1 //===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
11 /// FreeBSD-specific code.
13 //===----------------------------------------------------------------------===//
15 #include "sanitizer_common/sanitizer_platform.h"
16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
26 # include <sys/prctl.h>
27 # include <sys/resource.h>
28 # include <sys/time.h>
33 # include "hwasan_dynamic_shadow.h"
34 # include "hwasan_interface_internal.h"
35 # include "hwasan_mapping.h"
36 # include "hwasan_report.h"
37 # include "hwasan_thread.h"
38 # include "hwasan_thread_list.h"
39 # include "sanitizer_common/sanitizer_common.h"
40 # include "sanitizer_common/sanitizer_procmaps.h"
41 # include "sanitizer_common/sanitizer_stackdepot.h"
43 // Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
45 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
46 // Not currently tested.
47 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
48 // Integration tests downstream exist.
49 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
50 // Tested with check-hwasan on x86_64-linux.
51 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
52 // Tested with check-hwasan on aarch64-linux-android.
53 # if !SANITIZER_ANDROID
54 SANITIZER_INTERFACE_ATTRIBUTE
55 THREADLOCAL uptr __hwasan_tls
;
60 // With the zero shadow base we can not actually map pages starting from 0.
61 // This constant is somewhat arbitrary.
62 constexpr uptr kZeroBaseShadowStart
= 0;
63 constexpr uptr kZeroBaseMaxShadowStart
= 1 << 18;
65 static void ProtectGap(uptr addr
, uptr size
) {
66 __sanitizer::ProtectGap(addr
, size
, kZeroBaseShadowStart
,
67 kZeroBaseMaxShadowStart
);
75 static void PrintRange(uptr start
, uptr end
, const char *name
) {
76 Printf("|| [%p, %p] || %.*s ||\n", (void *)start
, (void *)end
, 10, name
);
79 static void PrintAddressSpaceLayout() {
80 PrintRange(kHighMemStart
, kHighMemEnd
, "HighMem");
81 if (kHighShadowEnd
+ 1 < kHighMemStart
)
82 PrintRange(kHighShadowEnd
+ 1, kHighMemStart
- 1, "ShadowGap");
84 CHECK_EQ(kHighShadowEnd
+ 1, kHighMemStart
);
85 PrintRange(kHighShadowStart
, kHighShadowEnd
, "HighShadow");
86 if (kLowShadowEnd
+ 1 < kHighShadowStart
)
87 PrintRange(kLowShadowEnd
+ 1, kHighShadowStart
- 1, "ShadowGap");
89 CHECK_EQ(kLowMemEnd
+ 1, kHighShadowStart
);
90 PrintRange(kLowShadowStart
, kLowShadowEnd
, "LowShadow");
91 if (kLowMemEnd
+ 1 < kLowShadowStart
)
92 PrintRange(kLowMemEnd
+ 1, kLowShadowStart
- 1, "ShadowGap");
94 CHECK_EQ(kLowMemEnd
+ 1, kLowShadowStart
);
95 PrintRange(kLowMemStart
, kLowMemEnd
, "LowMem");
96 CHECK_EQ(0, kLowMemStart
);
99 static uptr
GetHighMemEnd() {
100 // HighMem covers the upper part of the address space.
101 uptr max_address
= GetMaxUserVirtualAddress();
102 // Adjust max address to make sure that kHighMemEnd and kHighMemStart are
104 max_address
|= (GetMmapGranularity() << kShadowScale
) - 1;
108 static void InitializeShadowBaseAddress(uptr shadow_size_bytes
) {
109 __hwasan_shadow_memory_dynamic_address
=
110 FindDynamicShadowStart(shadow_size_bytes
);
113 static void MaybeDieIfNoTaggingAbi(const char *message
) {
114 if (!flags()->fail_without_syscall_abi
)
116 Printf("FATAL: %s\n", message
);
120 # define PR_SET_TAGGED_ADDR_CTRL 55
121 # define PR_GET_TAGGED_ADDR_CTRL 56
122 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
123 # define ARCH_GET_UNTAG_MASK 0x4001
124 # define ARCH_ENABLE_TAGGED_ADDR 0x4002
125 # define ARCH_GET_MAX_TAG_BITS 0x4003
127 static bool CanUseTaggingAbi() {
128 # if defined(__x86_64__)
129 unsigned long num_bits
= 0;
130 // Check for x86 LAM support. This API is based on a currently unsubmitted
131 // patch to the Linux kernel (as of August 2022) and is thus subject to
132 // change. The patch is here:
133 // https://lore.kernel.org/all/20220815041803.17954-1-kirill.shutemov@linux.intel.com/
135 // arch_prctl(ARCH_GET_MAX_TAG_BITS, &bits) returns the maximum number of tag
136 // bits the user can request, or zero if LAM is not supported by the hardware.
137 if (internal_iserror(internal_arch_prctl(ARCH_GET_MAX_TAG_BITS
,
138 reinterpret_cast<uptr
>(&num_bits
))))
140 // The platform must provide enough bits for HWASan tags.
141 if (num_bits
< kTagBits
)
145 // Check for ARM TBI support.
146 return !internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL
, 0, 0, 0, 0));
147 # endif // __x86_64__
150 static bool EnableTaggingAbi() {
151 # if defined(__x86_64__)
152 // Enable x86 LAM tagging for the process.
154 // arch_prctl(ARCH_ENABLE_TAGGED_ADDR, bits) enables tagging if the number of
155 // tag bits requested by the user does not exceed that provided by the system.
156 // arch_prctl(ARCH_GET_UNTAG_MASK, &mask) returns the mask of significant
157 // address bits. It is ~0ULL if either LAM is disabled for the process or LAM
158 // is not supported by the hardware.
159 if (internal_iserror(internal_arch_prctl(ARCH_ENABLE_TAGGED_ADDR
, kTagBits
)))
161 unsigned long mask
= 0;
162 // Make sure the tag bits are where we expect them to be.
163 if (internal_iserror(internal_arch_prctl(ARCH_GET_UNTAG_MASK
,
164 reinterpret_cast<uptr
>(&mask
))))
166 // @mask has ones for non-tag bits, whereas @kAddressTagMask has ones for tag
167 // bits. Therefore these masks must not overlap.
168 if (mask
& kAddressTagMask
)
172 // Enable ARM TBI tagging for the process. If for some reason tagging is not
173 // supported, prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE) returns
175 if (internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL
,
176 PR_TAGGED_ADDR_ENABLE
, 0, 0, 0)))
178 // Ensure that TBI is enabled.
179 if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL
, 0, 0, 0, 0) !=
180 PR_TAGGED_ADDR_ENABLE
)
183 # endif // __x86_64__
186 void InitializeOsSupport() {
187 // Check we're running on a kernel that can use the tagged address ABI.
188 bool has_abi
= CanUseTaggingAbi();
191 # if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE)
192 // Some older Android kernels have the tagged pointer ABI on
193 // unconditionally, and hence don't have the tagged-addr prctl while still
195 // If targeting Android and the prctl is not around we assume this is the
199 MaybeDieIfNoTaggingAbi(
200 "HWAddressSanitizer requires a kernel with tagged address ABI.");
204 if (EnableTaggingAbi())
207 # if SANITIZER_ANDROID
208 MaybeDieIfNoTaggingAbi(
209 "HWAddressSanitizer failed to enable tagged address syscall ABI.\n"
210 "Check the `sysctl abi.tagged_addr_disabled` configuration.");
212 MaybeDieIfNoTaggingAbi(
213 "HWAddressSanitizer failed to enable tagged address syscall ABI.\n");
218 // Define the entire memory range.
219 kHighMemEnd
= GetHighMemEnd();
221 // Determine shadow memory base offset.
222 InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd
));
224 // Place the low memory first.
225 kLowMemEnd
= __hwasan_shadow_memory_dynamic_address
- 1;
228 // Define the low shadow based on the already placed low memory.
229 kLowShadowEnd
= MemToShadow(kLowMemEnd
);
230 kLowShadowStart
= __hwasan_shadow_memory_dynamic_address
;
232 // High shadow takes whatever memory is left up there (making sure it is not
233 // interfering with low memory in the fixed case).
234 kHighShadowEnd
= MemToShadow(kHighMemEnd
);
235 kHighShadowStart
= Max(kLowMemEnd
, MemToShadow(kHighShadowEnd
)) + 1;
237 // High memory starts where allocated shadow allows.
238 kHighMemStart
= ShadowToMem(kHighShadowStart
);
240 // Check the sanity of the defined memory ranges (there might be gaps).
241 CHECK_EQ(kHighMemStart
% GetMmapGranularity(), 0);
242 CHECK_GT(kHighMemStart
, kHighShadowEnd
);
243 CHECK_GT(kHighShadowEnd
, kHighShadowStart
);
244 CHECK_GT(kHighShadowStart
, kLowMemEnd
);
245 CHECK_GT(kLowMemEnd
, kLowMemStart
);
246 CHECK_GT(kLowShadowEnd
, kLowShadowStart
);
247 CHECK_GT(kLowShadowStart
, kLowMemEnd
);
250 PrintAddressSpaceLayout();
252 // Reserve shadow memory.
253 ReserveShadowMemoryRange(kLowShadowStart
, kLowShadowEnd
, "low shadow");
254 ReserveShadowMemoryRange(kHighShadowStart
, kHighShadowEnd
, "high shadow");
256 // Protect all the gaps.
257 ProtectGap(0, Min(kLowMemStart
, kLowShadowStart
));
258 if (kLowMemEnd
+ 1 < kLowShadowStart
)
259 ProtectGap(kLowMemEnd
+ 1, kLowShadowStart
- kLowMemEnd
- 1);
260 if (kLowShadowEnd
+ 1 < kHighShadowStart
)
261 ProtectGap(kLowShadowEnd
+ 1, kHighShadowStart
- kLowShadowEnd
- 1);
262 if (kHighShadowEnd
+ 1 < kHighMemStart
)
263 ProtectGap(kHighShadowEnd
+ 1, kHighMemStart
- kHighShadowEnd
- 1);
269 CHECK(__hwasan_shadow_memory_dynamic_address
);
270 uptr guard_page_size
= GetMmapGranularity();
271 uptr thread_space_start
=
272 __hwasan_shadow_memory_dynamic_address
- (1ULL << kShadowBaseAlignment
);
273 uptr thread_space_end
=
274 __hwasan_shadow_memory_dynamic_address
- guard_page_size
;
275 ReserveShadowMemoryRange(thread_space_start
, thread_space_end
- 1,
276 "hwasan threads", /*madvise_shadow*/ false);
277 ProtectGap(thread_space_end
,
278 __hwasan_shadow_memory_dynamic_address
- thread_space_end
);
279 InitThreadList(thread_space_start
, thread_space_end
- thread_space_start
);
280 hwasanThreadList().CreateCurrentThread();
283 bool MemIsApp(uptr p
) {
284 // Memory outside the alias range has non-zero tags.
285 # if !defined(HWASAN_ALIASING_MODE)
286 CHECK_EQ(GetTagFromPointer(p
), 0);
289 return (p
>= kHighMemStart
&& p
<= kHighMemEnd
) ||
290 (p
>= kLowMemStart
&& p
<= kLowMemEnd
);
293 void InstallAtExitHandler() { atexit(HwasanAtExit
); }
295 // ---------------------- TSD ---------------- {{{1
297 extern "C" void __hwasan_thread_enter() {
298 hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited();
301 extern "C" void __hwasan_thread_exit() {
302 Thread
*t
= GetCurrentThread();
303 // Make sure that signal handler can not see a stale current thread pointer.
304 atomic_signal_fence(memory_order_seq_cst
);
306 // Block async signals on the thread as the handler can be instrumented.
307 // After this point instrumented code can't access essential data from TLS
309 // Bionic already calls __hwasan_thread_exit with blocked signals.
312 hwasanThreadList().ReleaseThread(t
);
316 # if HWASAN_WITH_INTERCEPTORS
317 static pthread_key_t tsd_key
;
318 static bool tsd_key_inited
= false;
320 void HwasanTSDThreadInit() {
322 CHECK_EQ(0, pthread_setspecific(tsd_key
,
323 (void *)GetPthreadDestructorIterations()));
326 void HwasanTSDDtor(void *tsd
) {
327 uptr iterations
= (uptr
)tsd
;
328 if (iterations
> 1) {
329 CHECK_EQ(0, pthread_setspecific(tsd_key
, (void *)(iterations
- 1)));
332 __hwasan_thread_exit();
335 void HwasanTSDInit() {
336 CHECK(!tsd_key_inited
);
337 tsd_key_inited
= true;
338 CHECK_EQ(0, pthread_key_create(&tsd_key
, HwasanTSDDtor
));
341 void HwasanTSDInit() {}
342 void HwasanTSDThreadInit() {}
345 # if SANITIZER_ANDROID
346 uptr
*GetCurrentThreadLongPtr() { return (uptr
*)get_android_tls_ptr(); }
348 uptr
*GetCurrentThreadLongPtr() { return &__hwasan_tls
; }
351 # if SANITIZER_ANDROID
352 void AndroidTestTlsSlot() {
353 uptr kMagicValue
= 0x010203040A0B0C0D;
354 uptr
*tls_ptr
= GetCurrentThreadLongPtr();
355 uptr old_value
= *tls_ptr
;
356 *tls_ptr
= kMagicValue
;
358 if (*(uptr
*)get_android_tls_ptr() != kMagicValue
) {
360 "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
364 *tls_ptr
= old_value
;
367 void AndroidTestTlsSlot() {}
370 static AccessInfo
GetAccessInfo(siginfo_t
*info
, ucontext_t
*uc
) {
371 // Access type is passed in a platform dependent way (see below) and encoded
372 // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
373 // recoverable. Valid values of Y are 0 to 4, which are interpreted as
374 // log2(access_size), and 0xF, which means that access size is passed via
375 // platform dependent register (see below).
376 # if defined(__aarch64__)
377 // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
378 // access size is stored in X1 register. Access address is always in X0
380 uptr pc
= (uptr
)info
->si_addr
;
381 const unsigned code
= ((*(u32
*)pc
) >> 5) & 0xffff;
382 if ((code
& 0xff00) != 0x900)
383 return AccessInfo
{}; // Not ours.
385 const bool is_store
= code
& 0x10;
386 const bool recover
= code
& 0x20;
387 const uptr addr
= uc
->uc_mcontext
.regs
[0];
388 const unsigned size_log
= code
& 0xf;
389 if (size_log
> 4 && size_log
!= 0xf)
390 return AccessInfo
{}; // Not ours.
391 const uptr size
= size_log
== 0xf ? uc
->uc_mcontext
.regs
[1] : 1U << size_log
;
393 # elif defined(__x86_64__)
394 // Access type is encoded in the instruction following INT3 as
395 // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
396 // RSI register. Access address is always in RDI register.
397 uptr pc
= (uptr
)uc
->uc_mcontext
.gregs
[REG_RIP
];
398 uint8_t *nop
= (uint8_t *)pc
;
399 if (*nop
!= 0x0f || *(nop
+ 1) != 0x1f || *(nop
+ 2) != 0x40 ||
401 return AccessInfo
{}; // Not ours.
402 const unsigned code
= *(nop
+ 3);
404 const bool is_store
= code
& 0x10;
405 const bool recover
= code
& 0x20;
406 const uptr addr
= uc
->uc_mcontext
.gregs
[REG_RDI
];
407 const unsigned size_log
= code
& 0xf;
408 if (size_log
> 4 && size_log
!= 0xf)
409 return AccessInfo
{}; // Not ours.
411 size_log
== 0xf ? uc
->uc_mcontext
.gregs
[REG_RSI
] : 1U << size_log
;
413 # elif SANITIZER_RISCV64
414 // Access type is encoded in the instruction following EBREAK as
415 // ADDI x0, x0, [0x40 + 0xXY]. For Y == 0xF, access size is stored in
416 // X11 register. Access address is always in X10 register.
417 uptr pc
= (uptr
)uc
->uc_mcontext
.__gregs
[REG_PC
];
418 uint8_t byte1
= *((u8
*)(pc
+ 0));
419 uint8_t byte2
= *((u8
*)(pc
+ 1));
420 uint8_t byte3
= *((u8
*)(pc
+ 2));
421 uint8_t byte4
= *((u8
*)(pc
+ 3));
422 uint32_t ebreak
= (byte1
| (byte2
<< 8) | (byte3
<< 16) | (byte4
<< 24));
423 bool isFaultShort
= false;
424 bool isEbreak
= (ebreak
== 0x100073);
425 bool isShortEbreak
= false;
426 # if defined(__riscv_compressed)
427 isFaultShort
= ((ebreak
& 0x3) != 0x3);
428 isShortEbreak
= ((ebreak
& 0xffff) == 0x9002);
430 // faulted insn is not ebreak, not our case
431 if (!(isEbreak
|| isShortEbreak
))
433 // advance pc to point after ebreak and reconstruct addi instruction
434 pc
+= isFaultShort
? 2 : 4;
435 byte1
= *((u8
*)(pc
+ 0));
436 byte2
= *((u8
*)(pc
+ 1));
437 byte3
= *((u8
*)(pc
+ 2));
438 byte4
= *((u8
*)(pc
+ 3));
439 // reconstruct instruction
440 uint32_t instr
= (byte1
| (byte2
<< 8) | (byte3
<< 16) | (byte4
<< 24));
441 // check if this is really 32 bit instruction
442 // code is encoded in top 12 bits, since instruction is supposed to be with
444 const unsigned code
= (instr
>> 20) & 0xffff;
445 const uptr addr
= uc
->uc_mcontext
.__gregs
[10];
446 const bool is_store
= code
& 0x10;
447 const bool recover
= code
& 0x20;
448 const unsigned size_log
= code
& 0xf;
449 if (size_log
> 4 && size_log
!= 0xf)
450 return AccessInfo
{}; // Not our case
452 size_log
== 0xf ? uc
->uc_mcontext
.__gregs
[11] : 1U << size_log
;
455 # error Unsupported architecture
458 return AccessInfo
{addr
, size
, is_store
, !is_store
, recover
};
461 static bool HwasanOnSIGTRAP(int signo
, siginfo_t
*info
, ucontext_t
*uc
) {
462 AccessInfo ai
= GetAccessInfo(info
, uc
);
463 if (!ai
.is_store
&& !ai
.is_load
)
466 SignalContext sig
{info
, uc
};
467 HandleTagMismatch(ai
, StackTrace::GetNextInstructionPc(sig
.pc
), sig
.bp
, uc
);
469 # if defined(__aarch64__)
470 uc
->uc_mcontext
.pc
+= 4;
471 # elif defined(__x86_64__)
472 # elif SANITIZER_RISCV64
473 // pc points to EBREAK which is 2 bytes long
474 uint8_t *exception_source
= (uint8_t *)(uc
->uc_mcontext
.__gregs
[REG_PC
]);
475 uint8_t byte1
= (uint8_t)(*(exception_source
+ 0));
476 uint8_t byte2
= (uint8_t)(*(exception_source
+ 1));
477 uint8_t byte3
= (uint8_t)(*(exception_source
+ 2));
478 uint8_t byte4
= (uint8_t)(*(exception_source
+ 3));
479 uint32_t faulted
= (byte1
| (byte2
<< 8) | (byte3
<< 16) | (byte4
<< 24));
480 bool isFaultShort
= false;
481 # if defined(__riscv_compressed)
482 isFaultShort
= ((faulted
& 0x3) != 0x3);
484 uc
->uc_mcontext
.__gregs
[REG_PC
] += isFaultShort
? 2 : 4;
486 # error Unsupported architecture
491 static void OnStackUnwind(const SignalContext
&sig
, const void *,
492 BufferedStackTrace
*stack
) {
493 stack
->Unwind(StackTrace::GetNextInstructionPc(sig
.pc
), sig
.bp
, sig
.context
,
494 common_flags()->fast_unwind_on_fatal
);
497 void HwasanOnDeadlySignal(int signo
, void *info
, void *context
) {
498 // Probably a tag mismatch.
499 if (signo
== SIGTRAP
)
500 if (HwasanOnSIGTRAP(signo
, (siginfo_t
*)info
, (ucontext_t
*)context
))
503 HandleDeadlySignal(info
, context
, GetTid(), &OnStackUnwind
, nullptr);
506 void Thread::InitStackAndTls(const InitState
*) {
509 GetThreadStackAndTls(IsMainThread(), &stack_bottom_
, &stack_size
, &tls_begin_
,
511 stack_top_
= stack_bottom_
+ stack_size
;
512 tls_end_
= tls_begin_
+ tls_size
;
515 uptr
TagMemoryAligned(uptr p
, uptr size
, tag_t tag
) {
516 CHECK(IsAligned(p
, kShadowAlignment
));
517 CHECK(IsAligned(size
, kShadowAlignment
));
518 uptr shadow_start
= MemToShadow(p
);
519 uptr shadow_size
= MemToShadowSize(size
);
521 uptr page_size
= GetPageSizeCached();
522 uptr page_start
= RoundUpTo(shadow_start
, page_size
);
523 uptr page_end
= RoundDownTo(shadow_start
+ shadow_size
, page_size
);
524 uptr threshold
= common_flags()->clear_shadow_mmap_threshold
;
525 if (SANITIZER_LINUX
&&
526 UNLIKELY(page_end
>= page_start
+ threshold
&& tag
== 0)) {
527 internal_memset((void *)shadow_start
, tag
, page_start
- shadow_start
);
528 internal_memset((void *)page_end
, tag
,
529 shadow_start
+ shadow_size
- page_end
);
530 // For an anonymous private mapping MADV_DONTNEED will return a zero page on
532 ReleaseMemoryPagesToOSAndZeroFill(page_start
, page_end
);
534 internal_memset((void *)shadow_start
, tag
, shadow_size
);
536 return AddTagToPointer(p
, tag
);
539 void HwasanInstallAtForkHandler() {
541 HwasanAllocatorLock();
545 StackDepotUnlockAll();
546 HwasanAllocatorUnlock();
548 pthread_atfork(before
, after
, after
);
551 void InstallAtExitCheckLeaks() {
552 if (CAN_SANITIZE_LEAKS
) {
553 if (common_flags()->detect_leaks
&& common_flags()->leak_check_at_exit
) {
554 if (flags()->halt_on_error
)
555 Atexit(__lsan::DoLeakCheck
);
557 Atexit(__lsan::DoRecoverableLeakCheckVoid
);
562 } // namespace __hwasan
564 #endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD