[NFC][LLVM][CodeGen] Move LiveDebugVariables.h into llvm/include/llvm/CodeGen (#88374)
[llvm-project.git] / llvm / lib / Bitcode / Writer / BitcodeWriter.cpp
blob6d01e3b4d82189437624f1494977ac6d0c18b5ee
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Bitcode/BitcodeCommon.h"
27 #include "llvm/Bitcode/BitcodeReader.h"
28 #include "llvm/Bitcode/LLVMBitCodes.h"
29 #include "llvm/Bitstream/BitCodes.h"
30 #include "llvm/Bitstream/BitstreamWriter.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/MC/TargetRegistry.h"
61 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/SHA1.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <optional>
80 #include <string>
81 #include <utility>
82 #include <vector>
84 using namespace llvm;
86 static cl::opt<unsigned>
87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
88 cl::desc("Number of metadatas above which we emit an index "
89 "to enable lazy-loading"));
90 static cl::opt<uint32_t> FlushThreshold(
91 "bitcode-flush-threshold", cl::Hidden, cl::init(512),
92 cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
94 static cl::opt<bool> WriteRelBFToSummary(
95 "write-relbf-to-summary", cl::Hidden, cl::init(false),
96 cl::desc("Write relative block frequency to function summary "));
98 namespace llvm {
99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
102 extern bool WriteNewDbgInfoFormatToBitcode;
103 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
105 namespace {
107 /// These are manifest constants used by the bitcode writer. They do not need to
108 /// be kept in sync with the reader, but need to be consistent within this file.
109 enum {
110 // VALUE_SYMTAB_BLOCK abbrev id's.
111 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
112 VST_ENTRY_7_ABBREV,
113 VST_ENTRY_6_ABBREV,
114 VST_BBENTRY_6_ABBREV,
116 // CONSTANTS_BLOCK abbrev id's.
117 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
118 CONSTANTS_INTEGER_ABBREV,
119 CONSTANTS_CE_CAST_Abbrev,
120 CONSTANTS_NULL_Abbrev,
122 // FUNCTION_BLOCK abbrev id's.
123 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
124 FUNCTION_INST_UNOP_ABBREV,
125 FUNCTION_INST_UNOP_FLAGS_ABBREV,
126 FUNCTION_INST_BINOP_ABBREV,
127 FUNCTION_INST_BINOP_FLAGS_ABBREV,
128 FUNCTION_INST_CAST_ABBREV,
129 FUNCTION_INST_CAST_FLAGS_ABBREV,
130 FUNCTION_INST_RET_VOID_ABBREV,
131 FUNCTION_INST_RET_VAL_ABBREV,
132 FUNCTION_INST_UNREACHABLE_ABBREV,
133 FUNCTION_INST_GEP_ABBREV,
134 FUNCTION_DEBUG_RECORD_VALUE_ABBREV,
137 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
138 /// file type.
139 class BitcodeWriterBase {
140 protected:
141 /// The stream created and owned by the client.
142 BitstreamWriter &Stream;
144 StringTableBuilder &StrtabBuilder;
146 public:
147 /// Constructs a BitcodeWriterBase object that writes to the provided
148 /// \p Stream.
149 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
150 : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
152 protected:
153 void writeModuleVersion();
156 void BitcodeWriterBase::writeModuleVersion() {
157 // VERSION: [version#]
158 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
161 /// Base class to manage the module bitcode writing, currently subclassed for
162 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
163 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
164 protected:
165 /// The Module to write to bitcode.
166 const Module &M;
168 /// Enumerates ids for all values in the module.
169 ValueEnumerator VE;
171 /// Optional per-module index to write for ThinLTO.
172 const ModuleSummaryIndex *Index;
174 /// Map that holds the correspondence between GUIDs in the summary index,
175 /// that came from indirect call profiles, and a value id generated by this
176 /// class to use in the VST and summary block records.
177 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
179 /// Tracks the last value id recorded in the GUIDToValueMap.
180 unsigned GlobalValueId;
182 /// Saves the offset of the VSTOffset record that must eventually be
183 /// backpatched with the offset of the actual VST.
184 uint64_t VSTOffsetPlaceholder = 0;
186 public:
187 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
188 /// writing to the provided \p Buffer.
189 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
190 BitstreamWriter &Stream,
191 bool ShouldPreserveUseListOrder,
192 const ModuleSummaryIndex *Index)
193 : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
194 VE(M, ShouldPreserveUseListOrder), Index(Index) {
195 // Assign ValueIds to any callee values in the index that came from
196 // indirect call profiles and were recorded as a GUID not a Value*
197 // (which would have been assigned an ID by the ValueEnumerator).
198 // The starting ValueId is just after the number of values in the
199 // ValueEnumerator, so that they can be emitted in the VST.
200 GlobalValueId = VE.getValues().size();
201 if (!Index)
202 return;
203 for (const auto &GUIDSummaryLists : *Index)
204 // Examine all summaries for this GUID.
205 for (auto &Summary : GUIDSummaryLists.second.SummaryList)
206 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) {
207 // For each call in the function summary, see if the call
208 // is to a GUID (which means it is for an indirect call,
209 // otherwise we would have a Value for it). If so, synthesize
210 // a value id.
211 for (auto &CallEdge : FS->calls())
212 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
213 assignValueId(CallEdge.first.getGUID());
215 // For each referenced variables in the function summary, see if the
216 // variable is represented by a GUID (as opposed to a symbol to
217 // declarations or definitions in the module). If so, synthesize a
218 // value id.
219 for (auto &RefEdge : FS->refs())
220 if (!RefEdge.haveGVs() || !RefEdge.getValue())
221 assignValueId(RefEdge.getGUID());
225 protected:
226 void writePerModuleGlobalValueSummary();
228 private:
229 void writePerModuleFunctionSummaryRecord(
230 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
231 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
232 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F);
233 void writeModuleLevelReferences(const GlobalVariable &V,
234 SmallVector<uint64_t, 64> &NameVals,
235 unsigned FSModRefsAbbrev,
236 unsigned FSModVTableRefsAbbrev);
238 void assignValueId(GlobalValue::GUID ValGUID) {
239 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
242 unsigned getValueId(GlobalValue::GUID ValGUID) {
243 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
244 // Expect that any GUID value had a value Id assigned by an
245 // earlier call to assignValueId.
246 assert(VMI != GUIDToValueIdMap.end() &&
247 "GUID does not have assigned value Id");
248 return VMI->second;
251 // Helper to get the valueId for the type of value recorded in VI.
252 unsigned getValueId(ValueInfo VI) {
253 if (!VI.haveGVs() || !VI.getValue())
254 return getValueId(VI.getGUID());
255 return VE.getValueID(VI.getValue());
258 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
261 /// Class to manage the bitcode writing for a module.
262 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
263 /// Pointer to the buffer allocated by caller for bitcode writing.
264 const SmallVectorImpl<char> &Buffer;
266 /// True if a module hash record should be written.
267 bool GenerateHash;
269 /// If non-null, when GenerateHash is true, the resulting hash is written
270 /// into ModHash.
271 ModuleHash *ModHash;
273 SHA1 Hasher;
275 /// The start bit of the identification block.
276 uint64_t BitcodeStartBit;
278 public:
279 /// Constructs a ModuleBitcodeWriter object for the given Module,
280 /// writing to the provided \p Buffer.
281 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
282 StringTableBuilder &StrtabBuilder,
283 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
284 const ModuleSummaryIndex *Index, bool GenerateHash,
285 ModuleHash *ModHash = nullptr)
286 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
287 ShouldPreserveUseListOrder, Index),
288 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
289 BitcodeStartBit(Stream.GetCurrentBitNo()) {}
291 /// Emit the current module to the bitstream.
292 void write();
294 private:
295 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
297 size_t addToStrtab(StringRef Str);
299 void writeAttributeGroupTable();
300 void writeAttributeTable();
301 void writeTypeTable();
302 void writeComdats();
303 void writeValueSymbolTableForwardDecl();
304 void writeModuleInfo();
305 void writeValueAsMetadata(const ValueAsMetadata *MD,
306 SmallVectorImpl<uint64_t> &Record);
307 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
308 unsigned Abbrev);
309 unsigned createDILocationAbbrev();
310 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
311 unsigned &Abbrev);
312 unsigned createGenericDINodeAbbrev();
313 void writeGenericDINode(const GenericDINode *N,
314 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
315 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
316 unsigned Abbrev);
317 void writeDIGenericSubrange(const DIGenericSubrange *N,
318 SmallVectorImpl<uint64_t> &Record,
319 unsigned Abbrev);
320 void writeDIEnumerator(const DIEnumerator *N,
321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
322 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
323 unsigned Abbrev);
324 void writeDIStringType(const DIStringType *N,
325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
326 void writeDIDerivedType(const DIDerivedType *N,
327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
328 void writeDICompositeType(const DICompositeType *N,
329 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
330 void writeDISubroutineType(const DISubroutineType *N,
331 SmallVectorImpl<uint64_t> &Record,
332 unsigned Abbrev);
333 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
334 unsigned Abbrev);
335 void writeDICompileUnit(const DICompileUnit *N,
336 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
337 void writeDISubprogram(const DISubprogram *N,
338 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
339 void writeDILexicalBlock(const DILexicalBlock *N,
340 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
341 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
342 SmallVectorImpl<uint64_t> &Record,
343 unsigned Abbrev);
344 void writeDICommonBlock(const DICommonBlock *N,
345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
346 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
347 unsigned Abbrev);
348 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
349 unsigned Abbrev);
350 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
351 unsigned Abbrev);
352 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record);
353 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
354 unsigned Abbrev);
355 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
356 unsigned Abbrev);
357 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
358 SmallVectorImpl<uint64_t> &Record,
359 unsigned Abbrev);
360 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
361 SmallVectorImpl<uint64_t> &Record,
362 unsigned Abbrev);
363 void writeDIGlobalVariable(const DIGlobalVariable *N,
364 SmallVectorImpl<uint64_t> &Record,
365 unsigned Abbrev);
366 void writeDILocalVariable(const DILocalVariable *N,
367 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
368 void writeDILabel(const DILabel *N,
369 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
370 void writeDIExpression(const DIExpression *N,
371 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
372 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
373 SmallVectorImpl<uint64_t> &Record,
374 unsigned Abbrev);
375 void writeDIObjCProperty(const DIObjCProperty *N,
376 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
377 void writeDIImportedEntity(const DIImportedEntity *N,
378 SmallVectorImpl<uint64_t> &Record,
379 unsigned Abbrev);
380 unsigned createNamedMetadataAbbrev();
381 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
382 unsigned createMetadataStringsAbbrev();
383 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
384 SmallVectorImpl<uint64_t> &Record);
385 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
386 SmallVectorImpl<uint64_t> &Record,
387 std::vector<unsigned> *MDAbbrevs = nullptr,
388 std::vector<uint64_t> *IndexPos = nullptr);
389 void writeModuleMetadata();
390 void writeFunctionMetadata(const Function &F);
391 void writeFunctionMetadataAttachment(const Function &F);
392 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
393 const GlobalObject &GO);
394 void writeModuleMetadataKinds();
395 void writeOperandBundleTags();
396 void writeSyncScopeNames();
397 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
398 void writeModuleConstants();
399 bool pushValueAndType(const Value *V, unsigned InstID,
400 SmallVectorImpl<unsigned> &Vals);
401 void writeOperandBundles(const CallBase &CB, unsigned InstID);
402 void pushValue(const Value *V, unsigned InstID,
403 SmallVectorImpl<unsigned> &Vals);
404 void pushValueSigned(const Value *V, unsigned InstID,
405 SmallVectorImpl<uint64_t> &Vals);
406 void writeInstruction(const Instruction &I, unsigned InstID,
407 SmallVectorImpl<unsigned> &Vals);
408 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
409 void writeGlobalValueSymbolTable(
410 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
411 void writeUseList(UseListOrder &&Order);
412 void writeUseListBlock(const Function *F);
413 void
414 writeFunction(const Function &F,
415 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
416 void writeBlockInfo();
417 void writeModuleHash(size_t BlockStartPos);
419 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
420 return unsigned(SSID);
423 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
426 /// Class to manage the bitcode writing for a combined index.
427 class IndexBitcodeWriter : public BitcodeWriterBase {
428 /// The combined index to write to bitcode.
429 const ModuleSummaryIndex &Index;
431 /// When writing a subset of the index for distributed backends, client
432 /// provides a map of modules to the corresponding GUIDs/summaries to write.
433 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
435 /// Map that holds the correspondence between the GUID used in the combined
436 /// index and a value id generated by this class to use in references.
437 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
439 // The sorted stack id indices actually used in the summary entries being
440 // written, which will be a subset of those in the full index in the case of
441 // distributed indexes.
442 std::vector<unsigned> StackIdIndices;
444 /// Tracks the last value id recorded in the GUIDToValueMap.
445 unsigned GlobalValueId = 0;
447 /// Tracks the assignment of module paths in the module path string table to
448 /// an id assigned for use in summary references to the module path.
449 DenseMap<StringRef, uint64_t> ModuleIdMap;
451 public:
452 /// Constructs a IndexBitcodeWriter object for the given combined index,
453 /// writing to the provided \p Buffer. When writing a subset of the index
454 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
455 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
456 const ModuleSummaryIndex &Index,
457 const std::map<std::string, GVSummaryMapTy>
458 *ModuleToSummariesForIndex = nullptr)
459 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
460 ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
461 // Assign unique value ids to all summaries to be written, for use
462 // in writing out the call graph edges. Save the mapping from GUID
463 // to the new global value id to use when writing those edges, which
464 // are currently saved in the index in terms of GUID.
465 forEachSummary([&](GVInfo I, bool IsAliasee) {
466 GUIDToValueIdMap[I.first] = ++GlobalValueId;
467 if (IsAliasee)
468 return;
469 auto *FS = dyn_cast<FunctionSummary>(I.second);
470 if (!FS)
471 return;
472 // Record all stack id indices actually used in the summary entries being
473 // written, so that we can compact them in the case of distributed ThinLTO
474 // indexes.
475 for (auto &CI : FS->callsites()) {
476 // If the stack id list is empty, this callsite info was synthesized for
477 // a missing tail call frame. Ensure that the callee's GUID gets a value
478 // id. Normally we only generate these for defined summaries, which in
479 // the case of distributed ThinLTO is only the functions already defined
480 // in the module or that we want to import. We don't bother to include
481 // all the callee symbols as they aren't normally needed in the backend.
482 // However, for the synthesized callsite infos we do need the callee
483 // GUID in the backend so that we can correlate the identified callee
484 // with this callsite info (which for non-tail calls is done by the
485 // ordering of the callsite infos and verified via stack ids).
486 if (CI.StackIdIndices.empty()) {
487 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId;
488 continue;
490 for (auto Idx : CI.StackIdIndices)
491 StackIdIndices.push_back(Idx);
493 for (auto &AI : FS->allocs())
494 for (auto &MIB : AI.MIBs)
495 for (auto Idx : MIB.StackIdIndices)
496 StackIdIndices.push_back(Idx);
498 llvm::sort(StackIdIndices);
499 StackIdIndices.erase(
500 std::unique(StackIdIndices.begin(), StackIdIndices.end()),
501 StackIdIndices.end());
504 /// The below iterator returns the GUID and associated summary.
505 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
507 /// Calls the callback for each value GUID and summary to be written to
508 /// bitcode. This hides the details of whether they are being pulled from the
509 /// entire index or just those in a provided ModuleToSummariesForIndex map.
510 template<typename Functor>
511 void forEachSummary(Functor Callback) {
512 if (ModuleToSummariesForIndex) {
513 for (auto &M : *ModuleToSummariesForIndex)
514 for (auto &Summary : M.second) {
515 Callback(Summary, false);
516 // Ensure aliasee is handled, e.g. for assigning a valueId,
517 // even if we are not importing the aliasee directly (the
518 // imported alias will contain a copy of aliasee).
519 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
520 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
522 } else {
523 for (auto &Summaries : Index)
524 for (auto &Summary : Summaries.second.SummaryList)
525 Callback({Summaries.first, Summary.get()}, false);
529 /// Calls the callback for each entry in the modulePaths StringMap that
530 /// should be written to the module path string table. This hides the details
531 /// of whether they are being pulled from the entire index or just those in a
532 /// provided ModuleToSummariesForIndex map.
533 template <typename Functor> void forEachModule(Functor Callback) {
534 if (ModuleToSummariesForIndex) {
535 for (const auto &M : *ModuleToSummariesForIndex) {
536 const auto &MPI = Index.modulePaths().find(M.first);
537 if (MPI == Index.modulePaths().end()) {
538 // This should only happen if the bitcode file was empty, in which
539 // case we shouldn't be importing (the ModuleToSummariesForIndex
540 // would only include the module we are writing and index for).
541 assert(ModuleToSummariesForIndex->size() == 1);
542 continue;
544 Callback(*MPI);
546 } else {
547 // Since StringMap iteration order isn't guaranteed, order by path string
548 // first.
549 // FIXME: Make this a vector of StringMapEntry instead to avoid the later
550 // map lookup.
551 std::vector<StringRef> ModulePaths;
552 for (auto &[ModPath, _] : Index.modulePaths())
553 ModulePaths.push_back(ModPath);
554 llvm::sort(ModulePaths.begin(), ModulePaths.end());
555 for (auto &ModPath : ModulePaths)
556 Callback(*Index.modulePaths().find(ModPath));
560 /// Main entry point for writing a combined index to bitcode.
561 void write();
563 private:
564 void writeModStrings();
565 void writeCombinedGlobalValueSummary();
567 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
568 auto VMI = GUIDToValueIdMap.find(ValGUID);
569 if (VMI == GUIDToValueIdMap.end())
570 return std::nullopt;
571 return VMI->second;
574 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
577 } // end anonymous namespace
579 static unsigned getEncodedCastOpcode(unsigned Opcode) {
580 switch (Opcode) {
581 default: llvm_unreachable("Unknown cast instruction!");
582 case Instruction::Trunc : return bitc::CAST_TRUNC;
583 case Instruction::ZExt : return bitc::CAST_ZEXT;
584 case Instruction::SExt : return bitc::CAST_SEXT;
585 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
586 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
587 case Instruction::UIToFP : return bitc::CAST_UITOFP;
588 case Instruction::SIToFP : return bitc::CAST_SITOFP;
589 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
590 case Instruction::FPExt : return bitc::CAST_FPEXT;
591 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
592 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
593 case Instruction::BitCast : return bitc::CAST_BITCAST;
594 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
598 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
599 switch (Opcode) {
600 default: llvm_unreachable("Unknown binary instruction!");
601 case Instruction::FNeg: return bitc::UNOP_FNEG;
605 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
606 switch (Opcode) {
607 default: llvm_unreachable("Unknown binary instruction!");
608 case Instruction::Add:
609 case Instruction::FAdd: return bitc::BINOP_ADD;
610 case Instruction::Sub:
611 case Instruction::FSub: return bitc::BINOP_SUB;
612 case Instruction::Mul:
613 case Instruction::FMul: return bitc::BINOP_MUL;
614 case Instruction::UDiv: return bitc::BINOP_UDIV;
615 case Instruction::FDiv:
616 case Instruction::SDiv: return bitc::BINOP_SDIV;
617 case Instruction::URem: return bitc::BINOP_UREM;
618 case Instruction::FRem:
619 case Instruction::SRem: return bitc::BINOP_SREM;
620 case Instruction::Shl: return bitc::BINOP_SHL;
621 case Instruction::LShr: return bitc::BINOP_LSHR;
622 case Instruction::AShr: return bitc::BINOP_ASHR;
623 case Instruction::And: return bitc::BINOP_AND;
624 case Instruction::Or: return bitc::BINOP_OR;
625 case Instruction::Xor: return bitc::BINOP_XOR;
629 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
630 switch (Op) {
631 default: llvm_unreachable("Unknown RMW operation!");
632 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
633 case AtomicRMWInst::Add: return bitc::RMW_ADD;
634 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
635 case AtomicRMWInst::And: return bitc::RMW_AND;
636 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
637 case AtomicRMWInst::Or: return bitc::RMW_OR;
638 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
639 case AtomicRMWInst::Max: return bitc::RMW_MAX;
640 case AtomicRMWInst::Min: return bitc::RMW_MIN;
641 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
642 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
643 case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
644 case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
645 case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
646 case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
647 case AtomicRMWInst::UIncWrap:
648 return bitc::RMW_UINC_WRAP;
649 case AtomicRMWInst::UDecWrap:
650 return bitc::RMW_UDEC_WRAP;
654 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
655 switch (Ordering) {
656 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
657 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
658 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
659 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
660 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
661 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
662 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
664 llvm_unreachable("Invalid ordering");
667 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
668 StringRef Str, unsigned AbbrevToUse) {
669 SmallVector<unsigned, 64> Vals;
671 // Code: [strchar x N]
672 for (char C : Str) {
673 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
674 AbbrevToUse = 0;
675 Vals.push_back(C);
678 // Emit the finished record.
679 Stream.EmitRecord(Code, Vals, AbbrevToUse);
682 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
683 switch (Kind) {
684 case Attribute::Alignment:
685 return bitc::ATTR_KIND_ALIGNMENT;
686 case Attribute::AllocAlign:
687 return bitc::ATTR_KIND_ALLOC_ALIGN;
688 case Attribute::AllocSize:
689 return bitc::ATTR_KIND_ALLOC_SIZE;
690 case Attribute::AlwaysInline:
691 return bitc::ATTR_KIND_ALWAYS_INLINE;
692 case Attribute::Builtin:
693 return bitc::ATTR_KIND_BUILTIN;
694 case Attribute::ByVal:
695 return bitc::ATTR_KIND_BY_VAL;
696 case Attribute::Convergent:
697 return bitc::ATTR_KIND_CONVERGENT;
698 case Attribute::InAlloca:
699 return bitc::ATTR_KIND_IN_ALLOCA;
700 case Attribute::Cold:
701 return bitc::ATTR_KIND_COLD;
702 case Attribute::DisableSanitizerInstrumentation:
703 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
704 case Attribute::FnRetThunkExtern:
705 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
706 case Attribute::Hot:
707 return bitc::ATTR_KIND_HOT;
708 case Attribute::ElementType:
709 return bitc::ATTR_KIND_ELEMENTTYPE;
710 case Attribute::InlineHint:
711 return bitc::ATTR_KIND_INLINE_HINT;
712 case Attribute::InReg:
713 return bitc::ATTR_KIND_IN_REG;
714 case Attribute::JumpTable:
715 return bitc::ATTR_KIND_JUMP_TABLE;
716 case Attribute::MinSize:
717 return bitc::ATTR_KIND_MIN_SIZE;
718 case Attribute::AllocatedPointer:
719 return bitc::ATTR_KIND_ALLOCATED_POINTER;
720 case Attribute::AllocKind:
721 return bitc::ATTR_KIND_ALLOC_KIND;
722 case Attribute::Memory:
723 return bitc::ATTR_KIND_MEMORY;
724 case Attribute::NoFPClass:
725 return bitc::ATTR_KIND_NOFPCLASS;
726 case Attribute::Naked:
727 return bitc::ATTR_KIND_NAKED;
728 case Attribute::Nest:
729 return bitc::ATTR_KIND_NEST;
730 case Attribute::NoAlias:
731 return bitc::ATTR_KIND_NO_ALIAS;
732 case Attribute::NoBuiltin:
733 return bitc::ATTR_KIND_NO_BUILTIN;
734 case Attribute::NoCallback:
735 return bitc::ATTR_KIND_NO_CALLBACK;
736 case Attribute::NoCapture:
737 return bitc::ATTR_KIND_NO_CAPTURE;
738 case Attribute::NoDuplicate:
739 return bitc::ATTR_KIND_NO_DUPLICATE;
740 case Attribute::NoFree:
741 return bitc::ATTR_KIND_NOFREE;
742 case Attribute::NoImplicitFloat:
743 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
744 case Attribute::NoInline:
745 return bitc::ATTR_KIND_NO_INLINE;
746 case Attribute::NoRecurse:
747 return bitc::ATTR_KIND_NO_RECURSE;
748 case Attribute::NoMerge:
749 return bitc::ATTR_KIND_NO_MERGE;
750 case Attribute::NonLazyBind:
751 return bitc::ATTR_KIND_NON_LAZY_BIND;
752 case Attribute::NonNull:
753 return bitc::ATTR_KIND_NON_NULL;
754 case Attribute::Dereferenceable:
755 return bitc::ATTR_KIND_DEREFERENCEABLE;
756 case Attribute::DereferenceableOrNull:
757 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
758 case Attribute::NoRedZone:
759 return bitc::ATTR_KIND_NO_RED_ZONE;
760 case Attribute::NoReturn:
761 return bitc::ATTR_KIND_NO_RETURN;
762 case Attribute::NoSync:
763 return bitc::ATTR_KIND_NOSYNC;
764 case Attribute::NoCfCheck:
765 return bitc::ATTR_KIND_NOCF_CHECK;
766 case Attribute::NoProfile:
767 return bitc::ATTR_KIND_NO_PROFILE;
768 case Attribute::SkipProfile:
769 return bitc::ATTR_KIND_SKIP_PROFILE;
770 case Attribute::NoUnwind:
771 return bitc::ATTR_KIND_NO_UNWIND;
772 case Attribute::NoSanitizeBounds:
773 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
774 case Attribute::NoSanitizeCoverage:
775 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
776 case Attribute::NullPointerIsValid:
777 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
778 case Attribute::OptimizeForDebugging:
779 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING;
780 case Attribute::OptForFuzzing:
781 return bitc::ATTR_KIND_OPT_FOR_FUZZING;
782 case Attribute::OptimizeForSize:
783 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
784 case Attribute::OptimizeNone:
785 return bitc::ATTR_KIND_OPTIMIZE_NONE;
786 case Attribute::ReadNone:
787 return bitc::ATTR_KIND_READ_NONE;
788 case Attribute::ReadOnly:
789 return bitc::ATTR_KIND_READ_ONLY;
790 case Attribute::Returned:
791 return bitc::ATTR_KIND_RETURNED;
792 case Attribute::ReturnsTwice:
793 return bitc::ATTR_KIND_RETURNS_TWICE;
794 case Attribute::SExt:
795 return bitc::ATTR_KIND_S_EXT;
796 case Attribute::Speculatable:
797 return bitc::ATTR_KIND_SPECULATABLE;
798 case Attribute::StackAlignment:
799 return bitc::ATTR_KIND_STACK_ALIGNMENT;
800 case Attribute::StackProtect:
801 return bitc::ATTR_KIND_STACK_PROTECT;
802 case Attribute::StackProtectReq:
803 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
804 case Attribute::StackProtectStrong:
805 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
806 case Attribute::SafeStack:
807 return bitc::ATTR_KIND_SAFESTACK;
808 case Attribute::ShadowCallStack:
809 return bitc::ATTR_KIND_SHADOWCALLSTACK;
810 case Attribute::StrictFP:
811 return bitc::ATTR_KIND_STRICT_FP;
812 case Attribute::StructRet:
813 return bitc::ATTR_KIND_STRUCT_RET;
814 case Attribute::SanitizeAddress:
815 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
816 case Attribute::SanitizeHWAddress:
817 return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
818 case Attribute::SanitizeThread:
819 return bitc::ATTR_KIND_SANITIZE_THREAD;
820 case Attribute::SanitizeMemory:
821 return bitc::ATTR_KIND_SANITIZE_MEMORY;
822 case Attribute::SpeculativeLoadHardening:
823 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
824 case Attribute::SwiftError:
825 return bitc::ATTR_KIND_SWIFT_ERROR;
826 case Attribute::SwiftSelf:
827 return bitc::ATTR_KIND_SWIFT_SELF;
828 case Attribute::SwiftAsync:
829 return bitc::ATTR_KIND_SWIFT_ASYNC;
830 case Attribute::UWTable:
831 return bitc::ATTR_KIND_UW_TABLE;
832 case Attribute::VScaleRange:
833 return bitc::ATTR_KIND_VSCALE_RANGE;
834 case Attribute::WillReturn:
835 return bitc::ATTR_KIND_WILLRETURN;
836 case Attribute::WriteOnly:
837 return bitc::ATTR_KIND_WRITEONLY;
838 case Attribute::ZExt:
839 return bitc::ATTR_KIND_Z_EXT;
840 case Attribute::ImmArg:
841 return bitc::ATTR_KIND_IMMARG;
842 case Attribute::SanitizeMemTag:
843 return bitc::ATTR_KIND_SANITIZE_MEMTAG;
844 case Attribute::Preallocated:
845 return bitc::ATTR_KIND_PREALLOCATED;
846 case Attribute::NoUndef:
847 return bitc::ATTR_KIND_NOUNDEF;
848 case Attribute::ByRef:
849 return bitc::ATTR_KIND_BYREF;
850 case Attribute::MustProgress:
851 return bitc::ATTR_KIND_MUSTPROGRESS;
852 case Attribute::PresplitCoroutine:
853 return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
854 case Attribute::Writable:
855 return bitc::ATTR_KIND_WRITABLE;
856 case Attribute::CoroDestroyOnlyWhenComplete:
857 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE;
858 case Attribute::DeadOnUnwind:
859 return bitc::ATTR_KIND_DEAD_ON_UNWIND;
860 case Attribute::Range:
861 return bitc::ATTR_KIND_RANGE;
862 case Attribute::EndAttrKinds:
863 llvm_unreachable("Can not encode end-attribute kinds marker.");
864 case Attribute::None:
865 llvm_unreachable("Can not encode none-attribute.");
866 case Attribute::EmptyKey:
867 case Attribute::TombstoneKey:
868 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
871 llvm_unreachable("Trying to encode unknown attribute");
874 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
875 if ((int64_t)V >= 0)
876 Vals.push_back(V << 1);
877 else
878 Vals.push_back((-V << 1) | 1);
881 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
882 // We have an arbitrary precision integer value to write whose
883 // bit width is > 64. However, in canonical unsigned integer
884 // format it is likely that the high bits are going to be zero.
885 // So, we only write the number of active words.
886 unsigned NumWords = A.getActiveWords();
887 const uint64_t *RawData = A.getRawData();
888 for (unsigned i = 0; i < NumWords; i++)
889 emitSignedInt64(Vals, RawData[i]);
892 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record,
893 const ConstantRange &CR) {
894 unsigned BitWidth = CR.getBitWidth();
895 Record.push_back(BitWidth);
896 if (BitWidth > 64) {
897 Record.push_back(CR.getLower().getActiveWords() |
898 (uint64_t(CR.getUpper().getActiveWords()) << 32));
899 emitWideAPInt(Record, CR.getLower());
900 emitWideAPInt(Record, CR.getUpper());
901 } else {
902 emitSignedInt64(Record, CR.getLower().getSExtValue());
903 emitSignedInt64(Record, CR.getUpper().getSExtValue());
907 void ModuleBitcodeWriter::writeAttributeGroupTable() {
908 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
909 VE.getAttributeGroups();
910 if (AttrGrps.empty()) return;
912 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
914 SmallVector<uint64_t, 64> Record;
915 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
916 unsigned AttrListIndex = Pair.first;
917 AttributeSet AS = Pair.second;
918 Record.push_back(VE.getAttributeGroupID(Pair));
919 Record.push_back(AttrListIndex);
921 for (Attribute Attr : AS) {
922 if (Attr.isEnumAttribute()) {
923 Record.push_back(0);
924 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
925 } else if (Attr.isIntAttribute()) {
926 Record.push_back(1);
927 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
928 Record.push_back(Attr.getValueAsInt());
929 } else if (Attr.isStringAttribute()) {
930 StringRef Kind = Attr.getKindAsString();
931 StringRef Val = Attr.getValueAsString();
933 Record.push_back(Val.empty() ? 3 : 4);
934 Record.append(Kind.begin(), Kind.end());
935 Record.push_back(0);
936 if (!Val.empty()) {
937 Record.append(Val.begin(), Val.end());
938 Record.push_back(0);
940 } else if (Attr.isTypeAttribute()) {
941 Type *Ty = Attr.getValueAsType();
942 Record.push_back(Ty ? 6 : 5);
943 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
944 if (Ty)
945 Record.push_back(VE.getTypeID(Attr.getValueAsType()));
946 } else {
947 assert(Attr.isConstantRangeAttribute());
948 Record.push_back(7);
949 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
950 emitConstantRange(Record, Attr.getValueAsConstantRange());
954 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
955 Record.clear();
958 Stream.ExitBlock();
961 void ModuleBitcodeWriter::writeAttributeTable() {
962 const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
963 if (Attrs.empty()) return;
965 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
967 SmallVector<uint64_t, 64> Record;
968 for (const AttributeList &AL : Attrs) {
969 for (unsigned i : AL.indexes()) {
970 AttributeSet AS = AL.getAttributes(i);
971 if (AS.hasAttributes())
972 Record.push_back(VE.getAttributeGroupID({i, AS}));
975 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
976 Record.clear();
979 Stream.ExitBlock();
982 /// WriteTypeTable - Write out the type table for a module.
983 void ModuleBitcodeWriter::writeTypeTable() {
984 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
986 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
987 SmallVector<uint64_t, 64> TypeVals;
989 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
991 // Abbrev for TYPE_CODE_OPAQUE_POINTER.
992 auto Abbv = std::make_shared<BitCodeAbbrev>();
993 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
994 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
995 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
997 // Abbrev for TYPE_CODE_FUNCTION.
998 Abbv = std::make_shared<BitCodeAbbrev>();
999 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
1001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1003 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1005 // Abbrev for TYPE_CODE_STRUCT_ANON.
1006 Abbv = std::make_shared<BitCodeAbbrev>();
1007 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
1008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
1009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1011 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1013 // Abbrev for TYPE_CODE_STRUCT_NAME.
1014 Abbv = std::make_shared<BitCodeAbbrev>();
1015 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
1016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1018 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1020 // Abbrev for TYPE_CODE_STRUCT_NAMED.
1021 Abbv = std::make_shared<BitCodeAbbrev>();
1022 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
1023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
1024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1026 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1028 // Abbrev for TYPE_CODE_ARRAY.
1029 Abbv = std::make_shared<BitCodeAbbrev>();
1030 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
1032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1033 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1035 // Emit an entry count so the reader can reserve space.
1036 TypeVals.push_back(TypeList.size());
1037 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1038 TypeVals.clear();
1040 // Loop over all of the types, emitting each in turn.
1041 for (Type *T : TypeList) {
1042 int AbbrevToUse = 0;
1043 unsigned Code = 0;
1045 switch (T->getTypeID()) {
1046 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
1047 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
1048 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break;
1049 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
1050 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
1051 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
1052 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
1053 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
1054 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
1055 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
1056 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
1057 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break;
1058 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
1059 case Type::IntegerTyID:
1060 // INTEGER: [width]
1061 Code = bitc::TYPE_CODE_INTEGER;
1062 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1063 break;
1064 case Type::PointerTyID: {
1065 PointerType *PTy = cast<PointerType>(T);
1066 unsigned AddressSpace = PTy->getAddressSpace();
1067 // OPAQUE_POINTER: [address space]
1068 Code = bitc::TYPE_CODE_OPAQUE_POINTER;
1069 TypeVals.push_back(AddressSpace);
1070 if (AddressSpace == 0)
1071 AbbrevToUse = OpaquePtrAbbrev;
1072 break;
1074 case Type::FunctionTyID: {
1075 FunctionType *FT = cast<FunctionType>(T);
1076 // FUNCTION: [isvararg, retty, paramty x N]
1077 Code = bitc::TYPE_CODE_FUNCTION;
1078 TypeVals.push_back(FT->isVarArg());
1079 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1080 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
1081 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
1082 AbbrevToUse = FunctionAbbrev;
1083 break;
1085 case Type::StructTyID: {
1086 StructType *ST = cast<StructType>(T);
1087 // STRUCT: [ispacked, eltty x N]
1088 TypeVals.push_back(ST->isPacked());
1089 // Output all of the element types.
1090 for (Type *ET : ST->elements())
1091 TypeVals.push_back(VE.getTypeID(ET));
1093 if (ST->isLiteral()) {
1094 Code = bitc::TYPE_CODE_STRUCT_ANON;
1095 AbbrevToUse = StructAnonAbbrev;
1096 } else {
1097 if (ST->isOpaque()) {
1098 Code = bitc::TYPE_CODE_OPAQUE;
1099 } else {
1100 Code = bitc::TYPE_CODE_STRUCT_NAMED;
1101 AbbrevToUse = StructNamedAbbrev;
1104 // Emit the name if it is present.
1105 if (!ST->getName().empty())
1106 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1107 StructNameAbbrev);
1109 break;
1111 case Type::ArrayTyID: {
1112 ArrayType *AT = cast<ArrayType>(T);
1113 // ARRAY: [numelts, eltty]
1114 Code = bitc::TYPE_CODE_ARRAY;
1115 TypeVals.push_back(AT->getNumElements());
1116 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1117 AbbrevToUse = ArrayAbbrev;
1118 break;
1120 case Type::FixedVectorTyID:
1121 case Type::ScalableVectorTyID: {
1122 VectorType *VT = cast<VectorType>(T);
1123 // VECTOR [numelts, eltty] or
1124 // [numelts, eltty, scalable]
1125 Code = bitc::TYPE_CODE_VECTOR;
1126 TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1127 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1128 if (isa<ScalableVectorType>(VT))
1129 TypeVals.push_back(true);
1130 break;
1132 case Type::TargetExtTyID: {
1133 TargetExtType *TET = cast<TargetExtType>(T);
1134 Code = bitc::TYPE_CODE_TARGET_TYPE;
1135 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(),
1136 StructNameAbbrev);
1137 TypeVals.push_back(TET->getNumTypeParameters());
1138 for (Type *InnerTy : TET->type_params())
1139 TypeVals.push_back(VE.getTypeID(InnerTy));
1140 for (unsigned IntParam : TET->int_params())
1141 TypeVals.push_back(IntParam);
1142 break;
1144 case Type::TypedPointerTyID:
1145 llvm_unreachable("Typed pointers cannot be added to IR modules");
1148 // Emit the finished record.
1149 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1150 TypeVals.clear();
1153 Stream.ExitBlock();
1156 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1157 switch (Linkage) {
1158 case GlobalValue::ExternalLinkage:
1159 return 0;
1160 case GlobalValue::WeakAnyLinkage:
1161 return 16;
1162 case GlobalValue::AppendingLinkage:
1163 return 2;
1164 case GlobalValue::InternalLinkage:
1165 return 3;
1166 case GlobalValue::LinkOnceAnyLinkage:
1167 return 18;
1168 case GlobalValue::ExternalWeakLinkage:
1169 return 7;
1170 case GlobalValue::CommonLinkage:
1171 return 8;
1172 case GlobalValue::PrivateLinkage:
1173 return 9;
1174 case GlobalValue::WeakODRLinkage:
1175 return 17;
1176 case GlobalValue::LinkOnceODRLinkage:
1177 return 19;
1178 case GlobalValue::AvailableExternallyLinkage:
1179 return 12;
1181 llvm_unreachable("Invalid linkage");
1184 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1185 return getEncodedLinkage(GV.getLinkage());
1188 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1189 uint64_t RawFlags = 0;
1190 RawFlags |= Flags.ReadNone;
1191 RawFlags |= (Flags.ReadOnly << 1);
1192 RawFlags |= (Flags.NoRecurse << 2);
1193 RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1194 RawFlags |= (Flags.NoInline << 4);
1195 RawFlags |= (Flags.AlwaysInline << 5);
1196 RawFlags |= (Flags.NoUnwind << 6);
1197 RawFlags |= (Flags.MayThrow << 7);
1198 RawFlags |= (Flags.HasUnknownCall << 8);
1199 RawFlags |= (Flags.MustBeUnreachable << 9);
1200 return RawFlags;
1203 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1204 // in BitcodeReader.cpp.
1205 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1206 uint64_t RawFlags = 0;
1208 RawFlags |= Flags.NotEligibleToImport; // bool
1209 RawFlags |= (Flags.Live << 1);
1210 RawFlags |= (Flags.DSOLocal << 2);
1211 RawFlags |= (Flags.CanAutoHide << 3);
1213 // Linkage don't need to be remapped at that time for the summary. Any future
1214 // change to the getEncodedLinkage() function will need to be taken into
1215 // account here as well.
1216 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1218 RawFlags |= (Flags.Visibility << 8); // 2 bits
1220 RawFlags |= (Flags.ImportType << 10); // 1 bit
1222 return RawFlags;
1225 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1226 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1227 (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1228 return RawFlags;
1231 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) {
1232 uint64_t RawFlags = 0;
1234 RawFlags |= CI.Hotness; // 3 bits
1235 RawFlags |= (CI.HasTailCall << 3); // 1 bit
1237 return RawFlags;
1240 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) {
1241 uint64_t RawFlags = 0;
1243 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits
1244 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit
1246 return RawFlags;
1249 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1250 switch (GV.getVisibility()) {
1251 case GlobalValue::DefaultVisibility: return 0;
1252 case GlobalValue::HiddenVisibility: return 1;
1253 case GlobalValue::ProtectedVisibility: return 2;
1255 llvm_unreachable("Invalid visibility");
1258 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1259 switch (GV.getDLLStorageClass()) {
1260 case GlobalValue::DefaultStorageClass: return 0;
1261 case GlobalValue::DLLImportStorageClass: return 1;
1262 case GlobalValue::DLLExportStorageClass: return 2;
1264 llvm_unreachable("Invalid DLL storage class");
1267 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1268 switch (GV.getThreadLocalMode()) {
1269 case GlobalVariable::NotThreadLocal: return 0;
1270 case GlobalVariable::GeneralDynamicTLSModel: return 1;
1271 case GlobalVariable::LocalDynamicTLSModel: return 2;
1272 case GlobalVariable::InitialExecTLSModel: return 3;
1273 case GlobalVariable::LocalExecTLSModel: return 4;
1275 llvm_unreachable("Invalid TLS model");
1278 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1279 switch (C.getSelectionKind()) {
1280 case Comdat::Any:
1281 return bitc::COMDAT_SELECTION_KIND_ANY;
1282 case Comdat::ExactMatch:
1283 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1284 case Comdat::Largest:
1285 return bitc::COMDAT_SELECTION_KIND_LARGEST;
1286 case Comdat::NoDeduplicate:
1287 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1288 case Comdat::SameSize:
1289 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1291 llvm_unreachable("Invalid selection kind");
1294 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1295 switch (GV.getUnnamedAddr()) {
1296 case GlobalValue::UnnamedAddr::None: return 0;
1297 case GlobalValue::UnnamedAddr::Local: return 2;
1298 case GlobalValue::UnnamedAddr::Global: return 1;
1300 llvm_unreachable("Invalid unnamed_addr");
1303 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1304 if (GenerateHash)
1305 Hasher.update(Str);
1306 return StrtabBuilder.add(Str);
1309 void ModuleBitcodeWriter::writeComdats() {
1310 SmallVector<unsigned, 64> Vals;
1311 for (const Comdat *C : VE.getComdats()) {
1312 // COMDAT: [strtab offset, strtab size, selection_kind]
1313 Vals.push_back(addToStrtab(C->getName()));
1314 Vals.push_back(C->getName().size());
1315 Vals.push_back(getEncodedComdatSelectionKind(*C));
1316 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1317 Vals.clear();
1321 /// Write a record that will eventually hold the word offset of the
1322 /// module-level VST. For now the offset is 0, which will be backpatched
1323 /// after the real VST is written. Saves the bit offset to backpatch.
1324 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1325 // Write a placeholder value in for the offset of the real VST,
1326 // which is written after the function blocks so that it can include
1327 // the offset of each function. The placeholder offset will be
1328 // updated when the real VST is written.
1329 auto Abbv = std::make_shared<BitCodeAbbrev>();
1330 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1331 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1332 // hold the real VST offset. Must use fixed instead of VBR as we don't
1333 // know how many VBR chunks to reserve ahead of time.
1334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1335 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1337 // Emit the placeholder
1338 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1339 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1341 // Compute and save the bit offset to the placeholder, which will be
1342 // patched when the real VST is written. We can simply subtract the 32-bit
1343 // fixed size from the current bit number to get the location to backpatch.
1344 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1347 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1349 /// Determine the encoding to use for the given string name and length.
1350 static StringEncoding getStringEncoding(StringRef Str) {
1351 bool isChar6 = true;
1352 for (char C : Str) {
1353 if (isChar6)
1354 isChar6 = BitCodeAbbrevOp::isChar6(C);
1355 if ((unsigned char)C & 128)
1356 // don't bother scanning the rest.
1357 return SE_Fixed8;
1359 if (isChar6)
1360 return SE_Char6;
1361 return SE_Fixed7;
1364 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1365 "Sanitizer Metadata is too large for naive serialization.");
1366 static unsigned
1367 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1368 return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1369 (Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1372 /// Emit top-level description of module, including target triple, inline asm,
1373 /// descriptors for global variables, and function prototype info.
1374 /// Returns the bit offset to backpatch with the location of the real VST.
1375 void ModuleBitcodeWriter::writeModuleInfo() {
1376 // Emit various pieces of data attached to a module.
1377 if (!M.getTargetTriple().empty())
1378 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1379 0 /*TODO*/);
1380 const std::string &DL = M.getDataLayoutStr();
1381 if (!DL.empty())
1382 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1383 if (!M.getModuleInlineAsm().empty())
1384 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1385 0 /*TODO*/);
1387 // Emit information about sections and GC, computing how many there are. Also
1388 // compute the maximum alignment value.
1389 std::map<std::string, unsigned> SectionMap;
1390 std::map<std::string, unsigned> GCMap;
1391 MaybeAlign MaxAlignment;
1392 unsigned MaxGlobalType = 0;
1393 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1394 if (A)
1395 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1397 for (const GlobalVariable &GV : M.globals()) {
1398 UpdateMaxAlignment(GV.getAlign());
1399 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1400 if (GV.hasSection()) {
1401 // Give section names unique ID's.
1402 unsigned &Entry = SectionMap[std::string(GV.getSection())];
1403 if (!Entry) {
1404 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1405 0 /*TODO*/);
1406 Entry = SectionMap.size();
1410 for (const Function &F : M) {
1411 UpdateMaxAlignment(F.getAlign());
1412 if (F.hasSection()) {
1413 // Give section names unique ID's.
1414 unsigned &Entry = SectionMap[std::string(F.getSection())];
1415 if (!Entry) {
1416 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1417 0 /*TODO*/);
1418 Entry = SectionMap.size();
1421 if (F.hasGC()) {
1422 // Same for GC names.
1423 unsigned &Entry = GCMap[F.getGC()];
1424 if (!Entry) {
1425 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1426 0 /*TODO*/);
1427 Entry = GCMap.size();
1432 // Emit abbrev for globals, now that we know # sections and max alignment.
1433 unsigned SimpleGVarAbbrev = 0;
1434 if (!M.global_empty()) {
1435 // Add an abbrev for common globals with no visibility or thread localness.
1436 auto Abbv = std::make_shared<BitCodeAbbrev>();
1437 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1441 Log2_32_Ceil(MaxGlobalType+1)));
1442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1443 //| explicitType << 1
1444 //| constant
1445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1447 if (!MaxAlignment) // Alignment.
1448 Abbv->Add(BitCodeAbbrevOp(0));
1449 else {
1450 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1452 Log2_32_Ceil(MaxEncAlignment+1)));
1454 if (SectionMap.empty()) // Section.
1455 Abbv->Add(BitCodeAbbrevOp(0));
1456 else
1457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1458 Log2_32_Ceil(SectionMap.size()+1)));
1459 // Don't bother emitting vis + thread local.
1460 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1463 SmallVector<unsigned, 64> Vals;
1464 // Emit the module's source file name.
1466 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1467 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1468 if (Bits == SE_Char6)
1469 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1470 else if (Bits == SE_Fixed7)
1471 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1473 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1474 auto Abbv = std::make_shared<BitCodeAbbrev>();
1475 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1477 Abbv->Add(AbbrevOpToUse);
1478 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1480 for (const auto P : M.getSourceFileName())
1481 Vals.push_back((unsigned char)P);
1483 // Emit the finished record.
1484 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1485 Vals.clear();
1488 // Emit the global variable information.
1489 for (const GlobalVariable &GV : M.globals()) {
1490 unsigned AbbrevToUse = 0;
1492 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1493 // linkage, alignment, section, visibility, threadlocal,
1494 // unnamed_addr, externally_initialized, dllstorageclass,
1495 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model]
1496 Vals.push_back(addToStrtab(GV.getName()));
1497 Vals.push_back(GV.getName().size());
1498 Vals.push_back(VE.getTypeID(GV.getValueType()));
1499 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1500 Vals.push_back(GV.isDeclaration() ? 0 :
1501 (VE.getValueID(GV.getInitializer()) + 1));
1502 Vals.push_back(getEncodedLinkage(GV));
1503 Vals.push_back(getEncodedAlign(GV.getAlign()));
1504 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1505 : 0);
1506 if (GV.isThreadLocal() ||
1507 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1508 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1509 GV.isExternallyInitialized() ||
1510 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1511 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1512 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) {
1513 Vals.push_back(getEncodedVisibility(GV));
1514 Vals.push_back(getEncodedThreadLocalMode(GV));
1515 Vals.push_back(getEncodedUnnamedAddr(GV));
1516 Vals.push_back(GV.isExternallyInitialized());
1517 Vals.push_back(getEncodedDLLStorageClass(GV));
1518 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1520 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1521 Vals.push_back(VE.getAttributeListID(AL));
1523 Vals.push_back(GV.isDSOLocal());
1524 Vals.push_back(addToStrtab(GV.getPartition()));
1525 Vals.push_back(GV.getPartition().size());
1527 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1528 GV.getSanitizerMetadata())
1529 : 0));
1530 Vals.push_back(GV.getCodeModelRaw());
1531 } else {
1532 AbbrevToUse = SimpleGVarAbbrev;
1535 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1536 Vals.clear();
1539 // Emit the function proto information.
1540 for (const Function &F : M) {
1541 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1542 // linkage, paramattrs, alignment, section, visibility, gc,
1543 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1544 // prefixdata, personalityfn, DSO_Local, addrspace]
1545 Vals.push_back(addToStrtab(F.getName()));
1546 Vals.push_back(F.getName().size());
1547 Vals.push_back(VE.getTypeID(F.getFunctionType()));
1548 Vals.push_back(F.getCallingConv());
1549 Vals.push_back(F.isDeclaration());
1550 Vals.push_back(getEncodedLinkage(F));
1551 Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1552 Vals.push_back(getEncodedAlign(F.getAlign()));
1553 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1554 : 0);
1555 Vals.push_back(getEncodedVisibility(F));
1556 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1557 Vals.push_back(getEncodedUnnamedAddr(F));
1558 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1559 : 0);
1560 Vals.push_back(getEncodedDLLStorageClass(F));
1561 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1562 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1563 : 0);
1564 Vals.push_back(
1565 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1567 Vals.push_back(F.isDSOLocal());
1568 Vals.push_back(F.getAddressSpace());
1569 Vals.push_back(addToStrtab(F.getPartition()));
1570 Vals.push_back(F.getPartition().size());
1572 unsigned AbbrevToUse = 0;
1573 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1574 Vals.clear();
1577 // Emit the alias information.
1578 for (const GlobalAlias &A : M.aliases()) {
1579 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1580 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1581 // DSO_Local]
1582 Vals.push_back(addToStrtab(A.getName()));
1583 Vals.push_back(A.getName().size());
1584 Vals.push_back(VE.getTypeID(A.getValueType()));
1585 Vals.push_back(A.getType()->getAddressSpace());
1586 Vals.push_back(VE.getValueID(A.getAliasee()));
1587 Vals.push_back(getEncodedLinkage(A));
1588 Vals.push_back(getEncodedVisibility(A));
1589 Vals.push_back(getEncodedDLLStorageClass(A));
1590 Vals.push_back(getEncodedThreadLocalMode(A));
1591 Vals.push_back(getEncodedUnnamedAddr(A));
1592 Vals.push_back(A.isDSOLocal());
1593 Vals.push_back(addToStrtab(A.getPartition()));
1594 Vals.push_back(A.getPartition().size());
1596 unsigned AbbrevToUse = 0;
1597 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1598 Vals.clear();
1601 // Emit the ifunc information.
1602 for (const GlobalIFunc &I : M.ifuncs()) {
1603 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1604 // val#, linkage, visibility, DSO_Local]
1605 Vals.push_back(addToStrtab(I.getName()));
1606 Vals.push_back(I.getName().size());
1607 Vals.push_back(VE.getTypeID(I.getValueType()));
1608 Vals.push_back(I.getType()->getAddressSpace());
1609 Vals.push_back(VE.getValueID(I.getResolver()));
1610 Vals.push_back(getEncodedLinkage(I));
1611 Vals.push_back(getEncodedVisibility(I));
1612 Vals.push_back(I.isDSOLocal());
1613 Vals.push_back(addToStrtab(I.getPartition()));
1614 Vals.push_back(I.getPartition().size());
1615 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1616 Vals.clear();
1619 writeValueSymbolTableForwardDecl();
1622 static uint64_t getOptimizationFlags(const Value *V) {
1623 uint64_t Flags = 0;
1625 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1626 if (OBO->hasNoSignedWrap())
1627 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1628 if (OBO->hasNoUnsignedWrap())
1629 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1630 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1631 if (PEO->isExact())
1632 Flags |= 1 << bitc::PEO_EXACT;
1633 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1634 if (PDI->isDisjoint())
1635 Flags |= 1 << bitc::PDI_DISJOINT;
1636 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1637 if (FPMO->hasAllowReassoc())
1638 Flags |= bitc::AllowReassoc;
1639 if (FPMO->hasNoNaNs())
1640 Flags |= bitc::NoNaNs;
1641 if (FPMO->hasNoInfs())
1642 Flags |= bitc::NoInfs;
1643 if (FPMO->hasNoSignedZeros())
1644 Flags |= bitc::NoSignedZeros;
1645 if (FPMO->hasAllowReciprocal())
1646 Flags |= bitc::AllowReciprocal;
1647 if (FPMO->hasAllowContract())
1648 Flags |= bitc::AllowContract;
1649 if (FPMO->hasApproxFunc())
1650 Flags |= bitc::ApproxFunc;
1651 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) {
1652 if (NNI->hasNonNeg())
1653 Flags |= 1 << bitc::PNNI_NON_NEG;
1654 } else if (const auto *TI = dyn_cast<TruncInst>(V)) {
1655 if (TI->hasNoSignedWrap())
1656 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP;
1657 if (TI->hasNoUnsignedWrap())
1658 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP;
1661 return Flags;
1664 void ModuleBitcodeWriter::writeValueAsMetadata(
1665 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1666 // Mimic an MDNode with a value as one operand.
1667 Value *V = MD->getValue();
1668 Record.push_back(VE.getTypeID(V->getType()));
1669 Record.push_back(VE.getValueID(V));
1670 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1671 Record.clear();
1674 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1675 SmallVectorImpl<uint64_t> &Record,
1676 unsigned Abbrev) {
1677 for (const MDOperand &MDO : N->operands()) {
1678 Metadata *MD = MDO;
1679 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1680 "Unexpected function-local metadata");
1681 Record.push_back(VE.getMetadataOrNullID(MD));
1683 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1684 : bitc::METADATA_NODE,
1685 Record, Abbrev);
1686 Record.clear();
1689 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1690 // Assume the column is usually under 128, and always output the inlined-at
1691 // location (it's never more expensive than building an array size 1).
1692 auto Abbv = std::make_shared<BitCodeAbbrev>();
1693 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1700 return Stream.EmitAbbrev(std::move(Abbv));
1703 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1704 SmallVectorImpl<uint64_t> &Record,
1705 unsigned &Abbrev) {
1706 if (!Abbrev)
1707 Abbrev = createDILocationAbbrev();
1709 Record.push_back(N->isDistinct());
1710 Record.push_back(N->getLine());
1711 Record.push_back(N->getColumn());
1712 Record.push_back(VE.getMetadataID(N->getScope()));
1713 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1714 Record.push_back(N->isImplicitCode());
1716 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1717 Record.clear();
1720 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1721 // Assume the column is usually under 128, and always output the inlined-at
1722 // location (it's never more expensive than building an array size 1).
1723 auto Abbv = std::make_shared<BitCodeAbbrev>();
1724 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1731 return Stream.EmitAbbrev(std::move(Abbv));
1734 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1735 SmallVectorImpl<uint64_t> &Record,
1736 unsigned &Abbrev) {
1737 if (!Abbrev)
1738 Abbrev = createGenericDINodeAbbrev();
1740 Record.push_back(N->isDistinct());
1741 Record.push_back(N->getTag());
1742 Record.push_back(0); // Per-tag version field; unused for now.
1744 for (auto &I : N->operands())
1745 Record.push_back(VE.getMetadataOrNullID(I));
1747 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1748 Record.clear();
1751 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1752 SmallVectorImpl<uint64_t> &Record,
1753 unsigned Abbrev) {
1754 const uint64_t Version = 2 << 1;
1755 Record.push_back((uint64_t)N->isDistinct() | Version);
1756 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1757 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1758 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1759 Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1761 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1762 Record.clear();
1765 void ModuleBitcodeWriter::writeDIGenericSubrange(
1766 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1767 unsigned Abbrev) {
1768 Record.push_back((uint64_t)N->isDistinct());
1769 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1770 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1771 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1772 Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1774 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1775 Record.clear();
1778 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1779 SmallVectorImpl<uint64_t> &Record,
1780 unsigned Abbrev) {
1781 const uint64_t IsBigInt = 1 << 2;
1782 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1783 Record.push_back(N->getValue().getBitWidth());
1784 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1785 emitWideAPInt(Record, N->getValue());
1787 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1788 Record.clear();
1791 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1792 SmallVectorImpl<uint64_t> &Record,
1793 unsigned Abbrev) {
1794 Record.push_back(N->isDistinct());
1795 Record.push_back(N->getTag());
1796 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1797 Record.push_back(N->getSizeInBits());
1798 Record.push_back(N->getAlignInBits());
1799 Record.push_back(N->getEncoding());
1800 Record.push_back(N->getFlags());
1802 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1803 Record.clear();
1806 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1807 SmallVectorImpl<uint64_t> &Record,
1808 unsigned Abbrev) {
1809 Record.push_back(N->isDistinct());
1810 Record.push_back(N->getTag());
1811 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1812 Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1813 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1814 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp()));
1815 Record.push_back(N->getSizeInBits());
1816 Record.push_back(N->getAlignInBits());
1817 Record.push_back(N->getEncoding());
1819 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1820 Record.clear();
1823 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1824 SmallVectorImpl<uint64_t> &Record,
1825 unsigned Abbrev) {
1826 Record.push_back(N->isDistinct());
1827 Record.push_back(N->getTag());
1828 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1829 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1830 Record.push_back(N->getLine());
1831 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1832 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1833 Record.push_back(N->getSizeInBits());
1834 Record.push_back(N->getAlignInBits());
1835 Record.push_back(N->getOffsetInBits());
1836 Record.push_back(N->getFlags());
1837 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1839 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1840 // that there is no DWARF address space associated with DIDerivedType.
1841 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1842 Record.push_back(*DWARFAddressSpace + 1);
1843 else
1844 Record.push_back(0);
1846 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1848 if (auto PtrAuthData = N->getPtrAuthData())
1849 Record.push_back(PtrAuthData->RawData);
1850 else
1851 Record.push_back(0);
1853 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1854 Record.clear();
1857 void ModuleBitcodeWriter::writeDICompositeType(
1858 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1859 unsigned Abbrev) {
1860 const unsigned IsNotUsedInOldTypeRef = 0x2;
1861 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1862 Record.push_back(N->getTag());
1863 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1864 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1865 Record.push_back(N->getLine());
1866 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1867 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1868 Record.push_back(N->getSizeInBits());
1869 Record.push_back(N->getAlignInBits());
1870 Record.push_back(N->getOffsetInBits());
1871 Record.push_back(N->getFlags());
1872 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1873 Record.push_back(N->getRuntimeLang());
1874 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1875 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1876 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1877 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1878 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1879 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1880 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1881 Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1882 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1884 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1885 Record.clear();
1888 void ModuleBitcodeWriter::writeDISubroutineType(
1889 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1890 unsigned Abbrev) {
1891 const unsigned HasNoOldTypeRefs = 0x2;
1892 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1893 Record.push_back(N->getFlags());
1894 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1895 Record.push_back(N->getCC());
1897 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1898 Record.clear();
1901 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1902 SmallVectorImpl<uint64_t> &Record,
1903 unsigned Abbrev) {
1904 Record.push_back(N->isDistinct());
1905 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1906 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1907 if (N->getRawChecksum()) {
1908 Record.push_back(N->getRawChecksum()->Kind);
1909 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1910 } else {
1911 // Maintain backwards compatibility with the old internal representation of
1912 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1913 Record.push_back(0);
1914 Record.push_back(VE.getMetadataOrNullID(nullptr));
1916 auto Source = N->getRawSource();
1917 if (Source)
1918 Record.push_back(VE.getMetadataOrNullID(Source));
1920 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1921 Record.clear();
1924 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1925 SmallVectorImpl<uint64_t> &Record,
1926 unsigned Abbrev) {
1927 assert(N->isDistinct() && "Expected distinct compile units");
1928 Record.push_back(/* IsDistinct */ true);
1929 Record.push_back(N->getSourceLanguage());
1930 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1931 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1932 Record.push_back(N->isOptimized());
1933 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1934 Record.push_back(N->getRuntimeVersion());
1935 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1936 Record.push_back(N->getEmissionKind());
1937 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1938 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1939 Record.push_back(/* subprograms */ 0);
1940 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1941 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1942 Record.push_back(N->getDWOId());
1943 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1944 Record.push_back(N->getSplitDebugInlining());
1945 Record.push_back(N->getDebugInfoForProfiling());
1946 Record.push_back((unsigned)N->getNameTableKind());
1947 Record.push_back(N->getRangesBaseAddress());
1948 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1949 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1951 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1952 Record.clear();
1955 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1956 SmallVectorImpl<uint64_t> &Record,
1957 unsigned Abbrev) {
1958 const uint64_t HasUnitFlag = 1 << 1;
1959 const uint64_t HasSPFlagsFlag = 1 << 2;
1960 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1961 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1962 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1963 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1964 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1965 Record.push_back(N->getLine());
1966 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1967 Record.push_back(N->getScopeLine());
1968 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1969 Record.push_back(N->getSPFlags());
1970 Record.push_back(N->getVirtualIndex());
1971 Record.push_back(N->getFlags());
1972 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1973 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1974 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1975 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1976 Record.push_back(N->getThisAdjustment());
1977 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1978 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1979 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName()));
1981 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1982 Record.clear();
1985 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1986 SmallVectorImpl<uint64_t> &Record,
1987 unsigned Abbrev) {
1988 Record.push_back(N->isDistinct());
1989 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1990 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1991 Record.push_back(N->getLine());
1992 Record.push_back(N->getColumn());
1994 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1995 Record.clear();
1998 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1999 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
2000 unsigned Abbrev) {
2001 Record.push_back(N->isDistinct());
2002 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2003 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2004 Record.push_back(N->getDiscriminator());
2006 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
2007 Record.clear();
2010 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
2011 SmallVectorImpl<uint64_t> &Record,
2012 unsigned Abbrev) {
2013 Record.push_back(N->isDistinct());
2014 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2015 Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
2016 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2017 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2018 Record.push_back(N->getLineNo());
2020 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
2021 Record.clear();
2024 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
2025 SmallVectorImpl<uint64_t> &Record,
2026 unsigned Abbrev) {
2027 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
2028 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2029 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2031 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
2032 Record.clear();
2035 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
2036 SmallVectorImpl<uint64_t> &Record,
2037 unsigned Abbrev) {
2038 Record.push_back(N->isDistinct());
2039 Record.push_back(N->getMacinfoType());
2040 Record.push_back(N->getLine());
2041 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2042 Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
2044 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
2045 Record.clear();
2048 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
2049 SmallVectorImpl<uint64_t> &Record,
2050 unsigned Abbrev) {
2051 Record.push_back(N->isDistinct());
2052 Record.push_back(N->getMacinfoType());
2053 Record.push_back(N->getLine());
2054 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2055 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2057 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
2058 Record.clear();
2061 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
2062 SmallVectorImpl<uint64_t> &Record) {
2063 Record.reserve(N->getArgs().size());
2064 for (ValueAsMetadata *MD : N->getArgs())
2065 Record.push_back(VE.getMetadataID(MD));
2067 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record);
2068 Record.clear();
2071 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
2072 SmallVectorImpl<uint64_t> &Record,
2073 unsigned Abbrev) {
2074 Record.push_back(N->isDistinct());
2075 for (auto &I : N->operands())
2076 Record.push_back(VE.getMetadataOrNullID(I));
2077 Record.push_back(N->getLineNo());
2078 Record.push_back(N->getIsDecl());
2080 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
2081 Record.clear();
2084 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N,
2085 SmallVectorImpl<uint64_t> &Record,
2086 unsigned Abbrev) {
2087 // There are no arguments for this metadata type.
2088 Record.push_back(N->isDistinct());
2089 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev);
2090 Record.clear();
2093 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
2094 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
2095 unsigned Abbrev) {
2096 Record.push_back(N->isDistinct());
2097 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2098 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2099 Record.push_back(N->isDefault());
2101 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
2102 Record.clear();
2105 void ModuleBitcodeWriter::writeDITemplateValueParameter(
2106 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
2107 unsigned Abbrev) {
2108 Record.push_back(N->isDistinct());
2109 Record.push_back(N->getTag());
2110 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2111 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2112 Record.push_back(N->isDefault());
2113 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
2115 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
2116 Record.clear();
2119 void ModuleBitcodeWriter::writeDIGlobalVariable(
2120 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
2121 unsigned Abbrev) {
2122 const uint64_t Version = 2 << 1;
2123 Record.push_back((uint64_t)N->isDistinct() | Version);
2124 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2125 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2126 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2127 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2128 Record.push_back(N->getLine());
2129 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2130 Record.push_back(N->isLocalToUnit());
2131 Record.push_back(N->isDefinition());
2132 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
2133 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
2134 Record.push_back(N->getAlignInBits());
2135 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2137 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
2138 Record.clear();
2141 void ModuleBitcodeWriter::writeDILocalVariable(
2142 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2143 unsigned Abbrev) {
2144 // In order to support all possible bitcode formats in BitcodeReader we need
2145 // to distinguish the following cases:
2146 // 1) Record has no artificial tag (Record[1]),
2147 // has no obsolete inlinedAt field (Record[9]).
2148 // In this case Record size will be 8, HasAlignment flag is false.
2149 // 2) Record has artificial tag (Record[1]),
2150 // has no obsolete inlignedAt field (Record[9]).
2151 // In this case Record size will be 9, HasAlignment flag is false.
2152 // 3) Record has both artificial tag (Record[1]) and
2153 // obsolete inlignedAt field (Record[9]).
2154 // In this case Record size will be 10, HasAlignment flag is false.
2155 // 4) Record has neither artificial tag, nor inlignedAt field, but
2156 // HasAlignment flag is true and Record[8] contains alignment value.
2157 const uint64_t HasAlignmentFlag = 1 << 1;
2158 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
2159 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2160 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2161 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2162 Record.push_back(N->getLine());
2163 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2164 Record.push_back(N->getArg());
2165 Record.push_back(N->getFlags());
2166 Record.push_back(N->getAlignInBits());
2167 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2169 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
2170 Record.clear();
2173 void ModuleBitcodeWriter::writeDILabel(
2174 const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2175 unsigned Abbrev) {
2176 Record.push_back((uint64_t)N->isDistinct());
2177 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2178 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2179 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2180 Record.push_back(N->getLine());
2182 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2183 Record.clear();
2186 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2187 SmallVectorImpl<uint64_t> &Record,
2188 unsigned Abbrev) {
2189 Record.reserve(N->getElements().size() + 1);
2190 const uint64_t Version = 3 << 1;
2191 Record.push_back((uint64_t)N->isDistinct() | Version);
2192 Record.append(N->elements_begin(), N->elements_end());
2194 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2195 Record.clear();
2198 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2199 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2200 unsigned Abbrev) {
2201 Record.push_back(N->isDistinct());
2202 Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2203 Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2205 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2206 Record.clear();
2209 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2210 SmallVectorImpl<uint64_t> &Record,
2211 unsigned Abbrev) {
2212 Record.push_back(N->isDistinct());
2213 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2214 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2215 Record.push_back(N->getLine());
2216 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2217 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2218 Record.push_back(N->getAttributes());
2219 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2221 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2222 Record.clear();
2225 void ModuleBitcodeWriter::writeDIImportedEntity(
2226 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2227 unsigned Abbrev) {
2228 Record.push_back(N->isDistinct());
2229 Record.push_back(N->getTag());
2230 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2231 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2232 Record.push_back(N->getLine());
2233 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2234 Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2235 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2237 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2238 Record.clear();
2241 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2242 auto Abbv = std::make_shared<BitCodeAbbrev>();
2243 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2246 return Stream.EmitAbbrev(std::move(Abbv));
2249 void ModuleBitcodeWriter::writeNamedMetadata(
2250 SmallVectorImpl<uint64_t> &Record) {
2251 if (M.named_metadata_empty())
2252 return;
2254 unsigned Abbrev = createNamedMetadataAbbrev();
2255 for (const NamedMDNode &NMD : M.named_metadata()) {
2256 // Write name.
2257 StringRef Str = NMD.getName();
2258 Record.append(Str.bytes_begin(), Str.bytes_end());
2259 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2260 Record.clear();
2262 // Write named metadata operands.
2263 for (const MDNode *N : NMD.operands())
2264 Record.push_back(VE.getMetadataID(N));
2265 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2266 Record.clear();
2270 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2271 auto Abbv = std::make_shared<BitCodeAbbrev>();
2272 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2276 return Stream.EmitAbbrev(std::move(Abbv));
2279 /// Write out a record for MDString.
2281 /// All the metadata strings in a metadata block are emitted in a single
2282 /// record. The sizes and strings themselves are shoved into a blob.
2283 void ModuleBitcodeWriter::writeMetadataStrings(
2284 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2285 if (Strings.empty())
2286 return;
2288 // Start the record with the number of strings.
2289 Record.push_back(bitc::METADATA_STRINGS);
2290 Record.push_back(Strings.size());
2292 // Emit the sizes of the strings in the blob.
2293 SmallString<256> Blob;
2295 BitstreamWriter W(Blob);
2296 for (const Metadata *MD : Strings)
2297 W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2298 W.FlushToWord();
2301 // Add the offset to the strings to the record.
2302 Record.push_back(Blob.size());
2304 // Add the strings to the blob.
2305 for (const Metadata *MD : Strings)
2306 Blob.append(cast<MDString>(MD)->getString());
2308 // Emit the final record.
2309 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2310 Record.clear();
2313 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2314 enum MetadataAbbrev : unsigned {
2315 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2316 #include "llvm/IR/Metadata.def"
2317 LastPlusOne
2320 void ModuleBitcodeWriter::writeMetadataRecords(
2321 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2322 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2323 if (MDs.empty())
2324 return;
2326 // Initialize MDNode abbreviations.
2327 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2328 #include "llvm/IR/Metadata.def"
2330 for (const Metadata *MD : MDs) {
2331 if (IndexPos)
2332 IndexPos->push_back(Stream.GetCurrentBitNo());
2333 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2334 assert(N->isResolved() && "Expected forward references to be resolved");
2336 switch (N->getMetadataID()) {
2337 default:
2338 llvm_unreachable("Invalid MDNode subclass");
2339 #define HANDLE_MDNODE_LEAF(CLASS) \
2340 case Metadata::CLASS##Kind: \
2341 if (MDAbbrevs) \
2342 write##CLASS(cast<CLASS>(N), Record, \
2343 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2344 else \
2345 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2346 continue;
2347 #include "llvm/IR/Metadata.def"
2350 if (auto *AL = dyn_cast<DIArgList>(MD)) {
2351 writeDIArgList(AL, Record);
2352 continue;
2354 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2358 void ModuleBitcodeWriter::writeModuleMetadata() {
2359 if (!VE.hasMDs() && M.named_metadata_empty())
2360 return;
2362 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2363 SmallVector<uint64_t, 64> Record;
2365 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2366 // block and load any metadata.
2367 std::vector<unsigned> MDAbbrevs;
2369 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2370 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2371 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2372 createGenericDINodeAbbrev();
2374 auto Abbv = std::make_shared<BitCodeAbbrev>();
2375 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2378 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2380 Abbv = std::make_shared<BitCodeAbbrev>();
2381 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2384 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2386 // Emit MDStrings together upfront.
2387 writeMetadataStrings(VE.getMDStrings(), Record);
2389 // We only emit an index for the metadata record if we have more than a given
2390 // (naive) threshold of metadatas, otherwise it is not worth it.
2391 if (VE.getNonMDStrings().size() > IndexThreshold) {
2392 // Write a placeholder value in for the offset of the metadata index,
2393 // which is written after the records, so that it can include
2394 // the offset of each entry. The placeholder offset will be
2395 // updated after all records are emitted.
2396 uint64_t Vals[] = {0, 0};
2397 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2400 // Compute and save the bit offset to the current position, which will be
2401 // patched when we emit the index later. We can simply subtract the 64-bit
2402 // fixed size from the current bit number to get the location to backpatch.
2403 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2405 // This index will contain the bitpos for each individual record.
2406 std::vector<uint64_t> IndexPos;
2407 IndexPos.reserve(VE.getNonMDStrings().size());
2409 // Write all the records
2410 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2412 if (VE.getNonMDStrings().size() > IndexThreshold) {
2413 // Now that we have emitted all the records we will emit the index. But
2414 // first
2415 // backpatch the forward reference so that the reader can skip the records
2416 // efficiently.
2417 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2418 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2420 // Delta encode the index.
2421 uint64_t PreviousValue = IndexOffsetRecordBitPos;
2422 for (auto &Elt : IndexPos) {
2423 auto EltDelta = Elt - PreviousValue;
2424 PreviousValue = Elt;
2425 Elt = EltDelta;
2427 // Emit the index record.
2428 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2429 IndexPos.clear();
2432 // Write the named metadata now.
2433 writeNamedMetadata(Record);
2435 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2436 SmallVector<uint64_t, 4> Record;
2437 Record.push_back(VE.getValueID(&GO));
2438 pushGlobalMetadataAttachment(Record, GO);
2439 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2441 for (const Function &F : M)
2442 if (F.isDeclaration() && F.hasMetadata())
2443 AddDeclAttachedMetadata(F);
2444 // FIXME: Only store metadata for declarations here, and move data for global
2445 // variable definitions to a separate block (PR28134).
2446 for (const GlobalVariable &GV : M.globals())
2447 if (GV.hasMetadata())
2448 AddDeclAttachedMetadata(GV);
2450 Stream.ExitBlock();
2453 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2454 if (!VE.hasMDs())
2455 return;
2457 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2458 SmallVector<uint64_t, 64> Record;
2459 writeMetadataStrings(VE.getMDStrings(), Record);
2460 writeMetadataRecords(VE.getNonMDStrings(), Record);
2461 Stream.ExitBlock();
2464 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2465 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2466 // [n x [id, mdnode]]
2467 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2468 GO.getAllMetadata(MDs);
2469 for (const auto &I : MDs) {
2470 Record.push_back(I.first);
2471 Record.push_back(VE.getMetadataID(I.second));
2475 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2476 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2478 SmallVector<uint64_t, 64> Record;
2480 if (F.hasMetadata()) {
2481 pushGlobalMetadataAttachment(Record, F);
2482 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2483 Record.clear();
2486 // Write metadata attachments
2487 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2488 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2489 for (const BasicBlock &BB : F)
2490 for (const Instruction &I : BB) {
2491 MDs.clear();
2492 I.getAllMetadataOtherThanDebugLoc(MDs);
2494 // If no metadata, ignore instruction.
2495 if (MDs.empty()) continue;
2497 Record.push_back(VE.getInstructionID(&I));
2499 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2500 Record.push_back(MDs[i].first);
2501 Record.push_back(VE.getMetadataID(MDs[i].second));
2503 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2504 Record.clear();
2507 Stream.ExitBlock();
2510 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2511 SmallVector<uint64_t, 64> Record;
2513 // Write metadata kinds
2514 // METADATA_KIND - [n x [id, name]]
2515 SmallVector<StringRef, 8> Names;
2516 M.getMDKindNames(Names);
2518 if (Names.empty()) return;
2520 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2522 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2523 Record.push_back(MDKindID);
2524 StringRef KName = Names[MDKindID];
2525 Record.append(KName.begin(), KName.end());
2527 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2528 Record.clear();
2531 Stream.ExitBlock();
2534 void ModuleBitcodeWriter::writeOperandBundleTags() {
2535 // Write metadata kinds
2537 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2539 // OPERAND_BUNDLE_TAG - [strchr x N]
2541 SmallVector<StringRef, 8> Tags;
2542 M.getOperandBundleTags(Tags);
2544 if (Tags.empty())
2545 return;
2547 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2549 SmallVector<uint64_t, 64> Record;
2551 for (auto Tag : Tags) {
2552 Record.append(Tag.begin(), Tag.end());
2554 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2555 Record.clear();
2558 Stream.ExitBlock();
2561 void ModuleBitcodeWriter::writeSyncScopeNames() {
2562 SmallVector<StringRef, 8> SSNs;
2563 M.getContext().getSyncScopeNames(SSNs);
2564 if (SSNs.empty())
2565 return;
2567 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2569 SmallVector<uint64_t, 64> Record;
2570 for (auto SSN : SSNs) {
2571 Record.append(SSN.begin(), SSN.end());
2572 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2573 Record.clear();
2576 Stream.ExitBlock();
2579 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2580 bool isGlobal) {
2581 if (FirstVal == LastVal) return;
2583 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2585 unsigned AggregateAbbrev = 0;
2586 unsigned String8Abbrev = 0;
2587 unsigned CString7Abbrev = 0;
2588 unsigned CString6Abbrev = 0;
2589 // If this is a constant pool for the module, emit module-specific abbrevs.
2590 if (isGlobal) {
2591 // Abbrev for CST_CODE_AGGREGATE.
2592 auto Abbv = std::make_shared<BitCodeAbbrev>();
2593 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2596 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2598 // Abbrev for CST_CODE_STRING.
2599 Abbv = std::make_shared<BitCodeAbbrev>();
2600 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2603 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2604 // Abbrev for CST_CODE_CSTRING.
2605 Abbv = std::make_shared<BitCodeAbbrev>();
2606 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2609 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2610 // Abbrev for CST_CODE_CSTRING.
2611 Abbv = std::make_shared<BitCodeAbbrev>();
2612 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2615 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2618 SmallVector<uint64_t, 64> Record;
2620 const ValueEnumerator::ValueList &Vals = VE.getValues();
2621 Type *LastTy = nullptr;
2622 for (unsigned i = FirstVal; i != LastVal; ++i) {
2623 const Value *V = Vals[i].first;
2624 // If we need to switch types, do so now.
2625 if (V->getType() != LastTy) {
2626 LastTy = V->getType();
2627 Record.push_back(VE.getTypeID(LastTy));
2628 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2629 CONSTANTS_SETTYPE_ABBREV);
2630 Record.clear();
2633 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2634 Record.push_back(VE.getTypeID(IA->getFunctionType()));
2635 Record.push_back(
2636 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2637 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2639 // Add the asm string.
2640 const std::string &AsmStr = IA->getAsmString();
2641 Record.push_back(AsmStr.size());
2642 Record.append(AsmStr.begin(), AsmStr.end());
2644 // Add the constraint string.
2645 const std::string &ConstraintStr = IA->getConstraintString();
2646 Record.push_back(ConstraintStr.size());
2647 Record.append(ConstraintStr.begin(), ConstraintStr.end());
2648 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2649 Record.clear();
2650 continue;
2652 const Constant *C = cast<Constant>(V);
2653 unsigned Code = -1U;
2654 unsigned AbbrevToUse = 0;
2655 if (C->isNullValue()) {
2656 Code = bitc::CST_CODE_NULL;
2657 } else if (isa<PoisonValue>(C)) {
2658 Code = bitc::CST_CODE_POISON;
2659 } else if (isa<UndefValue>(C)) {
2660 Code = bitc::CST_CODE_UNDEF;
2661 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2662 if (IV->getBitWidth() <= 64) {
2663 uint64_t V = IV->getSExtValue();
2664 emitSignedInt64(Record, V);
2665 Code = bitc::CST_CODE_INTEGER;
2666 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2667 } else { // Wide integers, > 64 bits in size.
2668 emitWideAPInt(Record, IV->getValue());
2669 Code = bitc::CST_CODE_WIDE_INTEGER;
2671 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2672 Code = bitc::CST_CODE_FLOAT;
2673 Type *Ty = CFP->getType()->getScalarType();
2674 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2675 Ty->isDoubleTy()) {
2676 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2677 } else if (Ty->isX86_FP80Ty()) {
2678 // api needed to prevent premature destruction
2679 // bits are not in the same order as a normal i80 APInt, compensate.
2680 APInt api = CFP->getValueAPF().bitcastToAPInt();
2681 const uint64_t *p = api.getRawData();
2682 Record.push_back((p[1] << 48) | (p[0] >> 16));
2683 Record.push_back(p[0] & 0xffffLL);
2684 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2685 APInt api = CFP->getValueAPF().bitcastToAPInt();
2686 const uint64_t *p = api.getRawData();
2687 Record.push_back(p[0]);
2688 Record.push_back(p[1]);
2689 } else {
2690 assert(0 && "Unknown FP type!");
2692 } else if (isa<ConstantDataSequential>(C) &&
2693 cast<ConstantDataSequential>(C)->isString()) {
2694 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2695 // Emit constant strings specially.
2696 unsigned NumElts = Str->getNumElements();
2697 // If this is a null-terminated string, use the denser CSTRING encoding.
2698 if (Str->isCString()) {
2699 Code = bitc::CST_CODE_CSTRING;
2700 --NumElts; // Don't encode the null, which isn't allowed by char6.
2701 } else {
2702 Code = bitc::CST_CODE_STRING;
2703 AbbrevToUse = String8Abbrev;
2705 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2706 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2707 for (unsigned i = 0; i != NumElts; ++i) {
2708 unsigned char V = Str->getElementAsInteger(i);
2709 Record.push_back(V);
2710 isCStr7 &= (V & 128) == 0;
2711 if (isCStrChar6)
2712 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2715 if (isCStrChar6)
2716 AbbrevToUse = CString6Abbrev;
2717 else if (isCStr7)
2718 AbbrevToUse = CString7Abbrev;
2719 } else if (const ConstantDataSequential *CDS =
2720 dyn_cast<ConstantDataSequential>(C)) {
2721 Code = bitc::CST_CODE_DATA;
2722 Type *EltTy = CDS->getElementType();
2723 if (isa<IntegerType>(EltTy)) {
2724 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2725 Record.push_back(CDS->getElementAsInteger(i));
2726 } else {
2727 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2728 Record.push_back(
2729 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2731 } else if (isa<ConstantAggregate>(C)) {
2732 Code = bitc::CST_CODE_AGGREGATE;
2733 for (const Value *Op : C->operands())
2734 Record.push_back(VE.getValueID(Op));
2735 AbbrevToUse = AggregateAbbrev;
2736 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2737 switch (CE->getOpcode()) {
2738 default:
2739 if (Instruction::isCast(CE->getOpcode())) {
2740 Code = bitc::CST_CODE_CE_CAST;
2741 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2742 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2743 Record.push_back(VE.getValueID(C->getOperand(0)));
2744 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2745 } else {
2746 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2747 Code = bitc::CST_CODE_CE_BINOP;
2748 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2749 Record.push_back(VE.getValueID(C->getOperand(0)));
2750 Record.push_back(VE.getValueID(C->getOperand(1)));
2751 uint64_t Flags = getOptimizationFlags(CE);
2752 if (Flags != 0)
2753 Record.push_back(Flags);
2755 break;
2756 case Instruction::FNeg: {
2757 assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2758 Code = bitc::CST_CODE_CE_UNOP;
2759 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2760 Record.push_back(VE.getValueID(C->getOperand(0)));
2761 uint64_t Flags = getOptimizationFlags(CE);
2762 if (Flags != 0)
2763 Record.push_back(Flags);
2764 break;
2766 case Instruction::GetElementPtr: {
2767 Code = bitc::CST_CODE_CE_GEP;
2768 const auto *GO = cast<GEPOperator>(C);
2769 Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2770 if (std::optional<ConstantRange> Range = GO->getInRange()) {
2771 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE;
2772 Record.push_back(GO->isInBounds());
2773 emitConstantRange(Record, *Range);
2774 } else if (GO->isInBounds())
2775 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2776 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2777 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2778 Record.push_back(VE.getValueID(C->getOperand(i)));
2780 break;
2782 case Instruction::ExtractElement:
2783 Code = bitc::CST_CODE_CE_EXTRACTELT;
2784 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2785 Record.push_back(VE.getValueID(C->getOperand(0)));
2786 Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2787 Record.push_back(VE.getValueID(C->getOperand(1)));
2788 break;
2789 case Instruction::InsertElement:
2790 Code = bitc::CST_CODE_CE_INSERTELT;
2791 Record.push_back(VE.getValueID(C->getOperand(0)));
2792 Record.push_back(VE.getValueID(C->getOperand(1)));
2793 Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2794 Record.push_back(VE.getValueID(C->getOperand(2)));
2795 break;
2796 case Instruction::ShuffleVector:
2797 // If the return type and argument types are the same, this is a
2798 // standard shufflevector instruction. If the types are different,
2799 // then the shuffle is widening or truncating the input vectors, and
2800 // the argument type must also be encoded.
2801 if (C->getType() == C->getOperand(0)->getType()) {
2802 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2803 } else {
2804 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2805 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2807 Record.push_back(VE.getValueID(C->getOperand(0)));
2808 Record.push_back(VE.getValueID(C->getOperand(1)));
2809 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2810 break;
2811 case Instruction::ICmp:
2812 case Instruction::FCmp:
2813 Code = bitc::CST_CODE_CE_CMP;
2814 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2815 Record.push_back(VE.getValueID(C->getOperand(0)));
2816 Record.push_back(VE.getValueID(C->getOperand(1)));
2817 Record.push_back(CE->getPredicate());
2818 break;
2820 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2821 Code = bitc::CST_CODE_BLOCKADDRESS;
2822 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2823 Record.push_back(VE.getValueID(BA->getFunction()));
2824 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2825 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2826 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2827 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2828 Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2829 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
2830 Code = bitc::CST_CODE_NO_CFI_VALUE;
2831 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType()));
2832 Record.push_back(VE.getValueID(NC->getGlobalValue()));
2833 } else {
2834 #ifndef NDEBUG
2835 C->dump();
2836 #endif
2837 llvm_unreachable("Unknown constant!");
2839 Stream.EmitRecord(Code, Record, AbbrevToUse);
2840 Record.clear();
2843 Stream.ExitBlock();
2846 void ModuleBitcodeWriter::writeModuleConstants() {
2847 const ValueEnumerator::ValueList &Vals = VE.getValues();
2849 // Find the first constant to emit, which is the first non-globalvalue value.
2850 // We know globalvalues have been emitted by WriteModuleInfo.
2851 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2852 if (!isa<GlobalValue>(Vals[i].first)) {
2853 writeConstants(i, Vals.size(), true);
2854 return;
2859 /// pushValueAndType - The file has to encode both the value and type id for
2860 /// many values, because we need to know what type to create for forward
2861 /// references. However, most operands are not forward references, so this type
2862 /// field is not needed.
2864 /// This function adds V's value ID to Vals. If the value ID is higher than the
2865 /// instruction ID, then it is a forward reference, and it also includes the
2866 /// type ID. The value ID that is written is encoded relative to the InstID.
2867 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2868 SmallVectorImpl<unsigned> &Vals) {
2869 unsigned ValID = VE.getValueID(V);
2870 // Make encoding relative to the InstID.
2871 Vals.push_back(InstID - ValID);
2872 if (ValID >= InstID) {
2873 Vals.push_back(VE.getTypeID(V->getType()));
2874 return true;
2876 return false;
2879 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2880 unsigned InstID) {
2881 SmallVector<unsigned, 64> Record;
2882 LLVMContext &C = CS.getContext();
2884 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2885 const auto &Bundle = CS.getOperandBundleAt(i);
2886 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2888 for (auto &Input : Bundle.Inputs)
2889 pushValueAndType(Input, InstID, Record);
2891 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2892 Record.clear();
2896 /// pushValue - Like pushValueAndType, but where the type of the value is
2897 /// omitted (perhaps it was already encoded in an earlier operand).
2898 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2899 SmallVectorImpl<unsigned> &Vals) {
2900 unsigned ValID = VE.getValueID(V);
2901 Vals.push_back(InstID - ValID);
2904 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2905 SmallVectorImpl<uint64_t> &Vals) {
2906 unsigned ValID = VE.getValueID(V);
2907 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2908 emitSignedInt64(Vals, diff);
2911 /// WriteInstruction - Emit an instruction to the specified stream.
2912 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2913 unsigned InstID,
2914 SmallVectorImpl<unsigned> &Vals) {
2915 unsigned Code = 0;
2916 unsigned AbbrevToUse = 0;
2917 VE.setInstructionID(&I);
2918 switch (I.getOpcode()) {
2919 default:
2920 if (Instruction::isCast(I.getOpcode())) {
2921 Code = bitc::FUNC_CODE_INST_CAST;
2922 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2923 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2924 Vals.push_back(VE.getTypeID(I.getType()));
2925 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2926 uint64_t Flags = getOptimizationFlags(&I);
2927 if (Flags != 0) {
2928 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV)
2929 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV;
2930 Vals.push_back(Flags);
2932 } else {
2933 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2934 Code = bitc::FUNC_CODE_INST_BINOP;
2935 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2936 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2937 pushValue(I.getOperand(1), InstID, Vals);
2938 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2939 uint64_t Flags = getOptimizationFlags(&I);
2940 if (Flags != 0) {
2941 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2942 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2943 Vals.push_back(Flags);
2946 break;
2947 case Instruction::FNeg: {
2948 Code = bitc::FUNC_CODE_INST_UNOP;
2949 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2950 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2951 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2952 uint64_t Flags = getOptimizationFlags(&I);
2953 if (Flags != 0) {
2954 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2955 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2956 Vals.push_back(Flags);
2958 break;
2960 case Instruction::GetElementPtr: {
2961 Code = bitc::FUNC_CODE_INST_GEP;
2962 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2963 auto &GEPInst = cast<GetElementPtrInst>(I);
2964 Vals.push_back(GEPInst.isInBounds());
2965 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2966 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2967 pushValueAndType(I.getOperand(i), InstID, Vals);
2968 break;
2970 case Instruction::ExtractValue: {
2971 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2972 pushValueAndType(I.getOperand(0), InstID, Vals);
2973 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2974 Vals.append(EVI->idx_begin(), EVI->idx_end());
2975 break;
2977 case Instruction::InsertValue: {
2978 Code = bitc::FUNC_CODE_INST_INSERTVAL;
2979 pushValueAndType(I.getOperand(0), InstID, Vals);
2980 pushValueAndType(I.getOperand(1), InstID, Vals);
2981 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2982 Vals.append(IVI->idx_begin(), IVI->idx_end());
2983 break;
2985 case Instruction::Select: {
2986 Code = bitc::FUNC_CODE_INST_VSELECT;
2987 pushValueAndType(I.getOperand(1), InstID, Vals);
2988 pushValue(I.getOperand(2), InstID, Vals);
2989 pushValueAndType(I.getOperand(0), InstID, Vals);
2990 uint64_t Flags = getOptimizationFlags(&I);
2991 if (Flags != 0)
2992 Vals.push_back(Flags);
2993 break;
2995 case Instruction::ExtractElement:
2996 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2997 pushValueAndType(I.getOperand(0), InstID, Vals);
2998 pushValueAndType(I.getOperand(1), InstID, Vals);
2999 break;
3000 case Instruction::InsertElement:
3001 Code = bitc::FUNC_CODE_INST_INSERTELT;
3002 pushValueAndType(I.getOperand(0), InstID, Vals);
3003 pushValue(I.getOperand(1), InstID, Vals);
3004 pushValueAndType(I.getOperand(2), InstID, Vals);
3005 break;
3006 case Instruction::ShuffleVector:
3007 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
3008 pushValueAndType(I.getOperand(0), InstID, Vals);
3009 pushValue(I.getOperand(1), InstID, Vals);
3010 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
3011 Vals);
3012 break;
3013 case Instruction::ICmp:
3014 case Instruction::FCmp: {
3015 // compare returning Int1Ty or vector of Int1Ty
3016 Code = bitc::FUNC_CODE_INST_CMP2;
3017 pushValueAndType(I.getOperand(0), InstID, Vals);
3018 pushValue(I.getOperand(1), InstID, Vals);
3019 Vals.push_back(cast<CmpInst>(I).getPredicate());
3020 uint64_t Flags = getOptimizationFlags(&I);
3021 if (Flags != 0)
3022 Vals.push_back(Flags);
3023 break;
3026 case Instruction::Ret:
3028 Code = bitc::FUNC_CODE_INST_RET;
3029 unsigned NumOperands = I.getNumOperands();
3030 if (NumOperands == 0)
3031 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
3032 else if (NumOperands == 1) {
3033 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
3034 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
3035 } else {
3036 for (unsigned i = 0, e = NumOperands; i != e; ++i)
3037 pushValueAndType(I.getOperand(i), InstID, Vals);
3040 break;
3041 case Instruction::Br:
3043 Code = bitc::FUNC_CODE_INST_BR;
3044 const BranchInst &II = cast<BranchInst>(I);
3045 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
3046 if (II.isConditional()) {
3047 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
3048 pushValue(II.getCondition(), InstID, Vals);
3051 break;
3052 case Instruction::Switch:
3054 Code = bitc::FUNC_CODE_INST_SWITCH;
3055 const SwitchInst &SI = cast<SwitchInst>(I);
3056 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
3057 pushValue(SI.getCondition(), InstID, Vals);
3058 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
3059 for (auto Case : SI.cases()) {
3060 Vals.push_back(VE.getValueID(Case.getCaseValue()));
3061 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
3064 break;
3065 case Instruction::IndirectBr:
3066 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
3067 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3068 // Encode the address operand as relative, but not the basic blocks.
3069 pushValue(I.getOperand(0), InstID, Vals);
3070 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
3071 Vals.push_back(VE.getValueID(I.getOperand(i)));
3072 break;
3074 case Instruction::Invoke: {
3075 const InvokeInst *II = cast<InvokeInst>(&I);
3076 const Value *Callee = II->getCalledOperand();
3077 FunctionType *FTy = II->getFunctionType();
3079 if (II->hasOperandBundles())
3080 writeOperandBundles(*II, InstID);
3082 Code = bitc::FUNC_CODE_INST_INVOKE;
3084 Vals.push_back(VE.getAttributeListID(II->getAttributes()));
3085 Vals.push_back(II->getCallingConv() | 1 << 13);
3086 Vals.push_back(VE.getValueID(II->getNormalDest()));
3087 Vals.push_back(VE.getValueID(II->getUnwindDest()));
3088 Vals.push_back(VE.getTypeID(FTy));
3089 pushValueAndType(Callee, InstID, Vals);
3091 // Emit value #'s for the fixed parameters.
3092 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3093 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3095 // Emit type/value pairs for varargs params.
3096 if (FTy->isVarArg()) {
3097 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
3098 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3100 break;
3102 case Instruction::Resume:
3103 Code = bitc::FUNC_CODE_INST_RESUME;
3104 pushValueAndType(I.getOperand(0), InstID, Vals);
3105 break;
3106 case Instruction::CleanupRet: {
3107 Code = bitc::FUNC_CODE_INST_CLEANUPRET;
3108 const auto &CRI = cast<CleanupReturnInst>(I);
3109 pushValue(CRI.getCleanupPad(), InstID, Vals);
3110 if (CRI.hasUnwindDest())
3111 Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
3112 break;
3114 case Instruction::CatchRet: {
3115 Code = bitc::FUNC_CODE_INST_CATCHRET;
3116 const auto &CRI = cast<CatchReturnInst>(I);
3117 pushValue(CRI.getCatchPad(), InstID, Vals);
3118 Vals.push_back(VE.getValueID(CRI.getSuccessor()));
3119 break;
3121 case Instruction::CleanupPad:
3122 case Instruction::CatchPad: {
3123 const auto &FuncletPad = cast<FuncletPadInst>(I);
3124 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
3125 : bitc::FUNC_CODE_INST_CLEANUPPAD;
3126 pushValue(FuncletPad.getParentPad(), InstID, Vals);
3128 unsigned NumArgOperands = FuncletPad.arg_size();
3129 Vals.push_back(NumArgOperands);
3130 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
3131 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
3132 break;
3134 case Instruction::CatchSwitch: {
3135 Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
3136 const auto &CatchSwitch = cast<CatchSwitchInst>(I);
3138 pushValue(CatchSwitch.getParentPad(), InstID, Vals);
3140 unsigned NumHandlers = CatchSwitch.getNumHandlers();
3141 Vals.push_back(NumHandlers);
3142 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
3143 Vals.push_back(VE.getValueID(CatchPadBB));
3145 if (CatchSwitch.hasUnwindDest())
3146 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
3147 break;
3149 case Instruction::CallBr: {
3150 const CallBrInst *CBI = cast<CallBrInst>(&I);
3151 const Value *Callee = CBI->getCalledOperand();
3152 FunctionType *FTy = CBI->getFunctionType();
3154 if (CBI->hasOperandBundles())
3155 writeOperandBundles(*CBI, InstID);
3157 Code = bitc::FUNC_CODE_INST_CALLBR;
3159 Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
3161 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
3162 1 << bitc::CALL_EXPLICIT_TYPE);
3164 Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
3165 Vals.push_back(CBI->getNumIndirectDests());
3166 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3167 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
3169 Vals.push_back(VE.getTypeID(FTy));
3170 pushValueAndType(Callee, InstID, Vals);
3172 // Emit value #'s for the fixed parameters.
3173 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3174 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3176 // Emit type/value pairs for varargs params.
3177 if (FTy->isVarArg()) {
3178 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3179 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3181 break;
3183 case Instruction::Unreachable:
3184 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3185 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3186 break;
3188 case Instruction::PHI: {
3189 const PHINode &PN = cast<PHINode>(I);
3190 Code = bitc::FUNC_CODE_INST_PHI;
3191 // With the newer instruction encoding, forward references could give
3192 // negative valued IDs. This is most common for PHIs, so we use
3193 // signed VBRs.
3194 SmallVector<uint64_t, 128> Vals64;
3195 Vals64.push_back(VE.getTypeID(PN.getType()));
3196 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3197 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3198 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3201 uint64_t Flags = getOptimizationFlags(&I);
3202 if (Flags != 0)
3203 Vals64.push_back(Flags);
3205 // Emit a Vals64 vector and exit.
3206 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3207 Vals64.clear();
3208 return;
3211 case Instruction::LandingPad: {
3212 const LandingPadInst &LP = cast<LandingPadInst>(I);
3213 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3214 Vals.push_back(VE.getTypeID(LP.getType()));
3215 Vals.push_back(LP.isCleanup());
3216 Vals.push_back(LP.getNumClauses());
3217 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3218 if (LP.isCatch(I))
3219 Vals.push_back(LandingPadInst::Catch);
3220 else
3221 Vals.push_back(LandingPadInst::Filter);
3222 pushValueAndType(LP.getClause(I), InstID, Vals);
3224 break;
3227 case Instruction::Alloca: {
3228 Code = bitc::FUNC_CODE_INST_ALLOCA;
3229 const AllocaInst &AI = cast<AllocaInst>(I);
3230 Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3231 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3232 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3233 using APV = AllocaPackedValues;
3234 unsigned Record = 0;
3235 unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
3236 Bitfield::set<APV::AlignLower>(
3237 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3238 Bitfield::set<APV::AlignUpper>(Record,
3239 EncodedAlign >> APV::AlignLower::Bits);
3240 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3241 Bitfield::set<APV::ExplicitType>(Record, true);
3242 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3243 Vals.push_back(Record);
3245 unsigned AS = AI.getAddressSpace();
3246 if (AS != M.getDataLayout().getAllocaAddrSpace())
3247 Vals.push_back(AS);
3248 break;
3251 case Instruction::Load:
3252 if (cast<LoadInst>(I).isAtomic()) {
3253 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3254 pushValueAndType(I.getOperand(0), InstID, Vals);
3255 } else {
3256 Code = bitc::FUNC_CODE_INST_LOAD;
3257 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3258 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3260 Vals.push_back(VE.getTypeID(I.getType()));
3261 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3262 Vals.push_back(cast<LoadInst>(I).isVolatile());
3263 if (cast<LoadInst>(I).isAtomic()) {
3264 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3265 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3267 break;
3268 case Instruction::Store:
3269 if (cast<StoreInst>(I).isAtomic())
3270 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3271 else
3272 Code = bitc::FUNC_CODE_INST_STORE;
3273 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3274 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3275 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3276 Vals.push_back(cast<StoreInst>(I).isVolatile());
3277 if (cast<StoreInst>(I).isAtomic()) {
3278 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3279 Vals.push_back(
3280 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3282 break;
3283 case Instruction::AtomicCmpXchg:
3284 Code = bitc::FUNC_CODE_INST_CMPXCHG;
3285 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3286 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3287 pushValue(I.getOperand(2), InstID, Vals); // newval.
3288 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3289 Vals.push_back(
3290 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3291 Vals.push_back(
3292 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3293 Vals.push_back(
3294 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3295 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3296 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3297 break;
3298 case Instruction::AtomicRMW:
3299 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3300 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3301 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3302 Vals.push_back(
3303 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3304 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3305 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3306 Vals.push_back(
3307 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3308 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3309 break;
3310 case Instruction::Fence:
3311 Code = bitc::FUNC_CODE_INST_FENCE;
3312 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3313 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3314 break;
3315 case Instruction::Call: {
3316 const CallInst &CI = cast<CallInst>(I);
3317 FunctionType *FTy = CI.getFunctionType();
3319 if (CI.hasOperandBundles())
3320 writeOperandBundles(CI, InstID);
3322 Code = bitc::FUNC_CODE_INST_CALL;
3324 Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3326 unsigned Flags = getOptimizationFlags(&I);
3327 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3328 unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3329 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3330 1 << bitc::CALL_EXPLICIT_TYPE |
3331 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3332 unsigned(Flags != 0) << bitc::CALL_FMF);
3333 if (Flags != 0)
3334 Vals.push_back(Flags);
3336 Vals.push_back(VE.getTypeID(FTy));
3337 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3339 // Emit value #'s for the fixed parameters.
3340 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3341 // Check for labels (can happen with asm labels).
3342 if (FTy->getParamType(i)->isLabelTy())
3343 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3344 else
3345 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3348 // Emit type/value pairs for varargs params.
3349 if (FTy->isVarArg()) {
3350 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3351 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3353 break;
3355 case Instruction::VAArg:
3356 Code = bitc::FUNC_CODE_INST_VAARG;
3357 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
3358 pushValue(I.getOperand(0), InstID, Vals); // valist.
3359 Vals.push_back(VE.getTypeID(I.getType())); // restype.
3360 break;
3361 case Instruction::Freeze:
3362 Code = bitc::FUNC_CODE_INST_FREEZE;
3363 pushValueAndType(I.getOperand(0), InstID, Vals);
3364 break;
3367 Stream.EmitRecord(Code, Vals, AbbrevToUse);
3368 Vals.clear();
3371 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3372 /// to allow clients to efficiently find the function body.
3373 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3374 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3375 // Get the offset of the VST we are writing, and backpatch it into
3376 // the VST forward declaration record.
3377 uint64_t VSTOffset = Stream.GetCurrentBitNo();
3378 // The BitcodeStartBit was the stream offset of the identification block.
3379 VSTOffset -= bitcodeStartBit();
3380 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3381 // Note that we add 1 here because the offset is relative to one word
3382 // before the start of the identification block, which was historically
3383 // always the start of the regular bitcode header.
3384 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3386 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3388 auto Abbv = std::make_shared<BitCodeAbbrev>();
3389 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3392 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3394 for (const Function &F : M) {
3395 uint64_t Record[2];
3397 if (F.isDeclaration())
3398 continue;
3400 Record[0] = VE.getValueID(&F);
3402 // Save the word offset of the function (from the start of the
3403 // actual bitcode written to the stream).
3404 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3405 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3406 // Note that we add 1 here because the offset is relative to one word
3407 // before the start of the identification block, which was historically
3408 // always the start of the regular bitcode header.
3409 Record[1] = BitcodeIndex / 32 + 1;
3411 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3414 Stream.ExitBlock();
3417 /// Emit names for arguments, instructions and basic blocks in a function.
3418 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3419 const ValueSymbolTable &VST) {
3420 if (VST.empty())
3421 return;
3423 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3425 // FIXME: Set up the abbrev, we know how many values there are!
3426 // FIXME: We know if the type names can use 7-bit ascii.
3427 SmallVector<uint64_t, 64> NameVals;
3429 for (const ValueName &Name : VST) {
3430 // Figure out the encoding to use for the name.
3431 StringEncoding Bits = getStringEncoding(Name.getKey());
3433 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3434 NameVals.push_back(VE.getValueID(Name.getValue()));
3436 // VST_CODE_ENTRY: [valueid, namechar x N]
3437 // VST_CODE_BBENTRY: [bbid, namechar x N]
3438 unsigned Code;
3439 if (isa<BasicBlock>(Name.getValue())) {
3440 Code = bitc::VST_CODE_BBENTRY;
3441 if (Bits == SE_Char6)
3442 AbbrevToUse = VST_BBENTRY_6_ABBREV;
3443 } else {
3444 Code = bitc::VST_CODE_ENTRY;
3445 if (Bits == SE_Char6)
3446 AbbrevToUse = VST_ENTRY_6_ABBREV;
3447 else if (Bits == SE_Fixed7)
3448 AbbrevToUse = VST_ENTRY_7_ABBREV;
3451 for (const auto P : Name.getKey())
3452 NameVals.push_back((unsigned char)P);
3454 // Emit the finished record.
3455 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3456 NameVals.clear();
3459 Stream.ExitBlock();
3462 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3463 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3464 unsigned Code;
3465 if (isa<BasicBlock>(Order.V))
3466 Code = bitc::USELIST_CODE_BB;
3467 else
3468 Code = bitc::USELIST_CODE_DEFAULT;
3470 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3471 Record.push_back(VE.getValueID(Order.V));
3472 Stream.EmitRecord(Code, Record);
3475 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3476 assert(VE.shouldPreserveUseListOrder() &&
3477 "Expected to be preserving use-list order");
3479 auto hasMore = [&]() {
3480 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3482 if (!hasMore())
3483 // Nothing to do.
3484 return;
3486 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3487 while (hasMore()) {
3488 writeUseList(std::move(VE.UseListOrders.back()));
3489 VE.UseListOrders.pop_back();
3491 Stream.ExitBlock();
3494 /// Emit a function body to the module stream.
3495 void ModuleBitcodeWriter::writeFunction(
3496 const Function &F,
3497 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3498 // Save the bitcode index of the start of this function block for recording
3499 // in the VST.
3500 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3502 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3503 VE.incorporateFunction(F);
3505 SmallVector<unsigned, 64> Vals;
3507 // Emit the number of basic blocks, so the reader can create them ahead of
3508 // time.
3509 Vals.push_back(VE.getBasicBlocks().size());
3510 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3511 Vals.clear();
3513 // If there are function-local constants, emit them now.
3514 unsigned CstStart, CstEnd;
3515 VE.getFunctionConstantRange(CstStart, CstEnd);
3516 writeConstants(CstStart, CstEnd, false);
3518 // If there is function-local metadata, emit it now.
3519 writeFunctionMetadata(F);
3521 // Keep a running idea of what the instruction ID is.
3522 unsigned InstID = CstEnd;
3524 bool NeedsMetadataAttachment = F.hasMetadata();
3526 DILocation *LastDL = nullptr;
3527 SmallSetVector<Function *, 4> BlockAddressUsers;
3529 // Finally, emit all the instructions, in order.
3530 for (const BasicBlock &BB : F) {
3531 for (const Instruction &I : BB) {
3532 writeInstruction(I, InstID, Vals);
3534 if (!I.getType()->isVoidTy())
3535 ++InstID;
3537 // If the instruction has metadata, write a metadata attachment later.
3538 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3540 // If the instruction has a debug location, emit it.
3541 if (DILocation *DL = I.getDebugLoc()) {
3542 if (DL == LastDL) {
3543 // Just repeat the same debug loc as last time.
3544 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3545 } else {
3546 Vals.push_back(DL->getLine());
3547 Vals.push_back(DL->getColumn());
3548 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3549 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3550 Vals.push_back(DL->isImplicitCode());
3551 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3552 Vals.clear();
3553 LastDL = DL;
3557 // If the instruction has DbgRecords attached to it, emit them. Note that
3558 // they come after the instruction so that it's easy to attach them again
3559 // when reading the bitcode, even though conceptually the debug locations
3560 // start "before" the instruction.
3561 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) {
3562 /// Try to push the value only (unwrapped), otherwise push the
3563 /// metadata wrapped value. Returns true if the value was pushed
3564 /// without the ValueAsMetadata wrapper.
3565 auto PushValueOrMetadata = [&Vals, InstID,
3566 this](Metadata *RawLocation) {
3567 assert(RawLocation &&
3568 "RawLocation unexpectedly null in DbgVariableRecord");
3569 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) {
3570 SmallVector<unsigned, 2> ValAndType;
3571 // If the value is a fwd-ref the type is also pushed. We don't
3572 // want the type, so fwd-refs are kept wrapped (pushValueAndType
3573 // returns false if the value is pushed without type).
3574 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) {
3575 Vals.push_back(ValAndType[0]);
3576 return true;
3579 // The metadata is a DIArgList, or ValueAsMetadata wrapping a
3580 // fwd-ref. Push the metadata ID.
3581 Vals.push_back(VE.getMetadataID(RawLocation));
3582 return false;
3585 // Write out non-instruction debug information attached to this
3586 // instruction. Write it after the instruction so that it's easy to
3587 // re-attach to the instruction reading the records in.
3588 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) {
3589 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
3590 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc()));
3591 Vals.push_back(VE.getMetadataID(DLR->getLabel()));
3592 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals);
3593 Vals.clear();
3594 continue;
3597 // First 3 fields are common to all kinds:
3598 // DILocation, DILocalVariable, DIExpression
3599 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
3600 // ..., LocationMetadata
3601 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
3602 // ..., Value
3603 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
3604 // ..., LocationMetadata
3605 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
3606 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
3607 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
3608 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc()));
3609 Vals.push_back(VE.getMetadataID(DVR.getVariable()));
3610 Vals.push_back(VE.getMetadataID(DVR.getExpression()));
3611 if (DVR.isDbgValue()) {
3612 if (PushValueOrMetadata(DVR.getRawLocation()))
3613 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals,
3614 FUNCTION_DEBUG_RECORD_VALUE_ABBREV);
3615 else
3616 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals);
3617 } else if (DVR.isDbgDeclare()) {
3618 Vals.push_back(VE.getMetadataID(DVR.getRawLocation()));
3619 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals);
3620 } else {
3621 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind");
3622 Vals.push_back(VE.getMetadataID(DVR.getRawLocation()));
3623 Vals.push_back(VE.getMetadataID(DVR.getAssignID()));
3624 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression()));
3625 Vals.push_back(VE.getMetadataID(DVR.getRawAddress()));
3626 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals);
3628 Vals.clear();
3633 if (BlockAddress *BA = BlockAddress::lookup(&BB)) {
3634 SmallVector<Value *> Worklist{BA};
3635 SmallPtrSet<Value *, 8> Visited{BA};
3636 while (!Worklist.empty()) {
3637 Value *V = Worklist.pop_back_val();
3638 for (User *U : V->users()) {
3639 if (auto *I = dyn_cast<Instruction>(U)) {
3640 Function *P = I->getFunction();
3641 if (P != &F)
3642 BlockAddressUsers.insert(P);
3643 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) &&
3644 Visited.insert(U).second)
3645 Worklist.push_back(U);
3651 if (!BlockAddressUsers.empty()) {
3652 Vals.resize(BlockAddressUsers.size());
3653 for (auto I : llvm::enumerate(BlockAddressUsers))
3654 Vals[I.index()] = VE.getValueID(I.value());
3655 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3656 Vals.clear();
3659 // Emit names for all the instructions etc.
3660 if (auto *Symtab = F.getValueSymbolTable())
3661 writeFunctionLevelValueSymbolTable(*Symtab);
3663 if (NeedsMetadataAttachment)
3664 writeFunctionMetadataAttachment(F);
3665 if (VE.shouldPreserveUseListOrder())
3666 writeUseListBlock(&F);
3667 VE.purgeFunction();
3668 Stream.ExitBlock();
3671 // Emit blockinfo, which defines the standard abbreviations etc.
3672 void ModuleBitcodeWriter::writeBlockInfo() {
3673 // We only want to emit block info records for blocks that have multiple
3674 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3675 // Other blocks can define their abbrevs inline.
3676 Stream.EnterBlockInfoBlock();
3678 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3679 auto Abbv = std::make_shared<BitCodeAbbrev>();
3680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3684 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3685 VST_ENTRY_8_ABBREV)
3686 llvm_unreachable("Unexpected abbrev ordering!");
3689 { // 7-bit fixed width VST_CODE_ENTRY strings.
3690 auto Abbv = std::make_shared<BitCodeAbbrev>();
3691 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3695 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3696 VST_ENTRY_7_ABBREV)
3697 llvm_unreachable("Unexpected abbrev ordering!");
3699 { // 6-bit char6 VST_CODE_ENTRY strings.
3700 auto Abbv = std::make_shared<BitCodeAbbrev>();
3701 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3705 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3706 VST_ENTRY_6_ABBREV)
3707 llvm_unreachable("Unexpected abbrev ordering!");
3709 { // 6-bit char6 VST_CODE_BBENTRY strings.
3710 auto Abbv = std::make_shared<BitCodeAbbrev>();
3711 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3715 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3716 VST_BBENTRY_6_ABBREV)
3717 llvm_unreachable("Unexpected abbrev ordering!");
3720 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3721 auto Abbv = std::make_shared<BitCodeAbbrev>();
3722 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3724 VE.computeBitsRequiredForTypeIndicies()));
3725 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3726 CONSTANTS_SETTYPE_ABBREV)
3727 llvm_unreachable("Unexpected abbrev ordering!");
3730 { // INTEGER abbrev for CONSTANTS_BLOCK.
3731 auto Abbv = std::make_shared<BitCodeAbbrev>();
3732 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3734 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3735 CONSTANTS_INTEGER_ABBREV)
3736 llvm_unreachable("Unexpected abbrev ordering!");
3739 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3740 auto Abbv = std::make_shared<BitCodeAbbrev>();
3741 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3744 VE.computeBitsRequiredForTypeIndicies()));
3745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3747 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3748 CONSTANTS_CE_CAST_Abbrev)
3749 llvm_unreachable("Unexpected abbrev ordering!");
3751 { // NULL abbrev for CONSTANTS_BLOCK.
3752 auto Abbv = std::make_shared<BitCodeAbbrev>();
3753 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3754 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3755 CONSTANTS_NULL_Abbrev)
3756 llvm_unreachable("Unexpected abbrev ordering!");
3759 // FIXME: This should only use space for first class types!
3761 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3762 auto Abbv = std::make_shared<BitCodeAbbrev>();
3763 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3766 VE.computeBitsRequiredForTypeIndicies()));
3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3769 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3770 FUNCTION_INST_LOAD_ABBREV)
3771 llvm_unreachable("Unexpected abbrev ordering!");
3773 { // INST_UNOP abbrev for FUNCTION_BLOCK.
3774 auto Abbv = std::make_shared<BitCodeAbbrev>();
3775 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3778 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3779 FUNCTION_INST_UNOP_ABBREV)
3780 llvm_unreachable("Unexpected abbrev ordering!");
3782 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3783 auto Abbv = std::make_shared<BitCodeAbbrev>();
3784 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3788 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3789 FUNCTION_INST_UNOP_FLAGS_ABBREV)
3790 llvm_unreachable("Unexpected abbrev ordering!");
3792 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3793 auto Abbv = std::make_shared<BitCodeAbbrev>();
3794 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3798 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3799 FUNCTION_INST_BINOP_ABBREV)
3800 llvm_unreachable("Unexpected abbrev ordering!");
3802 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3803 auto Abbv = std::make_shared<BitCodeAbbrev>();
3804 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3809 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3810 FUNCTION_INST_BINOP_FLAGS_ABBREV)
3811 llvm_unreachable("Unexpected abbrev ordering!");
3813 { // INST_CAST abbrev for FUNCTION_BLOCK.
3814 auto Abbv = std::make_shared<BitCodeAbbrev>();
3815 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3818 VE.computeBitsRequiredForTypeIndicies()));
3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3820 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3821 FUNCTION_INST_CAST_ABBREV)
3822 llvm_unreachable("Unexpected abbrev ordering!");
3824 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK.
3825 auto Abbv = std::make_shared<BitCodeAbbrev>();
3826 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3829 VE.computeBitsRequiredForTypeIndicies()));
3830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3832 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3833 FUNCTION_INST_CAST_FLAGS_ABBREV)
3834 llvm_unreachable("Unexpected abbrev ordering!");
3837 { // INST_RET abbrev for FUNCTION_BLOCK.
3838 auto Abbv = std::make_shared<BitCodeAbbrev>();
3839 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3840 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3841 FUNCTION_INST_RET_VOID_ABBREV)
3842 llvm_unreachable("Unexpected abbrev ordering!");
3844 { // INST_RET abbrev for FUNCTION_BLOCK.
3845 auto Abbv = std::make_shared<BitCodeAbbrev>();
3846 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3848 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3849 FUNCTION_INST_RET_VAL_ABBREV)
3850 llvm_unreachable("Unexpected abbrev ordering!");
3852 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3853 auto Abbv = std::make_shared<BitCodeAbbrev>();
3854 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3855 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3856 FUNCTION_INST_UNREACHABLE_ABBREV)
3857 llvm_unreachable("Unexpected abbrev ordering!");
3860 auto Abbv = std::make_shared<BitCodeAbbrev>();
3861 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3864 Log2_32_Ceil(VE.getTypes().size() + 1)));
3865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3867 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3868 FUNCTION_INST_GEP_ABBREV)
3869 llvm_unreachable("Unexpected abbrev ordering!");
3872 auto Abbv = std::make_shared<BitCodeAbbrev>();
3873 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE));
3874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc
3875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var
3876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr
3877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val
3878 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3879 FUNCTION_DEBUG_RECORD_VALUE_ABBREV)
3880 llvm_unreachable("Unexpected abbrev ordering! 1");
3882 Stream.ExitBlock();
3885 /// Write the module path strings, currently only used when generating
3886 /// a combined index file.
3887 void IndexBitcodeWriter::writeModStrings() {
3888 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3890 // TODO: See which abbrev sizes we actually need to emit
3892 // 8-bit fixed-width MST_ENTRY strings.
3893 auto Abbv = std::make_shared<BitCodeAbbrev>();
3894 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3898 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3900 // 7-bit fixed width MST_ENTRY strings.
3901 Abbv = std::make_shared<BitCodeAbbrev>();
3902 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3906 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3908 // 6-bit char6 MST_ENTRY strings.
3909 Abbv = std::make_shared<BitCodeAbbrev>();
3910 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3914 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3916 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3917 Abbv = std::make_shared<BitCodeAbbrev>();
3918 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3924 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3926 SmallVector<unsigned, 64> Vals;
3927 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) {
3928 StringRef Key = MPSE.getKey();
3929 const auto &Hash = MPSE.getValue();
3930 StringEncoding Bits = getStringEncoding(Key);
3931 unsigned AbbrevToUse = Abbrev8Bit;
3932 if (Bits == SE_Char6)
3933 AbbrevToUse = Abbrev6Bit;
3934 else if (Bits == SE_Fixed7)
3935 AbbrevToUse = Abbrev7Bit;
3937 auto ModuleId = ModuleIdMap.size();
3938 ModuleIdMap[Key] = ModuleId;
3939 Vals.push_back(ModuleId);
3940 Vals.append(Key.begin(), Key.end());
3942 // Emit the finished record.
3943 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3945 // Emit an optional hash for the module now
3946 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3947 Vals.assign(Hash.begin(), Hash.end());
3948 // Emit the hash record.
3949 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3952 Vals.clear();
3954 Stream.ExitBlock();
3957 /// Write the function type metadata related records that need to appear before
3958 /// a function summary entry (whether per-module or combined).
3959 template <typename Fn>
3960 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3961 FunctionSummary *FS,
3962 Fn GetValueID) {
3963 if (!FS->type_tests().empty())
3964 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3966 SmallVector<uint64_t, 64> Record;
3968 auto WriteVFuncIdVec = [&](uint64_t Ty,
3969 ArrayRef<FunctionSummary::VFuncId> VFs) {
3970 if (VFs.empty())
3971 return;
3972 Record.clear();
3973 for (auto &VF : VFs) {
3974 Record.push_back(VF.GUID);
3975 Record.push_back(VF.Offset);
3977 Stream.EmitRecord(Ty, Record);
3980 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3981 FS->type_test_assume_vcalls());
3982 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3983 FS->type_checked_load_vcalls());
3985 auto WriteConstVCallVec = [&](uint64_t Ty,
3986 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3987 for (auto &VC : VCs) {
3988 Record.clear();
3989 Record.push_back(VC.VFunc.GUID);
3990 Record.push_back(VC.VFunc.Offset);
3991 llvm::append_range(Record, VC.Args);
3992 Stream.EmitRecord(Ty, Record);
3996 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3997 FS->type_test_assume_const_vcalls());
3998 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3999 FS->type_checked_load_const_vcalls());
4001 auto WriteRange = [&](ConstantRange Range) {
4002 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
4003 assert(Range.getLower().getNumWords() == 1);
4004 assert(Range.getUpper().getNumWords() == 1);
4005 emitSignedInt64(Record, *Range.getLower().getRawData());
4006 emitSignedInt64(Record, *Range.getUpper().getRawData());
4009 if (!FS->paramAccesses().empty()) {
4010 Record.clear();
4011 for (auto &Arg : FS->paramAccesses()) {
4012 size_t UndoSize = Record.size();
4013 Record.push_back(Arg.ParamNo);
4014 WriteRange(Arg.Use);
4015 Record.push_back(Arg.Calls.size());
4016 for (auto &Call : Arg.Calls) {
4017 Record.push_back(Call.ParamNo);
4018 std::optional<unsigned> ValueID = GetValueID(Call.Callee);
4019 if (!ValueID) {
4020 // If ValueID is unknown we can't drop just this call, we must drop
4021 // entire parameter.
4022 Record.resize(UndoSize);
4023 break;
4025 Record.push_back(*ValueID);
4026 WriteRange(Call.Offsets);
4029 if (!Record.empty())
4030 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
4034 /// Collect type IDs from type tests used by function.
4035 static void
4036 getReferencedTypeIds(FunctionSummary *FS,
4037 std::set<GlobalValue::GUID> &ReferencedTypeIds) {
4038 if (!FS->type_tests().empty())
4039 for (auto &TT : FS->type_tests())
4040 ReferencedTypeIds.insert(TT);
4042 auto GetReferencedTypesFromVFuncIdVec =
4043 [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
4044 for (auto &VF : VFs)
4045 ReferencedTypeIds.insert(VF.GUID);
4048 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
4049 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
4051 auto GetReferencedTypesFromConstVCallVec =
4052 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
4053 for (auto &VC : VCs)
4054 ReferencedTypeIds.insert(VC.VFunc.GUID);
4057 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
4058 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
4061 static void writeWholeProgramDevirtResolutionByArg(
4062 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
4063 const WholeProgramDevirtResolution::ByArg &ByArg) {
4064 NameVals.push_back(args.size());
4065 llvm::append_range(NameVals, args);
4067 NameVals.push_back(ByArg.TheKind);
4068 NameVals.push_back(ByArg.Info);
4069 NameVals.push_back(ByArg.Byte);
4070 NameVals.push_back(ByArg.Bit);
4073 static void writeWholeProgramDevirtResolution(
4074 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4075 uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
4076 NameVals.push_back(Id);
4078 NameVals.push_back(Wpd.TheKind);
4079 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
4080 NameVals.push_back(Wpd.SingleImplName.size());
4082 NameVals.push_back(Wpd.ResByArg.size());
4083 for (auto &A : Wpd.ResByArg)
4084 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
4087 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
4088 StringTableBuilder &StrtabBuilder,
4089 const std::string &Id,
4090 const TypeIdSummary &Summary) {
4091 NameVals.push_back(StrtabBuilder.add(Id));
4092 NameVals.push_back(Id.size());
4094 NameVals.push_back(Summary.TTRes.TheKind);
4095 NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
4096 NameVals.push_back(Summary.TTRes.AlignLog2);
4097 NameVals.push_back(Summary.TTRes.SizeM1);
4098 NameVals.push_back(Summary.TTRes.BitMask);
4099 NameVals.push_back(Summary.TTRes.InlineBits);
4101 for (auto &W : Summary.WPDRes)
4102 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
4103 W.second);
4106 static void writeTypeIdCompatibleVtableSummaryRecord(
4107 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4108 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
4109 ValueEnumerator &VE) {
4110 NameVals.push_back(StrtabBuilder.add(Id));
4111 NameVals.push_back(Id.size());
4113 for (auto &P : Summary) {
4114 NameVals.push_back(P.AddressPointOffset);
4115 NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
4119 static void writeFunctionHeapProfileRecords(
4120 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev,
4121 unsigned AllocAbbrev, bool PerModule,
4122 std::function<unsigned(const ValueInfo &VI)> GetValueID,
4123 std::function<unsigned(unsigned)> GetStackIndex) {
4124 SmallVector<uint64_t> Record;
4126 for (auto &CI : FS->callsites()) {
4127 Record.clear();
4128 // Per module callsite clones should always have a single entry of
4129 // value 0.
4130 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0));
4131 Record.push_back(GetValueID(CI.Callee));
4132 if (!PerModule) {
4133 Record.push_back(CI.StackIdIndices.size());
4134 Record.push_back(CI.Clones.size());
4136 for (auto Id : CI.StackIdIndices)
4137 Record.push_back(GetStackIndex(Id));
4138 if (!PerModule) {
4139 for (auto V : CI.Clones)
4140 Record.push_back(V);
4142 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO
4143 : bitc::FS_COMBINED_CALLSITE_INFO,
4144 Record, CallsiteAbbrev);
4147 for (auto &AI : FS->allocs()) {
4148 Record.clear();
4149 // Per module alloc versions should always have a single entry of
4150 // value 0.
4151 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0));
4152 if (!PerModule) {
4153 Record.push_back(AI.MIBs.size());
4154 Record.push_back(AI.Versions.size());
4156 for (auto &MIB : AI.MIBs) {
4157 Record.push_back((uint8_t)MIB.AllocType);
4158 Record.push_back(MIB.StackIdIndices.size());
4159 for (auto Id : MIB.StackIdIndices)
4160 Record.push_back(GetStackIndex(Id));
4162 if (!PerModule) {
4163 for (auto V : AI.Versions)
4164 Record.push_back(V);
4166 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO
4167 : bitc::FS_COMBINED_ALLOC_INFO,
4168 Record, AllocAbbrev);
4172 // Helper to emit a single function summary record.
4173 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
4174 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
4175 unsigned ValueID, unsigned FSCallsRelBFAbbrev,
4176 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev,
4177 unsigned AllocAbbrev, const Function &F) {
4178 NameVals.push_back(ValueID);
4180 FunctionSummary *FS = cast<FunctionSummary>(Summary);
4182 writeFunctionTypeMetadataRecords(
4183 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> {
4184 return {VE.getValueID(VI.getValue())};
4187 writeFunctionHeapProfileRecords(
4188 Stream, FS, CallsiteAbbrev, AllocAbbrev,
4189 /*PerModule*/ true,
4190 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); },
4191 /*GetStackIndex*/ [&](unsigned I) { return I; });
4193 auto SpecialRefCnts = FS->specialRefCounts();
4194 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4195 NameVals.push_back(FS->instCount());
4196 NameVals.push_back(getEncodedFFlags(FS->fflags()));
4197 NameVals.push_back(FS->refs().size());
4198 NameVals.push_back(SpecialRefCnts.first); // rorefcnt
4199 NameVals.push_back(SpecialRefCnts.second); // worefcnt
4201 for (auto &RI : FS->refs())
4202 NameVals.push_back(getValueId(RI));
4204 const bool UseRelBFRecord =
4205 WriteRelBFToSummary && !F.hasProfileData() &&
4206 ForceSummaryEdgesCold == FunctionSummary::FSHT_None;
4207 for (auto &ECI : FS->calls()) {
4208 NameVals.push_back(getValueId(ECI.first));
4209 if (UseRelBFRecord)
4210 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second));
4211 else
4212 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second));
4215 unsigned FSAbbrev =
4216 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev);
4217 unsigned Code =
4218 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE);
4220 // Emit the finished record.
4221 Stream.EmitRecord(Code, NameVals, FSAbbrev);
4222 NameVals.clear();
4225 // Collect the global value references in the given variable's initializer,
4226 // and emit them in a summary record.
4227 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4228 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
4229 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
4230 auto VI = Index->getValueInfo(V.getGUID());
4231 if (!VI || VI.getSummaryList().empty()) {
4232 // Only declarations should not have a summary (a declaration might however
4233 // have a summary if the def was in module level asm).
4234 assert(V.isDeclaration());
4235 return;
4237 auto *Summary = VI.getSummaryList()[0].get();
4238 NameVals.push_back(VE.getValueID(&V));
4239 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
4240 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4241 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4243 auto VTableFuncs = VS->vTableFuncs();
4244 if (!VTableFuncs.empty())
4245 NameVals.push_back(VS->refs().size());
4247 unsigned SizeBeforeRefs = NameVals.size();
4248 for (auto &RI : VS->refs())
4249 NameVals.push_back(VE.getValueID(RI.getValue()));
4250 // Sort the refs for determinism output, the vector returned by FS->refs() has
4251 // been initialized from a DenseSet.
4252 llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
4254 if (VTableFuncs.empty())
4255 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
4256 FSModRefsAbbrev);
4257 else {
4258 // VTableFuncs pairs should already be sorted by offset.
4259 for (auto &P : VTableFuncs) {
4260 NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
4261 NameVals.push_back(P.VTableOffset);
4264 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
4265 FSModVTableRefsAbbrev);
4267 NameVals.clear();
4270 /// Emit the per-module summary section alongside the rest of
4271 /// the module's bitcode.
4272 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4273 // By default we compile with ThinLTO if the module has a summary, but the
4274 // client can request full LTO with a module flag.
4275 bool IsThinLTO = true;
4276 if (auto *MD =
4277 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
4278 IsThinLTO = MD->getZExtValue();
4279 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4280 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4283 Stream.EmitRecord(
4284 bitc::FS_VERSION,
4285 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4287 // Write the index flags.
4288 uint64_t Flags = 0;
4289 // Bits 1-3 are set only in the combined index, skip them.
4290 if (Index->enableSplitLTOUnit())
4291 Flags |= 0x8;
4292 if (Index->hasUnifiedLTO())
4293 Flags |= 0x200;
4295 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
4297 if (Index->begin() == Index->end()) {
4298 Stream.ExitBlock();
4299 return;
4302 for (const auto &GVI : valueIds()) {
4303 Stream.EmitRecord(bitc::FS_VALUE_GUID,
4304 ArrayRef<uint64_t>{GVI.second, GVI.first});
4307 if (!Index->stackIds().empty()) {
4308 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4309 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4310 // numids x stackid
4311 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4312 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4313 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4314 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId);
4317 // Abbrev for FS_PERMODULE_PROFILE.
4318 auto Abbv = std::make_shared<BitCodeAbbrev>();
4319 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags
4322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4327 // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4330 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4332 // Abbrev for FS_PERMODULE_RELBF.
4333 Abbv = std::make_shared<BitCodeAbbrev>();
4334 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
4335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4342 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall])
4343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4345 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4347 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4348 Abbv = std::make_shared<BitCodeAbbrev>();
4349 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4354 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4356 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4357 Abbv = std::make_shared<BitCodeAbbrev>();
4358 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4362 // numrefs x valueid, n x (valueid , offset)
4363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4365 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4367 // Abbrev for FS_ALIAS.
4368 Abbv = std::make_shared<BitCodeAbbrev>();
4369 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
4370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4373 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4375 // Abbrev for FS_TYPE_ID_METADATA
4376 Abbv = std::make_shared<BitCodeAbbrev>();
4377 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4380 // n x (valueid , offset)
4381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4383 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4385 Abbv = std::make_shared<BitCodeAbbrev>();
4386 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO));
4387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4388 // n x stackidindex
4389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4391 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4393 Abbv = std::make_shared<BitCodeAbbrev>();
4394 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO));
4395 // n x (alloc type, numstackids, numstackids x stackidindex)
4396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4398 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4400 SmallVector<uint64_t, 64> NameVals;
4401 // Iterate over the list of functions instead of the Index to
4402 // ensure the ordering is stable.
4403 for (const Function &F : M) {
4404 // Summary emission does not support anonymous functions, they have to
4405 // renamed using the anonymous function renaming pass.
4406 if (!F.hasName())
4407 report_fatal_error("Unexpected anonymous function when writing summary");
4409 ValueInfo VI = Index->getValueInfo(F.getGUID());
4410 if (!VI || VI.getSummaryList().empty()) {
4411 // Only declarations should not have a summary (a declaration might
4412 // however have a summary if the def was in module level asm).
4413 assert(F.isDeclaration());
4414 continue;
4416 auto *Summary = VI.getSummaryList()[0].get();
4417 writePerModuleFunctionSummaryRecord(
4418 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev,
4419 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F);
4422 // Capture references from GlobalVariable initializers, which are outside
4423 // of a function scope.
4424 for (const GlobalVariable &G : M.globals())
4425 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4426 FSModVTableRefsAbbrev);
4428 for (const GlobalAlias &A : M.aliases()) {
4429 auto *Aliasee = A.getAliaseeObject();
4430 // Skip ifunc and nameless functions which don't have an entry in the
4431 // summary.
4432 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee))
4433 continue;
4434 auto AliasId = VE.getValueID(&A);
4435 auto AliaseeId = VE.getValueID(Aliasee);
4436 NameVals.push_back(AliasId);
4437 auto *Summary = Index->getGlobalValueSummary(A);
4438 AliasSummary *AS = cast<AliasSummary>(Summary);
4439 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4440 NameVals.push_back(AliaseeId);
4441 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4442 NameVals.clear();
4445 for (auto &S : Index->typeIdCompatibleVtableMap()) {
4446 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4447 S.second, VE);
4448 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4449 TypeIdCompatibleVtableAbbrev);
4450 NameVals.clear();
4453 if (Index->getBlockCount())
4454 Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4455 ArrayRef<uint64_t>{Index->getBlockCount()});
4457 Stream.ExitBlock();
4460 /// Emit the combined summary section into the combined index file.
4461 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4462 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
4463 Stream.EmitRecord(
4464 bitc::FS_VERSION,
4465 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4467 // Write the index flags.
4468 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4470 for (const auto &GVI : valueIds()) {
4471 Stream.EmitRecord(bitc::FS_VALUE_GUID,
4472 ArrayRef<uint64_t>{GVI.second, GVI.first});
4475 if (!StackIdIndices.empty()) {
4476 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4477 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4478 // numids x stackid
4479 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4480 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4481 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4482 // Write the stack ids used by this index, which will be a subset of those in
4483 // the full index in the case of distributed indexes.
4484 std::vector<uint64_t> StackIds;
4485 for (auto &I : StackIdIndices)
4486 StackIds.push_back(Index.getStackIdAtIndex(I));
4487 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId);
4490 // Abbrev for FS_COMBINED_PROFILE.
4491 auto Abbv = std::make_shared<BitCodeAbbrev>();
4492 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
4499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4502 // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4505 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4507 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4508 Abbv = std::make_shared<BitCodeAbbrev>();
4509 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4515 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4517 // Abbrev for FS_COMBINED_ALIAS.
4518 Abbv = std::make_shared<BitCodeAbbrev>();
4519 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4524 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4526 Abbv = std::make_shared<BitCodeAbbrev>();
4527 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO));
4528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices
4530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4531 // numstackindices x stackidindex, numver x version
4532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4534 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4536 Abbv = std::make_shared<BitCodeAbbrev>();
4537 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO));
4538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4540 // nummib x (alloc type, numstackids, numstackids x stackidindex),
4541 // numver x version
4542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4544 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4546 // The aliases are emitted as a post-pass, and will point to the value
4547 // id of the aliasee. Save them in a vector for post-processing.
4548 SmallVector<AliasSummary *, 64> Aliases;
4550 // Save the value id for each summary for alias emission.
4551 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4553 SmallVector<uint64_t, 64> NameVals;
4555 // Set that will be populated during call to writeFunctionTypeMetadataRecords
4556 // with the type ids referenced by this index file.
4557 std::set<GlobalValue::GUID> ReferencedTypeIds;
4559 // For local linkage, we also emit the original name separately
4560 // immediately after the record.
4561 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4562 // We don't need to emit the original name if we are writing the index for
4563 // distributed backends (in which case ModuleToSummariesForIndex is
4564 // non-null). The original name is only needed during the thin link, since
4565 // for SamplePGO the indirect call targets for local functions have
4566 // have the original name annotated in profile.
4567 // Continue to emit it when writing out the entire combined index, which is
4568 // used in testing the thin link via llvm-lto.
4569 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage()))
4570 return;
4571 NameVals.push_back(S.getOriginalName());
4572 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4573 NameVals.clear();
4576 std::set<GlobalValue::GUID> DefOrUseGUIDs;
4577 forEachSummary([&](GVInfo I, bool IsAliasee) {
4578 GlobalValueSummary *S = I.second;
4579 assert(S);
4580 DefOrUseGUIDs.insert(I.first);
4581 for (const ValueInfo &VI : S->refs())
4582 DefOrUseGUIDs.insert(VI.getGUID());
4584 auto ValueId = getValueId(I.first);
4585 assert(ValueId);
4586 SummaryToValueIdMap[S] = *ValueId;
4588 // If this is invoked for an aliasee, we want to record the above
4589 // mapping, but then not emit a summary entry (if the aliasee is
4590 // to be imported, we will invoke this separately with IsAliasee=false).
4591 if (IsAliasee)
4592 return;
4594 if (auto *AS = dyn_cast<AliasSummary>(S)) {
4595 // Will process aliases as a post-pass because the reader wants all
4596 // global to be loaded first.
4597 Aliases.push_back(AS);
4598 return;
4601 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4602 NameVals.push_back(*ValueId);
4603 assert(ModuleIdMap.count(VS->modulePath()));
4604 NameVals.push_back(ModuleIdMap[VS->modulePath()]);
4605 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4606 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4607 for (auto &RI : VS->refs()) {
4608 auto RefValueId = getValueId(RI.getGUID());
4609 if (!RefValueId)
4610 continue;
4611 NameVals.push_back(*RefValueId);
4614 // Emit the finished record.
4615 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4616 FSModRefsAbbrev);
4617 NameVals.clear();
4618 MaybeEmitOriginalName(*S);
4619 return;
4622 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> {
4623 if (!VI)
4624 return std::nullopt;
4625 return getValueId(VI.getGUID());
4628 auto *FS = cast<FunctionSummary>(S);
4629 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4630 getReferencedTypeIds(FS, ReferencedTypeIds);
4632 writeFunctionHeapProfileRecords(
4633 Stream, FS, CallsiteAbbrev, AllocAbbrev,
4634 /*PerModule*/ false,
4635 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned {
4636 std::optional<unsigned> ValueID = GetValueId(VI);
4637 // This can happen in shared index files for distributed ThinLTO if
4638 // the callee function summary is not included. Record 0 which we
4639 // will have to deal with conservatively when doing any kind of
4640 // validation in the ThinLTO backends.
4641 if (!ValueID)
4642 return 0;
4643 return *ValueID;
4645 /*GetStackIndex*/ [&](unsigned I) {
4646 // Get the corresponding index into the list of StackIdIndices
4647 // actually being written for this combined index (which may be a
4648 // subset in the case of distributed indexes).
4649 auto Lower = llvm::lower_bound(StackIdIndices, I);
4650 return std::distance(StackIdIndices.begin(), Lower);
4653 NameVals.push_back(*ValueId);
4654 assert(ModuleIdMap.count(FS->modulePath()));
4655 NameVals.push_back(ModuleIdMap[FS->modulePath()]);
4656 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4657 NameVals.push_back(FS->instCount());
4658 NameVals.push_back(getEncodedFFlags(FS->fflags()));
4659 NameVals.push_back(FS->entryCount());
4661 // Fill in below
4662 NameVals.push_back(0); // numrefs
4663 NameVals.push_back(0); // rorefcnt
4664 NameVals.push_back(0); // worefcnt
4666 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4667 for (auto &RI : FS->refs()) {
4668 auto RefValueId = getValueId(RI.getGUID());
4669 if (!RefValueId)
4670 continue;
4671 NameVals.push_back(*RefValueId);
4672 if (RI.isReadOnly())
4673 RORefCnt++;
4674 else if (RI.isWriteOnly())
4675 WORefCnt++;
4676 Count++;
4678 NameVals[6] = Count;
4679 NameVals[7] = RORefCnt;
4680 NameVals[8] = WORefCnt;
4682 for (auto &EI : FS->calls()) {
4683 // If this GUID doesn't have a value id, it doesn't have a function
4684 // summary and we don't need to record any calls to it.
4685 std::optional<unsigned> CallValueId = GetValueId(EI.first);
4686 if (!CallValueId)
4687 continue;
4688 NameVals.push_back(*CallValueId);
4689 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second));
4692 // Emit the finished record.
4693 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals,
4694 FSCallsProfileAbbrev);
4695 NameVals.clear();
4696 MaybeEmitOriginalName(*S);
4699 for (auto *AS : Aliases) {
4700 auto AliasValueId = SummaryToValueIdMap[AS];
4701 assert(AliasValueId);
4702 NameVals.push_back(AliasValueId);
4703 assert(ModuleIdMap.count(AS->modulePath()));
4704 NameVals.push_back(ModuleIdMap[AS->modulePath()]);
4705 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4706 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4707 assert(AliaseeValueId);
4708 NameVals.push_back(AliaseeValueId);
4710 // Emit the finished record.
4711 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4712 NameVals.clear();
4713 MaybeEmitOriginalName(*AS);
4715 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4716 getReferencedTypeIds(FS, ReferencedTypeIds);
4719 if (!Index.cfiFunctionDefs().empty()) {
4720 for (auto &S : Index.cfiFunctionDefs()) {
4721 if (DefOrUseGUIDs.count(
4722 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4723 NameVals.push_back(StrtabBuilder.add(S));
4724 NameVals.push_back(S.size());
4727 if (!NameVals.empty()) {
4728 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4729 NameVals.clear();
4733 if (!Index.cfiFunctionDecls().empty()) {
4734 for (auto &S : Index.cfiFunctionDecls()) {
4735 if (DefOrUseGUIDs.count(
4736 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4737 NameVals.push_back(StrtabBuilder.add(S));
4738 NameVals.push_back(S.size());
4741 if (!NameVals.empty()) {
4742 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4743 NameVals.clear();
4747 // Walk the GUIDs that were referenced, and write the
4748 // corresponding type id records.
4749 for (auto &T : ReferencedTypeIds) {
4750 auto TidIter = Index.typeIds().equal_range(T);
4751 for (auto It = TidIter.first; It != TidIter.second; ++It) {
4752 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4753 It->second.second);
4754 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4755 NameVals.clear();
4759 if (Index.getBlockCount())
4760 Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4761 ArrayRef<uint64_t>{Index.getBlockCount()});
4763 Stream.ExitBlock();
4766 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4767 /// current llvm version, and a record for the epoch number.
4768 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4769 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4771 // Write the "user readable" string identifying the bitcode producer
4772 auto Abbv = std::make_shared<BitCodeAbbrev>();
4773 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4776 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4777 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4778 "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4780 // Write the epoch version
4781 Abbv = std::make_shared<BitCodeAbbrev>();
4782 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4784 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4785 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4786 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4787 Stream.ExitBlock();
4790 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4791 // Emit the module's hash.
4792 // MODULE_CODE_HASH: [5*i32]
4793 if (GenerateHash) {
4794 uint32_t Vals[5];
4795 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4796 Buffer.size() - BlockStartPos));
4797 std::array<uint8_t, 20> Hash = Hasher.result();
4798 for (int Pos = 0; Pos < 20; Pos += 4) {
4799 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4802 // Emit the finished record.
4803 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4805 if (ModHash)
4806 // Save the written hash value.
4807 llvm::copy(Vals, std::begin(*ModHash));
4811 void ModuleBitcodeWriter::write() {
4812 writeIdentificationBlock(Stream);
4814 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4815 size_t BlockStartPos = Buffer.size();
4817 writeModuleVersion();
4819 // Emit blockinfo, which defines the standard abbreviations etc.
4820 writeBlockInfo();
4822 // Emit information describing all of the types in the module.
4823 writeTypeTable();
4825 // Emit information about attribute groups.
4826 writeAttributeGroupTable();
4828 // Emit information about parameter attributes.
4829 writeAttributeTable();
4831 writeComdats();
4833 // Emit top-level description of module, including target triple, inline asm,
4834 // descriptors for global variables, and function prototype info.
4835 writeModuleInfo();
4837 // Emit constants.
4838 writeModuleConstants();
4840 // Emit metadata kind names.
4841 writeModuleMetadataKinds();
4843 // Emit metadata.
4844 writeModuleMetadata();
4846 // Emit module-level use-lists.
4847 if (VE.shouldPreserveUseListOrder())
4848 writeUseListBlock(nullptr);
4850 writeOperandBundleTags();
4851 writeSyncScopeNames();
4853 // Emit function bodies.
4854 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4855 for (const Function &F : M)
4856 if (!F.isDeclaration())
4857 writeFunction(F, FunctionToBitcodeIndex);
4859 // Need to write after the above call to WriteFunction which populates
4860 // the summary information in the index.
4861 if (Index)
4862 writePerModuleGlobalValueSummary();
4864 writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4866 writeModuleHash(BlockStartPos);
4868 Stream.ExitBlock();
4871 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4872 uint32_t &Position) {
4873 support::endian::write32le(&Buffer[Position], Value);
4874 Position += 4;
4877 /// If generating a bc file on darwin, we have to emit a
4878 /// header and trailer to make it compatible with the system archiver. To do
4879 /// this we emit the following header, and then emit a trailer that pads the
4880 /// file out to be a multiple of 16 bytes.
4882 /// struct bc_header {
4883 /// uint32_t Magic; // 0x0B17C0DE
4884 /// uint32_t Version; // Version, currently always 0.
4885 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4886 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
4887 /// uint32_t CPUType; // CPU specifier.
4888 /// ... potentially more later ...
4889 /// };
4890 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4891 const Triple &TT) {
4892 unsigned CPUType = ~0U;
4894 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4895 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4896 // number from /usr/include/mach/machine.h. It is ok to reproduce the
4897 // specific constants here because they are implicitly part of the Darwin ABI.
4898 enum {
4899 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
4900 DARWIN_CPU_TYPE_X86 = 7,
4901 DARWIN_CPU_TYPE_ARM = 12,
4902 DARWIN_CPU_TYPE_POWERPC = 18
4905 Triple::ArchType Arch = TT.getArch();
4906 if (Arch == Triple::x86_64)
4907 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4908 else if (Arch == Triple::x86)
4909 CPUType = DARWIN_CPU_TYPE_X86;
4910 else if (Arch == Triple::ppc)
4911 CPUType = DARWIN_CPU_TYPE_POWERPC;
4912 else if (Arch == Triple::ppc64)
4913 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4914 else if (Arch == Triple::arm || Arch == Triple::thumb)
4915 CPUType = DARWIN_CPU_TYPE_ARM;
4917 // Traditional Bitcode starts after header.
4918 assert(Buffer.size() >= BWH_HeaderSize &&
4919 "Expected header size to be reserved");
4920 unsigned BCOffset = BWH_HeaderSize;
4921 unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4923 // Write the magic and version.
4924 unsigned Position = 0;
4925 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4926 writeInt32ToBuffer(0, Buffer, Position); // Version.
4927 writeInt32ToBuffer(BCOffset, Buffer, Position);
4928 writeInt32ToBuffer(BCSize, Buffer, Position);
4929 writeInt32ToBuffer(CPUType, Buffer, Position);
4931 // If the file is not a multiple of 16 bytes, insert dummy padding.
4932 while (Buffer.size() & 15)
4933 Buffer.push_back(0);
4936 /// Helper to write the header common to all bitcode files.
4937 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4938 // Emit the file header.
4939 Stream.Emit((unsigned)'B', 8);
4940 Stream.Emit((unsigned)'C', 8);
4941 Stream.Emit(0x0, 4);
4942 Stream.Emit(0xC, 4);
4943 Stream.Emit(0xE, 4);
4944 Stream.Emit(0xD, 4);
4947 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
4948 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
4949 writeBitcodeHeader(*Stream);
4952 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4954 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4955 Stream->EnterSubblock(Block, 3);
4957 auto Abbv = std::make_shared<BitCodeAbbrev>();
4958 Abbv->Add(BitCodeAbbrevOp(Record));
4959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4960 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4962 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4964 Stream->ExitBlock();
4967 void BitcodeWriter::writeSymtab() {
4968 assert(!WroteStrtab && !WroteSymtab);
4970 // If any module has module-level inline asm, we will require a registered asm
4971 // parser for the target so that we can create an accurate symbol table for
4972 // the module.
4973 for (Module *M : Mods) {
4974 if (M->getModuleInlineAsm().empty())
4975 continue;
4977 std::string Err;
4978 const Triple TT(M->getTargetTriple());
4979 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4980 if (!T || !T->hasMCAsmParser())
4981 return;
4984 WroteSymtab = true;
4985 SmallVector<char, 0> Symtab;
4986 // The irsymtab::build function may be unable to create a symbol table if the
4987 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4988 // table is not required for correctness, but we still want to be able to
4989 // write malformed modules to bitcode files, so swallow the error.
4990 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4991 consumeError(std::move(E));
4992 return;
4995 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4996 {Symtab.data(), Symtab.size()});
4999 void BitcodeWriter::writeStrtab() {
5000 assert(!WroteStrtab);
5002 std::vector<char> Strtab;
5003 StrtabBuilder.finalizeInOrder();
5004 Strtab.resize(StrtabBuilder.getSize());
5005 StrtabBuilder.write((uint8_t *)Strtab.data());
5007 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
5008 {Strtab.data(), Strtab.size()});
5010 WroteStrtab = true;
5013 void BitcodeWriter::copyStrtab(StringRef Strtab) {
5014 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
5015 WroteStrtab = true;
5018 void BitcodeWriter::writeModule(const Module &M,
5019 bool ShouldPreserveUseListOrder,
5020 const ModuleSummaryIndex *Index,
5021 bool GenerateHash, ModuleHash *ModHash) {
5022 assert(!WroteStrtab);
5024 // The Mods vector is used by irsymtab::build, which requires non-const
5025 // Modules in case it needs to materialize metadata. But the bitcode writer
5026 // requires that the module is materialized, so we can cast to non-const here,
5027 // after checking that it is in fact materialized.
5028 assert(M.isMaterialized());
5029 Mods.push_back(const_cast<Module *>(&M));
5031 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
5032 ShouldPreserveUseListOrder, Index,
5033 GenerateHash, ModHash);
5034 ModuleWriter.write();
5037 void BitcodeWriter::writeIndex(
5038 const ModuleSummaryIndex *Index,
5039 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
5040 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
5041 ModuleToSummariesForIndex);
5042 IndexWriter.write();
5045 /// Write the specified module to the specified output stream.
5046 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
5047 bool ShouldPreserveUseListOrder,
5048 const ModuleSummaryIndex *Index,
5049 bool GenerateHash, ModuleHash *ModHash) {
5050 SmallVector<char, 0> Buffer;
5051 Buffer.reserve(256*1024);
5053 // If this is darwin or another generic macho target, reserve space for the
5054 // header.
5055 Triple TT(M.getTargetTriple());
5056 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
5057 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
5059 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
5060 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
5061 ModHash);
5062 Writer.writeSymtab();
5063 Writer.writeStrtab();
5065 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
5066 emitDarwinBCHeaderAndTrailer(Buffer, TT);
5068 // Write the generated bitstream to "Out".
5069 if (!Buffer.empty())
5070 Out.write((char *)&Buffer.front(), Buffer.size());
5073 void IndexBitcodeWriter::write() {
5074 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5076 writeModuleVersion();
5078 // Write the module paths in the combined index.
5079 writeModStrings();
5081 // Write the summary combined index records.
5082 writeCombinedGlobalValueSummary();
5084 Stream.ExitBlock();
5087 // Write the specified module summary index to the given raw output stream,
5088 // where it will be written in a new bitcode block. This is used when
5089 // writing the combined index file for ThinLTO. When writing a subset of the
5090 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
5091 void llvm::writeIndexToFile(
5092 const ModuleSummaryIndex &Index, raw_ostream &Out,
5093 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
5094 SmallVector<char, 0> Buffer;
5095 Buffer.reserve(256 * 1024);
5097 BitcodeWriter Writer(Buffer);
5098 Writer.writeIndex(&Index, ModuleToSummariesForIndex);
5099 Writer.writeStrtab();
5101 Out.write((char *)&Buffer.front(), Buffer.size());
5104 namespace {
5106 /// Class to manage the bitcode writing for a thin link bitcode file.
5107 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
5108 /// ModHash is for use in ThinLTO incremental build, generated while writing
5109 /// the module bitcode file.
5110 const ModuleHash *ModHash;
5112 public:
5113 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
5114 BitstreamWriter &Stream,
5115 const ModuleSummaryIndex &Index,
5116 const ModuleHash &ModHash)
5117 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
5118 /*ShouldPreserveUseListOrder=*/false, &Index),
5119 ModHash(&ModHash) {}
5121 void write();
5123 private:
5124 void writeSimplifiedModuleInfo();
5127 } // end anonymous namespace
5129 // This function writes a simpilified module info for thin link bitcode file.
5130 // It only contains the source file name along with the name(the offset and
5131 // size in strtab) and linkage for global values. For the global value info
5132 // entry, in order to keep linkage at offset 5, there are three zeros used
5133 // as padding.
5134 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
5135 SmallVector<unsigned, 64> Vals;
5136 // Emit the module's source file name.
5138 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
5139 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
5140 if (Bits == SE_Char6)
5141 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
5142 else if (Bits == SE_Fixed7)
5143 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
5145 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5146 auto Abbv = std::make_shared<BitCodeAbbrev>();
5147 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
5148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
5149 Abbv->Add(AbbrevOpToUse);
5150 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
5152 for (const auto P : M.getSourceFileName())
5153 Vals.push_back((unsigned char)P);
5155 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
5156 Vals.clear();
5159 // Emit the global variable information.
5160 for (const GlobalVariable &GV : M.globals()) {
5161 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
5162 Vals.push_back(StrtabBuilder.add(GV.getName()));
5163 Vals.push_back(GV.getName().size());
5164 Vals.push_back(0);
5165 Vals.push_back(0);
5166 Vals.push_back(0);
5167 Vals.push_back(getEncodedLinkage(GV));
5169 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
5170 Vals.clear();
5173 // Emit the function proto information.
5174 for (const Function &F : M) {
5175 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
5176 Vals.push_back(StrtabBuilder.add(F.getName()));
5177 Vals.push_back(F.getName().size());
5178 Vals.push_back(0);
5179 Vals.push_back(0);
5180 Vals.push_back(0);
5181 Vals.push_back(getEncodedLinkage(F));
5183 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
5184 Vals.clear();
5187 // Emit the alias information.
5188 for (const GlobalAlias &A : M.aliases()) {
5189 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5190 Vals.push_back(StrtabBuilder.add(A.getName()));
5191 Vals.push_back(A.getName().size());
5192 Vals.push_back(0);
5193 Vals.push_back(0);
5194 Vals.push_back(0);
5195 Vals.push_back(getEncodedLinkage(A));
5197 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
5198 Vals.clear();
5201 // Emit the ifunc information.
5202 for (const GlobalIFunc &I : M.ifuncs()) {
5203 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5204 Vals.push_back(StrtabBuilder.add(I.getName()));
5205 Vals.push_back(I.getName().size());
5206 Vals.push_back(0);
5207 Vals.push_back(0);
5208 Vals.push_back(0);
5209 Vals.push_back(getEncodedLinkage(I));
5211 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
5212 Vals.clear();
5216 void ThinLinkBitcodeWriter::write() {
5217 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5219 writeModuleVersion();
5221 writeSimplifiedModuleInfo();
5223 writePerModuleGlobalValueSummary();
5225 // Write module hash.
5226 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
5228 Stream.ExitBlock();
5231 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
5232 const ModuleSummaryIndex &Index,
5233 const ModuleHash &ModHash) {
5234 assert(!WroteStrtab);
5236 // The Mods vector is used by irsymtab::build, which requires non-const
5237 // Modules in case it needs to materialize metadata. But the bitcode writer
5238 // requires that the module is materialized, so we can cast to non-const here,
5239 // after checking that it is in fact materialized.
5240 assert(M.isMaterialized());
5241 Mods.push_back(const_cast<Module *>(&M));
5243 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
5244 ModHash);
5245 ThinLinkWriter.write();
5248 // Write the specified thin link bitcode file to the given raw output stream,
5249 // where it will be written in a new bitcode block. This is used when
5250 // writing the per-module index file for ThinLTO.
5251 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
5252 const ModuleSummaryIndex &Index,
5253 const ModuleHash &ModHash) {
5254 SmallVector<char, 0> Buffer;
5255 Buffer.reserve(256 * 1024);
5257 BitcodeWriter Writer(Buffer);
5258 Writer.writeThinLinkBitcode(M, Index, ModHash);
5259 Writer.writeSymtab();
5260 Writer.writeStrtab();
5262 Out.write((char *)&Buffer.front(), Buffer.size());
5265 static const char *getSectionNameForBitcode(const Triple &T) {
5266 switch (T.getObjectFormat()) {
5267 case Triple::MachO:
5268 return "__LLVM,__bitcode";
5269 case Triple::COFF:
5270 case Triple::ELF:
5271 case Triple::Wasm:
5272 case Triple::UnknownObjectFormat:
5273 return ".llvmbc";
5274 case Triple::GOFF:
5275 llvm_unreachable("GOFF is not yet implemented");
5276 break;
5277 case Triple::SPIRV:
5278 llvm_unreachable("SPIRV is not yet implemented");
5279 break;
5280 case Triple::XCOFF:
5281 llvm_unreachable("XCOFF is not yet implemented");
5282 break;
5283 case Triple::DXContainer:
5284 llvm_unreachable("DXContainer is not yet implemented");
5285 break;
5287 llvm_unreachable("Unimplemented ObjectFormatType");
5290 static const char *getSectionNameForCommandline(const Triple &T) {
5291 switch (T.getObjectFormat()) {
5292 case Triple::MachO:
5293 return "__LLVM,__cmdline";
5294 case Triple::COFF:
5295 case Triple::ELF:
5296 case Triple::Wasm:
5297 case Triple::UnknownObjectFormat:
5298 return ".llvmcmd";
5299 case Triple::GOFF:
5300 llvm_unreachable("GOFF is not yet implemented");
5301 break;
5302 case Triple::SPIRV:
5303 llvm_unreachable("SPIRV is not yet implemented");
5304 break;
5305 case Triple::XCOFF:
5306 llvm_unreachable("XCOFF is not yet implemented");
5307 break;
5308 case Triple::DXContainer:
5309 llvm_unreachable("DXC is not yet implemented");
5310 break;
5312 llvm_unreachable("Unimplemented ObjectFormatType");
5315 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
5316 bool EmbedBitcode, bool EmbedCmdline,
5317 const std::vector<uint8_t> &CmdArgs) {
5318 // Save llvm.compiler.used and remove it.
5319 SmallVector<Constant *, 2> UsedArray;
5320 SmallVector<GlobalValue *, 4> UsedGlobals;
5321 Type *UsedElementType = PointerType::getUnqual(M.getContext());
5322 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
5323 for (auto *GV : UsedGlobals) {
5324 if (GV->getName() != "llvm.embedded.module" &&
5325 GV->getName() != "llvm.cmdline")
5326 UsedArray.push_back(
5327 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5329 if (Used)
5330 Used->eraseFromParent();
5332 // Embed the bitcode for the llvm module.
5333 std::string Data;
5334 ArrayRef<uint8_t> ModuleData;
5335 Triple T(M.getTargetTriple());
5337 if (EmbedBitcode) {
5338 if (Buf.getBufferSize() == 0 ||
5339 !isBitcode((const unsigned char *)Buf.getBufferStart(),
5340 (const unsigned char *)Buf.getBufferEnd())) {
5341 // If the input is LLVM Assembly, bitcode is produced by serializing
5342 // the module. Use-lists order need to be preserved in this case.
5343 llvm::raw_string_ostream OS(Data);
5344 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
5345 ModuleData =
5346 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
5347 } else
5348 // If the input is LLVM bitcode, write the input byte stream directly.
5349 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
5350 Buf.getBufferSize());
5352 llvm::Constant *ModuleConstant =
5353 llvm::ConstantDataArray::get(M.getContext(), ModuleData);
5354 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
5355 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
5356 ModuleConstant);
5357 GV->setSection(getSectionNameForBitcode(T));
5358 // Set alignment to 1 to prevent padding between two contributions from input
5359 // sections after linking.
5360 GV->setAlignment(Align(1));
5361 UsedArray.push_back(
5362 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5363 if (llvm::GlobalVariable *Old =
5364 M.getGlobalVariable("llvm.embedded.module", true)) {
5365 assert(Old->hasZeroLiveUses() &&
5366 "llvm.embedded.module can only be used once in llvm.compiler.used");
5367 GV->takeName(Old);
5368 Old->eraseFromParent();
5369 } else {
5370 GV->setName("llvm.embedded.module");
5373 // Skip if only bitcode needs to be embedded.
5374 if (EmbedCmdline) {
5375 // Embed command-line options.
5376 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5377 CmdArgs.size());
5378 llvm::Constant *CmdConstant =
5379 llvm::ConstantDataArray::get(M.getContext(), CmdData);
5380 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5381 llvm::GlobalValue::PrivateLinkage,
5382 CmdConstant);
5383 GV->setSection(getSectionNameForCommandline(T));
5384 GV->setAlignment(Align(1));
5385 UsedArray.push_back(
5386 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5387 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
5388 assert(Old->hasZeroLiveUses() &&
5389 "llvm.cmdline can only be used once in llvm.compiler.used");
5390 GV->takeName(Old);
5391 Old->eraseFromParent();
5392 } else {
5393 GV->setName("llvm.cmdline");
5397 if (UsedArray.empty())
5398 return;
5400 // Recreate llvm.compiler.used.
5401 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
5402 auto *NewUsed = new GlobalVariable(
5403 M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5404 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
5405 NewUsed->setSection("llvm.metadata");