which blocks the value is live in. These are blocks which lead
618 SmallPtrSet
<BasicBlock
*, 32> LiveInBlocks
;
619 ComputeLiveInBlocks(AI
, Info
, DefBlocks
, LiveInBlocks
);
621 // At this point, we're committed to promoting the alloca using IDF's, and
622 // the standard SSA construction algorithm. Determine which blocks need phi
623 // nodes and see if we can optimize out some work by avoiding insertion of
625 IDF
.setLiveInBlocks(LiveInBlocks
);
626 IDF
.setDefiningBlocks(DefBlocks
);
627 SmallVector
<BasicBlock
*, 32> PHIBlocks
;
628 IDF
.calculate(PHIBlocks
);
629 llvm::sort(PHIBlocks
, [this](BasicBlock
*A
, BasicBlock
*B
) {
630 return BBNumbers
.find(A
)->second
< BBNumbers
.find(B
)->second
;
633 unsigned CurrentVersion
= 0;
634 for (BasicBlock
*BB
: PHIBlocks
)
635 QueuePhiNode(BB
, AllocaNum
, CurrentVersion
);
639 return; // All of the allocas must have been trivial!
643 // Set the incoming values for the basic block to be null values for all of
644 // the alloca's. We do this in case there is a load of a value that has not
645 // been stored yet. In this case, it will get this null value.
646 RenamePassData::ValVector
Values(Allocas
.size());
647 for (unsigned i
= 0, e
= Allocas
.size(); i
!= e
; ++i
)
648 Values
[i
] = UndefValue::get(Allocas
[i
]->getAllocatedType());
650 // When handling debug info, treat all incoming values as if they have unknown
651 // locations until proven otherwise.
652 RenamePassData::LocationVector
Locations(Allocas
.size());
654 // Walks all basic blocks in the function performing the SSA rename algorithm
655 // and inserting the phi nodes we marked as necessary
656 std::vector
<RenamePassData
> RenamePassWorkList
;
657 RenamePassWorkList
.emplace_back(&F
.front(), nullptr, std::move(Values
),
658 std::move(Locations
));
660 RenamePassData RPD
= std::move(RenamePassWorkList
.back());
661 RenamePassWorkList
.pop_back();
662 // RenamePass may add new worklist entries.
663 RenamePass(RPD
.BB
, RPD
.Pred
, RPD
.Values
, RPD
.Locations
, RenamePassWorkList
);
664 } while (!RenamePassWorkList
.empty());
666 // The renamer uses the Visited set to avoid infinite loops. Clear it now.
669 // Remove the allocas themselves from the function.
670 for (Instruction
*A
: Allocas
) {
671 // If there are any uses of the alloca instructions left, they must be in
672 // unreachable basic blocks that were not processed by walking the dominator
673 // tree. Just delete the users now.
675 A
->replaceAllUsesWith(PoisonValue::get(A
->getType()));
676 A
->eraseFromParent();
679 // Remove alloca's dbg.declare instrinsics from the function.
680 for (auto &DbgUsers
: AllocaDbgUsers
) {
681 for (auto *DII
: DbgUsers
)
682 if (DII
->isAddressOfVariable() || DII
->getExpression()->startsWithDeref())
683 DII
->eraseFromParent();
686 // Loop over all of the PHI nodes and see if there are any that we can get
687 // rid of because they merge all of the same incoming values. This can
688 // happen due to undef values coming into the PHI nodes. This process is
689 // iterative, because eliminating one PHI node can cause others to be removed.
690 bool EliminatedAPHI
= true;
691 while (EliminatedAPHI
) {
692 EliminatedAPHI
= false;
694 // Iterating over NewPhiNodes is deterministic, so it is safe to try to
695 // simplify and RAUW them as we go. If it was not, we could add uses to
696 // the values we replace with in a non-deterministic order, thus creating
697 // non-deterministic def->use chains.
698 for (DenseMap
<std::pair
<unsigned, unsigned>, PHINode
*>::iterator
699 I
= NewPhiNodes
.begin(),
700 E
= NewPhiNodes
.end();
702 PHINode
*PN
= I
->second
;
704 // If this PHI node merges one value and/or undefs, get the value.
705 if (Value
*V
= SimplifyInstruction(PN
, SQ
)) {
706 PN
->replaceAllUsesWith(V
);
707 PN
->eraseFromParent();
708 NewPhiNodes
.erase(I
++);
709 EliminatedAPHI
= true;
716 // At this point, the renamer has added entries to PHI nodes for all reachable
717 // code. Unfortunately, there may be unreachable blocks which the renamer
718 // hasn't traversed. If this is the case, the PHI nodes may not
719 // have incoming values for all predecessors. Loop over all PHI nodes we have
720 // created, inserting undef values if they are missing any incoming values.
721 for (DenseMap
<std::pair
<unsigned, unsigned>, PHINode
*>::iterator
722 I
= NewPhiNodes
.begin(),
723 E
= NewPhiNodes
.end();
725 // We want to do this once per basic block. As such, only process a block
726 // when we find the PHI that is the first entry in the block.
727 PHINode
*SomePHI
= I
->second
;
728 BasicBlock
*BB
= SomePHI
->getParent();
729 if (&BB
->front() != SomePHI
)
732 // Only do work here if there the PHI nodes are missing incoming values. We
733 // know that all PHI nodes that were inserted in a block will have the same
734 // number of incoming values, so we can just check any of them.
735 if (SomePHI
->getNumIncomingValues() == getNumPreds(BB
))
738 // Get the preds for BB.
739 SmallVector
<BasicBlock
*, 16> Preds(predecessors(BB
));
741 // Ok, now we know that all of the PHI nodes are missing entries for some
742 // basic blocks. Start by sorting the incoming predecessors for efficient
744 auto CompareBBNumbers
= [this](BasicBlock
*A
, BasicBlock
*B
) {
745 return BBNumbers
.find(A
)->second
< BBNumbers
.find(B
)->second
;
747 llvm::sort(Preds
, CompareBBNumbers
);
749 // Now we loop through all BB's which have entries in SomePHI and remove
750 // them from the Preds list.
751 for (unsigned i
= 0, e
= SomePHI
->getNumIncomingValues(); i
!= e
; ++i
) {
752 // Do a log(n) search of the Preds list for the entry we want.
753 SmallVectorImpl
<BasicBlock
*>::iterator EntIt
= llvm::lower_bound(
754 Preds
, SomePHI
->getIncomingBlock(i
), CompareBBNumbers
);
755 assert(EntIt
!= Preds
.end() && *EntIt
== SomePHI
->getIncomingBlock(i
) &&
756 "PHI node has entry for a block which is not a predecessor!");
762 // At this point, the blocks left in the preds list must have dummy
763 // entries inserted into every PHI nodes for the block. Update all the phi
764 // nodes in this block that we are inserting (there could be phis before
766 unsigned NumBadPreds
= SomePHI
->getNumIncomingValues();
767 BasicBlock::iterator BBI
= BB
->begin();
768 while ((SomePHI
= dyn_cast
<PHINode
>(BBI
++)) &&
769 SomePHI
->getNumIncomingValues() == NumBadPreds
) {
770 Value
*UndefVal
= UndefValue::get(SomePHI
->getType());
771 for (BasicBlock
*Pred
: Preds
)
772 SomePHI
->addIncoming(UndefVal
, Pred
);
779 /// Determine which blocks the value is live in.
781 /// These are blocks which lead to uses. Knowing this allows us to avoid
782 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
783 /// inserted phi nodes would be dead).
784 void PromoteMem2Reg::ComputeLiveInBlocks(
785 AllocaInst
*AI
, AllocaInfo
&Info
,
786 const SmallPtrSetImpl
<BasicBlock
*> &DefBlocks
,
787 SmallPtrSetImpl
<BasicBlock
*> &LiveInBlocks
) {
788 // To determine liveness, we must iterate through the predecessors of blocks
789 // where the def is live. Blocks are added to the worklist if we need to
790 // check their predecessors. Start with all the using blocks.
791 SmallVector
<BasicBlock
*, 64> LiveInBlockWorklist(Info
.UsingBlocks
.begin(),
792 Info
.UsingBlocks
.end());
794 // If any of the using blocks is also a definition block, check to see if the
795 // definition occurs before or after the use. If it happens before the use,
796 // the value isn't really live-in.
797 for (unsigned i
= 0, e
= LiveInBlockWorklist
.size(); i
!= e
; ++i
) {
798 BasicBlock
*BB
= LiveInBlockWorklist
[i
];
799 if (!DefBlocks
.count(BB
))
802 // Okay, this is a block that both uses and defines the value. If the first
803 // reference to the alloca is a def (store), then we know it isn't live-in.
804 for (BasicBlock::iterator I
= BB
->begin();; ++I
) {
805 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
806 if (SI
->getOperand(1) != AI
)
809 // We found a store to the alloca before a load. The alloca is not
810 // actually live-in here.
811 LiveInBlockWorklist
[i
] = LiveInBlockWorklist
.back();
812 LiveInBlockWorklist
.pop_back();
818 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
819 // Okay, we found a load before a store to the alloca. It is actually
820 // live into this block.
821 if (LI
->getOperand(0) == AI
)
826 // Now that we have a set of blocks where the phi is live-in, recursively add
827 // their predecessors until we find the full region the value is live.
828 while (!LiveInBlockWorklist
.empty()) {
829 BasicBlock
*BB
= LiveInBlockWorklist
.pop_back_val();
831 // The block really is live in here, insert it into the set. If already in
832 // the set, then it has already been processed.
833 if (!LiveInBlocks
.insert(BB
).second
)
836 // Since the value is live into BB, it is either defined in a predecessor or
837 // live into it to. Add the preds to the worklist unless they are a
839 for (BasicBlock
*P
: predecessors(BB
)) {
840 // The value is not live into a predecessor if it defines the value.
841 if (DefBlocks
.count(P
))
844 // Otherwise it is, add to the worklist.
845 LiveInBlockWorklist
.push_back(P
);
850 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
852 /// Returns true if there wasn't already a phi-node for that variable
853 bool PromoteMem2Reg::QueuePhiNode(BasicBlock
*BB
, unsigned AllocaNo
,
855 // Look up the basic-block in question.
856 PHINode
*&PN
= NewPhiNodes
[std::make_pair(BBNumbers
[BB
], AllocaNo
)];
858 // If the BB already has a phi node added for the i'th alloca then we're done!
862 // Create a PhiNode using the dereferenced type... and add the phi-node to the
864 PN
= PHINode::Create(Allocas
[AllocaNo
]->getAllocatedType(), getNumPreds(BB
),
865 Allocas
[AllocaNo
]->getName() + "." + Twine(Version
++),
868 PhiToAllocaMap
[PN
] = AllocaNo
;
872 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
873 /// create a merged location incorporating \p DL, or to set \p DL directly.
874 static void updateForIncomingValueLocation(PHINode
*PN
, DebugLoc DL
,
875 bool ApplyMergedLoc
) {
877 PN
->applyMergedLocation(PN
->getDebugLoc(), DL
);
882 /// Recursively traverse the CFG of the function, renaming loads and
883 /// stores to the allocas which we are promoting.
885 /// IncomingVals indicates what value each Alloca contains on exit from the
886 /// predecessor block Pred.
887 void PromoteMem2Reg::RenamePass(BasicBlock
*BB
, BasicBlock
*Pred
,
888 RenamePassData::ValVector
&IncomingVals
,
889 RenamePassData::LocationVector
&IncomingLocs
,
890 std::vector
<RenamePassData
> &Worklist
) {
892 // If we are inserting any phi nodes into this BB, they will already be in the
894 if (PHINode
*APN
= dyn_cast
<PHINode
>(BB
->begin())) {
895 // If we have PHI nodes to update, compute the number of edges from Pred to
897 if (PhiToAllocaMap
.count(APN
)) {
898 // We want to be able to distinguish between PHI nodes being inserted by
899 // this invocation of mem2reg from those phi nodes that already existed in
900 // the IR before mem2reg was run. We determine that APN is being inserted
901 // because it is missing incoming edges. All other PHI nodes being
902 // inserted by this pass of mem2reg will have the same number of incoming
903 // operands so far. Remember this count.
904 unsigned NewPHINumOperands
= APN
->getNumOperands();
906 unsigned NumEdges
= llvm::count(successors(Pred
), BB
);
907 assert(NumEdges
&& "Must be at least one edge from Pred to BB!");
909 // Add entries for all the phis.
910 BasicBlock::iterator PNI
= BB
->begin();
912 unsigned AllocaNo
= PhiToAllocaMap
[APN
];
914 // Update the location of the phi node.
915 updateForIncomingValueLocation(APN
, IncomingLocs
[AllocaNo
],
916 APN
->getNumIncomingValues() > 0);
918 // Add N incoming values to the PHI node.
919 for (unsigned i
= 0; i
!= NumEdges
; ++i
)
920 APN
->addIncoming(IncomingVals
[AllocaNo
], Pred
);
922 // The currently active variable for this block is now the PHI.
923 IncomingVals
[AllocaNo
] = APN
;
924 for (DbgVariableIntrinsic
*DII
: AllocaDbgUsers
[AllocaNo
])
925 if (DII
->isAddressOfVariable())
926 ConvertDebugDeclareToDebugValue(DII
, APN
, DIB
);
928 // Get the next phi node.
930 APN
= dyn_cast
<PHINode
>(PNI
);
934 // Verify that it is missing entries. If not, it is not being inserted
935 // by this mem2reg invocation so we want to ignore it.
936 } while (APN
->getNumOperands() == NewPHINumOperands
);
940 // Don't revisit blocks.
941 if (!Visited
.insert(BB
).second
)
944 for (BasicBlock::iterator II
= BB
->begin(); !II
->isTerminator();) {
945 Instruction
*I
= &*II
++; // get the instruction, increment iterator
947 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
948 AllocaInst
*Src
= dyn_cast
<AllocaInst
>(LI
->getPointerOperand());
952 DenseMap
<AllocaInst
*, unsigned>::iterator AI
= AllocaLookup
.find(Src
);
953 if (AI
== AllocaLookup
.end())
956 Value
*V
= IncomingVals
[AI
->second
];
958 // If the load was marked as nonnull we don't want to lose
959 // that information when we erase this Load. So we preserve
960 // it with an assume.
961 if (AC
&& LI
->getMetadata(LLVMContext::MD_nonnull
) &&
962 !isKnownNonZero(V
, SQ
.DL
, 0, AC
, LI
, &DT
))
963 addAssumeNonNull(AC
, LI
);
965 // Anything using the load now uses the current value.
966 LI
->replaceAllUsesWith(V
);
967 BB
->getInstList().erase(LI
);
968 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
969 // Delete this instruction and mark the name as the current holder of the
971 AllocaInst
*Dest
= dyn_cast
<AllocaInst
>(SI
->getPointerOperand());
975 DenseMap
<AllocaInst
*, unsigned>::iterator ai
= AllocaLookup
.find(Dest
);
976 if (ai
== AllocaLookup
.end())
979 // what value were we writing?
980 unsigned AllocaNo
= ai
->second
;
981 IncomingVals
[AllocaNo
] = SI
->getOperand(0);
983 // Record debuginfo for the store before removing it.
984 IncomingLocs
[AllocaNo
] = SI
->getDebugLoc();
985 for (DbgVariableIntrinsic
*DII
: AllocaDbgUsers
[ai
->second
])
986 if (DII
->isAddressOfVariable())
987 ConvertDebugDeclareToDebugValue(DII
, SI
, DIB
);
988 BB
->getInstList().erase(SI
);
992 // 'Recurse' to our successors.
993 succ_iterator I
= succ_begin(BB
), E
= succ_end(BB
);
997 // Keep track of the successors so we don't visit the same successor twice
998 SmallPtrSet
<BasicBlock
*, 8> VisitedSuccs
;
1000 // Handle the first successor without using the worklist.
1001 VisitedSuccs
.insert(*I
);
1007 if (VisitedSuccs
.insert(*I
).second
)
1008 Worklist
.emplace_back(*I
, Pred
, IncomingVals
, IncomingLocs
);
1013 void llvm::PromoteMemToReg(ArrayRef
<AllocaInst
*> Allocas
, DominatorTree
&DT
,
1014 AssumptionCache
*AC
) {
1015 // If there is nothing to do, bail out...
1016 if (Allocas
.empty())
1019 PromoteMem2Reg(Allocas
, DT
, AC
).run();