Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / compiler-rt / lib / lsan / lsan_common.cpp
blob8b1af5b629fbce10edbaaf7e23092b4d324a1757
1 //=-- lsan_common.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of LeakSanitizer.
10 // Implementation of common leak checking functionality.
12 //===----------------------------------------------------------------------===//
14 #include "lsan_common.h"
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_flag_parser.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_procmaps.h"
21 #include "sanitizer_common/sanitizer_report_decorator.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_thread_registry.h"
26 #include "sanitizer_common/sanitizer_tls_get_addr.h"
28 #if CAN_SANITIZE_LEAKS
30 # if SANITIZER_APPLE
31 // https://github.com/apple-oss-distributions/objc4/blob/8701d5672d3fd3cd817aeb84db1077aafe1a1604/runtime/objc-runtime-new.h#L127
32 # if SANITIZER_IOS && !SANITIZER_IOSSIM
33 # define OBJC_DATA_MASK 0x0000007ffffffff8UL
34 # else
35 # define OBJC_DATA_MASK 0x00007ffffffffff8UL
36 # endif
37 # endif
39 namespace __lsan {
41 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
42 // also to protect the global list of root regions.
43 static Mutex global_mutex;
45 Flags lsan_flags;
47 void DisableCounterUnderflow() {
48 if (common_flags()->detect_leaks) {
49 Report("Unmatched call to __lsan_enable().\n");
50 Die();
54 void Flags::SetDefaults() {
55 # define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
56 # include "lsan_flags.inc"
57 # undef LSAN_FLAG
60 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
61 # define LSAN_FLAG(Type, Name, DefaultValue, Description) \
62 RegisterFlag(parser, #Name, Description, &f->Name);
63 # include "lsan_flags.inc"
64 # undef LSAN_FLAG
67 # define LOG_POINTERS(...) \
68 do { \
69 if (flags()->log_pointers) \
70 Report(__VA_ARGS__); \
71 } while (0)
73 # define LOG_THREADS(...) \
74 do { \
75 if (flags()->log_threads) \
76 Report(__VA_ARGS__); \
77 } while (0)
79 class LeakSuppressionContext {
80 bool parsed = false;
81 SuppressionContext context;
82 bool suppressed_stacks_sorted = true;
83 InternalMmapVector<u32> suppressed_stacks;
84 const LoadedModule *suppress_module = nullptr;
86 void LazyInit();
87 Suppression *GetSuppressionForAddr(uptr addr);
88 bool SuppressInvalid(const StackTrace &stack);
89 bool SuppressByRule(const StackTrace &stack, uptr hit_count, uptr total_size);
91 public:
92 LeakSuppressionContext(const char *supprression_types[],
93 int suppression_types_num)
94 : context(supprression_types, suppression_types_num) {}
96 bool Suppress(u32 stack_trace_id, uptr hit_count, uptr total_size);
98 const InternalMmapVector<u32> &GetSortedSuppressedStacks() {
99 if (!suppressed_stacks_sorted) {
100 suppressed_stacks_sorted = true;
101 SortAndDedup(suppressed_stacks);
103 return suppressed_stacks;
105 void PrintMatchedSuppressions();
108 ALIGNED(64) static char suppression_placeholder[sizeof(LeakSuppressionContext)];
109 static LeakSuppressionContext *suppression_ctx = nullptr;
110 static const char kSuppressionLeak[] = "leak";
111 static const char *kSuppressionTypes[] = {kSuppressionLeak};
112 static const char kStdSuppressions[] =
113 # if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
114 // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
115 // definition.
116 "leak:*pthread_exit*\n"
117 # endif // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
118 # if SANITIZER_APPLE
119 // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
120 "leak:*_os_trace*\n"
121 # endif
122 // TLS leak in some glibc versions, described in
123 // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
124 "leak:*tls_get_addr*\n";
126 void InitializeSuppressions() {
127 CHECK_EQ(nullptr, suppression_ctx);
128 suppression_ctx = new (suppression_placeholder)
129 LeakSuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
132 void LeakSuppressionContext::LazyInit() {
133 if (!parsed) {
134 parsed = true;
135 context.ParseFromFile(flags()->suppressions);
136 if (&__lsan_default_suppressions)
137 context.Parse(__lsan_default_suppressions());
138 context.Parse(kStdSuppressions);
139 if (flags()->use_tls && flags()->use_ld_allocations)
140 suppress_module = GetLinker();
144 Suppression *LeakSuppressionContext::GetSuppressionForAddr(uptr addr) {
145 Suppression *s = nullptr;
147 // Suppress by module name.
148 const char *module_name = Symbolizer::GetOrInit()->GetModuleNameForPc(addr);
149 if (!module_name)
150 module_name = "<unknown module>";
151 if (context.Match(module_name, kSuppressionLeak, &s))
152 return s;
154 // Suppress by file or function name.
155 SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
156 for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
157 if (context.Match(cur->info.function, kSuppressionLeak, &s) ||
158 context.Match(cur->info.file, kSuppressionLeak, &s)) {
159 break;
162 frames->ClearAll();
163 return s;
166 static uptr GetCallerPC(const StackTrace &stack) {
167 // The top frame is our malloc/calloc/etc. The next frame is the caller.
168 if (stack.size >= 2)
169 return stack.trace[1];
170 return 0;
173 # if SANITIZER_APPLE
174 // Several pointers in the Objective-C runtime (method cache and class_rw_t,
175 // for example) are tagged with additional bits we need to strip.
176 static inline void *TransformPointer(void *p) {
177 uptr ptr = reinterpret_cast<uptr>(p);
178 return reinterpret_cast<void *>(ptr & OBJC_DATA_MASK);
180 # endif
182 // On Linux, treats all chunks allocated from ld-linux.so as reachable, which
183 // covers dynamically allocated TLS blocks, internal dynamic loader's loaded
184 // modules accounting etc.
185 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
186 // They are allocated with a __libc_memalign() call in allocate_and_init()
187 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
188 // blocks, but we can make sure they come from our own allocator by intercepting
189 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
190 // addresses are stored in a dynamically allocated array (the DTV) which is
191 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
192 // being reachable from the static TLS, and the dynamic TLS being reachable from
193 // the DTV. This is because the initial DTV is allocated before our interception
194 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
195 // can't special-case it either, since we don't know its size.
196 // Our solution is to include in the root set all allocations made from
197 // ld-linux.so (which is where allocate_and_init() is implemented). This is
198 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
199 // which we don't care about).
200 // On all other platforms, this simply checks to ensure that the caller pc is
201 // valid before reporting chunks as leaked.
202 bool LeakSuppressionContext::SuppressInvalid(const StackTrace &stack) {
203 uptr caller_pc = GetCallerPC(stack);
204 // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
205 // it as reachable, as we can't properly report its allocation stack anyway.
206 return !caller_pc ||
207 (suppress_module && suppress_module->containsAddress(caller_pc));
210 bool LeakSuppressionContext::SuppressByRule(const StackTrace &stack,
211 uptr hit_count, uptr total_size) {
212 for (uptr i = 0; i < stack.size; i++) {
213 Suppression *s = GetSuppressionForAddr(
214 StackTrace::GetPreviousInstructionPc(stack.trace[i]));
215 if (s) {
216 s->weight += total_size;
217 atomic_fetch_add(&s->hit_count, hit_count, memory_order_relaxed);
218 return true;
221 return false;
224 bool LeakSuppressionContext::Suppress(u32 stack_trace_id, uptr hit_count,
225 uptr total_size) {
226 LazyInit();
227 StackTrace stack = StackDepotGet(stack_trace_id);
228 if (!SuppressInvalid(stack) && !SuppressByRule(stack, hit_count, total_size))
229 return false;
230 suppressed_stacks_sorted = false;
231 suppressed_stacks.push_back(stack_trace_id);
232 return true;
235 static LeakSuppressionContext *GetSuppressionContext() {
236 CHECK(suppression_ctx);
237 return suppression_ctx;
240 void InitCommonLsan() {
241 if (common_flags()->detect_leaks) {
242 // Initialization which can fail or print warnings should only be done if
243 // LSan is actually enabled.
244 InitializeSuppressions();
245 InitializePlatformSpecificModules();
249 class Decorator : public __sanitizer::SanitizerCommonDecorator {
250 public:
251 Decorator() : SanitizerCommonDecorator() {}
252 const char *Error() { return Red(); }
253 const char *Leak() { return Blue(); }
256 static inline bool MaybeUserPointer(uptr p) {
257 // Since our heap is located in mmap-ed memory, we can assume a sensible lower
258 // bound on heap addresses.
259 const uptr kMinAddress = 4 * 4096;
260 if (p < kMinAddress)
261 return false;
262 # if defined(__x86_64__)
263 // TODO: support LAM48 and 5 level page tables.
264 // LAM_U57 mask format
265 // * top byte: 0x81 because the format is: [0] [6-bit tag] [0]
266 // * top-1 byte: 0xff because it should be 0
267 // * top-2 byte: 0x80 because Linux uses 128 TB VMA ending at 0x7fffffffffff
268 constexpr uptr kLAM_U57Mask = 0x81ff80;
269 constexpr uptr kPointerMask = kLAM_U57Mask << 40;
270 return ((p & kPointerMask) == 0);
271 # elif defined(__mips64)
272 return ((p >> 40) == 0);
273 # elif defined(__aarch64__)
274 // TBI (Top Byte Ignore) feature of AArch64: bits [63:56] are ignored in
275 // address translation and can be used to store a tag.
276 constexpr uptr kPointerMask = 255ULL << 48;
277 // Accept up to 48 bit VMA.
278 return ((p & kPointerMask) == 0);
279 # elif defined(__loongarch_lp64)
280 // Allow 47-bit user-space VMA at current.
281 return ((p >> 47) == 0);
282 # else
283 return true;
284 # endif
287 // Scans the memory range, looking for byte patterns that point into allocator
288 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
289 // There are two usage modes for this function: finding reachable chunks
290 // (|tag| = kReachable) and finding indirectly leaked chunks
291 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
292 // so |frontier| = 0.
293 void ScanRangeForPointers(uptr begin, uptr end, Frontier *frontier,
294 const char *region_type, ChunkTag tag) {
295 CHECK(tag == kReachable || tag == kIndirectlyLeaked);
296 const uptr alignment = flags()->pointer_alignment();
297 LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, (void *)begin,
298 (void *)end);
299 uptr pp = begin;
300 if (pp % alignment)
301 pp = pp + alignment - pp % alignment;
302 for (; pp + sizeof(void *) <= end; pp += alignment) {
303 void *p = *reinterpret_cast<void **>(pp);
304 # if SANITIZER_APPLE
305 p = TransformPointer(p);
306 # endif
307 if (!MaybeUserPointer(reinterpret_cast<uptr>(p)))
308 continue;
309 uptr chunk = PointsIntoChunk(p);
310 if (!chunk)
311 continue;
312 // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
313 if (chunk == begin)
314 continue;
315 LsanMetadata m(chunk);
316 if (m.tag() == kReachable || m.tag() == kIgnored)
317 continue;
319 // Do this check relatively late so we can log only the interesting cases.
320 if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
321 LOG_POINTERS(
322 "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
323 "%zu.\n",
324 (void *)pp, p, (void *)chunk, (void *)(chunk + m.requested_size()),
325 m.requested_size());
326 continue;
329 m.set_tag(tag);
330 LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n",
331 (void *)pp, p, (void *)chunk,
332 (void *)(chunk + m.requested_size()), m.requested_size());
333 if (frontier)
334 frontier->push_back(chunk);
338 // Scans a global range for pointers
339 void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
340 uptr allocator_begin = 0, allocator_end = 0;
341 GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
342 if (begin <= allocator_begin && allocator_begin < end) {
343 CHECK_LE(allocator_begin, allocator_end);
344 CHECK_LE(allocator_end, end);
345 if (begin < allocator_begin)
346 ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
347 kReachable);
348 if (allocator_end < end)
349 ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
350 } else {
351 ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
355 void ScanExtraStackRanges(const InternalMmapVector<Range> &ranges,
356 Frontier *frontier) {
357 for (uptr i = 0; i < ranges.size(); i++) {
358 ScanRangeForPointers(ranges[i].begin, ranges[i].end, frontier, "FAKE STACK",
359 kReachable);
363 # if SANITIZER_FUCHSIA
365 // Fuchsia handles all threads together with its own callback.
366 static void ProcessThreads(SuspendedThreadsList const &, Frontier *, tid_t,
367 uptr) {}
369 # else
371 # if SANITIZER_ANDROID
372 // FIXME: Move this out into *libcdep.cpp
373 extern "C" SANITIZER_WEAK_ATTRIBUTE void __libc_iterate_dynamic_tls(
374 pid_t, void (*cb)(void *, void *, uptr, void *), void *);
375 # endif
377 static void ProcessThreadRegistry(Frontier *frontier) {
378 InternalMmapVector<uptr> ptrs;
379 GetAdditionalThreadContextPtrsLocked(&ptrs);
381 for (uptr i = 0; i < ptrs.size(); ++i) {
382 void *ptr = reinterpret_cast<void *>(ptrs[i]);
383 uptr chunk = PointsIntoChunk(ptr);
384 if (!chunk)
385 continue;
386 LsanMetadata m(chunk);
387 if (!m.allocated())
388 continue;
390 // Mark as reachable and add to frontier.
391 LOG_POINTERS("Treating pointer %p from ThreadContext as reachable\n", ptr);
392 m.set_tag(kReachable);
393 frontier->push_back(chunk);
397 // Scans thread data (stacks and TLS) for heap pointers.
398 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
399 Frontier *frontier, tid_t caller_tid,
400 uptr caller_sp) {
401 InternalMmapVector<uptr> registers;
402 InternalMmapVector<Range> extra_ranges;
403 for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
404 tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
405 LOG_THREADS("Processing thread %llu.\n", os_id);
406 uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
407 DTLS *dtls;
408 bool thread_found =
409 GetThreadRangesLocked(os_id, &stack_begin, &stack_end, &tls_begin,
410 &tls_end, &cache_begin, &cache_end, &dtls);
411 if (!thread_found) {
412 // If a thread can't be found in the thread registry, it's probably in the
413 // process of destruction. Log this event and move on.
414 LOG_THREADS("Thread %llu not found in registry.\n", os_id);
415 continue;
417 uptr sp;
418 PtraceRegistersStatus have_registers =
419 suspended_threads.GetRegistersAndSP(i, &registers, &sp);
420 if (have_registers != REGISTERS_AVAILABLE) {
421 Report("Unable to get registers from thread %llu.\n", os_id);
422 // If unable to get SP, consider the entire stack to be reachable unless
423 // GetRegistersAndSP failed with ESRCH.
424 if (have_registers == REGISTERS_UNAVAILABLE_FATAL)
425 continue;
426 sp = stack_begin;
428 if (suspended_threads.GetThreadID(i) == caller_tid) {
429 sp = caller_sp;
432 if (flags()->use_registers && have_registers) {
433 uptr registers_begin = reinterpret_cast<uptr>(registers.data());
434 uptr registers_end =
435 reinterpret_cast<uptr>(registers.data() + registers.size());
436 ScanRangeForPointers(registers_begin, registers_end, frontier,
437 "REGISTERS", kReachable);
440 if (flags()->use_stacks) {
441 LOG_THREADS("Stack at %p-%p (SP = %p).\n", (void *)stack_begin,
442 (void *)stack_end, (void *)sp);
443 if (sp < stack_begin || sp >= stack_end) {
444 // SP is outside the recorded stack range (e.g. the thread is running a
445 // signal handler on alternate stack, or swapcontext was used).
446 // Again, consider the entire stack range to be reachable.
447 LOG_THREADS("WARNING: stack pointer not in stack range.\n");
448 uptr page_size = GetPageSizeCached();
449 int skipped = 0;
450 while (stack_begin < stack_end &&
451 !IsAccessibleMemoryRange(stack_begin, 1)) {
452 skipped++;
453 stack_begin += page_size;
455 LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
456 skipped, (void *)stack_begin, (void *)stack_end);
457 } else {
458 // Shrink the stack range to ignore out-of-scope values.
459 stack_begin = sp;
461 ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
462 kReachable);
463 extra_ranges.clear();
464 GetThreadExtraStackRangesLocked(os_id, &extra_ranges);
465 ScanExtraStackRanges(extra_ranges, frontier);
468 if (flags()->use_tls) {
469 if (tls_begin) {
470 LOG_THREADS("TLS at %p-%p.\n", (void *)tls_begin, (void *)tls_end);
471 // If the tls and cache ranges don't overlap, scan full tls range,
472 // otherwise, only scan the non-overlapping portions
473 if (cache_begin == cache_end || tls_end < cache_begin ||
474 tls_begin > cache_end) {
475 ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
476 } else {
477 if (tls_begin < cache_begin)
478 ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
479 kReachable);
480 if (tls_end > cache_end)
481 ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
482 kReachable);
485 # if SANITIZER_ANDROID
486 auto *cb = +[](void *dtls_begin, void *dtls_end, uptr /*dso_idd*/,
487 void *arg) -> void {
488 ScanRangeForPointers(reinterpret_cast<uptr>(dtls_begin),
489 reinterpret_cast<uptr>(dtls_end),
490 reinterpret_cast<Frontier *>(arg), "DTLS",
491 kReachable);
494 // FIXME: There might be a race-condition here (and in Bionic) if the
495 // thread is suspended in the middle of updating its DTLS. IOWs, we
496 // could scan already freed memory. (probably fine for now)
497 __libc_iterate_dynamic_tls(os_id, cb, frontier);
498 # else
499 if (dtls && !DTLSInDestruction(dtls)) {
500 ForEachDVT(dtls, [&](const DTLS::DTV &dtv, int id) {
501 uptr dtls_beg = dtv.beg;
502 uptr dtls_end = dtls_beg + dtv.size;
503 if (dtls_beg < dtls_end) {
504 LOG_THREADS("DTLS %d at %p-%p.\n", id, (void *)dtls_beg,
505 (void *)dtls_end);
506 ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
507 kReachable);
510 } else {
511 // We are handling a thread with DTLS under destruction. Log about
512 // this and continue.
513 LOG_THREADS("Thread %llu has DTLS under destruction.\n", os_id);
515 # endif
519 // Add pointers reachable from ThreadContexts
520 ProcessThreadRegistry(frontier);
523 # endif // SANITIZER_FUCHSIA
525 // A map that contains [region_begin, region_end) pairs.
526 using RootRegions = DenseMap<detail::DenseMapPair<uptr, uptr>, uptr>;
528 static RootRegions &GetRootRegionsLocked() {
529 global_mutex.CheckLocked();
530 static RootRegions *regions = nullptr;
531 alignas(RootRegions) static char placeholder[sizeof(RootRegions)];
532 if (!regions)
533 regions = new (placeholder) RootRegions();
534 return *regions;
537 bool HasRootRegions() { return !GetRootRegionsLocked().empty(); }
539 void ScanRootRegions(Frontier *frontier,
540 const InternalMmapVectorNoCtor<Region> &mapped_regions) {
541 if (!flags()->use_root_regions)
542 return;
544 InternalMmapVector<Region> regions;
545 GetRootRegionsLocked().forEach([&](const auto &kv) {
546 regions.push_back({kv.first.first, kv.first.second});
547 return true;
550 InternalMmapVector<Region> intersection;
551 Intersect(mapped_regions, regions, intersection);
553 for (const Region &r : intersection) {
554 LOG_POINTERS("Root region intersects with mapped region at %p-%p\n",
555 (void *)r.begin, (void *)r.end);
556 ScanRangeForPointers(r.begin, r.end, frontier, "ROOT", kReachable);
560 // Scans root regions for heap pointers.
561 static void ProcessRootRegions(Frontier *frontier) {
562 if (!flags()->use_root_regions || !HasRootRegions())
563 return;
564 MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
565 MemoryMappedSegment segment;
566 InternalMmapVector<Region> mapped_regions;
567 while (proc_maps.Next(&segment))
568 if (segment.IsReadable())
569 mapped_regions.push_back({segment.start, segment.end});
570 ScanRootRegions(frontier, mapped_regions);
573 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
574 while (frontier->size()) {
575 uptr next_chunk = frontier->back();
576 frontier->pop_back();
577 LsanMetadata m(next_chunk);
578 ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
579 "HEAP", tag);
583 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
584 // which are reachable from it as indirectly leaked.
585 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
586 chunk = GetUserBegin(chunk);
587 LsanMetadata m(chunk);
588 if (m.allocated() && m.tag() != kReachable) {
589 ScanRangeForPointers(chunk, chunk + m.requested_size(),
590 /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
594 static void IgnoredSuppressedCb(uptr chunk, void *arg) {
595 CHECK(arg);
596 chunk = GetUserBegin(chunk);
597 LsanMetadata m(chunk);
598 if (!m.allocated() || m.tag() == kIgnored)
599 return;
601 const InternalMmapVector<u32> &suppressed =
602 *static_cast<const InternalMmapVector<u32> *>(arg);
603 uptr idx = InternalLowerBound(suppressed, m.stack_trace_id());
604 if (idx >= suppressed.size() || m.stack_trace_id() != suppressed[idx])
605 return;
607 LOG_POINTERS("Suppressed: chunk %p-%p of size %zu.\n", (void *)chunk,
608 (void *)(chunk + m.requested_size()), m.requested_size());
609 m.set_tag(kIgnored);
612 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
613 // frontier.
614 static void CollectIgnoredCb(uptr chunk, void *arg) {
615 CHECK(arg);
616 chunk = GetUserBegin(chunk);
617 LsanMetadata m(chunk);
618 if (m.allocated() && m.tag() == kIgnored) {
619 LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n", (void *)chunk,
620 (void *)(chunk + m.requested_size()), m.requested_size());
621 reinterpret_cast<Frontier *>(arg)->push_back(chunk);
625 // Sets the appropriate tag on each chunk.
626 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads,
627 Frontier *frontier, tid_t caller_tid,
628 uptr caller_sp) {
629 const InternalMmapVector<u32> &suppressed_stacks =
630 GetSuppressionContext()->GetSortedSuppressedStacks();
631 if (!suppressed_stacks.empty()) {
632 ForEachChunk(IgnoredSuppressedCb,
633 const_cast<InternalMmapVector<u32> *>(&suppressed_stacks));
635 ForEachChunk(CollectIgnoredCb, frontier);
636 ProcessGlobalRegions(frontier);
637 ProcessThreads(suspended_threads, frontier, caller_tid, caller_sp);
638 ProcessRootRegions(frontier);
639 FloodFillTag(frontier, kReachable);
641 // The check here is relatively expensive, so we do this in a separate flood
642 // fill. That way we can skip the check for chunks that are reachable
643 // otherwise.
644 LOG_POINTERS("Processing platform-specific allocations.\n");
645 ProcessPlatformSpecificAllocations(frontier);
646 FloodFillTag(frontier, kReachable);
648 // Iterate over leaked chunks and mark those that are reachable from other
649 // leaked chunks.
650 LOG_POINTERS("Scanning leaked chunks.\n");
651 ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
654 // ForEachChunk callback. Resets the tags to pre-leak-check state.
655 static void ResetTagsCb(uptr chunk, void *arg) {
656 (void)arg;
657 chunk = GetUserBegin(chunk);
658 LsanMetadata m(chunk);
659 if (m.allocated() && m.tag() != kIgnored)
660 m.set_tag(kDirectlyLeaked);
663 // ForEachChunk callback. Aggregates information about unreachable chunks into
664 // a LeakReport.
665 static void CollectLeaksCb(uptr chunk, void *arg) {
666 CHECK(arg);
667 LeakedChunks *leaks = reinterpret_cast<LeakedChunks *>(arg);
668 chunk = GetUserBegin(chunk);
669 LsanMetadata m(chunk);
670 if (!m.allocated())
671 return;
672 if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked)
673 leaks->push_back({chunk, m.stack_trace_id(), m.requested_size(), m.tag()});
676 void LeakSuppressionContext::PrintMatchedSuppressions() {
677 InternalMmapVector<Suppression *> matched;
678 context.GetMatched(&matched);
679 if (!matched.size())
680 return;
681 const char *line = "-----------------------------------------------------";
682 Printf("%s\n", line);
683 Printf("Suppressions used:\n");
684 Printf(" count bytes template\n");
685 for (uptr i = 0; i < matched.size(); i++) {
686 Printf("%7zu %10zu %s\n",
687 static_cast<uptr>(atomic_load_relaxed(&matched[i]->hit_count)),
688 matched[i]->weight, matched[i]->templ);
690 Printf("%s\n\n", line);
693 # if SANITIZER_FUCHSIA
695 // Fuchsia provides a libc interface that guarantees all threads are
696 // covered, and SuspendedThreadList is never really used.
697 static void ReportUnsuspendedThreads(const SuspendedThreadsList &) {}
699 # else // !SANITIZER_FUCHSIA
701 static void ReportUnsuspendedThreads(
702 const SuspendedThreadsList &suspended_threads) {
703 InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
704 for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
705 threads[i] = suspended_threads.GetThreadID(i);
707 Sort(threads.data(), threads.size());
709 InternalMmapVector<tid_t> unsuspended;
710 GetRunningThreadsLocked(&unsuspended);
712 for (auto os_id : unsuspended) {
713 uptr i = InternalLowerBound(threads, os_id);
714 if (i >= threads.size() || threads[i] != os_id)
715 Report(
716 "Running thread %zu was not suspended. False leaks are possible.\n",
717 os_id);
721 # endif // !SANITIZER_FUCHSIA
723 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
724 void *arg) {
725 CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
726 CHECK(param);
727 CHECK(!param->success);
728 ReportUnsuspendedThreads(suspended_threads);
729 ClassifyAllChunks(suspended_threads, &param->frontier, param->caller_tid,
730 param->caller_sp);
731 ForEachChunk(CollectLeaksCb, &param->leaks);
732 // Clean up for subsequent leak checks. This assumes we did not overwrite any
733 // kIgnored tags.
734 ForEachChunk(ResetTagsCb, nullptr);
735 param->success = true;
738 static bool PrintResults(LeakReport &report) {
739 uptr unsuppressed_count = report.UnsuppressedLeakCount();
740 if (unsuppressed_count) {
741 Decorator d;
742 Printf(
743 "\n"
744 "================================================================="
745 "\n");
746 Printf("%s", d.Error());
747 Report("ERROR: LeakSanitizer: detected memory leaks\n");
748 Printf("%s", d.Default());
749 report.ReportTopLeaks(flags()->max_leaks);
751 if (common_flags()->print_suppressions)
752 GetSuppressionContext()->PrintMatchedSuppressions();
753 if (unsuppressed_count > 0) {
754 report.PrintSummary();
755 return true;
757 return false;
760 static bool CheckForLeaks() {
761 if (&__lsan_is_turned_off && __lsan_is_turned_off()) {
762 VReport(1, "LeakSanitizer is disabled");
763 return false;
765 VReport(1, "LeakSanitizer: checking for leaks");
766 // Inside LockStuffAndStopTheWorld we can't run symbolizer, so we can't match
767 // suppressions. However if a stack id was previously suppressed, it should be
768 // suppressed in future checks as well.
769 for (int i = 0;; ++i) {
770 EnsureMainThreadIDIsCorrect();
771 CheckForLeaksParam param;
772 // Capture calling thread's stack pointer early, to avoid false negatives.
773 // Old frame with dead pointers might be overlapped by new frame inside
774 // CheckForLeaks which does not use bytes with pointers before the
775 // threads are suspended and stack pointers captured.
776 param.caller_tid = GetTid();
777 param.caller_sp = reinterpret_cast<uptr>(__builtin_frame_address(0));
778 LockStuffAndStopTheWorld(CheckForLeaksCallback, &param);
779 if (!param.success) {
780 Report("LeakSanitizer has encountered a fatal error.\n");
781 Report(
782 "HINT: For debugging, try setting environment variable "
783 "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
784 Report(
785 "HINT: LeakSanitizer does not work under ptrace (strace, gdb, "
786 "etc)\n");
787 Die();
789 LeakReport leak_report;
790 leak_report.AddLeakedChunks(param.leaks);
792 // No new suppressions stacks, so rerun will not help and we can report.
793 if (!leak_report.ApplySuppressions())
794 return PrintResults(leak_report);
796 // No indirect leaks to report, so we are done here.
797 if (!leak_report.IndirectUnsuppressedLeakCount())
798 return PrintResults(leak_report);
800 if (i >= 8) {
801 Report("WARNING: LeakSanitizer gave up on indirect leaks suppression.\n");
802 return PrintResults(leak_report);
805 // We found a new previously unseen suppressed call stack. Rerun to make
806 // sure it does not hold indirect leaks.
807 VReport(1, "Rerun with %zu suppressed stacks.",
808 GetSuppressionContext()->GetSortedSuppressedStacks().size());
812 static bool has_reported_leaks = false;
813 bool HasReportedLeaks() { return has_reported_leaks; }
815 void DoLeakCheck() {
816 Lock l(&global_mutex);
817 static bool already_done;
818 if (already_done)
819 return;
820 already_done = true;
821 has_reported_leaks = CheckForLeaks();
822 if (has_reported_leaks)
823 HandleLeaks();
826 static int DoRecoverableLeakCheck() {
827 Lock l(&global_mutex);
828 bool have_leaks = CheckForLeaks();
829 return have_leaks ? 1 : 0;
832 void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
834 ///// LeakReport implementation. /////
836 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
837 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
838 // in real-world applications.
839 // FIXME: Get rid of this limit by moving logic into DedupLeaks.
840 const uptr kMaxLeaksConsidered = 5000;
842 void LeakReport::AddLeakedChunks(const LeakedChunks &chunks) {
843 for (const LeakedChunk &leak : chunks) {
844 uptr chunk = leak.chunk;
845 u32 stack_trace_id = leak.stack_trace_id;
846 uptr leaked_size = leak.leaked_size;
847 ChunkTag tag = leak.tag;
848 CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
850 if (u32 resolution = flags()->resolution) {
851 StackTrace stack = StackDepotGet(stack_trace_id);
852 stack.size = Min(stack.size, resolution);
853 stack_trace_id = StackDepotPut(stack);
856 bool is_directly_leaked = (tag == kDirectlyLeaked);
857 uptr i;
858 for (i = 0; i < leaks_.size(); i++) {
859 if (leaks_[i].stack_trace_id == stack_trace_id &&
860 leaks_[i].is_directly_leaked == is_directly_leaked) {
861 leaks_[i].hit_count++;
862 leaks_[i].total_size += leaked_size;
863 break;
866 if (i == leaks_.size()) {
867 if (leaks_.size() == kMaxLeaksConsidered)
868 return;
869 Leak leak = {next_id_++, /* hit_count */ 1,
870 leaked_size, stack_trace_id,
871 is_directly_leaked, /* is_suppressed */ false};
872 leaks_.push_back(leak);
874 if (flags()->report_objects) {
875 LeakedObject obj = {leaks_[i].id, GetUserAddr(chunk), leaked_size};
876 leaked_objects_.push_back(obj);
881 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
882 if (leak1.is_directly_leaked == leak2.is_directly_leaked)
883 return leak1.total_size > leak2.total_size;
884 else
885 return leak1.is_directly_leaked;
888 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
889 CHECK(leaks_.size() <= kMaxLeaksConsidered);
890 Printf("\n");
891 if (leaks_.size() == kMaxLeaksConsidered)
892 Printf(
893 "Too many leaks! Only the first %zu leaks encountered will be "
894 "reported.\n",
895 kMaxLeaksConsidered);
897 uptr unsuppressed_count = UnsuppressedLeakCount();
898 if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
899 Printf("The %zu top leak(s):\n", num_leaks_to_report);
900 Sort(leaks_.data(), leaks_.size(), &LeakComparator);
901 uptr leaks_reported = 0;
902 for (uptr i = 0; i < leaks_.size(); i++) {
903 if (leaks_[i].is_suppressed)
904 continue;
905 PrintReportForLeak(i);
906 leaks_reported++;
907 if (leaks_reported == num_leaks_to_report)
908 break;
910 if (leaks_reported < unsuppressed_count) {
911 uptr remaining = unsuppressed_count - leaks_reported;
912 Printf("Omitting %zu more leak(s).\n", remaining);
916 void LeakReport::PrintReportForLeak(uptr index) {
917 Decorator d;
918 Printf("%s", d.Leak());
919 Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
920 leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
921 leaks_[index].total_size, leaks_[index].hit_count);
922 Printf("%s", d.Default());
924 CHECK(leaks_[index].stack_trace_id);
925 StackDepotGet(leaks_[index].stack_trace_id).Print();
927 if (flags()->report_objects) {
928 Printf("Objects leaked above:\n");
929 PrintLeakedObjectsForLeak(index);
930 Printf("\n");
934 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
935 u32 leak_id = leaks_[index].id;
936 for (uptr j = 0; j < leaked_objects_.size(); j++) {
937 if (leaked_objects_[j].leak_id == leak_id)
938 Printf("%p (%zu bytes)\n", (void *)leaked_objects_[j].addr,
939 leaked_objects_[j].size);
943 void LeakReport::PrintSummary() {
944 CHECK(leaks_.size() <= kMaxLeaksConsidered);
945 uptr bytes = 0, allocations = 0;
946 for (uptr i = 0; i < leaks_.size(); i++) {
947 if (leaks_[i].is_suppressed)
948 continue;
949 bytes += leaks_[i].total_size;
950 allocations += leaks_[i].hit_count;
952 InternalScopedString summary;
953 summary.AppendF("%zu byte(s) leaked in %zu allocation(s).", bytes,
954 allocations);
955 ReportErrorSummary(summary.data());
958 uptr LeakReport::ApplySuppressions() {
959 LeakSuppressionContext *suppressions = GetSuppressionContext();
960 uptr new_suppressions = 0;
961 for (uptr i = 0; i < leaks_.size(); i++) {
962 if (suppressions->Suppress(leaks_[i].stack_trace_id, leaks_[i].hit_count,
963 leaks_[i].total_size)) {
964 leaks_[i].is_suppressed = true;
965 ++new_suppressions;
968 return new_suppressions;
971 uptr LeakReport::UnsuppressedLeakCount() {
972 uptr result = 0;
973 for (uptr i = 0; i < leaks_.size(); i++)
974 if (!leaks_[i].is_suppressed)
975 result++;
976 return result;
979 uptr LeakReport::IndirectUnsuppressedLeakCount() {
980 uptr result = 0;
981 for (uptr i = 0; i < leaks_.size(); i++)
982 if (!leaks_[i].is_suppressed && !leaks_[i].is_directly_leaked)
983 result++;
984 return result;
987 } // namespace __lsan
988 #else // CAN_SANITIZE_LEAKS
989 namespace __lsan {
990 void InitCommonLsan() {}
991 void DoLeakCheck() {}
992 void DoRecoverableLeakCheckVoid() {}
993 void DisableInThisThread() {}
994 void EnableInThisThread() {}
995 } // namespace __lsan
996 #endif // CAN_SANITIZE_LEAKS
998 using namespace __lsan;
1000 extern "C" {
1001 SANITIZER_INTERFACE_ATTRIBUTE
1002 void __lsan_ignore_object(const void *p) {
1003 #if CAN_SANITIZE_LEAKS
1004 if (!common_flags()->detect_leaks)
1005 return;
1006 // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
1007 // locked.
1008 Lock l(&global_mutex);
1009 IgnoreObjectResult res = IgnoreObject(p);
1010 if (res == kIgnoreObjectInvalid)
1011 VReport(1, "__lsan_ignore_object(): no heap object found at %p\n", p);
1012 if (res == kIgnoreObjectAlreadyIgnored)
1013 VReport(1,
1014 "__lsan_ignore_object(): "
1015 "heap object at %p is already being ignored\n",
1017 if (res == kIgnoreObjectSuccess)
1018 VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
1019 #endif // CAN_SANITIZE_LEAKS
1022 SANITIZER_INTERFACE_ATTRIBUTE
1023 void __lsan_register_root_region(const void *begin, uptr size) {
1024 #if CAN_SANITIZE_LEAKS
1025 VReport(1, "Registered root region at %p of size %zu\n", begin, size);
1026 uptr b = reinterpret_cast<uptr>(begin);
1027 uptr e = b + size;
1028 CHECK_LT(b, e);
1030 Lock l(&global_mutex);
1031 ++GetRootRegionsLocked()[{b, e}];
1032 #endif // CAN_SANITIZE_LEAKS
1035 SANITIZER_INTERFACE_ATTRIBUTE
1036 void __lsan_unregister_root_region(const void *begin, uptr size) {
1037 #if CAN_SANITIZE_LEAKS
1038 uptr b = reinterpret_cast<uptr>(begin);
1039 uptr e = b + size;
1040 CHECK_LT(b, e);
1041 VReport(1, "Unregistered root region at %p of size %zu\n", begin, size);
1044 Lock l(&global_mutex);
1045 if (auto *f = GetRootRegionsLocked().find({b, e})) {
1046 if (--(f->second) == 0)
1047 GetRootRegionsLocked().erase(f);
1048 return;
1051 Report(
1052 "__lsan_unregister_root_region(): region at %p of size %zu has not "
1053 "been registered.\n",
1054 begin, size);
1055 Die();
1056 #endif // CAN_SANITIZE_LEAKS
1059 SANITIZER_INTERFACE_ATTRIBUTE
1060 void __lsan_disable() {
1061 #if CAN_SANITIZE_LEAKS
1062 __lsan::DisableInThisThread();
1063 #endif
1066 SANITIZER_INTERFACE_ATTRIBUTE
1067 void __lsan_enable() {
1068 #if CAN_SANITIZE_LEAKS
1069 __lsan::EnableInThisThread();
1070 #endif
1073 SANITIZER_INTERFACE_ATTRIBUTE
1074 void __lsan_do_leak_check() {
1075 #if CAN_SANITIZE_LEAKS
1076 if (common_flags()->detect_leaks)
1077 __lsan::DoLeakCheck();
1078 #endif // CAN_SANITIZE_LEAKS
1081 SANITIZER_INTERFACE_ATTRIBUTE
1082 int __lsan_do_recoverable_leak_check() {
1083 #if CAN_SANITIZE_LEAKS
1084 if (common_flags()->detect_leaks)
1085 return __lsan::DoRecoverableLeakCheck();
1086 #endif // CAN_SANITIZE_LEAKS
1087 return 0;
1090 SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_options, void) {
1091 return "";
1094 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
1095 SANITIZER_INTERFACE_WEAK_DEF(int, __lsan_is_turned_off, void) {
1096 return 0;
1099 SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_suppressions, void) {
1100 return "";
1102 #endif
1103 } // extern "C"