1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Transforms/Utils/SizeOpts.h"
26 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
29 using namespace PatternMatch
;
31 #define LV_NAME "loop-vectorize"
32 #define DEBUG_TYPE LV_NAME
34 extern cl::opt
<bool> EnableVPlanPredication
;
37 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden
,
38 cl::desc("Enable if-conversion during vectorization."));
42 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden
,
43 cl::desc("Allow enabling loop hints to reorder "
44 "FP operations during vectorization."));
47 // TODO: Move size-based thresholds out of legality checking, make cost based
48 // decisions instead of hard thresholds.
49 static cl::opt
<unsigned> VectorizeSCEVCheckThreshold(
50 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden
,
51 cl::desc("The maximum number of SCEV checks allowed."));
53 static cl::opt
<unsigned> PragmaVectorizeSCEVCheckThreshold(
54 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden
,
55 cl::desc("The maximum number of SCEV checks allowed with a "
56 "vectorize(enable) pragma"));
58 // FIXME: When scalable vectorization is stable enough, change the default
59 // to SK_PreferFixedWidth.
60 static cl::opt
<LoopVectorizeHints::ScalableForceKind
> ScalableVectorization(
61 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_FixedWidthOnly
),
63 cl::desc("Control whether the compiler can use scalable vectors to "
66 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly
, "off",
67 "Scalable vectorization is disabled."),
68 clEnumValN(LoopVectorizeHints::SK_PreferFixedWidth
, "on",
69 "Scalable vectorization is available, but favor fixed-width "
70 "vectorization when the cost is inconclusive."),
71 clEnumValN(LoopVectorizeHints::SK_PreferScalable
, "preferred",
72 "Scalable vectorization is available and favored when the "
73 "cost is inconclusive.")));
75 /// Maximum vectorization interleave count.
76 static const unsigned MaxInterleaveFactor
= 16;
80 bool LoopVectorizeHints::Hint::validate(unsigned Val
) {
83 return isPowerOf2_32(Val
) && Val
<= VectorizerParams::MaxVectorWidth
;
85 return isPowerOf2_32(Val
) && Val
<= MaxInterleaveFactor
;
91 return (Val
== 0 || Val
== 1);
96 LoopVectorizeHints::LoopVectorizeHints(const Loop
*L
,
97 bool InterleaveOnlyWhenForced
,
98 OptimizationRemarkEmitter
&ORE
)
99 : Width("vectorize.width", VectorizerParams::VectorizationFactor
, HK_WIDTH
),
100 Interleave("interleave.count", InterleaveOnlyWhenForced
, HK_INTERLEAVE
),
101 Force("vectorize.enable", FK_Undefined
, HK_FORCE
),
102 IsVectorized("isvectorized", 0, HK_ISVECTORIZED
),
103 Predicate("vectorize.predicate.enable", FK_Undefined
, HK_PREDICATE
),
104 Scalable("vectorize.scalable.enable", SK_Unspecified
, HK_SCALABLE
),
105 TheLoop(L
), ORE(ORE
) {
106 // Populate values with existing loop metadata.
107 getHintsFromMetadata();
109 // force-vector-interleave overrides DisableInterleaving.
110 if (VectorizerParams::isInterleaveForced())
111 Interleave
.Value
= VectorizerParams::VectorizationInterleave
;
113 if ((LoopVectorizeHints::ScalableForceKind
)Scalable
.Value
== SK_Unspecified
)
114 // If the width is set, but the metadata says nothing about the scalable
115 // property, then assume it concerns only a fixed-width UserVF.
116 // If width is not set, the flag takes precedence.
117 Scalable
.Value
= Width
.Value
? SK_FixedWidthOnly
: ScalableVectorization
;
118 else if (ScalableVectorization
== SK_FixedWidthOnly
)
119 // If the flag is set to disable any use of scalable vectors, override the
121 Scalable
.Value
= SK_FixedWidthOnly
;
123 if (IsVectorized
.Value
!= 1)
124 // If the vectorization width and interleaving count are both 1 then
125 // consider the loop to have been already vectorized because there's
126 // nothing more that we can do.
128 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
129 LLVM_DEBUG(if (InterleaveOnlyWhenForced
&& getInterleave() == 1) dbgs()
130 << "LV: Interleaving disabled by the pass manager\n");
133 void LoopVectorizeHints::setAlreadyVectorized() {
134 LLVMContext
&Context
= TheLoop
->getHeader()->getContext();
136 MDNode
*IsVectorizedMD
= MDNode::get(
138 {MDString::get(Context
, "llvm.loop.isvectorized"),
139 ConstantAsMetadata::get(ConstantInt::get(Context
, APInt(32, 1)))});
140 MDNode
*LoopID
= TheLoop
->getLoopID();
142 makePostTransformationMetadata(Context
, LoopID
,
143 {Twine(Prefix(), "vectorize.").str(),
144 Twine(Prefix(), "interleave.").str()},
146 TheLoop
->setLoopID(NewLoopID
);
148 // Update internal cache.
149 IsVectorized
.Value
= 1;
152 bool LoopVectorizeHints::allowVectorization(
153 Function
*F
, Loop
*L
, bool VectorizeOnlyWhenForced
) const {
154 if (getForce() == LoopVectorizeHints::FK_Disabled
) {
155 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
156 emitRemarkWithHints();
160 if (VectorizeOnlyWhenForced
&& getForce() != LoopVectorizeHints::FK_Enabled
) {
161 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
162 emitRemarkWithHints();
166 if (getIsVectorized() == 1) {
167 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
168 // FIXME: Add interleave.disable metadata. This will allow
169 // vectorize.disable to be used without disabling the pass and errors
170 // to differentiate between disabled vectorization and a width of 1.
172 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
173 "AllDisabled", L
->getStartLoc(),
175 << "loop not vectorized: vectorization and interleaving are "
176 "explicitly disabled, or the loop has already been "
185 void LoopVectorizeHints::emitRemarkWithHints() const {
189 if (Force
.Value
== LoopVectorizeHints::FK_Disabled
)
190 return OptimizationRemarkMissed(LV_NAME
, "MissedExplicitlyDisabled",
191 TheLoop
->getStartLoc(),
192 TheLoop
->getHeader())
193 << "loop not vectorized: vectorization is explicitly disabled";
195 OptimizationRemarkMissed
R(LV_NAME
, "MissedDetails",
196 TheLoop
->getStartLoc(), TheLoop
->getHeader());
197 R
<< "loop not vectorized";
198 if (Force
.Value
== LoopVectorizeHints::FK_Enabled
) {
199 R
<< " (Force=" << NV("Force", true);
200 if (Width
.Value
!= 0)
201 R
<< ", Vector Width=" << NV("VectorWidth", getWidth());
202 if (getInterleave() != 0)
203 R
<< ", Interleave Count=" << NV("InterleaveCount", getInterleave());
211 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
212 if (getWidth() == ElementCount::getFixed(1))
214 if (getForce() == LoopVectorizeHints::FK_Disabled
)
216 if (getForce() == LoopVectorizeHints::FK_Undefined
&& getWidth().isZero())
218 return OptimizationRemarkAnalysis::AlwaysPrint
;
221 bool LoopVectorizeHints::allowReordering() const {
222 // Allow the vectorizer to change the order of operations if enabling
223 // loop hints are provided
224 ElementCount EC
= getWidth();
225 return HintsAllowReordering
&&
226 (getForce() == LoopVectorizeHints::FK_Enabled
||
227 EC
.getKnownMinValue() > 1);
230 void LoopVectorizeHints::getHintsFromMetadata() {
231 MDNode
*LoopID
= TheLoop
->getLoopID();
235 // First operand should refer to the loop id itself.
236 assert(LoopID
->getNumOperands() > 0 && "requires at least one operand");
237 assert(LoopID
->getOperand(0) == LoopID
&& "invalid loop id");
239 for (unsigned i
= 1, ie
= LoopID
->getNumOperands(); i
< ie
; ++i
) {
240 const MDString
*S
= nullptr;
241 SmallVector
<Metadata
*, 4> Args
;
243 // The expected hint is either a MDString or a MDNode with the first
244 // operand a MDString.
245 if (const MDNode
*MD
= dyn_cast
<MDNode
>(LoopID
->getOperand(i
))) {
246 if (!MD
|| MD
->getNumOperands() == 0)
248 S
= dyn_cast
<MDString
>(MD
->getOperand(0));
249 for (unsigned i
= 1, ie
= MD
->getNumOperands(); i
< ie
; ++i
)
250 Args
.push_back(MD
->getOperand(i
));
252 S
= dyn_cast
<MDString
>(LoopID
->getOperand(i
));
253 assert(Args
.size() == 0 && "too many arguments for MDString");
259 // Check if the hint starts with the loop metadata prefix.
260 StringRef Name
= S
->getString();
261 if (Args
.size() == 1)
262 setHint(Name
, Args
[0]);
266 void LoopVectorizeHints::setHint(StringRef Name
, Metadata
*Arg
) {
267 if (!Name
.startswith(Prefix()))
269 Name
= Name
.substr(Prefix().size(), StringRef::npos
);
271 const ConstantInt
*C
= mdconst::dyn_extract
<ConstantInt
>(Arg
);
274 unsigned Val
= C
->getZExtValue();
276 Hint
*Hints
[] = {&Width
, &Interleave
, &Force
,
277 &IsVectorized
, &Predicate
, &Scalable
};
278 for (auto H
: Hints
) {
279 if (Name
== H
->Name
) {
280 if (H
->validate(Val
))
283 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name
<< "'\n");
289 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
290 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
291 // executing the inner loop will execute the same iterations). This check is
292 // very constrained for now but it will be relaxed in the future. \p Lp is
293 // considered uniform if it meets all the following conditions:
294 // 1) it has a canonical IV (starting from 0 and with stride 1),
295 // 2) its latch terminator is a conditional branch and,
296 // 3) its latch condition is a compare instruction whose operands are the
297 // canonical IV and an OuterLp invariant.
298 // This check doesn't take into account the uniformity of other conditions not
299 // related to the loop latch because they don't affect the loop uniformity.
301 // NOTE: We decided to keep all these checks and its associated documentation
302 // together so that we can easily have a picture of the current supported loop
303 // nests. However, some of the current checks don't depend on \p OuterLp and
304 // would be redundantly executed for each \p Lp if we invoked this function for
305 // different candidate outer loops. This is not the case for now because we
306 // don't currently have the infrastructure to evaluate multiple candidate outer
307 // loops and \p OuterLp will be a fixed parameter while we only support explicit
308 // outer loop vectorization. It's also very likely that these checks go away
309 // before introducing the aforementioned infrastructure. However, if this is not
310 // the case, we should move the \p OuterLp independent checks to a separate
311 // function that is only executed once for each \p Lp.
312 static bool isUniformLoop(Loop
*Lp
, Loop
*OuterLp
) {
313 assert(Lp
->getLoopLatch() && "Expected loop with a single latch.");
315 // If Lp is the outer loop, it's uniform by definition.
318 assert(OuterLp
->contains(Lp
) && "OuterLp must contain Lp.");
321 PHINode
*IV
= Lp
->getCanonicalInductionVariable();
323 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
328 BasicBlock
*Latch
= Lp
->getLoopLatch();
329 auto *LatchBr
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
330 if (!LatchBr
|| LatchBr
->isUnconditional()) {
331 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
336 auto *LatchCmp
= dyn_cast
<CmpInst
>(LatchBr
->getCondition());
339 dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
343 Value
*CondOp0
= LatchCmp
->getOperand(0);
344 Value
*CondOp1
= LatchCmp
->getOperand(1);
345 Value
*IVUpdate
= IV
->getIncomingValueForBlock(Latch
);
346 if (!(CondOp0
== IVUpdate
&& OuterLp
->isLoopInvariant(CondOp1
)) &&
347 !(CondOp1
== IVUpdate
&& OuterLp
->isLoopInvariant(CondOp0
))) {
348 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
355 // Return true if \p Lp and all its nested loops are uniform with regard to \p
357 static bool isUniformLoopNest(Loop
*Lp
, Loop
*OuterLp
) {
358 if (!isUniformLoop(Lp
, OuterLp
))
361 // Check if nested loops are uniform.
362 for (Loop
*SubLp
: *Lp
)
363 if (!isUniformLoopNest(SubLp
, OuterLp
))
369 /// Check whether it is safe to if-convert this phi node.
371 /// Phi nodes with constant expressions that can trap are not safe to if
373 static bool canIfConvertPHINodes(BasicBlock
*BB
) {
374 for (PHINode
&Phi
: BB
->phis()) {
375 for (Value
*V
: Phi
.incoming_values())
376 if (auto *C
= dyn_cast
<Constant
>(V
))
383 static Type
*convertPointerToIntegerType(const DataLayout
&DL
, Type
*Ty
) {
384 if (Ty
->isPointerTy())
385 return DL
.getIntPtrType(Ty
);
387 // It is possible that char's or short's overflow when we ask for the loop's
388 // trip count, work around this by changing the type size.
389 if (Ty
->getScalarSizeInBits() < 32)
390 return Type::getInt32Ty(Ty
->getContext());
395 static Type
*getWiderType(const DataLayout
&DL
, Type
*Ty0
, Type
*Ty1
) {
396 Ty0
= convertPointerToIntegerType(DL
, Ty0
);
397 Ty1
= convertPointerToIntegerType(DL
, Ty1
);
398 if (Ty0
->getScalarSizeInBits() > Ty1
->getScalarSizeInBits())
403 /// Check that the instruction has outside loop users and is not an
404 /// identified reduction variable.
405 static bool hasOutsideLoopUser(const Loop
*TheLoop
, Instruction
*Inst
,
406 SmallPtrSetImpl
<Value
*> &AllowedExit
) {
407 // Reductions, Inductions and non-header phis are allowed to have exit users. All
408 // other instructions must not have external users.
409 if (!AllowedExit
.count(Inst
))
410 // Check that all of the users of the loop are inside the BB.
411 for (User
*U
: Inst
->users()) {
412 Instruction
*UI
= cast
<Instruction
>(U
);
413 // This user may be a reduction exit value.
414 if (!TheLoop
->contains(UI
)) {
415 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI
<< '\n');
422 int LoopVectorizationLegality::isConsecutivePtr(Value
*Ptr
) const {
423 const ValueToValueMap
&Strides
=
424 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
426 Function
*F
= TheLoop
->getHeader()->getParent();
427 bool OptForSize
= F
->hasOptSize() ||
428 llvm::shouldOptimizeForSize(TheLoop
->getHeader(), PSI
, BFI
,
429 PGSOQueryType::IRPass
);
430 bool CanAddPredicate
= !OptForSize
;
431 int Stride
= getPtrStride(PSE
, Ptr
, TheLoop
, Strides
, CanAddPredicate
, false);
432 if (Stride
== 1 || Stride
== -1)
437 bool LoopVectorizationLegality::isUniform(Value
*V
) {
438 return LAI
->isUniform(V
);
441 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
442 assert(!TheLoop
->isInnermost() && "We are not vectorizing an outer loop.");
443 // Store the result and return it at the end instead of exiting early, in case
444 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
446 bool DoExtraAnalysis
= ORE
->allowExtraAnalysis(DEBUG_TYPE
);
448 for (BasicBlock
*BB
: TheLoop
->blocks()) {
449 // Check whether the BB terminator is a BranchInst. Any other terminator is
450 // not supported yet.
451 auto *Br
= dyn_cast
<BranchInst
>(BB
->getTerminator());
453 reportVectorizationFailure("Unsupported basic block terminator",
454 "loop control flow is not understood by vectorizer",
455 "CFGNotUnderstood", ORE
, TheLoop
);
462 // Check whether the BranchInst is a supported one. Only unconditional
463 // branches, conditional branches with an outer loop invariant condition or
464 // backedges are supported.
465 // FIXME: We skip these checks when VPlan predication is enabled as we
466 // want to allow divergent branches. This whole check will be removed
467 // once VPlan predication is on by default.
468 if (!EnableVPlanPredication
&& Br
&& Br
->isConditional() &&
469 !TheLoop
->isLoopInvariant(Br
->getCondition()) &&
470 !LI
->isLoopHeader(Br
->getSuccessor(0)) &&
471 !LI
->isLoopHeader(Br
->getSuccessor(1))) {
472 reportVectorizationFailure("Unsupported conditional branch",
473 "loop control flow is not understood by vectorizer",
474 "CFGNotUnderstood", ORE
, TheLoop
);
482 // Check whether inner loops are uniform. At this point, we only support
483 // simple outer loops scenarios with uniform nested loops.
484 if (!isUniformLoopNest(TheLoop
/*loop nest*/,
485 TheLoop
/*context outer loop*/)) {
486 reportVectorizationFailure("Outer loop contains divergent loops",
487 "loop control flow is not understood by vectorizer",
488 "CFGNotUnderstood", ORE
, TheLoop
);
495 // Check whether we are able to set up outer loop induction.
496 if (!setupOuterLoopInductions()) {
497 reportVectorizationFailure("Unsupported outer loop Phi(s)",
498 "Unsupported outer loop Phi(s)",
499 "UnsupportedPhi", ORE
, TheLoop
);
509 void LoopVectorizationLegality::addInductionPhi(
510 PHINode
*Phi
, const InductionDescriptor
&ID
,
511 SmallPtrSetImpl
<Value
*> &AllowedExit
) {
512 Inductions
[Phi
] = ID
;
514 // In case this induction also comes with casts that we know we can ignore
515 // in the vectorized loop body, record them here. All casts could be recorded
516 // here for ignoring, but suffices to record only the first (as it is the
517 // only one that may bw used outside the cast sequence).
518 const SmallVectorImpl
<Instruction
*> &Casts
= ID
.getCastInsts();
520 InductionCastsToIgnore
.insert(*Casts
.begin());
522 Type
*PhiTy
= Phi
->getType();
523 const DataLayout
&DL
= Phi
->getModule()->getDataLayout();
525 // Get the widest type.
526 if (!PhiTy
->isFloatingPointTy()) {
528 WidestIndTy
= convertPointerToIntegerType(DL
, PhiTy
);
530 WidestIndTy
= getWiderType(DL
, PhiTy
, WidestIndTy
);
533 // Int inductions are special because we only allow one IV.
534 if (ID
.getKind() == InductionDescriptor::IK_IntInduction
&&
535 ID
.getConstIntStepValue() && ID
.getConstIntStepValue()->isOne() &&
536 isa
<Constant
>(ID
.getStartValue()) &&
537 cast
<Constant
>(ID
.getStartValue())->isNullValue()) {
539 // Use the phi node with the widest type as induction. Use the last
540 // one if there are multiple (no good reason for doing this other
541 // than it is expedient). We've checked that it begins at zero and
542 // steps by one, so this is a canonical induction variable.
543 if (!PrimaryInduction
|| PhiTy
== WidestIndTy
)
544 PrimaryInduction
= Phi
;
547 // Both the PHI node itself, and the "post-increment" value feeding
548 // back into the PHI node may have external users.
549 // We can allow those uses, except if the SCEVs we have for them rely
550 // on predicates that only hold within the loop, since allowing the exit
551 // currently means re-using this SCEV outside the loop (see PR33706 for more
553 if (PSE
.getUnionPredicate().isAlwaysTrue()) {
554 AllowedExit
.insert(Phi
);
555 AllowedExit
.insert(Phi
->getIncomingValueForBlock(TheLoop
->getLoopLatch()));
558 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
561 bool LoopVectorizationLegality::setupOuterLoopInductions() {
562 BasicBlock
*Header
= TheLoop
->getHeader();
564 // Returns true if a given Phi is a supported induction.
565 auto isSupportedPhi
= [&](PHINode
&Phi
) -> bool {
566 InductionDescriptor ID
;
567 if (InductionDescriptor::isInductionPHI(&Phi
, TheLoop
, PSE
, ID
) &&
568 ID
.getKind() == InductionDescriptor::IK_IntInduction
) {
569 addInductionPhi(&Phi
, ID
, AllowedExit
);
572 // Bail out for any Phi in the outer loop header that is not a supported
576 << "LV: Found unsupported PHI for outer loop vectorization.\n");
581 if (llvm::all_of(Header
->phis(), isSupportedPhi
))
587 /// Checks if a function is scalarizable according to the TLI, in
588 /// the sense that it should be vectorized and then expanded in
589 /// multiple scalar calls. This is represented in the
590 /// TLI via mappings that do not specify a vector name, as in the
591 /// following example:
593 /// const VecDesc VecIntrinsics[] = {
594 /// {"llvm.phx.abs.i32", "", 4}
596 static bool isTLIScalarize(const TargetLibraryInfo
&TLI
, const CallInst
&CI
) {
597 const StringRef ScalarName
= CI
.getCalledFunction()->getName();
598 bool Scalarize
= TLI
.isFunctionVectorizable(ScalarName
);
599 // Check that all known VFs are not associated to a vector
600 // function, i.e. the vector name is emty.
602 ElementCount WidestFixedVF
, WidestScalableVF
;
603 TLI
.getWidestVF(ScalarName
, WidestFixedVF
, WidestScalableVF
);
604 for (ElementCount VF
= ElementCount::getFixed(2);
605 ElementCount::isKnownLE(VF
, WidestFixedVF
); VF
*= 2)
606 Scalarize
&= !TLI
.isFunctionVectorizable(ScalarName
, VF
);
607 for (ElementCount VF
= ElementCount::getScalable(1);
608 ElementCount::isKnownLE(VF
, WidestScalableVF
); VF
*= 2)
609 Scalarize
&= !TLI
.isFunctionVectorizable(ScalarName
, VF
);
610 assert((WidestScalableVF
.isZero() || !Scalarize
) &&
611 "Caller may decide to scalarize a variant using a scalable VF");
616 bool LoopVectorizationLegality::canVectorizeInstrs() {
617 BasicBlock
*Header
= TheLoop
->getHeader();
619 // For each block in the loop.
620 for (BasicBlock
*BB
: TheLoop
->blocks()) {
621 // Scan the instructions in the block and look for hazards.
622 for (Instruction
&I
: *BB
) {
623 if (auto *Phi
= dyn_cast
<PHINode
>(&I
)) {
624 Type
*PhiTy
= Phi
->getType();
625 // Check that this PHI type is allowed.
626 if (!PhiTy
->isIntegerTy() && !PhiTy
->isFloatingPointTy() &&
627 !PhiTy
->isPointerTy()) {
628 reportVectorizationFailure("Found a non-int non-pointer PHI",
629 "loop control flow is not understood by vectorizer",
630 "CFGNotUnderstood", ORE
, TheLoop
);
634 // If this PHINode is not in the header block, then we know that we
635 // can convert it to select during if-conversion. No need to check if
636 // the PHIs in this block are induction or reduction variables.
638 // Non-header phi nodes that have outside uses can be vectorized. Add
639 // them to the list of allowed exits.
640 // Unsafe cyclic dependencies with header phis are identified during
641 // legalization for reduction, induction and first order
643 AllowedExit
.insert(&I
);
647 // We only allow if-converted PHIs with exactly two incoming values.
648 if (Phi
->getNumIncomingValues() != 2) {
649 reportVectorizationFailure("Found an invalid PHI",
650 "loop control flow is not understood by vectorizer",
651 "CFGNotUnderstood", ORE
, TheLoop
, Phi
);
655 RecurrenceDescriptor RedDes
;
656 if (RecurrenceDescriptor::isReductionPHI(Phi
, TheLoop
, RedDes
, DB
, AC
,
658 Requirements
->addExactFPMathInst(RedDes
.getExactFPMathInst());
659 AllowedExit
.insert(RedDes
.getLoopExitInstr());
660 Reductions
[Phi
] = RedDes
;
664 // TODO: Instead of recording the AllowedExit, it would be good to record the
665 // complementary set: NotAllowedExit. These include (but may not be
667 // 1. Reduction phis as they represent the one-before-last value, which
668 // is not available when vectorized
669 // 2. Induction phis and increment when SCEV predicates cannot be used
670 // outside the loop - see addInductionPhi
671 // 3. Non-Phis with outside uses when SCEV predicates cannot be used
672 // outside the loop - see call to hasOutsideLoopUser in the non-phi
674 // 4. FirstOrderRecurrence phis that can possibly be handled by
676 // By recording these, we can then reason about ways to vectorize each
677 // of these NotAllowedExit.
678 InductionDescriptor ID
;
679 if (InductionDescriptor::isInductionPHI(Phi
, TheLoop
, PSE
, ID
)) {
680 addInductionPhi(Phi
, ID
, AllowedExit
);
681 Requirements
->addExactFPMathInst(ID
.getExactFPMathInst());
685 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi
, TheLoop
,
687 AllowedExit
.insert(Phi
);
688 FirstOrderRecurrences
.insert(Phi
);
692 // As a last resort, coerce the PHI to a AddRec expression
693 // and re-try classifying it a an induction PHI.
694 if (InductionDescriptor::isInductionPHI(Phi
, TheLoop
, PSE
, ID
, true)) {
695 addInductionPhi(Phi
, ID
, AllowedExit
);
699 reportVectorizationFailure("Found an unidentified PHI",
700 "value that could not be identified as "
701 "reduction is used outside the loop",
702 "NonReductionValueUsedOutsideLoop", ORE
, TheLoop
, Phi
);
704 } // end of PHI handling
706 // We handle calls that:
707 // * Are debug info intrinsics.
708 // * Have a mapping to an IR intrinsic.
709 // * Have a vector version available.
710 auto *CI
= dyn_cast
<CallInst
>(&I
);
712 if (CI
&& !getVectorIntrinsicIDForCall(CI
, TLI
) &&
713 !isa
<DbgInfoIntrinsic
>(CI
) &&
714 !(CI
->getCalledFunction() && TLI
&&
715 (!VFDatabase::getMappings(*CI
).empty() ||
716 isTLIScalarize(*TLI
, *CI
)))) {
717 // If the call is a recognized math libary call, it is likely that
718 // we can vectorize it given loosened floating-point constraints.
721 TLI
&& CI
->getCalledFunction() &&
722 CI
->getType()->isFloatingPointTy() &&
723 TLI
->getLibFunc(CI
->getCalledFunction()->getName(), Func
) &&
724 TLI
->hasOptimizedCodeGen(Func
);
727 // TODO: Ideally, we should not use clang-specific language here,
728 // but it's hard to provide meaningful yet generic advice.
729 // Also, should this be guarded by allowExtraAnalysis() and/or be part
730 // of the returned info from isFunctionVectorizable()?
731 reportVectorizationFailure(
732 "Found a non-intrinsic callsite",
733 "library call cannot be vectorized. "
734 "Try compiling with -fno-math-errno, -ffast-math, "
736 "CantVectorizeLibcall", ORE
, TheLoop
, CI
);
738 reportVectorizationFailure("Found a non-intrinsic callsite",
739 "call instruction cannot be vectorized",
740 "CantVectorizeLibcall", ORE
, TheLoop
, CI
);
745 // Some intrinsics have scalar arguments and should be same in order for
746 // them to be vectorized (i.e. loop invariant).
748 auto *SE
= PSE
.getSE();
749 Intrinsic::ID IntrinID
= getVectorIntrinsicIDForCall(CI
, TLI
);
750 for (unsigned i
= 0, e
= CI
->getNumArgOperands(); i
!= e
; ++i
)
751 if (hasVectorInstrinsicScalarOpd(IntrinID
, i
)) {
752 if (!SE
->isLoopInvariant(PSE
.getSCEV(CI
->getOperand(i
)), TheLoop
)) {
753 reportVectorizationFailure("Found unvectorizable intrinsic",
754 "intrinsic instruction cannot be vectorized",
755 "CantVectorizeIntrinsic", ORE
, TheLoop
, CI
);
761 // Check that the instruction return type is vectorizable.
762 // Also, we can't vectorize extractelement instructions.
763 if ((!VectorType::isValidElementType(I
.getType()) &&
764 !I
.getType()->isVoidTy()) ||
765 isa
<ExtractElementInst
>(I
)) {
766 reportVectorizationFailure("Found unvectorizable type",
767 "instruction return type cannot be vectorized",
768 "CantVectorizeInstructionReturnType", ORE
, TheLoop
, &I
);
772 // Check that the stored type is vectorizable.
773 if (auto *ST
= dyn_cast
<StoreInst
>(&I
)) {
774 Type
*T
= ST
->getValueOperand()->getType();
775 if (!VectorType::isValidElementType(T
)) {
776 reportVectorizationFailure("Store instruction cannot be vectorized",
777 "store instruction cannot be vectorized",
778 "CantVectorizeStore", ORE
, TheLoop
, ST
);
782 // For nontemporal stores, check that a nontemporal vector version is
783 // supported on the target.
784 if (ST
->getMetadata(LLVMContext::MD_nontemporal
)) {
785 // Arbitrarily try a vector of 2 elements.
786 auto *VecTy
= FixedVectorType::get(T
, /*NumElts=*/2);
787 assert(VecTy
&& "did not find vectorized version of stored type");
788 if (!TTI
->isLegalNTStore(VecTy
, ST
->getAlign())) {
789 reportVectorizationFailure(
790 "nontemporal store instruction cannot be vectorized",
791 "nontemporal store instruction cannot be vectorized",
792 "CantVectorizeNontemporalStore", ORE
, TheLoop
, ST
);
797 } else if (auto *LD
= dyn_cast
<LoadInst
>(&I
)) {
798 if (LD
->getMetadata(LLVMContext::MD_nontemporal
)) {
799 // For nontemporal loads, check that a nontemporal vector version is
800 // supported on the target (arbitrarily try a vector of 2 elements).
801 auto *VecTy
= FixedVectorType::get(I
.getType(), /*NumElts=*/2);
802 assert(VecTy
&& "did not find vectorized version of load type");
803 if (!TTI
->isLegalNTLoad(VecTy
, LD
->getAlign())) {
804 reportVectorizationFailure(
805 "nontemporal load instruction cannot be vectorized",
806 "nontemporal load instruction cannot be vectorized",
807 "CantVectorizeNontemporalLoad", ORE
, TheLoop
, LD
);
812 // FP instructions can allow unsafe algebra, thus vectorizable by
813 // non-IEEE-754 compliant SIMD units.
814 // This applies to floating-point math operations and calls, not memory
815 // operations, shuffles, or casts, as they don't change precision or
817 } else if (I
.getType()->isFloatingPointTy() && (CI
|| I
.isBinaryOp()) &&
819 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
820 Hints
->setPotentiallyUnsafe();
823 // Reduction instructions are allowed to have exit users.
824 // All other instructions must not have external users.
825 if (hasOutsideLoopUser(TheLoop
, &I
, AllowedExit
)) {
826 // We can safely vectorize loops where instructions within the loop are
827 // used outside the loop only if the SCEV predicates within the loop is
828 // same as outside the loop. Allowing the exit means reusing the SCEV
830 if (PSE
.getUnionPredicate().isAlwaysTrue()) {
831 AllowedExit
.insert(&I
);
834 reportVectorizationFailure("Value cannot be used outside the loop",
835 "value cannot be used outside the loop",
836 "ValueUsedOutsideLoop", ORE
, TheLoop
, &I
);
842 if (!PrimaryInduction
) {
843 if (Inductions
.empty()) {
844 reportVectorizationFailure("Did not find one integer induction var",
845 "loop induction variable could not be identified",
846 "NoInductionVariable", ORE
, TheLoop
);
848 } else if (!WidestIndTy
) {
849 reportVectorizationFailure("Did not find one integer induction var",
850 "integer loop induction variable could not be identified",
851 "NoIntegerInductionVariable", ORE
, TheLoop
);
854 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
858 // For first order recurrences, we use the previous value (incoming value from
859 // the latch) to check if it dominates all users of the recurrence. Bail out
860 // if we have to sink such an instruction for another recurrence, as the
861 // dominance requirement may not hold after sinking.
862 BasicBlock
*LoopLatch
= TheLoop
->getLoopLatch();
863 if (any_of(FirstOrderRecurrences
, [LoopLatch
, this](const PHINode
*Phi
) {
865 cast
<Instruction
>(Phi
->getIncomingValueForBlock(LoopLatch
));
866 return SinkAfter
.find(V
) != SinkAfter
.end();
870 // Now we know the widest induction type, check if our found induction
871 // is the same size. If it's not, unset it here and InnerLoopVectorizer
872 // will create another.
873 if (PrimaryInduction
&& WidestIndTy
!= PrimaryInduction
->getType())
874 PrimaryInduction
= nullptr;
879 bool LoopVectorizationLegality::canVectorizeMemory() {
880 LAI
= &(*GetLAA
)(*TheLoop
);
881 const OptimizationRemarkAnalysis
*LAR
= LAI
->getReport();
884 return OptimizationRemarkAnalysis(Hints
->vectorizeAnalysisPassName(),
885 "loop not vectorized: ", *LAR
);
889 if (!LAI
->canVectorizeMemory())
892 if (LAI
->hasDependenceInvolvingLoopInvariantAddress()) {
893 reportVectorizationFailure("Stores to a uniform address",
894 "write to a loop invariant address could not be vectorized",
895 "CantVectorizeStoreToLoopInvariantAddress", ORE
, TheLoop
);
899 Requirements
->addRuntimePointerChecks(LAI
->getNumRuntimePointerChecks());
900 PSE
.addPredicate(LAI
->getPSE().getUnionPredicate());
904 bool LoopVectorizationLegality::canVectorizeFPMath(
905 bool EnableStrictReductions
) {
907 // First check if there is any ExactFP math or if we allow reassociations
908 if (!Requirements
->getExactFPInst() || Hints
->allowReordering())
911 // If the above is false, we have ExactFPMath & do not allow reordering.
912 // If the EnableStrictReductions flag is set, first check if we have any
913 // Exact FP induction vars, which we cannot vectorize.
914 if (!EnableStrictReductions
||
915 any_of(getInductionVars(), [&](auto &Induction
) -> bool {
916 InductionDescriptor IndDesc
= Induction
.second
;
917 return IndDesc
.getExactFPMathInst();
921 // We can now only vectorize if all reductions with Exact FP math also
922 // have the isOrdered flag set, which indicates that we can move the
923 // reduction operations in-loop.
924 return (all_of(getReductionVars(), [&](auto &Reduction
) -> bool {
925 const RecurrenceDescriptor
&RdxDesc
= Reduction
.second
;
926 return !RdxDesc
.hasExactFPMath() || RdxDesc
.isOrdered();
930 bool LoopVectorizationLegality::isInductionPhi(const Value
*V
) {
931 Value
*In0
= const_cast<Value
*>(V
);
932 PHINode
*PN
= dyn_cast_or_null
<PHINode
>(In0
);
936 return Inductions
.count(PN
);
939 bool LoopVectorizationLegality::isCastedInductionVariable(const Value
*V
) {
940 auto *Inst
= dyn_cast
<Instruction
>(V
);
941 return (Inst
&& InductionCastsToIgnore
.count(Inst
));
944 bool LoopVectorizationLegality::isInductionVariable(const Value
*V
) {
945 return isInductionPhi(V
) || isCastedInductionVariable(V
);
948 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode
*Phi
) {
949 return FirstOrderRecurrences
.count(Phi
);
952 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock
*BB
) const {
953 return LoopAccessInfo::blockNeedsPredication(BB
, TheLoop
, DT
);
956 bool LoopVectorizationLegality::blockCanBePredicated(
957 BasicBlock
*BB
, SmallPtrSetImpl
<Value
*> &SafePtrs
,
958 SmallPtrSetImpl
<const Instruction
*> &MaskedOp
,
959 SmallPtrSetImpl
<Instruction
*> &ConditionalAssumes
) const {
960 for (Instruction
&I
: *BB
) {
961 // Check that we don't have a constant expression that can trap as operand.
962 for (Value
*Operand
: I
.operands()) {
963 if (auto *C
= dyn_cast
<Constant
>(Operand
))
968 // We can predicate blocks with calls to assume, as long as we drop them in
969 // case we flatten the CFG via predication.
970 if (match(&I
, m_Intrinsic
<Intrinsic::assume
>())) {
971 ConditionalAssumes
.insert(&I
);
975 // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
976 // TODO: there might be cases that it should block the vectorization. Let's
977 // ignore those for now.
978 if (isa
<NoAliasScopeDeclInst
>(&I
))
981 // We might be able to hoist the load.
982 if (I
.mayReadFromMemory()) {
983 auto *LI
= dyn_cast
<LoadInst
>(&I
);
986 if (!SafePtrs
.count(LI
->getPointerOperand())) {
992 if (I
.mayWriteToMemory()) {
993 auto *SI
= dyn_cast
<StoreInst
>(&I
);
996 // Predicated store requires some form of masking:
997 // 1) masked store HW instruction,
998 // 2) emulation via load-blend-store (only if safe and legal to do so,
999 // be aware on the race conditions), or
1000 // 3) element-by-element predicate check and scalar store.
1001 MaskedOp
.insert(SI
);
1011 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1012 if (!EnableIfConversion
) {
1013 reportVectorizationFailure("If-conversion is disabled",
1014 "if-conversion is disabled",
1015 "IfConversionDisabled",
1020 assert(TheLoop
->getNumBlocks() > 1 && "Single block loops are vectorizable");
1022 // A list of pointers which are known to be dereferenceable within scope of
1023 // the loop body for each iteration of the loop which executes. That is,
1024 // the memory pointed to can be dereferenced (with the access size implied by
1025 // the value's type) unconditionally within the loop header without
1026 // introducing a new fault.
1027 SmallPtrSet
<Value
*, 8> SafePointers
;
1029 // Collect safe addresses.
1030 for (BasicBlock
*BB
: TheLoop
->blocks()) {
1031 if (!blockNeedsPredication(BB
)) {
1032 for (Instruction
&I
: *BB
)
1033 if (auto *Ptr
= getLoadStorePointerOperand(&I
))
1034 SafePointers
.insert(Ptr
);
1038 // For a block which requires predication, a address may be safe to access
1039 // in the loop w/o predication if we can prove dereferenceability facts
1040 // sufficient to ensure it'll never fault within the loop. For the moment,
1041 // we restrict this to loads; stores are more complicated due to
1042 // concurrency restrictions.
1043 ScalarEvolution
&SE
= *PSE
.getSE();
1044 for (Instruction
&I
: *BB
) {
1045 LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
);
1046 if (LI
&& !LI
->getType()->isVectorTy() && !mustSuppressSpeculation(*LI
) &&
1047 isDereferenceableAndAlignedInLoop(LI
, TheLoop
, SE
, *DT
))
1048 SafePointers
.insert(LI
->getPointerOperand());
1052 // Collect the blocks that need predication.
1053 BasicBlock
*Header
= TheLoop
->getHeader();
1054 for (BasicBlock
*BB
: TheLoop
->blocks()) {
1055 // We don't support switch statements inside loops.
1056 if (!isa
<BranchInst
>(BB
->getTerminator())) {
1057 reportVectorizationFailure("Loop contains a switch statement",
1058 "loop contains a switch statement",
1059 "LoopContainsSwitch", ORE
, TheLoop
,
1060 BB
->getTerminator());
1064 // We must be able to predicate all blocks that need to be predicated.
1065 if (blockNeedsPredication(BB
)) {
1066 if (!blockCanBePredicated(BB
, SafePointers
, MaskedOp
,
1067 ConditionalAssumes
)) {
1068 reportVectorizationFailure(
1069 "Control flow cannot be substituted for a select",
1070 "control flow cannot be substituted for a select",
1071 "NoCFGForSelect", ORE
, TheLoop
,
1072 BB
->getTerminator());
1075 } else if (BB
!= Header
&& !canIfConvertPHINodes(BB
)) {
1076 reportVectorizationFailure(
1077 "Control flow cannot be substituted for a select",
1078 "control flow cannot be substituted for a select",
1079 "NoCFGForSelect", ORE
, TheLoop
,
1080 BB
->getTerminator());
1085 // We can if-convert this loop.
1089 // Helper function to canVectorizeLoopNestCFG.
1090 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop
*Lp
,
1091 bool UseVPlanNativePath
) {
1092 assert((UseVPlanNativePath
|| Lp
->isInnermost()) &&
1093 "VPlan-native path is not enabled.");
1095 // TODO: ORE should be improved to show more accurate information when an
1096 // outer loop can't be vectorized because a nested loop is not understood or
1097 // legal. Something like: "outer_loop_location: loop not vectorized:
1098 // (inner_loop_location) loop control flow is not understood by vectorizer".
1100 // Store the result and return it at the end instead of exiting early, in case
1101 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1103 bool DoExtraAnalysis
= ORE
->allowExtraAnalysis(DEBUG_TYPE
);
1105 // We must have a loop in canonical form. Loops with indirectbr in them cannot
1106 // be canonicalized.
1107 if (!Lp
->getLoopPreheader()) {
1108 reportVectorizationFailure("Loop doesn't have a legal pre-header",
1109 "loop control flow is not understood by vectorizer",
1110 "CFGNotUnderstood", ORE
, TheLoop
);
1111 if (DoExtraAnalysis
)
1117 // We must have a single backedge.
1118 if (Lp
->getNumBackEdges() != 1) {
1119 reportVectorizationFailure("The loop must have a single backedge",
1120 "loop control flow is not understood by vectorizer",
1121 "CFGNotUnderstood", ORE
, TheLoop
);
1122 if (DoExtraAnalysis
)
1131 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1132 Loop
*Lp
, bool UseVPlanNativePath
) {
1133 // Store the result and return it at the end instead of exiting early, in case
1134 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1136 bool DoExtraAnalysis
= ORE
->allowExtraAnalysis(DEBUG_TYPE
);
1137 if (!canVectorizeLoopCFG(Lp
, UseVPlanNativePath
)) {
1138 if (DoExtraAnalysis
)
1144 // Recursively check whether the loop control flow of nested loops is
1146 for (Loop
*SubLp
: *Lp
)
1147 if (!canVectorizeLoopNestCFG(SubLp
, UseVPlanNativePath
)) {
1148 if (DoExtraAnalysis
)
1157 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath
) {
1158 // Store the result and return it at the end instead of exiting early, in case
1159 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1162 bool DoExtraAnalysis
= ORE
->allowExtraAnalysis(DEBUG_TYPE
);
1163 // Check whether the loop-related control flow in the loop nest is expected by
1165 if (!canVectorizeLoopNestCFG(TheLoop
, UseVPlanNativePath
)) {
1166 if (DoExtraAnalysis
)
1172 // We need to have a loop header.
1173 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop
->getHeader()->getName()
1176 // Specific checks for outer loops. We skip the remaining legal checks at this
1177 // point because they don't support outer loops.
1178 if (!TheLoop
->isInnermost()) {
1179 assert(UseVPlanNativePath
&& "VPlan-native path is not enabled.");
1181 if (!canVectorizeOuterLoop()) {
1182 reportVectorizationFailure("Unsupported outer loop",
1183 "unsupported outer loop",
1184 "UnsupportedOuterLoop",
1186 // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1191 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1195 assert(TheLoop
->isInnermost() && "Inner loop expected.");
1196 // Check if we can if-convert non-single-bb loops.
1197 unsigned NumBlocks
= TheLoop
->getNumBlocks();
1198 if (NumBlocks
!= 1 && !canVectorizeWithIfConvert()) {
1199 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1200 if (DoExtraAnalysis
)
1206 // Check if we can vectorize the instructions and CFG in this loop.
1207 if (!canVectorizeInstrs()) {
1208 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1209 if (DoExtraAnalysis
)
1215 // Go over each instruction and look at memory deps.
1216 if (!canVectorizeMemory()) {
1217 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1218 if (DoExtraAnalysis
)
1224 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1225 << (LAI
->getRuntimePointerChecking()->Need
1226 ? " (with a runtime bound check)"
1230 unsigned SCEVThreshold
= VectorizeSCEVCheckThreshold
;
1231 if (Hints
->getForce() == LoopVectorizeHints::FK_Enabled
)
1232 SCEVThreshold
= PragmaVectorizeSCEVCheckThreshold
;
1234 if (PSE
.getUnionPredicate().getComplexity() > SCEVThreshold
) {
1235 reportVectorizationFailure("Too many SCEV checks needed",
1236 "Too many SCEV assumptions need to be made and checked at runtime",
1237 "TooManySCEVRunTimeChecks", ORE
, TheLoop
);
1238 if (DoExtraAnalysis
)
1244 // Okay! We've done all the tests. If any have failed, return false. Otherwise
1245 // we can vectorize, and at this point we don't have any other mem analysis
1246 // which may limit our maximum vectorization factor, so just return true with
1251 bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1253 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1255 SmallPtrSet
<const Value
*, 8> ReductionLiveOuts
;
1257 for (auto &Reduction
: getReductionVars())
1258 ReductionLiveOuts
.insert(Reduction
.second
.getLoopExitInstr());
1260 // TODO: handle non-reduction outside users when tail is folded by masking.
1261 for (auto *AE
: AllowedExit
) {
1262 // Check that all users of allowed exit values are inside the loop or
1263 // are the live-out of a reduction.
1264 if (ReductionLiveOuts
.count(AE
))
1266 for (User
*U
: AE
->users()) {
1267 Instruction
*UI
= cast
<Instruction
>(U
);
1268 if (TheLoop
->contains(UI
))
1272 << "LV: Cannot fold tail by masking, loop has an outside user for "
1278 // The list of pointers that we can safely read and write to remains empty.
1279 SmallPtrSet
<Value
*, 8> SafePointers
;
1281 SmallPtrSet
<const Instruction
*, 8> TmpMaskedOp
;
1282 SmallPtrSet
<Instruction
*, 8> TmpConditionalAssumes
;
1284 // Check and mark all blocks for predication, including those that ordinarily
1285 // do not need predication such as the header block.
1286 for (BasicBlock
*BB
: TheLoop
->blocks()) {
1287 if (!blockCanBePredicated(BB
, SafePointers
, TmpMaskedOp
,
1288 TmpConditionalAssumes
)) {
1289 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1294 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1296 MaskedOp
.insert(TmpMaskedOp
.begin(), TmpMaskedOp
.end());
1297 ConditionalAssumes
.insert(TmpConditionalAssumes
.begin(),
1298 TmpConditionalAssumes
.end());