Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / compiler-rt / lib / hwasan / hwasan_linux.cpp
blob6f5e9432974efdb863821789cad044bf5b196005
1 //===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
11 /// FreeBSD-specific code.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "sanitizer_common/sanitizer_platform.h"
16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
18 # include <dlfcn.h>
19 # include <elf.h>
20 # include <errno.h>
21 # include <link.h>
22 # include <pthread.h>
23 # include <signal.h>
24 # include <stdio.h>
25 # include <stdlib.h>
26 # include <sys/prctl.h>
27 # include <sys/resource.h>
28 # include <sys/time.h>
29 # include <unistd.h>
30 # include <unwind.h>
32 # include "hwasan.h"
33 # include "hwasan_dynamic_shadow.h"
34 # include "hwasan_interface_internal.h"
35 # include "hwasan_mapping.h"
36 # include "hwasan_report.h"
37 # include "hwasan_thread.h"
38 # include "hwasan_thread_list.h"
39 # include "sanitizer_common/sanitizer_common.h"
40 # include "sanitizer_common/sanitizer_procmaps.h"
41 # include "sanitizer_common/sanitizer_stackdepot.h"
43 // Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
45 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
46 // Not currently tested.
47 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
48 // Integration tests downstream exist.
49 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
50 // Tested with check-hwasan on x86_64-linux.
51 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
52 // Tested with check-hwasan on aarch64-linux-android.
53 # if !SANITIZER_ANDROID
54 SANITIZER_INTERFACE_ATTRIBUTE
55 THREADLOCAL uptr __hwasan_tls;
56 # endif
58 namespace __hwasan {
60 // With the zero shadow base we can not actually map pages starting from 0.
61 // This constant is somewhat arbitrary.
62 constexpr uptr kZeroBaseShadowStart = 0;
63 constexpr uptr kZeroBaseMaxShadowStart = 1 << 18;
65 static void ProtectGap(uptr addr, uptr size) {
66 __sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart,
67 kZeroBaseMaxShadowStart);
70 uptr kLowMemStart;
71 uptr kLowMemEnd;
72 uptr kHighMemStart;
73 uptr kHighMemEnd;
75 static void PrintRange(uptr start, uptr end, const char *name) {
76 Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
79 static void PrintAddressSpaceLayout() {
80 PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
81 if (kHighShadowEnd + 1 < kHighMemStart)
82 PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
83 else
84 CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
85 PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
86 if (kLowShadowEnd + 1 < kHighShadowStart)
87 PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
88 else
89 CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
90 PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
91 if (kLowMemEnd + 1 < kLowShadowStart)
92 PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
93 else
94 CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
95 PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
96 CHECK_EQ(0, kLowMemStart);
99 static uptr GetHighMemEnd() {
100 // HighMem covers the upper part of the address space.
101 uptr max_address = GetMaxUserVirtualAddress();
102 // Adjust max address to make sure that kHighMemEnd and kHighMemStart are
103 // properly aligned:
104 max_address |= (GetMmapGranularity() << kShadowScale) - 1;
105 return max_address;
108 static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
109 __hwasan_shadow_memory_dynamic_address =
110 FindDynamicShadowStart(shadow_size_bytes);
113 static void MaybeDieIfNoTaggingAbi(const char *message) {
114 if (!flags()->fail_without_syscall_abi)
115 return;
116 Printf("FATAL: %s\n", message);
117 Die();
120 # define PR_SET_TAGGED_ADDR_CTRL 55
121 # define PR_GET_TAGGED_ADDR_CTRL 56
122 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
123 # define ARCH_GET_UNTAG_MASK 0x4001
124 # define ARCH_ENABLE_TAGGED_ADDR 0x4002
125 # define ARCH_GET_MAX_TAG_BITS 0x4003
127 static bool CanUseTaggingAbi() {
128 # if defined(__x86_64__)
129 unsigned long num_bits = 0;
130 // Check for x86 LAM support. This API is based on a currently unsubmitted
131 // patch to the Linux kernel (as of August 2022) and is thus subject to
132 // change. The patch is here:
133 // https://lore.kernel.org/all/20220815041803.17954-1-kirill.shutemov@linux.intel.com/
135 // arch_prctl(ARCH_GET_MAX_TAG_BITS, &bits) returns the maximum number of tag
136 // bits the user can request, or zero if LAM is not supported by the hardware.
137 if (internal_iserror(internal_arch_prctl(ARCH_GET_MAX_TAG_BITS,
138 reinterpret_cast<uptr>(&num_bits))))
139 return false;
140 // The platform must provide enough bits for HWASan tags.
141 if (num_bits < kTagBits)
142 return false;
143 return true;
144 # else
145 // Check for ARM TBI support.
146 return !internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
147 # endif // __x86_64__
150 static bool EnableTaggingAbi() {
151 # if defined(__x86_64__)
152 // Enable x86 LAM tagging for the process.
154 // arch_prctl(ARCH_ENABLE_TAGGED_ADDR, bits) enables tagging if the number of
155 // tag bits requested by the user does not exceed that provided by the system.
156 // arch_prctl(ARCH_GET_UNTAG_MASK, &mask) returns the mask of significant
157 // address bits. It is ~0ULL if either LAM is disabled for the process or LAM
158 // is not supported by the hardware.
159 if (internal_iserror(internal_arch_prctl(ARCH_ENABLE_TAGGED_ADDR, kTagBits)))
160 return false;
161 unsigned long mask = 0;
162 // Make sure the tag bits are where we expect them to be.
163 if (internal_iserror(internal_arch_prctl(ARCH_GET_UNTAG_MASK,
164 reinterpret_cast<uptr>(&mask))))
165 return false;
166 // @mask has ones for non-tag bits, whereas @kAddressTagMask has ones for tag
167 // bits. Therefore these masks must not overlap.
168 if (mask & kAddressTagMask)
169 return false;
170 return true;
171 # else
172 // Enable ARM TBI tagging for the process. If for some reason tagging is not
173 // supported, prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE) returns
174 // -EINVAL.
175 if (internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL,
176 PR_TAGGED_ADDR_ENABLE, 0, 0, 0)))
177 return false;
178 // Ensure that TBI is enabled.
179 if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) !=
180 PR_TAGGED_ADDR_ENABLE)
181 return false;
182 return true;
183 # endif // __x86_64__
186 void InitializeOsSupport() {
187 // Check we're running on a kernel that can use the tagged address ABI.
188 bool has_abi = CanUseTaggingAbi();
190 if (!has_abi) {
191 # if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE)
192 // Some older Android kernels have the tagged pointer ABI on
193 // unconditionally, and hence don't have the tagged-addr prctl while still
194 // allow the ABI.
195 // If targeting Android and the prctl is not around we assume this is the
196 // case.
197 return;
198 # else
199 MaybeDieIfNoTaggingAbi(
200 "HWAddressSanitizer requires a kernel with tagged address ABI.");
201 # endif
204 if (EnableTaggingAbi())
205 return;
207 # if SANITIZER_ANDROID
208 MaybeDieIfNoTaggingAbi(
209 "HWAddressSanitizer failed to enable tagged address syscall ABI.\n"
210 "Check the `sysctl abi.tagged_addr_disabled` configuration.");
211 # else
212 MaybeDieIfNoTaggingAbi(
213 "HWAddressSanitizer failed to enable tagged address syscall ABI.\n");
214 # endif
217 bool InitShadow() {
218 // Define the entire memory range.
219 kHighMemEnd = GetHighMemEnd();
221 // Determine shadow memory base offset.
222 InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));
224 // Place the low memory first.
225 kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
226 kLowMemStart = 0;
228 // Define the low shadow based on the already placed low memory.
229 kLowShadowEnd = MemToShadow(kLowMemEnd);
230 kLowShadowStart = __hwasan_shadow_memory_dynamic_address;
232 // High shadow takes whatever memory is left up there (making sure it is not
233 // interfering with low memory in the fixed case).
234 kHighShadowEnd = MemToShadow(kHighMemEnd);
235 kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;
237 // High memory starts where allocated shadow allows.
238 kHighMemStart = ShadowToMem(kHighShadowStart);
240 // Check the sanity of the defined memory ranges (there might be gaps).
241 CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
242 CHECK_GT(kHighMemStart, kHighShadowEnd);
243 CHECK_GT(kHighShadowEnd, kHighShadowStart);
244 CHECK_GT(kHighShadowStart, kLowMemEnd);
245 CHECK_GT(kLowMemEnd, kLowMemStart);
246 CHECK_GT(kLowShadowEnd, kLowShadowStart);
247 CHECK_GT(kLowShadowStart, kLowMemEnd);
249 if (Verbosity())
250 PrintAddressSpaceLayout();
252 // Reserve shadow memory.
253 ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
254 ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");
256 // Protect all the gaps.
257 ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
258 if (kLowMemEnd + 1 < kLowShadowStart)
259 ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
260 if (kLowShadowEnd + 1 < kHighShadowStart)
261 ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
262 if (kHighShadowEnd + 1 < kHighMemStart)
263 ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);
265 return true;
268 void InitThreads() {
269 CHECK(__hwasan_shadow_memory_dynamic_address);
270 uptr guard_page_size = GetMmapGranularity();
271 uptr thread_space_start =
272 __hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
273 uptr thread_space_end =
274 __hwasan_shadow_memory_dynamic_address - guard_page_size;
275 ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
276 "hwasan threads", /*madvise_shadow*/ false);
277 ProtectGap(thread_space_end,
278 __hwasan_shadow_memory_dynamic_address - thread_space_end);
279 InitThreadList(thread_space_start, thread_space_end - thread_space_start);
280 hwasanThreadList().CreateCurrentThread();
283 bool MemIsApp(uptr p) {
284 // Memory outside the alias range has non-zero tags.
285 # if !defined(HWASAN_ALIASING_MODE)
286 CHECK_EQ(GetTagFromPointer(p), 0);
287 # endif
289 return (p >= kHighMemStart && p <= kHighMemEnd) ||
290 (p >= kLowMemStart && p <= kLowMemEnd);
293 void InstallAtExitHandler() { atexit(HwasanAtExit); }
295 // ---------------------- TSD ---------------- {{{1
297 extern "C" void __hwasan_thread_enter() {
298 hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited();
301 extern "C" void __hwasan_thread_exit() {
302 Thread *t = GetCurrentThread();
303 // Make sure that signal handler can not see a stale current thread pointer.
304 atomic_signal_fence(memory_order_seq_cst);
305 if (t) {
306 // Block async signals on the thread as the handler can be instrumented.
307 // After this point instrumented code can't access essential data from TLS
308 // and will crash.
309 // Bionic already calls __hwasan_thread_exit with blocked signals.
310 if (SANITIZER_GLIBC)
311 BlockSignals();
312 hwasanThreadList().ReleaseThread(t);
316 # if HWASAN_WITH_INTERCEPTORS
317 static pthread_key_t tsd_key;
318 static bool tsd_key_inited = false;
320 void HwasanTSDThreadInit() {
321 if (tsd_key_inited)
322 CHECK_EQ(0, pthread_setspecific(tsd_key,
323 (void *)GetPthreadDestructorIterations()));
326 void HwasanTSDDtor(void *tsd) {
327 uptr iterations = (uptr)tsd;
328 if (iterations > 1) {
329 CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
330 return;
332 __hwasan_thread_exit();
335 void HwasanTSDInit() {
336 CHECK(!tsd_key_inited);
337 tsd_key_inited = true;
338 CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
340 # else
341 void HwasanTSDInit() {}
342 void HwasanTSDThreadInit() {}
343 # endif
345 # if SANITIZER_ANDROID
346 uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); }
347 # else
348 uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; }
349 # endif
351 # if SANITIZER_ANDROID
352 void AndroidTestTlsSlot() {
353 uptr kMagicValue = 0x010203040A0B0C0D;
354 uptr *tls_ptr = GetCurrentThreadLongPtr();
355 uptr old_value = *tls_ptr;
356 *tls_ptr = kMagicValue;
357 dlerror();
358 if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
359 Printf(
360 "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
361 "for dlerror().\n");
362 Die();
364 *tls_ptr = old_value;
366 # else
367 void AndroidTestTlsSlot() {}
368 # endif
370 static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
371 // Access type is passed in a platform dependent way (see below) and encoded
372 // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
373 // recoverable. Valid values of Y are 0 to 4, which are interpreted as
374 // log2(access_size), and 0xF, which means that access size is passed via
375 // platform dependent register (see below).
376 # if defined(__aarch64__)
377 // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
378 // access size is stored in X1 register. Access address is always in X0
379 // register.
380 uptr pc = (uptr)info->si_addr;
381 const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
382 if ((code & 0xff00) != 0x900)
383 return AccessInfo{}; // Not ours.
385 const bool is_store = code & 0x10;
386 const bool recover = code & 0x20;
387 const uptr addr = uc->uc_mcontext.regs[0];
388 const unsigned size_log = code & 0xf;
389 if (size_log > 4 && size_log != 0xf)
390 return AccessInfo{}; // Not ours.
391 const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
393 # elif defined(__x86_64__)
394 // Access type is encoded in the instruction following INT3 as
395 // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
396 // RSI register. Access address is always in RDI register.
397 uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
398 uint8_t *nop = (uint8_t *)pc;
399 if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
400 *(nop + 3) < 0x40)
401 return AccessInfo{}; // Not ours.
402 const unsigned code = *(nop + 3);
404 const bool is_store = code & 0x10;
405 const bool recover = code & 0x20;
406 const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
407 const unsigned size_log = code & 0xf;
408 if (size_log > 4 && size_log != 0xf)
409 return AccessInfo{}; // Not ours.
410 const uptr size =
411 size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
413 # elif SANITIZER_RISCV64
414 // Access type is encoded in the instruction following EBREAK as
415 // ADDI x0, x0, [0x40 + 0xXY]. For Y == 0xF, access size is stored in
416 // X11 register. Access address is always in X10 register.
417 uptr pc = (uptr)uc->uc_mcontext.__gregs[REG_PC];
418 uint8_t byte1 = *((u8 *)(pc + 0));
419 uint8_t byte2 = *((u8 *)(pc + 1));
420 uint8_t byte3 = *((u8 *)(pc + 2));
421 uint8_t byte4 = *((u8 *)(pc + 3));
422 uint32_t ebreak = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
423 bool isFaultShort = false;
424 bool isEbreak = (ebreak == 0x100073);
425 bool isShortEbreak = false;
426 # if defined(__riscv_compressed)
427 isFaultShort = ((ebreak & 0x3) != 0x3);
428 isShortEbreak = ((ebreak & 0xffff) == 0x9002);
429 # endif
430 // faulted insn is not ebreak, not our case
431 if (!(isEbreak || isShortEbreak))
432 return AccessInfo{};
433 // advance pc to point after ebreak and reconstruct addi instruction
434 pc += isFaultShort ? 2 : 4;
435 byte1 = *((u8 *)(pc + 0));
436 byte2 = *((u8 *)(pc + 1));
437 byte3 = *((u8 *)(pc + 2));
438 byte4 = *((u8 *)(pc + 3));
439 // reconstruct instruction
440 uint32_t instr = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
441 // check if this is really 32 bit instruction
442 // code is encoded in top 12 bits, since instruction is supposed to be with
443 // imm
444 const unsigned code = (instr >> 20) & 0xffff;
445 const uptr addr = uc->uc_mcontext.__gregs[10];
446 const bool is_store = code & 0x10;
447 const bool recover = code & 0x20;
448 const unsigned size_log = code & 0xf;
449 if (size_log > 4 && size_log != 0xf)
450 return AccessInfo{}; // Not our case
451 const uptr size =
452 size_log == 0xf ? uc->uc_mcontext.__gregs[11] : 1U << size_log;
454 # else
455 # error Unsupported architecture
456 # endif
458 return AccessInfo{addr, size, is_store, !is_store, recover};
461 static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
462 AccessInfo ai = GetAccessInfo(info, uc);
463 if (!ai.is_store && !ai.is_load)
464 return false;
466 SignalContext sig{info, uc};
467 HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);
469 # if defined(__aarch64__)
470 uc->uc_mcontext.pc += 4;
471 # elif defined(__x86_64__)
472 # elif SANITIZER_RISCV64
473 // pc points to EBREAK which is 2 bytes long
474 uint8_t *exception_source = (uint8_t *)(uc->uc_mcontext.__gregs[REG_PC]);
475 uint8_t byte1 = (uint8_t)(*(exception_source + 0));
476 uint8_t byte2 = (uint8_t)(*(exception_source + 1));
477 uint8_t byte3 = (uint8_t)(*(exception_source + 2));
478 uint8_t byte4 = (uint8_t)(*(exception_source + 3));
479 uint32_t faulted = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
480 bool isFaultShort = false;
481 # if defined(__riscv_compressed)
482 isFaultShort = ((faulted & 0x3) != 0x3);
483 # endif
484 uc->uc_mcontext.__gregs[REG_PC] += isFaultShort ? 2 : 4;
485 # else
486 # error Unsupported architecture
487 # endif
488 return true;
491 static void OnStackUnwind(const SignalContext &sig, const void *,
492 BufferedStackTrace *stack) {
493 stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
494 common_flags()->fast_unwind_on_fatal);
497 void HwasanOnDeadlySignal(int signo, void *info, void *context) {
498 // Probably a tag mismatch.
499 if (signo == SIGTRAP)
500 if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t *)context))
501 return;
503 HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
506 void Thread::InitStackAndTls(const InitState *) {
507 uptr tls_size;
508 uptr stack_size;
509 GetThreadStackAndTls(IsMainThread(), &stack_bottom_, &stack_size, &tls_begin_,
510 &tls_size);
511 stack_top_ = stack_bottom_ + stack_size;
512 tls_end_ = tls_begin_ + tls_size;
515 uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) {
516 CHECK(IsAligned(p, kShadowAlignment));
517 CHECK(IsAligned(size, kShadowAlignment));
518 uptr shadow_start = MemToShadow(p);
519 uptr shadow_size = MemToShadowSize(size);
521 uptr page_size = GetPageSizeCached();
522 uptr page_start = RoundUpTo(shadow_start, page_size);
523 uptr page_end = RoundDownTo(shadow_start + shadow_size, page_size);
524 uptr threshold = common_flags()->clear_shadow_mmap_threshold;
525 if (SANITIZER_LINUX &&
526 UNLIKELY(page_end >= page_start + threshold && tag == 0)) {
527 internal_memset((void *)shadow_start, tag, page_start - shadow_start);
528 internal_memset((void *)page_end, tag,
529 shadow_start + shadow_size - page_end);
530 // For an anonymous private mapping MADV_DONTNEED will return a zero page on
531 // Linux.
532 ReleaseMemoryPagesToOSAndZeroFill(page_start, page_end);
533 } else {
534 internal_memset((void *)shadow_start, tag, shadow_size);
536 return AddTagToPointer(p, tag);
539 void HwasanInstallAtForkHandler() {
540 auto before = []() {
541 HwasanAllocatorLock();
542 StackDepotLockAll();
544 auto after = []() {
545 StackDepotUnlockAll();
546 HwasanAllocatorUnlock();
548 pthread_atfork(before, after, after);
551 void InstallAtExitCheckLeaks() {
552 if (CAN_SANITIZE_LEAKS) {
553 if (common_flags()->detect_leaks && common_flags()->leak_check_at_exit) {
554 if (flags()->halt_on_error)
555 Atexit(__lsan::DoLeakCheck);
556 else
557 Atexit(__lsan::DoRecoverableLeakCheckVoid);
562 } // namespace __hwasan
564 #endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD