1 //===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // These tablegen backends emit Clang attribute processing code
11 //===----------------------------------------------------------------------===//
13 #include "TableGenBackends.h"
14 #include "ASTTableGen.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/TableGen/Error.h"
30 #include "llvm/TableGen/Record.h"
31 #include "llvm/TableGen/StringMatcher.h"
32 #include "llvm/TableGen/TableGenBackend.h"
51 class FlattenedSpelling
{
54 const Record
&OriginalSpelling
;
57 FlattenedSpelling(const std::string
&Variety
, const std::string
&Name
,
58 const std::string
&Namespace
, bool KnownToGCC
,
59 const Record
&OriginalSpelling
)
60 : V(Variety
), N(Name
), NS(Namespace
), K(KnownToGCC
),
61 OriginalSpelling(OriginalSpelling
) {}
62 explicit FlattenedSpelling(const Record
&Spelling
)
63 : V(std::string(Spelling
.getValueAsString("Variety"))),
64 N(std::string(Spelling
.getValueAsString("Name"))),
65 OriginalSpelling(Spelling
) {
66 assert(V
!= "GCC" && V
!= "Clang" &&
67 "Given a GCC spelling, which means this hasn't been flattened!");
68 if (V
== "CXX11" || V
== "C23" || V
== "Pragma")
69 NS
= std::string(Spelling
.getValueAsString("Namespace"));
72 const std::string
&variety() const { return V
; }
73 const std::string
&name() const { return N
; }
74 const std::string
&nameSpace() const { return NS
; }
75 bool knownToGCC() const { return K
; }
76 const Record
&getSpellingRecord() const { return OriginalSpelling
; }
79 } // end anonymous namespace
81 static std::vector
<FlattenedSpelling
>
82 GetFlattenedSpellings(const Record
&Attr
) {
83 std::vector
<Record
*> Spellings
= Attr
.getValueAsListOfDefs("Spellings");
84 std::vector
<FlattenedSpelling
> Ret
;
86 for (const auto &Spelling
: Spellings
) {
87 StringRef Variety
= Spelling
->getValueAsString("Variety");
88 StringRef Name
= Spelling
->getValueAsString("Name");
89 if (Variety
== "GCC") {
90 Ret
.emplace_back("GNU", std::string(Name
), "", true, *Spelling
);
91 Ret
.emplace_back("CXX11", std::string(Name
), "gnu", true, *Spelling
);
92 if (Spelling
->getValueAsBit("AllowInC"))
93 Ret
.emplace_back("C23", std::string(Name
), "gnu", true, *Spelling
);
94 } else if (Variety
== "Clang") {
95 Ret
.emplace_back("GNU", std::string(Name
), "", false, *Spelling
);
96 Ret
.emplace_back("CXX11", std::string(Name
), "clang", false, *Spelling
);
97 if (Spelling
->getValueAsBit("AllowInC"))
98 Ret
.emplace_back("C23", std::string(Name
), "clang", false, *Spelling
);
100 Ret
.push_back(FlattenedSpelling(*Spelling
));
106 static std::string
ReadPCHRecord(StringRef type
) {
107 return StringSwitch
<std::string
>(type
)
108 .EndsWith("Decl *", "Record.GetLocalDeclAs<" +
109 std::string(type
.data(), 0, type
.size() - 1) +
110 ">(Record.readInt())")
111 .Case("TypeSourceInfo *", "Record.readTypeSourceInfo()")
112 .Case("Expr *", "Record.readExpr()")
113 .Case("IdentifierInfo *", "Record.readIdentifier()")
114 .Case("StringRef", "Record.readString()")
115 .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())")
116 .Case("OMPTraitInfo *", "Record.readOMPTraitInfo()")
117 .Default("Record.readInt()");
120 // Get a type that is suitable for storing an object of the specified type.
121 static StringRef
getStorageType(StringRef type
) {
122 return StringSwitch
<StringRef
>(type
)
123 .Case("StringRef", "std::string")
127 // Assumes that the way to get the value is SA->getname()
128 static std::string
WritePCHRecord(StringRef type
, StringRef name
) {
130 StringSwitch
<std::string
>(type
)
131 .EndsWith("Decl *", "AddDeclRef(" + std::string(name
) + ");\n")
132 .Case("TypeSourceInfo *",
133 "AddTypeSourceInfo(" + std::string(name
) + ");\n")
134 .Case("Expr *", "AddStmt(" + std::string(name
) + ");\n")
135 .Case("IdentifierInfo *",
136 "AddIdentifierRef(" + std::string(name
) + ");\n")
137 .Case("StringRef", "AddString(" + std::string(name
) + ");\n")
139 "push_back(" + std::string(name
) + ".serialize());\n")
140 .Case("OMPTraitInfo *",
141 "writeOMPTraitInfo(" + std::string(name
) + ");\n")
142 .Default("push_back(" + std::string(name
) + ");\n");
145 // Normalize attribute name by removing leading and trailing
146 // underscores. For example, __foo, foo__, __foo__ would
148 static StringRef
NormalizeAttrName(StringRef AttrName
) {
149 AttrName
.consume_front("__");
150 AttrName
.consume_back("__");
154 // Normalize the name by removing any and all leading and trailing underscores.
155 // This is different from NormalizeAttrName in that it also handles names like
156 // _pascal and __pascal.
157 static StringRef
NormalizeNameForSpellingComparison(StringRef Name
) {
158 return Name
.trim("_");
161 // Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"),
162 // removing "__" if it appears at the beginning and end of the attribute's name.
163 static StringRef
NormalizeGNUAttrSpelling(StringRef AttrSpelling
) {
164 if (AttrSpelling
.startswith("__") && AttrSpelling
.endswith("__")) {
165 AttrSpelling
= AttrSpelling
.substr(2, AttrSpelling
.size() - 4);
171 typedef std::vector
<std::pair
<std::string
, const Record
*>> ParsedAttrMap
;
173 static ParsedAttrMap
getParsedAttrList(const RecordKeeper
&Records
,
174 ParsedAttrMap
*Dupes
= nullptr) {
175 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
176 std::set
<std::string
> Seen
;
178 for (const auto *Attr
: Attrs
) {
179 if (Attr
->getValueAsBit("SemaHandler")) {
181 if (Attr
->isSubClassOf("TargetSpecificAttr") &&
182 !Attr
->isValueUnset("ParseKind")) {
183 AN
= std::string(Attr
->getValueAsString("ParseKind"));
185 // If this attribute has already been handled, it does not need to be
187 if (Seen
.find(AN
) != Seen
.end()) {
189 Dupes
->push_back(std::make_pair(AN
, Attr
));
194 AN
= NormalizeAttrName(Attr
->getName()).str();
196 R
.push_back(std::make_pair(AN
, Attr
));
205 std::string lowerName
, upperName
;
211 Argument(StringRef Arg
, StringRef Attr
)
212 : lowerName(std::string(Arg
)), upperName(lowerName
), attrName(Attr
),
213 isOpt(false), Fake(false) {
214 if (!lowerName
.empty()) {
215 lowerName
[0] = std::tolower(lowerName
[0]);
216 upperName
[0] = std::toupper(upperName
[0]);
218 // Work around MinGW's macro definition of 'interface' to 'struct'. We
219 // have an attribute argument called 'Interface', so only the lower case
220 // name conflicts with the macro definition.
221 if (lowerName
== "interface")
222 lowerName
= "interface_";
224 Argument(const Record
&Arg
, StringRef Attr
)
225 : Argument(Arg
.getValueAsString("Name"), Attr
) {}
226 virtual ~Argument() = default;
228 StringRef
getLowerName() const { return lowerName
; }
229 StringRef
getUpperName() const { return upperName
; }
230 StringRef
getAttrName() const { return attrName
; }
232 bool isOptional() const { return isOpt
; }
233 void setOptional(bool set
) { isOpt
= set
; }
235 bool isFake() const { return Fake
; }
236 void setFake(bool fake
) { Fake
= fake
; }
238 // These functions print the argument contents formatted in different ways.
239 virtual void writeAccessors(raw_ostream
&OS
) const = 0;
240 virtual void writeAccessorDefinitions(raw_ostream
&OS
) const {}
241 virtual void writeASTVisitorTraversal(raw_ostream
&OS
) const {}
242 virtual void writeCloneArgs(raw_ostream
&OS
) const = 0;
243 virtual void writeTemplateInstantiationArgs(raw_ostream
&OS
) const = 0;
244 virtual void writeTemplateInstantiation(raw_ostream
&OS
) const {}
245 virtual void writeCtorBody(raw_ostream
&OS
) const {}
246 virtual void writeCtorInitializers(raw_ostream
&OS
) const = 0;
247 virtual void writeCtorDefaultInitializers(raw_ostream
&OS
) const = 0;
248 virtual void writeCtorParameters(raw_ostream
&OS
) const = 0;
249 virtual void writeDeclarations(raw_ostream
&OS
) const = 0;
250 virtual void writePCHReadArgs(raw_ostream
&OS
) const = 0;
251 virtual void writePCHReadDecls(raw_ostream
&OS
) const = 0;
252 virtual void writePCHWrite(raw_ostream
&OS
) const = 0;
253 virtual std::string
getIsOmitted() const { return "false"; }
254 virtual void writeValue(raw_ostream
&OS
) const = 0;
255 virtual void writeDump(raw_ostream
&OS
) const = 0;
256 virtual void writeDumpChildren(raw_ostream
&OS
) const {}
257 virtual void writeHasChildren(raw_ostream
&OS
) const { OS
<< "false"; }
259 virtual bool isEnumArg() const { return false; }
260 virtual bool isVariadicEnumArg() const { return false; }
261 virtual bool isVariadic() const { return false; }
263 virtual void writeImplicitCtorArgs(raw_ostream
&OS
) const {
264 OS
<< getUpperName();
268 class SimpleArgument
: public Argument
{
272 SimpleArgument(const Record
&Arg
, StringRef Attr
, std::string T
)
273 : Argument(Arg
, Attr
), type(std::move(T
)) {}
275 std::string
getType() const { return type
; }
277 void writeAccessors(raw_ostream
&OS
) const override
{
278 OS
<< " " << type
<< " get" << getUpperName() << "() const {\n";
279 OS
<< " return " << getLowerName() << ";\n";
283 void writeCloneArgs(raw_ostream
&OS
) const override
{
284 OS
<< getLowerName();
287 void writeTemplateInstantiationArgs(raw_ostream
&OS
) const override
{
288 OS
<< "A->get" << getUpperName() << "()";
291 void writeCtorInitializers(raw_ostream
&OS
) const override
{
292 OS
<< getLowerName() << "(" << getUpperName() << ")";
295 void writeCtorDefaultInitializers(raw_ostream
&OS
) const override
{
296 OS
<< getLowerName() << "()";
299 void writeCtorParameters(raw_ostream
&OS
) const override
{
300 OS
<< type
<< " " << getUpperName();
303 void writeDeclarations(raw_ostream
&OS
) const override
{
304 OS
<< type
<< " " << getLowerName() << ";";
307 void writePCHReadDecls(raw_ostream
&OS
) const override
{
308 std::string read
= ReadPCHRecord(type
);
309 OS
<< " " << type
<< " " << getLowerName() << " = " << read
<< ";\n";
312 void writePCHReadArgs(raw_ostream
&OS
) const override
{
313 OS
<< getLowerName();
316 void writePCHWrite(raw_ostream
&OS
) const override
{
318 << WritePCHRecord(type
,
319 "SA->get" + std::string(getUpperName()) + "()");
322 std::string
getIsOmitted() const override
{
323 auto IsOneOf
= [](StringRef subject
, auto... list
) {
324 return ((subject
== list
) || ...);
327 if (IsOneOf(type
, "IdentifierInfo *", "Expr *"))
328 return "!get" + getUpperName().str() + "()";
329 if (IsOneOf(type
, "TypeSourceInfo *"))
330 return "!get" + getUpperName().str() + "Loc()";
331 if (IsOneOf(type
, "ParamIdx"))
332 return "!get" + getUpperName().str() + "().isValid()";
334 assert(IsOneOf(type
, "unsigned", "int", "bool", "FunctionDecl *",
339 void writeValue(raw_ostream
&OS
) const override
{
340 if (type
== "FunctionDecl *")
341 OS
<< "\" << get" << getUpperName()
342 << "()->getNameInfo().getAsString() << \"";
343 else if (type
== "IdentifierInfo *")
344 // Some non-optional (comma required) identifier arguments can be the
345 // empty string but are then recorded as a nullptr.
346 OS
<< "\" << (get" << getUpperName() << "() ? get" << getUpperName()
347 << "()->getName() : \"\") << \"";
348 else if (type
== "VarDecl *")
349 OS
<< "\" << get" << getUpperName() << "()->getName() << \"";
350 else if (type
== "TypeSourceInfo *")
351 OS
<< "\" << get" << getUpperName() << "().getAsString() << \"";
352 else if (type
== "ParamIdx")
353 OS
<< "\" << get" << getUpperName() << "().getSourceIndex() << \"";
355 OS
<< "\" << get" << getUpperName() << "() << \"";
358 void writeDump(raw_ostream
&OS
) const override
{
359 if (StringRef(type
).endswith("Decl *")) {
360 OS
<< " OS << \" \";\n";
361 OS
<< " dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
362 } else if (type
== "IdentifierInfo *") {
363 // Some non-optional (comma required) identifier arguments can be the
364 // empty string but are then recorded as a nullptr.
365 OS
<< " if (SA->get" << getUpperName() << "())\n"
366 << " OS << \" \" << SA->get" << getUpperName()
367 << "()->getName();\n";
368 } else if (type
== "TypeSourceInfo *") {
370 OS
<< " if (SA->get" << getUpperName() << "Loc())";
371 OS
<< " OS << \" \" << SA->get" << getUpperName()
372 << "().getAsString();\n";
373 } else if (type
== "bool") {
374 OS
<< " if (SA->get" << getUpperName() << "()) OS << \" "
375 << getUpperName() << "\";\n";
376 } else if (type
== "int" || type
== "unsigned") {
377 OS
<< " OS << \" \" << SA->get" << getUpperName() << "();\n";
378 } else if (type
== "ParamIdx") {
380 OS
<< " if (SA->get" << getUpperName() << "().isValid())\n ";
381 OS
<< " OS << \" \" << SA->get" << getUpperName()
382 << "().getSourceIndex();\n";
383 } else if (type
== "OMPTraitInfo *") {
384 OS
<< " OS << \" \" << SA->get" << getUpperName() << "();\n";
386 llvm_unreachable("Unknown SimpleArgument type!");
391 class DefaultSimpleArgument
: public SimpleArgument
{
395 DefaultSimpleArgument(const Record
&Arg
, StringRef Attr
,
396 std::string T
, int64_t Default
)
397 : SimpleArgument(Arg
, Attr
, T
), Default(Default
) {}
399 void writeAccessors(raw_ostream
&OS
) const override
{
400 SimpleArgument::writeAccessors(OS
);
402 OS
<< "\n\n static const " << getType() << " Default" << getUpperName()
404 if (getType() == "bool")
405 OS
<< (Default
!= 0 ? "true" : "false");
412 class StringArgument
: public Argument
{
414 StringArgument(const Record
&Arg
, StringRef Attr
)
415 : Argument(Arg
, Attr
)
418 void writeAccessors(raw_ostream
&OS
) const override
{
419 OS
<< " llvm::StringRef get" << getUpperName() << "() const {\n";
420 OS
<< " return llvm::StringRef(" << getLowerName() << ", "
421 << getLowerName() << "Length);\n";
423 OS
<< " unsigned get" << getUpperName() << "Length() const {\n";
424 OS
<< " return " << getLowerName() << "Length;\n";
426 OS
<< " void set" << getUpperName()
427 << "(ASTContext &C, llvm::StringRef S) {\n";
428 OS
<< " " << getLowerName() << "Length = S.size();\n";
429 OS
<< " this->" << getLowerName() << " = new (C, 1) char ["
430 << getLowerName() << "Length];\n";
431 OS
<< " if (!S.empty())\n";
432 OS
<< " std::memcpy(this->" << getLowerName() << ", S.data(), "
433 << getLowerName() << "Length);\n";
437 void writeCloneArgs(raw_ostream
&OS
) const override
{
438 OS
<< "get" << getUpperName() << "()";
441 void writeTemplateInstantiationArgs(raw_ostream
&OS
) const override
{
442 OS
<< "A->get" << getUpperName() << "()";
445 void writeCtorBody(raw_ostream
&OS
) const override
{
446 OS
<< " if (!" << getUpperName() << ".empty())\n";
447 OS
<< " std::memcpy(" << getLowerName() << ", " << getUpperName()
448 << ".data(), " << getLowerName() << "Length);\n";
451 void writeCtorInitializers(raw_ostream
&OS
) const override
{
452 OS
<< getLowerName() << "Length(" << getUpperName() << ".size()),"
453 << getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
457 void writeCtorDefaultInitializers(raw_ostream
&OS
) const override
{
458 OS
<< getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
461 void writeCtorParameters(raw_ostream
&OS
) const override
{
462 OS
<< "llvm::StringRef " << getUpperName();
465 void writeDeclarations(raw_ostream
&OS
) const override
{
466 OS
<< "unsigned " << getLowerName() << "Length;\n";
467 OS
<< "char *" << getLowerName() << ";";
470 void writePCHReadDecls(raw_ostream
&OS
) const override
{
471 OS
<< " std::string " << getLowerName()
472 << "= Record.readString();\n";
475 void writePCHReadArgs(raw_ostream
&OS
) const override
{
476 OS
<< getLowerName();
479 void writePCHWrite(raw_ostream
&OS
) const override
{
480 OS
<< " Record.AddString(SA->get" << getUpperName() << "());\n";
483 void writeValue(raw_ostream
&OS
) const override
{
484 OS
<< "\\\"\" << get" << getUpperName() << "() << \"\\\"";
487 void writeDump(raw_ostream
&OS
) const override
{
488 OS
<< " OS << \" \\\"\" << SA->get" << getUpperName()
489 << "() << \"\\\"\";\n";
493 class AlignedArgument
: public Argument
{
495 AlignedArgument(const Record
&Arg
, StringRef Attr
)
496 : Argument(Arg
, Attr
)
499 void writeAccessors(raw_ostream
&OS
) const override
{
500 OS
<< " bool is" << getUpperName() << "Dependent() const;\n";
501 OS
<< " bool is" << getUpperName() << "ErrorDependent() const;\n";
503 OS
<< " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
505 OS
<< " bool is" << getUpperName() << "Expr() const {\n";
506 OS
<< " return is" << getLowerName() << "Expr;\n";
509 OS
<< " Expr *get" << getUpperName() << "Expr() const {\n";
510 OS
<< " assert(is" << getLowerName() << "Expr);\n";
511 OS
<< " return " << getLowerName() << "Expr;\n";
514 OS
<< " TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
515 OS
<< " assert(!is" << getLowerName() << "Expr);\n";
516 OS
<< " return " << getLowerName() << "Type;\n";
519 OS
<< " std::optional<unsigned> getCached" << getUpperName()
520 << "Value() const {\n";
521 OS
<< " return " << getLowerName() << "Cache;\n";
524 OS
<< " void setCached" << getUpperName()
525 << "Value(unsigned AlignVal) {\n";
526 OS
<< " " << getLowerName() << "Cache = AlignVal;\n";
530 void writeAccessorDefinitions(raw_ostream
&OS
) const override
{
531 OS
<< "bool " << getAttrName() << "Attr::is" << getUpperName()
532 << "Dependent() const {\n";
533 OS
<< " if (is" << getLowerName() << "Expr)\n";
534 OS
<< " return " << getLowerName() << "Expr && (" << getLowerName()
535 << "Expr->isValueDependent() || " << getLowerName()
536 << "Expr->isTypeDependent());\n";
538 OS
<< " return " << getLowerName()
539 << "Type->getType()->isDependentType();\n";
542 OS
<< "bool " << getAttrName() << "Attr::is" << getUpperName()
543 << "ErrorDependent() const {\n";
544 OS
<< " if (is" << getLowerName() << "Expr)\n";
545 OS
<< " return " << getLowerName() << "Expr && " << getLowerName()
546 << "Expr->containsErrors();\n";
547 OS
<< " return " << getLowerName()
548 << "Type->getType()->containsErrors();\n";
552 void writeASTVisitorTraversal(raw_ostream
&OS
) const override
{
553 StringRef Name
= getUpperName();
554 OS
<< " if (A->is" << Name
<< "Expr()) {\n"
555 << " if (!getDerived().TraverseStmt(A->get" << Name
<< "Expr()))\n"
556 << " return false;\n"
557 << " } else if (auto *TSI = A->get" << Name
<< "Type()) {\n"
558 << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"
559 << " return false;\n"
563 void writeCloneArgs(raw_ostream
&OS
) const override
{
564 OS
<< "is" << getLowerName() << "Expr, is" << getLowerName()
565 << "Expr ? static_cast<void*>(" << getLowerName()
566 << "Expr) : " << getLowerName()
570 void writeTemplateInstantiationArgs(raw_ostream
&OS
) const override
{
571 // FIXME: move the definition in Sema::InstantiateAttrs to here.
572 // In the meantime, aligned attributes are cloned.
575 void writeCtorBody(raw_ostream
&OS
) const override
{
576 OS
<< " if (is" << getLowerName() << "Expr)\n";
577 OS
<< " " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
578 << getUpperName() << ");\n";
580 OS
<< " " << getLowerName()
581 << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
585 void writeCtorInitializers(raw_ostream
&OS
) const override
{
586 OS
<< "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
589 void writeCtorDefaultInitializers(raw_ostream
&OS
) const override
{
590 OS
<< "is" << getLowerName() << "Expr(false)";
593 void writeCtorParameters(raw_ostream
&OS
) const override
{
594 OS
<< "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
597 void writeImplicitCtorArgs(raw_ostream
&OS
) const override
{
598 OS
<< "Is" << getUpperName() << "Expr, " << getUpperName();
601 void writeDeclarations(raw_ostream
&OS
) const override
{
602 OS
<< "bool is" << getLowerName() << "Expr;\n";
604 OS
<< "Expr *" << getLowerName() << "Expr;\n";
605 OS
<< "TypeSourceInfo *" << getLowerName() << "Type;\n";
607 OS
<< "std::optional<unsigned> " << getLowerName() << "Cache;\n";
610 void writePCHReadArgs(raw_ostream
&OS
) const override
{
611 OS
<< "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
614 void writePCHReadDecls(raw_ostream
&OS
) const override
{
615 OS
<< " bool is" << getLowerName() << "Expr = Record.readInt();\n";
616 OS
<< " void *" << getLowerName() << "Ptr;\n";
617 OS
<< " if (is" << getLowerName() << "Expr)\n";
618 OS
<< " " << getLowerName() << "Ptr = Record.readExpr();\n";
620 OS
<< " " << getLowerName()
621 << "Ptr = Record.readTypeSourceInfo();\n";
624 void writePCHWrite(raw_ostream
&OS
) const override
{
625 OS
<< " Record.push_back(SA->is" << getUpperName() << "Expr());\n";
626 OS
<< " if (SA->is" << getUpperName() << "Expr())\n";
627 OS
<< " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n";
629 OS
<< " Record.AddTypeSourceInfo(SA->get" << getUpperName()
633 std::string
getIsOmitted() const override
{
634 return "!((is" + getLowerName().str() + "Expr && " +
635 getLowerName().str() + "Expr) || (!is" + getLowerName().str() +
636 "Expr && " + getLowerName().str() + "Type))";
639 void writeValue(raw_ostream
&OS
) const override
{
641 OS
<< " if (is" << getLowerName() << "Expr && " << getLowerName()
643 OS
<< " " << getLowerName()
644 << "Expr->printPretty(OS, nullptr, Policy);\n";
645 OS
<< " if (!is" << getLowerName() << "Expr && " << getLowerName()
647 OS
<< " " << getLowerName()
648 << "Type->getType().print(OS, Policy);\n";
652 void writeDump(raw_ostream
&OS
) const override
{
653 OS
<< " if (!SA->is" << getUpperName() << "Expr())\n";
654 OS
<< " dumpType(SA->get" << getUpperName()
655 << "Type()->getType());\n";
658 void writeDumpChildren(raw_ostream
&OS
) const override
{
659 OS
<< " if (SA->is" << getUpperName() << "Expr())\n";
660 OS
<< " Visit(SA->get" << getUpperName() << "Expr());\n";
663 void writeHasChildren(raw_ostream
&OS
) const override
{
664 OS
<< "SA->is" << getUpperName() << "Expr()";
668 class VariadicArgument
: public Argument
{
669 std::string Type
, ArgName
, ArgSizeName
, RangeName
;
672 // Assumed to receive a parameter: raw_ostream OS.
673 virtual void writeValueImpl(raw_ostream
&OS
) const {
674 OS
<< " OS << Val;\n";
676 // Assumed to receive a parameter: raw_ostream OS.
677 virtual void writeDumpImpl(raw_ostream
&OS
) const {
678 OS
<< " OS << \" \" << Val;\n";
682 VariadicArgument(const Record
&Arg
, StringRef Attr
, std::string T
)
683 : Argument(Arg
, Attr
), Type(std::move(T
)),
684 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName
+ "Size"),
685 RangeName(std::string(getLowerName())) {}
687 VariadicArgument(StringRef Arg
, StringRef Attr
, std::string T
)
688 : Argument(Arg
, Attr
), Type(std::move(T
)),
689 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName
+ "Size"),
690 RangeName(std::string(getLowerName())) {}
692 const std::string
&getType() const { return Type
; }
693 const std::string
&getArgName() const { return ArgName
; }
694 const std::string
&getArgSizeName() const { return ArgSizeName
; }
695 bool isVariadic() const override
{ return true; }
697 void writeAccessors(raw_ostream
&OS
) const override
{
698 std::string IteratorType
= getLowerName().str() + "_iterator";
699 std::string BeginFn
= getLowerName().str() + "_begin()";
700 std::string EndFn
= getLowerName().str() + "_end()";
702 OS
<< " typedef " << Type
<< "* " << IteratorType
<< ";\n";
703 OS
<< " " << IteratorType
<< " " << BeginFn
<< " const {"
704 << " return " << ArgName
<< "; }\n";
705 OS
<< " " << IteratorType
<< " " << EndFn
<< " const {"
706 << " return " << ArgName
<< " + " << ArgSizeName
<< "; }\n";
707 OS
<< " unsigned " << getLowerName() << "_size() const {"
708 << " return " << ArgSizeName
<< "; }\n";
709 OS
<< " llvm::iterator_range<" << IteratorType
<< "> " << RangeName
710 << "() const { return llvm::make_range(" << BeginFn
<< ", " << EndFn
714 void writeSetter(raw_ostream
&OS
) const {
715 OS
<< " void set" << getUpperName() << "(ASTContext &Ctx, ";
716 writeCtorParameters(OS
);
718 OS
<< " " << ArgSizeName
<< " = " << getUpperName() << "Size;\n";
719 OS
<< " " << ArgName
<< " = new (Ctx, 16) " << getType() << "["
720 << ArgSizeName
<< "];\n";
726 void writeCloneArgs(raw_ostream
&OS
) const override
{
727 OS
<< ArgName
<< ", " << ArgSizeName
;
730 void writeTemplateInstantiationArgs(raw_ostream
&OS
) const override
{
731 // This isn't elegant, but we have to go through public methods...
732 OS
<< "A->" << getLowerName() << "_begin(), "
733 << "A->" << getLowerName() << "_size()";
736 void writeASTVisitorTraversal(raw_ostream
&OS
) const override
{
737 // FIXME: Traverse the elements.
740 void writeCtorBody(raw_ostream
&OS
) const override
{
741 OS
<< " std::copy(" << getUpperName() << ", " << getUpperName() << " + "
742 << ArgSizeName
<< ", " << ArgName
<< ");\n";
745 void writeCtorInitializers(raw_ostream
&OS
) const override
{
746 OS
<< ArgSizeName
<< "(" << getUpperName() << "Size), "
747 << ArgName
<< "(new (Ctx, 16) " << getType() << "["
748 << ArgSizeName
<< "])";
751 void writeCtorDefaultInitializers(raw_ostream
&OS
) const override
{
752 OS
<< ArgSizeName
<< "(0), " << ArgName
<< "(nullptr)";
755 void writeCtorParameters(raw_ostream
&OS
) const override
{
756 OS
<< getType() << " *" << getUpperName() << ", unsigned "
757 << getUpperName() << "Size";
760 void writeImplicitCtorArgs(raw_ostream
&OS
) const override
{
761 OS
<< getUpperName() << ", " << getUpperName() << "Size";
764 void writeDeclarations(raw_ostream
&OS
) const override
{
765 OS
<< " unsigned " << ArgSizeName
<< ";\n";
766 OS
<< " " << getType() << " *" << ArgName
<< ";";
769 void writePCHReadDecls(raw_ostream
&OS
) const override
{
770 OS
<< " unsigned " << getLowerName() << "Size = Record.readInt();\n";
771 OS
<< " SmallVector<" << getType() << ", 4> "
772 << getLowerName() << ";\n";
773 OS
<< " " << getLowerName() << ".reserve(" << getLowerName()
776 // If we can't store the values in the current type (if it's something
777 // like StringRef), store them in a different type and convert the
778 // container afterwards.
779 std::string StorageType
= std::string(getStorageType(getType()));
780 std::string StorageName
= std::string(getLowerName());
781 if (StorageType
!= getType()) {
782 StorageName
+= "Storage";
783 OS
<< " SmallVector<" << StorageType
<< ", 4> "
784 << StorageName
<< ";\n";
785 OS
<< " " << StorageName
<< ".reserve(" << getLowerName()
789 OS
<< " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
790 std::string read
= ReadPCHRecord(Type
);
791 OS
<< " " << StorageName
<< ".push_back(" << read
<< ");\n";
793 if (StorageType
!= getType()) {
794 OS
<< " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
795 OS
<< " " << getLowerName() << ".push_back("
796 << StorageName
<< "[i]);\n";
800 void writePCHReadArgs(raw_ostream
&OS
) const override
{
801 OS
<< getLowerName() << ".data(), " << getLowerName() << "Size";
804 void writePCHWrite(raw_ostream
&OS
) const override
{
805 OS
<< " Record.push_back(SA->" << getLowerName() << "_size());\n";
806 OS
<< " for (auto &Val : SA->" << RangeName
<< "())\n";
807 OS
<< " " << WritePCHRecord(Type
, "Val");
810 void writeValue(raw_ostream
&OS
) const override
{
812 OS
<< " for (const auto &Val : " << RangeName
<< "()) {\n"
813 << " DelimitAttributeArgument(OS, IsFirstArgument);\n";
819 void writeDump(raw_ostream
&OS
) const override
{
820 OS
<< " for (const auto &Val : SA->" << RangeName
<< "())\n";
825 class VariadicOMPInteropInfoArgument
: public VariadicArgument
{
827 VariadicOMPInteropInfoArgument(const Record
&Arg
, StringRef Attr
)
828 : VariadicArgument(Arg
, Attr
, "OMPInteropInfo") {}
830 void writeDump(raw_ostream
&OS
) const override
{
831 OS
<< " for (" << getAttrName() << "Attr::" << getLowerName()
832 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
833 << getLowerName() << "_end(); I != E; ++I) {\n";
834 OS
<< " if (I->IsTarget && I->IsTargetSync)\n";
835 OS
<< " OS << \" Target_TargetSync\";\n";
836 OS
<< " else if (I->IsTarget)\n";
837 OS
<< " OS << \" Target\";\n";
839 OS
<< " OS << \" TargetSync\";\n";
843 void writePCHReadDecls(raw_ostream
&OS
) const override
{
844 OS
<< " unsigned " << getLowerName() << "Size = Record.readInt();\n";
845 OS
<< " SmallVector<OMPInteropInfo, 4> " << getLowerName() << ";\n";
846 OS
<< " " << getLowerName() << ".reserve(" << getLowerName()
848 OS
<< " for (unsigned I = 0, E = " << getLowerName() << "Size; ";
849 OS
<< "I != E; ++I) {\n";
850 OS
<< " bool IsTarget = Record.readBool();\n";
851 OS
<< " bool IsTargetSync = Record.readBool();\n";
852 OS
<< " " << getLowerName()
853 << ".emplace_back(IsTarget, IsTargetSync);\n";
857 void writePCHWrite(raw_ostream
&OS
) const override
{
858 OS
<< " Record.push_back(SA->" << getLowerName() << "_size());\n";
859 OS
<< " for (" << getAttrName() << "Attr::" << getLowerName()
860 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
861 << getLowerName() << "_end(); I != E; ++I) {\n";
862 OS
<< " Record.writeBool(I->IsTarget);\n";
863 OS
<< " Record.writeBool(I->IsTargetSync);\n";
868 class VariadicParamIdxArgument
: public VariadicArgument
{
870 VariadicParamIdxArgument(const Record
&Arg
, StringRef Attr
)
871 : VariadicArgument(Arg
, Attr
, "ParamIdx") {}
874 void writeValueImpl(raw_ostream
&OS
) const override
{
875 OS
<< " OS << Val.getSourceIndex();\n";
878 void writeDumpImpl(raw_ostream
&OS
) const override
{
879 OS
<< " OS << \" \" << Val.getSourceIndex();\n";
883 struct VariadicParamOrParamIdxArgument
: public VariadicArgument
{
884 VariadicParamOrParamIdxArgument(const Record
&Arg
, StringRef Attr
)
885 : VariadicArgument(Arg
, Attr
, "int") {}
888 // Unique the enums, but maintain the original declaration ordering.
889 std::vector
<StringRef
>
890 uniqueEnumsInOrder(const std::vector
<StringRef
> &enums
) {
891 std::vector
<StringRef
> uniques
;
892 SmallDenseSet
<StringRef
, 8> unique_set
;
893 for (const auto &i
: enums
) {
894 if (unique_set
.insert(i
).second
)
895 uniques
.push_back(i
);
900 class EnumArgument
: public Argument
{
901 std::string fullType
;
903 std::vector
<StringRef
> values
, enums
, uniques
;
907 EnumArgument(const Record
&Arg
, StringRef Attr
)
908 : Argument(Arg
, Attr
), values(Arg
.getValueAsListOfStrings("Values")),
909 enums(Arg
.getValueAsListOfStrings("Enums")),
910 uniques(uniqueEnumsInOrder(enums
)),
911 isExternal(Arg
.getValueAsBit("IsExternalType")) {
912 StringRef Type
= Arg
.getValueAsString("Type");
913 shortType
= isExternal
? Type
.rsplit("::").second
: Type
;
914 // If shortType didn't contain :: at all rsplit will give us an empty
916 if (shortType
.empty())
918 fullType
= isExternal
? Type
: (getAttrName() + "Attr::" + Type
).str();
920 // FIXME: Emit a proper error
921 assert(!uniques
.empty());
924 bool isEnumArg() const override
{ return true; }
926 void writeAccessors(raw_ostream
&OS
) const override
{
927 OS
<< " " << fullType
<< " get" << getUpperName() << "() const {\n";
928 OS
<< " return " << getLowerName() << ";\n";
932 void writeCloneArgs(raw_ostream
&OS
) const override
{
933 OS
<< getLowerName();
936 void writeTemplateInstantiationArgs(raw_ostream
&OS
) const override
{
937 OS
<< "A->get" << getUpperName() << "()";
939 void writeCtorInitializers(raw_ostream
&OS
) const override
{
940 OS
<< getLowerName() << "(" << getUpperName() << ")";
942 void writeCtorDefaultInitializers(raw_ostream
&OS
) const override
{
943 OS
<< getLowerName() << "(" << fullType
<< "(0))";
945 void writeCtorParameters(raw_ostream
&OS
) const override
{
946 OS
<< fullType
<< " " << getUpperName();
948 void writeDeclarations(raw_ostream
&OS
) const override
{
950 auto i
= uniques
.cbegin(), e
= uniques
.cend();
951 // The last one needs to not have a comma.
955 OS
<< " enum " << shortType
<< " {\n";
957 OS
<< " " << *i
<< ",\n";
958 OS
<< " " << *e
<< "\n";
963 OS
<< " " << fullType
<< " " << getLowerName() << ";";
966 void writePCHReadDecls(raw_ostream
&OS
) const override
{
967 OS
<< " " << fullType
<< " " << getLowerName() << "(static_cast<"
968 << fullType
<< ">(Record.readInt()));\n";
971 void writePCHReadArgs(raw_ostream
&OS
) const override
{
972 OS
<< getLowerName();
975 void writePCHWrite(raw_ostream
&OS
) const override
{
976 OS
<< "Record.push_back(static_cast<uint64_t>(SA->get" << getUpperName()
980 void writeValue(raw_ostream
&OS
) const override
{
981 // FIXME: this isn't 100% correct -- some enum arguments require printing
982 // as a string literal, while others require printing as an identifier.
983 // Tablegen currently does not distinguish between the two forms.
984 OS
<< "\\\"\" << " << getAttrName() << "Attr::Convert" << shortType
985 << "ToStr(get" << getUpperName() << "()) << \"\\\"";
988 void writeDump(raw_ostream
&OS
) const override
{
989 OS
<< " switch(SA->get" << getUpperName() << "()) {\n";
990 for (const auto &I
: uniques
) {
991 OS
<< " case " << fullType
<< "::" << I
<< ":\n";
992 OS
<< " OS << \" " << I
<< "\";\n";
997 OS
<< " llvm_unreachable(\"Invalid attribute value\");\n";
1002 void writeConversion(raw_ostream
&OS
, bool Header
) const {
1004 OS
<< " static bool ConvertStrTo" << shortType
<< "(StringRef Val, "
1005 << fullType
<< " &Out);\n";
1006 OS
<< " static const char *Convert" << shortType
<< "ToStr("
1007 << fullType
<< " Val);\n";
1011 OS
<< "bool " << getAttrName() << "Attr::ConvertStrTo" << shortType
1012 << "(StringRef Val, " << fullType
<< " &Out) {\n";
1013 OS
<< " std::optional<" << fullType
<< "> "
1014 << "R = llvm::StringSwitch<std::optional<" << fullType
<< ">>(Val)\n";
1015 for (size_t I
= 0; I
< enums
.size(); ++I
) {
1016 OS
<< " .Case(\"" << values
[I
] << "\", ";
1017 OS
<< fullType
<< "::" << enums
[I
] << ")\n";
1019 OS
<< " .Default(std::optional<" << fullType
<< ">());\n";
1020 OS
<< " if (R) {\n";
1021 OS
<< " Out = *R;\n return true;\n }\n";
1022 OS
<< " return false;\n";
1025 // Mapping from enumeration values back to enumeration strings isn't
1026 // trivial because some enumeration values have multiple named
1027 // enumerators, such as type_visibility(internal) and
1028 // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
1029 OS
<< "const char *" << getAttrName() << "Attr::Convert" << shortType
1030 << "ToStr(" << fullType
<< " Val) {\n"
1031 << " switch(Val) {\n";
1032 SmallDenseSet
<StringRef
, 8> Uniques
;
1033 for (size_t I
= 0; I
< enums
.size(); ++I
) {
1034 if (Uniques
.insert(enums
[I
]).second
)
1035 OS
<< " case " << fullType
<< "::" << enums
[I
] << ": return \""
1036 << values
[I
] << "\";\n";
1039 OS
<< " default: llvm_unreachable(\"Invalid attribute value\");\n";
1042 << " llvm_unreachable(\"No enumerator with that value\");\n"
1047 class VariadicEnumArgument
: public VariadicArgument
{
1048 std::string fullType
;
1049 StringRef shortType
;
1050 std::vector
<StringRef
> values
, enums
, uniques
;
1054 void writeValueImpl(raw_ostream
&OS
) const override
{
1055 // FIXME: this isn't 100% correct -- some enum arguments require printing
1056 // as a string literal, while others require printing as an identifier.
1057 // Tablegen currently does not distinguish between the two forms.
1058 OS
<< " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert"
1059 << shortType
<< "ToStr(Val)"
1060 << "<< \"\\\"\";\n";
1064 VariadicEnumArgument(const Record
&Arg
, StringRef Attr
)
1065 : VariadicArgument(Arg
, Attr
,
1066 std::string(Arg
.getValueAsString("Type"))),
1067 values(Arg
.getValueAsListOfStrings("Values")),
1068 enums(Arg
.getValueAsListOfStrings("Enums")),
1069 uniques(uniqueEnumsInOrder(enums
)),
1070 isExternal(Arg
.getValueAsBit("IsExternalType")) {
1071 StringRef Type
= Arg
.getValueAsString("Type");
1072 shortType
= isExternal
? Type
.rsplit("::").second
: Type
;
1073 // If shortType didn't contain :: at all rsplit will give us an empty
1075 if (shortType
.empty())
1077 fullType
= isExternal
? Type
: (getAttrName() + "Attr::" + Type
).str();
1079 // FIXME: Emit a proper error
1080 assert(!uniques
.empty());
1083 bool isVariadicEnumArg() const override
{ return true; }
1085 void writeDeclarations(raw_ostream
&OS
) const override
{
1087 auto i
= uniques
.cbegin(), e
= uniques
.cend();
1088 // The last one needs to not have a comma.
1092 OS
<< " enum " << shortType
<< " {\n";
1094 OS
<< " " << *i
<< ",\n";
1095 OS
<< " " << *e
<< "\n";
1100 VariadicArgument::writeDeclarations(OS
);
1103 void writeDump(raw_ostream
&OS
) const override
{
1104 OS
<< " for (" << getAttrName() << "Attr::" << getLowerName()
1105 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1106 << getLowerName() << "_end(); I != E; ++I) {\n";
1107 OS
<< " switch(*I) {\n";
1108 for (const auto &UI
: uniques
) {
1109 OS
<< " case " << fullType
<< "::" << UI
<< ":\n";
1110 OS
<< " OS << \" " << UI
<< "\";\n";
1117 void writePCHReadDecls(raw_ostream
&OS
) const override
{
1118 OS
<< " unsigned " << getLowerName() << "Size = Record.readInt();\n";
1119 OS
<< " SmallVector<" << fullType
<< ", 4> " << getLowerName()
1121 OS
<< " " << getLowerName() << ".reserve(" << getLowerName()
1123 OS
<< " for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
1124 OS
<< " " << getLowerName() << ".push_back("
1125 << "static_cast<" << fullType
<< ">(Record.readInt()));\n";
1128 void writePCHWrite(raw_ostream
&OS
) const override
{
1129 OS
<< " Record.push_back(SA->" << getLowerName() << "_size());\n";
1130 OS
<< " for (" << getAttrName() << "Attr::" << getLowerName()
1131 << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
1132 << getLowerName() << "_end(); i != e; ++i)\n";
1133 OS
<< " " << WritePCHRecord(fullType
, "(*i)");
1136 void writeConversion(raw_ostream
&OS
, bool Header
) const {
1138 OS
<< " static bool ConvertStrTo" << shortType
<< "(StringRef Val, "
1139 << fullType
<< " &Out);\n";
1140 OS
<< " static const char *Convert" << shortType
<< "ToStr("
1141 << fullType
<< " Val);\n";
1145 OS
<< "bool " << getAttrName() << "Attr::ConvertStrTo" << shortType
1146 << "(StringRef Val, ";
1147 OS
<< fullType
<< " &Out) {\n";
1148 OS
<< " std::optional<" << fullType
1149 << "> R = llvm::StringSwitch<std::optional<";
1150 OS
<< fullType
<< ">>(Val)\n";
1151 for (size_t I
= 0; I
< enums
.size(); ++I
) {
1152 OS
<< " .Case(\"" << values
[I
] << "\", ";
1153 OS
<< fullType
<< "::" << enums
[I
] << ")\n";
1155 OS
<< " .Default(std::optional<" << fullType
<< ">());\n";
1156 OS
<< " if (R) {\n";
1157 OS
<< " Out = *R;\n return true;\n }\n";
1158 OS
<< " return false;\n";
1161 OS
<< "const char *" << getAttrName() << "Attr::Convert" << shortType
1162 << "ToStr(" << fullType
<< " Val) {\n"
1163 << " switch(Val) {\n";
1164 SmallDenseSet
<StringRef
, 8> Uniques
;
1165 for (size_t I
= 0; I
< enums
.size(); ++I
) {
1166 if (Uniques
.insert(enums
[I
]).second
)
1167 OS
<< " case " << fullType
<< "::" << enums
[I
] << ": return \""
1168 << values
[I
] << "\";\n";
1171 << " llvm_unreachable(\"No enumerator with that value\");\n"
1176 class VersionArgument
: public Argument
{
1178 VersionArgument(const Record
&Arg
, StringRef Attr
)
1179 : Argument(Arg
, Attr
)
1182 void writeAccessors(raw_ostream
&OS
) const override
{
1183 OS
<< " VersionTuple get" << getUpperName() << "() const {\n";
1184 OS
<< " return " << getLowerName() << ";\n";
1186 OS
<< " void set" << getUpperName()
1187 << "(ASTContext &C, VersionTuple V) {\n";
1188 OS
<< " " << getLowerName() << " = V;\n";
1192 void writeCloneArgs(raw_ostream
&OS
) const override
{
1193 OS
<< "get" << getUpperName() << "()";
1196 void writeTemplateInstantiationArgs(raw_ostream
&OS
) const override
{
1197 OS
<< "A->get" << getUpperName() << "()";
1200 void writeCtorInitializers(raw_ostream
&OS
) const override
{
1201 OS
<< getLowerName() << "(" << getUpperName() << ")";
1204 void writeCtorDefaultInitializers(raw_ostream
&OS
) const override
{
1205 OS
<< getLowerName() << "()";
1208 void writeCtorParameters(raw_ostream
&OS
) const override
{
1209 OS
<< "VersionTuple " << getUpperName();
1212 void writeDeclarations(raw_ostream
&OS
) const override
{
1213 OS
<< "VersionTuple " << getLowerName() << ";\n";
1216 void writePCHReadDecls(raw_ostream
&OS
) const override
{
1217 OS
<< " VersionTuple " << getLowerName()
1218 << "= Record.readVersionTuple();\n";
1221 void writePCHReadArgs(raw_ostream
&OS
) const override
{
1222 OS
<< getLowerName();
1225 void writePCHWrite(raw_ostream
&OS
) const override
{
1226 OS
<< " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n";
1229 void writeValue(raw_ostream
&OS
) const override
{
1230 OS
<< getLowerName() << "=\" << get" << getUpperName() << "() << \"";
1233 void writeDump(raw_ostream
&OS
) const override
{
1234 OS
<< " OS << \" \" << SA->get" << getUpperName() << "();\n";
1238 class ExprArgument
: public SimpleArgument
{
1240 ExprArgument(const Record
&Arg
, StringRef Attr
)
1241 : SimpleArgument(Arg
, Attr
, "Expr *")
1244 void writeASTVisitorTraversal(raw_ostream
&OS
) const override
{
1246 << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
1247 OS
<< " return false;\n";
1250 void writeTemplateInstantiationArgs(raw_ostream
&OS
) const override
{
1251 OS
<< "tempInst" << getUpperName();
1254 void writeTemplateInstantiation(raw_ostream
&OS
) const override
{
1255 OS
<< " " << getType() << " tempInst" << getUpperName() << ";\n";
1257 OS
<< " EnterExpressionEvaluationContext "
1258 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1259 OS
<< " ExprResult " << "Result = S.SubstExpr("
1260 << "A->get" << getUpperName() << "(), TemplateArgs);\n";
1261 OS
<< " if (Result.isInvalid())\n";
1262 OS
<< " return nullptr;\n";
1263 OS
<< " tempInst" << getUpperName() << " = Result.get();\n";
1267 void writeValue(raw_ostream
&OS
) const override
{
1269 OS
<< " get" << getUpperName()
1270 << "()->printPretty(OS, nullptr, Policy);\n";
1274 void writeDump(raw_ostream
&OS
) const override
{}
1276 void writeDumpChildren(raw_ostream
&OS
) const override
{
1277 OS
<< " Visit(SA->get" << getUpperName() << "());\n";
1280 void writeHasChildren(raw_ostream
&OS
) const override
{ OS
<< "true"; }
1283 class VariadicExprArgument
: public VariadicArgument
{
1285 VariadicExprArgument(const Record
&Arg
, StringRef Attr
)
1286 : VariadicArgument(Arg
, Attr
, "Expr *")
1289 VariadicExprArgument(StringRef ArgName
, StringRef Attr
)
1290 : VariadicArgument(ArgName
, Attr
, "Expr *") {}
1292 void writeASTVisitorTraversal(raw_ostream
&OS
) const override
{
1294 OS
<< " " << getType() << " *I = A->" << getLowerName()
1296 OS
<< " " << getType() << " *E = A->" << getLowerName()
1298 OS
<< " for (; I != E; ++I) {\n";
1299 OS
<< " if (!getDerived().TraverseStmt(*I))\n";
1300 OS
<< " return false;\n";
1305 void writeTemplateInstantiationArgs(raw_ostream
&OS
) const override
{
1306 OS
<< "tempInst" << getUpperName() << ", "
1307 << "A->" << getLowerName() << "_size()";
1310 void writeTemplateInstantiation(raw_ostream
&OS
) const override
{
1311 OS
<< " auto *tempInst" << getUpperName()
1312 << " = new (C, 16) " << getType()
1313 << "[A->" << getLowerName() << "_size()];\n";
1315 OS
<< " EnterExpressionEvaluationContext "
1316 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1317 OS
<< " " << getType() << " *TI = tempInst" << getUpperName()
1319 OS
<< " " << getType() << " *I = A->" << getLowerName()
1321 OS
<< " " << getType() << " *E = A->" << getLowerName()
1323 OS
<< " for (; I != E; ++I, ++TI) {\n";
1324 OS
<< " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
1325 OS
<< " if (Result.isInvalid())\n";
1326 OS
<< " return nullptr;\n";
1327 OS
<< " *TI = Result.get();\n";
1332 void writeDump(raw_ostream
&OS
) const override
{}
1334 void writeDumpChildren(raw_ostream
&OS
) const override
{
1335 OS
<< " for (" << getAttrName() << "Attr::" << getLowerName()
1336 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1337 << getLowerName() << "_end(); I != E; ++I)\n";
1338 OS
<< " Visit(*I);\n";
1341 void writeHasChildren(raw_ostream
&OS
) const override
{
1342 OS
<< "SA->" << getLowerName() << "_begin() != "
1343 << "SA->" << getLowerName() << "_end()";
1347 class VariadicIdentifierArgument
: public VariadicArgument
{
1349 VariadicIdentifierArgument(const Record
&Arg
, StringRef Attr
)
1350 : VariadicArgument(Arg
, Attr
, "IdentifierInfo *")
1354 class VariadicStringArgument
: public VariadicArgument
{
1356 VariadicStringArgument(const Record
&Arg
, StringRef Attr
)
1357 : VariadicArgument(Arg
, Attr
, "StringRef")
1360 void writeCtorBody(raw_ostream
&OS
) const override
{
1361 OS
<< " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n"
1363 " StringRef Ref = " << getUpperName() << "[I];\n"
1364 " if (!Ref.empty()) {\n"
1365 " char *Mem = new (Ctx, 1) char[Ref.size()];\n"
1366 " std::memcpy(Mem, Ref.data(), Ref.size());\n"
1367 " " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n"
1372 void writeValueImpl(raw_ostream
&OS
) const override
{
1373 OS
<< " OS << \"\\\"\" << Val << \"\\\"\";\n";
1377 class TypeArgument
: public SimpleArgument
{
1379 TypeArgument(const Record
&Arg
, StringRef Attr
)
1380 : SimpleArgument(Arg
, Attr
, "TypeSourceInfo *")
1383 void writeAccessors(raw_ostream
&OS
) const override
{
1384 OS
<< " QualType get" << getUpperName() << "() const {\n";
1385 OS
<< " return " << getLowerName() << "->getType();\n";
1387 OS
<< " " << getType() << " get" << getUpperName() << "Loc() const {\n";
1388 OS
<< " return " << getLowerName() << ";\n";
1392 void writeASTVisitorTraversal(raw_ostream
&OS
) const override
{
1393 OS
<< " if (auto *TSI = A->get" << getUpperName() << "Loc())\n";
1394 OS
<< " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n";
1395 OS
<< " return false;\n";
1398 void writeTemplateInstantiation(raw_ostream
&OS
) const override
{
1399 OS
<< " " << getType() << " tempInst" << getUpperName() << " =\n";
1400 OS
<< " S.SubstType(A->get" << getUpperName() << "Loc(), "
1401 << "TemplateArgs, A->getLoc(), A->getAttrName());\n";
1402 OS
<< " if (!tempInst" << getUpperName() << ")\n";
1403 OS
<< " return nullptr;\n";
1406 void writeTemplateInstantiationArgs(raw_ostream
&OS
) const override
{
1407 OS
<< "tempInst" << getUpperName();
1410 void writePCHWrite(raw_ostream
&OS
) const override
{
1412 << WritePCHRecord(getType(),
1413 "SA->get" + std::string(getUpperName()) + "Loc()");
1417 } // end anonymous namespace
1419 static std::unique_ptr
<Argument
>
1420 createArgument(const Record
&Arg
, StringRef Attr
,
1421 const Record
*Search
= nullptr) {
1425 std::unique_ptr
<Argument
> Ptr
;
1426 llvm::StringRef ArgName
= Search
->getName();
1428 if (ArgName
== "AlignedArgument")
1429 Ptr
= std::make_unique
<AlignedArgument
>(Arg
, Attr
);
1430 else if (ArgName
== "EnumArgument")
1431 Ptr
= std::make_unique
<EnumArgument
>(Arg
, Attr
);
1432 else if (ArgName
== "ExprArgument")
1433 Ptr
= std::make_unique
<ExprArgument
>(Arg
, Attr
);
1434 else if (ArgName
== "DeclArgument")
1435 Ptr
= std::make_unique
<SimpleArgument
>(
1436 Arg
, Attr
, (Arg
.getValueAsDef("Kind")->getName() + "Decl *").str());
1437 else if (ArgName
== "IdentifierArgument")
1438 Ptr
= std::make_unique
<SimpleArgument
>(Arg
, Attr
, "IdentifierInfo *");
1439 else if (ArgName
== "DefaultBoolArgument")
1440 Ptr
= std::make_unique
<DefaultSimpleArgument
>(
1441 Arg
, Attr
, "bool", Arg
.getValueAsBit("Default"));
1442 else if (ArgName
== "BoolArgument")
1443 Ptr
= std::make_unique
<SimpleArgument
>(Arg
, Attr
, "bool");
1444 else if (ArgName
== "DefaultIntArgument")
1445 Ptr
= std::make_unique
<DefaultSimpleArgument
>(
1446 Arg
, Attr
, "int", Arg
.getValueAsInt("Default"));
1447 else if (ArgName
== "IntArgument")
1448 Ptr
= std::make_unique
<SimpleArgument
>(Arg
, Attr
, "int");
1449 else if (ArgName
== "StringArgument")
1450 Ptr
= std::make_unique
<StringArgument
>(Arg
, Attr
);
1451 else if (ArgName
== "TypeArgument")
1452 Ptr
= std::make_unique
<TypeArgument
>(Arg
, Attr
);
1453 else if (ArgName
== "UnsignedArgument")
1454 Ptr
= std::make_unique
<SimpleArgument
>(Arg
, Attr
, "unsigned");
1455 else if (ArgName
== "VariadicUnsignedArgument")
1456 Ptr
= std::make_unique
<VariadicArgument
>(Arg
, Attr
, "unsigned");
1457 else if (ArgName
== "VariadicStringArgument")
1458 Ptr
= std::make_unique
<VariadicStringArgument
>(Arg
, Attr
);
1459 else if (ArgName
== "VariadicEnumArgument")
1460 Ptr
= std::make_unique
<VariadicEnumArgument
>(Arg
, Attr
);
1461 else if (ArgName
== "VariadicExprArgument")
1462 Ptr
= std::make_unique
<VariadicExprArgument
>(Arg
, Attr
);
1463 else if (ArgName
== "VariadicParamIdxArgument")
1464 Ptr
= std::make_unique
<VariadicParamIdxArgument
>(Arg
, Attr
);
1465 else if (ArgName
== "VariadicParamOrParamIdxArgument")
1466 Ptr
= std::make_unique
<VariadicParamOrParamIdxArgument
>(Arg
, Attr
);
1467 else if (ArgName
== "ParamIdxArgument")
1468 Ptr
= std::make_unique
<SimpleArgument
>(Arg
, Attr
, "ParamIdx");
1469 else if (ArgName
== "VariadicIdentifierArgument")
1470 Ptr
= std::make_unique
<VariadicIdentifierArgument
>(Arg
, Attr
);
1471 else if (ArgName
== "VersionArgument")
1472 Ptr
= std::make_unique
<VersionArgument
>(Arg
, Attr
);
1473 else if (ArgName
== "OMPTraitInfoArgument")
1474 Ptr
= std::make_unique
<SimpleArgument
>(Arg
, Attr
, "OMPTraitInfo *");
1475 else if (ArgName
== "VariadicOMPInteropInfoArgument")
1476 Ptr
= std::make_unique
<VariadicOMPInteropInfoArgument
>(Arg
, Attr
);
1479 // Search in reverse order so that the most-derived type is handled first.
1480 ArrayRef
<std::pair
<Record
*, SMRange
>> Bases
= Search
->getSuperClasses();
1481 for (const auto &Base
: llvm::reverse(Bases
)) {
1482 if ((Ptr
= createArgument(Arg
, Attr
, Base
.first
)))
1487 if (Ptr
&& Arg
.getValueAsBit("Optional"))
1488 Ptr
->setOptional(true);
1490 if (Ptr
&& Arg
.getValueAsBit("Fake"))
1496 static void writeAvailabilityValue(raw_ostream
&OS
) {
1497 OS
<< "\" << getPlatform()->getName();\n"
1498 << " if (getStrict()) OS << \", strict\";\n"
1499 << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
1500 << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
1501 << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
1502 << " if (getUnavailable()) OS << \", unavailable\";\n"
1506 static void writeDeprecatedAttrValue(raw_ostream
&OS
, std::string
&Variety
) {
1507 OS
<< "\\\"\" << getMessage() << \"\\\"\";\n";
1508 // Only GNU deprecated has an optional fixit argument at the second position.
1509 if (Variety
== "GNU")
1510 OS
<< " if (!getReplacement().empty()) OS << \", \\\"\""
1511 " << getReplacement() << \"\\\"\";\n";
1515 static void writeGetSpellingFunction(const Record
&R
, raw_ostream
&OS
) {
1516 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(R
);
1518 OS
<< "const char *" << R
.getName() << "Attr::getSpelling() const {\n";
1519 if (Spellings
.empty()) {
1520 OS
<< " return \"(No spelling)\";\n}\n\n";
1524 OS
<< " switch (getAttributeSpellingListIndex()) {\n"
1526 " llvm_unreachable(\"Unknown attribute spelling!\");\n"
1527 " return \"(No spelling)\";\n";
1529 for (unsigned I
= 0; I
< Spellings
.size(); ++I
)
1530 OS
<< " case " << I
<< ":\n"
1531 " return \"" << Spellings
[I
].name() << "\";\n";
1532 // End of the switch statement.
1534 // End of the getSpelling function.
1539 writePrettyPrintFunction(const Record
&R
,
1540 const std::vector
<std::unique_ptr
<Argument
>> &Args
,
1542 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(R
);
1544 OS
<< "void " << R
.getName() << "Attr::printPretty("
1545 << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
1547 if (Spellings
.empty()) {
1552 OS
<< " bool IsFirstArgument = true; (void)IsFirstArgument;\n"
1553 << " unsigned TrailingOmittedArgs = 0; (void)TrailingOmittedArgs;\n"
1554 << " switch (getAttributeSpellingListIndex()) {\n"
1556 << " llvm_unreachable(\"Unknown attribute spelling!\");\n"
1559 for (unsigned I
= 0; I
< Spellings
.size(); ++ I
) {
1560 llvm::SmallString
<16> Prefix
;
1561 llvm::SmallString
<8> Suffix
;
1562 // The actual spelling of the name and namespace (if applicable)
1563 // of an attribute without considering prefix and suffix.
1564 llvm::SmallString
<64> Spelling
;
1565 std::string Name
= Spellings
[I
].name();
1566 std::string Variety
= Spellings
[I
].variety();
1568 if (Variety
== "GNU") {
1569 Prefix
= " __attribute__((";
1571 } else if (Variety
== "CXX11" || Variety
== "C23") {
1574 std::string Namespace
= Spellings
[I
].nameSpace();
1575 if (!Namespace
.empty()) {
1576 Spelling
+= Namespace
;
1579 } else if (Variety
== "Declspec") {
1580 Prefix
= " __declspec(";
1582 } else if (Variety
== "Microsoft") {
1585 } else if (Variety
== "Keyword") {
1588 } else if (Variety
== "Pragma") {
1589 Prefix
= "#pragma ";
1591 std::string Namespace
= Spellings
[I
].nameSpace();
1592 if (!Namespace
.empty()) {
1593 Spelling
+= Namespace
;
1596 } else if (Variety
== "HLSLSemantic") {
1600 llvm_unreachable("Unknown attribute syntax variety!");
1605 OS
<< " case " << I
<< " : {\n"
1606 << " OS << \"" << Prefix
<< Spelling
<< "\";\n";
1608 if (Variety
== "Pragma") {
1609 OS
<< " printPrettyPragma(OS, Policy);\n";
1610 OS
<< " OS << \"\\n\";";
1616 if (Spelling
== "availability") {
1618 writeAvailabilityValue(OS
);
1620 } else if (Spelling
== "deprecated" || Spelling
== "gnu::deprecated") {
1622 writeDeprecatedAttrValue(OS
, Variety
);
1625 // To avoid printing parentheses around an empty argument list or
1626 // printing spurious commas at the end of an argument list, we need to
1627 // determine where the last provided non-fake argument is.
1628 bool FoundNonOptArg
= false;
1629 for (const auto &arg
: llvm::reverse(Args
)) {
1634 // FIXME: arg->getIsOmitted() == "false" means we haven't implemented
1635 // any way to detect whether the argument was omitted.
1636 if (!arg
->isOptional() || arg
->getIsOmitted() == "false") {
1637 FoundNonOptArg
= true;
1640 OS
<< " if (" << arg
->getIsOmitted() << ")\n"
1641 << " ++TrailingOmittedArgs;\n";
1643 unsigned ArgIndex
= 0;
1644 for (const auto &arg
: Args
) {
1647 std::string IsOmitted
= arg
->getIsOmitted();
1648 if (arg
->isOptional() && IsOmitted
!= "false")
1649 OS
<< " if (!(" << IsOmitted
<< ")) {\n";
1650 // Variadic arguments print their own leading comma.
1651 if (!arg
->isVariadic())
1652 OS
<< " DelimitAttributeArgument(OS, IsFirstArgument);\n";
1654 arg
->writeValue(OS
);
1656 if (arg
->isOptional() && IsOmitted
!= "false")
1661 OS
<< " if (!IsFirstArgument)\n"
1662 << " OS << \")\";\n";
1664 OS
<< " OS << \"" << Suffix
<< "\";\n"
1669 // End of the switch statement.
1671 // End of the print function.
1675 /// Return the index of a spelling in a spelling list.
1677 getSpellingListIndex(const std::vector
<FlattenedSpelling
> &SpellingList
,
1678 const FlattenedSpelling
&Spelling
) {
1679 assert(!SpellingList
.empty() && "Spelling list is empty!");
1681 for (unsigned Index
= 0; Index
< SpellingList
.size(); ++Index
) {
1682 const FlattenedSpelling
&S
= SpellingList
[Index
];
1683 if (S
.variety() != Spelling
.variety())
1685 if (S
.nameSpace() != Spelling
.nameSpace())
1687 if (S
.name() != Spelling
.name())
1693 llvm_unreachable("Unknown spelling!");
1696 static void writeAttrAccessorDefinition(const Record
&R
, raw_ostream
&OS
) {
1697 std::vector
<Record
*> Accessors
= R
.getValueAsListOfDefs("Accessors");
1698 if (Accessors
.empty())
1701 const std::vector
<FlattenedSpelling
> SpellingList
= GetFlattenedSpellings(R
);
1702 assert(!SpellingList
.empty() &&
1703 "Attribute with empty spelling list can't have accessors!");
1704 for (const auto *Accessor
: Accessors
) {
1705 const StringRef Name
= Accessor
->getValueAsString("Name");
1706 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(*Accessor
);
1708 OS
<< " bool " << Name
1709 << "() const { return getAttributeSpellingListIndex() == ";
1710 for (unsigned Index
= 0; Index
< Spellings
.size(); ++Index
) {
1711 OS
<< getSpellingListIndex(SpellingList
, Spellings
[Index
]);
1712 if (Index
!= Spellings
.size() - 1)
1713 OS
<< " ||\n getAttributeSpellingListIndex() == ";
1721 SpellingNamesAreCommon(const std::vector
<FlattenedSpelling
>& Spellings
) {
1722 assert(!Spellings
.empty() && "An empty list of spellings was provided");
1723 std::string FirstName
=
1724 std::string(NormalizeNameForSpellingComparison(Spellings
.front().name()));
1725 for (const auto &Spelling
:
1726 llvm::make_range(std::next(Spellings
.begin()), Spellings
.end())) {
1728 std::string(NormalizeNameForSpellingComparison(Spelling
.name()));
1729 if (Name
!= FirstName
)
1735 typedef std::map
<unsigned, std::string
> SemanticSpellingMap
;
1737 CreateSemanticSpellings(const std::vector
<FlattenedSpelling
> &Spellings
,
1738 SemanticSpellingMap
&Map
) {
1739 // The enumerants are automatically generated based on the variety,
1740 // namespace (if present) and name for each attribute spelling. However,
1741 // care is taken to avoid trampling on the reserved namespace due to
1743 std::string
Ret(" enum Spelling {\n");
1744 std::set
<std::string
> Uniques
;
1747 // If we have a need to have this many spellings we likely need to add an
1748 // extra bit to the SpellingIndex in AttributeCommonInfo, then increase the
1749 // value of SpellingNotCalculated there and here.
1750 assert(Spellings
.size() < 15 &&
1751 "Too many spellings, would step on SpellingNotCalculated in "
1752 "AttributeCommonInfo");
1753 for (auto I
= Spellings
.begin(), E
= Spellings
.end(); I
!= E
; ++I
, ++Idx
) {
1754 const FlattenedSpelling
&S
= *I
;
1755 const std::string
&Variety
= S
.variety();
1756 const std::string
&Spelling
= S
.name();
1757 const std::string
&Namespace
= S
.nameSpace();
1758 std::string EnumName
;
1760 EnumName
+= (Variety
+ "_");
1761 if (!Namespace
.empty())
1762 EnumName
+= (NormalizeNameForSpellingComparison(Namespace
).str() +
1764 EnumName
+= NormalizeNameForSpellingComparison(Spelling
);
1766 // Even if the name is not unique, this spelling index corresponds to a
1767 // particular enumerant name that we've calculated.
1768 Map
[Idx
] = EnumName
;
1770 // Since we have been stripping underscores to avoid trampling on the
1771 // reserved namespace, we may have inadvertently created duplicate
1772 // enumerant names. These duplicates are not considered part of the
1773 // semantic spelling, and can be elided.
1774 if (Uniques
.find(EnumName
) != Uniques
.end())
1777 Uniques
.insert(EnumName
);
1778 if (I
!= Spellings
.begin())
1780 // Duplicate spellings are not considered part of the semantic spelling
1781 // enumeration, but the spelling index and semantic spelling values are
1782 // meant to be equivalent, so we must specify a concrete value for each
1784 Ret
+= " " + EnumName
+ " = " + llvm::utostr(Idx
);
1786 Ret
+= ",\n SpellingNotCalculated = 15\n";
1791 void WriteSemanticSpellingSwitch(const std::string
&VarName
,
1792 const SemanticSpellingMap
&Map
,
1794 OS
<< " switch (" << VarName
<< ") {\n default: "
1795 << "llvm_unreachable(\"Unknown spelling list index\");\n";
1796 for (const auto &I
: Map
)
1797 OS
<< " case " << I
.first
<< ": return " << I
.second
<< ";\n";
1801 // Emits the LateParsed property for attributes.
1802 static void emitClangAttrLateParsedList(RecordKeeper
&Records
, raw_ostream
&OS
) {
1803 OS
<< "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
1804 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
1806 for (const auto *Attr
: Attrs
) {
1807 bool LateParsed
= Attr
->getValueAsBit("LateParsed");
1810 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(*Attr
);
1812 // FIXME: Handle non-GNU attributes
1813 for (const auto &I
: Spellings
) {
1814 if (I
.variety() != "GNU")
1816 OS
<< ".Case(\"" << I
.name() << "\", " << LateParsed
<< ")\n";
1820 OS
<< "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
1823 static bool hasGNUorCXX11Spelling(const Record
&Attribute
) {
1824 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(Attribute
);
1825 for (const auto &I
: Spellings
) {
1826 if (I
.variety() == "GNU" || I
.variety() == "CXX11")
1834 struct AttributeSubjectMatchRule
{
1835 const Record
*MetaSubject
;
1836 const Record
*Constraint
;
1838 AttributeSubjectMatchRule(const Record
*MetaSubject
, const Record
*Constraint
)
1839 : MetaSubject(MetaSubject
), Constraint(Constraint
) {
1840 assert(MetaSubject
&& "Missing subject");
1843 bool isSubRule() const { return Constraint
!= nullptr; }
1845 std::vector
<Record
*> getSubjects() const {
1846 return (Constraint
? Constraint
: MetaSubject
)
1847 ->getValueAsListOfDefs("Subjects");
1850 std::vector
<Record
*> getLangOpts() const {
1852 // Lookup the options in the sub-rule first, in case the sub-rule
1853 // overrides the rules options.
1854 std::vector
<Record
*> Opts
= Constraint
->getValueAsListOfDefs("LangOpts");
1858 return MetaSubject
->getValueAsListOfDefs("LangOpts");
1861 // Abstract rules are used only for sub-rules
1862 bool isAbstractRule() const { return getSubjects().empty(); }
1864 StringRef
getName() const {
1865 return (Constraint
? Constraint
: MetaSubject
)->getValueAsString("Name");
1868 bool isNegatedSubRule() const {
1869 assert(isSubRule() && "Not a sub-rule");
1870 return Constraint
->getValueAsBit("Negated");
1873 std::string
getSpelling() const {
1874 std::string Result
= std::string(MetaSubject
->getValueAsString("Name"));
1877 if (isNegatedSubRule())
1878 Result
+= "unless(";
1879 Result
+= getName();
1880 if (isNegatedSubRule())
1887 std::string
getEnumValueName() const {
1888 SmallString
<128> Result
;
1889 Result
+= "SubjectMatchRule_";
1890 Result
+= MetaSubject
->getValueAsString("Name");
1893 if (isNegatedSubRule())
1895 Result
+= Constraint
->getValueAsString("Name");
1897 if (isAbstractRule())
1898 Result
+= "_abstract";
1899 return std::string(Result
.str());
1902 std::string
getEnumValue() const { return "attr::" + getEnumValueName(); }
1904 static const char *EnumName
;
1907 const char *AttributeSubjectMatchRule::EnumName
= "attr::SubjectMatchRule";
1909 struct PragmaClangAttributeSupport
{
1910 std::vector
<AttributeSubjectMatchRule
> Rules
;
1912 class RuleOrAggregateRuleSet
{
1913 std::vector
<AttributeSubjectMatchRule
> Rules
;
1915 RuleOrAggregateRuleSet(ArrayRef
<AttributeSubjectMatchRule
> Rules
,
1917 : Rules(Rules
), IsRule(IsRule
) {}
1920 bool isRule() const { return IsRule
; }
1922 const AttributeSubjectMatchRule
&getRule() const {
1923 assert(IsRule
&& "not a rule!");
1927 ArrayRef
<AttributeSubjectMatchRule
> getAggregateRuleSet() const {
1931 static RuleOrAggregateRuleSet
1932 getRule(const AttributeSubjectMatchRule
&Rule
) {
1933 return RuleOrAggregateRuleSet(Rule
, /*IsRule=*/true);
1935 static RuleOrAggregateRuleSet
1936 getAggregateRuleSet(ArrayRef
<AttributeSubjectMatchRule
> Rules
) {
1937 return RuleOrAggregateRuleSet(Rules
, /*IsRule=*/false);
1940 llvm::DenseMap
<const Record
*, RuleOrAggregateRuleSet
> SubjectsToRules
;
1942 PragmaClangAttributeSupport(RecordKeeper
&Records
);
1944 bool isAttributedSupported(const Record
&Attribute
);
1946 void emitMatchRuleList(raw_ostream
&OS
);
1948 void generateStrictConformsTo(const Record
&Attr
, raw_ostream
&OS
);
1950 void generateParsingHelpers(raw_ostream
&OS
);
1953 } // end anonymous namespace
1955 static bool isSupportedPragmaClangAttributeSubject(const Record
&Subject
) {
1956 // FIXME: #pragma clang attribute does not currently support statement
1957 // attributes, so test whether the subject is one that appertains to a
1958 // declaration node. However, it may be reasonable for support for statement
1959 // attributes to be added.
1960 if (Subject
.isSubClassOf("DeclNode") || Subject
.isSubClassOf("DeclBase") ||
1961 Subject
.getName() == "DeclBase")
1964 if (Subject
.isSubClassOf("SubsetSubject"))
1965 return isSupportedPragmaClangAttributeSubject(
1966 *Subject
.getValueAsDef("Base"));
1971 static bool doesDeclDeriveFrom(const Record
*D
, const Record
*Base
) {
1972 const Record
*CurrentBase
= D
->getValueAsOptionalDef(BaseFieldName
);
1975 if (CurrentBase
== Base
)
1977 return doesDeclDeriveFrom(CurrentBase
, Base
);
1980 PragmaClangAttributeSupport::PragmaClangAttributeSupport(
1981 RecordKeeper
&Records
) {
1982 std::vector
<Record
*> MetaSubjects
=
1983 Records
.getAllDerivedDefinitions("AttrSubjectMatcherRule");
1984 auto MapFromSubjectsToRules
= [this](const Record
*SubjectContainer
,
1985 const Record
*MetaSubject
,
1986 const Record
*Constraint
) {
1987 Rules
.emplace_back(MetaSubject
, Constraint
);
1988 std::vector
<Record
*> ApplicableSubjects
=
1989 SubjectContainer
->getValueAsListOfDefs("Subjects");
1990 for (const auto *Subject
: ApplicableSubjects
) {
1993 .try_emplace(Subject
, RuleOrAggregateRuleSet::getRule(
1994 AttributeSubjectMatchRule(MetaSubject
,
1998 PrintFatalError("Attribute subject match rules should not represent"
1999 "same attribute subjects.");
2003 for (const auto *MetaSubject
: MetaSubjects
) {
2004 MapFromSubjectsToRules(MetaSubject
, MetaSubject
, /*Constraints=*/nullptr);
2005 std::vector
<Record
*> Constraints
=
2006 MetaSubject
->getValueAsListOfDefs("Constraints");
2007 for (const auto *Constraint
: Constraints
)
2008 MapFromSubjectsToRules(Constraint
, MetaSubject
, Constraint
);
2011 std::vector
<Record
*> Aggregates
=
2012 Records
.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule");
2013 std::vector
<Record
*> DeclNodes
=
2014 Records
.getAllDerivedDefinitions(DeclNodeClassName
);
2015 for (const auto *Aggregate
: Aggregates
) {
2016 Record
*SubjectDecl
= Aggregate
->getValueAsDef("Subject");
2018 // Gather sub-classes of the aggregate subject that act as attribute
2020 std::vector
<AttributeSubjectMatchRule
> Rules
;
2021 for (const auto *D
: DeclNodes
) {
2022 if (doesDeclDeriveFrom(D
, SubjectDecl
)) {
2023 auto It
= SubjectsToRules
.find(D
);
2024 if (It
== SubjectsToRules
.end())
2026 if (!It
->second
.isRule() || It
->second
.getRule().isSubRule())
2027 continue; // Assume that the rule will be included as well.
2028 Rules
.push_back(It
->second
.getRule());
2034 .try_emplace(SubjectDecl
,
2035 RuleOrAggregateRuleSet::getAggregateRuleSet(Rules
))
2038 PrintFatalError("Attribute subject match rules should not represent"
2039 "same attribute subjects.");
2044 static PragmaClangAttributeSupport
&
2045 getPragmaAttributeSupport(RecordKeeper
&Records
) {
2046 static PragmaClangAttributeSupport
Instance(Records
);
2050 void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream
&OS
) {
2051 OS
<< "#ifndef ATTR_MATCH_SUB_RULE\n";
2052 OS
<< "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, "
2054 << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n";
2056 for (const auto &Rule
: Rules
) {
2057 OS
<< (Rule
.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '(';
2058 OS
<< Rule
.getEnumValueName() << ", \"" << Rule
.getSpelling() << "\", "
2059 << Rule
.isAbstractRule();
2060 if (Rule
.isSubRule())
2062 << AttributeSubjectMatchRule(Rule
.MetaSubject
, nullptr).getEnumValue()
2063 << ", " << Rule
.isNegatedSubRule();
2066 OS
<< "#undef ATTR_MATCH_SUB_RULE\n";
2069 bool PragmaClangAttributeSupport::isAttributedSupported(
2070 const Record
&Attribute
) {
2071 // If the attribute explicitly specified whether to support #pragma clang
2072 // attribute, use that setting.
2074 bool SpecifiedResult
=
2075 Attribute
.getValueAsBitOrUnset("PragmaAttributeSupport", Unset
);
2077 return SpecifiedResult
;
2080 // An attribute requires delayed parsing (LateParsed is on)
2081 if (Attribute
.getValueAsBit("LateParsed"))
2083 // An attribute has no GNU/CXX11 spelling
2084 if (!hasGNUorCXX11Spelling(Attribute
))
2086 // An attribute subject list has a subject that isn't covered by one of the
2087 // subject match rules or has no subjects at all.
2088 if (Attribute
.isValueUnset("Subjects"))
2090 const Record
*SubjectObj
= Attribute
.getValueAsDef("Subjects");
2091 std::vector
<Record
*> Subjects
= SubjectObj
->getValueAsListOfDefs("Subjects");
2092 bool HasAtLeastOneValidSubject
= false;
2093 for (const auto *Subject
: Subjects
) {
2094 if (!isSupportedPragmaClangAttributeSubject(*Subject
))
2096 if (!SubjectsToRules
.contains(Subject
))
2098 HasAtLeastOneValidSubject
= true;
2100 return HasAtLeastOneValidSubject
;
2103 static std::string
GenerateTestExpression(ArrayRef
<Record
*> LangOpts
) {
2106 for (auto *E
: LangOpts
) {
2110 const StringRef Code
= E
->getValueAsString("CustomCode");
2111 if (!Code
.empty()) {
2115 if (!E
->getValueAsString("Name").empty()) {
2118 "non-empty 'Name' field ignored because 'CustomCode' was supplied");
2121 Test
+= "LangOpts.";
2122 Test
+= E
->getValueAsString("Name");
2133 PragmaClangAttributeSupport::generateStrictConformsTo(const Record
&Attr
,
2135 if (!isAttributedSupported(Attr
) || Attr
.isValueUnset("Subjects"))
2137 // Generate a function that constructs a set of matching rules that describe
2138 // to which declarations the attribute should apply to.
2139 OS
<< "void getPragmaAttributeMatchRules("
2140 << "llvm::SmallVectorImpl<std::pair<"
2141 << AttributeSubjectMatchRule::EnumName
2142 << ", bool>> &MatchRules, const LangOptions &LangOpts) const override {\n";
2143 const Record
*SubjectObj
= Attr
.getValueAsDef("Subjects");
2144 std::vector
<Record
*> Subjects
= SubjectObj
->getValueAsListOfDefs("Subjects");
2145 for (const auto *Subject
: Subjects
) {
2146 if (!isSupportedPragmaClangAttributeSubject(*Subject
))
2148 auto It
= SubjectsToRules
.find(Subject
);
2149 assert(It
!= SubjectsToRules
.end() &&
2150 "This attribute is unsupported by #pragma clang attribute");
2151 for (const auto &Rule
: It
->getSecond().getAggregateRuleSet()) {
2152 // The rule might be language specific, so only subtract it from the given
2153 // rules if the specific language options are specified.
2154 std::vector
<Record
*> LangOpts
= Rule
.getLangOpts();
2155 OS
<< " MatchRules.push_back(std::make_pair(" << Rule
.getEnumValue()
2156 << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts
)
2163 void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream
&OS
) {
2164 // Generate routines that check the names of sub-rules.
2165 OS
<< "std::optional<attr::SubjectMatchRule> "
2166 "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n";
2167 OS
<< " return std::nullopt;\n";
2170 llvm::MapVector
<const Record
*, std::vector
<AttributeSubjectMatchRule
>>
2172 for (const auto &Rule
: Rules
) {
2173 if (!Rule
.isSubRule())
2175 SubMatchRules
[Rule
.MetaSubject
].push_back(Rule
);
2178 for (const auto &SubMatchRule
: SubMatchRules
) {
2179 OS
<< "std::optional<attr::SubjectMatchRule> "
2180 "isAttributeSubjectMatchSubRuleFor_"
2181 << SubMatchRule
.first
->getValueAsString("Name")
2182 << "(StringRef Name, bool IsUnless) {\n";
2183 OS
<< " if (IsUnless)\n";
2185 "llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n";
2186 for (const auto &Rule
: SubMatchRule
.second
) {
2187 if (Rule
.isNegatedSubRule())
2188 OS
<< " Case(\"" << Rule
.getName() << "\", " << Rule
.getEnumValue()
2191 OS
<< " Default(std::nullopt);\n";
2193 "llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n";
2194 for (const auto &Rule
: SubMatchRule
.second
) {
2195 if (!Rule
.isNegatedSubRule())
2196 OS
<< " Case(\"" << Rule
.getName() << "\", " << Rule
.getEnumValue()
2199 OS
<< " Default(std::nullopt);\n";
2203 // Generate the function that checks for the top-level rules.
2204 OS
<< "std::pair<std::optional<attr::SubjectMatchRule>, "
2205 "std::optional<attr::SubjectMatchRule> (*)(StringRef, "
2206 "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n";
2208 "llvm::StringSwitch<std::pair<std::optional<attr::SubjectMatchRule>, "
2209 "std::optional<attr::SubjectMatchRule> (*) (StringRef, "
2211 for (const auto &Rule
: Rules
) {
2212 if (Rule
.isSubRule())
2214 std::string SubRuleFunction
;
2215 if (SubMatchRules
.count(Rule
.MetaSubject
))
2217 ("isAttributeSubjectMatchSubRuleFor_" + Rule
.getName()).str();
2219 SubRuleFunction
= "defaultIsAttributeSubjectMatchSubRuleFor";
2220 OS
<< " Case(\"" << Rule
.getName() << "\", std::make_pair("
2221 << Rule
.getEnumValue() << ", " << SubRuleFunction
<< ")).\n";
2223 OS
<< " Default(std::make_pair(std::nullopt, "
2224 "defaultIsAttributeSubjectMatchSubRuleFor));\n";
2227 // Generate the function that checks for the submatch rules.
2228 OS
<< "const char *validAttributeSubjectMatchSubRules("
2229 << AttributeSubjectMatchRule::EnumName
<< " Rule) {\n";
2230 OS
<< " switch (Rule) {\n";
2231 for (const auto &SubMatchRule
: SubMatchRules
) {
2233 << AttributeSubjectMatchRule(SubMatchRule
.first
, nullptr).getEnumValue()
2235 OS
<< " return \"'";
2236 bool IsFirst
= true;
2237 for (const auto &Rule
: SubMatchRule
.second
) {
2241 if (Rule
.isNegatedSubRule())
2243 OS
<< Rule
.getName();
2244 if (Rule
.isNegatedSubRule())
2250 OS
<< " default: return nullptr;\n";
2255 template <typename Fn
>
2256 static void forEachUniqueSpelling(const Record
&Attr
, Fn
&&F
) {
2257 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(Attr
);
2258 SmallDenseSet
<StringRef
, 8> Seen
;
2259 for (const FlattenedSpelling
&S
: Spellings
) {
2260 if (Seen
.insert(S
.name()).second
)
2265 static bool isTypeArgument(const Record
*Arg
) {
2266 return !Arg
->getSuperClasses().empty() &&
2267 Arg
->getSuperClasses().back().first
->getName() == "TypeArgument";
2270 /// Emits the first-argument-is-type property for attributes.
2271 static void emitClangAttrTypeArgList(RecordKeeper
&Records
, raw_ostream
&OS
) {
2272 OS
<< "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
2273 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
2275 for (const auto *Attr
: Attrs
) {
2276 // Determine whether the first argument is a type.
2277 std::vector
<Record
*> Args
= Attr
->getValueAsListOfDefs("Args");
2281 if (!isTypeArgument(Args
[0]))
2284 // All these spellings take a single type argument.
2285 forEachUniqueSpelling(*Attr
, [&](const FlattenedSpelling
&S
) {
2286 OS
<< ".Case(\"" << S
.name() << "\", " << "true" << ")\n";
2289 OS
<< "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
2292 /// Emits the parse-arguments-in-unevaluated-context property for
2294 static void emitClangAttrArgContextList(RecordKeeper
&Records
, raw_ostream
&OS
) {
2295 OS
<< "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
2296 ParsedAttrMap Attrs
= getParsedAttrList(Records
);
2297 for (const auto &I
: Attrs
) {
2298 const Record
&Attr
= *I
.second
;
2300 if (!Attr
.getValueAsBit("ParseArgumentsAsUnevaluated"))
2303 // All these spellings take are parsed unevaluated.
2304 forEachUniqueSpelling(Attr
, [&](const FlattenedSpelling
&S
) {
2305 OS
<< ".Case(\"" << S
.name() << "\", " << "true" << ")\n";
2308 OS
<< "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
2311 static bool isIdentifierArgument(const Record
*Arg
) {
2312 return !Arg
->getSuperClasses().empty() &&
2313 llvm::StringSwitch
<bool>(Arg
->getSuperClasses().back().first
->getName())
2314 .Case("IdentifierArgument", true)
2315 .Case("EnumArgument", true)
2316 .Case("VariadicEnumArgument", true)
2320 static bool isVariadicIdentifierArgument(const Record
*Arg
) {
2321 return !Arg
->getSuperClasses().empty() &&
2322 llvm::StringSwitch
<bool>(
2323 Arg
->getSuperClasses().back().first
->getName())
2324 .Case("VariadicIdentifierArgument", true)
2325 .Case("VariadicParamOrParamIdxArgument", true)
2329 static bool isVariadicExprArgument(const Record
*Arg
) {
2330 return !Arg
->getSuperClasses().empty() &&
2331 llvm::StringSwitch
<bool>(
2332 Arg
->getSuperClasses().back().first
->getName())
2333 .Case("VariadicExprArgument", true)
2337 static bool isStringLiteralArgument(const Record
*Arg
) {
2338 return !Arg
->getSuperClasses().empty() &&
2339 llvm::StringSwitch
<bool>(
2340 Arg
->getSuperClasses().back().first
->getName())
2341 .Case("StringArgument", true)
2345 static bool isVariadicStringLiteralArgument(const Record
*Arg
) {
2346 return !Arg
->getSuperClasses().empty() &&
2347 llvm::StringSwitch
<bool>(
2348 Arg
->getSuperClasses().back().first
->getName())
2349 .Case("VariadicStringArgument", true)
2353 static void emitClangAttrVariadicIdentifierArgList(RecordKeeper
&Records
,
2355 OS
<< "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n";
2356 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
2357 for (const auto *A
: Attrs
) {
2358 // Determine whether the first argument is a variadic identifier.
2359 std::vector
<Record
*> Args
= A
->getValueAsListOfDefs("Args");
2360 if (Args
.empty() || !isVariadicIdentifierArgument(Args
[0]))
2363 // All these spellings take an identifier argument.
2364 forEachUniqueSpelling(*A
, [&](const FlattenedSpelling
&S
) {
2365 OS
<< ".Case(\"" << S
.name() << "\", "
2370 OS
<< "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n";
2373 // Emits the list of arguments that should be parsed as unevaluated string
2374 // literals for each attribute.
2375 static void emitClangAttrUnevaluatedStringLiteralList(RecordKeeper
&Records
,
2377 OS
<< "#if defined(CLANG_ATTR_STRING_LITERAL_ARG_LIST)\n";
2378 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
2379 for (const auto *Attr
: Attrs
) {
2380 std::vector
<Record
*> Args
= Attr
->getValueAsListOfDefs("Args");
2382 assert(Args
.size() <= 32 && "unsupported number of arguments in attribute");
2383 for (uint32_t N
= 0; N
< Args
.size(); ++N
) {
2384 Bits
|= (isStringLiteralArgument(Args
[N
]) << N
);
2385 // If we have a variadic string argument, set all the remaining bits to 1
2386 if (isVariadicStringLiteralArgument(Args
[N
])) {
2387 Bits
|= maskTrailingZeros
<decltype(Bits
)>(N
);
2393 // All these spellings have at least one string literal has argument.
2394 forEachUniqueSpelling(*Attr
, [&](const FlattenedSpelling
&S
) {
2395 OS
<< ".Case(\"" << S
.name() << "\", " << Bits
<< ")\n";
2398 OS
<< "#endif // CLANG_ATTR_STRING_LITERAL_ARG_LIST\n\n";
2401 // Emits the first-argument-is-identifier property for attributes.
2402 static void emitClangAttrIdentifierArgList(RecordKeeper
&Records
, raw_ostream
&OS
) {
2403 OS
<< "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
2404 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
2406 for (const auto *Attr
: Attrs
) {
2407 // Determine whether the first argument is an identifier.
2408 std::vector
<Record
*> Args
= Attr
->getValueAsListOfDefs("Args");
2409 if (Args
.empty() || !isIdentifierArgument(Args
[0]))
2412 // All these spellings take an identifier argument.
2413 forEachUniqueSpelling(*Attr
, [&](const FlattenedSpelling
&S
) {
2414 OS
<< ".Case(\"" << S
.name() << "\", " << "true" << ")\n";
2417 OS
<< "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
2420 static bool keywordThisIsaIdentifierInArgument(const Record
*Arg
) {
2421 return !Arg
->getSuperClasses().empty() &&
2422 llvm::StringSwitch
<bool>(
2423 Arg
->getSuperClasses().back().first
->getName())
2424 .Case("VariadicParamOrParamIdxArgument", true)
2428 static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper
&Records
,
2430 OS
<< "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n";
2431 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
2432 for (const auto *A
: Attrs
) {
2433 // Determine whether the first argument is a variadic identifier.
2434 std::vector
<Record
*> Args
= A
->getValueAsListOfDefs("Args");
2435 if (Args
.empty() || !keywordThisIsaIdentifierInArgument(Args
[0]))
2438 // All these spellings take an identifier argument.
2439 forEachUniqueSpelling(*A
, [&](const FlattenedSpelling
&S
) {
2440 OS
<< ".Case(\"" << S
.name() << "\", "
2445 OS
<< "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n";
2448 static void emitClangAttrAcceptsExprPack(RecordKeeper
&Records
,
2450 OS
<< "#if defined(CLANG_ATTR_ACCEPTS_EXPR_PACK)\n";
2451 ParsedAttrMap Attrs
= getParsedAttrList(Records
);
2452 for (const auto &I
: Attrs
) {
2453 const Record
&Attr
= *I
.second
;
2455 if (!Attr
.getValueAsBit("AcceptsExprPack"))
2458 forEachUniqueSpelling(Attr
, [&](const FlattenedSpelling
&S
) {
2459 OS
<< ".Case(\"" << S
.name() << "\", true)\n";
2462 OS
<< "#endif // CLANG_ATTR_ACCEPTS_EXPR_PACK\n\n";
2465 static bool isRegularKeywordAttribute(const FlattenedSpelling
&S
) {
2466 return (S
.variety() == "Keyword" &&
2467 !S
.getSpellingRecord().getValueAsBit("HasOwnParseRules"));
2470 static void emitFormInitializer(raw_ostream
&OS
,
2471 const FlattenedSpelling
&Spelling
,
2472 StringRef SpellingIndex
) {
2474 (Spelling
.variety() == "Keyword" && Spelling
.name() == "alignas");
2475 OS
<< "{AttributeCommonInfo::AS_" << Spelling
.variety() << ", "
2476 << SpellingIndex
<< ", " << (IsAlignas
? "true" : "false")
2477 << " /*IsAlignas*/, "
2478 << (isRegularKeywordAttribute(Spelling
) ? "true" : "false")
2479 << " /*IsRegularKeywordAttribute*/}";
2482 static void emitAttributes(RecordKeeper
&Records
, raw_ostream
&OS
,
2484 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
2485 ParsedAttrMap AttrMap
= getParsedAttrList(Records
);
2487 // Helper to print the starting character of an attribute argument. If there
2488 // hasn't been an argument yet, it prints an opening parenthese; otherwise it
2490 OS
<< "static inline void DelimitAttributeArgument("
2491 << "raw_ostream& OS, bool& IsFirst) {\n"
2492 << " if (IsFirst) {\n"
2493 << " IsFirst = false;\n"
2494 << " OS << \"(\";\n"
2496 << " OS << \", \";\n"
2499 for (const auto *Attr
: Attrs
) {
2500 const Record
&R
= *Attr
;
2502 // FIXME: Currently, documentation is generated as-needed due to the fact
2503 // that there is no way to allow a generated project "reach into" the docs
2504 // directory (for instance, it may be an out-of-tree build). However, we want
2505 // to ensure that every attribute has a Documentation field, and produce an
2506 // error if it has been neglected. Otherwise, the on-demand generation which
2507 // happens server-side will fail. This code is ensuring that functionality,
2508 // even though this Emitter doesn't technically need the documentation.
2509 // When attribute documentation can be generated as part of the build
2510 // itself, this code can be removed.
2511 (void)R
.getValueAsListOfDefs("Documentation");
2513 if (!R
.getValueAsBit("ASTNode"))
2516 ArrayRef
<std::pair
<Record
*, SMRange
>> Supers
= R
.getSuperClasses();
2517 assert(!Supers
.empty() && "Forgot to specify a superclass for the attr");
2518 std::string SuperName
;
2519 bool Inheritable
= false;
2520 for (const auto &Super
: llvm::reverse(Supers
)) {
2521 const Record
*R
= Super
.first
;
2522 if (R
->getName() != "TargetSpecificAttr" &&
2523 R
->getName() != "DeclOrTypeAttr" && SuperName
.empty())
2524 SuperName
= std::string(R
->getName());
2525 if (R
->getName() == "InheritableAttr")
2530 OS
<< "class " << R
.getName() << "Attr : public " << SuperName
<< " {\n";
2532 OS
<< "\n// " << R
.getName() << "Attr implementation\n\n";
2534 std::vector
<Record
*> ArgRecords
= R
.getValueAsListOfDefs("Args");
2535 std::vector
<std::unique_ptr
<Argument
>> Args
;
2536 Args
.reserve(ArgRecords
.size());
2538 bool AttrAcceptsExprPack
= Attr
->getValueAsBit("AcceptsExprPack");
2539 if (AttrAcceptsExprPack
) {
2540 for (size_t I
= 0; I
< ArgRecords
.size(); ++I
) {
2541 const Record
*ArgR
= ArgRecords
[I
];
2542 if (isIdentifierArgument(ArgR
) || isVariadicIdentifierArgument(ArgR
) ||
2543 isTypeArgument(ArgR
))
2544 PrintFatalError(Attr
->getLoc(),
2545 "Attributes accepting packs cannot also "
2546 "have identifier or type arguments.");
2547 // When trying to determine if value-dependent expressions can populate
2548 // the attribute without prior instantiation, the decision is made based
2549 // on the assumption that only the last argument is ever variadic.
2550 if (I
< (ArgRecords
.size() - 1) && isVariadicExprArgument(ArgR
))
2551 PrintFatalError(Attr
->getLoc(),
2552 "Attributes accepting packs can only have the last "
2553 "argument be variadic.");
2557 bool HasOptArg
= false;
2558 bool HasFakeArg
= false;
2559 for (const auto *ArgRecord
: ArgRecords
) {
2560 Args
.emplace_back(createArgument(*ArgRecord
, R
.getName()));
2562 Args
.back()->writeDeclarations(OS
);
2566 // For these purposes, fake takes priority over optional.
2567 if (Args
.back()->isFake()) {
2569 } else if (Args
.back()->isOptional()) {
2574 std::unique_ptr
<VariadicExprArgument
> DelayedArgs
= nullptr;
2575 if (AttrAcceptsExprPack
) {
2577 std::make_unique
<VariadicExprArgument
>("DelayedArgs", R
.getName());
2579 DelayedArgs
->writeDeclarations(OS
);
2587 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(R
);
2589 // If there are zero or one spellings, all spelling-related functionality
2590 // can be elided. If all of the spellings share the same name, the spelling
2591 // functionality can also be elided.
2592 bool ElideSpelling
= (Spellings
.size() <= 1) ||
2593 SpellingNamesAreCommon(Spellings
);
2595 // This maps spelling index values to semantic Spelling enumerants.
2596 SemanticSpellingMap SemanticToSyntacticMap
;
2598 std::string SpellingEnum
;
2599 if (Spellings
.size() > 1)
2600 SpellingEnum
= CreateSemanticSpellings(Spellings
, SemanticToSyntacticMap
);
2604 const auto &ParsedAttrSpellingItr
= llvm::find_if(
2605 AttrMap
, [R
](const std::pair
<std::string
, const Record
*> &P
) {
2606 return &R
== P
.second
;
2609 // Emit CreateImplicit factory methods.
2610 auto emitCreate
= [&](bool Implicit
, bool DelayedArgsOnly
, bool emitFake
) {
2613 OS
<< R
.getName() << "Attr *";
2615 OS
<< R
.getName() << "Attr::";
2619 if (DelayedArgsOnly
)
2620 OS
<< "WithDelayedArgs";
2622 OS
<< "ASTContext &Ctx";
2623 if (!DelayedArgsOnly
) {
2624 for (auto const &ai
: Args
) {
2625 if (ai
->isFake() && !emitFake
)
2628 ai
->writeCtorParameters(OS
);
2632 DelayedArgs
->writeCtorParameters(OS
);
2634 OS
<< ", const AttributeCommonInfo &CommonInfo";
2642 OS
<< " auto *A = new (Ctx) " << R
.getName();
2643 OS
<< "Attr(Ctx, CommonInfo";
2645 if (!DelayedArgsOnly
) {
2646 for (auto const &ai
: Args
) {
2647 if (ai
->isFake() && !emitFake
)
2650 ai
->writeImplicitCtorArgs(OS
);
2655 OS
<< " A->setImplicit(true);\n";
2657 if (Implicit
|| ElideSpelling
) {
2658 OS
<< " if (!A->isAttributeSpellingListCalculated() && "
2659 "!A->getAttrName())\n";
2660 OS
<< " A->setAttributeSpellingListIndex(0);\n";
2662 if (DelayedArgsOnly
) {
2663 OS
<< " A->setDelayedArgs(Ctx, ";
2664 DelayedArgs
->writeImplicitCtorArgs(OS
);
2667 OS
<< " return A;\n}\n\n";
2670 auto emitCreateNoCI
= [&](bool Implicit
, bool DelayedArgsOnly
,
2674 OS
<< R
.getName() << "Attr *";
2676 OS
<< R
.getName() << "Attr::";
2680 if (DelayedArgsOnly
)
2681 OS
<< "WithDelayedArgs";
2683 OS
<< "ASTContext &Ctx";
2684 if (!DelayedArgsOnly
) {
2685 for (auto const &ai
: Args
) {
2686 if (ai
->isFake() && !emitFake
)
2689 ai
->writeCtorParameters(OS
);
2693 DelayedArgs
->writeCtorParameters(OS
);
2695 OS
<< ", SourceRange Range";
2698 if (Spellings
.size() > 1) {
2699 OS
<< ", Spelling S";
2701 OS
<< " = " << SemanticToSyntacticMap
[0];
2710 OS
<< " AttributeCommonInfo I(Range, ";
2712 if (ParsedAttrSpellingItr
!= std::end(AttrMap
))
2713 OS
<< "AT_" << ParsedAttrSpellingItr
->first
;
2715 OS
<< "NoSemaHandlerAttribute";
2717 if (Spellings
.size() == 0) {
2718 OS
<< ", AttributeCommonInfo::Form::Implicit()";
2719 } else if (Spellings
.size() == 1) {
2721 emitFormInitializer(OS
, Spellings
[0], "0");
2723 OS
<< ", [&]() {\n";
2724 OS
<< " switch (S) {\n";
2725 std::set
<std::string
> Uniques
;
2727 for (auto I
= Spellings
.begin(), E
= Spellings
.end(); I
!= E
;
2729 const FlattenedSpelling
&S
= *I
;
2730 const auto &Name
= SemanticToSyntacticMap
[Idx
];
2731 if (Uniques
.insert(Name
).second
) {
2732 OS
<< " case " << Name
<< ":\n";
2733 OS
<< " return AttributeCommonInfo::Form";
2734 emitFormInitializer(OS
, S
, Name
);
2738 OS
<< " default:\n";
2739 OS
<< " llvm_unreachable(\"Unknown attribute spelling!\");\n"
2740 << " return AttributeCommonInfo::Form";
2741 emitFormInitializer(OS
, Spellings
[0], "0");
2748 OS
<< " return Create";
2751 if (DelayedArgsOnly
)
2752 OS
<< "WithDelayedArgs";
2754 if (!DelayedArgsOnly
) {
2755 for (auto const &ai
: Args
) {
2756 if (ai
->isFake() && !emitFake
)
2759 ai
->writeImplicitCtorArgs(OS
);
2763 DelayedArgs
->writeImplicitCtorArgs(OS
);
2769 auto emitCreates
= [&](bool DelayedArgsOnly
, bool emitFake
) {
2770 emitCreate(true, DelayedArgsOnly
, emitFake
);
2771 emitCreate(false, DelayedArgsOnly
, emitFake
);
2772 emitCreateNoCI(true, DelayedArgsOnly
, emitFake
);
2773 emitCreateNoCI(false, DelayedArgsOnly
, emitFake
);
2777 OS
<< " // Factory methods\n";
2779 // Emit a CreateImplicit that takes all the arguments.
2780 emitCreates(false, true);
2782 // Emit a CreateImplicit that takes all the non-fake arguments.
2784 emitCreates(false, false);
2786 // Emit a CreateWithDelayedArgs that takes only the dependent argument
2789 emitCreates(true, false);
2791 // Emit constructors.
2792 auto emitCtor
= [&](bool emitOpt
, bool emitFake
, bool emitNoArgs
) {
2793 auto shouldEmitArg
= [=](const std::unique_ptr
<Argument
> &arg
) {
2798 if (arg
->isOptional())
2805 OS
<< R
.getName() << "Attr::";
2807 << "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo";
2809 for (auto const &ai
: Args
) {
2810 if (!shouldEmitArg(ai
))
2813 ai
->writeCtorParameters(OS
);
2822 OS
<< "\n : " << SuperName
<< "(Ctx, CommonInfo, ";
2823 OS
<< "attr::" << R
.getName() << ", "
2824 << (R
.getValueAsBit("LateParsed") ? "true" : "false");
2827 << (R
.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true"
2832 for (auto const &ai
: Args
) {
2834 if (!shouldEmitArg(ai
)) {
2835 ai
->writeCtorDefaultInitializers(OS
);
2837 ai
->writeCtorInitializers(OS
);
2843 DelayedArgs
->writeCtorDefaultInitializers(OS
);
2849 for (auto const &ai
: Args
) {
2850 if (!shouldEmitArg(ai
))
2852 ai
->writeCtorBody(OS
);
2858 OS
<< "\n // Constructors\n";
2860 // Emit a constructor that includes all the arguments.
2861 // This is necessary for cloning.
2862 emitCtor(true, true, false);
2864 // Emit a constructor that takes all the non-fake arguments.
2866 emitCtor(true, false, false);
2868 // Emit a constructor that takes all the non-fake, non-optional arguments.
2870 emitCtor(false, false, false);
2872 // Emit constructors that takes no arguments if none already exists.
2873 // This is used for delaying arguments.
2874 bool HasRequiredArgs
=
2875 llvm::count_if(Args
, [=](const std::unique_ptr
<Argument
> &arg
) {
2876 return !arg
->isFake() && !arg
->isOptional();
2878 if (DelayedArgs
&& HasRequiredArgs
)
2879 emitCtor(false, false, true);
2883 OS
<< " " << R
.getName() << "Attr *clone(ASTContext &C) const;\n";
2884 OS
<< " void printPretty(raw_ostream &OS,\n"
2885 << " const PrintingPolicy &Policy) const;\n";
2886 OS
<< " const char *getSpelling() const;\n";
2889 if (!ElideSpelling
) {
2890 assert(!SemanticToSyntacticMap
.empty() && "Empty semantic mapping list");
2892 OS
<< " Spelling getSemanticSpelling() const;\n";
2894 OS
<< R
.getName() << "Attr::Spelling " << R
.getName()
2895 << "Attr::getSemanticSpelling() const {\n";
2896 WriteSemanticSpellingSwitch("getAttributeSpellingListIndex()",
2897 SemanticToSyntacticMap
, OS
);
2903 writeAttrAccessorDefinition(R
, OS
);
2905 for (auto const &ai
: Args
) {
2907 ai
->writeAccessors(OS
);
2909 ai
->writeAccessorDefinitions(OS
);
2913 // Don't write conversion routines for fake arguments.
2914 if (ai
->isFake()) continue;
2916 if (ai
->isEnumArg())
2917 static_cast<const EnumArgument
*>(ai
.get())->writeConversion(OS
,
2919 else if (ai
->isVariadicEnumArg())
2920 static_cast<const VariadicEnumArgument
*>(ai
.get())->writeConversion(
2926 DelayedArgs
->writeAccessors(OS
);
2927 DelayedArgs
->writeSetter(OS
);
2930 OS
<< R
.getValueAsString("AdditionalMembers");
2933 OS
<< " static bool classof(const Attr *A) { return A->getKind() == "
2934 << "attr::" << R
.getName() << "; }\n";
2939 DelayedArgs
->writeAccessorDefinitions(OS
);
2941 OS
<< R
.getName() << "Attr *" << R
.getName()
2942 << "Attr::clone(ASTContext &C) const {\n";
2943 OS
<< " auto *A = new (C) " << R
.getName() << "Attr(C, *this";
2944 for (auto const &ai
: Args
) {
2946 ai
->writeCloneArgs(OS
);
2949 OS
<< " A->Inherited = Inherited;\n";
2950 OS
<< " A->IsPackExpansion = IsPackExpansion;\n";
2951 OS
<< " A->setImplicit(Implicit);\n";
2953 OS
<< " A->setDelayedArgs(C, ";
2954 DelayedArgs
->writeCloneArgs(OS
);
2957 OS
<< " return A;\n}\n\n";
2959 writePrettyPrintFunction(R
, Args
, OS
);
2960 writeGetSpellingFunction(R
, OS
);
2964 // Emits the class definitions for attributes.
2965 void clang::EmitClangAttrClass(RecordKeeper
&Records
, raw_ostream
&OS
) {
2966 emitSourceFileHeader("Attribute classes' definitions", OS
, Records
);
2968 OS
<< "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
2969 OS
<< "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n";
2971 emitAttributes(Records
, OS
, true);
2973 OS
<< "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
2976 // Emits the class method definitions for attributes.
2977 void clang::EmitClangAttrImpl(RecordKeeper
&Records
, raw_ostream
&OS
) {
2978 emitSourceFileHeader("Attribute classes' member function definitions", OS
,
2981 emitAttributes(Records
, OS
, false);
2983 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
2985 // Instead of relying on virtual dispatch we just create a huge dispatch
2986 // switch. This is both smaller and faster than virtual functions.
2987 auto EmitFunc
= [&](const char *Method
) {
2988 OS
<< " switch (getKind()) {\n";
2989 for (const auto *Attr
: Attrs
) {
2990 const Record
&R
= *Attr
;
2991 if (!R
.getValueAsBit("ASTNode"))
2994 OS
<< " case attr::" << R
.getName() << ":\n";
2995 OS
<< " return cast<" << R
.getName() << "Attr>(this)->" << Method
2999 OS
<< " llvm_unreachable(\"Unexpected attribute kind!\");\n";
3003 OS
<< "const char *Attr::getSpelling() const {\n";
3004 EmitFunc("getSpelling()");
3006 OS
<< "Attr *Attr::clone(ASTContext &C) const {\n";
3007 EmitFunc("clone(C)");
3009 OS
<< "void Attr::printPretty(raw_ostream &OS, "
3010 "const PrintingPolicy &Policy) const {\n";
3011 EmitFunc("printPretty(OS, Policy)");
3014 static void emitAttrList(raw_ostream
&OS
, StringRef Class
,
3015 const std::vector
<Record
*> &AttrList
) {
3016 for (auto Cur
: AttrList
) {
3017 OS
<< Class
<< "(" << Cur
->getName() << ")\n";
3021 // Determines if an attribute has a Pragma spelling.
3022 static bool AttrHasPragmaSpelling(const Record
*R
) {
3023 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(*R
);
3024 return llvm::any_of(Spellings
, [](const FlattenedSpelling
&S
) {
3025 return S
.variety() == "Pragma";
3031 struct AttrClassDescriptor
{
3032 const char * const MacroName
;
3033 const char * const TableGenName
;
3036 } // end anonymous namespace
3038 static const AttrClassDescriptor AttrClassDescriptors
[] = {
3040 { "TYPE_ATTR", "TypeAttr" },
3041 { "STMT_ATTR", "StmtAttr" },
3042 { "DECL_OR_STMT_ATTR", "DeclOrStmtAttr" },
3043 { "INHERITABLE_ATTR", "InheritableAttr" },
3044 { "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" },
3045 { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" },
3046 { "PARAMETER_ABI_ATTR", "ParameterABIAttr" },
3047 { "HLSL_ANNOTATION_ATTR", "HLSLAnnotationAttr"}
3050 static void emitDefaultDefine(raw_ostream
&OS
, StringRef name
,
3051 const char *superName
) {
3052 OS
<< "#ifndef " << name
<< "\n";
3053 OS
<< "#define " << name
<< "(NAME) ";
3054 if (superName
) OS
<< superName
<< "(NAME)";
3055 OS
<< "\n#endif\n\n";
3060 /// A class of attributes.
3062 const AttrClassDescriptor
&Descriptor
;
3064 AttrClass
*SuperClass
= nullptr;
3065 std::vector
<AttrClass
*> SubClasses
;
3066 std::vector
<Record
*> Attrs
;
3068 AttrClass(const AttrClassDescriptor
&Descriptor
, Record
*R
)
3069 : Descriptor(Descriptor
), TheRecord(R
) {}
3071 void emitDefaultDefines(raw_ostream
&OS
) const {
3072 // Default the macro unless this is a root class (i.e. Attr).
3074 emitDefaultDefine(OS
, Descriptor
.MacroName
,
3075 SuperClass
->Descriptor
.MacroName
);
3079 void emitUndefs(raw_ostream
&OS
) const {
3080 OS
<< "#undef " << Descriptor
.MacroName
<< "\n";
3083 void emitAttrList(raw_ostream
&OS
) const {
3084 for (auto SubClass
: SubClasses
) {
3085 SubClass
->emitAttrList(OS
);
3088 ::emitAttrList(OS
, Descriptor
.MacroName
, Attrs
);
3091 void classifyAttrOnRoot(Record
*Attr
) {
3092 bool result
= classifyAttr(Attr
);
3093 assert(result
&& "failed to classify on root"); (void) result
;
3096 void emitAttrRange(raw_ostream
&OS
) const {
3097 OS
<< "ATTR_RANGE(" << Descriptor
.TableGenName
3098 << ", " << getFirstAttr()->getName()
3099 << ", " << getLastAttr()->getName() << ")\n";
3103 bool classifyAttr(Record
*Attr
) {
3104 // Check all the subclasses.
3105 for (auto SubClass
: SubClasses
) {
3106 if (SubClass
->classifyAttr(Attr
))
3110 // It's not more specific than this class, but it might still belong here.
3111 if (Attr
->isSubClassOf(TheRecord
)) {
3112 Attrs
.push_back(Attr
);
3119 Record
*getFirstAttr() const {
3120 if (!SubClasses
.empty())
3121 return SubClasses
.front()->getFirstAttr();
3122 return Attrs
.front();
3125 Record
*getLastAttr() const {
3127 return Attrs
.back();
3128 return SubClasses
.back()->getLastAttr();
3132 /// The entire hierarchy of attribute classes.
3133 class AttrClassHierarchy
{
3134 std::vector
<std::unique_ptr
<AttrClass
>> Classes
;
3137 AttrClassHierarchy(RecordKeeper
&Records
) {
3138 // Find records for all the classes.
3139 for (auto &Descriptor
: AttrClassDescriptors
) {
3140 Record
*ClassRecord
= Records
.getClass(Descriptor
.TableGenName
);
3141 AttrClass
*Class
= new AttrClass(Descriptor
, ClassRecord
);
3142 Classes
.emplace_back(Class
);
3145 // Link up the hierarchy.
3146 for (auto &Class
: Classes
) {
3147 if (AttrClass
*SuperClass
= findSuperClass(Class
->TheRecord
)) {
3148 Class
->SuperClass
= SuperClass
;
3149 SuperClass
->SubClasses
.push_back(Class
.get());
3154 for (auto i
= Classes
.begin(), e
= Classes
.end(); i
!= e
; ++i
) {
3155 assert((i
== Classes
.begin()) == ((*i
)->SuperClass
== nullptr) &&
3156 "only the first class should be a root class!");
3161 void emitDefaultDefines(raw_ostream
&OS
) const {
3162 for (auto &Class
: Classes
) {
3163 Class
->emitDefaultDefines(OS
);
3167 void emitUndefs(raw_ostream
&OS
) const {
3168 for (auto &Class
: Classes
) {
3169 Class
->emitUndefs(OS
);
3173 void emitAttrLists(raw_ostream
&OS
) const {
3174 // Just start from the root class.
3175 Classes
[0]->emitAttrList(OS
);
3178 void emitAttrRanges(raw_ostream
&OS
) const {
3179 for (auto &Class
: Classes
)
3180 Class
->emitAttrRange(OS
);
3183 void classifyAttr(Record
*Attr
) {
3184 // Add the attribute to the root class.
3185 Classes
[0]->classifyAttrOnRoot(Attr
);
3189 AttrClass
*findClassByRecord(Record
*R
) const {
3190 for (auto &Class
: Classes
) {
3191 if (Class
->TheRecord
== R
)
3197 AttrClass
*findSuperClass(Record
*R
) const {
3198 // TableGen flattens the superclass list, so we just need to walk it
3200 auto SuperClasses
= R
->getSuperClasses();
3201 for (signed i
= 0, e
= SuperClasses
.size(); i
!= e
; ++i
) {
3202 auto SuperClass
= findClassByRecord(SuperClasses
[e
- i
- 1].first
);
3203 if (SuperClass
) return SuperClass
;
3209 } // end anonymous namespace
3213 // Emits the enumeration list for attributes.
3214 void EmitClangAttrList(RecordKeeper
&Records
, raw_ostream
&OS
) {
3215 emitSourceFileHeader("List of all attributes that Clang recognizes", OS
,
3218 AttrClassHierarchy
Hierarchy(Records
);
3220 // Add defaulting macro definitions.
3221 Hierarchy
.emitDefaultDefines(OS
);
3222 emitDefaultDefine(OS
, "PRAGMA_SPELLING_ATTR", nullptr);
3224 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
3225 std::vector
<Record
*> PragmaAttrs
;
3226 for (auto *Attr
: Attrs
) {
3227 if (!Attr
->getValueAsBit("ASTNode"))
3230 // Add the attribute to the ad-hoc groups.
3231 if (AttrHasPragmaSpelling(Attr
))
3232 PragmaAttrs
.push_back(Attr
);
3234 // Place it in the hierarchy.
3235 Hierarchy
.classifyAttr(Attr
);
3238 // Emit the main attribute list.
3239 Hierarchy
.emitAttrLists(OS
);
3241 // Emit the ad hoc groups.
3242 emitAttrList(OS
, "PRAGMA_SPELLING_ATTR", PragmaAttrs
);
3244 // Emit the attribute ranges.
3245 OS
<< "#ifdef ATTR_RANGE\n";
3246 Hierarchy
.emitAttrRanges(OS
);
3247 OS
<< "#undef ATTR_RANGE\n";
3250 Hierarchy
.emitUndefs(OS
);
3251 OS
<< "#undef PRAGMA_SPELLING_ATTR\n";
3254 // Emits the enumeration list for attributes.
3255 void EmitClangAttrPrintList(const std::string
&FieldName
, RecordKeeper
&Records
,
3257 emitSourceFileHeader(
3258 "List of attributes that can be print on the left side of a decl", OS
,
3261 AttrClassHierarchy
Hierarchy(Records
);
3263 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
3264 std::vector
<Record
*> PragmaAttrs
;
3267 for (auto *Attr
: Attrs
) {
3268 if (!Attr
->getValueAsBit("ASTNode"))
3271 if (!Attr
->getValueAsBit(FieldName
))
3276 OS
<< "#define CLANG_ATTR_LIST_" << FieldName
;
3279 OS
<< " \\\n case attr::" << Attr
->getName() << ":";
3285 // Emits the enumeration list for attributes.
3286 void EmitClangAttrSubjectMatchRuleList(RecordKeeper
&Records
, raw_ostream
&OS
) {
3287 emitSourceFileHeader(
3288 "List of all attribute subject matching rules that Clang recognizes", OS
,
3290 PragmaClangAttributeSupport
&PragmaAttributeSupport
=
3291 getPragmaAttributeSupport(Records
);
3292 emitDefaultDefine(OS
, "ATTR_MATCH_RULE", nullptr);
3293 PragmaAttributeSupport
.emitMatchRuleList(OS
);
3294 OS
<< "#undef ATTR_MATCH_RULE\n";
3297 // Emits the code to read an attribute from a precompiled header.
3298 void EmitClangAttrPCHRead(RecordKeeper
&Records
, raw_ostream
&OS
) {
3299 emitSourceFileHeader("Attribute deserialization code", OS
, Records
);
3301 Record
*InhClass
= Records
.getClass("InheritableAttr");
3302 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr"),
3304 std::vector
<std::unique_ptr
<Argument
>> Args
;
3305 std::unique_ptr
<VariadicExprArgument
> DelayedArgs
;
3307 OS
<< " switch (Kind) {\n";
3308 for (const auto *Attr
: Attrs
) {
3309 const Record
&R
= *Attr
;
3310 if (!R
.getValueAsBit("ASTNode"))
3313 OS
<< " case attr::" << R
.getName() << ": {\n";
3314 if (R
.isSubClassOf(InhClass
))
3315 OS
<< " bool isInherited = Record.readInt();\n";
3316 OS
<< " bool isImplicit = Record.readInt();\n";
3317 OS
<< " bool isPackExpansion = Record.readInt();\n";
3318 DelayedArgs
= nullptr;
3319 if (Attr
->getValueAsBit("AcceptsExprPack")) {
3321 std::make_unique
<VariadicExprArgument
>("DelayedArgs", R
.getName());
3322 DelayedArgs
->writePCHReadDecls(OS
);
3324 ArgRecords
= R
.getValueAsListOfDefs("Args");
3326 for (const auto *Arg
: ArgRecords
) {
3327 Args
.emplace_back(createArgument(*Arg
, R
.getName()));
3328 Args
.back()->writePCHReadDecls(OS
);
3330 OS
<< " New = new (Context) " << R
.getName() << "Attr(Context, Info";
3331 for (auto const &ri
: Args
) {
3333 ri
->writePCHReadArgs(OS
);
3336 if (R
.isSubClassOf(InhClass
))
3337 OS
<< " cast<InheritableAttr>(New)->setInherited(isInherited);\n";
3338 OS
<< " New->setImplicit(isImplicit);\n";
3339 OS
<< " New->setPackExpansion(isPackExpansion);\n";
3341 OS
<< " cast<" << R
.getName()
3342 << "Attr>(New)->setDelayedArgs(Context, ";
3343 DelayedArgs
->writePCHReadArgs(OS
);
3352 // Emits the code to write an attribute to a precompiled header.
3353 void EmitClangAttrPCHWrite(RecordKeeper
&Records
, raw_ostream
&OS
) {
3354 emitSourceFileHeader("Attribute serialization code", OS
, Records
);
3356 Record
*InhClass
= Records
.getClass("InheritableAttr");
3357 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr"), Args
;
3359 OS
<< " switch (A->getKind()) {\n";
3360 for (const auto *Attr
: Attrs
) {
3361 const Record
&R
= *Attr
;
3362 if (!R
.getValueAsBit("ASTNode"))
3364 OS
<< " case attr::" << R
.getName() << ": {\n";
3365 Args
= R
.getValueAsListOfDefs("Args");
3366 if (R
.isSubClassOf(InhClass
) || !Args
.empty())
3367 OS
<< " const auto *SA = cast<" << R
.getName()
3369 if (R
.isSubClassOf(InhClass
))
3370 OS
<< " Record.push_back(SA->isInherited());\n";
3371 OS
<< " Record.push_back(A->isImplicit());\n";
3372 OS
<< " Record.push_back(A->isPackExpansion());\n";
3373 if (Attr
->getValueAsBit("AcceptsExprPack"))
3374 VariadicExprArgument("DelayedArgs", R
.getName()).writePCHWrite(OS
);
3376 for (const auto *Arg
: Args
)
3377 createArgument(*Arg
, R
.getName())->writePCHWrite(OS
);
3384 // Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test'
3385 // parameter with only a single check type, if applicable.
3386 static bool GenerateTargetSpecificAttrCheck(const Record
*R
, std::string
&Test
,
3387 std::string
*FnName
,
3389 StringRef CheckAgainst
,
3391 if (!R
->isValueUnset(ListName
)) {
3393 std::vector
<StringRef
> Items
= R
->getValueAsListOfStrings(ListName
);
3394 for (auto I
= Items
.begin(), E
= Items
.end(); I
!= E
; ++I
) {
3395 StringRef Part
= *I
;
3396 Test
+= CheckAgainst
;
3411 // Generate a conditional expression to check if the current target satisfies
3412 // the conditions for a TargetSpecificAttr record, and append the code for
3413 // those checks to the Test string. If the FnName string pointer is non-null,
3414 // append a unique suffix to distinguish this set of target checks from other
3415 // TargetSpecificAttr records.
3416 static bool GenerateTargetSpecificAttrChecks(const Record
*R
,
3417 std::vector
<StringRef
> &Arches
,
3419 std::string
*FnName
) {
3420 bool AnyTargetChecks
= false;
3422 // It is assumed that there will be an llvm::Triple object
3423 // named "T" and a TargetInfo object named "Target" within
3424 // scope that can be used to determine whether the attribute exists in
3427 // If one or more architectures is specified, check those. Arches are handled
3428 // differently because GenerateTargetRequirements needs to combine the list
3430 if (!Arches
.empty()) {
3431 AnyTargetChecks
= true;
3433 for (auto I
= Arches
.begin(), E
= Arches
.end(); I
!= E
; ++I
) {
3434 StringRef Part
= *I
;
3435 Test
+= "T.getArch() == llvm::Triple::";
3445 // If the attribute is specific to particular OSes, check those.
3446 AnyTargetChecks
|= GenerateTargetSpecificAttrCheck(
3447 R
, Test
, FnName
, "OSes", "T.getOS()", "llvm::Triple::");
3449 // If one or more object formats is specified, check those.
3451 GenerateTargetSpecificAttrCheck(R
, Test
, FnName
, "ObjectFormats",
3452 "T.getObjectFormat()", "llvm::Triple::");
3454 // If custom code is specified, emit it.
3455 StringRef Code
= R
->getValueAsString("CustomCode");
3456 if (!Code
.empty()) {
3457 AnyTargetChecks
= true;
3463 return AnyTargetChecks
;
3466 static void GenerateHasAttrSpellingStringSwitch(
3467 const std::vector
<std::pair
<const Record
*, FlattenedSpelling
>> &Attrs
,
3468 raw_ostream
&OS
, const std::string
&Variety
,
3469 const std::string
&Scope
= "") {
3470 for (const auto &[Attr
, Spelling
] : Attrs
) {
3471 // C++11-style attributes have specific version information associated with
3472 // them. If the attribute has no scope, the version information must not
3473 // have the default value (1), as that's incorrect. Instead, the unscoped
3474 // attribute version information should be taken from the SD-6 standing
3475 // document, which can be found at:
3476 // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
3478 // C23-style attributes have the same kind of version information
3479 // associated with them. The unscoped attribute version information should
3480 // be taken from the specification of the attribute in the C Standard.
3482 // Clang-specific attributes have the same kind of version information
3483 // associated with them. This version is typically the default value (1).
3484 // These version values are clang-specific and should typically be
3485 // incremented once the attribute changes its syntax and/or semantics in a
3486 // a way that is impactful to the end user.
3489 assert(Spelling
.variety() == Variety
);
3490 std::string Name
= "";
3491 if (Spelling
.nameSpace().empty() || Scope
== Spelling
.nameSpace()) {
3492 Name
= Spelling
.name();
3493 Version
= static_cast<int>(
3494 Spelling
.getSpellingRecord().getValueAsInt("Version"));
3495 // Verify that explicitly specified CXX11 and C23 spellings (i.e.
3496 // not inferred from Clang/GCC spellings) have a version that's
3497 // different from the default (1).
3498 bool RequiresValidVersion
=
3499 (Variety
== "CXX11" || Variety
== "C23") &&
3500 Spelling
.getSpellingRecord().getValueAsString("Variety") == Variety
;
3501 if (RequiresValidVersion
&& Scope
.empty() && Version
== 1)
3502 PrintError(Spelling
.getSpellingRecord().getLoc(),
3503 "Standard attributes must have "
3504 "valid version information.");
3508 if (Attr
->isSubClassOf("TargetSpecificAttr")) {
3509 const Record
*R
= Attr
->getValueAsDef("Target");
3510 std::vector
<StringRef
> Arches
= R
->getValueAsListOfStrings("Arches");
3511 GenerateTargetSpecificAttrChecks(R
, Arches
, Test
, nullptr);
3513 // If this is the C++11 variety, also add in the LangOpts test.
3514 if (Variety
== "CXX11")
3515 Test
+= " && LangOpts.CPlusPlus11";
3516 } else if (!Attr
->getValueAsListOfDefs("TargetSpecificSpellings").empty()) {
3517 // Add target checks if this spelling is target-specific.
3518 const std::vector
<Record
*> TargetSpellings
=
3519 Attr
->getValueAsListOfDefs("TargetSpecificSpellings");
3520 for (const auto &TargetSpelling
: TargetSpellings
) {
3521 // Find spelling that matches current scope and name.
3522 for (const auto &Spelling
: GetFlattenedSpellings(*TargetSpelling
)) {
3523 if (Scope
== Spelling
.nameSpace() && Name
== Spelling
.name()) {
3524 const Record
*Target
= TargetSpelling
->getValueAsDef("Target");
3525 std::vector
<StringRef
> Arches
=
3526 Target
->getValueAsListOfStrings("Arches");
3527 GenerateTargetSpecificAttrChecks(Target
, Arches
, Test
,
3528 /*FnName=*/nullptr);
3534 if (Variety
== "CXX11")
3535 Test
+= " && LangOpts.CPlusPlus11";
3536 } else if (Variety
== "CXX11")
3537 // C++11 mode should be checked against LangOpts, which is presumed to be
3538 // present in the caller.
3539 Test
= "LangOpts.CPlusPlus11";
3541 std::string TestStr
= !Test
.empty()
3542 ? Test
+ " ? " + llvm::itostr(Version
) + " : 0"
3543 : llvm::itostr(Version
);
3544 if (Scope
.empty() || Scope
== Spelling
.nameSpace())
3545 OS
<< " .Case(\"" << Spelling
.name() << "\", " << TestStr
<< ")\n";
3547 OS
<< " .Default(0);\n";
3550 // Emits the list of tokens for regular keyword attributes.
3551 void EmitClangAttrTokenKinds(RecordKeeper
&Records
, raw_ostream
&OS
) {
3552 emitSourceFileHeader("A list of tokens generated from the attribute"
3555 // Assume for now that the same token is not used in multiple regular
3556 // keyword attributes.
3557 for (auto *R
: Records
.getAllDerivedDefinitions("Attr"))
3558 for (const auto &S
: GetFlattenedSpellings(*R
))
3559 if (isRegularKeywordAttribute(S
)) {
3560 if (!R
->getValueAsListOfDefs("Args").empty())
3561 PrintError(R
->getLoc(),
3562 "RegularKeyword attributes with arguments are not "
3564 OS
<< "KEYWORD_ATTRIBUTE("
3565 << S
.getSpellingRecord().getValueAsString("Name") << ")\n";
3567 OS
<< "#undef KEYWORD_ATTRIBUTE\n";
3570 // Emits the list of spellings for attributes.
3571 void EmitClangAttrHasAttrImpl(RecordKeeper
&Records
, raw_ostream
&OS
) {
3572 emitSourceFileHeader("Code to implement the __has_attribute logic", OS
,
3575 // Separate all of the attributes out into four group: generic, C++11, GNU,
3576 // and declspecs. Then generate a big switch statement for each of them.
3577 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
3578 std::vector
<std::pair
<const Record
*, FlattenedSpelling
>> Declspec
, Microsoft
,
3579 GNU
, Pragma
, HLSLSemantic
;
3580 std::map
<std::string
,
3581 std::vector
<std::pair
<const Record
*, FlattenedSpelling
>>>
3584 // Walk over the list of all attributes, and split them out based on the
3585 // spelling variety.
3586 for (auto *R
: Attrs
) {
3587 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(*R
);
3588 for (const auto &SI
: Spellings
) {
3589 const std::string
&Variety
= SI
.variety();
3590 if (Variety
== "GNU")
3591 GNU
.emplace_back(R
, SI
);
3592 else if (Variety
== "Declspec")
3593 Declspec
.emplace_back(R
, SI
);
3594 else if (Variety
== "Microsoft")
3595 Microsoft
.emplace_back(R
, SI
);
3596 else if (Variety
== "CXX11")
3597 CXX
[SI
.nameSpace()].emplace_back(R
, SI
);
3598 else if (Variety
== "C23")
3599 C23
[SI
.nameSpace()].emplace_back(R
, SI
);
3600 else if (Variety
== "Pragma")
3601 Pragma
.emplace_back(R
, SI
);
3602 else if (Variety
== "HLSLSemantic")
3603 HLSLSemantic
.emplace_back(R
, SI
);
3607 OS
<< "const llvm::Triple &T = Target.getTriple();\n";
3608 OS
<< "switch (Syntax) {\n";
3609 OS
<< "case AttributeCommonInfo::Syntax::AS_GNU:\n";
3610 OS
<< " return llvm::StringSwitch<int>(Name)\n";
3611 GenerateHasAttrSpellingStringSwitch(GNU
, OS
, "GNU");
3612 OS
<< "case AttributeCommonInfo::Syntax::AS_Declspec:\n";
3613 OS
<< " return llvm::StringSwitch<int>(Name)\n";
3614 GenerateHasAttrSpellingStringSwitch(Declspec
, OS
, "Declspec");
3615 OS
<< "case AttributeCommonInfo::Syntax::AS_Microsoft:\n";
3616 OS
<< " return llvm::StringSwitch<int>(Name)\n";
3617 GenerateHasAttrSpellingStringSwitch(Microsoft
, OS
, "Microsoft");
3618 OS
<< "case AttributeCommonInfo::Syntax::AS_Pragma:\n";
3619 OS
<< " return llvm::StringSwitch<int>(Name)\n";
3620 GenerateHasAttrSpellingStringSwitch(Pragma
, OS
, "Pragma");
3621 OS
<< "case AttributeCommonInfo::Syntax::AS_HLSLSemantic:\n";
3622 OS
<< " return llvm::StringSwitch<int>(Name)\n";
3623 GenerateHasAttrSpellingStringSwitch(HLSLSemantic
, OS
, "HLSLSemantic");
3624 auto fn
= [&OS
](const char *Spelling
,
3627 std::vector
<std::pair
<const Record
*, FlattenedSpelling
>>>
3629 OS
<< "case AttributeCommonInfo::Syntax::AS_" << Spelling
<< ": {\n";
3630 // C++11-style attributes are further split out based on the Scope.
3631 for (auto I
= List
.cbegin(), E
= List
.cend(); I
!= E
; ++I
) {
3632 if (I
!= List
.cbegin())
3634 if (I
->first
.empty())
3635 OS
<< "if (ScopeName == \"\") {\n";
3637 OS
<< "if (ScopeName == \"" << I
->first
<< "\") {\n";
3638 OS
<< " return llvm::StringSwitch<int>(Name)\n";
3639 GenerateHasAttrSpellingStringSwitch(I
->second
, OS
, Spelling
, I
->first
);
3642 OS
<< "\n} break;\n";
3646 OS
<< "case AttributeCommonInfo::Syntax::AS_Keyword:\n";
3647 OS
<< "case AttributeCommonInfo::Syntax::AS_ContextSensitiveKeyword:\n";
3648 OS
<< " llvm_unreachable(\"hasAttribute not supported for keyword\");\n";
3649 OS
<< " return 0;\n";
3650 OS
<< "case AttributeCommonInfo::Syntax::AS_Implicit:\n";
3651 OS
<< " llvm_unreachable (\"hasAttribute not supported for "
3652 "AS_Implicit\");\n";
3653 OS
<< " return 0;\n";
3658 void EmitClangAttrSpellingListIndex(RecordKeeper
&Records
, raw_ostream
&OS
) {
3659 emitSourceFileHeader("Code to translate different attribute spellings into "
3660 "internal identifiers",
3663 OS
<< " switch (getParsedKind()) {\n";
3664 OS
<< " case IgnoredAttribute:\n";
3665 OS
<< " case UnknownAttribute:\n";
3666 OS
<< " case NoSemaHandlerAttribute:\n";
3667 OS
<< " llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n";
3669 ParsedAttrMap Attrs
= getParsedAttrList(Records
);
3670 for (const auto &I
: Attrs
) {
3671 const Record
&R
= *I
.second
;
3672 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(R
);
3673 OS
<< " case AT_" << I
.first
<< ": {\n";
3674 for (unsigned I
= 0; I
< Spellings
.size(); ++ I
) {
3675 OS
<< " if (Name == \"" << Spellings
[I
].name() << "\" && "
3676 << "getSyntax() == AttributeCommonInfo::AS_" << Spellings
[I
].variety()
3677 << " && Scope == \"" << Spellings
[I
].nameSpace() << "\")\n"
3678 << " return " << I
<< ";\n";
3686 OS
<< " return 0;\n";
3689 // Emits code used by RecursiveASTVisitor to visit attributes
3690 void EmitClangAttrASTVisitor(RecordKeeper
&Records
, raw_ostream
&OS
) {
3691 emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS
,
3694 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
3696 // Write method declarations for Traverse* methods.
3697 // We emit this here because we only generate methods for attributes that
3698 // are declared as ASTNodes.
3699 OS
<< "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
3700 for (const auto *Attr
: Attrs
) {
3701 const Record
&R
= *Attr
;
3702 if (!R
.getValueAsBit("ASTNode"))
3704 OS
<< " bool Traverse"
3705 << R
.getName() << "Attr(" << R
.getName() << "Attr *A);\n";
3707 << R
.getName() << "Attr(" << R
.getName() << "Attr *A) {\n"
3708 << " return true; \n"
3711 OS
<< "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
3713 // Write individual Traverse* methods for each attribute class.
3714 for (const auto *Attr
: Attrs
) {
3715 const Record
&R
= *Attr
;
3716 if (!R
.getValueAsBit("ASTNode"))
3719 OS
<< "template <typename Derived>\n"
3720 << "bool VISITORCLASS<Derived>::Traverse"
3721 << R
.getName() << "Attr(" << R
.getName() << "Attr *A) {\n"
3722 << " if (!getDerived().VisitAttr(A))\n"
3723 << " return false;\n"
3724 << " if (!getDerived().Visit" << R
.getName() << "Attr(A))\n"
3725 << " return false;\n";
3727 std::vector
<Record
*> ArgRecords
= R
.getValueAsListOfDefs("Args");
3728 for (const auto *Arg
: ArgRecords
)
3729 createArgument(*Arg
, R
.getName())->writeASTVisitorTraversal(OS
);
3731 if (Attr
->getValueAsBit("AcceptsExprPack"))
3732 VariadicExprArgument("DelayedArgs", R
.getName())
3733 .writeASTVisitorTraversal(OS
);
3735 OS
<< " return true;\n";
3739 // Write generic Traverse routine
3740 OS
<< "template <typename Derived>\n"
3741 << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
3743 << " return true;\n"
3745 << " switch (A->getKind()) {\n";
3747 for (const auto *Attr
: Attrs
) {
3748 const Record
&R
= *Attr
;
3749 if (!R
.getValueAsBit("ASTNode"))
3752 OS
<< " case attr::" << R
.getName() << ":\n"
3753 << " return getDerived().Traverse" << R
.getName() << "Attr("
3754 << "cast<" << R
.getName() << "Attr>(A));\n";
3756 OS
<< " }\n"; // end switch
3757 OS
<< " llvm_unreachable(\"bad attribute kind\");\n";
3758 OS
<< "}\n"; // end function
3759 OS
<< "#endif // ATTR_VISITOR_DECLS_ONLY\n";
3762 void EmitClangAttrTemplateInstantiateHelper(const std::vector
<Record
*> &Attrs
,
3764 bool AppliesToDecl
) {
3766 OS
<< " switch (At->getKind()) {\n";
3767 for (const auto *Attr
: Attrs
) {
3768 const Record
&R
= *Attr
;
3769 if (!R
.getValueAsBit("ASTNode"))
3771 OS
<< " case attr::" << R
.getName() << ": {\n";
3772 bool ShouldClone
= R
.getValueAsBit("Clone") &&
3774 R
.getValueAsBit("MeaningfulToClassTemplateDefinition"));
3777 OS
<< " return nullptr;\n";
3782 OS
<< " const auto *A = cast<"
3783 << R
.getName() << "Attr>(At);\n";
3784 bool TDependent
= R
.getValueAsBit("TemplateDependent");
3787 OS
<< " return A->clone(C);\n";
3792 std::vector
<Record
*> ArgRecords
= R
.getValueAsListOfDefs("Args");
3793 std::vector
<std::unique_ptr
<Argument
>> Args
;
3794 Args
.reserve(ArgRecords
.size());
3796 for (const auto *ArgRecord
: ArgRecords
)
3797 Args
.emplace_back(createArgument(*ArgRecord
, R
.getName()));
3799 for (auto const &ai
: Args
)
3800 ai
->writeTemplateInstantiation(OS
);
3802 OS
<< " return new (C) " << R
.getName() << "Attr(C, *A";
3803 for (auto const &ai
: Args
) {
3805 ai
->writeTemplateInstantiationArgs(OS
);
3810 OS
<< " } // end switch\n"
3811 << " llvm_unreachable(\"Unknown attribute!\");\n"
3812 << " return nullptr;\n";
3815 // Emits code to instantiate dependent attributes on templates.
3816 void EmitClangAttrTemplateInstantiate(RecordKeeper
&Records
, raw_ostream
&OS
) {
3817 emitSourceFileHeader("Template instantiation code for attributes", OS
,
3820 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
3822 OS
<< "namespace clang {\n"
3823 << "namespace sema {\n\n"
3824 << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
3826 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3827 EmitClangAttrTemplateInstantiateHelper(Attrs
, OS
, /*AppliesToDecl*/false);
3829 << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n"
3830 << " ASTContext &C, Sema &S,\n"
3831 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3832 EmitClangAttrTemplateInstantiateHelper(Attrs
, OS
, /*AppliesToDecl*/true);
3834 << "} // end namespace sema\n"
3835 << "} // end namespace clang\n";
3838 // Emits the list of parsed attributes.
3839 void EmitClangAttrParsedAttrList(RecordKeeper
&Records
, raw_ostream
&OS
) {
3840 emitSourceFileHeader("List of all attributes that Clang recognizes", OS
,
3843 OS
<< "#ifndef PARSED_ATTR\n";
3844 OS
<< "#define PARSED_ATTR(NAME) NAME\n";
3847 ParsedAttrMap Names
= getParsedAttrList(Records
);
3848 for (const auto &I
: Names
) {
3849 OS
<< "PARSED_ATTR(" << I
.first
<< ")\n";
3853 static bool isArgVariadic(const Record
&R
, StringRef AttrName
) {
3854 return createArgument(R
, AttrName
)->isVariadic();
3857 static void emitArgInfo(const Record
&R
, raw_ostream
&OS
) {
3858 // This function will count the number of arguments specified for the
3859 // attribute and emit the number of required arguments followed by the
3860 // number of optional arguments.
3861 std::vector
<Record
*> Args
= R
.getValueAsListOfDefs("Args");
3862 unsigned ArgCount
= 0, OptCount
= 0, ArgMemberCount
= 0;
3863 bool HasVariadic
= false;
3864 for (const auto *Arg
: Args
) {
3865 // If the arg is fake, it's the user's job to supply it: general parsing
3866 // logic shouldn't need to know anything about it.
3867 if (Arg
->getValueAsBit("Fake"))
3869 Arg
->getValueAsBit("Optional") ? ++OptCount
: ++ArgCount
;
3871 if (!HasVariadic
&& isArgVariadic(*Arg
, R
.getName()))
3875 // If there is a variadic argument, we will set the optional argument count
3876 // to its largest value. Since it's currently a 4-bit number, we set it to 15.
3877 OS
<< " /*NumArgs=*/" << ArgCount
<< ",\n";
3878 OS
<< " /*OptArgs=*/" << (HasVariadic
? 15 : OptCount
) << ",\n";
3879 OS
<< " /*NumArgMembers=*/" << ArgMemberCount
<< ",\n";
3882 static std::string
GetDiagnosticSpelling(const Record
&R
) {
3883 std::string Ret
= std::string(R
.getValueAsString("DiagSpelling"));
3887 // If we couldn't find the DiagSpelling in this object, we can check to see
3888 // if the object is one that has a base, and if it is, loop up to the Base
3889 // member recursively.
3890 if (auto Base
= R
.getValueAsOptionalDef(BaseFieldName
))
3891 return GetDiagnosticSpelling(*Base
);
3896 static std::string
CalculateDiagnostic(const Record
&S
) {
3897 // If the SubjectList object has a custom diagnostic associated with it,
3898 // return that directly.
3899 const StringRef CustomDiag
= S
.getValueAsString("CustomDiag");
3900 if (!CustomDiag
.empty())
3901 return ("\"" + Twine(CustomDiag
) + "\"").str();
3903 std::vector
<std::string
> DiagList
;
3904 std::vector
<Record
*> Subjects
= S
.getValueAsListOfDefs("Subjects");
3905 for (const auto *Subject
: Subjects
) {
3906 const Record
&R
= *Subject
;
3907 // Get the diagnostic text from the Decl or Stmt node given.
3908 std::string V
= GetDiagnosticSpelling(R
);
3910 PrintError(R
.getLoc(),
3911 "Could not determine diagnostic spelling for the node: " +
3912 R
.getName() + "; please add one to DeclNodes.td");
3914 // The node may contain a list of elements itself, so split the elements
3915 // by a comma, and trim any whitespace.
3916 SmallVector
<StringRef
, 2> Frags
;
3917 llvm::SplitString(V
, Frags
, ",");
3918 for (auto Str
: Frags
) {
3919 DiagList
.push_back(std::string(Str
.trim()));
3924 if (DiagList
.empty()) {
3925 PrintFatalError(S
.getLoc(),
3926 "Could not deduce diagnostic argument for Attr subjects");
3930 // FIXME: this is not particularly good for localization purposes and ideally
3931 // should be part of the diagnostics engine itself with some sort of list
3934 // A single member of the list can be returned directly.
3935 if (DiagList
.size() == 1)
3936 return '"' + DiagList
.front() + '"';
3938 if (DiagList
.size() == 2)
3939 return '"' + DiagList
[0] + " and " + DiagList
[1] + '"';
3941 // If there are more than two in the list, we serialize the first N - 1
3942 // elements with a comma. This leaves the string in the state: foo, bar,
3943 // baz (but misses quux). We can then add ", and " for the last element
3945 std::string Diag
= llvm::join(DiagList
.begin(), DiagList
.end() - 1, ", ");
3946 return '"' + Diag
+ ", and " + *(DiagList
.end() - 1) + '"';
3949 static std::string
GetSubjectWithSuffix(const Record
*R
) {
3950 const std::string
&B
= std::string(R
->getName());
3951 if (B
== "DeclBase")
3956 static std::string
functionNameForCustomAppertainsTo(const Record
&Subject
) {
3957 return "is" + Subject
.getName().str();
3960 static void GenerateCustomAppertainsTo(const Record
&Subject
, raw_ostream
&OS
) {
3961 std::string FnName
= functionNameForCustomAppertainsTo(Subject
);
3963 // If this code has already been generated, we don't need to do anything.
3964 static std::set
<std::string
> CustomSubjectSet
;
3965 auto I
= CustomSubjectSet
.find(FnName
);
3966 if (I
!= CustomSubjectSet
.end())
3969 // This only works with non-root Decls.
3970 Record
*Base
= Subject
.getValueAsDef(BaseFieldName
);
3972 // Not currently support custom subjects within custom subjects.
3973 if (Base
->isSubClassOf("SubsetSubject")) {
3974 PrintFatalError(Subject
.getLoc(),
3975 "SubsetSubjects within SubsetSubjects is not supported");
3979 OS
<< "static bool " << FnName
<< "(const Decl *D) {\n";
3980 OS
<< " if (const auto *S = dyn_cast<";
3981 OS
<< GetSubjectWithSuffix(Base
);
3983 OS
<< " return " << Subject
.getValueAsString("CheckCode") << ";\n";
3984 OS
<< " return false;\n";
3987 CustomSubjectSet
.insert(FnName
);
3990 static void GenerateAppertainsTo(const Record
&Attr
, raw_ostream
&OS
) {
3991 // If the attribute does not contain a Subjects definition, then use the
3992 // default appertainsTo logic.
3993 if (Attr
.isValueUnset("Subjects"))
3996 const Record
*SubjectObj
= Attr
.getValueAsDef("Subjects");
3997 std::vector
<Record
*> Subjects
= SubjectObj
->getValueAsListOfDefs("Subjects");
3999 // If the list of subjects is empty, it is assumed that the attribute
4000 // appertains to everything.
4001 if (Subjects
.empty())
4004 bool Warn
= SubjectObj
->getValueAsDef("Diag")->getValueAsBit("Warn");
4006 // Split the subjects into declaration subjects and statement subjects.
4007 // FIXME: subset subjects are added to the declaration list until there are
4008 // enough statement attributes with custom subject needs to warrant
4009 // the implementation effort.
4010 std::vector
<Record
*> DeclSubjects
, StmtSubjects
;
4012 Subjects
, std::back_inserter(DeclSubjects
), [](const Record
*R
) {
4013 return R
->isSubClassOf("SubsetSubject") || !R
->isSubClassOf("StmtNode");
4015 llvm::copy_if(Subjects
, std::back_inserter(StmtSubjects
),
4016 [](const Record
*R
) { return R
->isSubClassOf("StmtNode"); });
4018 // We should have sorted all of the subjects into two lists.
4019 // FIXME: this assertion will be wrong if we ever add type attribute subjects.
4020 assert(DeclSubjects
.size() + StmtSubjects
.size() == Subjects
.size());
4022 if (DeclSubjects
.empty()) {
4023 // If there are no decl subjects but there are stmt subjects, diagnose
4024 // trying to apply a statement attribute to a declaration.
4025 if (!StmtSubjects
.empty()) {
4026 OS
<< "bool diagAppertainsToDecl(Sema &S, const ParsedAttr &AL, ";
4027 OS
<< "const Decl *D) const override {\n";
4028 OS
<< " S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)\n";
4029 OS
<< " << AL << AL.isRegularKeywordAttribute() << "
4030 "D->getLocation();\n";
4031 OS
<< " return false;\n";
4035 // Otherwise, generate an appertainsTo check specific to this attribute
4036 // which checks all of the given subjects against the Decl passed in.
4037 OS
<< "bool diagAppertainsToDecl(Sema &S, ";
4038 OS
<< "const ParsedAttr &Attr, const Decl *D) const override {\n";
4040 for (auto I
= DeclSubjects
.begin(), E
= DeclSubjects
.end(); I
!= E
; ++I
) {
4041 // If the subject has custom code associated with it, use the generated
4042 // function for it. The function cannot be inlined into this check (yet)
4043 // because it requires the subject to be of a specific type, and were that
4044 // information inlined here, it would not support an attribute with
4045 // multiple custom subjects.
4046 if ((*I
)->isSubClassOf("SubsetSubject"))
4047 OS
<< "!" << functionNameForCustomAppertainsTo(**I
) << "(D)";
4049 OS
<< "!isa<" << GetSubjectWithSuffix(*I
) << ">(D)";
4055 OS
<< " S.Diag(Attr.getLoc(), diag::";
4056 OS
<< (Warn
? "warn_attribute_wrong_decl_type_str"
4057 : "err_attribute_wrong_decl_type_str");
4059 OS
<< " << Attr << Attr.isRegularKeywordAttribute() << ";
4060 OS
<< CalculateDiagnostic(*SubjectObj
) << ";\n";
4061 OS
<< " return false;\n";
4063 OS
<< " return true;\n";
4067 if (StmtSubjects
.empty()) {
4068 // If there are no stmt subjects but there are decl subjects, diagnose
4069 // trying to apply a declaration attribute to a statement.
4070 if (!DeclSubjects
.empty()) {
4071 OS
<< "bool diagAppertainsToStmt(Sema &S, const ParsedAttr &AL, ";
4072 OS
<< "const Stmt *St) const override {\n";
4073 OS
<< " S.Diag(AL.getLoc(), diag::err_decl_attribute_invalid_on_stmt)\n";
4074 OS
<< " << AL << AL.isRegularKeywordAttribute() << "
4075 "St->getBeginLoc();\n";
4076 OS
<< " return false;\n";
4080 // Now, do the same for statements.
4081 OS
<< "bool diagAppertainsToStmt(Sema &S, ";
4082 OS
<< "const ParsedAttr &Attr, const Stmt *St) const override {\n";
4084 for (auto I
= StmtSubjects
.begin(), E
= StmtSubjects
.end(); I
!= E
; ++I
) {
4085 OS
<< "!isa<" << (*I
)->getName() << ">(St)";
4090 OS
<< " S.Diag(Attr.getLoc(), diag::";
4091 OS
<< (Warn
? "warn_attribute_wrong_decl_type_str"
4092 : "err_attribute_wrong_decl_type_str");
4094 OS
<< " << Attr << Attr.isRegularKeywordAttribute() << ";
4095 OS
<< CalculateDiagnostic(*SubjectObj
) << ";\n";
4096 OS
<< " return false;\n";
4098 OS
<< " return true;\n";
4103 // Generates the mutual exclusion checks. The checks for parsed attributes are
4104 // written into OS and the checks for merging declaration attributes are
4105 // written into MergeOS.
4106 static void GenerateMutualExclusionsChecks(const Record
&Attr
,
4107 const RecordKeeper
&Records
,
4109 raw_ostream
&MergeDeclOS
,
4110 raw_ostream
&MergeStmtOS
) {
4111 // Find all of the definitions that inherit from MutualExclusions and include
4112 // the given attribute in the list of exclusions to generate the
4113 // diagMutualExclusion() check.
4114 std::vector
<Record
*> ExclusionsList
=
4115 Records
.getAllDerivedDefinitions("MutualExclusions");
4117 // We don't do any of this magic for type attributes yet.
4118 if (Attr
.isSubClassOf("TypeAttr"))
4121 // This means the attribute is either a statement attribute, a decl
4122 // attribute, or both; find out which.
4123 bool CurAttrIsStmtAttr
=
4124 Attr
.isSubClassOf("StmtAttr") || Attr
.isSubClassOf("DeclOrStmtAttr");
4125 bool CurAttrIsDeclAttr
=
4126 !CurAttrIsStmtAttr
|| Attr
.isSubClassOf("DeclOrStmtAttr");
4128 std::vector
<std::string
> DeclAttrs
, StmtAttrs
;
4130 for (const Record
*Exclusion
: ExclusionsList
) {
4131 std::vector
<Record
*> MutuallyExclusiveAttrs
=
4132 Exclusion
->getValueAsListOfDefs("Exclusions");
4133 auto IsCurAttr
= [Attr
](const Record
*R
) {
4134 return R
->getName() == Attr
.getName();
4136 if (llvm::any_of(MutuallyExclusiveAttrs
, IsCurAttr
)) {
4137 // This list of exclusions includes the attribute we're looking for, so
4138 // add the exclusive attributes to the proper list for checking.
4139 for (const Record
*AttrToExclude
: MutuallyExclusiveAttrs
) {
4140 if (IsCurAttr(AttrToExclude
))
4143 if (CurAttrIsStmtAttr
)
4144 StmtAttrs
.push_back((AttrToExclude
->getName() + "Attr").str());
4145 if (CurAttrIsDeclAttr
)
4146 DeclAttrs
.push_back((AttrToExclude
->getName() + "Attr").str());
4151 // If there are any decl or stmt attributes, silence -Woverloaded-virtual
4152 // warnings for them both.
4153 if (!DeclAttrs
.empty() || !StmtAttrs
.empty())
4154 OS
<< " using ParsedAttrInfo::diagMutualExclusion;\n\n";
4156 // If we discovered any decl or stmt attributes to test for, generate the
4157 // predicates for them now.
4158 if (!DeclAttrs
.empty()) {
4159 // Generate the ParsedAttrInfo subclass logic for declarations.
4160 OS
<< " bool diagMutualExclusion(Sema &S, const ParsedAttr &AL, "
4161 << "const Decl *D) const override {\n";
4162 for (const std::string
&A
: DeclAttrs
) {
4163 OS
<< " if (const auto *A = D->getAttr<" << A
<< ">()) {\n";
4164 OS
<< " S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)"
4165 << " << AL << A << (AL.isRegularKeywordAttribute() ||"
4166 << " A->isRegularKeywordAttribute());\n";
4167 OS
<< " S.Diag(A->getLocation(), diag::note_conflicting_attribute);";
4168 OS
<< " \nreturn false;\n";
4171 OS
<< " return true;\n";
4174 // Also generate the declaration attribute merging logic if the current
4175 // attribute is one that can be inheritted on a declaration. It is assumed
4176 // this code will be executed in the context of a function with parameters:
4177 // Sema &S, Decl *D, Attr *A and that returns a bool (false on diagnostic,
4178 // true on success).
4179 if (Attr
.isSubClassOf("InheritableAttr")) {
4180 MergeDeclOS
<< " if (const auto *Second = dyn_cast<"
4181 << (Attr
.getName() + "Attr").str() << ">(A)) {\n";
4182 for (const std::string
&A
: DeclAttrs
) {
4183 MergeDeclOS
<< " if (const auto *First = D->getAttr<" << A
4185 MergeDeclOS
<< " S.Diag(First->getLocation(), "
4186 << "diag::err_attributes_are_not_compatible) << First << "
4187 << "Second << (First->isRegularKeywordAttribute() || "
4188 << "Second->isRegularKeywordAttribute());\n";
4189 MergeDeclOS
<< " S.Diag(Second->getLocation(), "
4190 << "diag::note_conflicting_attribute);\n";
4191 MergeDeclOS
<< " return false;\n";
4192 MergeDeclOS
<< " }\n";
4194 MergeDeclOS
<< " return true;\n";
4195 MergeDeclOS
<< " }\n";
4199 // Statement attributes are a bit different from declarations. With
4200 // declarations, each attribute is added to the declaration as it is
4201 // processed, and so you can look on the Decl * itself to see if there is a
4202 // conflicting attribute. Statement attributes are processed as a group
4203 // because AttributedStmt needs to tail-allocate all of the attribute nodes
4204 // at once. This means we cannot check whether the statement already contains
4205 // an attribute to check for the conflict. Instead, we need to check whether
4206 // the given list of semantic attributes contain any conflicts. It is assumed
4207 // this code will be executed in the context of a function with parameters:
4208 // Sema &S, const SmallVectorImpl<const Attr *> &C. The code will be within a
4209 // loop which loops over the container C with a loop variable named A to
4210 // represent the current attribute to check for conflicts.
4212 // FIXME: it would be nice not to walk over the list of potential attributes
4213 // to apply to the statement more than once, but statements typically don't
4214 // have long lists of attributes on them, so re-walking the list should not
4215 // be an expensive operation.
4216 if (!StmtAttrs
.empty()) {
4217 MergeStmtOS
<< " if (const auto *Second = dyn_cast<"
4218 << (Attr
.getName() + "Attr").str() << ">(A)) {\n";
4219 MergeStmtOS
<< " auto Iter = llvm::find_if(C, [](const Attr *Check) "
4222 StmtAttrs
, [&](const std::string
&Name
) { MergeStmtOS
<< Name
; },
4223 [&] { MergeStmtOS
<< ", "; });
4224 MergeStmtOS
<< ">(Check); });\n";
4225 MergeStmtOS
<< " if (Iter != C.end()) {\n";
4226 MergeStmtOS
<< " S.Diag((*Iter)->getLocation(), "
4227 << "diag::err_attributes_are_not_compatible) << *Iter << "
4228 << "Second << ((*Iter)->isRegularKeywordAttribute() || "
4229 << "Second->isRegularKeywordAttribute());\n";
4230 MergeStmtOS
<< " S.Diag(Second->getLocation(), "
4231 << "diag::note_conflicting_attribute);\n";
4232 MergeStmtOS
<< " return false;\n";
4233 MergeStmtOS
<< " }\n";
4234 MergeStmtOS
<< " }\n";
4239 emitAttributeMatchRules(PragmaClangAttributeSupport
&PragmaAttributeSupport
,
4241 OS
<< "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, "
4242 << AttributeSubjectMatchRule::EnumName
<< " rule) {\n";
4243 OS
<< " switch (rule) {\n";
4244 for (const auto &Rule
: PragmaAttributeSupport
.Rules
) {
4245 if (Rule
.isAbstractRule()) {
4246 OS
<< " case " << Rule
.getEnumValue() << ":\n";
4247 OS
<< " assert(false && \"Abstract matcher rule isn't allowed\");\n";
4248 OS
<< " return false;\n";
4251 std::vector
<Record
*> Subjects
= Rule
.getSubjects();
4252 assert(!Subjects
.empty() && "Missing subjects");
4253 OS
<< " case " << Rule
.getEnumValue() << ":\n";
4255 for (auto I
= Subjects
.begin(), E
= Subjects
.end(); I
!= E
; ++I
) {
4256 // If the subject has custom code associated with it, use the function
4257 // that was generated for GenerateAppertainsTo to check if the declaration
4259 if ((*I
)->isSubClassOf("SubsetSubject"))
4260 OS
<< functionNameForCustomAppertainsTo(**I
) << "(D)";
4262 OS
<< "isa<" << GetSubjectWithSuffix(*I
) << ">(D)";
4270 OS
<< " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n";
4274 static void GenerateLangOptRequirements(const Record
&R
,
4276 // If the attribute has an empty or unset list of language requirements,
4277 // use the default handler.
4278 std::vector
<Record
*> LangOpts
= R
.getValueAsListOfDefs("LangOpts");
4279 if (LangOpts
.empty())
4282 OS
<< "bool acceptsLangOpts(const LangOptions &LangOpts) const override {\n";
4283 OS
<< " return " << GenerateTestExpression(LangOpts
) << ";\n";
4287 static void GenerateTargetRequirements(const Record
&Attr
,
4288 const ParsedAttrMap
&Dupes
,
4290 // If the attribute is not a target specific attribute, use the default
4292 if (!Attr
.isSubClassOf("TargetSpecificAttr"))
4295 // Get the list of architectures to be tested for.
4296 const Record
*R
= Attr
.getValueAsDef("Target");
4297 std::vector
<StringRef
> Arches
= R
->getValueAsListOfStrings("Arches");
4299 // If there are other attributes which share the same parsed attribute kind,
4300 // such as target-specific attributes with a shared spelling, collapse the
4301 // duplicate architectures. This is required because a shared target-specific
4302 // attribute has only one ParsedAttr::Kind enumeration value, but it
4303 // applies to multiple target architectures. In order for the attribute to be
4304 // considered valid, all of its architectures need to be included.
4305 if (!Attr
.isValueUnset("ParseKind")) {
4306 const StringRef APK
= Attr
.getValueAsString("ParseKind");
4307 for (const auto &I
: Dupes
) {
4308 if (I
.first
== APK
) {
4309 std::vector
<StringRef
> DA
=
4310 I
.second
->getValueAsDef("Target")->getValueAsListOfStrings(
4312 Arches
.insert(Arches
.end(), DA
.begin(), DA
.end());
4317 std::string FnName
= "isTarget";
4319 bool UsesT
= GenerateTargetSpecificAttrChecks(R
, Arches
, Test
, &FnName
);
4321 OS
<< "bool existsInTarget(const TargetInfo &Target) const override {\n";
4323 OS
<< " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
4324 OS
<< " return " << Test
<< ";\n";
4329 GenerateSpellingTargetRequirements(const Record
&Attr
,
4330 const std::vector
<Record
*> &TargetSpellings
,
4332 // If there are no target specific spellings, use the default target handler.
4333 if (TargetSpellings
.empty())
4338 const std::vector
<FlattenedSpelling
> SpellingList
=
4339 GetFlattenedSpellings(Attr
);
4340 for (unsigned TargetIndex
= 0; TargetIndex
< TargetSpellings
.size();
4342 const auto &TargetSpelling
= TargetSpellings
[TargetIndex
];
4343 std::vector
<FlattenedSpelling
> Spellings
=
4344 GetFlattenedSpellings(*TargetSpelling
);
4346 Test
+= "((SpellingListIndex == ";
4347 for (unsigned Index
= 0; Index
< Spellings
.size(); ++Index
) {
4349 llvm::itostr(getSpellingListIndex(SpellingList
, Spellings
[Index
]));
4350 if (Index
!= Spellings
.size() - 1)
4351 Test
+= " ||\n SpellingListIndex == ";
4356 const Record
*Target
= TargetSpelling
->getValueAsDef("Target");
4357 std::vector
<StringRef
> Arches
= Target
->getValueAsListOfStrings("Arches");
4358 std::string FnName
= "isTargetSpelling";
4359 UsesT
|= GenerateTargetSpecificAttrChecks(Target
, Arches
, Test
, &FnName
);
4361 if (TargetIndex
!= TargetSpellings
.size() - 1)
4365 OS
<< "bool spellingExistsInTarget(const TargetInfo &Target,\n";
4366 OS
<< " const unsigned SpellingListIndex) const "
4369 OS
<< " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
4370 OS
<< " return " << Test
<< ";\n", OS
<< "}\n\n";
4373 static void GenerateSpellingIndexToSemanticSpelling(const Record
&Attr
,
4375 // If the attribute does not have a semantic form, we can bail out early.
4376 if (!Attr
.getValueAsBit("ASTNode"))
4379 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(Attr
);
4381 // If there are zero or one spellings, or all of the spellings share the same
4382 // name, we can also bail out early.
4383 if (Spellings
.size() <= 1 || SpellingNamesAreCommon(Spellings
))
4386 // Generate the enumeration we will use for the mapping.
4387 SemanticSpellingMap SemanticToSyntacticMap
;
4388 std::string Enum
= CreateSemanticSpellings(Spellings
, SemanticToSyntacticMap
);
4389 std::string Name
= Attr
.getName().str() + "AttrSpellingMap";
4391 OS
<< "unsigned spellingIndexToSemanticSpelling(";
4392 OS
<< "const ParsedAttr &Attr) const override {\n";
4394 OS
<< " unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
4395 WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap
, OS
);
4399 static void GenerateHandleDeclAttribute(const Record
&Attr
, raw_ostream
&OS
) {
4400 // Only generate if Attr can be handled simply.
4401 if (!Attr
.getValueAsBit("SimpleHandler"))
4404 // Generate a function which just converts from ParsedAttr to the Attr type.
4405 OS
<< "AttrHandling handleDeclAttribute(Sema &S, Decl *D,";
4406 OS
<< "const ParsedAttr &Attr) const override {\n";
4407 OS
<< " D->addAttr(::new (S.Context) " << Attr
.getName();
4408 OS
<< "Attr(S.Context, Attr));\n";
4409 OS
<< " return AttributeApplied;\n";
4413 static bool isParamExpr(const Record
*Arg
) {
4414 return !Arg
->getSuperClasses().empty() &&
4415 llvm::StringSwitch
<bool>(
4416 Arg
->getSuperClasses().back().first
->getName())
4417 .Case("ExprArgument", true)
4418 .Case("VariadicExprArgument", true)
4422 void GenerateIsParamExpr(const Record
&Attr
, raw_ostream
&OS
) {
4423 OS
<< "bool isParamExpr(size_t N) const override {\n";
4425 auto Args
= Attr
.getValueAsListOfDefs("Args");
4426 for (size_t I
= 0; I
< Args
.size(); ++I
)
4427 if (isParamExpr(Args
[I
]))
4428 OS
<< "(N == " << I
<< ") || ";
4433 void GenerateHandleAttrWithDelayedArgs(RecordKeeper
&Records
, raw_ostream
&OS
) {
4434 OS
<< "static void handleAttrWithDelayedArgs(Sema &S, Decl *D, ";
4435 OS
<< "const ParsedAttr &Attr) {\n";
4436 OS
<< " SmallVector<Expr *, 4> ArgExprs;\n";
4437 OS
<< " ArgExprs.reserve(Attr.getNumArgs());\n";
4438 OS
<< " for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {\n";
4439 OS
<< " assert(!Attr.isArgIdent(I));\n";
4440 OS
<< " ArgExprs.push_back(Attr.getArgAsExpr(I));\n";
4442 OS
<< " clang::Attr *CreatedAttr = nullptr;\n";
4443 OS
<< " switch (Attr.getKind()) {\n";
4444 OS
<< " default:\n";
4445 OS
<< " llvm_unreachable(\"Attribute cannot hold delayed arguments.\");\n";
4446 ParsedAttrMap Attrs
= getParsedAttrList(Records
);
4447 for (const auto &I
: Attrs
) {
4448 const Record
&R
= *I
.second
;
4449 if (!R
.getValueAsBit("AcceptsExprPack"))
4451 OS
<< " case ParsedAttr::AT_" << I
.first
<< ": {\n";
4452 OS
<< " CreatedAttr = " << R
.getName() << "Attr::CreateWithDelayedArgs";
4453 OS
<< "(S.Context, ArgExprs.data(), ArgExprs.size(), Attr);\n";
4458 OS
<< " D->addAttr(CreatedAttr);\n";
4462 static bool IsKnownToGCC(const Record
&Attr
) {
4463 // Look at the spellings for this subject; if there are any spellings which
4464 // claim to be known to GCC, the attribute is known to GCC.
4465 return llvm::any_of(
4466 GetFlattenedSpellings(Attr
),
4467 [](const FlattenedSpelling
&S
) { return S
.knownToGCC(); });
4470 /// Emits the parsed attribute helpers
4471 void EmitClangAttrParsedAttrImpl(RecordKeeper
&Records
, raw_ostream
&OS
) {
4472 emitSourceFileHeader("Parsed attribute helpers", OS
, Records
);
4474 OS
<< "#if !defined(WANT_DECL_MERGE_LOGIC) && "
4475 << "!defined(WANT_STMT_MERGE_LOGIC)\n";
4476 PragmaClangAttributeSupport
&PragmaAttributeSupport
=
4477 getPragmaAttributeSupport(Records
);
4479 // Get the list of parsed attributes, and accept the optional list of
4480 // duplicates due to the ParseKind.
4481 ParsedAttrMap Dupes
;
4482 ParsedAttrMap Attrs
= getParsedAttrList(Records
, &Dupes
);
4484 // Generate all of the custom appertainsTo functions that the attributes
4486 for (const auto &I
: Attrs
) {
4487 const Record
&Attr
= *I
.second
;
4488 if (Attr
.isValueUnset("Subjects"))
4490 const Record
*SubjectObj
= Attr
.getValueAsDef("Subjects");
4491 for (auto Subject
: SubjectObj
->getValueAsListOfDefs("Subjects"))
4492 if (Subject
->isSubClassOf("SubsetSubject"))
4493 GenerateCustomAppertainsTo(*Subject
, OS
);
4496 // This stream is used to collect all of the declaration attribute merging
4497 // logic for performing mutual exclusion checks. This gets emitted at the
4498 // end of the file in a helper function of its own.
4499 std::string DeclMergeChecks
, StmtMergeChecks
;
4500 raw_string_ostream
MergeDeclOS(DeclMergeChecks
), MergeStmtOS(StmtMergeChecks
);
4502 // Generate a ParsedAttrInfo struct for each of the attributes.
4503 for (auto I
= Attrs
.begin(), E
= Attrs
.end(); I
!= E
; ++I
) {
4504 // TODO: If the attribute's kind appears in the list of duplicates, that is
4505 // because it is a target-specific attribute that appears multiple times.
4506 // It would be beneficial to test whether the duplicates are "similar
4507 // enough" to each other to not cause problems. For instance, check that
4508 // the spellings are identical, and custom parsing rules match, etc.
4510 // We need to generate struct instances based off ParsedAttrInfo from
4512 const std::string
&AttrName
= I
->first
;
4513 const Record
&Attr
= *I
->second
;
4514 auto Spellings
= GetFlattenedSpellings(Attr
);
4515 if (!Spellings
.empty()) {
4516 OS
<< "static constexpr ParsedAttrInfo::Spelling " << I
->first
4517 << "Spellings[] = {\n";
4518 for (const auto &S
: Spellings
) {
4519 const std::string
&RawSpelling
= S
.name();
4520 std::string Spelling
;
4521 if (!S
.nameSpace().empty())
4522 Spelling
+= S
.nameSpace() + "::";
4523 if (S
.variety() == "GNU")
4524 Spelling
+= NormalizeGNUAttrSpelling(RawSpelling
);
4526 Spelling
+= RawSpelling
;
4527 OS
<< " {AttributeCommonInfo::AS_" << S
.variety();
4528 OS
<< ", \"" << Spelling
<< "\"},\n";
4533 std::vector
<std::string
> ArgNames
;
4534 for (const auto &Arg
: Attr
.getValueAsListOfDefs("Args")) {
4536 if (Arg
->getValueAsBitOrUnset("Fake", UnusedUnset
))
4538 ArgNames
.push_back(Arg
->getValueAsString("Name").str());
4539 for (const auto &Class
: Arg
->getSuperClasses()) {
4540 if (Class
.first
->getName().startswith("Variadic")) {
4541 ArgNames
.back().append("...");
4546 if (!ArgNames
.empty()) {
4547 OS
<< "static constexpr const char *" << I
->first
<< "ArgNames[] = {\n";
4548 for (const auto &N
: ArgNames
)
4549 OS
<< '"' << N
<< "\",";
4553 OS
<< "struct ParsedAttrInfo" << I
->first
4554 << " final : public ParsedAttrInfo {\n";
4555 OS
<< " constexpr ParsedAttrInfo" << I
->first
<< "() : ParsedAttrInfo(\n";
4556 OS
<< " /*AttrKind=*/ParsedAttr::AT_" << AttrName
<< ",\n";
4557 emitArgInfo(Attr
, OS
);
4558 OS
<< " /*HasCustomParsing=*/";
4559 OS
<< Attr
.getValueAsBit("HasCustomParsing") << ",\n";
4560 OS
<< " /*AcceptsExprPack=*/";
4561 OS
<< Attr
.getValueAsBit("AcceptsExprPack") << ",\n";
4562 OS
<< " /*IsTargetSpecific=*/";
4563 OS
<< Attr
.isSubClassOf("TargetSpecificAttr") << ",\n";
4564 OS
<< " /*IsType=*/";
4565 OS
<< (Attr
.isSubClassOf("TypeAttr") || Attr
.isSubClassOf("DeclOrTypeAttr"))
4567 OS
<< " /*IsStmt=*/";
4568 OS
<< (Attr
.isSubClassOf("StmtAttr") || Attr
.isSubClassOf("DeclOrStmtAttr"))
4570 OS
<< " /*IsKnownToGCC=*/";
4571 OS
<< IsKnownToGCC(Attr
) << ",\n";
4572 OS
<< " /*IsSupportedByPragmaAttribute=*/";
4573 OS
<< PragmaAttributeSupport
.isAttributedSupported(*I
->second
) << ",\n";
4574 if (!Spellings
.empty())
4575 OS
<< " /*Spellings=*/" << I
->first
<< "Spellings,\n";
4577 OS
<< " /*Spellings=*/{},\n";
4578 if (!ArgNames
.empty())
4579 OS
<< " /*ArgNames=*/" << I
->first
<< "ArgNames";
4581 OS
<< " /*ArgNames=*/{}";
4583 GenerateAppertainsTo(Attr
, OS
);
4584 GenerateMutualExclusionsChecks(Attr
, Records
, OS
, MergeDeclOS
, MergeStmtOS
);
4585 GenerateLangOptRequirements(Attr
, OS
);
4586 GenerateTargetRequirements(Attr
, Dupes
, OS
);
4587 GenerateSpellingTargetRequirements(
4588 Attr
, Attr
.getValueAsListOfDefs("TargetSpecificSpellings"), OS
);
4589 GenerateSpellingIndexToSemanticSpelling(Attr
, OS
);
4590 PragmaAttributeSupport
.generateStrictConformsTo(*I
->second
, OS
);
4591 GenerateHandleDeclAttribute(Attr
, OS
);
4592 GenerateIsParamExpr(Attr
, OS
);
4593 OS
<< "static const ParsedAttrInfo" << I
->first
<< " Instance;\n";
4595 OS
<< "const ParsedAttrInfo" << I
->first
<< " ParsedAttrInfo" << I
->first
4599 OS
<< "static const ParsedAttrInfo *AttrInfoMap[] = {\n";
4600 for (auto I
= Attrs
.begin(), E
= Attrs
.end(); I
!= E
; ++I
) {
4601 OS
<< "&ParsedAttrInfo" << I
->first
<< "::Instance,\n";
4605 // Generate function for handling attributes with delayed arguments
4606 GenerateHandleAttrWithDelayedArgs(Records
, OS
);
4608 // Generate the attribute match rules.
4609 emitAttributeMatchRules(PragmaAttributeSupport
, OS
);
4611 OS
<< "#elif defined(WANT_DECL_MERGE_LOGIC)\n\n";
4613 // Write out the declaration merging check logic.
4614 OS
<< "static bool DiagnoseMutualExclusions(Sema &S, const NamedDecl *D, "
4615 << "const Attr *A) {\n";
4616 OS
<< MergeDeclOS
.str();
4617 OS
<< " return true;\n";
4620 OS
<< "#elif defined(WANT_STMT_MERGE_LOGIC)\n\n";
4622 // Write out the statement merging check logic.
4623 OS
<< "static bool DiagnoseMutualExclusions(Sema &S, "
4624 << "const SmallVectorImpl<const Attr *> &C) {\n";
4625 OS
<< " for (const Attr *A : C) {\n";
4626 OS
<< MergeStmtOS
.str();
4628 OS
<< " return true;\n";
4634 // Emits the kind list of parsed attributes
4635 void EmitClangAttrParsedAttrKinds(RecordKeeper
&Records
, raw_ostream
&OS
) {
4636 emitSourceFileHeader("Attribute name matcher", OS
, Records
);
4638 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
4639 std::vector
<StringMatcher::StringPair
> GNU
, Declspec
, Microsoft
, CXX11
,
4640 Keywords
, Pragma
, C23
, HLSLSemantic
;
4641 std::set
<std::string
> Seen
;
4642 for (const auto *A
: Attrs
) {
4643 const Record
&Attr
= *A
;
4645 bool SemaHandler
= Attr
.getValueAsBit("SemaHandler");
4646 bool Ignored
= Attr
.getValueAsBit("Ignored");
4647 if (SemaHandler
|| Ignored
) {
4648 // Attribute spellings can be shared between target-specific attributes,
4649 // and can be shared between syntaxes for the same attribute. For
4650 // instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
4651 // specific attribute, or MSP430-specific attribute. Additionally, an
4652 // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
4653 // for the same semantic attribute. Ultimately, we need to map each of
4654 // these to a single AttributeCommonInfo::Kind value, but the
4655 // StringMatcher class cannot handle duplicate match strings. So we
4656 // generate a list of string to match based on the syntax, and emit
4657 // multiple string matchers depending on the syntax used.
4658 std::string AttrName
;
4659 if (Attr
.isSubClassOf("TargetSpecificAttr") &&
4660 !Attr
.isValueUnset("ParseKind")) {
4661 AttrName
= std::string(Attr
.getValueAsString("ParseKind"));
4662 if (!Seen
.insert(AttrName
).second
)
4665 AttrName
= NormalizeAttrName(StringRef(Attr
.getName())).str();
4667 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(Attr
);
4668 for (const auto &S
: Spellings
) {
4669 const std::string
&RawSpelling
= S
.name();
4670 std::vector
<StringMatcher::StringPair
> *Matches
= nullptr;
4671 std::string Spelling
;
4672 const std::string
&Variety
= S
.variety();
4673 if (Variety
== "CXX11") {
4675 if (!S
.nameSpace().empty())
4676 Spelling
+= S
.nameSpace() + "::";
4677 } else if (Variety
== "C23") {
4679 if (!S
.nameSpace().empty())
4680 Spelling
+= S
.nameSpace() + "::";
4681 } else if (Variety
== "GNU")
4683 else if (Variety
== "Declspec")
4684 Matches
= &Declspec
;
4685 else if (Variety
== "Microsoft")
4686 Matches
= &Microsoft
;
4687 else if (Variety
== "Keyword")
4688 Matches
= &Keywords
;
4689 else if (Variety
== "Pragma")
4691 else if (Variety
== "HLSLSemantic")
4692 Matches
= &HLSLSemantic
;
4694 assert(Matches
&& "Unsupported spelling variety found");
4696 if (Variety
== "GNU")
4697 Spelling
+= NormalizeGNUAttrSpelling(RawSpelling
);
4699 Spelling
+= RawSpelling
;
4702 Matches
->push_back(StringMatcher::StringPair(
4703 Spelling
, "return AttributeCommonInfo::AT_" + AttrName
+ ";"));
4705 Matches
->push_back(StringMatcher::StringPair(
4706 Spelling
, "return AttributeCommonInfo::IgnoredAttribute;"));
4711 OS
<< "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, ";
4712 OS
<< "AttributeCommonInfo::Syntax Syntax) {\n";
4713 OS
<< " if (AttributeCommonInfo::AS_GNU == Syntax) {\n";
4714 StringMatcher("Name", GNU
, OS
).Emit();
4715 OS
<< " } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n";
4716 StringMatcher("Name", Declspec
, OS
).Emit();
4717 OS
<< " } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n";
4718 StringMatcher("Name", Microsoft
, OS
).Emit();
4719 OS
<< " } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n";
4720 StringMatcher("Name", CXX11
, OS
).Emit();
4721 OS
<< " } else if (AttributeCommonInfo::AS_C23 == Syntax) {\n";
4722 StringMatcher("Name", C23
, OS
).Emit();
4723 OS
<< " } else if (AttributeCommonInfo::AS_Keyword == Syntax || ";
4724 OS
<< "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n";
4725 StringMatcher("Name", Keywords
, OS
).Emit();
4726 OS
<< " } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n";
4727 StringMatcher("Name", Pragma
, OS
).Emit();
4728 OS
<< " } else if (AttributeCommonInfo::AS_HLSLSemantic == Syntax) {\n";
4729 StringMatcher("Name", HLSLSemantic
, OS
).Emit();
4731 OS
<< " return AttributeCommonInfo::UnknownAttribute;\n"
4735 // Emits the code to dump an attribute.
4736 void EmitClangAttrTextNodeDump(RecordKeeper
&Records
, raw_ostream
&OS
) {
4737 emitSourceFileHeader("Attribute text node dumper", OS
, Records
);
4739 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr"), Args
;
4740 for (const auto *Attr
: Attrs
) {
4741 const Record
&R
= *Attr
;
4742 if (!R
.getValueAsBit("ASTNode"))
4745 // If the attribute has a semantically-meaningful name (which is determined
4746 // by whether there is a Spelling enumeration for it), then write out the
4747 // spelling used for the attribute.
4749 std::string FunctionContent
;
4750 llvm::raw_string_ostream
SS(FunctionContent
);
4752 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(R
);
4753 if (Spellings
.size() > 1 && !SpellingNamesAreCommon(Spellings
))
4754 SS
<< " OS << \" \" << A->getSpelling();\n";
4756 Args
= R
.getValueAsListOfDefs("Args");
4757 for (const auto *Arg
: Args
)
4758 createArgument(*Arg
, R
.getName())->writeDump(SS
);
4760 if (Attr
->getValueAsBit("AcceptsExprPack"))
4761 VariadicExprArgument("DelayedArgs", R
.getName()).writeDump(OS
);
4764 OS
<< " void Visit" << R
.getName() << "Attr(const " << R
.getName()
4767 OS
<< " const auto *SA = cast<" << R
.getName()
4768 << "Attr>(A); (void)SA;\n";
4775 void EmitClangAttrNodeTraverse(RecordKeeper
&Records
, raw_ostream
&OS
) {
4776 emitSourceFileHeader("Attribute text node traverser", OS
, Records
);
4778 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr"), Args
;
4779 for (const auto *Attr
: Attrs
) {
4780 const Record
&R
= *Attr
;
4781 if (!R
.getValueAsBit("ASTNode"))
4784 std::string FunctionContent
;
4785 llvm::raw_string_ostream
SS(FunctionContent
);
4787 Args
= R
.getValueAsListOfDefs("Args");
4788 for (const auto *Arg
: Args
)
4789 createArgument(*Arg
, R
.getName())->writeDumpChildren(SS
);
4790 if (Attr
->getValueAsBit("AcceptsExprPack"))
4791 VariadicExprArgument("DelayedArgs", R
.getName()).writeDumpChildren(SS
);
4793 OS
<< " void Visit" << R
.getName() << "Attr(const " << R
.getName()
4796 OS
<< " const auto *SA = cast<" << R
.getName()
4797 << "Attr>(A); (void)SA;\n";
4804 void EmitClangAttrParserStringSwitches(RecordKeeper
&Records
, raw_ostream
&OS
) {
4805 emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS
, Records
);
4806 emitClangAttrArgContextList(Records
, OS
);
4807 emitClangAttrIdentifierArgList(Records
, OS
);
4808 emitClangAttrUnevaluatedStringLiteralList(Records
, OS
);
4809 emitClangAttrVariadicIdentifierArgList(Records
, OS
);
4810 emitClangAttrThisIsaIdentifierArgList(Records
, OS
);
4811 emitClangAttrAcceptsExprPack(Records
, OS
);
4812 emitClangAttrTypeArgList(Records
, OS
);
4813 emitClangAttrLateParsedList(Records
, OS
);
4816 void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper
&Records
,
4818 getPragmaAttributeSupport(Records
).generateParsingHelpers(OS
);
4821 void EmitClangAttrDocTable(RecordKeeper
&Records
, raw_ostream
&OS
) {
4822 emitSourceFileHeader("Clang attribute documentation", OS
, Records
);
4824 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
4825 for (const auto *A
: Attrs
) {
4826 if (!A
->getValueAsBit("ASTNode"))
4828 std::vector
<Record
*> Docs
= A
->getValueAsListOfDefs("Documentation");
4829 assert(!Docs
.empty());
4830 // Only look at the first documentation if there are several.
4831 // (Currently there's only one such attr, revisit if this becomes common).
4833 Docs
.front()->getValueAsOptionalString("Content").value_or("");
4834 OS
<< "\nstatic const char AttrDoc_" << A
->getName() << "[] = "
4835 << "R\"reST(" << Text
.trim() << ")reST\";\n";
4839 enum class SpellingKind
: size_t {
4850 static const size_t NumSpellingKinds
= (size_t)SpellingKind::NumSpellingKinds
;
4852 class SpellingList
{
4853 std::vector
<std::string
> Spellings
[NumSpellingKinds
];
4856 ArrayRef
<std::string
> operator[](SpellingKind K
) const {
4857 return Spellings
[(size_t)K
];
4860 void add(const Record
&Attr
, FlattenedSpelling Spelling
) {
4861 SpellingKind Kind
= StringSwitch
<SpellingKind
>(Spelling
.variety())
4862 .Case("GNU", SpellingKind::GNU
)
4863 .Case("CXX11", SpellingKind::CXX11
)
4864 .Case("C23", SpellingKind::C23
)
4865 .Case("Declspec", SpellingKind::Declspec
)
4866 .Case("Microsoft", SpellingKind::Microsoft
)
4867 .Case("Keyword", SpellingKind::Keyword
)
4868 .Case("Pragma", SpellingKind::Pragma
)
4869 .Case("HLSLSemantic", SpellingKind::HLSLSemantic
);
4871 if (!Spelling
.nameSpace().empty()) {
4873 case SpellingKind::CXX11
:
4874 case SpellingKind::C23
:
4875 Name
= Spelling
.nameSpace() + "::";
4877 case SpellingKind::Pragma
:
4878 Name
= Spelling
.nameSpace() + " ";
4881 PrintFatalError(Attr
.getLoc(), "Unexpected namespace in spelling");
4884 Name
+= Spelling
.name();
4886 Spellings
[(size_t)Kind
].push_back(Name
);
4890 class DocumentationData
{
4892 const Record
*Documentation
;
4893 const Record
*Attribute
;
4894 std::string Heading
;
4895 SpellingList SupportedSpellings
;
4897 DocumentationData(const Record
&Documentation
, const Record
&Attribute
,
4898 std::pair
<std::string
, SpellingList
> HeadingAndSpellings
)
4899 : Documentation(&Documentation
), Attribute(&Attribute
),
4900 Heading(std::move(HeadingAndSpellings
.first
)),
4901 SupportedSpellings(std::move(HeadingAndSpellings
.second
)) {}
4904 static void WriteCategoryHeader(const Record
*DocCategory
,
4906 const StringRef Name
= DocCategory
->getValueAsString("Name");
4907 OS
<< Name
<< "\n" << std::string(Name
.size(), '=') << "\n";
4909 // If there is content, print that as well.
4910 const StringRef ContentStr
= DocCategory
->getValueAsString("Content");
4911 // Trim leading and trailing newlines and spaces.
4912 OS
<< ContentStr
.trim();
4917 static std::pair
<std::string
, SpellingList
>
4918 GetAttributeHeadingAndSpellings(const Record
&Documentation
,
4919 const Record
&Attribute
,
4921 // FIXME: there is no way to have a per-spelling category for the attribute
4922 // documentation. This may not be a limiting factor since the spellings
4923 // should generally be consistently applied across the category.
4925 std::vector
<FlattenedSpelling
> Spellings
= GetFlattenedSpellings(Attribute
);
4926 if (Spellings
.empty())
4927 PrintFatalError(Attribute
.getLoc(),
4928 "Attribute has no supported spellings; cannot be "
4931 // Determine the heading to be used for this attribute.
4932 std::string Heading
= std::string(Documentation
.getValueAsString("Heading"));
4933 if (Heading
.empty()) {
4934 // If there's only one spelling, we can simply use that.
4935 if (Spellings
.size() == 1)
4936 Heading
= Spellings
.begin()->name();
4938 std::set
<std::string
> Uniques
;
4939 for (auto I
= Spellings
.begin(), E
= Spellings
.end();
4941 std::string Spelling
=
4942 std::string(NormalizeNameForSpellingComparison(I
->name()));
4943 Uniques
.insert(Spelling
);
4945 // If the semantic map has only one spelling, that is sufficient for our
4947 if (Uniques
.size() == 1)
4948 Heading
= *Uniques
.begin();
4949 // If it's in the undocumented category, just construct a header by
4950 // concatenating all the spellings. Might not be great, but better than
4952 else if (Cat
== "Undocumented")
4953 Heading
= llvm::join(Uniques
.begin(), Uniques
.end(), ", ");
4957 // If the heading is still empty, it is an error.
4958 if (Heading
.empty())
4959 PrintFatalError(Attribute
.getLoc(),
4960 "This attribute requires a heading to be specified");
4962 SpellingList SupportedSpellings
;
4963 for (const auto &I
: Spellings
)
4964 SupportedSpellings
.add(Attribute
, I
);
4966 return std::make_pair(std::move(Heading
), std::move(SupportedSpellings
));
4969 static void WriteDocumentation(RecordKeeper
&Records
,
4970 const DocumentationData
&Doc
, raw_ostream
&OS
) {
4971 OS
<< Doc
.Heading
<< "\n" << std::string(Doc
.Heading
.length(), '-') << "\n";
4973 // List what spelling syntaxes the attribute supports.
4974 // Note: "#pragma clang attribute" is handled outside the spelling kinds loop
4975 // so it must be last.
4976 OS
<< ".. csv-table:: Supported Syntaxes\n";
4977 OS
<< " :header: \"GNU\", \"C++11\", \"C23\", \"``__declspec``\",";
4978 OS
<< " \"Keyword\", \"``#pragma``\", \"HLSL Semantic\", \"``#pragma clang ";
4979 OS
<< "attribute``\"\n\n \"";
4980 for (size_t Kind
= 0; Kind
!= NumSpellingKinds
; ++Kind
) {
4981 SpellingKind K
= (SpellingKind
)Kind
;
4982 // TODO: List Microsoft (IDL-style attribute) spellings once we fully
4984 if (K
== SpellingKind::Microsoft
)
4987 bool PrintedAny
= false;
4988 for (StringRef Spelling
: Doc
.SupportedSpellings
[K
]) {
4991 OS
<< "``" << Spelling
<< "``";
4998 if (getPragmaAttributeSupport(Records
).isAttributedSupported(
5003 // If the attribute is deprecated, print a message about it, and possibly
5004 // provide a replacement attribute.
5005 if (!Doc
.Documentation
->isValueUnset("Deprecated")) {
5006 OS
<< "This attribute has been deprecated, and may be removed in a future "
5007 << "version of Clang.";
5008 const Record
&Deprecated
= *Doc
.Documentation
->getValueAsDef("Deprecated");
5009 const StringRef Replacement
= Deprecated
.getValueAsString("Replacement");
5010 if (!Replacement
.empty())
5011 OS
<< " This attribute has been superseded by ``" << Replacement
5016 const StringRef ContentStr
= Doc
.Documentation
->getValueAsString("Content");
5017 // Trim leading and trailing newlines and spaces.
5018 OS
<< ContentStr
.trim();
5023 void EmitClangAttrDocs(RecordKeeper
&Records
, raw_ostream
&OS
) {
5024 // Get the documentation introduction paragraph.
5025 const Record
*Documentation
= Records
.getDef("GlobalDocumentation");
5026 if (!Documentation
) {
5027 PrintFatalError("The Documentation top-level definition is missing, "
5028 "no documentation will be generated.");
5032 OS
<< Documentation
->getValueAsString("Intro") << "\n";
5034 // Gather the Documentation lists from each of the attributes, based on the
5035 // category provided.
5036 std::vector
<Record
*> Attrs
= Records
.getAllDerivedDefinitions("Attr");
5037 struct CategoryLess
{
5038 bool operator()(const Record
*L
, const Record
*R
) const {
5039 return L
->getValueAsString("Name") < R
->getValueAsString("Name");
5042 std::map
<const Record
*, std::vector
<DocumentationData
>, CategoryLess
>
5044 for (const auto *A
: Attrs
) {
5045 const Record
&Attr
= *A
;
5046 std::vector
<Record
*> Docs
= Attr
.getValueAsListOfDefs("Documentation");
5047 for (const auto *D
: Docs
) {
5048 const Record
&Doc
= *D
;
5049 const Record
*Category
= Doc
.getValueAsDef("Category");
5050 // If the category is "InternalOnly", then there cannot be any other
5051 // documentation categories (otherwise, the attribute would be
5052 // emitted into the docs).
5053 const StringRef Cat
= Category
->getValueAsString("Name");
5054 bool InternalOnly
= Cat
== "InternalOnly";
5055 if (InternalOnly
&& Docs
.size() > 1)
5056 PrintFatalError(Doc
.getLoc(),
5057 "Attribute is \"InternalOnly\", but has multiple "
5058 "documentation categories");
5061 SplitDocs
[Category
].push_back(DocumentationData(
5062 Doc
, Attr
, GetAttributeHeadingAndSpellings(Doc
, Attr
, Cat
)));
5066 // Having split the attributes out based on what documentation goes where,
5067 // we can begin to generate sections of documentation.
5068 for (auto &I
: SplitDocs
) {
5069 WriteCategoryHeader(I
.first
, OS
);
5071 llvm::sort(I
.second
,
5072 [](const DocumentationData
&D1
, const DocumentationData
&D2
) {
5073 return D1
.Heading
< D2
.Heading
;
5076 // Walk over each of the attributes in the category and write out their
5078 for (const auto &Doc
: I
.second
)
5079 WriteDocumentation(Records
, Doc
, OS
);
5083 void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper
&Records
,
5085 PragmaClangAttributeSupport Support
= getPragmaAttributeSupport(Records
);
5086 ParsedAttrMap Attrs
= getParsedAttrList(Records
);
5087 OS
<< "#pragma clang attribute supports the following attributes:\n";
5088 for (const auto &I
: Attrs
) {
5089 if (!Support
.isAttributedSupported(*I
.second
))
5092 if (I
.second
->isValueUnset("Subjects")) {
5096 const Record
*SubjectObj
= I
.second
->getValueAsDef("Subjects");
5097 std::vector
<Record
*> Subjects
=
5098 SubjectObj
->getValueAsListOfDefs("Subjects");
5100 bool PrintComma
= false;
5101 for (const auto &Subject
: llvm::enumerate(Subjects
)) {
5102 if (!isSupportedPragmaClangAttributeSubject(*Subject
.value()))
5107 PragmaClangAttributeSupport::RuleOrAggregateRuleSet
&RuleSet
=
5108 Support
.SubjectsToRules
.find(Subject
.value())->getSecond();
5109 if (RuleSet
.isRule()) {
5110 OS
<< RuleSet
.getRule().getEnumValueName();
5114 for (const auto &Rule
: llvm::enumerate(RuleSet
.getAggregateRuleSet())) {
5117 OS
<< Rule
.value().getEnumValueName();
5123 OS
<< "End of supported attributes.\n";
5126 } // end namespace clang