[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Utils / VNCoercion.cpp
blob6336af25ef982bbc7ec5617b741159f967d73e08
1 #include "llvm/Transforms/Utils/VNCoercion.h"
2 #include "llvm/Analysis/ConstantFolding.h"
3 #include "llvm/Analysis/ValueTracking.h"
4 #include "llvm/IR/IRBuilder.h"
5 #include "llvm/Support/Debug.h"
7 #define DEBUG_TYPE "vncoerce"
9 namespace llvm {
10 namespace VNCoercion {
12 static bool isFirstClassAggregateOrScalableType(Type *Ty) {
13 return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
16 /// Return true if coerceAvailableValueToLoadType will succeed.
17 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
18 const DataLayout &DL) {
19 Type *StoredTy = StoredVal->getType();
21 if (StoredTy == LoadTy)
22 return true;
24 // If the loaded/stored value is a first class array/struct, or scalable type,
25 // don't try to transform them. We need to be able to bitcast to integer.
26 if (isFirstClassAggregateOrScalableType(LoadTy) ||
27 isFirstClassAggregateOrScalableType(StoredTy))
28 return false;
30 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedSize();
32 // The store size must be byte-aligned to support future type casts.
33 if (llvm::alignTo(StoreSize, 8) != StoreSize)
34 return false;
36 // The store has to be at least as big as the load.
37 if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedSize())
38 return false;
40 bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
41 bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
42 // Don't coerce non-integral pointers to integers or vice versa.
43 if (StoredNI != LoadNI) {
44 // As a special case, allow coercion of memset used to initialize
45 // an array w/null. Despite non-integral pointers not generally having a
46 // specific bit pattern, we do assume null is zero.
47 if (auto *CI = dyn_cast<Constant>(StoredVal))
48 return CI->isNullValue();
49 return false;
50 } else if (StoredNI && LoadNI &&
51 StoredTy->getPointerAddressSpace() !=
52 LoadTy->getPointerAddressSpace()) {
53 return false;
57 // The implementation below uses inttoptr for vectors of unequal size; we
58 // can't allow this for non integral pointers. We could teach it to extract
59 // exact subvectors if desired.
60 if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedSize())
61 return false;
63 return true;
66 template <class T, class HelperClass>
67 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy,
68 HelperClass &Helper,
69 const DataLayout &DL) {
70 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
71 "precondition violation - materialization can't fail");
72 if (auto *C = dyn_cast<Constant>(StoredVal))
73 StoredVal = ConstantFoldConstant(C, DL);
75 // If this is already the right type, just return it.
76 Type *StoredValTy = StoredVal->getType();
78 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedSize();
79 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedSize();
81 // If the store and reload are the same size, we can always reuse it.
82 if (StoredValSize == LoadedValSize) {
83 // Pointer to Pointer -> use bitcast.
84 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
85 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
86 } else {
87 // Convert source pointers to integers, which can be bitcast.
88 if (StoredValTy->isPtrOrPtrVectorTy()) {
89 StoredValTy = DL.getIntPtrType(StoredValTy);
90 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
93 Type *TypeToCastTo = LoadedTy;
94 if (TypeToCastTo->isPtrOrPtrVectorTy())
95 TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
97 if (StoredValTy != TypeToCastTo)
98 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
100 // Cast to pointer if the load needs a pointer type.
101 if (LoadedTy->isPtrOrPtrVectorTy())
102 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
105 if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
106 StoredVal = ConstantFoldConstant(C, DL);
108 return StoredVal;
110 // If the loaded value is smaller than the available value, then we can
111 // extract out a piece from it. If the available value is too small, then we
112 // can't do anything.
113 assert(StoredValSize >= LoadedValSize &&
114 "canCoerceMustAliasedValueToLoad fail");
116 // Convert source pointers to integers, which can be manipulated.
117 if (StoredValTy->isPtrOrPtrVectorTy()) {
118 StoredValTy = DL.getIntPtrType(StoredValTy);
119 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
122 // Convert vectors and fp to integer, which can be manipulated.
123 if (!StoredValTy->isIntegerTy()) {
124 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
125 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
128 // If this is a big-endian system, we need to shift the value down to the low
129 // bits so that a truncate will work.
130 if (DL.isBigEndian()) {
131 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedSize() -
132 DL.getTypeStoreSizeInBits(LoadedTy).getFixedSize();
133 StoredVal = Helper.CreateLShr(
134 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
137 // Truncate the integer to the right size now.
138 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
139 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
141 if (LoadedTy != NewIntTy) {
142 // If the result is a pointer, inttoptr.
143 if (LoadedTy->isPtrOrPtrVectorTy())
144 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
145 else
146 // Otherwise, bitcast.
147 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
150 if (auto *C = dyn_cast<Constant>(StoredVal))
151 StoredVal = ConstantFoldConstant(C, DL);
153 return StoredVal;
156 /// If we saw a store of a value to memory, and
157 /// then a load from a must-aliased pointer of a different type, try to coerce
158 /// the stored value. LoadedTy is the type of the load we want to replace.
159 /// IRB is IRBuilder used to insert new instructions.
161 /// If we can't do it, return null.
162 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
163 IRBuilderBase &IRB,
164 const DataLayout &DL) {
165 return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL);
168 /// This function is called when we have a memdep query of a load that ends up
169 /// being a clobbering memory write (store, memset, memcpy, memmove). This
170 /// means that the write *may* provide bits used by the load but we can't be
171 /// sure because the pointers don't must-alias.
173 /// Check this case to see if there is anything more we can do before we give
174 /// up. This returns -1 if we have to give up, or a byte number in the stored
175 /// value of the piece that feeds the load.
176 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
177 Value *WritePtr,
178 uint64_t WriteSizeInBits,
179 const DataLayout &DL) {
180 // If the loaded/stored value is a first class array/struct, or scalable type,
181 // don't try to transform them. We need to be able to bitcast to integer.
182 if (isFirstClassAggregateOrScalableType(LoadTy))
183 return -1;
185 int64_t StoreOffset = 0, LoadOffset = 0;
186 Value *StoreBase =
187 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
188 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
189 if (StoreBase != LoadBase)
190 return -1;
192 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize();
194 if ((WriteSizeInBits & 7) | (LoadSize & 7))
195 return -1;
196 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
197 LoadSize /= 8;
199 // If the Load isn't completely contained within the stored bits, we don't
200 // have all the bits to feed it. We could do something crazy in the future
201 // (issue a smaller load then merge the bits in) but this seems unlikely to be
202 // valuable.
203 if (StoreOffset > LoadOffset ||
204 StoreOffset + StoreSize < LoadOffset + LoadSize)
205 return -1;
207 // If the load and store are to the exact same address, they should have been
208 // a must alias. AA must have gotten confused.
209 // FIXME: Study to see if/when this happens. One case is forwarding a memset
210 // to a load from the base of the memset.
212 // If the load and store don't overlap at all, the store doesn't provide
213 // anything to the load. In this case, they really don't alias at all, AA
214 // must have gotten confused. The if statement above ensure the condition
215 // that StoreOffset <= LoadOffset.
216 if (StoreOffset + int64_t(StoreSize) <= LoadOffset)
217 return -1;
219 // Okay, we can do this transformation. Return the number of bytes into the
220 // store that the load is.
221 return LoadOffset - StoreOffset;
224 /// This function is called when we have a
225 /// memdep query of a load that ends up being a clobbering store.
226 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
227 StoreInst *DepSI, const DataLayout &DL) {
228 auto *StoredVal = DepSI->getValueOperand();
230 // Cannot handle reading from store of first-class aggregate or scalable type.
231 if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
232 return -1;
234 if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL))
235 return -1;
237 Value *StorePtr = DepSI->getPointerOperand();
238 uint64_t StoreSize =
239 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedSize();
240 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
241 DL);
244 /// Looks at a memory location for a load (specified by MemLocBase, Offs, and
245 /// Size) and compares it against a load.
247 /// If the specified load could be safely widened to a larger integer load
248 /// that is 1) still efficient, 2) safe for the target, and 3) would provide
249 /// the specified memory location value, then this function returns the size
250 /// in bytes of the load width to use. If not, this returns zero.
251 static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase,
252 int64_t MemLocOffs,
253 unsigned MemLocSize,
254 const LoadInst *LI) {
255 // We can only extend simple integer loads.
256 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
257 return 0;
259 // Load widening is hostile to ThreadSanitizer: it may cause false positives
260 // or make the reports more cryptic (access sizes are wrong).
261 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
262 return 0;
264 const DataLayout &DL = LI->getModule()->getDataLayout();
266 // Get the base of this load.
267 int64_t LIOffs = 0;
268 const Value *LIBase =
269 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
271 // If the two pointers are not based on the same pointer, we can't tell that
272 // they are related.
273 if (LIBase != MemLocBase)
274 return 0;
276 // Okay, the two values are based on the same pointer, but returned as
277 // no-alias. This happens when we have things like two byte loads at "P+1"
278 // and "P+3". Check to see if increasing the size of the "LI" load up to its
279 // alignment (or the largest native integer type) will allow us to load all
280 // the bits required by MemLoc.
282 // If MemLoc is before LI, then no widening of LI will help us out.
283 if (MemLocOffs < LIOffs)
284 return 0;
286 // Get the alignment of the load in bytes. We assume that it is safe to load
287 // any legal integer up to this size without a problem. For example, if we're
288 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
289 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
290 // to i16.
291 unsigned LoadAlign = LI->getAlignment();
293 int64_t MemLocEnd = MemLocOffs + MemLocSize;
295 // If no amount of rounding up will let MemLoc fit into LI, then bail out.
296 if (LIOffs + LoadAlign < MemLocEnd)
297 return 0;
299 // This is the size of the load to try. Start with the next larger power of
300 // two.
301 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
302 NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
304 while (true) {
305 // If this load size is bigger than our known alignment or would not fit
306 // into a native integer register, then we fail.
307 if (NewLoadByteSize > LoadAlign ||
308 !DL.fitsInLegalInteger(NewLoadByteSize * 8))
309 return 0;
311 if (LIOffs + NewLoadByteSize > MemLocEnd &&
312 (LI->getParent()->getParent()->hasFnAttribute(
313 Attribute::SanitizeAddress) ||
314 LI->getParent()->getParent()->hasFnAttribute(
315 Attribute::SanitizeHWAddress)))
316 // We will be reading past the location accessed by the original program.
317 // While this is safe in a regular build, Address Safety analysis tools
318 // may start reporting false warnings. So, don't do widening.
319 return 0;
321 // If a load of this width would include all of MemLoc, then we succeed.
322 if (LIOffs + NewLoadByteSize >= MemLocEnd)
323 return NewLoadByteSize;
325 NewLoadByteSize <<= 1;
329 /// This function is called when we have a
330 /// memdep query of a load that ends up being clobbered by another load. See if
331 /// the other load can feed into the second load.
332 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
333 const DataLayout &DL) {
334 // Cannot handle reading from store of first-class aggregate yet.
335 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
336 return -1;
338 if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL))
339 return -1;
341 Value *DepPtr = DepLI->getPointerOperand();
342 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedSize();
343 int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
344 if (R != -1)
345 return R;
347 // If we have a load/load clobber an DepLI can be widened to cover this load,
348 // then we should widen it!
349 int64_t LoadOffs = 0;
350 const Value *LoadBase =
351 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
352 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
354 unsigned Size =
355 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI);
356 if (Size == 0)
357 return -1;
359 // Check non-obvious conditions enforced by MDA which we rely on for being
360 // able to materialize this potentially available value
361 assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
362 assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
364 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
367 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
368 MemIntrinsic *MI, const DataLayout &DL) {
369 // If the mem operation is a non-constant size, we can't handle it.
370 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
371 if (!SizeCst)
372 return -1;
373 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
375 // If this is memset, we just need to see if the offset is valid in the size
376 // of the memset..
377 if (MI->getIntrinsicID() == Intrinsic::memset) {
378 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
379 auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue());
380 if (!CI || !CI->isZero())
381 return -1;
383 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
384 MemSizeInBits, DL);
387 // If we have a memcpy/memmove, the only case we can handle is if this is a
388 // copy from constant memory. In that case, we can read directly from the
389 // constant memory.
390 MemTransferInst *MTI = cast<MemTransferInst>(MI);
392 Constant *Src = dyn_cast<Constant>(MTI->getSource());
393 if (!Src)
394 return -1;
396 GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
397 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
398 return -1;
400 // See if the access is within the bounds of the transfer.
401 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
402 MemSizeInBits, DL);
403 if (Offset == -1)
404 return Offset;
406 unsigned AS = Src->getType()->getPointerAddressSpace();
407 // Otherwise, see if we can constant fold a load from the constant with the
408 // offset applied as appropriate.
409 if (Offset) {
410 Src = ConstantExpr::getBitCast(Src,
411 Type::getInt8PtrTy(Src->getContext(), AS));
412 Constant *OffsetCst =
413 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
414 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()),
415 Src, OffsetCst);
417 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
418 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL))
419 return Offset;
420 return -1;
423 template <class T, class HelperClass>
424 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy,
425 HelperClass &Helper,
426 const DataLayout &DL) {
427 LLVMContext &Ctx = SrcVal->getType()->getContext();
429 // If two pointers are in the same address space, they have the same size,
430 // so we don't need to do any truncation, etc. This avoids introducing
431 // ptrtoint instructions for pointers that may be non-integral.
432 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
433 cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
434 cast<PointerType>(LoadTy)->getAddressSpace()) {
435 return SrcVal;
438 uint64_t StoreSize =
439 (DL.getTypeSizeInBits(SrcVal->getType()).getFixedSize() + 7) / 8;
440 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedSize() + 7) / 8;
441 // Compute which bits of the stored value are being used by the load. Convert
442 // to an integer type to start with.
443 if (SrcVal->getType()->isPtrOrPtrVectorTy())
444 SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
445 if (!SrcVal->getType()->isIntegerTy())
446 SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
448 // Shift the bits to the least significant depending on endianness.
449 unsigned ShiftAmt;
450 if (DL.isLittleEndian())
451 ShiftAmt = Offset * 8;
452 else
453 ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
454 if (ShiftAmt)
455 SrcVal = Helper.CreateLShr(SrcVal,
456 ConstantInt::get(SrcVal->getType(), ShiftAmt));
458 if (LoadSize != StoreSize)
459 SrcVal = Helper.CreateTruncOrBitCast(SrcVal,
460 IntegerType::get(Ctx, LoadSize * 8));
461 return SrcVal;
464 /// This function is called when we have a memdep query of a load that ends up
465 /// being a clobbering store. This means that the store provides bits used by
466 /// the load but the pointers don't must-alias. Check this case to see if
467 /// there is anything more we can do before we give up.
468 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
469 Instruction *InsertPt, const DataLayout &DL) {
471 IRBuilder<> Builder(InsertPt);
472 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
473 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL);
476 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
477 Type *LoadTy, const DataLayout &DL) {
478 ConstantFolder F;
479 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL);
480 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL);
483 /// This function is called when we have a memdep query of a load that ends up
484 /// being a clobbering load. This means that the load *may* provide bits used
485 /// by the load but we can't be sure because the pointers don't must-alias.
486 /// Check this case to see if there is anything more we can do before we give
487 /// up.
488 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
489 Instruction *InsertPt, const DataLayout &DL) {
490 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
491 // widen SrcVal out to a larger load.
492 unsigned SrcValStoreSize =
493 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
494 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
495 if (Offset + LoadSize > SrcValStoreSize) {
496 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
497 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
498 // If we have a load/load clobber an DepLI can be widened to cover this
499 // load, then we should widen it to the next power of 2 size big enough!
500 unsigned NewLoadSize = Offset + LoadSize;
501 if (!isPowerOf2_32(NewLoadSize))
502 NewLoadSize = NextPowerOf2(NewLoadSize);
504 Value *PtrVal = SrcVal->getPointerOperand();
505 // Insert the new load after the old load. This ensures that subsequent
506 // memdep queries will find the new load. We can't easily remove the old
507 // load completely because it is already in the value numbering table.
508 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
509 Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
510 Type *DestPTy =
511 PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace());
512 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
513 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
514 LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal);
515 NewLoad->takeName(SrcVal);
516 NewLoad->setAlignment(SrcVal->getAlign());
518 LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
519 LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
521 // Replace uses of the original load with the wider load. On a big endian
522 // system, we need to shift down to get the relevant bits.
523 Value *RV = NewLoad;
524 if (DL.isBigEndian())
525 RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
526 RV = Builder.CreateTrunc(RV, SrcVal->getType());
527 SrcVal->replaceAllUsesWith(RV);
529 SrcVal = NewLoad;
532 return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
535 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
536 Type *LoadTy, const DataLayout &DL) {
537 unsigned SrcValStoreSize =
538 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
539 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
540 if (Offset + LoadSize > SrcValStoreSize)
541 return nullptr;
542 return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
545 template <class T, class HelperClass>
546 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset,
547 Type *LoadTy, HelperClass &Helper,
548 const DataLayout &DL) {
549 LLVMContext &Ctx = LoadTy->getContext();
550 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8;
552 // We know that this method is only called when the mem transfer fully
553 // provides the bits for the load.
554 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
555 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
556 // independently of what the offset is.
557 T *Val = cast<T>(MSI->getValue());
558 if (LoadSize != 1)
559 Val =
560 Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
561 T *OneElt = Val;
563 // Splat the value out to the right number of bits.
564 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
565 // If we can double the number of bytes set, do it.
566 if (NumBytesSet * 2 <= LoadSize) {
567 T *ShVal = Helper.CreateShl(
568 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
569 Val = Helper.CreateOr(Val, ShVal);
570 NumBytesSet <<= 1;
571 continue;
574 // Otherwise insert one byte at a time.
575 T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
576 Val = Helper.CreateOr(OneElt, ShVal);
577 ++NumBytesSet;
580 return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL);
583 // Otherwise, this is a memcpy/memmove from a constant global.
584 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
585 Constant *Src = cast<Constant>(MTI->getSource());
587 unsigned AS = Src->getType()->getPointerAddressSpace();
588 // Otherwise, see if we can constant fold a load from the constant with the
589 // offset applied as appropriate.
590 if (Offset) {
591 Src = ConstantExpr::getBitCast(Src,
592 Type::getInt8PtrTy(Src->getContext(), AS));
593 Constant *OffsetCst =
594 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
595 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()),
596 Src, OffsetCst);
598 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
599 return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL);
602 /// This function is called when we have a
603 /// memdep query of a load that ends up being a clobbering mem intrinsic.
604 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
605 Type *LoadTy, Instruction *InsertPt,
606 const DataLayout &DL) {
607 IRBuilder<> Builder(InsertPt);
608 return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset,
609 LoadTy, Builder, DL);
612 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
613 Type *LoadTy, const DataLayout &DL) {
614 // The only case analyzeLoadFromClobberingMemInst cannot be converted to a
615 // constant is when it's a memset of a non-constant.
616 if (auto *MSI = dyn_cast<MemSetInst>(SrcInst))
617 if (!isa<Constant>(MSI->getValue()))
618 return nullptr;
619 ConstantFolder F;
620 return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset,
621 LoadTy, F, DL);
623 } // namespace VNCoercion
624 } // namespace llvm