[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Vectorize / VPlan.cpp
blobfa71b1c4528bf5aa253ce7c650b23cbaa3e02d03
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include <cassert>
44 #include <iterator>
45 #include <string>
46 #include <vector>
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
51 #define DEBUG_TYPE "vplan"
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
56 VPSlotTracker SlotTracker(
57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
58 V.print(OS, SlotTracker);
59 return OS;
61 #endif
63 Value *VPLane::getAsRuntimeExpr(IRBuilder<> &Builder,
64 const ElementCount &VF) const {
65 switch (LaneKind) {
66 case VPLane::Kind::ScalableLast:
67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
69 Builder.getInt32(VF.getKnownMinValue() - Lane));
70 case VPLane::Kind::First:
71 return Builder.getInt32(Lane);
73 llvm_unreachable("Unknown lane kind");
76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
78 if (Def)
79 Def->addDefinedValue(this);
82 VPValue::~VPValue() {
83 assert(Users.empty() && "trying to delete a VPValue with remaining users");
84 if (Def)
85 Def->removeDefinedValue(this);
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
91 R->print(OS, "", SlotTracker);
92 else
93 printAsOperand(OS, SlotTracker);
96 void VPValue::dump() const {
97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
98 VPSlotTracker SlotTracker(
99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
100 print(dbgs(), SlotTracker);
101 dbgs() << "\n";
104 void VPDef::dump() const {
105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
106 VPSlotTracker SlotTracker(
107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
108 print(dbgs(), "", SlotTracker);
109 dbgs() << "\n";
111 #endif
113 // Get the top-most entry block of \p Start. This is the entry block of the
114 // containing VPlan. This function is templated to support both const and non-const blocks
115 template <typename T> static T *getPlanEntry(T *Start) {
116 T *Next = Start;
117 T *Current = Start;
118 while ((Next = Next->getParent()))
119 Current = Next;
121 SmallSetVector<T *, 8> WorkList;
122 WorkList.insert(Current);
124 for (unsigned i = 0; i < WorkList.size(); i++) {
125 T *Current = WorkList[i];
126 if (Current->getNumPredecessors() == 0)
127 return Current;
128 auto &Predecessors = Current->getPredecessors();
129 WorkList.insert(Predecessors.begin(), Predecessors.end());
132 llvm_unreachable("VPlan without any entry node without predecessors");
135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
141 const VPBlockBase *Block = this;
142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
143 Block = Region->getEntry();
144 return cast<VPBasicBlock>(Block);
147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
148 VPBlockBase *Block = this;
149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
150 Block = Region->getEntry();
151 return cast<VPBasicBlock>(Block);
154 void VPBlockBase::setPlan(VPlan *ParentPlan) {
155 assert(ParentPlan->getEntry() == this &&
156 "Can only set plan on its entry block.");
157 Plan = ParentPlan;
160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
162 const VPBlockBase *Block = this;
163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164 Block = Region->getExit();
165 return cast<VPBasicBlock>(Block);
168 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
169 VPBlockBase *Block = this;
170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171 Block = Region->getExit();
172 return cast<VPBasicBlock>(Block);
175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
176 if (!Successors.empty() || !Parent)
177 return this;
178 assert(Parent->getExit() == this &&
179 "Block w/o successors not the exit of its parent.");
180 return Parent->getEnclosingBlockWithSuccessors();
183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
184 if (!Predecessors.empty() || !Parent)
185 return this;
186 assert(Parent->getEntry() == this &&
187 "Block w/o predecessors not the entry of its parent.");
188 return Parent->getEnclosingBlockWithPredecessors();
191 VPValue *VPBlockBase::getCondBit() {
192 return CondBitUser.getSingleOperandOrNull();
195 const VPValue *VPBlockBase::getCondBit() const {
196 return CondBitUser.getSingleOperandOrNull();
199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); }
201 VPValue *VPBlockBase::getPredicate() {
202 return PredicateUser.getSingleOperandOrNull();
205 const VPValue *VPBlockBase::getPredicate() const {
206 return PredicateUser.getSingleOperandOrNull();
209 void VPBlockBase::setPredicate(VPValue *CV) {
210 PredicateUser.resetSingleOpUser(CV);
213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
214 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
216 for (VPBlockBase *Block : Blocks)
217 delete Block;
220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
221 iterator It = begin();
222 while (It != end() && It->isPhi())
223 It++;
224 return It;
227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228 if (!Def->getDef())
229 return Def->getLiveInIRValue();
231 if (hasScalarValue(Def, Instance)) {
232 return Data
233 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
236 assert(hasVectorValue(Def, Instance.Part));
237 auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
238 if (!VecPart->getType()->isVectorTy()) {
239 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240 return VecPart;
242 // TODO: Cache created scalar values.
243 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
244 auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
245 // set(Def, Extract, Instance);
246 return Extract;
249 BasicBlock *
250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
251 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
252 // Pred stands for Predessor. Prev stands for Previous - last visited/created.
253 BasicBlock *PrevBB = CFG.PrevBB;
254 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
255 PrevBB->getParent(), CFG.LastBB);
256 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
258 // Hook up the new basic block to its predecessors.
259 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
260 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
261 auto &PredVPSuccessors = PredVPBB->getSuccessors();
262 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
264 // In outer loop vectorization scenario, the predecessor BBlock may not yet
265 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
266 // vectorization. We do not encounter this case in inner loop vectorization
267 // as we start out by building a loop skeleton with the vector loop header
268 // and latch blocks. As a result, we never enter this function for the
269 // header block in the non VPlan-native path.
270 if (!PredBB) {
271 assert(EnableVPlanNativePath &&
272 "Unexpected null predecessor in non VPlan-native path");
273 CFG.VPBBsToFix.push_back(PredVPBB);
274 continue;
277 assert(PredBB && "Predecessor basic-block not found building successor.");
278 auto *PredBBTerminator = PredBB->getTerminator();
279 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
280 if (isa<UnreachableInst>(PredBBTerminator)) {
281 assert(PredVPSuccessors.size() == 1 &&
282 "Predecessor ending w/o branch must have single successor.");
283 PredBBTerminator->eraseFromParent();
284 BranchInst::Create(NewBB, PredBB);
285 } else {
286 assert(PredVPSuccessors.size() == 2 &&
287 "Predecessor ending with branch must have two successors.");
288 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
289 assert(!PredBBTerminator->getSuccessor(idx) &&
290 "Trying to reset an existing successor block.");
291 PredBBTerminator->setSuccessor(idx, NewBB);
294 return NewBB;
297 void VPBasicBlock::execute(VPTransformState *State) {
298 bool Replica = State->Instance && !State->Instance->isFirstIteration();
299 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
300 VPBlockBase *SingleHPred = nullptr;
301 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
303 // 1. Create an IR basic block, or reuse the last one if possible.
304 // The last IR basic block is reused, as an optimization, in three cases:
305 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
306 // B. when the current VPBB has a single (hierarchical) predecessor which
307 // is PrevVPBB and the latter has a single (hierarchical) successor; and
308 // C. when the current VPBB is an entry of a region replica - where PrevVPBB
309 // is the exit of this region from a previous instance, or the predecessor
310 // of this region.
311 if (PrevVPBB && /* A */
312 !((SingleHPred = getSingleHierarchicalPredecessor()) &&
313 SingleHPred->getExitBasicBlock() == PrevVPBB &&
314 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
315 !(Replica && getPredecessors().empty())) { /* C */
316 NewBB = createEmptyBasicBlock(State->CFG);
317 State->Builder.SetInsertPoint(NewBB);
318 // Temporarily terminate with unreachable until CFG is rewired.
319 UnreachableInst *Terminator = State->Builder.CreateUnreachable();
320 State->Builder.SetInsertPoint(Terminator);
321 // Register NewBB in its loop. In innermost loops its the same for all BB's.
322 Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
323 L->addBasicBlockToLoop(NewBB, *State->LI);
324 State->CFG.PrevBB = NewBB;
327 // 2. Fill the IR basic block with IR instructions.
328 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
329 << " in BB:" << NewBB->getName() << '\n');
331 State->CFG.VPBB2IRBB[this] = NewBB;
332 State->CFG.PrevVPBB = this;
334 for (VPRecipeBase &Recipe : Recipes)
335 Recipe.execute(*State);
337 VPValue *CBV;
338 if (EnableVPlanNativePath && (CBV = getCondBit())) {
339 assert(CBV->getUnderlyingValue() &&
340 "Unexpected null underlying value for condition bit");
342 // Condition bit value in a VPBasicBlock is used as the branch selector. In
343 // the VPlan-native path case, since all branches are uniform we generate a
344 // branch instruction using the condition value from vector lane 0 and dummy
345 // successors. The successors are fixed later when the successor blocks are
346 // visited.
347 Value *NewCond = State->get(CBV, {0, 0});
349 // Replace the temporary unreachable terminator with the new conditional
350 // branch.
351 auto *CurrentTerminator = NewBB->getTerminator();
352 assert(isa<UnreachableInst>(CurrentTerminator) &&
353 "Expected to replace unreachable terminator with conditional "
354 "branch.");
355 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
356 CondBr->setSuccessor(0, nullptr);
357 ReplaceInstWithInst(CurrentTerminator, CondBr);
360 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
363 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
364 for (VPRecipeBase &R : Recipes) {
365 for (auto *Def : R.definedValues())
366 Def->replaceAllUsesWith(NewValue);
368 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
369 R.setOperand(I, NewValue);
373 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
374 assert((SplitAt == end() || SplitAt->getParent() == this) &&
375 "can only split at a position in the same block");
377 SmallVector<VPBlockBase *, 2> Succs(getSuccessors().begin(),
378 getSuccessors().end());
379 // First, disconnect the current block from its successors.
380 for (VPBlockBase *Succ : Succs)
381 VPBlockUtils::disconnectBlocks(this, Succ);
383 // Create new empty block after the block to split.
384 auto *SplitBlock = new VPBasicBlock(getName() + ".split");
385 VPBlockUtils::insertBlockAfter(SplitBlock, this);
387 // Add successors for block to split to new block.
388 for (VPBlockBase *Succ : Succs)
389 VPBlockUtils::connectBlocks(SplitBlock, Succ);
391 // Finally, move the recipes starting at SplitAt to new block.
392 for (VPRecipeBase &ToMove :
393 make_early_inc_range(make_range(SplitAt, this->end())))
394 ToMove.moveBefore(*SplitBlock, SplitBlock->end());
396 return SplitBlock;
399 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
400 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
401 if (getSuccessors().empty()) {
402 O << Indent << "No successors\n";
403 } else {
404 O << Indent << "Successor(s): ";
405 ListSeparator LS;
406 for (auto *Succ : getSuccessors())
407 O << LS << Succ->getName();
408 O << '\n';
412 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
413 VPSlotTracker &SlotTracker) const {
414 O << Indent << getName() << ":\n";
415 if (const VPValue *Pred = getPredicate()) {
416 O << Indent << "BlockPredicate:";
417 Pred->printAsOperand(O, SlotTracker);
418 if (const auto *PredInst = dyn_cast<VPInstruction>(Pred))
419 O << " (" << PredInst->getParent()->getName() << ")";
420 O << '\n';
423 auto RecipeIndent = Indent + " ";
424 for (const VPRecipeBase &Recipe : *this) {
425 Recipe.print(O, RecipeIndent, SlotTracker);
426 O << '\n';
429 printSuccessors(O, Indent);
431 if (const VPValue *CBV = getCondBit()) {
432 O << Indent << "CondBit: ";
433 CBV->printAsOperand(O, SlotTracker);
434 if (const auto *CBI = dyn_cast<VPInstruction>(CBV))
435 O << " (" << CBI->getParent()->getName() << ")";
436 O << '\n';
439 #endif
441 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
442 for (VPBlockBase *Block : depth_first(Entry))
443 // Drop all references in VPBasicBlocks and replace all uses with
444 // DummyValue.
445 Block->dropAllReferences(NewValue);
448 void VPRegionBlock::execute(VPTransformState *State) {
449 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
451 if (!isReplicator()) {
452 // Visit the VPBlocks connected to "this", starting from it.
453 for (VPBlockBase *Block : RPOT) {
454 if (EnableVPlanNativePath) {
455 // The inner loop vectorization path does not represent loop preheader
456 // and exit blocks as part of the VPlan. In the VPlan-native path, skip
457 // vectorizing loop preheader block. In future, we may replace this
458 // check with the check for loop preheader.
459 if (Block->getNumPredecessors() == 0)
460 continue;
462 // Skip vectorizing loop exit block. In future, we may replace this
463 // check with the check for loop exit.
464 if (Block->getNumSuccessors() == 0)
465 continue;
468 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
469 Block->execute(State);
471 return;
474 assert(!State->Instance && "Replicating a Region with non-null instance.");
476 // Enter replicating mode.
477 State->Instance = VPIteration(0, 0);
479 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
480 State->Instance->Part = Part;
481 assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
482 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
483 ++Lane) {
484 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
485 // Visit the VPBlocks connected to \p this, starting from it.
486 for (VPBlockBase *Block : RPOT) {
487 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
488 Block->execute(State);
493 // Exit replicating mode.
494 State->Instance.reset();
497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
498 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
499 VPSlotTracker &SlotTracker) const {
500 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
501 auto NewIndent = Indent + " ";
502 for (auto *BlockBase : depth_first(Entry)) {
503 O << '\n';
504 BlockBase->print(O, NewIndent, SlotTracker);
506 O << Indent << "}\n";
508 printSuccessors(O, Indent);
510 #endif
512 bool VPRecipeBase::mayWriteToMemory() const {
513 switch (getVPDefID()) {
514 case VPWidenMemoryInstructionSC: {
515 return cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
517 case VPReplicateSC:
518 case VPWidenCallSC:
519 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
520 ->mayWriteToMemory();
521 case VPBranchOnMaskSC:
522 return false;
523 case VPWidenIntOrFpInductionSC:
524 case VPWidenCanonicalIVSC:
525 case VPWidenPHISC:
526 case VPBlendSC:
527 case VPWidenSC:
528 case VPWidenGEPSC:
529 case VPReductionSC:
530 case VPWidenSelectSC: {
531 const Instruction *I =
532 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
533 (void)I;
534 assert((!I || !I->mayWriteToMemory()) &&
535 "underlying instruction may write to memory");
536 return false;
538 default:
539 return true;
543 bool VPRecipeBase::mayReadFromMemory() const {
544 switch (getVPDefID()) {
545 case VPWidenMemoryInstructionSC: {
546 return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
548 case VPReplicateSC:
549 case VPWidenCallSC:
550 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
551 ->mayReadFromMemory();
552 case VPBranchOnMaskSC:
553 return false;
554 case VPWidenIntOrFpInductionSC:
555 case VPWidenCanonicalIVSC:
556 case VPWidenPHISC:
557 case VPBlendSC:
558 case VPWidenSC:
559 case VPWidenGEPSC:
560 case VPReductionSC:
561 case VPWidenSelectSC: {
562 const Instruction *I =
563 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
564 (void)I;
565 assert((!I || !I->mayReadFromMemory()) &&
566 "underlying instruction may read from memory");
567 return false;
569 default:
570 return true;
574 bool VPRecipeBase::mayHaveSideEffects() const {
575 switch (getVPDefID()) {
576 case VPBranchOnMaskSC:
577 return false;
578 case VPWidenIntOrFpInductionSC:
579 case VPWidenCanonicalIVSC:
580 case VPWidenPHISC:
581 case VPBlendSC:
582 case VPWidenSC:
583 case VPWidenGEPSC:
584 case VPReductionSC:
585 case VPWidenSelectSC: {
586 const Instruction *I =
587 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
588 (void)I;
589 assert((!I || !I->mayHaveSideEffects()) &&
590 "underlying instruction has side-effects");
591 return false;
593 case VPReplicateSC: {
594 auto *R = cast<VPReplicateRecipe>(this);
595 return R->getUnderlyingInstr()->mayHaveSideEffects();
597 default:
598 return true;
602 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
603 assert(!Parent && "Recipe already in some VPBasicBlock");
604 assert(InsertPos->getParent() &&
605 "Insertion position not in any VPBasicBlock");
606 Parent = InsertPos->getParent();
607 Parent->getRecipeList().insert(InsertPos->getIterator(), this);
610 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
611 assert(!Parent && "Recipe already in some VPBasicBlock");
612 assert(InsertPos->getParent() &&
613 "Insertion position not in any VPBasicBlock");
614 Parent = InsertPos->getParent();
615 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
618 void VPRecipeBase::removeFromParent() {
619 assert(getParent() && "Recipe not in any VPBasicBlock");
620 getParent()->getRecipeList().remove(getIterator());
621 Parent = nullptr;
624 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
625 assert(getParent() && "Recipe not in any VPBasicBlock");
626 return getParent()->getRecipeList().erase(getIterator());
629 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
630 removeFromParent();
631 insertAfter(InsertPos);
634 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
635 iplist<VPRecipeBase>::iterator I) {
636 assert(I == BB.end() || I->getParent() == &BB);
637 removeFromParent();
638 Parent = &BB;
639 BB.getRecipeList().insert(I, this);
642 void VPInstruction::generateInstruction(VPTransformState &State,
643 unsigned Part) {
644 IRBuilder<> &Builder = State.Builder;
646 if (Instruction::isBinaryOp(getOpcode())) {
647 Value *A = State.get(getOperand(0), Part);
648 Value *B = State.get(getOperand(1), Part);
649 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
650 State.set(this, V, Part);
651 return;
654 switch (getOpcode()) {
655 case VPInstruction::Not: {
656 Value *A = State.get(getOperand(0), Part);
657 Value *V = Builder.CreateNot(A);
658 State.set(this, V, Part);
659 break;
661 case VPInstruction::ICmpULE: {
662 Value *IV = State.get(getOperand(0), Part);
663 Value *TC = State.get(getOperand(1), Part);
664 Value *V = Builder.CreateICmpULE(IV, TC);
665 State.set(this, V, Part);
666 break;
668 case Instruction::Select: {
669 Value *Cond = State.get(getOperand(0), Part);
670 Value *Op1 = State.get(getOperand(1), Part);
671 Value *Op2 = State.get(getOperand(2), Part);
672 Value *V = Builder.CreateSelect(Cond, Op1, Op2);
673 State.set(this, V, Part);
674 break;
676 case VPInstruction::ActiveLaneMask: {
677 // Get first lane of vector induction variable.
678 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
679 // Get the original loop tripcount.
680 Value *ScalarTC = State.TripCount;
682 auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
683 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
684 Instruction *Call = Builder.CreateIntrinsic(
685 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
686 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
687 State.set(this, Call, Part);
688 break;
690 case VPInstruction::FirstOrderRecurrenceSplice: {
691 // Generate code to combine the previous and current values in vector v3.
693 // vector.ph:
694 // v_init = vector(..., ..., ..., a[-1])
695 // br vector.body
697 // vector.body
698 // i = phi [0, vector.ph], [i+4, vector.body]
699 // v1 = phi [v_init, vector.ph], [v2, vector.body]
700 // v2 = a[i, i+1, i+2, i+3];
701 // v3 = vector(v1(3), v2(0, 1, 2))
703 // For the first part, use the recurrence phi (v1), otherwise v2.
704 auto *V1 = State.get(getOperand(0), 0);
705 Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1);
706 if (!PartMinus1->getType()->isVectorTy()) {
707 State.set(this, PartMinus1, Part);
708 } else {
709 Value *V2 = State.get(getOperand(1), Part);
710 State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part);
712 break;
714 default:
715 llvm_unreachable("Unsupported opcode for instruction");
719 void VPInstruction::execute(VPTransformState &State) {
720 assert(!State.Instance && "VPInstruction executing an Instance");
721 for (unsigned Part = 0; Part < State.UF; ++Part)
722 generateInstruction(State, Part);
725 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
726 void VPInstruction::dump() const {
727 VPSlotTracker SlotTracker(getParent()->getPlan());
728 print(dbgs(), "", SlotTracker);
731 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
732 VPSlotTracker &SlotTracker) const {
733 O << Indent << "EMIT ";
735 if (hasResult()) {
736 printAsOperand(O, SlotTracker);
737 O << " = ";
740 switch (getOpcode()) {
741 case VPInstruction::Not:
742 O << "not";
743 break;
744 case VPInstruction::ICmpULE:
745 O << "icmp ule";
746 break;
747 case VPInstruction::SLPLoad:
748 O << "combined load";
749 break;
750 case VPInstruction::SLPStore:
751 O << "combined store";
752 break;
753 case VPInstruction::ActiveLaneMask:
754 O << "active lane mask";
755 break;
756 case VPInstruction::FirstOrderRecurrenceSplice:
757 O << "first-order splice";
758 break;
759 default:
760 O << Instruction::getOpcodeName(getOpcode());
763 for (const VPValue *Operand : operands()) {
764 O << " ";
765 Operand->printAsOperand(O, SlotTracker);
768 #endif
770 /// Generate the code inside the body of the vectorized loop. Assumes a single
771 /// LoopVectorBody basic-block was created for this. Introduce additional
772 /// basic-blocks as needed, and fill them all.
773 void VPlan::execute(VPTransformState *State) {
774 // -1. Check if the backedge taken count is needed, and if so build it.
775 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
776 Value *TC = State->TripCount;
777 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
778 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
779 "trip.count.minus.1");
780 auto VF = State->VF;
781 Value *VTCMO =
782 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
783 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
784 State->set(BackedgeTakenCount, VTCMO, Part);
787 // 0. Set the reverse mapping from VPValues to Values for code generation.
788 for (auto &Entry : Value2VPValue)
789 State->VPValue2Value[Entry.second] = Entry.first;
791 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
792 State->CFG.VectorPreHeader = VectorPreHeaderBB;
793 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
794 assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
796 // 1. Make room to generate basic-blocks inside loop body if needed.
797 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
798 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
799 Loop *L = State->LI->getLoopFor(VectorHeaderBB);
800 L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
801 // Remove the edge between Header and Latch to allow other connections.
802 // Temporarily terminate with unreachable until CFG is rewired.
803 // Note: this asserts the generated code's assumption that
804 // getFirstInsertionPt() can be dereferenced into an Instruction.
805 VectorHeaderBB->getTerminator()->eraseFromParent();
806 State->Builder.SetInsertPoint(VectorHeaderBB);
807 UnreachableInst *Terminator = State->Builder.CreateUnreachable();
808 State->Builder.SetInsertPoint(Terminator);
810 // 2. Generate code in loop body.
811 State->CFG.PrevVPBB = nullptr;
812 State->CFG.PrevBB = VectorHeaderBB;
813 State->CFG.LastBB = VectorLatchBB;
815 for (VPBlockBase *Block : depth_first(Entry))
816 Block->execute(State);
818 // Fix the latch value of reduction and first-order recurrences phis in the
819 // vector loop.
820 VPBasicBlock *Header = Entry->getEntryBasicBlock();
821 for (VPRecipeBase &R : Header->phis()) {
822 auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R);
823 if (!PhiR || !(isa<VPFirstOrderRecurrencePHIRecipe>(&R) ||
824 isa<VPReductionPHIRecipe>(&R)))
825 continue;
826 // For first-order recurrences and in-order reduction phis, only a single
827 // part is generated, which provides the last part from the previous
828 // iteration. Otherwise all UF parts are generated.
829 bool SinglePartNeeded = isa<VPFirstOrderRecurrencePHIRecipe>(&R) ||
830 cast<VPReductionPHIRecipe>(&R)->isOrdered();
831 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
832 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
833 Value *VecPhi = State->get(PhiR, Part);
834 Value *Val = State->get(PhiR->getBackedgeValue(),
835 SinglePartNeeded ? State->UF - 1 : Part);
836 cast<PHINode>(VecPhi)->addIncoming(Val, VectorLatchBB);
840 // Setup branch terminator successors for VPBBs in VPBBsToFix based on
841 // VPBB's successors.
842 for (auto VPBB : State->CFG.VPBBsToFix) {
843 assert(EnableVPlanNativePath &&
844 "Unexpected VPBBsToFix in non VPlan-native path");
845 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
846 assert(BB && "Unexpected null basic block for VPBB");
848 unsigned Idx = 0;
849 auto *BBTerminator = BB->getTerminator();
851 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
852 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
853 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
854 ++Idx;
858 // 3. Merge the temporary latch created with the last basic-block filled.
859 BasicBlock *LastBB = State->CFG.PrevBB;
860 // Connect LastBB to VectorLatchBB to facilitate their merge.
861 assert((EnableVPlanNativePath ||
862 isa<UnreachableInst>(LastBB->getTerminator())) &&
863 "Expected InnerLoop VPlan CFG to terminate with unreachable");
864 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
865 "Expected VPlan CFG to terminate with branch in NativePath");
866 LastBB->getTerminator()->eraseFromParent();
867 BranchInst::Create(VectorLatchBB, LastBB);
869 // Merge LastBB with Latch.
870 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
871 (void)Merged;
872 assert(Merged && "Could not merge last basic block with latch.");
873 VectorLatchBB = LastBB;
875 // We do not attempt to preserve DT for outer loop vectorization currently.
876 if (!EnableVPlanNativePath)
877 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
878 L->getExitBlock());
881 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
882 LLVM_DUMP_METHOD
883 void VPlan::print(raw_ostream &O) const {
884 VPSlotTracker SlotTracker(this);
886 O << "VPlan '" << Name << "' {";
887 for (const VPBlockBase *Block : depth_first(getEntry())) {
888 O << '\n';
889 Block->print(O, "", SlotTracker);
891 O << "}\n";
894 LLVM_DUMP_METHOD
895 void VPlan::printDOT(raw_ostream &O) const {
896 VPlanPrinter Printer(O, *this);
897 Printer.dump();
900 LLVM_DUMP_METHOD
901 void VPlan::dump() const { print(dbgs()); }
902 #endif
904 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
905 BasicBlock *LoopLatchBB,
906 BasicBlock *LoopExitBB) {
907 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
908 assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
909 // The vector body may be more than a single basic-block by this point.
910 // Update the dominator tree information inside the vector body by propagating
911 // it from header to latch, expecting only triangular control-flow, if any.
912 BasicBlock *PostDomSucc = nullptr;
913 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
914 // Get the list of successors of this block.
915 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
916 assert(Succs.size() <= 2 &&
917 "Basic block in vector loop has more than 2 successors.");
918 PostDomSucc = Succs[0];
919 if (Succs.size() == 1) {
920 assert(PostDomSucc->getSinglePredecessor() &&
921 "PostDom successor has more than one predecessor.");
922 DT->addNewBlock(PostDomSucc, BB);
923 continue;
925 BasicBlock *InterimSucc = Succs[1];
926 if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
927 PostDomSucc = Succs[1];
928 InterimSucc = Succs[0];
930 assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
931 "One successor of a basic block does not lead to the other.");
932 assert(InterimSucc->getSinglePredecessor() &&
933 "Interim successor has more than one predecessor.");
934 assert(PostDomSucc->hasNPredecessors(2) &&
935 "PostDom successor has more than two predecessors.");
936 DT->addNewBlock(InterimSucc, BB);
937 DT->addNewBlock(PostDomSucc, BB);
939 // Latch block is a new dominator for the loop exit.
940 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
941 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
944 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
945 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
946 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
947 Twine(getOrCreateBID(Block));
950 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
951 const std::string &Name = Block->getName();
952 if (!Name.empty())
953 return Name;
954 return "VPB" + Twine(getOrCreateBID(Block));
957 void VPlanPrinter::dump() {
958 Depth = 1;
959 bumpIndent(0);
960 OS << "digraph VPlan {\n";
961 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
962 if (!Plan.getName().empty())
963 OS << "\\n" << DOT::EscapeString(Plan.getName());
964 if (Plan.BackedgeTakenCount) {
965 OS << ", where:\\n";
966 Plan.BackedgeTakenCount->print(OS, SlotTracker);
967 OS << " := BackedgeTakenCount";
969 OS << "\"]\n";
970 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
971 OS << "edge [fontname=Courier, fontsize=30]\n";
972 OS << "compound=true\n";
974 for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
975 dumpBlock(Block);
977 OS << "}\n";
980 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
981 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
982 dumpBasicBlock(BasicBlock);
983 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
984 dumpRegion(Region);
985 else
986 llvm_unreachable("Unsupported kind of VPBlock.");
989 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
990 bool Hidden, const Twine &Label) {
991 // Due to "dot" we print an edge between two regions as an edge between the
992 // exit basic block and the entry basic of the respective regions.
993 const VPBlockBase *Tail = From->getExitBasicBlock();
994 const VPBlockBase *Head = To->getEntryBasicBlock();
995 OS << Indent << getUID(Tail) << " -> " << getUID(Head);
996 OS << " [ label=\"" << Label << '\"';
997 if (Tail != From)
998 OS << " ltail=" << getUID(From);
999 if (Head != To)
1000 OS << " lhead=" << getUID(To);
1001 if (Hidden)
1002 OS << "; splines=none";
1003 OS << "]\n";
1006 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1007 auto &Successors = Block->getSuccessors();
1008 if (Successors.size() == 1)
1009 drawEdge(Block, Successors.front(), false, "");
1010 else if (Successors.size() == 2) {
1011 drawEdge(Block, Successors.front(), false, "T");
1012 drawEdge(Block, Successors.back(), false, "F");
1013 } else {
1014 unsigned SuccessorNumber = 0;
1015 for (auto *Successor : Successors)
1016 drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1020 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1021 // Implement dot-formatted dump by performing plain-text dump into the
1022 // temporary storage followed by some post-processing.
1023 OS << Indent << getUID(BasicBlock) << " [label =\n";
1024 bumpIndent(1);
1025 std::string Str;
1026 raw_string_ostream SS(Str);
1027 // Use no indentation as we need to wrap the lines into quotes ourselves.
1028 BasicBlock->print(SS, "", SlotTracker);
1030 // We need to process each line of the output separately, so split
1031 // single-string plain-text dump.
1032 SmallVector<StringRef, 0> Lines;
1033 StringRef(Str).rtrim('\n').split(Lines, "\n");
1035 auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1036 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1039 // Don't need the "+" after the last line.
1040 for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1041 EmitLine(Line, " +\n");
1042 EmitLine(Lines.back(), "\n");
1044 bumpIndent(-1);
1045 OS << Indent << "]\n";
1047 dumpEdges(BasicBlock);
1050 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1051 OS << Indent << "subgraph " << getUID(Region) << " {\n";
1052 bumpIndent(1);
1053 OS << Indent << "fontname=Courier\n"
1054 << Indent << "label=\""
1055 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1056 << DOT::EscapeString(Region->getName()) << "\"\n";
1057 // Dump the blocks of the region.
1058 assert(Region->getEntry() && "Region contains no inner blocks.");
1059 for (const VPBlockBase *Block : depth_first(Region->getEntry()))
1060 dumpBlock(Block);
1061 bumpIndent(-1);
1062 OS << Indent << "}\n";
1063 dumpEdges(Region);
1066 void VPlanIngredient::print(raw_ostream &O) const {
1067 if (auto *Inst = dyn_cast<Instruction>(V)) {
1068 if (!Inst->getType()->isVoidTy()) {
1069 Inst->printAsOperand(O, false);
1070 O << " = ";
1072 O << Inst->getOpcodeName() << " ";
1073 unsigned E = Inst->getNumOperands();
1074 if (E > 0) {
1075 Inst->getOperand(0)->printAsOperand(O, false);
1076 for (unsigned I = 1; I < E; ++I)
1077 Inst->getOperand(I)->printAsOperand(O << ", ", false);
1079 } else // !Inst
1080 V->printAsOperand(O, false);
1083 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
1084 VPSlotTracker &SlotTracker) const {
1085 O << Indent << "WIDEN-CALL ";
1087 auto *CI = cast<CallInst>(getUnderlyingInstr());
1088 if (CI->getType()->isVoidTy())
1089 O << "void ";
1090 else {
1091 printAsOperand(O, SlotTracker);
1092 O << " = ";
1095 O << "call @" << CI->getCalledFunction()->getName() << "(";
1096 printOperands(O, SlotTracker);
1097 O << ")";
1100 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
1101 VPSlotTracker &SlotTracker) const {
1102 O << Indent << "WIDEN-SELECT ";
1103 printAsOperand(O, SlotTracker);
1104 O << " = select ";
1105 getOperand(0)->printAsOperand(O, SlotTracker);
1106 O << ", ";
1107 getOperand(1)->printAsOperand(O, SlotTracker);
1108 O << ", ";
1109 getOperand(2)->printAsOperand(O, SlotTracker);
1110 O << (InvariantCond ? " (condition is loop invariant)" : "");
1113 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
1114 VPSlotTracker &SlotTracker) const {
1115 O << Indent << "WIDEN ";
1116 printAsOperand(O, SlotTracker);
1117 O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
1118 printOperands(O, SlotTracker);
1121 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1122 VPSlotTracker &SlotTracker) const {
1123 O << Indent << "WIDEN-INDUCTION";
1124 if (getTruncInst()) {
1125 O << "\\l\"";
1126 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\"";
1127 O << " +\n" << Indent << "\" ";
1128 getVPValue(0)->printAsOperand(O, SlotTracker);
1129 } else
1130 O << " " << VPlanIngredient(IV);
1133 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
1134 VPSlotTracker &SlotTracker) const {
1135 O << Indent << "WIDEN-GEP ";
1136 O << (IsPtrLoopInvariant ? "Inv" : "Var");
1137 size_t IndicesNumber = IsIndexLoopInvariant.size();
1138 for (size_t I = 0; I < IndicesNumber; ++I)
1139 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
1141 O << " ";
1142 printAsOperand(O, SlotTracker);
1143 O << " = getelementptr ";
1144 printOperands(O, SlotTracker);
1147 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1148 VPSlotTracker &SlotTracker) const {
1149 O << Indent << "WIDEN-PHI ";
1151 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
1152 // Unless all incoming values are modeled in VPlan print the original PHI
1153 // directly.
1154 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
1155 // values as VPValues.
1156 if (getNumOperands() != OriginalPhi->getNumOperands()) {
1157 O << VPlanIngredient(OriginalPhi);
1158 return;
1161 printAsOperand(O, SlotTracker);
1162 O << " = phi ";
1163 printOperands(O, SlotTracker);
1166 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
1167 VPSlotTracker &SlotTracker) const {
1168 O << Indent << "BLEND ";
1169 Phi->printAsOperand(O, false);
1170 O << " =";
1171 if (getNumIncomingValues() == 1) {
1172 // Not a User of any mask: not really blending, this is a
1173 // single-predecessor phi.
1174 O << " ";
1175 getIncomingValue(0)->printAsOperand(O, SlotTracker);
1176 } else {
1177 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
1178 O << " ";
1179 getIncomingValue(I)->printAsOperand(O, SlotTracker);
1180 O << "/";
1181 getMask(I)->printAsOperand(O, SlotTracker);
1186 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
1187 VPSlotTracker &SlotTracker) const {
1188 O << Indent << "REDUCE ";
1189 printAsOperand(O, SlotTracker);
1190 O << " = ";
1191 getChainOp()->printAsOperand(O, SlotTracker);
1192 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode())
1193 << " (";
1194 getVecOp()->printAsOperand(O, SlotTracker);
1195 if (getCondOp()) {
1196 O << ", ";
1197 getCondOp()->printAsOperand(O, SlotTracker);
1199 O << ")";
1202 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
1203 VPSlotTracker &SlotTracker) const {
1204 O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
1206 if (!getUnderlyingInstr()->getType()->isVoidTy()) {
1207 printAsOperand(O, SlotTracker);
1208 O << " = ";
1210 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1211 printOperands(O, SlotTracker);
1213 if (AlsoPack)
1214 O << " (S->V)";
1217 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1218 VPSlotTracker &SlotTracker) const {
1219 O << Indent << "PHI-PREDICATED-INSTRUCTION ";
1220 printAsOperand(O, SlotTracker);
1221 O << " = ";
1222 printOperands(O, SlotTracker);
1225 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1226 VPSlotTracker &SlotTracker) const {
1227 O << Indent << "WIDEN ";
1229 if (!isStore()) {
1230 getVPSingleValue()->printAsOperand(O, SlotTracker);
1231 O << " = ";
1233 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1235 printOperands(O, SlotTracker);
1237 #endif
1239 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1240 Value *CanonicalIV = State.CanonicalIV;
1241 Type *STy = CanonicalIV->getType();
1242 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1243 ElementCount VF = State.VF;
1244 assert(!VF.isScalable() && "the code following assumes non scalables ECs");
1245 Value *VStart = VF.isScalar()
1246 ? CanonicalIV
1247 : Builder.CreateVectorSplat(VF.getKnownMinValue(),
1248 CanonicalIV, "broadcast");
1249 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1250 SmallVector<Constant *, 8> Indices;
1251 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
1252 Indices.push_back(
1253 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
1254 // If VF == 1, there is only one iteration in the loop above, thus the
1255 // element pushed back into Indices is ConstantInt::get(STy, Part)
1256 Constant *VStep =
1257 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
1258 // Add the consecutive indices to the vector value.
1259 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1260 State.set(getVPSingleValue(), CanonicalVectorIV, Part);
1264 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1265 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1266 VPSlotTracker &SlotTracker) const {
1267 O << Indent << "EMIT ";
1268 getVPSingleValue()->printAsOperand(O, SlotTracker);
1269 O << " = WIDEN-CANONICAL-INDUCTION";
1271 #endif
1273 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) {
1274 auto &Builder = State.Builder;
1275 // Create a vector from the initial value.
1276 auto *VectorInit = getStartValue()->getLiveInIRValue();
1278 Type *VecTy = State.VF.isScalar()
1279 ? VectorInit->getType()
1280 : VectorType::get(VectorInit->getType(), State.VF);
1282 if (State.VF.isVector()) {
1283 auto *IdxTy = Builder.getInt32Ty();
1284 auto *One = ConstantInt::get(IdxTy, 1);
1285 IRBuilder<>::InsertPointGuard Guard(Builder);
1286 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1287 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
1288 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
1289 VectorInit = Builder.CreateInsertElement(
1290 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
1293 // Create a phi node for the new recurrence.
1294 PHINode *EntryPart = PHINode::Create(
1295 VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt());
1296 EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader);
1297 State.set(this, EntryPart, 0);
1300 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1301 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent,
1302 VPSlotTracker &SlotTracker) const {
1303 O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
1304 printAsOperand(O, SlotTracker);
1305 O << " = phi ";
1306 printOperands(O, SlotTracker);
1308 #endif
1310 void VPReductionPHIRecipe::execute(VPTransformState &State) {
1311 PHINode *PN = cast<PHINode>(getUnderlyingValue());
1312 auto &Builder = State.Builder;
1314 // In order to support recurrences we need to be able to vectorize Phi nodes.
1315 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
1316 // stage #1: We create a new vector PHI node with no incoming edges. We'll use
1317 // this value when we vectorize all of the instructions that use the PHI.
1318 bool ScalarPHI = State.VF.isScalar() || IsInLoop;
1319 Type *VecTy =
1320 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
1322 BasicBlock *HeaderBB = State.CFG.PrevBB;
1323 assert(State.LI->getLoopFor(HeaderBB)->getHeader() == HeaderBB &&
1324 "recipe must be in the vector loop header");
1325 unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF;
1326 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1327 Value *EntryPart =
1328 PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt());
1329 State.set(this, EntryPart, Part);
1332 // Reductions do not have to start at zero. They can start with
1333 // any loop invariant values.
1334 VPValue *StartVPV = getStartValue();
1335 Value *StartV = StartVPV->getLiveInIRValue();
1337 Value *Iden = nullptr;
1338 RecurKind RK = RdxDesc.getRecurrenceKind();
1339 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) {
1340 // MinMax reduction have the start value as their identify.
1341 if (ScalarPHI) {
1342 Iden = StartV;
1343 } else {
1344 IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1345 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1346 StartV = Iden =
1347 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
1349 } else {
1350 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity(
1351 RK, VecTy->getScalarType(), RdxDesc.getFastMathFlags());
1352 Iden = IdenC;
1354 if (!ScalarPHI) {
1355 Iden = ConstantVector::getSplat(State.VF, IdenC);
1356 IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1357 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1358 Constant *Zero = Builder.getInt32(0);
1359 StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
1363 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1364 Value *EntryPart = State.get(this, Part);
1365 // Make sure to add the reduction start value only to the
1366 // first unroll part.
1367 Value *StartVal = (Part == 0) ? StartV : Iden;
1368 cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader);
1372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1373 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1374 VPSlotTracker &SlotTracker) const {
1375 O << Indent << "WIDEN-REDUCTION-PHI ";
1377 printAsOperand(O, SlotTracker);
1378 O << " = phi ";
1379 printOperands(O, SlotTracker);
1381 #endif
1383 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1385 void VPValue::replaceAllUsesWith(VPValue *New) {
1386 for (unsigned J = 0; J < getNumUsers();) {
1387 VPUser *User = Users[J];
1388 unsigned NumUsers = getNumUsers();
1389 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1390 if (User->getOperand(I) == this)
1391 User->setOperand(I, New);
1392 // If a user got removed after updating the current user, the next user to
1393 // update will be moved to the current position, so we only need to
1394 // increment the index if the number of users did not change.
1395 if (NumUsers == getNumUsers())
1396 J++;
1400 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1401 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1402 if (const Value *UV = getUnderlyingValue()) {
1403 OS << "ir<";
1404 UV->printAsOperand(OS, false);
1405 OS << ">";
1406 return;
1409 unsigned Slot = Tracker.getSlot(this);
1410 if (Slot == unsigned(-1))
1411 OS << "<badref>";
1412 else
1413 OS << "vp<%" << Tracker.getSlot(this) << ">";
1416 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1417 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1418 Op->printAsOperand(O, SlotTracker);
1421 #endif
1423 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1424 Old2NewTy &Old2New,
1425 InterleavedAccessInfo &IAI) {
1426 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1427 for (VPBlockBase *Base : RPOT) {
1428 visitBlock(Base, Old2New, IAI);
1432 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1433 InterleavedAccessInfo &IAI) {
1434 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1435 for (VPRecipeBase &VPI : *VPBB) {
1436 if (isa<VPWidenPHIRecipe>(&VPI))
1437 continue;
1438 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1439 auto *VPInst = cast<VPInstruction>(&VPI);
1440 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1441 auto *IG = IAI.getInterleaveGroup(Inst);
1442 if (!IG)
1443 continue;
1445 auto NewIGIter = Old2New.find(IG);
1446 if (NewIGIter == Old2New.end())
1447 Old2New[IG] = new InterleaveGroup<VPInstruction>(
1448 IG->getFactor(), IG->isReverse(), IG->getAlign());
1450 if (Inst == IG->getInsertPos())
1451 Old2New[IG]->setInsertPos(VPInst);
1453 InterleaveGroupMap[VPInst] = Old2New[IG];
1454 InterleaveGroupMap[VPInst]->insertMember(
1455 VPInst, IG->getIndex(Inst),
1456 Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1457 : IG->getFactor()));
1459 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1460 visitRegion(Region, Old2New, IAI);
1461 else
1462 llvm_unreachable("Unsupported kind of VPBlock.");
1465 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1466 InterleavedAccessInfo &IAI) {
1467 Old2NewTy Old2New;
1468 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1471 void VPSlotTracker::assignSlot(const VPValue *V) {
1472 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1473 Slots[V] = NextSlot++;
1476 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1478 for (const VPValue *V : Plan.VPExternalDefs)
1479 assignSlot(V);
1481 if (Plan.BackedgeTakenCount)
1482 assignSlot(Plan.BackedgeTakenCount);
1484 ReversePostOrderTraversal<
1485 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>>
1486 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>(
1487 Plan.getEntry()));
1488 for (const VPBasicBlock *VPBB :
1489 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1490 for (const VPRecipeBase &Recipe : *VPBB)
1491 for (VPValue *Def : Recipe.definedValues())
1492 assignSlot(Def);