[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Vectorize / LoopVectorizationLegality.cpp
blob3c484fb0d28a1b4cc104e159d853519717f3ec0a
1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Transforms/Utils/SizeOpts.h"
26 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
28 using namespace llvm;
29 using namespace PatternMatch;
31 #define LV_NAME "loop-vectorize"
32 #define DEBUG_TYPE LV_NAME
34 extern cl::opt<bool> EnableVPlanPredication;
36 static cl::opt<bool>
37 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
38 cl::desc("Enable if-conversion during vectorization."));
40 namespace llvm {
41 cl::opt<bool>
42 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
43 cl::desc("Allow enabling loop hints to reorder "
44 "FP operations during vectorization."));
47 // TODO: Move size-based thresholds out of legality checking, make cost based
48 // decisions instead of hard thresholds.
49 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
50 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
51 cl::desc("The maximum number of SCEV checks allowed."));
53 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
54 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
55 cl::desc("The maximum number of SCEV checks allowed with a "
56 "vectorize(enable) pragma"));
58 // FIXME: When scalable vectorization is stable enough, change the default
59 // to SK_PreferFixedWidth.
60 static cl::opt<LoopVectorizeHints::ScalableForceKind> ScalableVectorization(
61 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_FixedWidthOnly),
62 cl::Hidden,
63 cl::desc("Control whether the compiler can use scalable vectors to "
64 "vectorize a loop"),
65 cl::values(
66 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
67 "Scalable vectorization is disabled."),
68 clEnumValN(LoopVectorizeHints::SK_PreferFixedWidth, "on",
69 "Scalable vectorization is available, but favor fixed-width "
70 "vectorization when the cost is inconclusive."),
71 clEnumValN(LoopVectorizeHints::SK_PreferScalable, "preferred",
72 "Scalable vectorization is available and favored when the "
73 "cost is inconclusive.")));
75 /// Maximum vectorization interleave count.
76 static const unsigned MaxInterleaveFactor = 16;
78 namespace llvm {
80 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
81 switch (Kind) {
82 case HK_WIDTH:
83 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
84 case HK_INTERLEAVE:
85 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
86 case HK_FORCE:
87 return (Val <= 1);
88 case HK_ISVECTORIZED:
89 case HK_PREDICATE:
90 case HK_SCALABLE:
91 return (Val == 0 || Val == 1);
93 return false;
96 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
97 bool InterleaveOnlyWhenForced,
98 OptimizationRemarkEmitter &ORE)
99 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
100 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
101 Force("vectorize.enable", FK_Undefined, HK_FORCE),
102 IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
103 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
104 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
105 TheLoop(L), ORE(ORE) {
106 // Populate values with existing loop metadata.
107 getHintsFromMetadata();
109 // force-vector-interleave overrides DisableInterleaving.
110 if (VectorizerParams::isInterleaveForced())
111 Interleave.Value = VectorizerParams::VectorizationInterleave;
113 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
114 // If the width is set, but the metadata says nothing about the scalable
115 // property, then assume it concerns only a fixed-width UserVF.
116 // If width is not set, the flag takes precedence.
117 Scalable.Value = Width.Value ? SK_FixedWidthOnly : ScalableVectorization;
118 else if (ScalableVectorization == SK_FixedWidthOnly)
119 // If the flag is set to disable any use of scalable vectors, override the
120 // loop hint.
121 Scalable.Value = SK_FixedWidthOnly;
123 if (IsVectorized.Value != 1)
124 // If the vectorization width and interleaving count are both 1 then
125 // consider the loop to have been already vectorized because there's
126 // nothing more that we can do.
127 IsVectorized.Value =
128 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
129 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
130 << "LV: Interleaving disabled by the pass manager\n");
133 void LoopVectorizeHints::setAlreadyVectorized() {
134 LLVMContext &Context = TheLoop->getHeader()->getContext();
136 MDNode *IsVectorizedMD = MDNode::get(
137 Context,
138 {MDString::get(Context, "llvm.loop.isvectorized"),
139 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
140 MDNode *LoopID = TheLoop->getLoopID();
141 MDNode *NewLoopID =
142 makePostTransformationMetadata(Context, LoopID,
143 {Twine(Prefix(), "vectorize.").str(),
144 Twine(Prefix(), "interleave.").str()},
145 {IsVectorizedMD});
146 TheLoop->setLoopID(NewLoopID);
148 // Update internal cache.
149 IsVectorized.Value = 1;
152 bool LoopVectorizeHints::allowVectorization(
153 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
154 if (getForce() == LoopVectorizeHints::FK_Disabled) {
155 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
156 emitRemarkWithHints();
157 return false;
160 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
161 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
162 emitRemarkWithHints();
163 return false;
166 if (getIsVectorized() == 1) {
167 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
168 // FIXME: Add interleave.disable metadata. This will allow
169 // vectorize.disable to be used without disabling the pass and errors
170 // to differentiate between disabled vectorization and a width of 1.
171 ORE.emit([&]() {
172 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
173 "AllDisabled", L->getStartLoc(),
174 L->getHeader())
175 << "loop not vectorized: vectorization and interleaving are "
176 "explicitly disabled, or the loop has already been "
177 "vectorized";
179 return false;
182 return true;
185 void LoopVectorizeHints::emitRemarkWithHints() const {
186 using namespace ore;
188 ORE.emit([&]() {
189 if (Force.Value == LoopVectorizeHints::FK_Disabled)
190 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
191 TheLoop->getStartLoc(),
192 TheLoop->getHeader())
193 << "loop not vectorized: vectorization is explicitly disabled";
194 else {
195 OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
196 TheLoop->getStartLoc(), TheLoop->getHeader());
197 R << "loop not vectorized";
198 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
199 R << " (Force=" << NV("Force", true);
200 if (Width.Value != 0)
201 R << ", Vector Width=" << NV("VectorWidth", getWidth());
202 if (getInterleave() != 0)
203 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
204 R << ")";
206 return R;
211 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
212 if (getWidth() == ElementCount::getFixed(1))
213 return LV_NAME;
214 if (getForce() == LoopVectorizeHints::FK_Disabled)
215 return LV_NAME;
216 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
217 return LV_NAME;
218 return OptimizationRemarkAnalysis::AlwaysPrint;
221 bool LoopVectorizeHints::allowReordering() const {
222 // Allow the vectorizer to change the order of operations if enabling
223 // loop hints are provided
224 ElementCount EC = getWidth();
225 return HintsAllowReordering &&
226 (getForce() == LoopVectorizeHints::FK_Enabled ||
227 EC.getKnownMinValue() > 1);
230 void LoopVectorizeHints::getHintsFromMetadata() {
231 MDNode *LoopID = TheLoop->getLoopID();
232 if (!LoopID)
233 return;
235 // First operand should refer to the loop id itself.
236 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
237 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
239 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
240 const MDString *S = nullptr;
241 SmallVector<Metadata *, 4> Args;
243 // The expected hint is either a MDString or a MDNode with the first
244 // operand a MDString.
245 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
246 if (!MD || MD->getNumOperands() == 0)
247 continue;
248 S = dyn_cast<MDString>(MD->getOperand(0));
249 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
250 Args.push_back(MD->getOperand(i));
251 } else {
252 S = dyn_cast<MDString>(LoopID->getOperand(i));
253 assert(Args.size() == 0 && "too many arguments for MDString");
256 if (!S)
257 continue;
259 // Check if the hint starts with the loop metadata prefix.
260 StringRef Name = S->getString();
261 if (Args.size() == 1)
262 setHint(Name, Args[0]);
266 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
267 if (!Name.startswith(Prefix()))
268 return;
269 Name = Name.substr(Prefix().size(), StringRef::npos);
271 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
272 if (!C)
273 return;
274 unsigned Val = C->getZExtValue();
276 Hint *Hints[] = {&Width, &Interleave, &Force,
277 &IsVectorized, &Predicate, &Scalable};
278 for (auto H : Hints) {
279 if (Name == H->Name) {
280 if (H->validate(Val))
281 H->Value = Val;
282 else
283 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
284 break;
289 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
290 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
291 // executing the inner loop will execute the same iterations). This check is
292 // very constrained for now but it will be relaxed in the future. \p Lp is
293 // considered uniform if it meets all the following conditions:
294 // 1) it has a canonical IV (starting from 0 and with stride 1),
295 // 2) its latch terminator is a conditional branch and,
296 // 3) its latch condition is a compare instruction whose operands are the
297 // canonical IV and an OuterLp invariant.
298 // This check doesn't take into account the uniformity of other conditions not
299 // related to the loop latch because they don't affect the loop uniformity.
301 // NOTE: We decided to keep all these checks and its associated documentation
302 // together so that we can easily have a picture of the current supported loop
303 // nests. However, some of the current checks don't depend on \p OuterLp and
304 // would be redundantly executed for each \p Lp if we invoked this function for
305 // different candidate outer loops. This is not the case for now because we
306 // don't currently have the infrastructure to evaluate multiple candidate outer
307 // loops and \p OuterLp will be a fixed parameter while we only support explicit
308 // outer loop vectorization. It's also very likely that these checks go away
309 // before introducing the aforementioned infrastructure. However, if this is not
310 // the case, we should move the \p OuterLp independent checks to a separate
311 // function that is only executed once for each \p Lp.
312 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
313 assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
315 // If Lp is the outer loop, it's uniform by definition.
316 if (Lp == OuterLp)
317 return true;
318 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
320 // 1.
321 PHINode *IV = Lp->getCanonicalInductionVariable();
322 if (!IV) {
323 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
324 return false;
327 // 2.
328 BasicBlock *Latch = Lp->getLoopLatch();
329 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
330 if (!LatchBr || LatchBr->isUnconditional()) {
331 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
332 return false;
335 // 3.
336 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
337 if (!LatchCmp) {
338 LLVM_DEBUG(
339 dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
340 return false;
343 Value *CondOp0 = LatchCmp->getOperand(0);
344 Value *CondOp1 = LatchCmp->getOperand(1);
345 Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
346 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
347 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
348 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
349 return false;
352 return true;
355 // Return true if \p Lp and all its nested loops are uniform with regard to \p
356 // OuterLp.
357 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
358 if (!isUniformLoop(Lp, OuterLp))
359 return false;
361 // Check if nested loops are uniform.
362 for (Loop *SubLp : *Lp)
363 if (!isUniformLoopNest(SubLp, OuterLp))
364 return false;
366 return true;
369 /// Check whether it is safe to if-convert this phi node.
371 /// Phi nodes with constant expressions that can trap are not safe to if
372 /// convert.
373 static bool canIfConvertPHINodes(BasicBlock *BB) {
374 for (PHINode &Phi : BB->phis()) {
375 for (Value *V : Phi.incoming_values())
376 if (auto *C = dyn_cast<Constant>(V))
377 if (C->canTrap())
378 return false;
380 return true;
383 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
384 if (Ty->isPointerTy())
385 return DL.getIntPtrType(Ty);
387 // It is possible that char's or short's overflow when we ask for the loop's
388 // trip count, work around this by changing the type size.
389 if (Ty->getScalarSizeInBits() < 32)
390 return Type::getInt32Ty(Ty->getContext());
392 return Ty;
395 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
396 Ty0 = convertPointerToIntegerType(DL, Ty0);
397 Ty1 = convertPointerToIntegerType(DL, Ty1);
398 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
399 return Ty0;
400 return Ty1;
403 /// Check that the instruction has outside loop users and is not an
404 /// identified reduction variable.
405 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
406 SmallPtrSetImpl<Value *> &AllowedExit) {
407 // Reductions, Inductions and non-header phis are allowed to have exit users. All
408 // other instructions must not have external users.
409 if (!AllowedExit.count(Inst))
410 // Check that all of the users of the loop are inside the BB.
411 for (User *U : Inst->users()) {
412 Instruction *UI = cast<Instruction>(U);
413 // This user may be a reduction exit value.
414 if (!TheLoop->contains(UI)) {
415 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
416 return true;
419 return false;
422 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) const {
423 const ValueToValueMap &Strides =
424 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
426 Function *F = TheLoop->getHeader()->getParent();
427 bool OptForSize = F->hasOptSize() ||
428 llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
429 PGSOQueryType::IRPass);
430 bool CanAddPredicate = !OptForSize;
431 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false);
432 if (Stride == 1 || Stride == -1)
433 return Stride;
434 return 0;
437 bool LoopVectorizationLegality::isUniform(Value *V) {
438 return LAI->isUniform(V);
441 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
442 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
443 // Store the result and return it at the end instead of exiting early, in case
444 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
445 bool Result = true;
446 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
448 for (BasicBlock *BB : TheLoop->blocks()) {
449 // Check whether the BB terminator is a BranchInst. Any other terminator is
450 // not supported yet.
451 auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
452 if (!Br) {
453 reportVectorizationFailure("Unsupported basic block terminator",
454 "loop control flow is not understood by vectorizer",
455 "CFGNotUnderstood", ORE, TheLoop);
456 if (DoExtraAnalysis)
457 Result = false;
458 else
459 return false;
462 // Check whether the BranchInst is a supported one. Only unconditional
463 // branches, conditional branches with an outer loop invariant condition or
464 // backedges are supported.
465 // FIXME: We skip these checks when VPlan predication is enabled as we
466 // want to allow divergent branches. This whole check will be removed
467 // once VPlan predication is on by default.
468 if (!EnableVPlanPredication && Br && Br->isConditional() &&
469 !TheLoop->isLoopInvariant(Br->getCondition()) &&
470 !LI->isLoopHeader(Br->getSuccessor(0)) &&
471 !LI->isLoopHeader(Br->getSuccessor(1))) {
472 reportVectorizationFailure("Unsupported conditional branch",
473 "loop control flow is not understood by vectorizer",
474 "CFGNotUnderstood", ORE, TheLoop);
475 if (DoExtraAnalysis)
476 Result = false;
477 else
478 return false;
482 // Check whether inner loops are uniform. At this point, we only support
483 // simple outer loops scenarios with uniform nested loops.
484 if (!isUniformLoopNest(TheLoop /*loop nest*/,
485 TheLoop /*context outer loop*/)) {
486 reportVectorizationFailure("Outer loop contains divergent loops",
487 "loop control flow is not understood by vectorizer",
488 "CFGNotUnderstood", ORE, TheLoop);
489 if (DoExtraAnalysis)
490 Result = false;
491 else
492 return false;
495 // Check whether we are able to set up outer loop induction.
496 if (!setupOuterLoopInductions()) {
497 reportVectorizationFailure("Unsupported outer loop Phi(s)",
498 "Unsupported outer loop Phi(s)",
499 "UnsupportedPhi", ORE, TheLoop);
500 if (DoExtraAnalysis)
501 Result = false;
502 else
503 return false;
506 return Result;
509 void LoopVectorizationLegality::addInductionPhi(
510 PHINode *Phi, const InductionDescriptor &ID,
511 SmallPtrSetImpl<Value *> &AllowedExit) {
512 Inductions[Phi] = ID;
514 // In case this induction also comes with casts that we know we can ignore
515 // in the vectorized loop body, record them here. All casts could be recorded
516 // here for ignoring, but suffices to record only the first (as it is the
517 // only one that may bw used outside the cast sequence).
518 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
519 if (!Casts.empty())
520 InductionCastsToIgnore.insert(*Casts.begin());
522 Type *PhiTy = Phi->getType();
523 const DataLayout &DL = Phi->getModule()->getDataLayout();
525 // Get the widest type.
526 if (!PhiTy->isFloatingPointTy()) {
527 if (!WidestIndTy)
528 WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
529 else
530 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
533 // Int inductions are special because we only allow one IV.
534 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
535 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
536 isa<Constant>(ID.getStartValue()) &&
537 cast<Constant>(ID.getStartValue())->isNullValue()) {
539 // Use the phi node with the widest type as induction. Use the last
540 // one if there are multiple (no good reason for doing this other
541 // than it is expedient). We've checked that it begins at zero and
542 // steps by one, so this is a canonical induction variable.
543 if (!PrimaryInduction || PhiTy == WidestIndTy)
544 PrimaryInduction = Phi;
547 // Both the PHI node itself, and the "post-increment" value feeding
548 // back into the PHI node may have external users.
549 // We can allow those uses, except if the SCEVs we have for them rely
550 // on predicates that only hold within the loop, since allowing the exit
551 // currently means re-using this SCEV outside the loop (see PR33706 for more
552 // details).
553 if (PSE.getUnionPredicate().isAlwaysTrue()) {
554 AllowedExit.insert(Phi);
555 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
558 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
561 bool LoopVectorizationLegality::setupOuterLoopInductions() {
562 BasicBlock *Header = TheLoop->getHeader();
564 // Returns true if a given Phi is a supported induction.
565 auto isSupportedPhi = [&](PHINode &Phi) -> bool {
566 InductionDescriptor ID;
567 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
568 ID.getKind() == InductionDescriptor::IK_IntInduction) {
569 addInductionPhi(&Phi, ID, AllowedExit);
570 return true;
571 } else {
572 // Bail out for any Phi in the outer loop header that is not a supported
573 // induction.
574 LLVM_DEBUG(
575 dbgs()
576 << "LV: Found unsupported PHI for outer loop vectorization.\n");
577 return false;
581 if (llvm::all_of(Header->phis(), isSupportedPhi))
582 return true;
583 else
584 return false;
587 /// Checks if a function is scalarizable according to the TLI, in
588 /// the sense that it should be vectorized and then expanded in
589 /// multiple scalar calls. This is represented in the
590 /// TLI via mappings that do not specify a vector name, as in the
591 /// following example:
593 /// const VecDesc VecIntrinsics[] = {
594 /// {"llvm.phx.abs.i32", "", 4}
595 /// };
596 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
597 const StringRef ScalarName = CI.getCalledFunction()->getName();
598 bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
599 // Check that all known VFs are not associated to a vector
600 // function, i.e. the vector name is emty.
601 if (Scalarize) {
602 ElementCount WidestFixedVF, WidestScalableVF;
603 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
604 for (ElementCount VF = ElementCount::getFixed(2);
605 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
606 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
607 for (ElementCount VF = ElementCount::getScalable(1);
608 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
609 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
610 assert((WidestScalableVF.isZero() || !Scalarize) &&
611 "Caller may decide to scalarize a variant using a scalable VF");
613 return Scalarize;
616 bool LoopVectorizationLegality::canVectorizeInstrs() {
617 BasicBlock *Header = TheLoop->getHeader();
619 // For each block in the loop.
620 for (BasicBlock *BB : TheLoop->blocks()) {
621 // Scan the instructions in the block and look for hazards.
622 for (Instruction &I : *BB) {
623 if (auto *Phi = dyn_cast<PHINode>(&I)) {
624 Type *PhiTy = Phi->getType();
625 // Check that this PHI type is allowed.
626 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
627 !PhiTy->isPointerTy()) {
628 reportVectorizationFailure("Found a non-int non-pointer PHI",
629 "loop control flow is not understood by vectorizer",
630 "CFGNotUnderstood", ORE, TheLoop);
631 return false;
634 // If this PHINode is not in the header block, then we know that we
635 // can convert it to select during if-conversion. No need to check if
636 // the PHIs in this block are induction or reduction variables.
637 if (BB != Header) {
638 // Non-header phi nodes that have outside uses can be vectorized. Add
639 // them to the list of allowed exits.
640 // Unsafe cyclic dependencies with header phis are identified during
641 // legalization for reduction, induction and first order
642 // recurrences.
643 AllowedExit.insert(&I);
644 continue;
647 // We only allow if-converted PHIs with exactly two incoming values.
648 if (Phi->getNumIncomingValues() != 2) {
649 reportVectorizationFailure("Found an invalid PHI",
650 "loop control flow is not understood by vectorizer",
651 "CFGNotUnderstood", ORE, TheLoop, Phi);
652 return false;
655 RecurrenceDescriptor RedDes;
656 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
657 DT)) {
658 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
659 AllowedExit.insert(RedDes.getLoopExitInstr());
660 Reductions[Phi] = RedDes;
661 continue;
664 // TODO: Instead of recording the AllowedExit, it would be good to record the
665 // complementary set: NotAllowedExit. These include (but may not be
666 // limited to):
667 // 1. Reduction phis as they represent the one-before-last value, which
668 // is not available when vectorized
669 // 2. Induction phis and increment when SCEV predicates cannot be used
670 // outside the loop - see addInductionPhi
671 // 3. Non-Phis with outside uses when SCEV predicates cannot be used
672 // outside the loop - see call to hasOutsideLoopUser in the non-phi
673 // handling below
674 // 4. FirstOrderRecurrence phis that can possibly be handled by
675 // extraction.
676 // By recording these, we can then reason about ways to vectorize each
677 // of these NotAllowedExit.
678 InductionDescriptor ID;
679 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
680 addInductionPhi(Phi, ID, AllowedExit);
681 Requirements->addExactFPMathInst(ID.getExactFPMathInst());
682 continue;
685 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
686 SinkAfter, DT)) {
687 AllowedExit.insert(Phi);
688 FirstOrderRecurrences.insert(Phi);
689 continue;
692 // As a last resort, coerce the PHI to a AddRec expression
693 // and re-try classifying it a an induction PHI.
694 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
695 addInductionPhi(Phi, ID, AllowedExit);
696 continue;
699 reportVectorizationFailure("Found an unidentified PHI",
700 "value that could not be identified as "
701 "reduction is used outside the loop",
702 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
703 return false;
704 } // end of PHI handling
706 // We handle calls that:
707 // * Are debug info intrinsics.
708 // * Have a mapping to an IR intrinsic.
709 // * Have a vector version available.
710 auto *CI = dyn_cast<CallInst>(&I);
712 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
713 !isa<DbgInfoIntrinsic>(CI) &&
714 !(CI->getCalledFunction() && TLI &&
715 (!VFDatabase::getMappings(*CI).empty() ||
716 isTLIScalarize(*TLI, *CI)))) {
717 // If the call is a recognized math libary call, it is likely that
718 // we can vectorize it given loosened floating-point constraints.
719 LibFunc Func;
720 bool IsMathLibCall =
721 TLI && CI->getCalledFunction() &&
722 CI->getType()->isFloatingPointTy() &&
723 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
724 TLI->hasOptimizedCodeGen(Func);
726 if (IsMathLibCall) {
727 // TODO: Ideally, we should not use clang-specific language here,
728 // but it's hard to provide meaningful yet generic advice.
729 // Also, should this be guarded by allowExtraAnalysis() and/or be part
730 // of the returned info from isFunctionVectorizable()?
731 reportVectorizationFailure(
732 "Found a non-intrinsic callsite",
733 "library call cannot be vectorized. "
734 "Try compiling with -fno-math-errno, -ffast-math, "
735 "or similar flags",
736 "CantVectorizeLibcall", ORE, TheLoop, CI);
737 } else {
738 reportVectorizationFailure("Found a non-intrinsic callsite",
739 "call instruction cannot be vectorized",
740 "CantVectorizeLibcall", ORE, TheLoop, CI);
742 return false;
745 // Some intrinsics have scalar arguments and should be same in order for
746 // them to be vectorized (i.e. loop invariant).
747 if (CI) {
748 auto *SE = PSE.getSE();
749 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
750 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
751 if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
752 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
753 reportVectorizationFailure("Found unvectorizable intrinsic",
754 "intrinsic instruction cannot be vectorized",
755 "CantVectorizeIntrinsic", ORE, TheLoop, CI);
756 return false;
761 // Check that the instruction return type is vectorizable.
762 // Also, we can't vectorize extractelement instructions.
763 if ((!VectorType::isValidElementType(I.getType()) &&
764 !I.getType()->isVoidTy()) ||
765 isa<ExtractElementInst>(I)) {
766 reportVectorizationFailure("Found unvectorizable type",
767 "instruction return type cannot be vectorized",
768 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
769 return false;
772 // Check that the stored type is vectorizable.
773 if (auto *ST = dyn_cast<StoreInst>(&I)) {
774 Type *T = ST->getValueOperand()->getType();
775 if (!VectorType::isValidElementType(T)) {
776 reportVectorizationFailure("Store instruction cannot be vectorized",
777 "store instruction cannot be vectorized",
778 "CantVectorizeStore", ORE, TheLoop, ST);
779 return false;
782 // For nontemporal stores, check that a nontemporal vector version is
783 // supported on the target.
784 if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
785 // Arbitrarily try a vector of 2 elements.
786 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
787 assert(VecTy && "did not find vectorized version of stored type");
788 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
789 reportVectorizationFailure(
790 "nontemporal store instruction cannot be vectorized",
791 "nontemporal store instruction cannot be vectorized",
792 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
793 return false;
797 } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
798 if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
799 // For nontemporal loads, check that a nontemporal vector version is
800 // supported on the target (arbitrarily try a vector of 2 elements).
801 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
802 assert(VecTy && "did not find vectorized version of load type");
803 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
804 reportVectorizationFailure(
805 "nontemporal load instruction cannot be vectorized",
806 "nontemporal load instruction cannot be vectorized",
807 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
808 return false;
812 // FP instructions can allow unsafe algebra, thus vectorizable by
813 // non-IEEE-754 compliant SIMD units.
814 // This applies to floating-point math operations and calls, not memory
815 // operations, shuffles, or casts, as they don't change precision or
816 // semantics.
817 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
818 !I.isFast()) {
819 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
820 Hints->setPotentiallyUnsafe();
823 // Reduction instructions are allowed to have exit users.
824 // All other instructions must not have external users.
825 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
826 // We can safely vectorize loops where instructions within the loop are
827 // used outside the loop only if the SCEV predicates within the loop is
828 // same as outside the loop. Allowing the exit means reusing the SCEV
829 // outside the loop.
830 if (PSE.getUnionPredicate().isAlwaysTrue()) {
831 AllowedExit.insert(&I);
832 continue;
834 reportVectorizationFailure("Value cannot be used outside the loop",
835 "value cannot be used outside the loop",
836 "ValueUsedOutsideLoop", ORE, TheLoop, &I);
837 return false;
839 } // next instr.
842 if (!PrimaryInduction) {
843 if (Inductions.empty()) {
844 reportVectorizationFailure("Did not find one integer induction var",
845 "loop induction variable could not be identified",
846 "NoInductionVariable", ORE, TheLoop);
847 return false;
848 } else if (!WidestIndTy) {
849 reportVectorizationFailure("Did not find one integer induction var",
850 "integer loop induction variable could not be identified",
851 "NoIntegerInductionVariable", ORE, TheLoop);
852 return false;
853 } else {
854 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
858 // For first order recurrences, we use the previous value (incoming value from
859 // the latch) to check if it dominates all users of the recurrence. Bail out
860 // if we have to sink such an instruction for another recurrence, as the
861 // dominance requirement may not hold after sinking.
862 BasicBlock *LoopLatch = TheLoop->getLoopLatch();
863 if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
864 Instruction *V =
865 cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
866 return SinkAfter.find(V) != SinkAfter.end();
868 return false;
870 // Now we know the widest induction type, check if our found induction
871 // is the same size. If it's not, unset it here and InnerLoopVectorizer
872 // will create another.
873 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
874 PrimaryInduction = nullptr;
876 return true;
879 bool LoopVectorizationLegality::canVectorizeMemory() {
880 LAI = &(*GetLAA)(*TheLoop);
881 const OptimizationRemarkAnalysis *LAR = LAI->getReport();
882 if (LAR) {
883 ORE->emit([&]() {
884 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
885 "loop not vectorized: ", *LAR);
889 if (!LAI->canVectorizeMemory())
890 return false;
892 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
893 reportVectorizationFailure("Stores to a uniform address",
894 "write to a loop invariant address could not be vectorized",
895 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
896 return false;
899 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
900 PSE.addPredicate(LAI->getPSE().getUnionPredicate());
901 return true;
904 bool LoopVectorizationLegality::canVectorizeFPMath(
905 bool EnableStrictReductions) {
907 // First check if there is any ExactFP math or if we allow reassociations
908 if (!Requirements->getExactFPInst() || Hints->allowReordering())
909 return true;
911 // If the above is false, we have ExactFPMath & do not allow reordering.
912 // If the EnableStrictReductions flag is set, first check if we have any
913 // Exact FP induction vars, which we cannot vectorize.
914 if (!EnableStrictReductions ||
915 any_of(getInductionVars(), [&](auto &Induction) -> bool {
916 InductionDescriptor IndDesc = Induction.second;
917 return IndDesc.getExactFPMathInst();
919 return false;
921 // We can now only vectorize if all reductions with Exact FP math also
922 // have the isOrdered flag set, which indicates that we can move the
923 // reduction operations in-loop.
924 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
925 const RecurrenceDescriptor &RdxDesc = Reduction.second;
926 return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
927 }));
930 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
931 Value *In0 = const_cast<Value *>(V);
932 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
933 if (!PN)
934 return false;
936 return Inductions.count(PN);
939 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
940 auto *Inst = dyn_cast<Instruction>(V);
941 return (Inst && InductionCastsToIgnore.count(Inst));
944 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
945 return isInductionPhi(V) || isCastedInductionVariable(V);
948 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
949 return FirstOrderRecurrences.count(Phi);
952 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
953 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
956 bool LoopVectorizationLegality::blockCanBePredicated(
957 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
958 SmallPtrSetImpl<const Instruction *> &MaskedOp,
959 SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const {
960 for (Instruction &I : *BB) {
961 // Check that we don't have a constant expression that can trap as operand.
962 for (Value *Operand : I.operands()) {
963 if (auto *C = dyn_cast<Constant>(Operand))
964 if (C->canTrap())
965 return false;
968 // We can predicate blocks with calls to assume, as long as we drop them in
969 // case we flatten the CFG via predication.
970 if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
971 ConditionalAssumes.insert(&I);
972 continue;
975 // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
976 // TODO: there might be cases that it should block the vectorization. Let's
977 // ignore those for now.
978 if (isa<NoAliasScopeDeclInst>(&I))
979 continue;
981 // We might be able to hoist the load.
982 if (I.mayReadFromMemory()) {
983 auto *LI = dyn_cast<LoadInst>(&I);
984 if (!LI)
985 return false;
986 if (!SafePtrs.count(LI->getPointerOperand())) {
987 MaskedOp.insert(LI);
988 continue;
992 if (I.mayWriteToMemory()) {
993 auto *SI = dyn_cast<StoreInst>(&I);
994 if (!SI)
995 return false;
996 // Predicated store requires some form of masking:
997 // 1) masked store HW instruction,
998 // 2) emulation via load-blend-store (only if safe and legal to do so,
999 // be aware on the race conditions), or
1000 // 3) element-by-element predicate check and scalar store.
1001 MaskedOp.insert(SI);
1002 continue;
1004 if (I.mayThrow())
1005 return false;
1008 return true;
1011 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1012 if (!EnableIfConversion) {
1013 reportVectorizationFailure("If-conversion is disabled",
1014 "if-conversion is disabled",
1015 "IfConversionDisabled",
1016 ORE, TheLoop);
1017 return false;
1020 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1022 // A list of pointers which are known to be dereferenceable within scope of
1023 // the loop body for each iteration of the loop which executes. That is,
1024 // the memory pointed to can be dereferenced (with the access size implied by
1025 // the value's type) unconditionally within the loop header without
1026 // introducing a new fault.
1027 SmallPtrSet<Value *, 8> SafePointers;
1029 // Collect safe addresses.
1030 for (BasicBlock *BB : TheLoop->blocks()) {
1031 if (!blockNeedsPredication(BB)) {
1032 for (Instruction &I : *BB)
1033 if (auto *Ptr = getLoadStorePointerOperand(&I))
1034 SafePointers.insert(Ptr);
1035 continue;
1038 // For a block which requires predication, a address may be safe to access
1039 // in the loop w/o predication if we can prove dereferenceability facts
1040 // sufficient to ensure it'll never fault within the loop. For the moment,
1041 // we restrict this to loads; stores are more complicated due to
1042 // concurrency restrictions.
1043 ScalarEvolution &SE = *PSE.getSE();
1044 for (Instruction &I : *BB) {
1045 LoadInst *LI = dyn_cast<LoadInst>(&I);
1046 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1047 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
1048 SafePointers.insert(LI->getPointerOperand());
1052 // Collect the blocks that need predication.
1053 BasicBlock *Header = TheLoop->getHeader();
1054 for (BasicBlock *BB : TheLoop->blocks()) {
1055 // We don't support switch statements inside loops.
1056 if (!isa<BranchInst>(BB->getTerminator())) {
1057 reportVectorizationFailure("Loop contains a switch statement",
1058 "loop contains a switch statement",
1059 "LoopContainsSwitch", ORE, TheLoop,
1060 BB->getTerminator());
1061 return false;
1064 // We must be able to predicate all blocks that need to be predicated.
1065 if (blockNeedsPredication(BB)) {
1066 if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
1067 ConditionalAssumes)) {
1068 reportVectorizationFailure(
1069 "Control flow cannot be substituted for a select",
1070 "control flow cannot be substituted for a select",
1071 "NoCFGForSelect", ORE, TheLoop,
1072 BB->getTerminator());
1073 return false;
1075 } else if (BB != Header && !canIfConvertPHINodes(BB)) {
1076 reportVectorizationFailure(
1077 "Control flow cannot be substituted for a select",
1078 "control flow cannot be substituted for a select",
1079 "NoCFGForSelect", ORE, TheLoop,
1080 BB->getTerminator());
1081 return false;
1085 // We can if-convert this loop.
1086 return true;
1089 // Helper function to canVectorizeLoopNestCFG.
1090 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1091 bool UseVPlanNativePath) {
1092 assert((UseVPlanNativePath || Lp->isInnermost()) &&
1093 "VPlan-native path is not enabled.");
1095 // TODO: ORE should be improved to show more accurate information when an
1096 // outer loop can't be vectorized because a nested loop is not understood or
1097 // legal. Something like: "outer_loop_location: loop not vectorized:
1098 // (inner_loop_location) loop control flow is not understood by vectorizer".
1100 // Store the result and return it at the end instead of exiting early, in case
1101 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1102 bool Result = true;
1103 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1105 // We must have a loop in canonical form. Loops with indirectbr in them cannot
1106 // be canonicalized.
1107 if (!Lp->getLoopPreheader()) {
1108 reportVectorizationFailure("Loop doesn't have a legal pre-header",
1109 "loop control flow is not understood by vectorizer",
1110 "CFGNotUnderstood", ORE, TheLoop);
1111 if (DoExtraAnalysis)
1112 Result = false;
1113 else
1114 return false;
1117 // We must have a single backedge.
1118 if (Lp->getNumBackEdges() != 1) {
1119 reportVectorizationFailure("The loop must have a single backedge",
1120 "loop control flow is not understood by vectorizer",
1121 "CFGNotUnderstood", ORE, TheLoop);
1122 if (DoExtraAnalysis)
1123 Result = false;
1124 else
1125 return false;
1128 return Result;
1131 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1132 Loop *Lp, bool UseVPlanNativePath) {
1133 // Store the result and return it at the end instead of exiting early, in case
1134 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1135 bool Result = true;
1136 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1137 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1138 if (DoExtraAnalysis)
1139 Result = false;
1140 else
1141 return false;
1144 // Recursively check whether the loop control flow of nested loops is
1145 // understood.
1146 for (Loop *SubLp : *Lp)
1147 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1148 if (DoExtraAnalysis)
1149 Result = false;
1150 else
1151 return false;
1154 return Result;
1157 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1158 // Store the result and return it at the end instead of exiting early, in case
1159 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1160 bool Result = true;
1162 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1163 // Check whether the loop-related control flow in the loop nest is expected by
1164 // vectorizer.
1165 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1166 if (DoExtraAnalysis)
1167 Result = false;
1168 else
1169 return false;
1172 // We need to have a loop header.
1173 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1174 << '\n');
1176 // Specific checks for outer loops. We skip the remaining legal checks at this
1177 // point because they don't support outer loops.
1178 if (!TheLoop->isInnermost()) {
1179 assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1181 if (!canVectorizeOuterLoop()) {
1182 reportVectorizationFailure("Unsupported outer loop",
1183 "unsupported outer loop",
1184 "UnsupportedOuterLoop",
1185 ORE, TheLoop);
1186 // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1187 // outer loops.
1188 return false;
1191 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1192 return Result;
1195 assert(TheLoop->isInnermost() && "Inner loop expected.");
1196 // Check if we can if-convert non-single-bb loops.
1197 unsigned NumBlocks = TheLoop->getNumBlocks();
1198 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1199 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1200 if (DoExtraAnalysis)
1201 Result = false;
1202 else
1203 return false;
1206 // Check if we can vectorize the instructions and CFG in this loop.
1207 if (!canVectorizeInstrs()) {
1208 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1209 if (DoExtraAnalysis)
1210 Result = false;
1211 else
1212 return false;
1215 // Go over each instruction and look at memory deps.
1216 if (!canVectorizeMemory()) {
1217 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1218 if (DoExtraAnalysis)
1219 Result = false;
1220 else
1221 return false;
1224 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1225 << (LAI->getRuntimePointerChecking()->Need
1226 ? " (with a runtime bound check)"
1227 : "")
1228 << "!\n");
1230 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1231 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1232 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1234 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
1235 reportVectorizationFailure("Too many SCEV checks needed",
1236 "Too many SCEV assumptions need to be made and checked at runtime",
1237 "TooManySCEVRunTimeChecks", ORE, TheLoop);
1238 if (DoExtraAnalysis)
1239 Result = false;
1240 else
1241 return false;
1244 // Okay! We've done all the tests. If any have failed, return false. Otherwise
1245 // we can vectorize, and at this point we don't have any other mem analysis
1246 // which may limit our maximum vectorization factor, so just return true with
1247 // no restrictions.
1248 return Result;
1251 bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1253 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1255 SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1257 for (auto &Reduction : getReductionVars())
1258 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1260 // TODO: handle non-reduction outside users when tail is folded by masking.
1261 for (auto *AE : AllowedExit) {
1262 // Check that all users of allowed exit values are inside the loop or
1263 // are the live-out of a reduction.
1264 if (ReductionLiveOuts.count(AE))
1265 continue;
1266 for (User *U : AE->users()) {
1267 Instruction *UI = cast<Instruction>(U);
1268 if (TheLoop->contains(UI))
1269 continue;
1270 LLVM_DEBUG(
1271 dbgs()
1272 << "LV: Cannot fold tail by masking, loop has an outside user for "
1273 << *UI << "\n");
1274 return false;
1278 // The list of pointers that we can safely read and write to remains empty.
1279 SmallPtrSet<Value *, 8> SafePointers;
1281 SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1282 SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
1284 // Check and mark all blocks for predication, including those that ordinarily
1285 // do not need predication such as the header block.
1286 for (BasicBlock *BB : TheLoop->blocks()) {
1287 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
1288 TmpConditionalAssumes)) {
1289 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1290 return false;
1294 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1296 MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
1297 ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
1298 TmpConditionalAssumes.end());
1300 return true;
1303 } // namespace llvm