1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
17 //===----------------------------------------------------------------------===//
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 extern cl::opt
<bool> EnableVPlanNativePath
;
51 #define DEBUG_TYPE "vplan"
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const VPValue
&V
) {
55 const VPInstruction
*Instr
= dyn_cast
<VPInstruction
>(&V
);
56 VPSlotTracker
SlotTracker(
57 (Instr
&& Instr
->getParent()) ? Instr
->getParent()->getPlan() : nullptr);
58 V
.print(OS
, SlotTracker
);
63 Value
*VPLane::getAsRuntimeExpr(IRBuilder
<> &Builder
,
64 const ElementCount
&VF
) const {
66 case VPLane::Kind::ScalableLast
:
67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68 return Builder
.CreateSub(getRuntimeVF(Builder
, Builder
.getInt32Ty(), VF
),
69 Builder
.getInt32(VF
.getKnownMinValue() - Lane
));
70 case VPLane::Kind::First
:
71 return Builder
.getInt32(Lane
);
73 llvm_unreachable("Unknown lane kind");
76 VPValue::VPValue(const unsigned char SC
, Value
*UV
, VPDef
*Def
)
77 : SubclassID(SC
), UnderlyingVal(UV
), Def(Def
) {
79 Def
->addDefinedValue(this);
83 assert(Users
.empty() && "trying to delete a VPValue with remaining users");
85 Def
->removeDefinedValue(this);
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream
&OS
, VPSlotTracker
&SlotTracker
) const {
90 if (const VPRecipeBase
*R
= dyn_cast_or_null
<VPRecipeBase
>(Def
))
91 R
->print(OS
, "", SlotTracker
);
93 printAsOperand(OS
, SlotTracker
);
96 void VPValue::dump() const {
97 const VPRecipeBase
*Instr
= dyn_cast_or_null
<VPRecipeBase
>(this->Def
);
98 VPSlotTracker
SlotTracker(
99 (Instr
&& Instr
->getParent()) ? Instr
->getParent()->getPlan() : nullptr);
100 print(dbgs(), SlotTracker
);
104 void VPDef::dump() const {
105 const VPRecipeBase
*Instr
= dyn_cast_or_null
<VPRecipeBase
>(this);
106 VPSlotTracker
SlotTracker(
107 (Instr
&& Instr
->getParent()) ? Instr
->getParent()->getPlan() : nullptr);
108 print(dbgs(), "", SlotTracker
);
113 // Get the top-most entry block of \p Start. This is the entry block of the
114 // containing VPlan. This function is templated to support both const and non-const blocks
115 template <typename T
> static T
*getPlanEntry(T
*Start
) {
118 while ((Next
= Next
->getParent()))
121 SmallSetVector
<T
*, 8> WorkList
;
122 WorkList
.insert(Current
);
124 for (unsigned i
= 0; i
< WorkList
.size(); i
++) {
125 T
*Current
= WorkList
[i
];
126 if (Current
->getNumPredecessors() == 0)
128 auto &Predecessors
= Current
->getPredecessors();
129 WorkList
.insert(Predecessors
.begin(), Predecessors
.end());
132 llvm_unreachable("VPlan without any entry node without predecessors");
135 VPlan
*VPBlockBase::getPlan() { return getPlanEntry(this)->Plan
; }
137 const VPlan
*VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan
; }
139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
140 const VPBasicBlock
*VPBlockBase::getEntryBasicBlock() const {
141 const VPBlockBase
*Block
= this;
142 while (const VPRegionBlock
*Region
= dyn_cast
<VPRegionBlock
>(Block
))
143 Block
= Region
->getEntry();
144 return cast
<VPBasicBlock
>(Block
);
147 VPBasicBlock
*VPBlockBase::getEntryBasicBlock() {
148 VPBlockBase
*Block
= this;
149 while (VPRegionBlock
*Region
= dyn_cast
<VPRegionBlock
>(Block
))
150 Block
= Region
->getEntry();
151 return cast
<VPBasicBlock
>(Block
);
154 void VPBlockBase::setPlan(VPlan
*ParentPlan
) {
155 assert(ParentPlan
->getEntry() == this &&
156 "Can only set plan on its entry block.");
160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
161 const VPBasicBlock
*VPBlockBase::getExitBasicBlock() const {
162 const VPBlockBase
*Block
= this;
163 while (const VPRegionBlock
*Region
= dyn_cast
<VPRegionBlock
>(Block
))
164 Block
= Region
->getExit();
165 return cast
<VPBasicBlock
>(Block
);
168 VPBasicBlock
*VPBlockBase::getExitBasicBlock() {
169 VPBlockBase
*Block
= this;
170 while (VPRegionBlock
*Region
= dyn_cast
<VPRegionBlock
>(Block
))
171 Block
= Region
->getExit();
172 return cast
<VPBasicBlock
>(Block
);
175 VPBlockBase
*VPBlockBase::getEnclosingBlockWithSuccessors() {
176 if (!Successors
.empty() || !Parent
)
178 assert(Parent
->getExit() == this &&
179 "Block w/o successors not the exit of its parent.");
180 return Parent
->getEnclosingBlockWithSuccessors();
183 VPBlockBase
*VPBlockBase::getEnclosingBlockWithPredecessors() {
184 if (!Predecessors
.empty() || !Parent
)
186 assert(Parent
->getEntry() == this &&
187 "Block w/o predecessors not the entry of its parent.");
188 return Parent
->getEnclosingBlockWithPredecessors();
191 VPValue
*VPBlockBase::getCondBit() {
192 return CondBitUser
.getSingleOperandOrNull();
195 const VPValue
*VPBlockBase::getCondBit() const {
196 return CondBitUser
.getSingleOperandOrNull();
199 void VPBlockBase::setCondBit(VPValue
*CV
) { CondBitUser
.resetSingleOpUser(CV
); }
201 VPValue
*VPBlockBase::getPredicate() {
202 return PredicateUser
.getSingleOperandOrNull();
205 const VPValue
*VPBlockBase::getPredicate() const {
206 return PredicateUser
.getSingleOperandOrNull();
209 void VPBlockBase::setPredicate(VPValue
*CV
) {
210 PredicateUser
.resetSingleOpUser(CV
);
213 void VPBlockBase::deleteCFG(VPBlockBase
*Entry
) {
214 SmallVector
<VPBlockBase
*, 8> Blocks(depth_first(Entry
));
216 for (VPBlockBase
*Block
: Blocks
)
220 VPBasicBlock::iterator
VPBasicBlock::getFirstNonPhi() {
221 iterator It
= begin();
222 while (It
!= end() && It
->isPhi())
227 Value
*VPTransformState::get(VPValue
*Def
, const VPIteration
&Instance
) {
229 return Def
->getLiveInIRValue();
231 if (hasScalarValue(Def
, Instance
)) {
233 .PerPartScalars
[Def
][Instance
.Part
][Instance
.Lane
.mapToCacheIndex(VF
)];
236 assert(hasVectorValue(Def
, Instance
.Part
));
237 auto *VecPart
= Data
.PerPartOutput
[Def
][Instance
.Part
];
238 if (!VecPart
->getType()->isVectorTy()) {
239 assert(Instance
.Lane
.isFirstLane() && "cannot get lane > 0 for scalar");
242 // TODO: Cache created scalar values.
243 Value
*Lane
= Instance
.Lane
.getAsRuntimeExpr(Builder
, VF
);
244 auto *Extract
= Builder
.CreateExtractElement(VecPart
, Lane
);
245 // set(Def, Extract, Instance);
250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState
&CFG
) {
251 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
252 // Pred stands for Predessor. Prev stands for Previous - last visited/created.
253 BasicBlock
*PrevBB
= CFG
.PrevBB
;
254 BasicBlock
*NewBB
= BasicBlock::Create(PrevBB
->getContext(), getName(),
255 PrevBB
->getParent(), CFG
.LastBB
);
256 LLVM_DEBUG(dbgs() << "LV: created " << NewBB
->getName() << '\n');
258 // Hook up the new basic block to its predecessors.
259 for (VPBlockBase
*PredVPBlock
: getHierarchicalPredecessors()) {
260 VPBasicBlock
*PredVPBB
= PredVPBlock
->getExitBasicBlock();
261 auto &PredVPSuccessors
= PredVPBB
->getSuccessors();
262 BasicBlock
*PredBB
= CFG
.VPBB2IRBB
[PredVPBB
];
264 // In outer loop vectorization scenario, the predecessor BBlock may not yet
265 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
266 // vectorization. We do not encounter this case in inner loop vectorization
267 // as we start out by building a loop skeleton with the vector loop header
268 // and latch blocks. As a result, we never enter this function for the
269 // header block in the non VPlan-native path.
271 assert(EnableVPlanNativePath
&&
272 "Unexpected null predecessor in non VPlan-native path");
273 CFG
.VPBBsToFix
.push_back(PredVPBB
);
277 assert(PredBB
&& "Predecessor basic-block not found building successor.");
278 auto *PredBBTerminator
= PredBB
->getTerminator();
279 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB
->getName() << '\n');
280 if (isa
<UnreachableInst
>(PredBBTerminator
)) {
281 assert(PredVPSuccessors
.size() == 1 &&
282 "Predecessor ending w/o branch must have single successor.");
283 PredBBTerminator
->eraseFromParent();
284 BranchInst::Create(NewBB
, PredBB
);
286 assert(PredVPSuccessors
.size() == 2 &&
287 "Predecessor ending with branch must have two successors.");
288 unsigned idx
= PredVPSuccessors
.front() == this ? 0 : 1;
289 assert(!PredBBTerminator
->getSuccessor(idx
) &&
290 "Trying to reset an existing successor block.");
291 PredBBTerminator
->setSuccessor(idx
, NewBB
);
297 void VPBasicBlock::execute(VPTransformState
*State
) {
298 bool Replica
= State
->Instance
&& !State
->Instance
->isFirstIteration();
299 VPBasicBlock
*PrevVPBB
= State
->CFG
.PrevVPBB
;
300 VPBlockBase
*SingleHPred
= nullptr;
301 BasicBlock
*NewBB
= State
->CFG
.PrevBB
; // Reuse it if possible.
303 // 1. Create an IR basic block, or reuse the last one if possible.
304 // The last IR basic block is reused, as an optimization, in three cases:
305 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
306 // B. when the current VPBB has a single (hierarchical) predecessor which
307 // is PrevVPBB and the latter has a single (hierarchical) successor; and
308 // C. when the current VPBB is an entry of a region replica - where PrevVPBB
309 // is the exit of this region from a previous instance, or the predecessor
311 if (PrevVPBB
&& /* A */
312 !((SingleHPred
= getSingleHierarchicalPredecessor()) &&
313 SingleHPred
->getExitBasicBlock() == PrevVPBB
&&
314 PrevVPBB
->getSingleHierarchicalSuccessor()) && /* B */
315 !(Replica
&& getPredecessors().empty())) { /* C */
316 NewBB
= createEmptyBasicBlock(State
->CFG
);
317 State
->Builder
.SetInsertPoint(NewBB
);
318 // Temporarily terminate with unreachable until CFG is rewired.
319 UnreachableInst
*Terminator
= State
->Builder
.CreateUnreachable();
320 State
->Builder
.SetInsertPoint(Terminator
);
321 // Register NewBB in its loop. In innermost loops its the same for all BB's.
322 Loop
*L
= State
->LI
->getLoopFor(State
->CFG
.LastBB
);
323 L
->addBasicBlockToLoop(NewBB
, *State
->LI
);
324 State
->CFG
.PrevBB
= NewBB
;
327 // 2. Fill the IR basic block with IR instructions.
328 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
329 << " in BB:" << NewBB
->getName() << '\n');
331 State
->CFG
.VPBB2IRBB
[this] = NewBB
;
332 State
->CFG
.PrevVPBB
= this;
334 for (VPRecipeBase
&Recipe
: Recipes
)
335 Recipe
.execute(*State
);
338 if (EnableVPlanNativePath
&& (CBV
= getCondBit())) {
339 assert(CBV
->getUnderlyingValue() &&
340 "Unexpected null underlying value for condition bit");
342 // Condition bit value in a VPBasicBlock is used as the branch selector. In
343 // the VPlan-native path case, since all branches are uniform we generate a
344 // branch instruction using the condition value from vector lane 0 and dummy
345 // successors. The successors are fixed later when the successor blocks are
347 Value
*NewCond
= State
->get(CBV
, {0, 0});
349 // Replace the temporary unreachable terminator with the new conditional
351 auto *CurrentTerminator
= NewBB
->getTerminator();
352 assert(isa
<UnreachableInst
>(CurrentTerminator
) &&
353 "Expected to replace unreachable terminator with conditional "
355 auto *CondBr
= BranchInst::Create(NewBB
, nullptr, NewCond
);
356 CondBr
->setSuccessor(0, nullptr);
357 ReplaceInstWithInst(CurrentTerminator
, CondBr
);
360 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB
);
363 void VPBasicBlock::dropAllReferences(VPValue
*NewValue
) {
364 for (VPRecipeBase
&R
: Recipes
) {
365 for (auto *Def
: R
.definedValues())
366 Def
->replaceAllUsesWith(NewValue
);
368 for (unsigned I
= 0, E
= R
.getNumOperands(); I
!= E
; I
++)
369 R
.setOperand(I
, NewValue
);
373 VPBasicBlock
*VPBasicBlock::splitAt(iterator SplitAt
) {
374 assert((SplitAt
== end() || SplitAt
->getParent() == this) &&
375 "can only split at a position in the same block");
377 SmallVector
<VPBlockBase
*, 2> Succs(getSuccessors().begin(),
378 getSuccessors().end());
379 // First, disconnect the current block from its successors.
380 for (VPBlockBase
*Succ
: Succs
)
381 VPBlockUtils::disconnectBlocks(this, Succ
);
383 // Create new empty block after the block to split.
384 auto *SplitBlock
= new VPBasicBlock(getName() + ".split");
385 VPBlockUtils::insertBlockAfter(SplitBlock
, this);
387 // Add successors for block to split to new block.
388 for (VPBlockBase
*Succ
: Succs
)
389 VPBlockUtils::connectBlocks(SplitBlock
, Succ
);
391 // Finally, move the recipes starting at SplitAt to new block.
392 for (VPRecipeBase
&ToMove
:
393 make_early_inc_range(make_range(SplitAt
, this->end())))
394 ToMove
.moveBefore(*SplitBlock
, SplitBlock
->end());
399 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
400 void VPBlockBase::printSuccessors(raw_ostream
&O
, const Twine
&Indent
) const {
401 if (getSuccessors().empty()) {
402 O
<< Indent
<< "No successors\n";
404 O
<< Indent
<< "Successor(s): ";
406 for (auto *Succ
: getSuccessors())
407 O
<< LS
<< Succ
->getName();
412 void VPBasicBlock::print(raw_ostream
&O
, const Twine
&Indent
,
413 VPSlotTracker
&SlotTracker
) const {
414 O
<< Indent
<< getName() << ":\n";
415 if (const VPValue
*Pred
= getPredicate()) {
416 O
<< Indent
<< "BlockPredicate:";
417 Pred
->printAsOperand(O
, SlotTracker
);
418 if (const auto *PredInst
= dyn_cast
<VPInstruction
>(Pred
))
419 O
<< " (" << PredInst
->getParent()->getName() << ")";
423 auto RecipeIndent
= Indent
+ " ";
424 for (const VPRecipeBase
&Recipe
: *this) {
425 Recipe
.print(O
, RecipeIndent
, SlotTracker
);
429 printSuccessors(O
, Indent
);
431 if (const VPValue
*CBV
= getCondBit()) {
432 O
<< Indent
<< "CondBit: ";
433 CBV
->printAsOperand(O
, SlotTracker
);
434 if (const auto *CBI
= dyn_cast
<VPInstruction
>(CBV
))
435 O
<< " (" << CBI
->getParent()->getName() << ")";
441 void VPRegionBlock::dropAllReferences(VPValue
*NewValue
) {
442 for (VPBlockBase
*Block
: depth_first(Entry
))
443 // Drop all references in VPBasicBlocks and replace all uses with
445 Block
->dropAllReferences(NewValue
);
448 void VPRegionBlock::execute(VPTransformState
*State
) {
449 ReversePostOrderTraversal
<VPBlockBase
*> RPOT(Entry
);
451 if (!isReplicator()) {
452 // Visit the VPBlocks connected to "this", starting from it.
453 for (VPBlockBase
*Block
: RPOT
) {
454 if (EnableVPlanNativePath
) {
455 // The inner loop vectorization path does not represent loop preheader
456 // and exit blocks as part of the VPlan. In the VPlan-native path, skip
457 // vectorizing loop preheader block. In future, we may replace this
458 // check with the check for loop preheader.
459 if (Block
->getNumPredecessors() == 0)
462 // Skip vectorizing loop exit block. In future, we may replace this
463 // check with the check for loop exit.
464 if (Block
->getNumSuccessors() == 0)
468 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block
->getName() << '\n');
469 Block
->execute(State
);
474 assert(!State
->Instance
&& "Replicating a Region with non-null instance.");
476 // Enter replicating mode.
477 State
->Instance
= VPIteration(0, 0);
479 for (unsigned Part
= 0, UF
= State
->UF
; Part
< UF
; ++Part
) {
480 State
->Instance
->Part
= Part
;
481 assert(!State
->VF
.isScalable() && "VF is assumed to be non scalable.");
482 for (unsigned Lane
= 0, VF
= State
->VF
.getKnownMinValue(); Lane
< VF
;
484 State
->Instance
->Lane
= VPLane(Lane
, VPLane::Kind::First
);
485 // Visit the VPBlocks connected to \p this, starting from it.
486 for (VPBlockBase
*Block
: RPOT
) {
487 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block
->getName() << '\n');
488 Block
->execute(State
);
493 // Exit replicating mode.
494 State
->Instance
.reset();
497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
498 void VPRegionBlock::print(raw_ostream
&O
, const Twine
&Indent
,
499 VPSlotTracker
&SlotTracker
) const {
500 O
<< Indent
<< (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
501 auto NewIndent
= Indent
+ " ";
502 for (auto *BlockBase
: depth_first(Entry
)) {
504 BlockBase
->print(O
, NewIndent
, SlotTracker
);
506 O
<< Indent
<< "}\n";
508 printSuccessors(O
, Indent
);
512 bool VPRecipeBase::mayWriteToMemory() const {
513 switch (getVPDefID()) {
514 case VPWidenMemoryInstructionSC
: {
515 return cast
<VPWidenMemoryInstructionRecipe
>(this)->isStore();
519 return cast
<Instruction
>(getVPSingleValue()->getUnderlyingValue())
520 ->mayWriteToMemory();
521 case VPBranchOnMaskSC
:
523 case VPWidenIntOrFpInductionSC
:
524 case VPWidenCanonicalIVSC
:
530 case VPWidenSelectSC
: {
531 const Instruction
*I
=
532 dyn_cast_or_null
<Instruction
>(getVPSingleValue()->getUnderlyingValue());
534 assert((!I
|| !I
->mayWriteToMemory()) &&
535 "underlying instruction may write to memory");
543 bool VPRecipeBase::mayReadFromMemory() const {
544 switch (getVPDefID()) {
545 case VPWidenMemoryInstructionSC
: {
546 return !cast
<VPWidenMemoryInstructionRecipe
>(this)->isStore();
550 return cast
<Instruction
>(getVPSingleValue()->getUnderlyingValue())
551 ->mayReadFromMemory();
552 case VPBranchOnMaskSC
:
554 case VPWidenIntOrFpInductionSC
:
555 case VPWidenCanonicalIVSC
:
561 case VPWidenSelectSC
: {
562 const Instruction
*I
=
563 dyn_cast_or_null
<Instruction
>(getVPSingleValue()->getUnderlyingValue());
565 assert((!I
|| !I
->mayReadFromMemory()) &&
566 "underlying instruction may read from memory");
574 bool VPRecipeBase::mayHaveSideEffects() const {
575 switch (getVPDefID()) {
576 case VPBranchOnMaskSC
:
578 case VPWidenIntOrFpInductionSC
:
579 case VPWidenCanonicalIVSC
:
585 case VPWidenSelectSC
: {
586 const Instruction
*I
=
587 dyn_cast_or_null
<Instruction
>(getVPSingleValue()->getUnderlyingValue());
589 assert((!I
|| !I
->mayHaveSideEffects()) &&
590 "underlying instruction has side-effects");
593 case VPReplicateSC
: {
594 auto *R
= cast
<VPReplicateRecipe
>(this);
595 return R
->getUnderlyingInstr()->mayHaveSideEffects();
602 void VPRecipeBase::insertBefore(VPRecipeBase
*InsertPos
) {
603 assert(!Parent
&& "Recipe already in some VPBasicBlock");
604 assert(InsertPos
->getParent() &&
605 "Insertion position not in any VPBasicBlock");
606 Parent
= InsertPos
->getParent();
607 Parent
->getRecipeList().insert(InsertPos
->getIterator(), this);
610 void VPRecipeBase::insertAfter(VPRecipeBase
*InsertPos
) {
611 assert(!Parent
&& "Recipe already in some VPBasicBlock");
612 assert(InsertPos
->getParent() &&
613 "Insertion position not in any VPBasicBlock");
614 Parent
= InsertPos
->getParent();
615 Parent
->getRecipeList().insertAfter(InsertPos
->getIterator(), this);
618 void VPRecipeBase::removeFromParent() {
619 assert(getParent() && "Recipe not in any VPBasicBlock");
620 getParent()->getRecipeList().remove(getIterator());
624 iplist
<VPRecipeBase
>::iterator
VPRecipeBase::eraseFromParent() {
625 assert(getParent() && "Recipe not in any VPBasicBlock");
626 return getParent()->getRecipeList().erase(getIterator());
629 void VPRecipeBase::moveAfter(VPRecipeBase
*InsertPos
) {
631 insertAfter(InsertPos
);
634 void VPRecipeBase::moveBefore(VPBasicBlock
&BB
,
635 iplist
<VPRecipeBase
>::iterator I
) {
636 assert(I
== BB
.end() || I
->getParent() == &BB
);
639 BB
.getRecipeList().insert(I
, this);
642 void VPInstruction::generateInstruction(VPTransformState
&State
,
644 IRBuilder
<> &Builder
= State
.Builder
;
646 if (Instruction::isBinaryOp(getOpcode())) {
647 Value
*A
= State
.get(getOperand(0), Part
);
648 Value
*B
= State
.get(getOperand(1), Part
);
649 Value
*V
= Builder
.CreateBinOp((Instruction::BinaryOps
)getOpcode(), A
, B
);
650 State
.set(this, V
, Part
);
654 switch (getOpcode()) {
655 case VPInstruction::Not
: {
656 Value
*A
= State
.get(getOperand(0), Part
);
657 Value
*V
= Builder
.CreateNot(A
);
658 State
.set(this, V
, Part
);
661 case VPInstruction::ICmpULE
: {
662 Value
*IV
= State
.get(getOperand(0), Part
);
663 Value
*TC
= State
.get(getOperand(1), Part
);
664 Value
*V
= Builder
.CreateICmpULE(IV
, TC
);
665 State
.set(this, V
, Part
);
668 case Instruction::Select
: {
669 Value
*Cond
= State
.get(getOperand(0), Part
);
670 Value
*Op1
= State
.get(getOperand(1), Part
);
671 Value
*Op2
= State
.get(getOperand(2), Part
);
672 Value
*V
= Builder
.CreateSelect(Cond
, Op1
, Op2
);
673 State
.set(this, V
, Part
);
676 case VPInstruction::ActiveLaneMask
: {
677 // Get first lane of vector induction variable.
678 Value
*VIVElem0
= State
.get(getOperand(0), VPIteration(Part
, 0));
679 // Get the original loop tripcount.
680 Value
*ScalarTC
= State
.TripCount
;
682 auto *Int1Ty
= Type::getInt1Ty(Builder
.getContext());
683 auto *PredTy
= FixedVectorType::get(Int1Ty
, State
.VF
.getKnownMinValue());
684 Instruction
*Call
= Builder
.CreateIntrinsic(
685 Intrinsic::get_active_lane_mask
, {PredTy
, ScalarTC
->getType()},
686 {VIVElem0
, ScalarTC
}, nullptr, "active.lane.mask");
687 State
.set(this, Call
, Part
);
690 case VPInstruction::FirstOrderRecurrenceSplice
: {
691 // Generate code to combine the previous and current values in vector v3.
694 // v_init = vector(..., ..., ..., a[-1])
698 // i = phi [0, vector.ph], [i+4, vector.body]
699 // v1 = phi [v_init, vector.ph], [v2, vector.body]
700 // v2 = a[i, i+1, i+2, i+3];
701 // v3 = vector(v1(3), v2(0, 1, 2))
703 // For the first part, use the recurrence phi (v1), otherwise v2.
704 auto *V1
= State
.get(getOperand(0), 0);
705 Value
*PartMinus1
= Part
== 0 ? V1
: State
.get(getOperand(1), Part
- 1);
706 if (!PartMinus1
->getType()->isVectorTy()) {
707 State
.set(this, PartMinus1
, Part
);
709 Value
*V2
= State
.get(getOperand(1), Part
);
710 State
.set(this, Builder
.CreateVectorSplice(PartMinus1
, V2
, -1), Part
);
715 llvm_unreachable("Unsupported opcode for instruction");
719 void VPInstruction::execute(VPTransformState
&State
) {
720 assert(!State
.Instance
&& "VPInstruction executing an Instance");
721 for (unsigned Part
= 0; Part
< State
.UF
; ++Part
)
722 generateInstruction(State
, Part
);
725 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
726 void VPInstruction::dump() const {
727 VPSlotTracker
SlotTracker(getParent()->getPlan());
728 print(dbgs(), "", SlotTracker
);
731 void VPInstruction::print(raw_ostream
&O
, const Twine
&Indent
,
732 VPSlotTracker
&SlotTracker
) const {
733 O
<< Indent
<< "EMIT ";
736 printAsOperand(O
, SlotTracker
);
740 switch (getOpcode()) {
741 case VPInstruction::Not
:
744 case VPInstruction::ICmpULE
:
747 case VPInstruction::SLPLoad
:
748 O
<< "combined load";
750 case VPInstruction::SLPStore
:
751 O
<< "combined store";
753 case VPInstruction::ActiveLaneMask
:
754 O
<< "active lane mask";
756 case VPInstruction::FirstOrderRecurrenceSplice
:
757 O
<< "first-order splice";
760 O
<< Instruction::getOpcodeName(getOpcode());
763 for (const VPValue
*Operand
: operands()) {
765 Operand
->printAsOperand(O
, SlotTracker
);
770 /// Generate the code inside the body of the vectorized loop. Assumes a single
771 /// LoopVectorBody basic-block was created for this. Introduce additional
772 /// basic-blocks as needed, and fill them all.
773 void VPlan::execute(VPTransformState
*State
) {
774 // -1. Check if the backedge taken count is needed, and if so build it.
775 if (BackedgeTakenCount
&& BackedgeTakenCount
->getNumUsers()) {
776 Value
*TC
= State
->TripCount
;
777 IRBuilder
<> Builder(State
->CFG
.PrevBB
->getTerminator());
778 auto *TCMO
= Builder
.CreateSub(TC
, ConstantInt::get(TC
->getType(), 1),
779 "trip.count.minus.1");
782 VF
.isScalar() ? TCMO
: Builder
.CreateVectorSplat(VF
, TCMO
, "broadcast");
783 for (unsigned Part
= 0, UF
= State
->UF
; Part
< UF
; ++Part
)
784 State
->set(BackedgeTakenCount
, VTCMO
, Part
);
787 // 0. Set the reverse mapping from VPValues to Values for code generation.
788 for (auto &Entry
: Value2VPValue
)
789 State
->VPValue2Value
[Entry
.second
] = Entry
.first
;
791 BasicBlock
*VectorPreHeaderBB
= State
->CFG
.PrevBB
;
792 State
->CFG
.VectorPreHeader
= VectorPreHeaderBB
;
793 BasicBlock
*VectorHeaderBB
= VectorPreHeaderBB
->getSingleSuccessor();
794 assert(VectorHeaderBB
&& "Loop preheader does not have a single successor.");
796 // 1. Make room to generate basic-blocks inside loop body if needed.
797 BasicBlock
*VectorLatchBB
= VectorHeaderBB
->splitBasicBlock(
798 VectorHeaderBB
->getFirstInsertionPt(), "vector.body.latch");
799 Loop
*L
= State
->LI
->getLoopFor(VectorHeaderBB
);
800 L
->addBasicBlockToLoop(VectorLatchBB
, *State
->LI
);
801 // Remove the edge between Header and Latch to allow other connections.
802 // Temporarily terminate with unreachable until CFG is rewired.
803 // Note: this asserts the generated code's assumption that
804 // getFirstInsertionPt() can be dereferenced into an Instruction.
805 VectorHeaderBB
->getTerminator()->eraseFromParent();
806 State
->Builder
.SetInsertPoint(VectorHeaderBB
);
807 UnreachableInst
*Terminator
= State
->Builder
.CreateUnreachable();
808 State
->Builder
.SetInsertPoint(Terminator
);
810 // 2. Generate code in loop body.
811 State
->CFG
.PrevVPBB
= nullptr;
812 State
->CFG
.PrevBB
= VectorHeaderBB
;
813 State
->CFG
.LastBB
= VectorLatchBB
;
815 for (VPBlockBase
*Block
: depth_first(Entry
))
816 Block
->execute(State
);
818 // Fix the latch value of reduction and first-order recurrences phis in the
820 VPBasicBlock
*Header
= Entry
->getEntryBasicBlock();
821 for (VPRecipeBase
&R
: Header
->phis()) {
822 auto *PhiR
= dyn_cast
<VPWidenPHIRecipe
>(&R
);
823 if (!PhiR
|| !(isa
<VPFirstOrderRecurrencePHIRecipe
>(&R
) ||
824 isa
<VPReductionPHIRecipe
>(&R
)))
826 // For first-order recurrences and in-order reduction phis, only a single
827 // part is generated, which provides the last part from the previous
828 // iteration. Otherwise all UF parts are generated.
829 bool SinglePartNeeded
= isa
<VPFirstOrderRecurrencePHIRecipe
>(&R
) ||
830 cast
<VPReductionPHIRecipe
>(&R
)->isOrdered();
831 unsigned LastPartForNewPhi
= SinglePartNeeded
? 1 : State
->UF
;
832 for (unsigned Part
= 0; Part
< LastPartForNewPhi
; ++Part
) {
833 Value
*VecPhi
= State
->get(PhiR
, Part
);
834 Value
*Val
= State
->get(PhiR
->getBackedgeValue(),
835 SinglePartNeeded
? State
->UF
- 1 : Part
);
836 cast
<PHINode
>(VecPhi
)->addIncoming(Val
, VectorLatchBB
);
840 // Setup branch terminator successors for VPBBs in VPBBsToFix based on
841 // VPBB's successors.
842 for (auto VPBB
: State
->CFG
.VPBBsToFix
) {
843 assert(EnableVPlanNativePath
&&
844 "Unexpected VPBBsToFix in non VPlan-native path");
845 BasicBlock
*BB
= State
->CFG
.VPBB2IRBB
[VPBB
];
846 assert(BB
&& "Unexpected null basic block for VPBB");
849 auto *BBTerminator
= BB
->getTerminator();
851 for (VPBlockBase
*SuccVPBlock
: VPBB
->getHierarchicalSuccessors()) {
852 VPBasicBlock
*SuccVPBB
= SuccVPBlock
->getEntryBasicBlock();
853 BBTerminator
->setSuccessor(Idx
, State
->CFG
.VPBB2IRBB
[SuccVPBB
]);
858 // 3. Merge the temporary latch created with the last basic-block filled.
859 BasicBlock
*LastBB
= State
->CFG
.PrevBB
;
860 // Connect LastBB to VectorLatchBB to facilitate their merge.
861 assert((EnableVPlanNativePath
||
862 isa
<UnreachableInst
>(LastBB
->getTerminator())) &&
863 "Expected InnerLoop VPlan CFG to terminate with unreachable");
864 assert((!EnableVPlanNativePath
|| isa
<BranchInst
>(LastBB
->getTerminator())) &&
865 "Expected VPlan CFG to terminate with branch in NativePath");
866 LastBB
->getTerminator()->eraseFromParent();
867 BranchInst::Create(VectorLatchBB
, LastBB
);
869 // Merge LastBB with Latch.
870 bool Merged
= MergeBlockIntoPredecessor(VectorLatchBB
, nullptr, State
->LI
);
872 assert(Merged
&& "Could not merge last basic block with latch.");
873 VectorLatchBB
= LastBB
;
875 // We do not attempt to preserve DT for outer loop vectorization currently.
876 if (!EnableVPlanNativePath
)
877 updateDominatorTree(State
->DT
, VectorPreHeaderBB
, VectorLatchBB
,
881 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
883 void VPlan::print(raw_ostream
&O
) const {
884 VPSlotTracker
SlotTracker(this);
886 O
<< "VPlan '" << Name
<< "' {";
887 for (const VPBlockBase
*Block
: depth_first(getEntry())) {
889 Block
->print(O
, "", SlotTracker
);
895 void VPlan::printDOT(raw_ostream
&O
) const {
896 VPlanPrinter
Printer(O
, *this);
901 void VPlan::dump() const { print(dbgs()); }
904 void VPlan::updateDominatorTree(DominatorTree
*DT
, BasicBlock
*LoopPreHeaderBB
,
905 BasicBlock
*LoopLatchBB
,
906 BasicBlock
*LoopExitBB
) {
907 BasicBlock
*LoopHeaderBB
= LoopPreHeaderBB
->getSingleSuccessor();
908 assert(LoopHeaderBB
&& "Loop preheader does not have a single successor.");
909 // The vector body may be more than a single basic-block by this point.
910 // Update the dominator tree information inside the vector body by propagating
911 // it from header to latch, expecting only triangular control-flow, if any.
912 BasicBlock
*PostDomSucc
= nullptr;
913 for (auto *BB
= LoopHeaderBB
; BB
!= LoopLatchBB
; BB
= PostDomSucc
) {
914 // Get the list of successors of this block.
915 std::vector
<BasicBlock
*> Succs(succ_begin(BB
), succ_end(BB
));
916 assert(Succs
.size() <= 2 &&
917 "Basic block in vector loop has more than 2 successors.");
918 PostDomSucc
= Succs
[0];
919 if (Succs
.size() == 1) {
920 assert(PostDomSucc
->getSinglePredecessor() &&
921 "PostDom successor has more than one predecessor.");
922 DT
->addNewBlock(PostDomSucc
, BB
);
925 BasicBlock
*InterimSucc
= Succs
[1];
926 if (PostDomSucc
->getSingleSuccessor() == InterimSucc
) {
927 PostDomSucc
= Succs
[1];
928 InterimSucc
= Succs
[0];
930 assert(InterimSucc
->getSingleSuccessor() == PostDomSucc
&&
931 "One successor of a basic block does not lead to the other.");
932 assert(InterimSucc
->getSinglePredecessor() &&
933 "Interim successor has more than one predecessor.");
934 assert(PostDomSucc
->hasNPredecessors(2) &&
935 "PostDom successor has more than two predecessors.");
936 DT
->addNewBlock(InterimSucc
, BB
);
937 DT
->addNewBlock(PostDomSucc
, BB
);
939 // Latch block is a new dominator for the loop exit.
940 DT
->changeImmediateDominator(LoopExitBB
, LoopLatchBB
);
941 assert(DT
->verify(DominatorTree::VerificationLevel::Fast
));
944 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
945 Twine
VPlanPrinter::getUID(const VPBlockBase
*Block
) {
946 return (isa
<VPRegionBlock
>(Block
) ? "cluster_N" : "N") +
947 Twine(getOrCreateBID(Block
));
950 Twine
VPlanPrinter::getOrCreateName(const VPBlockBase
*Block
) {
951 const std::string
&Name
= Block
->getName();
954 return "VPB" + Twine(getOrCreateBID(Block
));
957 void VPlanPrinter::dump() {
960 OS
<< "digraph VPlan {\n";
961 OS
<< "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
962 if (!Plan
.getName().empty())
963 OS
<< "\\n" << DOT::EscapeString(Plan
.getName());
964 if (Plan
.BackedgeTakenCount
) {
966 Plan
.BackedgeTakenCount
->print(OS
, SlotTracker
);
967 OS
<< " := BackedgeTakenCount";
970 OS
<< "node [shape=rect, fontname=Courier, fontsize=30]\n";
971 OS
<< "edge [fontname=Courier, fontsize=30]\n";
972 OS
<< "compound=true\n";
974 for (const VPBlockBase
*Block
: depth_first(Plan
.getEntry()))
980 void VPlanPrinter::dumpBlock(const VPBlockBase
*Block
) {
981 if (const VPBasicBlock
*BasicBlock
= dyn_cast
<VPBasicBlock
>(Block
))
982 dumpBasicBlock(BasicBlock
);
983 else if (const VPRegionBlock
*Region
= dyn_cast
<VPRegionBlock
>(Block
))
986 llvm_unreachable("Unsupported kind of VPBlock.");
989 void VPlanPrinter::drawEdge(const VPBlockBase
*From
, const VPBlockBase
*To
,
990 bool Hidden
, const Twine
&Label
) {
991 // Due to "dot" we print an edge between two regions as an edge between the
992 // exit basic block and the entry basic of the respective regions.
993 const VPBlockBase
*Tail
= From
->getExitBasicBlock();
994 const VPBlockBase
*Head
= To
->getEntryBasicBlock();
995 OS
<< Indent
<< getUID(Tail
) << " -> " << getUID(Head
);
996 OS
<< " [ label=\"" << Label
<< '\"';
998 OS
<< " ltail=" << getUID(From
);
1000 OS
<< " lhead=" << getUID(To
);
1002 OS
<< "; splines=none";
1006 void VPlanPrinter::dumpEdges(const VPBlockBase
*Block
) {
1007 auto &Successors
= Block
->getSuccessors();
1008 if (Successors
.size() == 1)
1009 drawEdge(Block
, Successors
.front(), false, "");
1010 else if (Successors
.size() == 2) {
1011 drawEdge(Block
, Successors
.front(), false, "T");
1012 drawEdge(Block
, Successors
.back(), false, "F");
1014 unsigned SuccessorNumber
= 0;
1015 for (auto *Successor
: Successors
)
1016 drawEdge(Block
, Successor
, false, Twine(SuccessorNumber
++));
1020 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock
*BasicBlock
) {
1021 // Implement dot-formatted dump by performing plain-text dump into the
1022 // temporary storage followed by some post-processing.
1023 OS
<< Indent
<< getUID(BasicBlock
) << " [label =\n";
1026 raw_string_ostream
SS(Str
);
1027 // Use no indentation as we need to wrap the lines into quotes ourselves.
1028 BasicBlock
->print(SS
, "", SlotTracker
);
1030 // We need to process each line of the output separately, so split
1031 // single-string plain-text dump.
1032 SmallVector
<StringRef
, 0> Lines
;
1033 StringRef(Str
).rtrim('\n').split(Lines
, "\n");
1035 auto EmitLine
= [&](StringRef Line
, StringRef Suffix
) {
1036 OS
<< Indent
<< '"' << DOT::EscapeString(Line
.str()) << "\\l\"" << Suffix
;
1039 // Don't need the "+" after the last line.
1040 for (auto Line
: make_range(Lines
.begin(), Lines
.end() - 1))
1041 EmitLine(Line
, " +\n");
1042 EmitLine(Lines
.back(), "\n");
1045 OS
<< Indent
<< "]\n";
1047 dumpEdges(BasicBlock
);
1050 void VPlanPrinter::dumpRegion(const VPRegionBlock
*Region
) {
1051 OS
<< Indent
<< "subgraph " << getUID(Region
) << " {\n";
1053 OS
<< Indent
<< "fontname=Courier\n"
1054 << Indent
<< "label=\""
1055 << DOT::EscapeString(Region
->isReplicator() ? "<xVFxUF> " : "<x1> ")
1056 << DOT::EscapeString(Region
->getName()) << "\"\n";
1057 // Dump the blocks of the region.
1058 assert(Region
->getEntry() && "Region contains no inner blocks.");
1059 for (const VPBlockBase
*Block
: depth_first(Region
->getEntry()))
1062 OS
<< Indent
<< "}\n";
1066 void VPlanIngredient::print(raw_ostream
&O
) const {
1067 if (auto *Inst
= dyn_cast
<Instruction
>(V
)) {
1068 if (!Inst
->getType()->isVoidTy()) {
1069 Inst
->printAsOperand(O
, false);
1072 O
<< Inst
->getOpcodeName() << " ";
1073 unsigned E
= Inst
->getNumOperands();
1075 Inst
->getOperand(0)->printAsOperand(O
, false);
1076 for (unsigned I
= 1; I
< E
; ++I
)
1077 Inst
->getOperand(I
)->printAsOperand(O
<< ", ", false);
1080 V
->printAsOperand(O
, false);
1083 void VPWidenCallRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1084 VPSlotTracker
&SlotTracker
) const {
1085 O
<< Indent
<< "WIDEN-CALL ";
1087 auto *CI
= cast
<CallInst
>(getUnderlyingInstr());
1088 if (CI
->getType()->isVoidTy())
1091 printAsOperand(O
, SlotTracker
);
1095 O
<< "call @" << CI
->getCalledFunction()->getName() << "(";
1096 printOperands(O
, SlotTracker
);
1100 void VPWidenSelectRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1101 VPSlotTracker
&SlotTracker
) const {
1102 O
<< Indent
<< "WIDEN-SELECT ";
1103 printAsOperand(O
, SlotTracker
);
1105 getOperand(0)->printAsOperand(O
, SlotTracker
);
1107 getOperand(1)->printAsOperand(O
, SlotTracker
);
1109 getOperand(2)->printAsOperand(O
, SlotTracker
);
1110 O
<< (InvariantCond
? " (condition is loop invariant)" : "");
1113 void VPWidenRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1114 VPSlotTracker
&SlotTracker
) const {
1115 O
<< Indent
<< "WIDEN ";
1116 printAsOperand(O
, SlotTracker
);
1117 O
<< " = " << getUnderlyingInstr()->getOpcodeName() << " ";
1118 printOperands(O
, SlotTracker
);
1121 void VPWidenIntOrFpInductionRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1122 VPSlotTracker
&SlotTracker
) const {
1123 O
<< Indent
<< "WIDEN-INDUCTION";
1124 if (getTruncInst()) {
1126 O
<< " +\n" << Indent
<< "\" " << VPlanIngredient(IV
) << "\\l\"";
1127 O
<< " +\n" << Indent
<< "\" ";
1128 getVPValue(0)->printAsOperand(O
, SlotTracker
);
1130 O
<< " " << VPlanIngredient(IV
);
1133 void VPWidenGEPRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1134 VPSlotTracker
&SlotTracker
) const {
1135 O
<< Indent
<< "WIDEN-GEP ";
1136 O
<< (IsPtrLoopInvariant
? "Inv" : "Var");
1137 size_t IndicesNumber
= IsIndexLoopInvariant
.size();
1138 for (size_t I
= 0; I
< IndicesNumber
; ++I
)
1139 O
<< "[" << (IsIndexLoopInvariant
[I
] ? "Inv" : "Var") << "]";
1142 printAsOperand(O
, SlotTracker
);
1143 O
<< " = getelementptr ";
1144 printOperands(O
, SlotTracker
);
1147 void VPWidenPHIRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1148 VPSlotTracker
&SlotTracker
) const {
1149 O
<< Indent
<< "WIDEN-PHI ";
1151 auto *OriginalPhi
= cast
<PHINode
>(getUnderlyingValue());
1152 // Unless all incoming values are modeled in VPlan print the original PHI
1154 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
1155 // values as VPValues.
1156 if (getNumOperands() != OriginalPhi
->getNumOperands()) {
1157 O
<< VPlanIngredient(OriginalPhi
);
1161 printAsOperand(O
, SlotTracker
);
1163 printOperands(O
, SlotTracker
);
1166 void VPBlendRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1167 VPSlotTracker
&SlotTracker
) const {
1168 O
<< Indent
<< "BLEND ";
1169 Phi
->printAsOperand(O
, false);
1171 if (getNumIncomingValues() == 1) {
1172 // Not a User of any mask: not really blending, this is a
1173 // single-predecessor phi.
1175 getIncomingValue(0)->printAsOperand(O
, SlotTracker
);
1177 for (unsigned I
= 0, E
= getNumIncomingValues(); I
< E
; ++I
) {
1179 getIncomingValue(I
)->printAsOperand(O
, SlotTracker
);
1181 getMask(I
)->printAsOperand(O
, SlotTracker
);
1186 void VPReductionRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1187 VPSlotTracker
&SlotTracker
) const {
1188 O
<< Indent
<< "REDUCE ";
1189 printAsOperand(O
, SlotTracker
);
1191 getChainOp()->printAsOperand(O
, SlotTracker
);
1192 O
<< " + reduce." << Instruction::getOpcodeName(RdxDesc
->getOpcode())
1194 getVecOp()->printAsOperand(O
, SlotTracker
);
1197 getCondOp()->printAsOperand(O
, SlotTracker
);
1202 void VPReplicateRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1203 VPSlotTracker
&SlotTracker
) const {
1204 O
<< Indent
<< (IsUniform
? "CLONE " : "REPLICATE ");
1206 if (!getUnderlyingInstr()->getType()->isVoidTy()) {
1207 printAsOperand(O
, SlotTracker
);
1210 O
<< Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1211 printOperands(O
, SlotTracker
);
1217 void VPPredInstPHIRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1218 VPSlotTracker
&SlotTracker
) const {
1219 O
<< Indent
<< "PHI-PREDICATED-INSTRUCTION ";
1220 printAsOperand(O
, SlotTracker
);
1222 printOperands(O
, SlotTracker
);
1225 void VPWidenMemoryInstructionRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1226 VPSlotTracker
&SlotTracker
) const {
1227 O
<< Indent
<< "WIDEN ";
1230 getVPSingleValue()->printAsOperand(O
, SlotTracker
);
1233 O
<< Instruction::getOpcodeName(Ingredient
.getOpcode()) << " ";
1235 printOperands(O
, SlotTracker
);
1239 void VPWidenCanonicalIVRecipe::execute(VPTransformState
&State
) {
1240 Value
*CanonicalIV
= State
.CanonicalIV
;
1241 Type
*STy
= CanonicalIV
->getType();
1242 IRBuilder
<> Builder(State
.CFG
.PrevBB
->getTerminator());
1243 ElementCount VF
= State
.VF
;
1244 assert(!VF
.isScalable() && "the code following assumes non scalables ECs");
1245 Value
*VStart
= VF
.isScalar()
1247 : Builder
.CreateVectorSplat(VF
.getKnownMinValue(),
1248 CanonicalIV
, "broadcast");
1249 for (unsigned Part
= 0, UF
= State
.UF
; Part
< UF
; ++Part
) {
1250 SmallVector
<Constant
*, 8> Indices
;
1251 for (unsigned Lane
= 0; Lane
< VF
.getKnownMinValue(); ++Lane
)
1253 ConstantInt::get(STy
, Part
* VF
.getKnownMinValue() + Lane
));
1254 // If VF == 1, there is only one iteration in the loop above, thus the
1255 // element pushed back into Indices is ConstantInt::get(STy, Part)
1257 VF
.isScalar() ? Indices
.back() : ConstantVector::get(Indices
);
1258 // Add the consecutive indices to the vector value.
1259 Value
*CanonicalVectorIV
= Builder
.CreateAdd(VStart
, VStep
, "vec.iv");
1260 State
.set(getVPSingleValue(), CanonicalVectorIV
, Part
);
1264 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1265 void VPWidenCanonicalIVRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1266 VPSlotTracker
&SlotTracker
) const {
1267 O
<< Indent
<< "EMIT ";
1268 getVPSingleValue()->printAsOperand(O
, SlotTracker
);
1269 O
<< " = WIDEN-CANONICAL-INDUCTION";
1273 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState
&State
) {
1274 auto &Builder
= State
.Builder
;
1275 // Create a vector from the initial value.
1276 auto *VectorInit
= getStartValue()->getLiveInIRValue();
1278 Type
*VecTy
= State
.VF
.isScalar()
1279 ? VectorInit
->getType()
1280 : VectorType::get(VectorInit
->getType(), State
.VF
);
1282 if (State
.VF
.isVector()) {
1283 auto *IdxTy
= Builder
.getInt32Ty();
1284 auto *One
= ConstantInt::get(IdxTy
, 1);
1285 IRBuilder
<>::InsertPointGuard
Guard(Builder
);
1286 Builder
.SetInsertPoint(State
.CFG
.VectorPreHeader
->getTerminator());
1287 auto *RuntimeVF
= getRuntimeVF(Builder
, IdxTy
, State
.VF
);
1288 auto *LastIdx
= Builder
.CreateSub(RuntimeVF
, One
);
1289 VectorInit
= Builder
.CreateInsertElement(
1290 PoisonValue::get(VecTy
), VectorInit
, LastIdx
, "vector.recur.init");
1293 // Create a phi node for the new recurrence.
1294 PHINode
*EntryPart
= PHINode::Create(
1295 VecTy
, 2, "vector.recur", &*State
.CFG
.PrevBB
->getFirstInsertionPt());
1296 EntryPart
->addIncoming(VectorInit
, State
.CFG
.VectorPreHeader
);
1297 State
.set(this, EntryPart
, 0);
1300 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1301 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1302 VPSlotTracker
&SlotTracker
) const {
1303 O
<< Indent
<< "FIRST-ORDER-RECURRENCE-PHI ";
1304 printAsOperand(O
, SlotTracker
);
1306 printOperands(O
, SlotTracker
);
1310 void VPReductionPHIRecipe::execute(VPTransformState
&State
) {
1311 PHINode
*PN
= cast
<PHINode
>(getUnderlyingValue());
1312 auto &Builder
= State
.Builder
;
1314 // In order to support recurrences we need to be able to vectorize Phi nodes.
1315 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
1316 // stage #1: We create a new vector PHI node with no incoming edges. We'll use
1317 // this value when we vectorize all of the instructions that use the PHI.
1318 bool ScalarPHI
= State
.VF
.isScalar() || IsInLoop
;
1320 ScalarPHI
? PN
->getType() : VectorType::get(PN
->getType(), State
.VF
);
1322 BasicBlock
*HeaderBB
= State
.CFG
.PrevBB
;
1323 assert(State
.LI
->getLoopFor(HeaderBB
)->getHeader() == HeaderBB
&&
1324 "recipe must be in the vector loop header");
1325 unsigned LastPartForNewPhi
= isOrdered() ? 1 : State
.UF
;
1326 for (unsigned Part
= 0; Part
< LastPartForNewPhi
; ++Part
) {
1328 PHINode::Create(VecTy
, 2, "vec.phi", &*HeaderBB
->getFirstInsertionPt());
1329 State
.set(this, EntryPart
, Part
);
1332 // Reductions do not have to start at zero. They can start with
1333 // any loop invariant values.
1334 VPValue
*StartVPV
= getStartValue();
1335 Value
*StartV
= StartVPV
->getLiveInIRValue();
1337 Value
*Iden
= nullptr;
1338 RecurKind RK
= RdxDesc
.getRecurrenceKind();
1339 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK
)) {
1340 // MinMax reduction have the start value as their identify.
1344 IRBuilderBase::InsertPointGuard
IPBuilder(Builder
);
1345 Builder
.SetInsertPoint(State
.CFG
.VectorPreHeader
->getTerminator());
1347 Builder
.CreateVectorSplat(State
.VF
, StartV
, "minmax.ident");
1350 Constant
*IdenC
= RecurrenceDescriptor::getRecurrenceIdentity(
1351 RK
, VecTy
->getScalarType(), RdxDesc
.getFastMathFlags());
1355 Iden
= ConstantVector::getSplat(State
.VF
, IdenC
);
1356 IRBuilderBase::InsertPointGuard
IPBuilder(Builder
);
1357 Builder
.SetInsertPoint(State
.CFG
.VectorPreHeader
->getTerminator());
1358 Constant
*Zero
= Builder
.getInt32(0);
1359 StartV
= Builder
.CreateInsertElement(Iden
, StartV
, Zero
);
1363 for (unsigned Part
= 0; Part
< LastPartForNewPhi
; ++Part
) {
1364 Value
*EntryPart
= State
.get(this, Part
);
1365 // Make sure to add the reduction start value only to the
1366 // first unroll part.
1367 Value
*StartVal
= (Part
== 0) ? StartV
: Iden
;
1368 cast
<PHINode
>(EntryPart
)->addIncoming(StartVal
, State
.CFG
.VectorPreHeader
);
1372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1373 void VPReductionPHIRecipe::print(raw_ostream
&O
, const Twine
&Indent
,
1374 VPSlotTracker
&SlotTracker
) const {
1375 O
<< Indent
<< "WIDEN-REDUCTION-PHI ";
1377 printAsOperand(O
, SlotTracker
);
1379 printOperands(O
, SlotTracker
);
1383 template void DomTreeBuilder::Calculate
<VPDominatorTree
>(VPDominatorTree
&DT
);
1385 void VPValue::replaceAllUsesWith(VPValue
*New
) {
1386 for (unsigned J
= 0; J
< getNumUsers();) {
1387 VPUser
*User
= Users
[J
];
1388 unsigned NumUsers
= getNumUsers();
1389 for (unsigned I
= 0, E
= User
->getNumOperands(); I
< E
; ++I
)
1390 if (User
->getOperand(I
) == this)
1391 User
->setOperand(I
, New
);
1392 // If a user got removed after updating the current user, the next user to
1393 // update will be moved to the current position, so we only need to
1394 // increment the index if the number of users did not change.
1395 if (NumUsers
== getNumUsers())
1400 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1401 void VPValue::printAsOperand(raw_ostream
&OS
, VPSlotTracker
&Tracker
) const {
1402 if (const Value
*UV
= getUnderlyingValue()) {
1404 UV
->printAsOperand(OS
, false);
1409 unsigned Slot
= Tracker
.getSlot(this);
1410 if (Slot
== unsigned(-1))
1413 OS
<< "vp<%" << Tracker
.getSlot(this) << ">";
1416 void VPUser::printOperands(raw_ostream
&O
, VPSlotTracker
&SlotTracker
) const {
1417 interleaveComma(operands(), O
, [&O
, &SlotTracker
](VPValue
*Op
) {
1418 Op
->printAsOperand(O
, SlotTracker
);
1423 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock
*Region
,
1425 InterleavedAccessInfo
&IAI
) {
1426 ReversePostOrderTraversal
<VPBlockBase
*> RPOT(Region
->getEntry());
1427 for (VPBlockBase
*Base
: RPOT
) {
1428 visitBlock(Base
, Old2New
, IAI
);
1432 void VPInterleavedAccessInfo::visitBlock(VPBlockBase
*Block
, Old2NewTy
&Old2New
,
1433 InterleavedAccessInfo
&IAI
) {
1434 if (VPBasicBlock
*VPBB
= dyn_cast
<VPBasicBlock
>(Block
)) {
1435 for (VPRecipeBase
&VPI
: *VPBB
) {
1436 if (isa
<VPWidenPHIRecipe
>(&VPI
))
1438 assert(isa
<VPInstruction
>(&VPI
) && "Can only handle VPInstructions");
1439 auto *VPInst
= cast
<VPInstruction
>(&VPI
);
1440 auto *Inst
= cast
<Instruction
>(VPInst
->getUnderlyingValue());
1441 auto *IG
= IAI
.getInterleaveGroup(Inst
);
1445 auto NewIGIter
= Old2New
.find(IG
);
1446 if (NewIGIter
== Old2New
.end())
1447 Old2New
[IG
] = new InterleaveGroup
<VPInstruction
>(
1448 IG
->getFactor(), IG
->isReverse(), IG
->getAlign());
1450 if (Inst
== IG
->getInsertPos())
1451 Old2New
[IG
]->setInsertPos(VPInst
);
1453 InterleaveGroupMap
[VPInst
] = Old2New
[IG
];
1454 InterleaveGroupMap
[VPInst
]->insertMember(
1455 VPInst
, IG
->getIndex(Inst
),
1456 Align(IG
->isReverse() ? (-1) * int(IG
->getFactor())
1457 : IG
->getFactor()));
1459 } else if (VPRegionBlock
*Region
= dyn_cast
<VPRegionBlock
>(Block
))
1460 visitRegion(Region
, Old2New
, IAI
);
1462 llvm_unreachable("Unsupported kind of VPBlock.");
1465 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan
&Plan
,
1466 InterleavedAccessInfo
&IAI
) {
1468 visitRegion(cast
<VPRegionBlock
>(Plan
.getEntry()), Old2New
, IAI
);
1471 void VPSlotTracker::assignSlot(const VPValue
*V
) {
1472 assert(Slots
.find(V
) == Slots
.end() && "VPValue already has a slot!");
1473 Slots
[V
] = NextSlot
++;
1476 void VPSlotTracker::assignSlots(const VPlan
&Plan
) {
1478 for (const VPValue
*V
: Plan
.VPExternalDefs
)
1481 if (Plan
.BackedgeTakenCount
)
1482 assignSlot(Plan
.BackedgeTakenCount
);
1484 ReversePostOrderTraversal
<
1485 VPBlockRecursiveTraversalWrapper
<const VPBlockBase
*>>
1486 RPOT(VPBlockRecursiveTraversalWrapper
<const VPBlockBase
*>(
1488 for (const VPBasicBlock
*VPBB
:
1489 VPBlockUtils::blocksOnly
<const VPBasicBlock
>(RPOT
))
1490 for (const VPRecipeBase
&Recipe
: *VPBB
)
1491 for (VPValue
*Def
: Recipe
.definedValues())