Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / clang / unittests / Interpreter / InterpreterTest.cpp
blob5f2911e9a7adad34bcf10eb2c811e02fee3d1320
1 //===- unittests/Interpreter/InterpreterTest.cpp --- Interpreter tests ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Unit tests for Clang's Interpreter library.
11 //===----------------------------------------------------------------------===//
13 #include "clang/Interpreter/Interpreter.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclGroup.h"
17 #include "clang/AST/Mangle.h"
18 #include "clang/Frontend/CompilerInstance.h"
19 #include "clang/Frontend/TextDiagnosticPrinter.h"
20 #include "clang/Interpreter/Value.h"
21 #include "clang/Sema/Lookup.h"
22 #include "clang/Sema/Sema.h"
24 #include "llvm/ExecutionEngine/Orc/LLJIT.h"
25 #include "llvm/Support/ManagedStatic.h"
26 #include "llvm/Support/TargetSelect.h"
28 #include "gmock/gmock.h"
29 #include "gtest/gtest.h"
31 using namespace clang;
33 #if defined(_AIX)
34 #define CLANG_INTERPRETER_NO_SUPPORT_EXEC
35 #endif
37 int Global = 42;
38 // JIT reports symbol not found on Windows without the visibility attribute.
39 REPL_EXTERNAL_VISIBILITY int getGlobal() { return Global; }
40 REPL_EXTERNAL_VISIBILITY void setGlobal(int val) { Global = val; }
42 namespace {
43 using Args = std::vector<const char *>;
44 static std::unique_ptr<Interpreter>
45 createInterpreter(const Args &ExtraArgs = {},
46 DiagnosticConsumer *Client = nullptr) {
47 Args ClangArgs = {"-Xclang", "-emit-llvm-only"};
48 ClangArgs.insert(ClangArgs.end(), ExtraArgs.begin(), ExtraArgs.end());
49 auto CB = clang::IncrementalCompilerBuilder();
50 CB.SetCompilerArgs(ClangArgs);
51 auto CI = cantFail(CB.CreateCpp());
52 if (Client)
53 CI->getDiagnostics().setClient(Client, /*ShouldOwnClient=*/false);
54 return cantFail(clang::Interpreter::create(std::move(CI)));
57 static size_t DeclsSize(TranslationUnitDecl *PTUDecl) {
58 return std::distance(PTUDecl->decls().begin(), PTUDecl->decls().end());
61 TEST(InterpreterTest, Sanity) {
62 std::unique_ptr<Interpreter> Interp = createInterpreter();
64 using PTU = PartialTranslationUnit;
66 PTU &R1(cantFail(Interp->Parse("void g(); void g() {}")));
67 EXPECT_EQ(2U, DeclsSize(R1.TUPart));
69 PTU &R2(cantFail(Interp->Parse("int i;")));
70 EXPECT_EQ(1U, DeclsSize(R2.TUPart));
73 static std::string DeclToString(Decl *D) {
74 return llvm::cast<NamedDecl>(D)->getQualifiedNameAsString();
77 TEST(InterpreterTest, IncrementalInputTopLevelDecls) {
78 std::unique_ptr<Interpreter> Interp = createInterpreter();
79 auto R1 = Interp->Parse("int var1 = 42; int f() { return var1; }");
80 // gtest doesn't expand into explicit bool conversions.
81 EXPECT_TRUE(!!R1);
82 auto R1DeclRange = R1->TUPart->decls();
83 EXPECT_EQ(2U, DeclsSize(R1->TUPart));
84 EXPECT_EQ("var1", DeclToString(*R1DeclRange.begin()));
85 EXPECT_EQ("f", DeclToString(*(++R1DeclRange.begin())));
87 auto R2 = Interp->Parse("int var2 = f();");
88 EXPECT_TRUE(!!R2);
89 auto R2DeclRange = R2->TUPart->decls();
90 EXPECT_EQ(1U, DeclsSize(R2->TUPart));
91 EXPECT_EQ("var2", DeclToString(*R2DeclRange.begin()));
94 TEST(InterpreterTest, Errors) {
95 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
97 // Create the diagnostic engine with unowned consumer.
98 std::string DiagnosticOutput;
99 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
100 auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
101 DiagnosticsOS, new DiagnosticOptions());
103 auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
104 auto Err = Interp->Parse("intentional_error v1 = 42; ").takeError();
105 using ::testing::HasSubstr;
106 EXPECT_THAT(DiagnosticsOS.str(),
107 HasSubstr("error: unknown type name 'intentional_error'"));
108 EXPECT_EQ("Parsing failed.", llvm::toString(std::move(Err)));
110 auto RecoverErr = Interp->Parse("int var1 = 42;");
111 EXPECT_TRUE(!!RecoverErr);
114 // Here we test whether the user can mix declarations and statements. The
115 // interpreter should be smart enough to recognize the declarations from the
116 // statements and wrap the latter into a declaration, producing valid code.
117 TEST(InterpreterTest, DeclsAndStatements) {
118 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
120 // Create the diagnostic engine with unowned consumer.
121 std::string DiagnosticOutput;
122 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
123 auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
124 DiagnosticsOS, new DiagnosticOptions());
126 auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
127 auto R1 = Interp->Parse(
128 "int var1 = 42; extern \"C\" int printf(const char*, ...);");
129 // gtest doesn't expand into explicit bool conversions.
130 EXPECT_TRUE(!!R1);
132 auto *PTU1 = R1->TUPart;
133 EXPECT_EQ(2U, DeclsSize(PTU1));
135 auto R2 = Interp->Parse("var1++; printf(\"var1 value %d\\n\", var1);");
136 EXPECT_TRUE(!!R2);
139 TEST(InterpreterTest, UndoCommand) {
140 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
142 // Create the diagnostic engine with unowned consumer.
143 std::string DiagnosticOutput;
144 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
145 auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
146 DiagnosticsOS, new DiagnosticOptions());
148 auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
150 // Fail to undo.
151 auto Err1 = Interp->Undo();
152 EXPECT_EQ("Operation failed. Too many undos",
153 llvm::toString(std::move(Err1)));
154 auto Err2 = Interp->Parse("int foo = 42;");
155 EXPECT_TRUE(!!Err2);
156 auto Err3 = Interp->Undo(2);
157 EXPECT_EQ("Operation failed. Too many undos",
158 llvm::toString(std::move(Err3)));
160 // Succeed to undo.
161 auto Err4 = Interp->Parse("int x = 42;");
162 EXPECT_TRUE(!!Err4);
163 auto Err5 = Interp->Undo();
164 EXPECT_FALSE(Err5);
165 auto Err6 = Interp->Parse("int x = 24;");
166 EXPECT_TRUE(!!Err6);
167 auto Err7 = Interp->Parse("#define X 42");
168 EXPECT_TRUE(!!Err7);
169 auto Err8 = Interp->Undo();
170 EXPECT_FALSE(Err8);
171 auto Err9 = Interp->Parse("#define X 24");
172 EXPECT_TRUE(!!Err9);
174 // Undo input contains errors.
175 auto Err10 = Interp->Parse("int y = ;");
176 EXPECT_FALSE(!!Err10);
177 EXPECT_EQ("Parsing failed.", llvm::toString(Err10.takeError()));
178 auto Err11 = Interp->Parse("int y = 42;");
179 EXPECT_TRUE(!!Err11);
180 auto Err12 = Interp->Undo();
181 EXPECT_FALSE(Err12);
184 static std::string MangleName(NamedDecl *ND) {
185 ASTContext &C = ND->getASTContext();
186 std::unique_ptr<MangleContext> MangleC(C.createMangleContext());
187 std::string mangledName;
188 llvm::raw_string_ostream RawStr(mangledName);
189 MangleC->mangleName(ND, RawStr);
190 return RawStr.str();
193 static bool HostSupportsJit() {
194 auto J = llvm::orc::LLJITBuilder().create();
195 if (J)
196 return true;
197 LLVMConsumeError(llvm::wrap(J.takeError()));
198 return false;
201 struct LLVMInitRAII {
202 LLVMInitRAII() {
203 llvm::InitializeNativeTarget();
204 llvm::InitializeNativeTargetAsmPrinter();
206 ~LLVMInitRAII() { llvm::llvm_shutdown(); }
207 } LLVMInit;
209 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
210 TEST(IncrementalProcessing, DISABLED_FindMangledNameSymbol) {
211 #else
212 TEST(IncrementalProcessing, FindMangledNameSymbol) {
213 #endif
215 std::unique_ptr<Interpreter> Interp = createInterpreter();
217 auto &PTU(cantFail(Interp->Parse("int f(const char*) {return 0;}")));
218 EXPECT_EQ(1U, DeclsSize(PTU.TUPart));
219 auto R1DeclRange = PTU.TUPart->decls();
221 // We cannot execute on the platform.
222 if (!HostSupportsJit()) {
223 return;
226 NamedDecl *FD = cast<FunctionDecl>(*R1DeclRange.begin());
227 // Lower the PTU
228 if (llvm::Error Err = Interp->Execute(PTU)) {
229 // We cannot execute on the platform.
230 consumeError(std::move(Err));
231 return;
234 std::string MangledName = MangleName(FD);
235 auto Addr = Interp->getSymbolAddress(MangledName);
236 EXPECT_FALSE(!Addr);
237 EXPECT_NE(0U, Addr->getValue());
238 GlobalDecl GD(FD);
239 EXPECT_EQ(*Addr, cantFail(Interp->getSymbolAddress(GD)));
240 cantFail(
241 Interp->ParseAndExecute("extern \"C\" int printf(const char*,...);"));
242 Addr = Interp->getSymbolAddress("printf");
243 EXPECT_FALSE(!Addr);
245 // FIXME: Re-enable when we investigate the way we handle dllimports on Win.
246 #ifndef _WIN32
247 EXPECT_EQ((uintptr_t)&printf, Addr->getValue());
248 #endif // _WIN32
251 static void *AllocateObject(TypeDecl *TD, Interpreter &Interp) {
252 std::string Name = TD->getQualifiedNameAsString();
253 const clang::Type *RDTy = TD->getTypeForDecl();
254 clang::ASTContext &C = Interp.getCompilerInstance()->getASTContext();
255 size_t Size = C.getTypeSize(RDTy);
256 void *Addr = malloc(Size);
258 // Tell the interpreter to call the default ctor with this memory. Synthesize:
259 // new (loc) ClassName;
260 static unsigned Counter = 0;
261 std::stringstream SS;
262 SS << "auto _v" << Counter++ << " = "
263 << "new ((void*)"
264 // Windows needs us to prefix the hexadecimal value of a pointer with '0x'.
265 << std::hex << std::showbase << (size_t)Addr << ")" << Name << "();";
267 auto R = Interp.ParseAndExecute(SS.str());
268 if (!R) {
269 free(Addr);
270 return nullptr;
273 return Addr;
276 static NamedDecl *LookupSingleName(Interpreter &Interp, const char *Name) {
277 Sema &SemaRef = Interp.getCompilerInstance()->getSema();
278 ASTContext &C = SemaRef.getASTContext();
279 DeclarationName DeclName = &C.Idents.get(Name);
280 LookupResult R(SemaRef, DeclName, SourceLocation(), Sema::LookupOrdinaryName);
281 SemaRef.LookupName(R, SemaRef.TUScope);
282 assert(!R.empty());
283 return R.getFoundDecl();
286 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
287 TEST(IncrementalProcessing, DISABLED_InstantiateTemplate) {
288 #else
289 TEST(IncrementalProcessing, InstantiateTemplate) {
290 #endif
291 // FIXME: We cannot yet handle delayed template parsing. If we run with
292 // -fdelayed-template-parsing we try adding the newly created decl to the
293 // active PTU which causes an assert.
294 std::vector<const char *> Args = {"-fno-delayed-template-parsing"};
295 std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
297 llvm::cantFail(Interp->Parse("extern \"C\" int printf(const char*,...);"
298 "class A {};"
299 "struct B {"
300 " template<typename T>"
301 " static int callme(T) { return 42; }"
302 "};"));
303 auto &PTU = llvm::cantFail(Interp->Parse("auto _t = &B::callme<A*>;"));
304 auto PTUDeclRange = PTU.TUPart->decls();
305 EXPECT_EQ(1, std::distance(PTUDeclRange.begin(), PTUDeclRange.end()));
307 // We cannot execute on the platform.
308 if (!HostSupportsJit()) {
309 return;
312 // Lower the PTU
313 if (llvm::Error Err = Interp->Execute(PTU)) {
314 // We cannot execute on the platform.
315 consumeError(std::move(Err));
316 return;
319 TypeDecl *TD = cast<TypeDecl>(LookupSingleName(*Interp, "A"));
320 void *NewA = AllocateObject(TD, *Interp);
322 // Find back the template specialization
323 VarDecl *VD = static_cast<VarDecl *>(*PTUDeclRange.begin());
324 UnaryOperator *UO = llvm::cast<UnaryOperator>(VD->getInit());
325 NamedDecl *TmpltSpec = llvm::cast<DeclRefExpr>(UO->getSubExpr())->getDecl();
327 std::string MangledName = MangleName(TmpltSpec);
328 typedef int (*TemplateSpecFn)(void *);
329 auto fn =
330 cantFail(Interp->getSymbolAddress(MangledName)).toPtr<TemplateSpecFn>();
331 EXPECT_EQ(42, fn(NewA));
332 free(NewA);
335 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
336 TEST(InterpreterTest, DISABLED_Value) {
337 #else
338 TEST(InterpreterTest, Value) {
339 #endif
340 // We cannot execute on the platform.
341 if (!HostSupportsJit())
342 return;
344 std::unique_ptr<Interpreter> Interp = createInterpreter();
346 Value V1;
347 llvm::cantFail(Interp->ParseAndExecute("int x = 42;"));
348 llvm::cantFail(Interp->ParseAndExecute("x", &V1));
349 EXPECT_TRUE(V1.isValid());
350 EXPECT_TRUE(V1.hasValue());
351 EXPECT_EQ(V1.getInt(), 42);
352 EXPECT_EQ(V1.convertTo<int>(), 42);
353 EXPECT_TRUE(V1.getType()->isIntegerType());
354 EXPECT_EQ(V1.getKind(), Value::K_Int);
355 EXPECT_FALSE(V1.isManuallyAlloc());
357 Value V2;
358 llvm::cantFail(Interp->ParseAndExecute("double y = 3.14;"));
359 llvm::cantFail(Interp->ParseAndExecute("y", &V2));
360 EXPECT_TRUE(V2.isValid());
361 EXPECT_TRUE(V2.hasValue());
362 EXPECT_EQ(V2.getDouble(), 3.14);
363 EXPECT_EQ(V2.convertTo<double>(), 3.14);
364 EXPECT_TRUE(V2.getType()->isFloatingType());
365 EXPECT_EQ(V2.getKind(), Value::K_Double);
366 EXPECT_FALSE(V2.isManuallyAlloc());
368 Value V3;
369 llvm::cantFail(Interp->ParseAndExecute(
370 "struct S { int* p; S() { p = new int(42); } ~S() { delete p; }};"));
371 llvm::cantFail(Interp->ParseAndExecute("S{}", &V3));
372 EXPECT_TRUE(V3.isValid());
373 EXPECT_TRUE(V3.hasValue());
374 EXPECT_TRUE(V3.getType()->isRecordType());
375 EXPECT_EQ(V3.getKind(), Value::K_PtrOrObj);
376 EXPECT_TRUE(V3.isManuallyAlloc());
378 Value V4;
379 llvm::cantFail(Interp->ParseAndExecute("int getGlobal();"));
380 llvm::cantFail(Interp->ParseAndExecute("void setGlobal(int);"));
381 llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V4));
382 EXPECT_EQ(V4.getInt(), 42);
383 EXPECT_TRUE(V4.getType()->isIntegerType());
385 Value V5;
386 // Change the global from the compiled code.
387 setGlobal(43);
388 llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V5));
389 EXPECT_EQ(V5.getInt(), 43);
390 EXPECT_TRUE(V5.getType()->isIntegerType());
392 // Change the global from the interpreted code.
393 llvm::cantFail(Interp->ParseAndExecute("setGlobal(44);"));
394 EXPECT_EQ(getGlobal(), 44);
396 Value V6;
397 llvm::cantFail(Interp->ParseAndExecute("void foo() {}"));
398 llvm::cantFail(Interp->ParseAndExecute("foo()", &V6));
399 EXPECT_TRUE(V6.isValid());
400 EXPECT_FALSE(V6.hasValue());
401 EXPECT_TRUE(V6.getType()->isVoidType());
402 EXPECT_EQ(V6.getKind(), Value::K_Void);
403 EXPECT_FALSE(V2.isManuallyAlloc());
405 Value V7;
406 llvm::cantFail(Interp->ParseAndExecute("foo", &V7));
407 EXPECT_TRUE(V7.isValid());
408 EXPECT_TRUE(V7.hasValue());
409 EXPECT_TRUE(V7.getType()->isFunctionProtoType());
410 EXPECT_EQ(V7.getKind(), Value::K_PtrOrObj);
411 EXPECT_FALSE(V7.isManuallyAlloc());
413 Value V8;
414 llvm::cantFail(Interp->ParseAndExecute("struct SS{ void f() {} };"));
415 llvm::cantFail(Interp->ParseAndExecute("&SS::f", &V8));
416 EXPECT_TRUE(V8.isValid());
417 EXPECT_TRUE(V8.hasValue());
418 EXPECT_TRUE(V8.getType()->isMemberFunctionPointerType());
419 EXPECT_EQ(V8.getKind(), Value::K_PtrOrObj);
420 EXPECT_TRUE(V8.isManuallyAlloc());
422 Value V9;
423 llvm::cantFail(Interp->ParseAndExecute("struct A { virtual int f(); };"));
424 llvm::cantFail(
425 Interp->ParseAndExecute("struct B : A { int f() { return 42; }};"));
426 llvm::cantFail(Interp->ParseAndExecute("int (B::*ptr)() = &B::f;"));
427 llvm::cantFail(Interp->ParseAndExecute("ptr", &V9));
428 EXPECT_TRUE(V9.isValid());
429 EXPECT_TRUE(V9.hasValue());
430 EXPECT_TRUE(V9.getType()->isMemberFunctionPointerType());
431 EXPECT_EQ(V9.getKind(), Value::K_PtrOrObj);
432 EXPECT_TRUE(V9.isManuallyAlloc());
434 } // end anonymous namespace