1 //===-- primary32.h ---------------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef SCUDO_PRIMARY32_H_
10 #define SCUDO_PRIMARY32_H_
12 #include "allocator_common.h"
16 #include "local_cache.h"
21 #include "string_utils.h"
22 #include "thread_annotations.h"
26 // SizeClassAllocator32 is an allocator for 32 or 64-bit address space.
28 // It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes
29 // boundary, and keeps a bytemap of the mappable address space to track the size
30 // class they are associated with.
32 // Mapped regions are split into equally sized Blocks according to the size
33 // class they belong to, and the associated pointers are shuffled to prevent any
34 // predictable address pattern (the predictability increases with the block
37 // Regions for size class 0 are special and used to hold TransferBatches, which
38 // allow to transfer arrays of pointers from the global size class freelist to
39 // the thread specific freelist for said class, and back.
41 // Memory used by this allocator is never unmapped but can be partially
42 // reclaimed if the platform allows for it.
44 template <typename Config
> class SizeClassAllocator32
{
46 typedef typename
Config::Primary::CompactPtrT CompactPtrT
;
47 typedef typename
Config::Primary::SizeClassMap SizeClassMap
;
48 static const uptr GroupSizeLog
= Config::Primary::GroupSizeLog
;
49 // The bytemap can only track UINT8_MAX - 1 classes.
50 static_assert(SizeClassMap::LargestClassId
<= (UINT8_MAX
- 1), "");
51 // Regions should be large enough to hold the largest Block.
52 static_assert((1UL << Config::Primary::RegionSizeLog
) >=
53 SizeClassMap::MaxSize
,
55 typedef SizeClassAllocator32
<Config
> ThisT
;
56 typedef SizeClassAllocatorLocalCache
<ThisT
> CacheT
;
57 typedef TransferBatch
<ThisT
> TransferBatchT
;
58 typedef BatchGroup
<ThisT
> BatchGroupT
;
60 static_assert(sizeof(BatchGroupT
) <= sizeof(TransferBatchT
),
61 "BatchGroupT uses the same class size as TransferBatchT");
63 static uptr
getSizeByClassId(uptr ClassId
) {
64 return (ClassId
== SizeClassMap::BatchClassId
)
65 ? sizeof(TransferBatchT
)
66 : SizeClassMap::getSizeByClassId(ClassId
);
69 static bool canAllocate(uptr Size
) { return Size
<= SizeClassMap::MaxSize
; }
71 void init(s32 ReleaseToOsInterval
) NO_THREAD_SAFETY_ANALYSIS
{
73 reportError("SizeClassAllocator32 is not supported on Fuchsia");
76 reportError("SizeClassAllocator32 is not supported on Trusty");
78 DCHECK(isAligned(reinterpret_cast<uptr
>(this), alignof(ThisT
)));
79 PossibleRegions
.init();
81 const u64 Time
= getMonotonicTimeFast();
82 if (!getRandom(reinterpret_cast<void *>(&Seed
), sizeof(Seed
)))
83 Seed
= static_cast<u32
>(
84 Time
^ (reinterpret_cast<uptr
>(SizeClassInfoArray
) >> 6));
85 for (uptr I
= 0; I
< NumClasses
; I
++) {
86 SizeClassInfo
*Sci
= getSizeClassInfo(I
);
87 Sci
->RandState
= getRandomU32(&Seed
);
88 // Sci->MaxRegionIndex is already initialized to 0.
89 Sci
->MinRegionIndex
= NumRegions
;
90 Sci
->ReleaseInfo
.LastReleaseAtNs
= Time
;
92 setOption(Option::ReleaseInterval
, static_cast<sptr
>(ReleaseToOsInterval
));
95 void unmapTestOnly() {
97 ScopedLock
L(RegionsStashMutex
);
98 while (NumberOfStashedRegions
> 0) {
99 unmap(reinterpret_cast<void *>(RegionsStash
[--NumberOfStashedRegions
]),
104 uptr MinRegionIndex
= NumRegions
, MaxRegionIndex
= 0;
105 for (uptr I
= 0; I
< NumClasses
; I
++) {
106 SizeClassInfo
*Sci
= getSizeClassInfo(I
);
107 ScopedLock
L(Sci
->Mutex
);
108 if (Sci
->MinRegionIndex
< MinRegionIndex
)
109 MinRegionIndex
= Sci
->MinRegionIndex
;
110 if (Sci
->MaxRegionIndex
> MaxRegionIndex
)
111 MaxRegionIndex
= Sci
->MaxRegionIndex
;
115 ScopedLock
L(ByteMapMutex
);
116 for (uptr I
= MinRegionIndex
; I
<= MaxRegionIndex
; I
++)
117 if (PossibleRegions
[I
])
118 unmap(reinterpret_cast<void *>(I
* RegionSize
), RegionSize
);
119 PossibleRegions
.unmapTestOnly();
122 // When all blocks are freed, it has to be the same size as `AllocatedUser`.
123 void verifyAllBlocksAreReleasedTestOnly() {
124 // `BatchGroup` and `TransferBatch` also use the blocks from BatchClass.
125 uptr BatchClassUsedInFreeLists
= 0;
126 for (uptr I
= 0; I
< NumClasses
; I
++) {
127 // We have to count BatchClassUsedInFreeLists in other regions first.
128 if (I
== SizeClassMap::BatchClassId
)
130 SizeClassInfo
*Sci
= getSizeClassInfo(I
);
131 ScopedLock
L1(Sci
->Mutex
);
132 uptr TotalBlocks
= 0;
133 for (BatchGroupT
&BG
: Sci
->FreeListInfo
.BlockList
) {
134 // `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`.
135 BatchClassUsedInFreeLists
+= BG
.Batches
.size() + 1;
136 for (const auto &It
: BG
.Batches
)
137 TotalBlocks
+= It
.getCount();
140 const uptr BlockSize
= getSizeByClassId(I
);
141 DCHECK_EQ(TotalBlocks
, Sci
->AllocatedUser
/ BlockSize
);
142 DCHECK_EQ(Sci
->FreeListInfo
.PushedBlocks
, Sci
->FreeListInfo
.PoppedBlocks
);
145 SizeClassInfo
*Sci
= getSizeClassInfo(SizeClassMap::BatchClassId
);
146 ScopedLock
L1(Sci
->Mutex
);
147 uptr TotalBlocks
= 0;
148 for (BatchGroupT
&BG
: Sci
->FreeListInfo
.BlockList
) {
149 if (LIKELY(!BG
.Batches
.empty())) {
150 for (const auto &It
: BG
.Batches
)
151 TotalBlocks
+= It
.getCount();
153 // `BatchGroup` with empty freelist doesn't have `TransferBatch` record
159 const uptr BlockSize
= getSizeByClassId(SizeClassMap::BatchClassId
);
160 DCHECK_EQ(TotalBlocks
+ BatchClassUsedInFreeLists
,
161 Sci
->AllocatedUser
/ BlockSize
);
162 const uptr BlocksInUse
=
163 Sci
->FreeListInfo
.PoppedBlocks
- Sci
->FreeListInfo
.PushedBlocks
;
164 DCHECK_EQ(BlocksInUse
, BatchClassUsedInFreeLists
);
167 CompactPtrT
compactPtr(UNUSED uptr ClassId
, uptr Ptr
) const {
168 return static_cast<CompactPtrT
>(Ptr
);
171 void *decompactPtr(UNUSED uptr ClassId
, CompactPtrT CompactPtr
) const {
172 return reinterpret_cast<void *>(static_cast<uptr
>(CompactPtr
));
175 uptr
compactPtrGroupBase(CompactPtrT CompactPtr
) {
176 const uptr Mask
= (static_cast<uptr
>(1) << GroupSizeLog
) - 1;
177 return CompactPtr
& ~Mask
;
180 uptr
decompactGroupBase(uptr CompactPtrGroupBase
) {
181 return CompactPtrGroupBase
;
184 ALWAYS_INLINE
static bool isSmallBlock(uptr BlockSize
) {
185 const uptr PageSize
= getPageSizeCached();
186 return BlockSize
< PageSize
/ 16U;
189 ALWAYS_INLINE
static bool isLargeBlock(uptr BlockSize
) {
190 const uptr PageSize
= getPageSizeCached();
191 return BlockSize
> PageSize
;
194 // Note that the `MaxBlockCount` will be used when we support arbitrary blocks
195 // count. Now it's the same as the number of blocks stored in the
197 u16
popBlocks(CacheT
*C
, uptr ClassId
, CompactPtrT
*ToArray
,
198 UNUSED
const u16 MaxBlockCount
) {
199 TransferBatchT
*B
= popBatch(C
, ClassId
);
203 const u16 Count
= B
->getCount();
204 DCHECK_GT(Count
, 0U);
205 B
->moveToArray(ToArray
);
207 if (ClassId
!= SizeClassMap::BatchClassId
)
208 C
->deallocate(SizeClassMap::BatchClassId
, B
);
213 TransferBatchT
*popBatch(CacheT
*C
, uptr ClassId
) {
214 DCHECK_LT(ClassId
, NumClasses
);
215 SizeClassInfo
*Sci
= getSizeClassInfo(ClassId
);
216 ScopedLock
L(Sci
->Mutex
);
217 TransferBatchT
*B
= popBatchImpl(C
, ClassId
, Sci
);
219 if (UNLIKELY(!populateFreeList(C
, ClassId
, Sci
)))
221 B
= popBatchImpl(C
, ClassId
, Sci
);
222 // if `populateFreeList` succeeded, we are supposed to get free blocks.
223 DCHECK_NE(B
, nullptr);
228 // Push the array of free blocks to the designated batch group.
229 void pushBlocks(CacheT
*C
, uptr ClassId
, CompactPtrT
*Array
, u32 Size
) {
230 DCHECK_LT(ClassId
, NumClasses
);
233 SizeClassInfo
*Sci
= getSizeClassInfo(ClassId
);
234 if (ClassId
== SizeClassMap::BatchClassId
) {
235 ScopedLock
L(Sci
->Mutex
);
236 pushBatchClassBlocks(Sci
, Array
, Size
);
240 // TODO(chiahungduan): Consider not doing grouping if the group size is not
241 // greater than the block size with a certain scale.
243 // Sort the blocks so that blocks belonging to the same group can be pushed
245 bool SameGroup
= true;
246 for (u32 I
= 1; I
< Size
; ++I
) {
247 if (compactPtrGroupBase(Array
[I
- 1]) != compactPtrGroupBase(Array
[I
]))
249 CompactPtrT Cur
= Array
[I
];
252 compactPtrGroupBase(Cur
) < compactPtrGroupBase(Array
[J
- 1])) {
253 Array
[J
] = Array
[J
- 1];
259 ScopedLock
L(Sci
->Mutex
);
260 pushBlocksImpl(C
, ClassId
, Sci
, Array
, Size
, SameGroup
);
263 void disable() NO_THREAD_SAFETY_ANALYSIS
{
264 // The BatchClassId must be locked last since other classes can use it.
265 for (sptr I
= static_cast<sptr
>(NumClasses
) - 1; I
>= 0; I
--) {
266 if (static_cast<uptr
>(I
) == SizeClassMap::BatchClassId
)
268 getSizeClassInfo(static_cast<uptr
>(I
))->Mutex
.lock();
270 getSizeClassInfo(SizeClassMap::BatchClassId
)->Mutex
.lock();
271 RegionsStashMutex
.lock();
275 void enable() NO_THREAD_SAFETY_ANALYSIS
{
276 ByteMapMutex
.unlock();
277 RegionsStashMutex
.unlock();
278 getSizeClassInfo(SizeClassMap::BatchClassId
)->Mutex
.unlock();
279 for (uptr I
= 0; I
< NumClasses
; I
++) {
280 if (I
== SizeClassMap::BatchClassId
)
282 getSizeClassInfo(I
)->Mutex
.unlock();
286 template <typename F
> void iterateOverBlocks(F Callback
) {
287 uptr MinRegionIndex
= NumRegions
, MaxRegionIndex
= 0;
288 for (uptr I
= 0; I
< NumClasses
; I
++) {
289 SizeClassInfo
*Sci
= getSizeClassInfo(I
);
290 // TODO: The call of `iterateOverBlocks` requires disabling
291 // SizeClassAllocator32. We may consider locking each region on demand
293 Sci
->Mutex
.assertHeld();
294 if (Sci
->MinRegionIndex
< MinRegionIndex
)
295 MinRegionIndex
= Sci
->MinRegionIndex
;
296 if (Sci
->MaxRegionIndex
> MaxRegionIndex
)
297 MaxRegionIndex
= Sci
->MaxRegionIndex
;
300 // SizeClassAllocator32 is disabled, i.e., ByteMapMutex is held.
301 ByteMapMutex
.assertHeld();
303 for (uptr I
= MinRegionIndex
; I
<= MaxRegionIndex
; I
++) {
304 if (PossibleRegions
[I
] &&
305 (PossibleRegions
[I
] - 1U) != SizeClassMap::BatchClassId
) {
306 const uptr BlockSize
= getSizeByClassId(PossibleRegions
[I
] - 1U);
307 const uptr From
= I
* RegionSize
;
308 const uptr To
= From
+ (RegionSize
/ BlockSize
) * BlockSize
;
309 for (uptr Block
= From
; Block
< To
; Block
+= BlockSize
)
315 void getStats(ScopedString
*Str
) {
316 // TODO(kostyak): get the RSS per region.
317 uptr TotalMapped
= 0;
318 uptr PoppedBlocks
= 0;
319 uptr PushedBlocks
= 0;
320 for (uptr I
= 0; I
< NumClasses
; I
++) {
321 SizeClassInfo
*Sci
= getSizeClassInfo(I
);
322 ScopedLock
L(Sci
->Mutex
);
323 TotalMapped
+= Sci
->AllocatedUser
;
324 PoppedBlocks
+= Sci
->FreeListInfo
.PoppedBlocks
;
325 PushedBlocks
+= Sci
->FreeListInfo
.PushedBlocks
;
327 Str
->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; "
329 TotalMapped
>> 20, PoppedBlocks
, PoppedBlocks
- PushedBlocks
);
330 for (uptr I
= 0; I
< NumClasses
; I
++) {
331 SizeClassInfo
*Sci
= getSizeClassInfo(I
);
332 ScopedLock
L(Sci
->Mutex
);
333 getStats(Str
, I
, Sci
);
337 void getFragmentationInfo(ScopedString
*Str
) {
339 "Fragmentation Stats: SizeClassAllocator32: page size = %zu bytes\n",
340 getPageSizeCached());
342 for (uptr I
= 1; I
< NumClasses
; I
++) {
343 SizeClassInfo
*Sci
= getSizeClassInfo(I
);
344 ScopedLock
L(Sci
->Mutex
);
345 getSizeClassFragmentationInfo(Sci
, I
, Str
);
349 bool setOption(Option O
, sptr Value
) {
350 if (O
== Option::ReleaseInterval
) {
351 const s32 Interval
= Max(Min(static_cast<s32
>(Value
),
352 Config::Primary::MaxReleaseToOsIntervalMs
),
353 Config::Primary::MinReleaseToOsIntervalMs
);
354 atomic_store_relaxed(&ReleaseToOsIntervalMs
, Interval
);
357 // Not supported by the Primary, but not an error either.
361 uptr
tryReleaseToOS(uptr ClassId
, ReleaseToOS ReleaseType
) {
362 SizeClassInfo
*Sci
= getSizeClassInfo(ClassId
);
363 // TODO: Once we have separate locks like primary64, we may consider using
364 // tryLock() as well.
365 ScopedLock
L(Sci
->Mutex
);
366 return releaseToOSMaybe(Sci
, ClassId
, ReleaseType
);
369 uptr
releaseToOS(ReleaseToOS ReleaseType
) {
370 uptr TotalReleasedBytes
= 0;
371 for (uptr I
= 0; I
< NumClasses
; I
++) {
372 if (I
== SizeClassMap::BatchClassId
)
374 SizeClassInfo
*Sci
= getSizeClassInfo(I
);
375 ScopedLock
L(Sci
->Mutex
);
376 TotalReleasedBytes
+= releaseToOSMaybe(Sci
, I
, ReleaseType
);
378 return TotalReleasedBytes
;
381 const char *getRegionInfoArrayAddress() const { return nullptr; }
382 static uptr
getRegionInfoArraySize() { return 0; }
384 static BlockInfo
findNearestBlock(UNUSED
const char *RegionInfoData
,
389 AtomicOptions Options
;
392 static const uptr NumClasses
= SizeClassMap::NumClasses
;
393 static const uptr RegionSize
= 1UL << Config::Primary::RegionSizeLog
;
394 static const uptr NumRegions
=
395 SCUDO_MMAP_RANGE_SIZE
>> Config::Primary::RegionSizeLog
;
396 static const u32 MaxNumBatches
= SCUDO_ANDROID
? 4U : 8U;
397 typedef FlatByteMap
<NumRegions
> ByteMap
;
399 struct ReleaseToOsInfo
{
400 uptr BytesInFreeListAtLastCheckpoint
;
402 uptr LastReleasedBytes
;
407 SinglyLinkedList
<BatchGroupT
> BlockList
= {};
408 uptr PoppedBlocks
= 0;
409 uptr PushedBlocks
= 0;
412 struct alignas(SCUDO_CACHE_LINE_SIZE
) SizeClassInfo
{
414 BlocksInfo FreeListInfo
GUARDED_BY(Mutex
);
415 uptr CurrentRegion
GUARDED_BY(Mutex
);
416 uptr CurrentRegionAllocated
GUARDED_BY(Mutex
);
418 uptr AllocatedUser
GUARDED_BY(Mutex
);
419 // Lowest & highest region index allocated for this size class, to avoid
420 // looping through the whole NumRegions.
421 uptr MinRegionIndex
GUARDED_BY(Mutex
);
422 uptr MaxRegionIndex
GUARDED_BY(Mutex
);
423 ReleaseToOsInfo ReleaseInfo
GUARDED_BY(Mutex
);
425 static_assert(sizeof(SizeClassInfo
) % SCUDO_CACHE_LINE_SIZE
== 0, "");
427 uptr
computeRegionId(uptr Mem
) {
428 const uptr Id
= Mem
>> Config::Primary::RegionSizeLog
;
429 CHECK_LT(Id
, NumRegions
);
433 uptr
allocateRegionSlow() {
434 uptr MapSize
= 2 * RegionSize
;
435 const uptr MapBase
= reinterpret_cast<uptr
>(
436 map(nullptr, MapSize
, "scudo:primary", MAP_ALLOWNOMEM
));
439 const uptr MapEnd
= MapBase
+ MapSize
;
440 uptr Region
= MapBase
;
441 if (isAligned(Region
, RegionSize
)) {
442 ScopedLock
L(RegionsStashMutex
);
443 if (NumberOfStashedRegions
< MaxStashedRegions
)
444 RegionsStash
[NumberOfStashedRegions
++] = MapBase
+ RegionSize
;
446 MapSize
= RegionSize
;
448 Region
= roundUp(MapBase
, RegionSize
);
449 unmap(reinterpret_cast<void *>(MapBase
), Region
- MapBase
);
450 MapSize
= RegionSize
;
452 const uptr End
= Region
+ MapSize
;
454 unmap(reinterpret_cast<void *>(End
), MapEnd
- End
);
456 DCHECK_EQ(Region
% RegionSize
, 0U);
457 static_assert(Config::Primary::RegionSizeLog
== GroupSizeLog
,
458 "Memory group should be the same size as Region");
463 uptr
allocateRegion(SizeClassInfo
*Sci
, uptr ClassId
) REQUIRES(Sci
->Mutex
) {
464 DCHECK_LT(ClassId
, NumClasses
);
467 ScopedLock
L(RegionsStashMutex
);
468 if (NumberOfStashedRegions
> 0)
469 Region
= RegionsStash
[--NumberOfStashedRegions
];
472 Region
= allocateRegionSlow();
473 if (LIKELY(Region
)) {
474 // Sci->Mutex is held by the caller, updating the Min/Max is safe.
475 const uptr RegionIndex
= computeRegionId(Region
);
476 if (RegionIndex
< Sci
->MinRegionIndex
)
477 Sci
->MinRegionIndex
= RegionIndex
;
478 if (RegionIndex
> Sci
->MaxRegionIndex
)
479 Sci
->MaxRegionIndex
= RegionIndex
;
480 ScopedLock
L(ByteMapMutex
);
481 PossibleRegions
.set(RegionIndex
, static_cast<u8
>(ClassId
+ 1U));
486 SizeClassInfo
*getSizeClassInfo(uptr ClassId
) {
487 DCHECK_LT(ClassId
, NumClasses
);
488 return &SizeClassInfoArray
[ClassId
];
491 void pushBatchClassBlocks(SizeClassInfo
*Sci
, CompactPtrT
*Array
, u32 Size
)
492 REQUIRES(Sci
->Mutex
) {
493 DCHECK_EQ(Sci
, getSizeClassInfo(SizeClassMap::BatchClassId
));
495 // Free blocks are recorded by TransferBatch in freelist for all
496 // size-classes. In addition, TransferBatch is allocated from BatchClassId.
497 // In order not to use additional block to record the free blocks in
498 // BatchClassId, they are self-contained. I.e., A TransferBatch records the
499 // block address of itself. See the figure below:
501 // TransferBatch at 0xABCD
502 // +----------------------------+
503 // | Free blocks' addr |
504 // | +------+------+------+ |
505 // | |0xABCD|... |... | |
506 // | +------+------+------+ |
507 // +----------------------------+
509 // When we allocate all the free blocks in the TransferBatch, the block used
510 // by TransferBatch is also free for use. We don't need to recycle the
511 // TransferBatch. Note that the correctness is maintained by the invariant,
513 // The unit of each popBatch() request is entire TransferBatch. Return
514 // part of the blocks in a TransferBatch is invalid.
516 // This ensures that TransferBatch won't leak the address itself while it's
517 // still holding other valid data.
519 // Besides, BatchGroup is also allocated from BatchClassId and has its
520 // address recorded in the TransferBatch too. To maintain the correctness,
522 // The address of BatchGroup is always recorded in the last TransferBatch
523 // in the freelist (also imply that the freelist should only be
524 // updated with push_front). Once the last TransferBatch is popped,
525 // the block used by BatchGroup is also free for use.
527 // With this approach, the blocks used by BatchGroup and TransferBatch are
528 // reusable and don't need additional space for them.
530 Sci
->FreeListInfo
.PushedBlocks
+= Size
;
531 BatchGroupT
*BG
= Sci
->FreeListInfo
.BlockList
.front();
534 // Construct `BatchGroup` on the last element.
535 BG
= reinterpret_cast<BatchGroupT
*>(
536 decompactPtr(SizeClassMap::BatchClassId
, Array
[Size
- 1]));
539 // BatchClass hasn't enabled memory group. Use `0` to indicate there's no
540 // memory group here.
541 BG
->CompactPtrGroupBase
= 0;
542 // `BG` is also the block of BatchClassId. Note that this is different
543 // from `CreateGroup` in `pushBlocksImpl`
544 BG
->PushedBlocks
= 1;
545 BG
->BytesInBGAtLastCheckpoint
= 0;
546 BG
->MaxCachedPerBatch
=
547 CacheT::getMaxCached(getSizeByClassId(SizeClassMap::BatchClassId
));
549 Sci
->FreeListInfo
.BlockList
.push_front(BG
);
552 if (UNLIKELY(Size
== 0))
555 // This happens under 2 cases.
556 // 1. just allocated a new `BatchGroup`.
557 // 2. Only 1 block is pushed when the freelist is empty.
558 if (BG
->Batches
.empty()) {
559 // Construct the `TransferBatch` on the last element.
560 TransferBatchT
*TB
= reinterpret_cast<TransferBatchT
*>(
561 decompactPtr(SizeClassMap::BatchClassId
, Array
[Size
- 1]));
563 // As mentioned above, addresses of `TransferBatch` and `BatchGroup` are
564 // recorded in the TransferBatch.
565 TB
->add(Array
[Size
- 1]);
567 compactPtr(SizeClassMap::BatchClassId
, reinterpret_cast<uptr
>(BG
)));
569 DCHECK_EQ(BG
->PushedBlocks
, 1U);
570 // `TB` is also the block of BatchClassId.
571 BG
->PushedBlocks
+= 1;
572 BG
->Batches
.push_front(TB
);
575 TransferBatchT
*CurBatch
= BG
->Batches
.front();
576 DCHECK_NE(CurBatch
, nullptr);
578 for (u32 I
= 0; I
< Size
;) {
580 static_cast<u16
>(BG
->MaxCachedPerBatch
- CurBatch
->getCount());
581 if (UnusedSlots
== 0) {
582 CurBatch
= reinterpret_cast<TransferBatchT
*>(
583 decompactPtr(SizeClassMap::BatchClassId
, Array
[I
]));
586 CurBatch
->add(Array
[I
]);
588 // TODO(chiahungduan): Avoid the use of push_back() in `Batches` of
590 BG
->Batches
.push_front(CurBatch
);
591 UnusedSlots
= static_cast<u16
>(BG
->MaxCachedPerBatch
- 1);
593 // `UnusedSlots` is u16 so the result will be also fit in u16.
594 const u16 AppendSize
= static_cast<u16
>(Min
<u32
>(UnusedSlots
, Size
- I
));
595 CurBatch
->appendFromArray(&Array
[I
], AppendSize
);
599 BG
->PushedBlocks
+= Size
;
601 // Push the blocks to their batch group. The layout will be like,
603 // FreeListInfo.BlockList - > BG -> BG -> BG
611 // Each BlockGroup(BG) will associate with unique group id and the free blocks
612 // are managed by a list of TransferBatch(TB). To reduce the time of inserting
613 // blocks, BGs are sorted and the input `Array` are supposed to be sorted so
614 // that we can get better performance of maintaining sorted property.
615 // Use `SameGroup=true` to indicate that all blocks in the array are from the
616 // same group then we will skip checking the group id of each block.
618 // The region mutex needs to be held while calling this method.
619 void pushBlocksImpl(CacheT
*C
, uptr ClassId
, SizeClassInfo
*Sci
,
620 CompactPtrT
*Array
, u32 Size
, bool SameGroup
= false)
621 REQUIRES(Sci
->Mutex
) {
622 DCHECK_NE(ClassId
, SizeClassMap::BatchClassId
);
625 auto CreateGroup
= [&](uptr CompactPtrGroupBase
) {
627 reinterpret_cast<BatchGroupT
*>(C
->getBatchClassBlock());
630 reinterpret_cast<TransferBatchT
*>(C
->getBatchClassBlock());
633 BG
->CompactPtrGroupBase
= CompactPtrGroupBase
;
634 BG
->Batches
.push_front(TB
);
635 BG
->PushedBlocks
= 0;
636 BG
->BytesInBGAtLastCheckpoint
= 0;
637 BG
->MaxCachedPerBatch
= CacheT::getMaxCached(getSizeByClassId(ClassId
));
642 auto InsertBlocks
= [&](BatchGroupT
*BG
, CompactPtrT
*Array
, u32 Size
) {
643 SinglyLinkedList
<TransferBatchT
> &Batches
= BG
->Batches
;
644 TransferBatchT
*CurBatch
= Batches
.front();
645 DCHECK_NE(CurBatch
, nullptr);
647 for (u32 I
= 0; I
< Size
;) {
648 DCHECK_GE(BG
->MaxCachedPerBatch
, CurBatch
->getCount());
650 static_cast<u16
>(BG
->MaxCachedPerBatch
- CurBatch
->getCount());
651 if (UnusedSlots
== 0) {
653 reinterpret_cast<TransferBatchT
*>(C
->getBatchClassBlock());
655 Batches
.push_front(CurBatch
);
656 UnusedSlots
= BG
->MaxCachedPerBatch
;
658 // `UnusedSlots` is u16 so the result will be also fit in u16.
659 u16 AppendSize
= static_cast<u16
>(Min
<u32
>(UnusedSlots
, Size
- I
));
660 CurBatch
->appendFromArray(&Array
[I
], AppendSize
);
664 BG
->PushedBlocks
+= Size
;
667 Sci
->FreeListInfo
.PushedBlocks
+= Size
;
668 BatchGroupT
*Cur
= Sci
->FreeListInfo
.BlockList
.front();
670 // In the following, `Cur` always points to the BatchGroup for blocks that
671 // will be pushed next. `Prev` is the element right before `Cur`.
672 BatchGroupT
*Prev
= nullptr;
674 while (Cur
!= nullptr &&
675 compactPtrGroupBase(Array
[0]) > Cur
->CompactPtrGroupBase
) {
680 if (Cur
== nullptr ||
681 compactPtrGroupBase(Array
[0]) != Cur
->CompactPtrGroupBase
) {
682 Cur
= CreateGroup(compactPtrGroupBase(Array
[0]));
684 Sci
->FreeListInfo
.BlockList
.push_front(Cur
);
686 Sci
->FreeListInfo
.BlockList
.insert(Prev
, Cur
);
689 // All the blocks are from the same group, just push without checking group
692 for (u32 I
= 0; I
< Size
; ++I
)
693 DCHECK_EQ(compactPtrGroupBase(Array
[I
]), Cur
->CompactPtrGroupBase
);
695 InsertBlocks(Cur
, Array
, Size
);
699 // The blocks are sorted by group id. Determine the segment of group and
700 // push them to their group together.
702 for (u32 I
= 1; I
< Size
; ++I
) {
703 if (compactPtrGroupBase(Array
[I
- 1]) != compactPtrGroupBase(Array
[I
])) {
704 DCHECK_EQ(compactPtrGroupBase(Array
[I
- 1]), Cur
->CompactPtrGroupBase
);
705 InsertBlocks(Cur
, Array
+ I
- Count
, Count
);
707 while (Cur
!= nullptr &&
708 compactPtrGroupBase(Array
[I
]) > Cur
->CompactPtrGroupBase
) {
713 if (Cur
== nullptr ||
714 compactPtrGroupBase(Array
[I
]) != Cur
->CompactPtrGroupBase
) {
715 Cur
= CreateGroup(compactPtrGroupBase(Array
[I
]));
716 DCHECK_NE(Prev
, nullptr);
717 Sci
->FreeListInfo
.BlockList
.insert(Prev
, Cur
);
726 InsertBlocks(Cur
, Array
+ Size
- Count
, Count
);
729 // Pop one TransferBatch from a BatchGroup. The BatchGroup with the smallest
730 // group id will be considered first.
732 // The region mutex needs to be held while calling this method.
733 TransferBatchT
*popBatchImpl(CacheT
*C
, uptr ClassId
, SizeClassInfo
*Sci
)
734 REQUIRES(Sci
->Mutex
) {
735 if (Sci
->FreeListInfo
.BlockList
.empty())
738 SinglyLinkedList
<TransferBatchT
> &Batches
=
739 Sci
->FreeListInfo
.BlockList
.front()->Batches
;
741 if (Batches
.empty()) {
742 DCHECK_EQ(ClassId
, SizeClassMap::BatchClassId
);
743 BatchGroupT
*BG
= Sci
->FreeListInfo
.BlockList
.front();
744 Sci
->FreeListInfo
.BlockList
.pop_front();
746 // Block used by `BatchGroup` is from BatchClassId. Turn the block into
747 // `TransferBatch` with single block.
748 TransferBatchT
*TB
= reinterpret_cast<TransferBatchT
*>(BG
);
751 compactPtr(SizeClassMap::BatchClassId
, reinterpret_cast<uptr
>(TB
)));
752 Sci
->FreeListInfo
.PoppedBlocks
+= 1;
756 TransferBatchT
*B
= Batches
.front();
758 DCHECK_NE(B
, nullptr);
759 DCHECK_GT(B
->getCount(), 0U);
761 if (Batches
.empty()) {
762 BatchGroupT
*BG
= Sci
->FreeListInfo
.BlockList
.front();
763 Sci
->FreeListInfo
.BlockList
.pop_front();
765 // We don't keep BatchGroup with zero blocks to avoid empty-checking while
766 // allocating. Note that block used by constructing BatchGroup is recorded
767 // as free blocks in the last element of BatchGroup::Batches. Which means,
768 // once we pop the last TransferBatch, the block is implicitly
770 if (ClassId
!= SizeClassMap::BatchClassId
)
771 C
->deallocate(SizeClassMap::BatchClassId
, BG
);
774 Sci
->FreeListInfo
.PoppedBlocks
+= B
->getCount();
778 NOINLINE
bool populateFreeList(CacheT
*C
, uptr ClassId
, SizeClassInfo
*Sci
)
779 REQUIRES(Sci
->Mutex
) {
782 // If the size-class currently has a region associated to it, use it. The
783 // newly created blocks will be located after the currently allocated memory
784 // for that region (up to RegionSize). Otherwise, create a new region, where
785 // the new blocks will be carved from the beginning.
786 if (Sci
->CurrentRegion
) {
787 Region
= Sci
->CurrentRegion
;
788 DCHECK_GT(Sci
->CurrentRegionAllocated
, 0U);
789 Offset
= Sci
->CurrentRegionAllocated
;
791 DCHECK_EQ(Sci
->CurrentRegionAllocated
, 0U);
792 Region
= allocateRegion(Sci
, ClassId
);
793 if (UNLIKELY(!Region
))
795 C
->getStats().add(StatMapped
, RegionSize
);
796 Sci
->CurrentRegion
= Region
;
800 const uptr Size
= getSizeByClassId(ClassId
);
801 const u16 MaxCount
= CacheT::getMaxCached(Size
);
802 DCHECK_GT(MaxCount
, 0U);
803 // The maximum number of blocks we should carve in the region is dictated
804 // by the maximum number of batches we want to fill, and the amount of
805 // memory left in the current region (we use the lowest of the two). This
806 // will not be 0 as we ensure that a region can at least hold one block (via
807 // static_assert and at the end of this function).
808 const u32 NumberOfBlocks
=
809 Min(MaxNumBatches
* MaxCount
,
810 static_cast<u32
>((RegionSize
- Offset
) / Size
));
811 DCHECK_GT(NumberOfBlocks
, 0U);
813 constexpr u32 ShuffleArraySize
=
814 MaxNumBatches
* TransferBatchT::MaxNumCached
;
815 // Fill the transfer batches and put them in the size-class freelist. We
816 // need to randomize the blocks for security purposes, so we first fill a
817 // local array that we then shuffle before populating the batches.
818 CompactPtrT ShuffleArray
[ShuffleArraySize
];
819 DCHECK_LE(NumberOfBlocks
, ShuffleArraySize
);
821 uptr P
= Region
+ Offset
;
822 for (u32 I
= 0; I
< NumberOfBlocks
; I
++, P
+= Size
)
823 ShuffleArray
[I
] = reinterpret_cast<CompactPtrT
>(P
);
825 if (ClassId
!= SizeClassMap::BatchClassId
) {
827 uptr CurGroup
= compactPtrGroupBase(ShuffleArray
[0]);
828 for (u32 I
= 1; I
< NumberOfBlocks
; I
++) {
829 if (UNLIKELY(compactPtrGroupBase(ShuffleArray
[I
]) != CurGroup
)) {
830 shuffle(ShuffleArray
+ I
- N
, N
, &Sci
->RandState
);
831 pushBlocksImpl(C
, ClassId
, Sci
, ShuffleArray
+ I
- N
, N
,
834 CurGroup
= compactPtrGroupBase(ShuffleArray
[I
]);
840 shuffle(ShuffleArray
+ NumberOfBlocks
- N
, N
, &Sci
->RandState
);
841 pushBlocksImpl(C
, ClassId
, Sci
, &ShuffleArray
[NumberOfBlocks
- N
], N
,
844 pushBatchClassBlocks(Sci
, ShuffleArray
, NumberOfBlocks
);
847 // Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record
848 // the requests from `PushBlocks` and `PopBatch` which are external
849 // interfaces. `populateFreeList` is the internal interface so we should set
850 // the values back to avoid incorrectly setting the stats.
851 Sci
->FreeListInfo
.PushedBlocks
-= NumberOfBlocks
;
853 const uptr AllocatedUser
= Size
* NumberOfBlocks
;
854 C
->getStats().add(StatFree
, AllocatedUser
);
855 DCHECK_LE(Sci
->CurrentRegionAllocated
+ AllocatedUser
, RegionSize
);
856 // If there is not enough room in the region currently associated to fit
857 // more blocks, we deassociate the region by resetting CurrentRegion and
858 // CurrentRegionAllocated. Otherwise, update the allocated amount.
859 if (RegionSize
- (Sci
->CurrentRegionAllocated
+ AllocatedUser
) < Size
) {
860 Sci
->CurrentRegion
= 0;
861 Sci
->CurrentRegionAllocated
= 0;
863 Sci
->CurrentRegionAllocated
+= AllocatedUser
;
865 Sci
->AllocatedUser
+= AllocatedUser
;
870 void getStats(ScopedString
*Str
, uptr ClassId
, SizeClassInfo
*Sci
)
871 REQUIRES(Sci
->Mutex
) {
872 if (Sci
->AllocatedUser
== 0)
874 const uptr BlockSize
= getSizeByClassId(ClassId
);
876 Sci
->FreeListInfo
.PoppedBlocks
- Sci
->FreeListInfo
.PushedBlocks
;
877 const uptr BytesInFreeList
= Sci
->AllocatedUser
- InUse
* BlockSize
;
878 uptr PushedBytesDelta
= 0;
879 if (BytesInFreeList
>= Sci
->ReleaseInfo
.BytesInFreeListAtLastCheckpoint
) {
881 BytesInFreeList
- Sci
->ReleaseInfo
.BytesInFreeListAtLastCheckpoint
;
883 const uptr AvailableChunks
= Sci
->AllocatedUser
/ BlockSize
;
884 Str
->append(" %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
885 "inuse: %6zu avail: %6zu releases: %6zu last released: %6zuK "
886 "latest pushed bytes: %6zuK\n",
887 ClassId
, getSizeByClassId(ClassId
), Sci
->AllocatedUser
>> 10,
888 Sci
->FreeListInfo
.PoppedBlocks
, Sci
->FreeListInfo
.PushedBlocks
,
889 InUse
, AvailableChunks
, Sci
->ReleaseInfo
.RangesReleased
,
890 Sci
->ReleaseInfo
.LastReleasedBytes
>> 10,
891 PushedBytesDelta
>> 10);
894 void getSizeClassFragmentationInfo(SizeClassInfo
*Sci
, uptr ClassId
,
895 ScopedString
*Str
) REQUIRES(Sci
->Mutex
) {
896 const uptr BlockSize
= getSizeByClassId(ClassId
);
897 const uptr First
= Sci
->MinRegionIndex
;
898 const uptr Last
= Sci
->MaxRegionIndex
;
899 const uptr Base
= First
* RegionSize
;
900 const uptr NumberOfRegions
= Last
- First
+ 1U;
901 auto SkipRegion
= [this, First
, ClassId
](uptr RegionIndex
) {
902 ScopedLock
L(ByteMapMutex
);
903 return (PossibleRegions
[First
+ RegionIndex
] - 1U) != ClassId
;
906 FragmentationRecorder Recorder
;
907 if (!Sci
->FreeListInfo
.BlockList
.empty()) {
908 PageReleaseContext Context
=
909 markFreeBlocks(Sci
, ClassId
, BlockSize
, Base
, NumberOfRegions
,
910 ReleaseToOS::ForceAll
);
911 releaseFreeMemoryToOS(Context
, Recorder
, SkipRegion
);
914 const uptr PageSize
= getPageSizeCached();
915 const uptr TotalBlocks
= Sci
->AllocatedUser
/ BlockSize
;
916 const uptr InUseBlocks
=
917 Sci
->FreeListInfo
.PoppedBlocks
- Sci
->FreeListInfo
.PushedBlocks
;
918 uptr AllocatedPagesCount
= 0;
919 if (TotalBlocks
!= 0U) {
920 for (uptr I
= 0; I
< NumberOfRegions
; ++I
) {
923 AllocatedPagesCount
+= RegionSize
/ PageSize
;
926 DCHECK_NE(AllocatedPagesCount
, 0U);
929 DCHECK_GE(AllocatedPagesCount
, Recorder
.getReleasedPagesCount());
930 const uptr InUsePages
=
931 AllocatedPagesCount
- Recorder
.getReleasedPagesCount();
932 const uptr InUseBytes
= InUsePages
* PageSize
;
936 computePercentage(BlockSize
* InUseBlocks
, InUsePages
* PageSize
, &Integral
,
938 Str
->append(" %02zu (%6zu): inuse/total blocks: %6zu/%6zu inuse/total "
939 "pages: %6zu/%6zu inuse bytes: %6zuK util: %3zu.%02zu%%\n",
940 ClassId
, BlockSize
, InUseBlocks
, TotalBlocks
, InUsePages
,
941 AllocatedPagesCount
, InUseBytes
>> 10, Integral
, Fractional
);
944 NOINLINE uptr
releaseToOSMaybe(SizeClassInfo
*Sci
, uptr ClassId
,
945 ReleaseToOS ReleaseType
= ReleaseToOS::Normal
)
946 REQUIRES(Sci
->Mutex
) {
947 const uptr BlockSize
= getSizeByClassId(ClassId
);
949 DCHECK_GE(Sci
->FreeListInfo
.PoppedBlocks
, Sci
->FreeListInfo
.PushedBlocks
);
950 const uptr BytesInFreeList
=
952 (Sci
->FreeListInfo
.PoppedBlocks
- Sci
->FreeListInfo
.PushedBlocks
) *
955 if (UNLIKELY(BytesInFreeList
== 0))
958 // ====================================================================== //
959 // 1. Check if we have enough free blocks and if it's worth doing a page
961 // ====================================================================== //
962 if (ReleaseType
!= ReleaseToOS::ForceAll
&&
963 !hasChanceToReleasePages(Sci
, BlockSize
, BytesInFreeList
,
968 const uptr First
= Sci
->MinRegionIndex
;
969 const uptr Last
= Sci
->MaxRegionIndex
;
971 DCHECK_LE(First
, Last
);
972 uptr TotalReleasedBytes
= 0;
973 const uptr Base
= First
* RegionSize
;
974 const uptr NumberOfRegions
= Last
- First
+ 1U;
976 // ==================================================================== //
977 // 2. Mark the free blocks and we can tell which pages are in-use by
978 // querying `PageReleaseContext`.
979 // ==================================================================== //
980 PageReleaseContext Context
= markFreeBlocks(Sci
, ClassId
, BlockSize
, Base
,
981 NumberOfRegions
, ReleaseType
);
982 if (!Context
.hasBlockMarked())
985 // ==================================================================== //
986 // 3. Release the unused physical pages back to the OS.
987 // ==================================================================== //
988 ReleaseRecorder
Recorder(Base
);
989 auto SkipRegion
= [this, First
, ClassId
](uptr RegionIndex
) {
990 ScopedLock
L(ByteMapMutex
);
991 return (PossibleRegions
[First
+ RegionIndex
] - 1U) != ClassId
;
993 releaseFreeMemoryToOS(Context
, Recorder
, SkipRegion
);
995 if (Recorder
.getReleasedRangesCount() > 0) {
996 Sci
->ReleaseInfo
.BytesInFreeListAtLastCheckpoint
= BytesInFreeList
;
997 Sci
->ReleaseInfo
.RangesReleased
+= Recorder
.getReleasedRangesCount();
998 Sci
->ReleaseInfo
.LastReleasedBytes
= Recorder
.getReleasedBytes();
999 TotalReleasedBytes
+= Sci
->ReleaseInfo
.LastReleasedBytes
;
1001 Sci
->ReleaseInfo
.LastReleaseAtNs
= getMonotonicTimeFast();
1003 return TotalReleasedBytes
;
1006 bool hasChanceToReleasePages(SizeClassInfo
*Sci
, uptr BlockSize
,
1007 uptr BytesInFreeList
, ReleaseToOS ReleaseType
)
1008 REQUIRES(Sci
->Mutex
) {
1009 DCHECK_GE(Sci
->FreeListInfo
.PoppedBlocks
, Sci
->FreeListInfo
.PushedBlocks
);
1010 const uptr PageSize
= getPageSizeCached();
1012 if (BytesInFreeList
<= Sci
->ReleaseInfo
.BytesInFreeListAtLastCheckpoint
)
1013 Sci
->ReleaseInfo
.BytesInFreeListAtLastCheckpoint
= BytesInFreeList
;
1015 // Always update `BytesInFreeListAtLastCheckpoint` with the smallest value
1016 // so that we won't underestimate the releasable pages. For example, the
1017 // following is the region usage,
1019 // BytesInFreeListAtLastCheckpoint AllocatedUser
1021 // |--------------------------------------->
1023 // BytesInFreeList ReleaseThreshold
1025 // In general, if we have collected enough bytes and the amount of free
1026 // bytes meets the ReleaseThreshold, we will try to do page release. If we
1027 // don't update `BytesInFreeListAtLastCheckpoint` when the current
1028 // `BytesInFreeList` is smaller, we may take longer time to wait for enough
1029 // freed blocks because we miss the bytes between
1030 // (BytesInFreeListAtLastCheckpoint - BytesInFreeList).
1031 const uptr PushedBytesDelta
=
1032 BytesInFreeList
- Sci
->ReleaseInfo
.BytesInFreeListAtLastCheckpoint
;
1033 if (PushedBytesDelta
< PageSize
)
1036 // Releasing smaller blocks is expensive, so we want to make sure that a
1037 // significant amount of bytes are free, and that there has been a good
1038 // amount of batches pushed to the freelist before attempting to release.
1039 if (isSmallBlock(BlockSize
) && ReleaseType
== ReleaseToOS::Normal
)
1040 if (PushedBytesDelta
< Sci
->AllocatedUser
/ 16U)
1043 if (ReleaseType
== ReleaseToOS::Normal
) {
1044 const s32 IntervalMs
= atomic_load_relaxed(&ReleaseToOsIntervalMs
);
1048 // The constant 8 here is selected from profiling some apps and the number
1049 // of unreleased pages in the large size classes is around 16 pages or
1050 // more. Choose half of it as a heuristic and which also avoids page
1051 // release every time for every pushBlocks() attempt by large blocks.
1052 const bool ByPassReleaseInterval
=
1053 isLargeBlock(BlockSize
) && PushedBytesDelta
> 8 * PageSize
;
1054 if (!ByPassReleaseInterval
) {
1055 if (Sci
->ReleaseInfo
.LastReleaseAtNs
+
1056 static_cast<u64
>(IntervalMs
) * 1000000 >
1057 getMonotonicTimeFast()) {
1058 // Memory was returned recently.
1062 } // if (ReleaseType == ReleaseToOS::Normal)
1067 PageReleaseContext
markFreeBlocks(SizeClassInfo
*Sci
, const uptr ClassId
,
1068 const uptr BlockSize
, const uptr Base
,
1069 const uptr NumberOfRegions
,
1070 ReleaseToOS ReleaseType
)
1071 REQUIRES(Sci
->Mutex
) {
1072 const uptr PageSize
= getPageSizeCached();
1073 const uptr GroupSize
= (1UL << GroupSizeLog
);
1074 const uptr CurGroupBase
=
1075 compactPtrGroupBase(compactPtr(ClassId
, Sci
->CurrentRegion
));
1077 PageReleaseContext
Context(BlockSize
, NumberOfRegions
,
1078 /*ReleaseSize=*/RegionSize
);
1080 auto DecompactPtr
= [](CompactPtrT CompactPtr
) {
1081 return reinterpret_cast<uptr
>(CompactPtr
);
1083 for (BatchGroupT
&BG
: Sci
->FreeListInfo
.BlockList
) {
1084 const uptr GroupBase
= decompactGroupBase(BG
.CompactPtrGroupBase
);
1085 // The `GroupSize` may not be divided by `BlockSize`, which means there is
1086 // an unused space at the end of Region. Exclude that space to avoid
1087 // unused page map entry.
1088 uptr AllocatedGroupSize
= GroupBase
== CurGroupBase
1089 ? Sci
->CurrentRegionAllocated
1090 : roundDownSlow(GroupSize
, BlockSize
);
1091 if (AllocatedGroupSize
== 0)
1094 // TransferBatches are pushed in front of BG.Batches. The first one may
1095 // not have all caches used.
1096 const uptr NumBlocks
= (BG
.Batches
.size() - 1) * BG
.MaxCachedPerBatch
+
1097 BG
.Batches
.front()->getCount();
1098 const uptr BytesInBG
= NumBlocks
* BlockSize
;
1100 if (ReleaseType
!= ReleaseToOS::ForceAll
) {
1101 if (BytesInBG
<= BG
.BytesInBGAtLastCheckpoint
) {
1102 BG
.BytesInBGAtLastCheckpoint
= BytesInBG
;
1106 const uptr PushedBytesDelta
= BytesInBG
- BG
.BytesInBGAtLastCheckpoint
;
1107 if (PushedBytesDelta
< PageSize
)
1110 // Given the randomness property, we try to release the pages only if
1111 // the bytes used by free blocks exceed certain proportion of allocated
1113 if (isSmallBlock(BlockSize
) && (BytesInBG
* 100U) / AllocatedGroupSize
<
1114 (100U - 1U - BlockSize
/ 16U)) {
1119 // TODO: Consider updating this after page release if `ReleaseRecorder`
1120 // can tell the released bytes in each group.
1121 BG
.BytesInBGAtLastCheckpoint
= BytesInBG
;
1123 const uptr MaxContainedBlocks
= AllocatedGroupSize
/ BlockSize
;
1124 const uptr RegionIndex
= (GroupBase
- Base
) / RegionSize
;
1126 if (NumBlocks
== MaxContainedBlocks
) {
1127 for (const auto &It
: BG
.Batches
)
1128 for (u16 I
= 0; I
< It
.getCount(); ++I
)
1129 DCHECK_EQ(compactPtrGroupBase(It
.get(I
)), BG
.CompactPtrGroupBase
);
1131 const uptr To
= GroupBase
+ AllocatedGroupSize
;
1132 Context
.markRangeAsAllCounted(GroupBase
, To
, GroupBase
, RegionIndex
,
1133 AllocatedGroupSize
);
1135 DCHECK_LT(NumBlocks
, MaxContainedBlocks
);
1137 // Note that we don't always visit blocks in each BatchGroup so that we
1138 // may miss the chance of releasing certain pages that cross
1140 Context
.markFreeBlocksInRegion(BG
.Batches
, DecompactPtr
, GroupBase
,
1141 RegionIndex
, AllocatedGroupSize
,
1142 /*MayContainLastBlockInRegion=*/true);
1145 // We may not be able to do the page release In a rare case that we may
1146 // fail on PageMap allocation.
1147 if (UNLIKELY(!Context
.hasBlockMarked()))
1154 SizeClassInfo SizeClassInfoArray
[NumClasses
] = {};
1156 HybridMutex ByteMapMutex
;
1157 // Track the regions in use, 0 is unused, otherwise store ClassId + 1.
1158 ByteMap PossibleRegions
GUARDED_BY(ByteMapMutex
) = {};
1159 atomic_s32 ReleaseToOsIntervalMs
= {};
1160 // Unless several threads request regions simultaneously from different size
1161 // classes, the stash rarely contains more than 1 entry.
1162 static constexpr uptr MaxStashedRegions
= 4;
1163 HybridMutex RegionsStashMutex
;
1164 uptr NumberOfStashedRegions
GUARDED_BY(RegionsStashMutex
) = 0;
1165 uptr RegionsStash
[MaxStashedRegions
] GUARDED_BY(RegionsStashMutex
) = {};
1168 } // namespace scudo
1170 #endif // SCUDO_PRIMARY32_H_