1 //===- Writer.cpp ---------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
14 #include "InputFiles.h"
15 #include "LinkerScript.h"
17 #include "OutputSections.h"
18 #include "Relocations.h"
19 #include "SymbolTable.h"
21 #include "SyntheticSections.h"
23 #include "lld/Common/Arrays.h"
24 #include "lld/Common/CommonLinkerContext.h"
25 #include "lld/Common/Filesystem.h"
26 #include "lld/Common/Strings.h"
27 #include "llvm/ADT/StringMap.h"
28 #include "llvm/Support/BLAKE3.h"
29 #include "llvm/Support/Parallel.h"
30 #include "llvm/Support/RandomNumberGenerator.h"
31 #include "llvm/Support/TimeProfiler.h"
32 #include "llvm/Support/xxhash.h"
35 #define DEBUG_TYPE "lld"
38 using namespace llvm::ELF
;
39 using namespace llvm::object
;
40 using namespace llvm::support
;
41 using namespace llvm::support::endian
;
43 using namespace lld::elf
;
46 // The writer writes a SymbolTable result to a file.
47 template <class ELFT
> class Writer
{
49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
51 Writer() : buffer(errorHandler().outputBuffer
) {}
56 void addSectionSymbols();
58 void resolveShfLinkOrder();
59 void finalizeAddressDependentContent();
60 void optimizeBasicBlockJumps();
61 void sortInputSections();
62 void sortOrphanSections();
63 void finalizeSections();
64 void checkExecuteOnly();
65 void setReservedSymbolSections();
67 SmallVector
<PhdrEntry
*, 0> createPhdrs(Partition
&part
);
68 void addPhdrForSection(Partition
&part
, unsigned shType
, unsigned pType
,
70 void assignFileOffsets();
71 void assignFileOffsetsBinary();
72 void setPhdrs(Partition
&part
);
74 void fixSectionAlignments();
76 void writeTrapInstr();
79 void writeSectionsBinary();
82 std::unique_ptr
<FileOutputBuffer
> &buffer
;
84 void addRelIpltSymbols();
85 void addStartEndSymbols();
86 void addStartStopSymbols(OutputSection
&osec
);
89 uint64_t sectionHeaderOff
;
91 } // anonymous namespace
93 static bool needsInterpSection() {
94 return !config
->relocatable
&& !config
->shared
&&
95 !config
->dynamicLinker
.empty() && script
->needsInterpSection();
98 template <class ELFT
> void elf::writeResult() {
102 static void removeEmptyPTLoad(SmallVector
<PhdrEntry
*, 0> &phdrs
) {
103 auto it
= std::stable_partition(
104 phdrs
.begin(), phdrs
.end(), [&](const PhdrEntry
*p
) {
105 if (p
->p_type
!= PT_LOAD
)
109 uint64_t size
= p
->lastSec
->addr
+ p
->lastSec
->size
- p
->firstSec
->addr
;
113 // Clear OutputSection::ptLoad for sections contained in removed
115 DenseSet
<PhdrEntry
*> removed(it
, phdrs
.end());
116 for (OutputSection
*sec
: outputSections
)
117 if (removed
.count(sec
->ptLoad
))
118 sec
->ptLoad
= nullptr;
119 phdrs
.erase(it
, phdrs
.end());
122 void elf::copySectionsIntoPartitions() {
123 SmallVector
<InputSectionBase
*, 0> newSections
;
124 const size_t ehSize
= ctx
.ehInputSections
.size();
125 for (unsigned part
= 2; part
!= partitions
.size() + 1; ++part
) {
126 for (InputSectionBase
*s
: ctx
.inputSections
) {
127 if (!(s
->flags
& SHF_ALLOC
) || !s
->isLive() || s
->type
!= SHT_NOTE
)
129 auto *copy
= make
<InputSection
>(cast
<InputSection
>(*s
));
130 copy
->partition
= part
;
131 newSections
.push_back(copy
);
133 for (size_t i
= 0; i
!= ehSize
; ++i
) {
134 assert(ctx
.ehInputSections
[i
]->isLive());
135 auto *copy
= make
<EhInputSection
>(*ctx
.ehInputSections
[i
]);
136 copy
->partition
= part
;
137 ctx
.ehInputSections
.push_back(copy
);
141 ctx
.inputSections
.insert(ctx
.inputSections
.end(), newSections
.begin(),
145 static Defined
*addOptionalRegular(StringRef name
, SectionBase
*sec
,
146 uint64_t val
, uint8_t stOther
= STV_HIDDEN
) {
147 Symbol
*s
= symtab
.find(name
);
148 if (!s
|| s
->isDefined() || s
->isCommon())
151 s
->resolve(Defined
{nullptr, StringRef(), STB_GLOBAL
, stOther
, STT_NOTYPE
, val
,
153 s
->isUsedInRegularObj
= true;
154 return cast
<Defined
>(s
);
157 static Defined
*addAbsolute(StringRef name
) {
158 Symbol
*sym
= symtab
.addSymbol(Defined
{nullptr, name
, STB_GLOBAL
, STV_HIDDEN
,
159 STT_NOTYPE
, 0, 0, nullptr});
160 sym
->isUsedInRegularObj
= true;
161 return cast
<Defined
>(sym
);
164 // The linker is expected to define some symbols depending on
165 // the linking result. This function defines such symbols.
166 void elf::addReservedSymbols() {
167 if (config
->emachine
== EM_MIPS
) {
168 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
169 // so that it points to an absolute address which by default is relative
170 // to GOT. Default offset is 0x7ff0.
171 // See "Global Data Symbols" in Chapter 6 in the following document:
172 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
173 ElfSym::mipsGp
= addAbsolute("_gp");
175 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
176 // start of function and 'gp' pointer into GOT.
177 if (symtab
.find("_gp_disp"))
178 ElfSym::mipsGpDisp
= addAbsolute("_gp_disp");
180 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
181 // pointer. This symbol is used in the code generated by .cpload pseudo-op
182 // in case of using -mno-shared option.
183 // https://sourceware.org/ml/binutils/2004-12/msg00094.html
184 if (symtab
.find("__gnu_local_gp"))
185 ElfSym::mipsLocalGp
= addAbsolute("__gnu_local_gp");
186 } else if (config
->emachine
== EM_PPC
) {
187 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
188 // support Small Data Area, define it arbitrarily as 0.
189 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN
);
190 } else if (config
->emachine
== EM_PPC64
) {
191 addPPC64SaveRestore();
194 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
195 // combines the typical ELF GOT with the small data sections. It commonly
196 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
197 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
198 // represent the TOC base which is offset by 0x8000 bytes from the start of
200 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
201 // correctness of some relocations depends on its value.
202 StringRef gotSymName
=
203 (config
->emachine
== EM_PPC64
) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
205 if (Symbol
*s
= symtab
.find(gotSymName
)) {
206 if (s
->isDefined()) {
207 error(toString(s
->file
) + " cannot redefine linker defined symbol '" +
213 if (config
->emachine
== EM_PPC64
)
216 s
->resolve(Defined
{/*file=*/nullptr, StringRef(), STB_GLOBAL
, STV_HIDDEN
,
217 STT_NOTYPE
, gotOff
, /*size=*/0, Out::elfHeader
});
218 ElfSym::globalOffsetTable
= cast
<Defined
>(s
);
221 // __ehdr_start is the location of ELF file headers. Note that we define
222 // this symbol unconditionally even when using a linker script, which
223 // differs from the behavior implemented by GNU linker which only define
224 // this symbol if ELF headers are in the memory mapped segment.
225 addOptionalRegular("__ehdr_start", Out::elfHeader
, 0, STV_HIDDEN
);
227 // __executable_start is not documented, but the expectation of at
228 // least the Android libc is that it points to the ELF header.
229 addOptionalRegular("__executable_start", Out::elfHeader
, 0, STV_HIDDEN
);
231 // __dso_handle symbol is passed to cxa_finalize as a marker to identify
232 // each DSO. The address of the symbol doesn't matter as long as they are
233 // different in different DSOs, so we chose the start address of the DSO.
234 addOptionalRegular("__dso_handle", Out::elfHeader
, 0, STV_HIDDEN
);
236 // If linker script do layout we do not need to create any standard symbols.
237 if (script
->hasSectionsCommand
)
240 auto add
= [](StringRef s
, int64_t pos
) {
241 return addOptionalRegular(s
, Out::elfHeader
, pos
, STV_DEFAULT
);
244 ElfSym::bss
= add("__bss_start", 0);
245 ElfSym::end1
= add("end", -1);
246 ElfSym::end2
= add("_end", -1);
247 ElfSym::etext1
= add("etext", -1);
248 ElfSym::etext2
= add("_etext", -1);
249 ElfSym::edata1
= add("edata", -1);
250 ElfSym::edata2
= add("_edata", -1);
253 static void demoteDefined(Defined
&sym
, DenseMap
<SectionBase
*, size_t> &map
) {
255 for (auto [i
, sec
] : llvm::enumerate(sym
.file
->getSections()))
256 map
.try_emplace(sec
, i
);
257 // Change WEAK to GLOBAL so that if a scanned relocation references sym,
258 // maybeReportUndefined will report an error.
259 uint8_t binding
= sym
.isWeak() ? uint8_t(STB_GLOBAL
) : sym
.binding
;
260 Undefined(sym
.file
, sym
.getName(), binding
, sym
.stOther
, sym
.type
,
261 /*discardedSecIdx=*/map
.lookup(sym
.section
))
265 // If all references to a DSO happen to be weak, the DSO is not added to
266 // DT_NEEDED. If that happens, replace ShardSymbol with Undefined to avoid
267 // dangling references to an unneeded DSO. Use a weak binding to avoid
268 // --no-allow-shlib-undefined diagnostics. Similarly, demote lazy symbols.
270 // In addition, demote symbols defined in discarded sections, so that
271 // references to /DISCARD/ discarded symbols will lead to errors.
272 static void demoteSymbolsAndComputeIsPreemptible() {
273 llvm::TimeTraceScope
timeScope("Demote symbols");
274 DenseMap
<InputFile
*, DenseMap
<SectionBase
*, size_t>> sectionIndexMap
;
275 for (Symbol
*sym
: symtab
.getSymbols()) {
276 if (auto *d
= dyn_cast
<Defined
>(sym
)) {
277 if (d
->section
&& !d
->section
->isLive())
278 demoteDefined(*d
, sectionIndexMap
[d
->file
]);
280 auto *s
= dyn_cast
<SharedSymbol
>(sym
);
281 if (sym
->isLazy() || (s
&& !cast
<SharedFile
>(s
->file
)->isNeeded
)) {
282 uint8_t binding
= sym
->isLazy() ? sym
->binding
: uint8_t(STB_WEAK
);
283 Undefined(nullptr, sym
->getName(), binding
, sym
->stOther
, sym
->type
)
285 sym
->versionId
= VER_NDX_GLOBAL
;
289 if (config
->hasDynSymTab
)
290 sym
->isPreemptible
= computeIsPreemptible(*sym
);
294 // Fully static executables don't support MTE globals at this point in time, as
295 // we currently rely on:
296 // - A dynamic loader to process relocations, and
297 // - Dynamic entries.
298 // This restriction could be removed in future by re-using some of the ideas
299 // that ifuncs use in fully static executables.
300 bool elf::canHaveMemtagGlobals() {
301 return config
->emachine
== EM_AARCH64
&&
302 config
->androidMemtagMode
!= ELF::NT_MEMTAG_LEVEL_NONE
&&
303 (config
->relocatable
|| config
->shared
|| needsInterpSection());
306 static OutputSection
*findSection(StringRef name
, unsigned partition
= 1) {
307 for (SectionCommand
*cmd
: script
->sectionCommands
)
308 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
309 if (osd
->osec
.name
== name
&& osd
->osec
.partition
== partition
)
314 template <class ELFT
> void elf::createSyntheticSections() {
315 // Initialize all pointers with NULL. This is needed because
316 // you can call lld::elf::main more than once as a library.
317 Out::tlsPhdr
= nullptr;
318 Out::preinitArray
= nullptr;
319 Out::initArray
= nullptr;
320 Out::finiArray
= nullptr;
322 // Add the .interp section first because it is not a SyntheticSection.
323 // The removeUnusedSyntheticSections() function relies on the
324 // SyntheticSections coming last.
325 if (needsInterpSection()) {
326 for (size_t i
= 1; i
<= partitions
.size(); ++i
) {
327 InputSection
*sec
= createInterpSection();
329 ctx
.inputSections
.push_back(sec
);
333 auto add
= [](SyntheticSection
&sec
) { ctx
.inputSections
.push_back(&sec
); };
335 in
.shStrTab
= std::make_unique
<StringTableSection
>(".shstrtab", false);
337 Out::programHeaders
= make
<OutputSection
>("", 0, SHF_ALLOC
);
338 Out::programHeaders
->addralign
= config
->wordsize
;
340 if (config
->strip
!= StripPolicy::All
) {
341 in
.strTab
= std::make_unique
<StringTableSection
>(".strtab", false);
342 in
.symTab
= std::make_unique
<SymbolTableSection
<ELFT
>>(*in
.strTab
);
343 in
.symTabShndx
= std::make_unique
<SymtabShndxSection
>();
346 in
.bss
= std::make_unique
<BssSection
>(".bss", 0, 1);
349 // If there is a SECTIONS command and a .data.rel.ro section name use name
350 // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
351 // This makes sure our relro is contiguous.
352 bool hasDataRelRo
= script
->hasSectionsCommand
&& findSection(".data.rel.ro");
353 in
.bssRelRo
= std::make_unique
<BssSection
>(
354 hasDataRelRo
? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
357 // Add MIPS-specific sections.
358 if (config
->emachine
== EM_MIPS
) {
359 if (!config
->shared
&& config
->hasDynSymTab
) {
360 in
.mipsRldMap
= std::make_unique
<MipsRldMapSection
>();
363 if ((in
.mipsAbiFlags
= MipsAbiFlagsSection
<ELFT
>::create()))
364 add(*in
.mipsAbiFlags
);
365 if ((in
.mipsOptions
= MipsOptionsSection
<ELFT
>::create()))
366 add(*in
.mipsOptions
);
367 if ((in
.mipsReginfo
= MipsReginfoSection
<ELFT
>::create()))
368 add(*in
.mipsReginfo
);
371 StringRef relaDynName
= config
->isRela
? ".rela.dyn" : ".rel.dyn";
373 const unsigned threadCount
= config
->threadCount
;
374 for (Partition
&part
: partitions
) {
375 auto add
= [&](SyntheticSection
&sec
) {
376 sec
.partition
= part
.getNumber();
377 ctx
.inputSections
.push_back(&sec
);
380 if (!part
.name
.empty()) {
381 part
.elfHeader
= std::make_unique
<PartitionElfHeaderSection
<ELFT
>>();
382 part
.elfHeader
->name
= part
.name
;
383 add(*part
.elfHeader
);
385 part
.programHeaders
=
386 std::make_unique
<PartitionProgramHeadersSection
<ELFT
>>();
387 add(*part
.programHeaders
);
390 if (config
->buildId
!= BuildIdKind::None
) {
391 part
.buildId
= std::make_unique
<BuildIdSection
>();
395 part
.dynStrTab
= std::make_unique
<StringTableSection
>(".dynstr", true);
397 std::make_unique
<SymbolTableSection
<ELFT
>>(*part
.dynStrTab
);
398 part
.dynamic
= std::make_unique
<DynamicSection
<ELFT
>>();
400 if (canHaveMemtagGlobals()) {
401 part
.memtagAndroidNote
= std::make_unique
<MemtagAndroidNote
>();
402 add(*part
.memtagAndroidNote
);
403 part
.memtagDescriptors
= std::make_unique
<MemtagDescriptors
>();
404 add(*part
.memtagDescriptors
);
407 if (config
->androidPackDynRelocs
)
408 part
.relaDyn
= std::make_unique
<AndroidPackedRelocationSection
<ELFT
>>(
409 relaDynName
, threadCount
);
411 part
.relaDyn
= std::make_unique
<RelocationSection
<ELFT
>>(
412 relaDynName
, config
->zCombreloc
, threadCount
);
414 if (config
->hasDynSymTab
) {
415 add(*part
.dynSymTab
);
417 part
.verSym
= std::make_unique
<VersionTableSection
>();
420 if (!namedVersionDefs().empty()) {
421 part
.verDef
= std::make_unique
<VersionDefinitionSection
>();
425 part
.verNeed
= std::make_unique
<VersionNeedSection
<ELFT
>>();
428 if (config
->gnuHash
) {
429 part
.gnuHashTab
= std::make_unique
<GnuHashTableSection
>();
430 add(*part
.gnuHashTab
);
433 if (config
->sysvHash
) {
434 part
.hashTab
= std::make_unique
<HashTableSection
>();
439 add(*part
.dynStrTab
);
443 if (config
->relrPackDynRelocs
) {
444 part
.relrDyn
= std::make_unique
<RelrSection
<ELFT
>>(threadCount
);
448 if (!config
->relocatable
) {
449 if (config
->ehFrameHdr
) {
450 part
.ehFrameHdr
= std::make_unique
<EhFrameHeader
>();
451 add(*part
.ehFrameHdr
);
453 part
.ehFrame
= std::make_unique
<EhFrameSection
>();
456 if (config
->emachine
== EM_ARM
) {
457 // This section replaces all the individual .ARM.exidx InputSections.
458 part
.armExidx
= std::make_unique
<ARMExidxSyntheticSection
>();
463 if (!config
->packageMetadata
.empty()) {
464 part
.packageMetadataNote
= std::make_unique
<PackageMetadataNote
>();
465 add(*part
.packageMetadataNote
);
469 if (partitions
.size() != 1) {
470 // Create the partition end marker. This needs to be in partition number 255
471 // so that it is sorted after all other partitions. It also has other
472 // special handling (see createPhdrs() and combineEhSections()).
474 std::make_unique
<BssSection
>(".part.end", config
->maxPageSize
, 1);
475 in
.partEnd
->partition
= 255;
478 in
.partIndex
= std::make_unique
<PartitionIndexSection
>();
479 addOptionalRegular("__part_index_begin", in
.partIndex
.get(), 0);
480 addOptionalRegular("__part_index_end", in
.partIndex
.get(),
481 in
.partIndex
->getSize());
485 // Add .got. MIPS' .got is so different from the other archs,
486 // it has its own class.
487 if (config
->emachine
== EM_MIPS
) {
488 in
.mipsGot
= std::make_unique
<MipsGotSection
>();
491 in
.got
= std::make_unique
<GotSection
>();
495 if (config
->emachine
== EM_PPC
) {
496 in
.ppc32Got2
= std::make_unique
<PPC32Got2Section
>();
500 if (config
->emachine
== EM_PPC64
) {
501 in
.ppc64LongBranchTarget
= std::make_unique
<PPC64LongBranchTargetSection
>();
502 add(*in
.ppc64LongBranchTarget
);
505 in
.gotPlt
= std::make_unique
<GotPltSection
>();
507 in
.igotPlt
= std::make_unique
<IgotPltSection
>();
509 // Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the
510 // section in the absence of PHDRS/SECTIONS commands.
511 if (config
->zRelro
&& ((script
->phdrsCommands
.empty() &&
512 !script
->hasSectionsCommand
) || script
->seenRelroEnd
)) {
513 in
.relroPadding
= std::make_unique
<RelroPaddingSection
>();
514 add(*in
.relroPadding
);
517 if (config
->emachine
== EM_ARM
) {
518 in
.armCmseSGSection
= std::make_unique
<ArmCmseSGSection
>();
519 add(*in
.armCmseSGSection
);
522 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
523 // it as a relocation and ensure the referenced section is created.
524 if (ElfSym::globalOffsetTable
&& config
->emachine
!= EM_MIPS
) {
525 if (target
->gotBaseSymInGotPlt
)
526 in
.gotPlt
->hasGotPltOffRel
= true;
528 in
.got
->hasGotOffRel
= true;
531 if (config
->gdbIndex
)
532 add(*GdbIndexSection::create
<ELFT
>());
534 // We always need to add rel[a].plt to output if it has entries.
535 // Even for static linking it can contain R_[*]_IRELATIVE relocations.
536 in
.relaPlt
= std::make_unique
<RelocationSection
<ELFT
>>(
537 config
->isRela
? ".rela.plt" : ".rel.plt", /*sort=*/false,
541 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
542 // relocations are processed last by the dynamic loader. We cannot place the
543 // iplt section in .rel.dyn when Android relocation packing is enabled because
544 // that would cause a section type mismatch. However, because the Android
545 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
546 // behaviour by placing the iplt section in .rel.plt.
547 in
.relaIplt
= std::make_unique
<RelocationSection
<ELFT
>>(
548 config
->androidPackDynRelocs
? in
.relaPlt
->name
: relaDynName
,
549 /*sort=*/false, /*threadCount=*/1);
552 if ((config
->emachine
== EM_386
|| config
->emachine
== EM_X86_64
) &&
553 (config
->andFeatures
& GNU_PROPERTY_X86_FEATURE_1_IBT
)) {
554 in
.ibtPlt
= std::make_unique
<IBTPltSection
>();
558 if (config
->emachine
== EM_PPC
)
559 in
.plt
= std::make_unique
<PPC32GlinkSection
>();
561 in
.plt
= std::make_unique
<PltSection
>();
563 in
.iplt
= std::make_unique
<IpltSection
>();
566 if (config
->andFeatures
)
567 add(*make
<GnuPropertySection
>());
569 // .note.GNU-stack is always added when we are creating a re-linkable
570 // object file. Other linkers are using the presence of this marker
571 // section to control the executable-ness of the stack area, but that
572 // is irrelevant these days. Stack area should always be non-executable
573 // by default. So we emit this section unconditionally.
574 if (config
->relocatable
)
575 add(*make
<GnuStackSection
>());
580 add(*in
.symTabShndx
);
586 // The main function of the writer.
587 template <class ELFT
> void Writer
<ELFT
>::run() {
588 // Now that we have a complete set of output sections. This function
589 // completes section contents. For example, we need to add strings
590 // to the string table, and add entries to .got and .plt.
591 // finalizeSections does that.
595 // If --compressed-debug-sections is specified, compress .debug_* sections.
596 // Do it right now because it changes the size of output sections.
597 for (OutputSection
*sec
: outputSections
)
598 sec
->maybeCompress
<ELFT
>();
600 if (script
->hasSectionsCommand
)
601 script
->allocateHeaders(mainPart
->phdrs
);
603 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
604 // 0 sized region. This has to be done late since only after assignAddresses
605 // we know the size of the sections.
606 for (Partition
&part
: partitions
)
607 removeEmptyPTLoad(part
.phdrs
);
609 if (!config
->oFormatBinary
)
612 assignFileOffsetsBinary();
614 for (Partition
&part
: partitions
)
617 // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections()
618 // because the files may be useful in case checkSections() or openFile()
619 // fails, for example, due to an erroneous file size.
622 // Handle --print-memory-usage option.
623 if (config
->printMemoryUsage
)
624 script
->printMemoryUsage(lld::outs());
626 if (config
->checkSections
)
629 // It does not make sense try to open the file if we have error already.
634 llvm::TimeTraceScope
timeScope("Write output file");
635 // Write the result down to a file.
640 if (!config
->oFormatBinary
) {
641 if (config
->zSeparate
!= SeparateSegmentKind::None
)
646 writeSectionsBinary();
649 // Backfill .note.gnu.build-id section content. This is done at last
650 // because the content is usually a hash value of the entire output file.
655 if (auto e
= buffer
->commit())
656 fatal("failed to write output '" + buffer
->getPath() +
657 "': " + toString(std::move(e
)));
659 if (!config
->cmseOutputLib
.empty())
660 writeARMCmseImportLib
<ELFT
>();
664 template <class ELFT
, class RelTy
>
665 static void markUsedLocalSymbolsImpl(ObjFile
<ELFT
> *file
,
666 llvm::ArrayRef
<RelTy
> rels
) {
667 for (const RelTy
&rel
: rels
) {
668 Symbol
&sym
= file
->getRelocTargetSym(rel
);
674 // The function ensures that the "used" field of local symbols reflects the fact
675 // that the symbol is used in a relocation from a live section.
676 template <class ELFT
> static void markUsedLocalSymbols() {
677 // With --gc-sections, the field is already filled.
678 // See MarkLive<ELFT>::resolveReloc().
679 if (config
->gcSections
)
681 for (ELFFileBase
*file
: ctx
.objectFiles
) {
682 ObjFile
<ELFT
> *f
= cast
<ObjFile
<ELFT
>>(file
);
683 for (InputSectionBase
*s
: f
->getSections()) {
684 InputSection
*isec
= dyn_cast_or_null
<InputSection
>(s
);
687 if (isec
->type
== SHT_REL
)
688 markUsedLocalSymbolsImpl(f
, isec
->getDataAs
<typename
ELFT::Rel
>());
689 else if (isec
->type
== SHT_RELA
)
690 markUsedLocalSymbolsImpl(f
, isec
->getDataAs
<typename
ELFT::Rela
>());
695 static bool shouldKeepInSymtab(const Defined
&sym
) {
699 // If --emit-reloc or -r is given, preserve symbols referenced by relocations
700 // from live sections.
701 if (sym
.used
&& config
->copyRelocs
)
704 // Exclude local symbols pointing to .ARM.exidx sections.
705 // They are probably mapping symbols "$d", which are optional for these
706 // sections. After merging the .ARM.exidx sections, some of these symbols
707 // may become dangling. The easiest way to avoid the issue is not to add
708 // them to the symbol table from the beginning.
709 if (config
->emachine
== EM_ARM
&& sym
.section
&&
710 sym
.section
->type
== SHT_ARM_EXIDX
)
713 if (config
->discard
== DiscardPolicy::None
)
715 if (config
->discard
== DiscardPolicy::All
)
718 // In ELF assembly .L symbols are normally discarded by the assembler.
719 // If the assembler fails to do so, the linker discards them if
720 // * --discard-locals is used.
721 // * The symbol is in a SHF_MERGE section, which is normally the reason for
722 // the assembler keeping the .L symbol.
723 if (sym
.getName().starts_with(".L") &&
724 (config
->discard
== DiscardPolicy::Locals
||
725 (sym
.section
&& (sym
.section
->flags
& SHF_MERGE
))))
730 bool lld::elf::includeInSymtab(const Symbol
&b
) {
731 if (auto *d
= dyn_cast
<Defined
>(&b
)) {
732 // Always include absolute symbols.
733 SectionBase
*sec
= d
->section
;
736 assert(sec
->isLive());
738 if (auto *s
= dyn_cast
<MergeInputSection
>(sec
))
739 return s
->getSectionPiece(d
->value
).live
;
742 return b
.used
|| !config
->gcSections
;
745 // Scan local symbols to:
747 // - demote symbols defined relative to /DISCARD/ discarded input sections so
748 // that relocations referencing them will lead to errors.
749 // - copy eligible symbols to .symTab
750 static void demoteAndCopyLocalSymbols() {
751 llvm::TimeTraceScope
timeScope("Add local symbols");
752 for (ELFFileBase
*file
: ctx
.objectFiles
) {
753 DenseMap
<SectionBase
*, size_t> sectionIndexMap
;
754 for (Symbol
*b
: file
->getLocalSymbols()) {
755 assert(b
->isLocal() && "should have been caught in initializeSymbols()");
756 auto *dr
= dyn_cast
<Defined
>(b
);
760 if (dr
->section
&& !dr
->section
->isLive())
761 demoteDefined(*dr
, sectionIndexMap
);
762 else if (in
.symTab
&& includeInSymtab(*b
) && shouldKeepInSymtab(*dr
))
763 in
.symTab
->addSymbol(b
);
768 // Create a section symbol for each output section so that we can represent
769 // relocations that point to the section. If we know that no relocation is
770 // referring to a section (that happens if the section is a synthetic one), we
771 // don't create a section symbol for that section.
772 template <class ELFT
> void Writer
<ELFT
>::addSectionSymbols() {
773 for (SectionCommand
*cmd
: script
->sectionCommands
) {
774 auto *osd
= dyn_cast
<OutputDesc
>(cmd
);
777 OutputSection
&osec
= osd
->osec
;
778 InputSectionBase
*isec
= nullptr;
779 // Iterate over all input sections and add a STT_SECTION symbol if any input
780 // section may be a relocation target.
781 for (SectionCommand
*cmd
: osec
.commands
) {
782 auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
);
785 for (InputSectionBase
*s
: isd
->sections
) {
786 // Relocations are not using REL[A] section symbols.
787 if (s
->type
== SHT_REL
|| s
->type
== SHT_RELA
)
790 // Unlike other synthetic sections, mergeable output sections contain
791 // data copied from input sections, and there may be a relocation
792 // pointing to its contents if -r or --emit-reloc is given.
793 if (isa
<SyntheticSection
>(s
) && !(s
->flags
& SHF_MERGE
))
803 // Set the symbol to be relative to the output section so that its st_value
804 // equals the output section address. Note, there may be a gap between the
805 // start of the output section and isec.
806 in
.symTab
->addSymbol(makeDefined(isec
->file
, "", STB_LOCAL
, /*stOther=*/0,
808 /*value=*/0, /*size=*/0, &osec
));
812 // Today's loaders have a feature to make segments read-only after
813 // processing dynamic relocations to enhance security. PT_GNU_RELRO
814 // is defined for that.
816 // This function returns true if a section needs to be put into a
817 // PT_GNU_RELRO segment.
818 static bool isRelroSection(const OutputSection
*sec
) {
824 uint64_t flags
= sec
->flags
;
826 // Non-allocatable or non-writable sections don't need RELRO because
827 // they are not writable or not even mapped to memory in the first place.
828 // RELRO is for sections that are essentially read-only but need to
829 // be writable only at process startup to allow dynamic linker to
830 // apply relocations.
831 if (!(flags
& SHF_ALLOC
) || !(flags
& SHF_WRITE
))
834 // Once initialized, TLS data segments are used as data templates
835 // for a thread-local storage. For each new thread, runtime
836 // allocates memory for a TLS and copy templates there. No thread
837 // are supposed to use templates directly. Thus, it can be in RELRO.
841 // .init_array, .preinit_array and .fini_array contain pointers to
842 // functions that are executed on process startup or exit. These
843 // pointers are set by the static linker, and they are not expected
844 // to change at runtime. But if you are an attacker, you could do
845 // interesting things by manipulating pointers in .fini_array, for
846 // example. So they are put into RELRO.
847 uint32_t type
= sec
->type
;
848 if (type
== SHT_INIT_ARRAY
|| type
== SHT_FINI_ARRAY
||
849 type
== SHT_PREINIT_ARRAY
)
852 // .got contains pointers to external symbols. They are resolved by
853 // the dynamic linker when a module is loaded into memory, and after
854 // that they are not expected to change. So, it can be in RELRO.
855 if (in
.got
&& sec
== in
.got
->getParent())
858 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
859 // through r2 register, which is reserved for that purpose. Since r2 is used
860 // for accessing .got as well, .got and .toc need to be close enough in the
861 // virtual address space. Usually, .toc comes just after .got. Since we place
862 // .got into RELRO, .toc needs to be placed into RELRO too.
863 if (sec
->name
.equals(".toc"))
866 // .got.plt contains pointers to external function symbols. They are
867 // by default resolved lazily, so we usually cannot put it into RELRO.
868 // However, if "-z now" is given, the lazy symbol resolution is
869 // disabled, which enables us to put it into RELRO.
870 if (sec
== in
.gotPlt
->getParent())
873 if (in
.relroPadding
&& sec
== in
.relroPadding
->getParent())
876 // .dynamic section contains data for the dynamic linker, and
877 // there's no need to write to it at runtime, so it's better to put
879 if (sec
->name
== ".dynamic")
882 // Sections with some special names are put into RELRO. This is a
883 // bit unfortunate because section names shouldn't be significant in
884 // ELF in spirit. But in reality many linker features depend on
885 // magic section names.
886 StringRef s
= sec
->name
;
887 return s
== ".data.rel.ro" || s
== ".bss.rel.ro" || s
== ".ctors" ||
888 s
== ".dtors" || s
== ".jcr" || s
== ".eh_frame" ||
889 s
== ".fini_array" || s
== ".init_array" ||
890 s
== ".openbsd.randomdata" || s
== ".preinit_array";
893 // We compute a rank for each section. The rank indicates where the
894 // section should be placed in the file. Instead of using simple
895 // numbers (0,1,2...), we use a series of flags. One for each decision
896 // point when placing the section.
897 // Using flags has two key properties:
898 // * It is easy to check if a give branch was taken.
899 // * It is easy two see how similar two ranks are (see getRankProximity).
901 RF_NOT_ADDR_SET
= 1 << 27,
902 RF_NOT_ALLOC
= 1 << 26,
903 RF_PARTITION
= 1 << 18, // Partition number (8 bits)
904 RF_NOT_SPECIAL
= 1 << 17,
906 RF_EXEC_WRITE
= 1 << 15,
910 RF_NOT_RELRO
= 1 << 9,
915 static unsigned getSectionRank(OutputSection
&osec
) {
916 unsigned rank
= osec
.partition
* RF_PARTITION
;
918 // We want to put section specified by -T option first, so we
919 // can start assigning VA starting from them later.
920 if (config
->sectionStartMap
.count(osec
.name
))
922 rank
|= RF_NOT_ADDR_SET
;
924 // Allocatable sections go first to reduce the total PT_LOAD size and
925 // so debug info doesn't change addresses in actual code.
926 if (!(osec
.flags
& SHF_ALLOC
))
927 return rank
| RF_NOT_ALLOC
;
929 if (osec
.type
== SHT_LLVM_PART_EHDR
)
931 if (osec
.type
== SHT_LLVM_PART_PHDR
)
934 // Put .interp first because some loaders want to see that section
935 // on the first page of the executable file when loaded into memory.
936 if (osec
.name
== ".interp")
939 // Put .note sections at the beginning so that they are likely to be included
940 // in a truncate core file. In particular, .note.gnu.build-id, if available,
941 // can identify the object file.
942 if (osec
.type
== SHT_NOTE
)
945 rank
|= RF_NOT_SPECIAL
;
947 // Sort sections based on their access permission in the following
948 // order: R, RX, RXW, RW(RELRO), RW(non-RELRO).
950 // Read-only sections come first such that they go in the PT_LOAD covering the
951 // program headers at the start of the file.
953 // The layout for writable sections is PT_LOAD(PT_GNU_RELRO(.data.rel.ro
954 // .bss.rel.ro) | .data .bss), where | marks where page alignment happens.
955 // An alternative ordering is PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro
956 // .bss.rel.ro) | .bss), but it may waste more bytes due to 2 alignment
958 bool isExec
= osec
.flags
& SHF_EXECINSTR
;
959 bool isWrite
= osec
.flags
& SHF_WRITE
;
961 if (!isWrite
&& !isExec
) {
962 // Make PROGBITS sections (e.g .rodata .eh_frame) closer to .text to
963 // alleviate relocation overflow pressure. Large special sections such as
964 // .dynstr and .dynsym can be away from .text.
965 if (osec
.type
== SHT_PROGBITS
)
967 // Among PROGBITS sections, place .lrodata further from .text.
968 if (!(osec
.flags
& SHF_X86_64_LARGE
&& config
->emachine
== EM_X86_64
))
971 rank
|= isWrite
? RF_EXEC_WRITE
: RF_EXEC
;
974 // The TLS initialization block needs to be a single contiguous block. Place
975 // TLS sections directly before the other RELRO sections.
976 if (!(osec
.flags
& SHF_TLS
))
978 if (isRelroSection(&osec
))
981 rank
|= RF_NOT_RELRO
;
982 // Place .ldata and .lbss after .bss. Making .bss closer to .text alleviates
983 // relocation overflow pressure.
984 if (osec
.flags
& SHF_X86_64_LARGE
&& config
->emachine
== EM_X86_64
)
988 // Within TLS sections, or within other RelRo sections, or within non-RelRo
989 // sections, place non-NOBITS sections first.
990 if (osec
.type
== SHT_NOBITS
)
993 // Some architectures have additional ordering restrictions for sections
994 // within the same PT_LOAD.
995 if (config
->emachine
== EM_PPC64
) {
996 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
997 // that we would like to make sure appear is a specific order to maximize
998 // their coverage by a single signed 16-bit offset from the TOC base
1000 StringRef name
= osec
.name
;
1003 else if (name
== ".toc")
1007 if (config
->emachine
== EM_MIPS
) {
1008 if (osec
.name
!= ".got")
1010 // All sections with SHF_MIPS_GPREL flag should be grouped together
1011 // because data in these sections is addressable with a gp relative address.
1012 if (osec
.flags
& SHF_MIPS_GPREL
)
1016 if (config
->emachine
== EM_RISCV
) {
1017 // .sdata and .sbss are placed closer to make GP relaxation more profitable
1018 // and match GNU ld.
1019 StringRef name
= osec
.name
;
1020 if (name
== ".sdata" || (osec
.type
== SHT_NOBITS
&& name
!= ".sbss"))
1027 static bool compareSections(const SectionCommand
*aCmd
,
1028 const SectionCommand
*bCmd
) {
1029 const OutputSection
*a
= &cast
<OutputDesc
>(aCmd
)->osec
;
1030 const OutputSection
*b
= &cast
<OutputDesc
>(bCmd
)->osec
;
1032 if (a
->sortRank
!= b
->sortRank
)
1033 return a
->sortRank
< b
->sortRank
;
1035 if (!(a
->sortRank
& RF_NOT_ADDR_SET
))
1036 return config
->sectionStartMap
.lookup(a
->name
) <
1037 config
->sectionStartMap
.lookup(b
->name
);
1041 void PhdrEntry::add(OutputSection
*sec
) {
1045 p_align
= std::max(p_align
, sec
->addralign
);
1046 if (p_type
== PT_LOAD
)
1050 // The beginning and the ending of .rel[a].plt section are marked
1051 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1052 // executable. The runtime needs these symbols in order to resolve
1053 // all IRELATIVE relocs on startup. For dynamic executables, we don't
1054 // need these symbols, since IRELATIVE relocs are resolved through GOT
1055 // and PLT. For details, see http://www.airs.com/blog/archives/403.
1056 template <class ELFT
> void Writer
<ELFT
>::addRelIpltSymbols() {
1060 // By default, __rela_iplt_{start,end} belong to a dummy section 0
1061 // because .rela.plt might be empty and thus removed from output.
1062 // We'll override Out::elfHeader with In.relaIplt later when we are
1063 // sure that .rela.plt exists in output.
1064 ElfSym::relaIpltStart
= addOptionalRegular(
1065 config
->isRela
? "__rela_iplt_start" : "__rel_iplt_start",
1066 Out::elfHeader
, 0, STV_HIDDEN
);
1068 ElfSym::relaIpltEnd
= addOptionalRegular(
1069 config
->isRela
? "__rela_iplt_end" : "__rel_iplt_end",
1070 Out::elfHeader
, 0, STV_HIDDEN
);
1073 // This function generates assignments for predefined symbols (e.g. _end or
1074 // _etext) and inserts them into the commands sequence to be processed at the
1075 // appropriate time. This ensures that the value is going to be correct by the
1076 // time any references to these symbols are processed and is equivalent to
1077 // defining these symbols explicitly in the linker script.
1078 template <class ELFT
> void Writer
<ELFT
>::setReservedSymbolSections() {
1079 if (ElfSym::globalOffsetTable
) {
1080 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1081 // to the start of the .got or .got.plt section.
1082 InputSection
*sec
= in
.gotPlt
.get();
1083 if (!target
->gotBaseSymInGotPlt
)
1084 sec
= in
.mipsGot
? cast
<InputSection
>(in
.mipsGot
.get())
1085 : cast
<InputSection
>(in
.got
.get());
1086 ElfSym::globalOffsetTable
->section
= sec
;
1089 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1090 if (ElfSym::relaIpltStart
&& in
.relaIplt
->isNeeded()) {
1091 ElfSym::relaIpltStart
->section
= in
.relaIplt
.get();
1092 ElfSym::relaIpltEnd
->section
= in
.relaIplt
.get();
1093 ElfSym::relaIpltEnd
->value
= in
.relaIplt
->getSize();
1096 PhdrEntry
*last
= nullptr;
1097 PhdrEntry
*lastRO
= nullptr;
1099 for (Partition
&part
: partitions
) {
1100 for (PhdrEntry
*p
: part
.phdrs
) {
1101 if (p
->p_type
!= PT_LOAD
)
1104 if (!(p
->p_flags
& PF_W
))
1110 // _etext is the first location after the last read-only loadable segment.
1112 ElfSym::etext1
->section
= lastRO
->lastSec
;
1114 ElfSym::etext2
->section
= lastRO
->lastSec
;
1118 // _edata points to the end of the last mapped initialized section.
1119 OutputSection
*edata
= nullptr;
1120 for (OutputSection
*os
: outputSections
) {
1121 if (os
->type
!= SHT_NOBITS
)
1123 if (os
== last
->lastSec
)
1128 ElfSym::edata1
->section
= edata
;
1130 ElfSym::edata2
->section
= edata
;
1132 // _end is the first location after the uninitialized data region.
1134 ElfSym::end1
->section
= last
->lastSec
;
1136 ElfSym::end2
->section
= last
->lastSec
;
1140 // On RISC-V, set __bss_start to the start of .sbss if present.
1141 OutputSection
*sbss
=
1142 config
->emachine
== EM_RISCV
? findSection(".sbss") : nullptr;
1143 ElfSym::bss
->section
= sbss
? sbss
: findSection(".bss");
1146 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1147 // be equal to the _gp symbol's value.
1148 if (ElfSym::mipsGp
) {
1149 // Find GP-relative section with the lowest address
1150 // and use this address to calculate default _gp value.
1151 for (OutputSection
*os
: outputSections
) {
1152 if (os
->flags
& SHF_MIPS_GPREL
) {
1153 ElfSym::mipsGp
->section
= os
;
1154 ElfSym::mipsGp
->value
= 0x7ff0;
1161 // We want to find how similar two ranks are.
1162 // The more branches in getSectionRank that match, the more similar they are.
1163 // Since each branch corresponds to a bit flag, we can just use
1164 // countLeadingZeros.
1165 static int getRankProximity(OutputSection
*a
, SectionCommand
*b
) {
1166 auto *osd
= dyn_cast
<OutputDesc
>(b
);
1167 return (osd
&& osd
->osec
.hasInputSections
)
1168 ? llvm::countl_zero(a
->sortRank
^ osd
->osec
.sortRank
)
1172 // When placing orphan sections, we want to place them after symbol assignments
1173 // so that an orphan after
1177 // doesn't break the intended meaning of the begin/end symbols.
1178 // We don't want to go over sections since findOrphanPos is the
1179 // one in charge of deciding the order of the sections.
1180 // We don't want to go over changes to '.', since doing so in
1181 // rx_sec : { *(rx_sec) }
1182 // . = ALIGN(0x1000);
1183 // /* The RW PT_LOAD starts here*/
1184 // rw_sec : { *(rw_sec) }
1185 // would mean that the RW PT_LOAD would become unaligned.
1186 static bool shouldSkip(SectionCommand
*cmd
) {
1187 if (auto *assign
= dyn_cast
<SymbolAssignment
>(cmd
))
1188 return assign
->name
!= ".";
1192 // We want to place orphan sections so that they share as much
1193 // characteristics with their neighbors as possible. For example, if
1194 // both are rw, or both are tls.
1195 static SmallVectorImpl
<SectionCommand
*>::iterator
1196 findOrphanPos(SmallVectorImpl
<SectionCommand
*>::iterator b
,
1197 SmallVectorImpl
<SectionCommand
*>::iterator e
) {
1198 OutputSection
*sec
= &cast
<OutputDesc
>(*e
)->osec
;
1200 // As a special case, place .relro_padding before the SymbolAssignment using
1201 // DATA_SEGMENT_RELRO_END, if present.
1202 if (in
.relroPadding
&& sec
== in
.relroPadding
->getParent()) {
1203 auto i
= std::find_if(b
, e
, [=](SectionCommand
*a
) {
1204 if (auto *assign
= dyn_cast
<SymbolAssignment
>(a
))
1205 return assign
->dataSegmentRelroEnd
;
1212 // Find the first element that has as close a rank as possible.
1213 auto i
= std::max_element(b
, e
, [=](SectionCommand
*a
, SectionCommand
*b
) {
1214 return getRankProximity(sec
, a
) < getRankProximity(sec
, b
);
1218 if (!isa
<OutputDesc
>(*i
))
1220 auto foundSec
= &cast
<OutputDesc
>(*i
)->osec
;
1222 // Consider all existing sections with the same proximity.
1223 int proximity
= getRankProximity(sec
, *i
);
1224 unsigned sortRank
= sec
->sortRank
;
1225 if (script
->hasPhdrsCommands() || !script
->memoryRegions
.empty())
1226 // Prevent the orphan section to be placed before the found section. If
1227 // custom program headers are defined, that helps to avoid adding it to a
1228 // previous segment and changing flags of that segment, for example, making
1229 // a read-only segment writable. If memory regions are defined, an orphan
1230 // section should continue the same region as the found section to better
1231 // resemble the behavior of GNU ld.
1232 sortRank
= std::max(sortRank
, foundSec
->sortRank
);
1233 for (; i
!= e
; ++i
) {
1234 auto *curSecDesc
= dyn_cast
<OutputDesc
>(*i
);
1235 if (!curSecDesc
|| !curSecDesc
->osec
.hasInputSections
)
1237 if (getRankProximity(sec
, curSecDesc
) != proximity
||
1238 sortRank
< curSecDesc
->osec
.sortRank
)
1242 auto isOutputSecWithInputSections
= [](SectionCommand
*cmd
) {
1243 auto *osd
= dyn_cast
<OutputDesc
>(cmd
);
1244 return osd
&& osd
->osec
.hasInputSections
;
1247 std::find_if(std::make_reverse_iterator(i
), std::make_reverse_iterator(b
),
1248 isOutputSecWithInputSections
);
1251 // As a special case, if the orphan section is the last section, put
1252 // it at the very end, past any other commands.
1253 // This matches bfd's behavior and is convenient when the linker script fully
1254 // specifies the start of the file, but doesn't care about the end (the non
1255 // alloc sections for example).
1256 auto nextSec
= std::find_if(i
, e
, isOutputSecWithInputSections
);
1260 while (i
!= e
&& shouldSkip(*i
))
1265 // Adds random priorities to sections not already in the map.
1266 static void maybeShuffle(DenseMap
<const InputSectionBase
*, int> &order
) {
1267 if (config
->shuffleSections
.empty())
1270 SmallVector
<InputSectionBase
*, 0> matched
, sections
= ctx
.inputSections
;
1271 matched
.reserve(sections
.size());
1272 for (const auto &patAndSeed
: config
->shuffleSections
) {
1274 for (InputSectionBase
*sec
: sections
)
1275 if (patAndSeed
.first
.match(sec
->name
))
1276 matched
.push_back(sec
);
1277 const uint32_t seed
= patAndSeed
.second
;
1278 if (seed
== UINT32_MAX
) {
1279 // If --shuffle-sections <section-glob>=-1, reverse the section order. The
1280 // section order is stable even if the number of sections changes. This is
1281 // useful to catch issues like static initialization order fiasco
1283 std::reverse(matched
.begin(), matched
.end());
1285 std::mt19937
g(seed
? seed
: std::random_device()());
1286 llvm::shuffle(matched
.begin(), matched
.end(), g
);
1289 for (InputSectionBase
*&sec
: sections
)
1290 if (patAndSeed
.first
.match(sec
->name
))
1294 // Existing priorities are < 0, so use priorities >= 0 for the missing
1297 for (InputSectionBase
*sec
: sections
) {
1298 if (order
.try_emplace(sec
, prio
).second
)
1303 // Builds section order for handling --symbol-ordering-file.
1304 static DenseMap
<const InputSectionBase
*, int> buildSectionOrder() {
1305 DenseMap
<const InputSectionBase
*, int> sectionOrder
;
1306 // Use the rarely used option --call-graph-ordering-file to sort sections.
1307 if (!config
->callGraphProfile
.empty())
1308 return computeCallGraphProfileOrder();
1310 if (config
->symbolOrderingFile
.empty())
1311 return sectionOrder
;
1313 struct SymbolOrderEntry
{
1318 // Build a map from symbols to their priorities. Symbols that didn't
1319 // appear in the symbol ordering file have the lowest priority 0.
1320 // All explicitly mentioned symbols have negative (higher) priorities.
1321 DenseMap
<CachedHashStringRef
, SymbolOrderEntry
> symbolOrder
;
1322 int priority
= -config
->symbolOrderingFile
.size();
1323 for (StringRef s
: config
->symbolOrderingFile
)
1324 symbolOrder
.insert({CachedHashStringRef(s
), {priority
++, false}});
1326 // Build a map from sections to their priorities.
1327 auto addSym
= [&](Symbol
&sym
) {
1328 auto it
= symbolOrder
.find(CachedHashStringRef(sym
.getName()));
1329 if (it
== symbolOrder
.end())
1331 SymbolOrderEntry
&ent
= it
->second
;
1334 maybeWarnUnorderableSymbol(&sym
);
1336 if (auto *d
= dyn_cast
<Defined
>(&sym
)) {
1337 if (auto *sec
= dyn_cast_or_null
<InputSectionBase
>(d
->section
)) {
1338 int &priority
= sectionOrder
[cast
<InputSectionBase
>(sec
)];
1339 priority
= std::min(priority
, ent
.priority
);
1344 // We want both global and local symbols. We get the global ones from the
1345 // symbol table and iterate the object files for the local ones.
1346 for (Symbol
*sym
: symtab
.getSymbols())
1349 for (ELFFileBase
*file
: ctx
.objectFiles
)
1350 for (Symbol
*sym
: file
->getLocalSymbols())
1353 if (config
->warnSymbolOrdering
)
1354 for (auto orderEntry
: symbolOrder
)
1355 if (!orderEntry
.second
.present
)
1356 warn("symbol ordering file: no such symbol: " + orderEntry
.first
.val());
1358 return sectionOrder
;
1361 // Sorts the sections in ISD according to the provided section order.
1363 sortISDBySectionOrder(InputSectionDescription
*isd
,
1364 const DenseMap
<const InputSectionBase
*, int> &order
,
1365 bool executableOutputSection
) {
1366 SmallVector
<InputSection
*, 0> unorderedSections
;
1367 SmallVector
<std::pair
<InputSection
*, int>, 0> orderedSections
;
1368 uint64_t unorderedSize
= 0;
1369 uint64_t totalSize
= 0;
1371 for (InputSection
*isec
: isd
->sections
) {
1372 if (executableOutputSection
)
1373 totalSize
+= isec
->getSize();
1374 auto i
= order
.find(isec
);
1375 if (i
== order
.end()) {
1376 unorderedSections
.push_back(isec
);
1377 unorderedSize
+= isec
->getSize();
1380 orderedSections
.push_back({isec
, i
->second
});
1382 llvm::sort(orderedSections
, llvm::less_second());
1384 // Find an insertion point for the ordered section list in the unordered
1385 // section list. On targets with limited-range branches, this is the mid-point
1386 // of the unordered section list. This decreases the likelihood that a range
1387 // extension thunk will be needed to enter or exit the ordered region. If the
1388 // ordered section list is a list of hot functions, we can generally expect
1389 // the ordered functions to be called more often than the unordered functions,
1390 // making it more likely that any particular call will be within range, and
1391 // therefore reducing the number of thunks required.
1393 // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1394 // If the layout is:
1399 // only the first 8-16MB of the cold code (depending on which hot function it
1400 // is actually calling) can call the hot code without a range extension thunk.
1401 // However, if we use this layout:
1407 // both the last 8-16MB of the first block of cold code and the first 8-16MB
1408 // of the second block of cold code can call the hot code without a thunk. So
1409 // we effectively double the amount of code that could potentially call into
1410 // the hot code without a thunk.
1412 // The above is not necessary if total size of input sections in this "isd"
1413 // is small. Note that we assume all input sections are executable if the
1414 // output section is executable (which is not always true but supposed to
1415 // cover most cases).
1417 if (executableOutputSection
&& !orderedSections
.empty() &&
1418 target
->getThunkSectionSpacing() &&
1419 totalSize
>= target
->getThunkSectionSpacing()) {
1420 uint64_t unorderedPos
= 0;
1421 for (; insPt
!= unorderedSections
.size(); ++insPt
) {
1422 unorderedPos
+= unorderedSections
[insPt
]->getSize();
1423 if (unorderedPos
> unorderedSize
/ 2)
1428 isd
->sections
.clear();
1429 for (InputSection
*isec
: ArrayRef(unorderedSections
).slice(0, insPt
))
1430 isd
->sections
.push_back(isec
);
1431 for (std::pair
<InputSection
*, int> p
: orderedSections
)
1432 isd
->sections
.push_back(p
.first
);
1433 for (InputSection
*isec
: ArrayRef(unorderedSections
).slice(insPt
))
1434 isd
->sections
.push_back(isec
);
1437 static void sortSection(OutputSection
&osec
,
1438 const DenseMap
<const InputSectionBase
*, int> &order
) {
1439 StringRef name
= osec
.name
;
1441 // Never sort these.
1442 if (name
== ".init" || name
== ".fini")
1445 // IRelative relocations that usually live in the .rel[a].dyn section should
1446 // be processed last by the dynamic loader. To achieve that we add synthetic
1447 // sections in the required order from the beginning so that the in.relaIplt
1448 // section is placed last in an output section. Here we just do not apply
1449 // sorting for an output section which holds the in.relaIplt section.
1450 if (in
.relaIplt
->getParent() == &osec
)
1453 // Sort input sections by priority using the list provided by
1454 // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1455 // digit radix sort. The sections may be sorted stably again by a more
1458 for (SectionCommand
*b
: osec
.commands
)
1459 if (auto *isd
= dyn_cast
<InputSectionDescription
>(b
))
1460 sortISDBySectionOrder(isd
, order
, osec
.flags
& SHF_EXECINSTR
);
1462 if (script
->hasSectionsCommand
)
1465 if (name
== ".init_array" || name
== ".fini_array") {
1466 osec
.sortInitFini();
1467 } else if (name
== ".ctors" || name
== ".dtors") {
1468 osec
.sortCtorsDtors();
1469 } else if (config
->emachine
== EM_PPC64
&& name
== ".toc") {
1470 // .toc is allocated just after .got and is accessed using GOT-relative
1471 // relocations. Object files compiled with small code model have an
1472 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1473 // To reduce the risk of relocation overflow, .toc contents are sorted so
1474 // that sections having smaller relocation offsets are at beginning of .toc
1475 assert(osec
.commands
.size() == 1);
1476 auto *isd
= cast
<InputSectionDescription
>(osec
.commands
[0]);
1477 llvm::stable_sort(isd
->sections
,
1478 [](const InputSection
*a
, const InputSection
*b
) -> bool {
1479 return a
->file
->ppc64SmallCodeModelTocRelocs
&&
1480 !b
->file
->ppc64SmallCodeModelTocRelocs
;
1485 // If no layout was provided by linker script, we want to apply default
1486 // sorting for special input sections. This also handles --symbol-ordering-file.
1487 template <class ELFT
> void Writer
<ELFT
>::sortInputSections() {
1488 // Build the order once since it is expensive.
1489 DenseMap
<const InputSectionBase
*, int> order
= buildSectionOrder();
1490 maybeShuffle(order
);
1491 for (SectionCommand
*cmd
: script
->sectionCommands
)
1492 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1493 sortSection(osd
->osec
, order
);
1496 template <class ELFT
> void Writer
<ELFT
>::sortSections() {
1497 llvm::TimeTraceScope
timeScope("Sort sections");
1499 // Don't sort if using -r. It is not necessary and we want to preserve the
1500 // relative order for SHF_LINK_ORDER sections.
1501 if (config
->relocatable
) {
1502 script
->adjustOutputSections();
1506 sortInputSections();
1508 for (SectionCommand
*cmd
: script
->sectionCommands
)
1509 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1510 osd
->osec
.sortRank
= getSectionRank(osd
->osec
);
1511 if (!script
->hasSectionsCommand
) {
1512 // We know that all the OutputSections are contiguous in this case.
1513 auto isSection
= [](SectionCommand
*cmd
) { return isa
<OutputDesc
>(cmd
); };
1515 llvm::find_if(script
->sectionCommands
, isSection
),
1516 llvm::find_if(llvm::reverse(script
->sectionCommands
), isSection
).base(),
1520 // Process INSERT commands and update output section attributes. From this
1521 // point onwards the order of script->sectionCommands is fixed.
1522 script
->processInsertCommands();
1523 script
->adjustOutputSections();
1525 if (script
->hasSectionsCommand
)
1526 sortOrphanSections();
1528 script
->adjustSectionsAfterSorting();
1531 template <class ELFT
> void Writer
<ELFT
>::sortOrphanSections() {
1532 // Orphan sections are sections present in the input files which are
1533 // not explicitly placed into the output file by the linker script.
1535 // The sections in the linker script are already in the correct
1536 // order. We have to figuere out where to insert the orphan
1539 // The order of the sections in the script is arbitrary and may not agree with
1540 // compareSections. This means that we cannot easily define a strict weak
1541 // ordering. To see why, consider a comparison of a section in the script and
1542 // one not in the script. We have a two simple options:
1543 // * Make them equivalent (a is not less than b, and b is not less than a).
1544 // The problem is then that equivalence has to be transitive and we can
1545 // have sections a, b and c with only b in a script and a less than c
1546 // which breaks this property.
1547 // * Use compareSectionsNonScript. Given that the script order doesn't have
1548 // to match, we can end up with sections a, b, c, d where b and c are in the
1549 // script and c is compareSectionsNonScript less than b. In which case d
1550 // can be equivalent to c, a to b and d < a. As a concrete example:
1551 // .a (rx) # not in script
1552 // .b (rx) # in script
1553 // .c (ro) # in script
1554 // .d (ro) # not in script
1556 // The way we define an order then is:
1557 // * Sort only the orphan sections. They are in the end right now.
1558 // * Move each orphan section to its preferred position. We try
1559 // to put each section in the last position where it can share
1562 // There is some ambiguity as to where exactly a new entry should be
1563 // inserted, because Commands contains not only output section
1564 // commands but also other types of commands such as symbol assignment
1565 // expressions. There's no correct answer here due to the lack of the
1566 // formal specification of the linker script. We use heuristics to
1567 // determine whether a new output command should be added before or
1568 // after another commands. For the details, look at shouldSkip
1571 auto i
= script
->sectionCommands
.begin();
1572 auto e
= script
->sectionCommands
.end();
1573 auto nonScriptI
= std::find_if(i
, e
, [](SectionCommand
*cmd
) {
1574 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1575 return osd
->osec
.sectionIndex
== UINT32_MAX
;
1579 // Sort the orphan sections.
1580 std::stable_sort(nonScriptI
, e
, compareSections
);
1582 // As a horrible special case, skip the first . assignment if it is before any
1583 // section. We do this because it is common to set a load address by starting
1584 // the script with ". = 0xabcd" and the expectation is that every section is
1586 auto firstSectionOrDotAssignment
=
1587 std::find_if(i
, e
, [](SectionCommand
*cmd
) { return !shouldSkip(cmd
); });
1588 if (firstSectionOrDotAssignment
!= e
&&
1589 isa
<SymbolAssignment
>(**firstSectionOrDotAssignment
))
1590 ++firstSectionOrDotAssignment
;
1591 i
= firstSectionOrDotAssignment
;
1593 while (nonScriptI
!= e
) {
1594 auto pos
= findOrphanPos(i
, nonScriptI
);
1595 OutputSection
*orphan
= &cast
<OutputDesc
>(*nonScriptI
)->osec
;
1597 // As an optimization, find all sections with the same sort rank
1598 // and insert them with one rotate.
1599 unsigned rank
= orphan
->sortRank
;
1600 auto end
= std::find_if(nonScriptI
+ 1, e
, [=](SectionCommand
*cmd
) {
1601 return cast
<OutputDesc
>(cmd
)->osec
.sortRank
!= rank
;
1603 std::rotate(pos
, nonScriptI
, end
);
1608 static bool compareByFilePosition(InputSection
*a
, InputSection
*b
) {
1609 InputSection
*la
= a
->flags
& SHF_LINK_ORDER
? a
->getLinkOrderDep() : nullptr;
1610 InputSection
*lb
= b
->flags
& SHF_LINK_ORDER
? b
->getLinkOrderDep() : nullptr;
1611 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1612 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1615 OutputSection
*aOut
= la
->getParent();
1616 OutputSection
*bOut
= lb
->getParent();
1619 return aOut
->addr
< bOut
->addr
;
1620 return la
->outSecOff
< lb
->outSecOff
;
1623 template <class ELFT
> void Writer
<ELFT
>::resolveShfLinkOrder() {
1624 llvm::TimeTraceScope
timeScope("Resolve SHF_LINK_ORDER");
1625 for (OutputSection
*sec
: outputSections
) {
1626 if (!(sec
->flags
& SHF_LINK_ORDER
))
1629 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1630 // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1631 if (!config
->relocatable
&& config
->emachine
== EM_ARM
&&
1632 sec
->type
== SHT_ARM_EXIDX
)
1635 // Link order may be distributed across several InputSectionDescriptions.
1636 // Sorting is performed separately.
1637 SmallVector
<InputSection
**, 0> scriptSections
;
1638 SmallVector
<InputSection
*, 0> sections
;
1639 for (SectionCommand
*cmd
: sec
->commands
) {
1640 auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
);
1643 bool hasLinkOrder
= false;
1644 scriptSections
.clear();
1646 for (InputSection
*&isec
: isd
->sections
) {
1647 if (isec
->flags
& SHF_LINK_ORDER
) {
1648 InputSection
*link
= isec
->getLinkOrderDep();
1649 if (link
&& !link
->getParent())
1650 error(toString(isec
) + ": sh_link points to discarded section " +
1652 hasLinkOrder
= true;
1654 scriptSections
.push_back(&isec
);
1655 sections
.push_back(isec
);
1657 if (hasLinkOrder
&& errorCount() == 0) {
1658 llvm::stable_sort(sections
, compareByFilePosition
);
1659 for (int i
= 0, n
= sections
.size(); i
!= n
; ++i
)
1660 *scriptSections
[i
] = sections
[i
];
1666 static void finalizeSynthetic(SyntheticSection
*sec
) {
1667 if (sec
&& sec
->isNeeded() && sec
->getParent()) {
1668 llvm::TimeTraceScope
timeScope("Finalize synthetic sections", sec
->name
);
1669 sec
->finalizeContents();
1673 // We need to generate and finalize the content that depends on the address of
1674 // InputSections. As the generation of the content may also alter InputSection
1675 // addresses we must converge to a fixed point. We do that here. See the comment
1676 // in Writer<ELFT>::finalizeSections().
1677 template <class ELFT
> void Writer
<ELFT
>::finalizeAddressDependentContent() {
1678 llvm::TimeTraceScope
timeScope("Finalize address dependent content");
1680 AArch64Err843419Patcher a64p
;
1681 ARMErr657417Patcher a32p
;
1682 script
->assignAddresses();
1683 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1684 // do require the relative addresses of OutputSections because linker scripts
1685 // can assign Virtual Addresses to OutputSections that are not monotonically
1687 for (Partition
&part
: partitions
)
1688 finalizeSynthetic(part
.armExidx
.get());
1689 resolveShfLinkOrder();
1691 // Converts call x@GDPLT to call __tls_get_addr
1692 if (config
->emachine
== EM_HEXAGON
)
1693 hexagonTLSSymbolUpdate(outputSections
);
1695 uint32_t pass
= 0, assignPasses
= 0;
1697 bool changed
= target
->needsThunks
? tc
.createThunks(pass
, outputSections
)
1698 : target
->relaxOnce(pass
);
1701 // With Thunk Size much smaller than branch range we expect to
1702 // converge quickly; if we get to 30 something has gone wrong.
1703 if (changed
&& pass
>= 30) {
1704 error(target
->needsThunks
? "thunk creation not converged"
1705 : "relaxation not converged");
1709 if (config
->fixCortexA53Errata843419
) {
1711 script
->assignAddresses();
1712 changed
|= a64p
.createFixes();
1714 if (config
->fixCortexA8
) {
1716 script
->assignAddresses();
1717 changed
|= a32p
.createFixes();
1720 finalizeSynthetic(in
.got
.get());
1722 in
.mipsGot
->updateAllocSize();
1724 for (Partition
&part
: partitions
) {
1725 changed
|= part
.relaDyn
->updateAllocSize();
1727 changed
|= part
.relrDyn
->updateAllocSize();
1728 if (part
.memtagDescriptors
)
1729 changed
|= part
.memtagDescriptors
->updateAllocSize();
1732 const Defined
*changedSym
= script
->assignAddresses();
1734 // Some symbols may be dependent on section addresses. When we break the
1735 // loop, the symbol values are finalized because a previous
1736 // assignAddresses() finalized section addresses.
1739 if (++assignPasses
== 5) {
1740 errorOrWarn("assignment to symbol " + toString(*changedSym
) +
1741 " does not converge");
1746 if (!config
->relocatable
&& config
->emachine
== EM_RISCV
)
1747 riscvFinalizeRelax(pass
);
1749 if (config
->relocatable
)
1750 for (OutputSection
*sec
: outputSections
)
1753 // If addrExpr is set, the address may not be a multiple of the alignment.
1754 // Warn because this is error-prone.
1755 for (SectionCommand
*cmd
: script
->sectionCommands
)
1756 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
)) {
1757 OutputSection
*osec
= &osd
->osec
;
1758 if (osec
->addr
% osec
->addralign
!= 0)
1759 warn("address (0x" + Twine::utohexstr(osec
->addr
) + ") of section " +
1760 osec
->name
+ " is not a multiple of alignment (" +
1761 Twine(osec
->addralign
) + ")");
1765 // If Input Sections have been shrunk (basic block sections) then
1766 // update symbol values and sizes associated with these sections. With basic
1767 // block sections, input sections can shrink when the jump instructions at
1768 // the end of the section are relaxed.
1769 static void fixSymbolsAfterShrinking() {
1770 for (InputFile
*File
: ctx
.objectFiles
) {
1771 parallelForEach(File
->getSymbols(), [&](Symbol
*Sym
) {
1772 auto *def
= dyn_cast
<Defined
>(Sym
);
1776 const SectionBase
*sec
= def
->section
;
1780 const InputSectionBase
*inputSec
= dyn_cast
<InputSectionBase
>(sec
);
1781 if (!inputSec
|| !inputSec
->bytesDropped
)
1784 const size_t OldSize
= inputSec
->content().size();
1785 const size_t NewSize
= OldSize
- inputSec
->bytesDropped
;
1787 if (def
->value
> NewSize
&& def
->value
<= OldSize
) {
1788 LLVM_DEBUG(llvm::dbgs()
1789 << "Moving symbol " << Sym
->getName() << " from "
1790 << def
->value
<< " to "
1791 << def
->value
- inputSec
->bytesDropped
<< " bytes\n");
1792 def
->value
-= inputSec
->bytesDropped
;
1796 if (def
->value
+ def
->size
> NewSize
&& def
->value
<= OldSize
&&
1797 def
->value
+ def
->size
<= OldSize
) {
1798 LLVM_DEBUG(llvm::dbgs()
1799 << "Shrinking symbol " << Sym
->getName() << " from "
1800 << def
->size
<< " to " << def
->size
- inputSec
->bytesDropped
1802 def
->size
-= inputSec
->bytesDropped
;
1808 // If basic block sections exist, there are opportunities to delete fall thru
1809 // jumps and shrink jump instructions after basic block reordering. This
1810 // relaxation pass does that. It is only enabled when --optimize-bb-jumps
1812 template <class ELFT
> void Writer
<ELFT
>::optimizeBasicBlockJumps() {
1813 assert(config
->optimizeBBJumps
);
1814 SmallVector
<InputSection
*, 0> storage
;
1816 script
->assignAddresses();
1817 // For every output section that has executable input sections, this
1818 // does the following:
1819 // 1. Deletes all direct jump instructions in input sections that
1820 // jump to the following section as it is not required.
1821 // 2. If there are two consecutive jump instructions, it checks
1822 // if they can be flipped and one can be deleted.
1823 for (OutputSection
*osec
: outputSections
) {
1824 if (!(osec
->flags
& SHF_EXECINSTR
))
1826 ArrayRef
<InputSection
*> sections
= getInputSections(*osec
, storage
);
1827 size_t numDeleted
= 0;
1828 // Delete all fall through jump instructions. Also, check if two
1829 // consecutive jump instructions can be flipped so that a fall
1830 // through jmp instruction can be deleted.
1831 for (size_t i
= 0, e
= sections
.size(); i
!= e
; ++i
) {
1832 InputSection
*next
= i
+ 1 < sections
.size() ? sections
[i
+ 1] : nullptr;
1833 InputSection
&sec
= *sections
[i
];
1834 numDeleted
+= target
->deleteFallThruJmpInsn(sec
, sec
.file
, next
);
1836 if (numDeleted
> 0) {
1837 script
->assignAddresses();
1838 LLVM_DEBUG(llvm::dbgs()
1839 << "Removing " << numDeleted
<< " fall through jumps\n");
1843 fixSymbolsAfterShrinking();
1845 for (OutputSection
*osec
: outputSections
)
1846 for (InputSection
*is
: getInputSections(*osec
, storage
))
1850 // In order to allow users to manipulate linker-synthesized sections,
1851 // we had to add synthetic sections to the input section list early,
1852 // even before we make decisions whether they are needed. This allows
1853 // users to write scripts like this: ".mygot : { .got }".
1855 // Doing it has an unintended side effects. If it turns out that we
1856 // don't need a .got (for example) at all because there's no
1857 // relocation that needs a .got, we don't want to emit .got.
1859 // To deal with the above problem, this function is called after
1860 // scanRelocations is called to remove synthetic sections that turn
1862 static void removeUnusedSyntheticSections() {
1863 // All input synthetic sections that can be empty are placed after
1864 // all regular ones. Reverse iterate to find the first synthetic section
1865 // after a non-synthetic one which will be our starting point.
1867 llvm::find_if(llvm::reverse(ctx
.inputSections
), [](InputSectionBase
*s
) {
1868 return !isa
<SyntheticSection
>(s
);
1871 // Remove unused synthetic sections from ctx.inputSections;
1872 DenseSet
<InputSectionBase
*> unused
;
1874 std::remove_if(start
, ctx
.inputSections
.end(), [&](InputSectionBase
*s
) {
1875 auto *sec
= cast
<SyntheticSection
>(s
);
1876 if (sec
->getParent() && sec
->isNeeded())
1881 ctx
.inputSections
.erase(end
, ctx
.inputSections
.end());
1883 // Remove unused synthetic sections from the corresponding input section
1884 // description and orphanSections.
1885 for (auto *sec
: unused
)
1886 if (OutputSection
*osec
= cast
<SyntheticSection
>(sec
)->getParent())
1887 for (SectionCommand
*cmd
: osec
->commands
)
1888 if (auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
))
1889 llvm::erase_if(isd
->sections
, [&](InputSection
*isec
) {
1890 return unused
.count(isec
);
1892 llvm::erase_if(script
->orphanSections
, [&](const InputSectionBase
*sec
) {
1893 return unused
.count(sec
);
1897 // Create output section objects and add them to OutputSections.
1898 template <class ELFT
> void Writer
<ELFT
>::finalizeSections() {
1899 if (!config
->relocatable
) {
1900 Out::preinitArray
= findSection(".preinit_array");
1901 Out::initArray
= findSection(".init_array");
1902 Out::finiArray
= findSection(".fini_array");
1904 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1905 // symbols for sections, so that the runtime can get the start and end
1906 // addresses of each section by section name. Add such symbols.
1907 addStartEndSymbols();
1908 for (SectionCommand
*cmd
: script
->sectionCommands
)
1909 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1910 addStartStopSymbols(osd
->osec
);
1912 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1913 // It should be okay as no one seems to care about the type.
1914 // Even the author of gold doesn't remember why gold behaves that way.
1915 // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1916 if (mainPart
->dynamic
->parent
) {
1917 Symbol
*s
= symtab
.addSymbol(Defined
{
1918 /*file=*/nullptr, "_DYNAMIC", STB_WEAK
, STV_HIDDEN
, STT_NOTYPE
,
1919 /*value=*/0, /*size=*/0, mainPart
->dynamic
.get()});
1920 s
->isUsedInRegularObj
= true;
1923 // Define __rel[a]_iplt_{start,end} symbols if needed.
1924 addRelIpltSymbols();
1926 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1927 // should only be defined in an executable. If .sdata does not exist, its
1928 // value/section does not matter but it has to be relative, so set its
1929 // st_shndx arbitrarily to 1 (Out::elfHeader).
1930 if (config
->emachine
== EM_RISCV
) {
1931 ElfSym::riscvGlobalPointer
= nullptr;
1932 if (!config
->shared
) {
1933 OutputSection
*sec
= findSection(".sdata");
1935 "__global_pointer$", sec
? sec
: Out::elfHeader
, 0x800, STV_DEFAULT
);
1936 // Set riscvGlobalPointer to be used by the optional global pointer
1938 if (config
->relaxGP
) {
1939 Symbol
*s
= symtab
.find("__global_pointer$");
1940 if (s
&& s
->isDefined())
1941 ElfSym::riscvGlobalPointer
= cast
<Defined
>(s
);
1946 if (config
->emachine
== EM_386
|| config
->emachine
== EM_X86_64
) {
1947 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1950 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1952 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address
1953 // in the TLS block).
1955 // 2) is special cased in @tpoff computation. To satisfy 1), we define it
1956 // as an absolute symbol of zero. This is different from GNU linkers which
1957 // define _TLS_MODULE_BASE_ relative to the first TLS section.
1958 Symbol
*s
= symtab
.find("_TLS_MODULE_BASE_");
1959 if (s
&& s
->isUndefined()) {
1960 s
->resolve(Defined
{/*file=*/nullptr, StringRef(), STB_GLOBAL
,
1961 STV_HIDDEN
, STT_TLS
, /*value=*/0, 0,
1962 /*section=*/nullptr});
1963 ElfSym::tlsModuleBase
= cast
<Defined
>(s
);
1967 // This responsible for splitting up .eh_frame section into
1968 // pieces. The relocation scan uses those pieces, so this has to be
1971 llvm::TimeTraceScope
timeScope("Finalize .eh_frame");
1972 for (Partition
&part
: partitions
)
1973 finalizeSynthetic(part
.ehFrame
.get());
1977 demoteSymbolsAndComputeIsPreemptible();
1979 if (config
->copyRelocs
&& config
->discard
!= DiscardPolicy::None
)
1980 markUsedLocalSymbols
<ELFT
>();
1981 demoteAndCopyLocalSymbols();
1983 if (config
->copyRelocs
)
1984 addSectionSymbols();
1986 // Change values of linker-script-defined symbols from placeholders (assigned
1987 // by declareSymbols) to actual definitions.
1988 script
->processSymbolAssignments();
1990 if (!config
->relocatable
) {
1991 llvm::TimeTraceScope
timeScope("Scan relocations");
1992 // Scan relocations. This must be done after every symbol is declared so
1993 // that we can correctly decide if a dynamic relocation is needed. This is
1994 // called after processSymbolAssignments() because it needs to know whether
1995 // a linker-script-defined symbol is absolute.
1996 ppc64noTocRelax
.clear();
1997 scanRelocations
<ELFT
>();
1998 reportUndefinedSymbols();
1999 postScanRelocations();
2001 if (in
.plt
&& in
.plt
->isNeeded())
2002 in
.plt
->addSymbols();
2003 if (in
.iplt
&& in
.iplt
->isNeeded())
2004 in
.iplt
->addSymbols();
2006 if (config
->unresolvedSymbolsInShlib
!= UnresolvedPolicy::Ignore
) {
2008 config
->unresolvedSymbolsInShlib
== UnresolvedPolicy::ReportError
2011 // Error on undefined symbols in a shared object, if all of its DT_NEEDED
2012 // entries are seen. These cases would otherwise lead to runtime errors
2013 // reported by the dynamic linker.
2015 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker
2016 // to catch more cases. That is too much for us. Our approach resembles
2017 // the one used in ld.gold, achieves a good balance to be useful but not
2019 for (SharedFile
*file
: ctx
.sharedFiles
) {
2020 bool allNeededIsKnown
=
2021 llvm::all_of(file
->dtNeeded
, [&](StringRef needed
) {
2022 return symtab
.soNames
.count(CachedHashStringRef(needed
));
2024 if (!allNeededIsKnown
)
2026 for (Symbol
*sym
: file
->requiredSymbols
)
2027 if (sym
->isUndefined() && !sym
->isWeak())
2028 diagnose("undefined reference due to --no-allow-shlib-undefined: " +
2029 toString(*sym
) + "\n>>> referenced by " + toString(file
));
2035 llvm::TimeTraceScope
timeScope("Add symbols to symtabs");
2036 // Now that we have defined all possible global symbols including linker-
2037 // synthesized ones. Visit all symbols to give the finishing touches.
2038 for (Symbol
*sym
: symtab
.getSymbols()) {
2039 if (!sym
->isUsedInRegularObj
|| !includeInSymtab(*sym
))
2041 if (!config
->relocatable
)
2042 sym
->binding
= sym
->computeBinding();
2044 in
.symTab
->addSymbol(sym
);
2046 if (sym
->includeInDynsym()) {
2047 partitions
[sym
->partition
- 1].dynSymTab
->addSymbol(sym
);
2048 if (auto *file
= dyn_cast_or_null
<SharedFile
>(sym
->file
))
2049 if (file
->isNeeded
&& !sym
->isUndefined())
2054 // We also need to scan the dynamic relocation tables of the other
2055 // partitions and add any referenced symbols to the partition's dynsym.
2056 for (Partition
&part
: MutableArrayRef
<Partition
>(partitions
).slice(1)) {
2057 DenseSet
<Symbol
*> syms
;
2058 for (const SymbolTableEntry
&e
: part
.dynSymTab
->getSymbols())
2060 for (DynamicReloc
&reloc
: part
.relaDyn
->relocs
)
2061 if (reloc
.sym
&& reloc
.needsDynSymIndex() &&
2062 syms
.insert(reloc
.sym
).second
)
2063 part
.dynSymTab
->addSymbol(reloc
.sym
);
2068 in
.mipsGot
->build();
2070 removeUnusedSyntheticSections();
2071 script
->diagnoseOrphanHandling();
2072 script
->diagnoseMissingSGSectionAddress();
2076 // Create a list of OutputSections, assign sectionIndex, and populate
2078 for (SectionCommand
*cmd
: script
->sectionCommands
)
2079 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
)) {
2080 OutputSection
*osec
= &osd
->osec
;
2081 outputSections
.push_back(osec
);
2082 osec
->sectionIndex
= outputSections
.size();
2083 osec
->shName
= in
.shStrTab
->addString(osec
->name
);
2086 // Prefer command line supplied address over other constraints.
2087 for (OutputSection
*sec
: outputSections
) {
2088 auto i
= config
->sectionStartMap
.find(sec
->name
);
2089 if (i
!= config
->sectionStartMap
.end())
2090 sec
->addrExpr
= [=] { return i
->second
; };
2093 // With the outputSections available check for GDPLT relocations
2094 // and add __tls_get_addr symbol if needed.
2095 if (config
->emachine
== EM_HEXAGON
&& hexagonNeedsTLSSymbol(outputSections
)) {
2096 Symbol
*sym
= symtab
.addSymbol(Undefined
{
2097 nullptr, "__tls_get_addr", STB_GLOBAL
, STV_DEFAULT
, STT_NOTYPE
});
2098 sym
->isPreemptible
= true;
2099 partitions
[0].dynSymTab
->addSymbol(sym
);
2102 // This is a bit of a hack. A value of 0 means undef, so we set it
2103 // to 1 to make __ehdr_start defined. The section number is not
2104 // particularly relevant.
2105 Out::elfHeader
->sectionIndex
= 1;
2106 Out::elfHeader
->size
= sizeof(typename
ELFT::Ehdr
);
2108 // Binary and relocatable output does not have PHDRS.
2109 // The headers have to be created before finalize as that can influence the
2110 // image base and the dynamic section on mips includes the image base.
2111 if (!config
->relocatable
&& !config
->oFormatBinary
) {
2112 for (Partition
&part
: partitions
) {
2113 part
.phdrs
= script
->hasPhdrsCommands() ? script
->createPhdrs()
2114 : createPhdrs(part
);
2115 if (config
->emachine
== EM_ARM
) {
2116 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2117 addPhdrForSection(part
, SHT_ARM_EXIDX
, PT_ARM_EXIDX
, PF_R
);
2119 if (config
->emachine
== EM_MIPS
) {
2120 // Add separate segments for MIPS-specific sections.
2121 addPhdrForSection(part
, SHT_MIPS_REGINFO
, PT_MIPS_REGINFO
, PF_R
);
2122 addPhdrForSection(part
, SHT_MIPS_OPTIONS
, PT_MIPS_OPTIONS
, PF_R
);
2123 addPhdrForSection(part
, SHT_MIPS_ABIFLAGS
, PT_MIPS_ABIFLAGS
, PF_R
);
2125 if (config
->emachine
== EM_RISCV
)
2126 addPhdrForSection(part
, SHT_RISCV_ATTRIBUTES
, PT_RISCV_ATTRIBUTES
,
2129 Out::programHeaders
->size
= sizeof(Elf_Phdr
) * mainPart
->phdrs
.size();
2131 // Find the TLS segment. This happens before the section layout loop so that
2132 // Android relocation packing can look up TLS symbol addresses. We only need
2133 // to care about the main partition here because all TLS symbols were moved
2134 // to the main partition (see MarkLive.cpp).
2135 for (PhdrEntry
*p
: mainPart
->phdrs
)
2136 if (p
->p_type
== PT_TLS
)
2140 // Some symbols are defined in term of program headers. Now that we
2141 // have the headers, we can find out which sections they point to.
2142 setReservedSymbolSections();
2145 llvm::TimeTraceScope
timeScope("Finalize synthetic sections");
2147 finalizeSynthetic(in
.bss
.get());
2148 finalizeSynthetic(in
.bssRelRo
.get());
2149 finalizeSynthetic(in
.symTabShndx
.get());
2150 finalizeSynthetic(in
.shStrTab
.get());
2151 finalizeSynthetic(in
.strTab
.get());
2152 finalizeSynthetic(in
.got
.get());
2153 finalizeSynthetic(in
.mipsGot
.get());
2154 finalizeSynthetic(in
.igotPlt
.get());
2155 finalizeSynthetic(in
.gotPlt
.get());
2156 finalizeSynthetic(in
.relaIplt
.get());
2157 finalizeSynthetic(in
.relaPlt
.get());
2158 finalizeSynthetic(in
.plt
.get());
2159 finalizeSynthetic(in
.iplt
.get());
2160 finalizeSynthetic(in
.ppc32Got2
.get());
2161 finalizeSynthetic(in
.partIndex
.get());
2163 // Dynamic section must be the last one in this list and dynamic
2164 // symbol table section (dynSymTab) must be the first one.
2165 for (Partition
&part
: partitions
) {
2167 part
.relaDyn
->mergeRels();
2168 // Compute DT_RELACOUNT to be used by part.dynamic.
2169 part
.relaDyn
->partitionRels();
2170 finalizeSynthetic(part
.relaDyn
.get());
2173 part
.relrDyn
->mergeRels();
2174 finalizeSynthetic(part
.relrDyn
.get());
2177 finalizeSynthetic(part
.dynSymTab
.get());
2178 finalizeSynthetic(part
.gnuHashTab
.get());
2179 finalizeSynthetic(part
.hashTab
.get());
2180 finalizeSynthetic(part
.verDef
.get());
2181 finalizeSynthetic(part
.ehFrameHdr
.get());
2182 finalizeSynthetic(part
.verSym
.get());
2183 finalizeSynthetic(part
.verNeed
.get());
2184 finalizeSynthetic(part
.dynamic
.get());
2188 if (!script
->hasSectionsCommand
&& !config
->relocatable
)
2189 fixSectionAlignments();
2192 // 1) Create "thunks":
2193 // Jump instructions in many ISAs have small displacements, and therefore
2194 // they cannot jump to arbitrary addresses in memory. For example, RISC-V
2195 // JAL instruction can target only +-1 MiB from PC. It is a linker's
2196 // responsibility to create and insert small pieces of code between
2197 // sections to extend the ranges if jump targets are out of range. Such
2198 // code pieces are called "thunks".
2200 // We add thunks at this stage. We couldn't do this before this point
2201 // because this is the earliest point where we know sizes of sections and
2202 // their layouts (that are needed to determine if jump targets are in
2205 // 2) Update the sections. We need to generate content that depends on the
2206 // address of InputSections. For example, MIPS GOT section content or
2207 // android packed relocations sections content.
2209 // 3) Assign the final values for the linker script symbols. Linker scripts
2210 // sometimes using forward symbol declarations. We want to set the correct
2211 // values. They also might change after adding the thunks.
2212 finalizeAddressDependentContent();
2214 // All information needed for OutputSection part of Map file is available.
2219 llvm::TimeTraceScope
timeScope("Finalize synthetic sections");
2220 // finalizeAddressDependentContent may have added local symbols to the
2221 // static symbol table.
2222 finalizeSynthetic(in
.symTab
.get());
2223 finalizeSynthetic(in
.ppc64LongBranchTarget
.get());
2224 finalizeSynthetic(in
.armCmseSGSection
.get());
2227 // Relaxation to delete inter-basic block jumps created by basic block
2228 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2229 // can relax jump instructions based on symbol offset.
2230 if (config
->optimizeBBJumps
)
2231 optimizeBasicBlockJumps();
2233 // Fill other section headers. The dynamic table is finalized
2234 // at the end because some tags like RELSZ depend on result
2235 // of finalizing other sections.
2236 for (OutputSection
*sec
: outputSections
)
2239 script
->checkFinalScriptConditions();
2241 if (config
->emachine
== EM_ARM
&& !config
->isLE
&& config
->armBe8
) {
2242 addArmInputSectionMappingSymbols();
2243 sortArmMappingSymbols();
2247 // Ensure data sections are not mixed with executable sections when
2248 // --execute-only is used. --execute-only make pages executable but not
2250 template <class ELFT
> void Writer
<ELFT
>::checkExecuteOnly() {
2251 if (!config
->executeOnly
)
2254 SmallVector
<InputSection
*, 0> storage
;
2255 for (OutputSection
*osec
: outputSections
)
2256 if (osec
->flags
& SHF_EXECINSTR
)
2257 for (InputSection
*isec
: getInputSections(*osec
, storage
))
2258 if (!(isec
->flags
& SHF_EXECINSTR
))
2259 error("cannot place " + toString(isec
) + " into " +
2260 toString(osec
->name
) +
2261 ": --execute-only does not support intermingling data and code");
2264 // The linker is expected to define SECNAME_start and SECNAME_end
2265 // symbols for a few sections. This function defines them.
2266 template <class ELFT
> void Writer
<ELFT
>::addStartEndSymbols() {
2267 // If a section does not exist, there's ambiguity as to how we
2268 // define _start and _end symbols for an init/fini section. Since
2269 // the loader assume that the symbols are always defined, we need to
2270 // always define them. But what value? The loader iterates over all
2271 // pointers between _start and _end to run global ctors/dtors, so if
2272 // the section is empty, their symbol values don't actually matter
2273 // as long as _start and _end point to the same location.
2275 // That said, we don't want to set the symbols to 0 (which is
2276 // probably the simplest value) because that could cause some
2277 // program to fail to link due to relocation overflow, if their
2278 // program text is above 2 GiB. We use the address of the .text
2279 // section instead to prevent that failure.
2281 // In rare situations, the .text section may not exist. If that's the
2282 // case, use the image base address as a last resort.
2283 OutputSection
*Default
= findSection(".text");
2285 Default
= Out::elfHeader
;
2287 auto define
= [=](StringRef start
, StringRef end
, OutputSection
*os
) {
2288 if (os
&& !script
->isDiscarded(os
)) {
2289 addOptionalRegular(start
, os
, 0);
2290 addOptionalRegular(end
, os
, -1);
2292 addOptionalRegular(start
, Default
, 0);
2293 addOptionalRegular(end
, Default
, 0);
2297 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray
);
2298 define("__init_array_start", "__init_array_end", Out::initArray
);
2299 define("__fini_array_start", "__fini_array_end", Out::finiArray
);
2301 if (OutputSection
*sec
= findSection(".ARM.exidx"))
2302 define("__exidx_start", "__exidx_end", sec
);
2305 // If a section name is valid as a C identifier (which is rare because of
2306 // the leading '.'), linkers are expected to define __start_<secname> and
2307 // __stop_<secname> symbols. They are at beginning and end of the section,
2308 // respectively. This is not requested by the ELF standard, but GNU ld and
2309 // gold provide the feature, and used by many programs.
2310 template <class ELFT
>
2311 void Writer
<ELFT
>::addStartStopSymbols(OutputSection
&osec
) {
2312 StringRef s
= osec
.name
;
2313 if (!isValidCIdentifier(s
))
2315 addOptionalRegular(saver().save("__start_" + s
), &osec
, 0,
2316 config
->zStartStopVisibility
);
2317 addOptionalRegular(saver().save("__stop_" + s
), &osec
, -1,
2318 config
->zStartStopVisibility
);
2321 static bool needsPtLoad(OutputSection
*sec
) {
2322 if (!(sec
->flags
& SHF_ALLOC
))
2325 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2326 // responsible for allocating space for them, not the PT_LOAD that
2327 // contains the TLS initialization image.
2328 if ((sec
->flags
& SHF_TLS
) && sec
->type
== SHT_NOBITS
)
2333 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2334 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2335 // RW. This means that there is no alignment in the RO to RX transition and we
2336 // cannot create a PT_LOAD there.
2337 static uint64_t computeFlags(uint64_t flags
) {
2339 return PF_R
| PF_W
| PF_X
;
2340 if (config
->executeOnly
&& (flags
& PF_X
))
2341 return flags
& ~PF_R
;
2342 if (config
->singleRoRx
&& !(flags
& PF_W
))
2343 return flags
| PF_X
;
2347 // Decide which program headers to create and which sections to include in each
2349 template <class ELFT
>
2350 SmallVector
<PhdrEntry
*, 0> Writer
<ELFT
>::createPhdrs(Partition
&part
) {
2351 SmallVector
<PhdrEntry
*, 0> ret
;
2352 auto addHdr
= [&](unsigned type
, unsigned flags
) -> PhdrEntry
* {
2353 ret
.push_back(make
<PhdrEntry
>(type
, flags
));
2357 unsigned partNo
= part
.getNumber();
2358 bool isMain
= partNo
== 1;
2360 // Add the first PT_LOAD segment for regular output sections.
2361 uint64_t flags
= computeFlags(PF_R
);
2362 PhdrEntry
*load
= nullptr;
2364 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2366 if (!config
->nmagic
&& !config
->omagic
) {
2367 // The first phdr entry is PT_PHDR which describes the program header
2370 addHdr(PT_PHDR
, PF_R
)->add(Out::programHeaders
);
2372 addHdr(PT_PHDR
, PF_R
)->add(part
.programHeaders
->getParent());
2374 // PT_INTERP must be the second entry if exists.
2375 if (OutputSection
*cmd
= findSection(".interp", partNo
))
2376 addHdr(PT_INTERP
, cmd
->getPhdrFlags())->add(cmd
);
2378 // Add the headers. We will remove them if they don't fit.
2379 // In the other partitions the headers are ordinary sections, so they don't
2380 // need to be added here.
2382 load
= addHdr(PT_LOAD
, flags
);
2383 load
->add(Out::elfHeader
);
2384 load
->add(Out::programHeaders
);
2388 // PT_GNU_RELRO includes all sections that should be marked as
2389 // read-only by dynamic linker after processing relocations.
2390 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2391 // an error message if more than one PT_GNU_RELRO PHDR is required.
2392 PhdrEntry
*relRo
= make
<PhdrEntry
>(PT_GNU_RELRO
, PF_R
);
2393 bool inRelroPhdr
= false;
2394 OutputSection
*relroEnd
= nullptr;
2395 for (OutputSection
*sec
: outputSections
) {
2396 if (sec
->partition
!= partNo
|| !needsPtLoad(sec
))
2398 if (isRelroSection(sec
)) {
2403 error("section: " + sec
->name
+ " is not contiguous with other relro" +
2405 } else if (inRelroPhdr
) {
2406 inRelroPhdr
= false;
2412 for (OutputSection
*sec
: outputSections
) {
2413 if (!needsPtLoad(sec
))
2416 // Normally, sections in partitions other than the current partition are
2417 // ignored. But partition number 255 is a special case: it contains the
2418 // partition end marker (.part.end). It needs to be added to the main
2419 // partition so that a segment is created for it in the main partition,
2420 // which will cause the dynamic loader to reserve space for the other
2422 if (sec
->partition
!= partNo
) {
2423 if (isMain
&& sec
->partition
== 255)
2424 addHdr(PT_LOAD
, computeFlags(sec
->getPhdrFlags()))->add(sec
);
2428 // Segments are contiguous memory regions that has the same attributes
2429 // (e.g. executable or writable). There is one phdr for each segment.
2430 // Therefore, we need to create a new phdr when the next section has
2431 // different flags or is loaded at a discontiguous address or memory region
2432 // using AT or AT> linker script command, respectively.
2434 // As an exception, we don't create a separate load segment for the ELF
2435 // headers, even if the first "real" output has an AT or AT> attribute.
2437 // In addition, NOBITS sections should only be placed at the end of a LOAD
2438 // segment (since it's represented as p_filesz < p_memsz). If we have a
2439 // not-NOBITS section after a NOBITS, we create a new LOAD for the latter
2440 // even if flags match, so as not to require actually writing the
2441 // supposed-to-be-NOBITS section to the output file. (However, we cannot do
2442 // so when hasSectionsCommand, since we cannot introduce the extra alignment
2443 // needed to create a new LOAD)
2444 uint64_t newFlags
= computeFlags(sec
->getPhdrFlags());
2445 bool sameLMARegion
=
2446 load
&& !sec
->lmaExpr
&& sec
->lmaRegion
== load
->firstSec
->lmaRegion
;
2447 if (!(load
&& newFlags
== flags
&& sec
!= relroEnd
&&
2448 sec
->memRegion
== load
->firstSec
->memRegion
&&
2449 (sameLMARegion
|| load
->lastSec
== Out::programHeaders
) &&
2450 (script
->hasSectionsCommand
|| sec
->type
== SHT_NOBITS
||
2451 load
->lastSec
->type
!= SHT_NOBITS
))) {
2452 load
= addHdr(PT_LOAD
, newFlags
);
2459 // Add a TLS segment if any.
2460 PhdrEntry
*tlsHdr
= make
<PhdrEntry
>(PT_TLS
, PF_R
);
2461 for (OutputSection
*sec
: outputSections
)
2462 if (sec
->partition
== partNo
&& sec
->flags
& SHF_TLS
)
2464 if (tlsHdr
->firstSec
)
2465 ret
.push_back(tlsHdr
);
2467 // Add an entry for .dynamic.
2468 if (OutputSection
*sec
= part
.dynamic
->getParent())
2469 addHdr(PT_DYNAMIC
, sec
->getPhdrFlags())->add(sec
);
2471 if (relRo
->firstSec
)
2472 ret
.push_back(relRo
);
2474 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2475 if (part
.ehFrame
->isNeeded() && part
.ehFrameHdr
&&
2476 part
.ehFrame
->getParent() && part
.ehFrameHdr
->getParent())
2477 addHdr(PT_GNU_EH_FRAME
, part
.ehFrameHdr
->getParent()->getPhdrFlags())
2478 ->add(part
.ehFrameHdr
->getParent());
2480 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2481 // the dynamic linker fill the segment with random data.
2482 if (OutputSection
*cmd
= findSection(".openbsd.randomdata", partNo
))
2483 addHdr(PT_OPENBSD_RANDOMIZE
, cmd
->getPhdrFlags())->add(cmd
);
2485 if (config
->zGnustack
!= GnuStackKind::None
) {
2486 // PT_GNU_STACK is a special section to tell the loader to make the
2487 // pages for the stack non-executable. If you really want an executable
2488 // stack, you can pass -z execstack, but that's not recommended for
2489 // security reasons.
2490 unsigned perm
= PF_R
| PF_W
;
2491 if (config
->zGnustack
== GnuStackKind::Exec
)
2493 addHdr(PT_GNU_STACK
, perm
)->p_memsz
= config
->zStackSize
;
2496 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2497 // is expected to perform W^X violations, such as calling mprotect(2) or
2498 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2500 if (config
->zWxneeded
)
2501 addHdr(PT_OPENBSD_WXNEEDED
, PF_X
);
2503 if (OutputSection
*cmd
= findSection(".note.gnu.property", partNo
))
2504 addHdr(PT_GNU_PROPERTY
, PF_R
)->add(cmd
);
2506 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2508 PhdrEntry
*note
= nullptr;
2509 for (OutputSection
*sec
: outputSections
) {
2510 if (sec
->partition
!= partNo
)
2512 if (sec
->type
== SHT_NOTE
&& (sec
->flags
& SHF_ALLOC
)) {
2513 if (!note
|| sec
->lmaExpr
|| note
->lastSec
->addralign
!= sec
->addralign
)
2514 note
= addHdr(PT_NOTE
, PF_R
);
2523 template <class ELFT
>
2524 void Writer
<ELFT
>::addPhdrForSection(Partition
&part
, unsigned shType
,
2525 unsigned pType
, unsigned pFlags
) {
2526 unsigned partNo
= part
.getNumber();
2527 auto i
= llvm::find_if(outputSections
, [=](OutputSection
*cmd
) {
2528 return cmd
->partition
== partNo
&& cmd
->type
== shType
;
2530 if (i
== outputSections
.end())
2533 PhdrEntry
*entry
= make
<PhdrEntry
>(pType
, pFlags
);
2535 part
.phdrs
.push_back(entry
);
2538 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2539 // This is achieved by assigning an alignment expression to addrExpr of each
2541 template <class ELFT
> void Writer
<ELFT
>::fixSectionAlignments() {
2542 const PhdrEntry
*prev
;
2543 auto pageAlign
= [&](const PhdrEntry
*p
) {
2544 OutputSection
*cmd
= p
->firstSec
;
2547 cmd
->alignExpr
= [align
= cmd
->addralign
]() { return align
; };
2548 if (!cmd
->addrExpr
) {
2549 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2550 // padding in the file contents.
2552 // When -z separate-code is used we must not have any overlap in pages
2553 // between an executable segment and a non-executable segment. We align to
2554 // the next maximum page size boundary on transitions between executable
2555 // and non-executable segments.
2557 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2558 // sections will be extracted to a separate file. Align to the next
2559 // maximum page size boundary so that we can find the ELF header at the
2560 // start. We cannot benefit from overlapping p_offset ranges with the
2561 // previous segment anyway.
2562 if (config
->zSeparate
== SeparateSegmentKind::Loadable
||
2563 (config
->zSeparate
== SeparateSegmentKind::Code
&& prev
&&
2564 (prev
->p_flags
& PF_X
) != (p
->p_flags
& PF_X
)) ||
2565 cmd
->type
== SHT_LLVM_PART_EHDR
)
2566 cmd
->addrExpr
= [] {
2567 return alignToPowerOf2(script
->getDot(), config
->maxPageSize
);
2569 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2570 // it must be the RW. Align to p_align(PT_TLS) to make sure
2571 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2572 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2573 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2574 // be congruent to 0 modulo p_align(PT_TLS).
2576 // Technically this is not required, but as of 2019, some dynamic loaders
2577 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2578 // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2579 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2580 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2581 // blocks correctly. We need to keep the workaround for a while.
2582 else if (Out::tlsPhdr
&& Out::tlsPhdr
->firstSec
== p
->firstSec
)
2583 cmd
->addrExpr
= [] {
2584 return alignToPowerOf2(script
->getDot(), config
->maxPageSize
) +
2585 alignToPowerOf2(script
->getDot() % config
->maxPageSize
,
2586 Out::tlsPhdr
->p_align
);
2589 cmd
->addrExpr
= [] {
2590 return alignToPowerOf2(script
->getDot(), config
->maxPageSize
) +
2591 script
->getDot() % config
->maxPageSize
;
2596 for (Partition
&part
: partitions
) {
2598 for (const PhdrEntry
*p
: part
.phdrs
)
2599 if (p
->p_type
== PT_LOAD
&& p
->firstSec
) {
2606 // Compute an in-file position for a given section. The file offset must be the
2607 // same with its virtual address modulo the page size, so that the loader can
2608 // load executables without any address adjustment.
2609 static uint64_t computeFileOffset(OutputSection
*os
, uint64_t off
) {
2610 // The first section in a PT_LOAD has to have congruent offset and address
2611 // modulo the maximum page size.
2612 if (os
->ptLoad
&& os
->ptLoad
->firstSec
== os
)
2613 return alignTo(off
, os
->ptLoad
->p_align
, os
->addr
);
2615 // File offsets are not significant for .bss sections other than the first one
2616 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically
2617 // increasing rather than setting to zero.
2618 if (os
->type
== SHT_NOBITS
&&
2619 (!Out::tlsPhdr
|| Out::tlsPhdr
->firstSec
!= os
))
2622 // If the section is not in a PT_LOAD, we just have to align it.
2624 return alignToPowerOf2(off
, os
->addralign
);
2626 // If two sections share the same PT_LOAD the file offset is calculated
2627 // using this formula: Off2 = Off1 + (VA2 - VA1).
2628 OutputSection
*first
= os
->ptLoad
->firstSec
;
2629 return first
->offset
+ os
->addr
- first
->addr
;
2632 template <class ELFT
> void Writer
<ELFT
>::assignFileOffsetsBinary() {
2633 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2634 auto needsOffset
= [](OutputSection
&sec
) {
2635 return sec
.type
!= SHT_NOBITS
&& (sec
.flags
& SHF_ALLOC
) && sec
.size
> 0;
2637 uint64_t minAddr
= UINT64_MAX
;
2638 for (OutputSection
*sec
: outputSections
)
2639 if (needsOffset(*sec
)) {
2640 sec
->offset
= sec
->getLMA();
2641 minAddr
= std::min(minAddr
, sec
->offset
);
2644 // Sections are laid out at LMA minus minAddr.
2646 for (OutputSection
*sec
: outputSections
)
2647 if (needsOffset(*sec
)) {
2648 sec
->offset
-= minAddr
;
2649 fileSize
= std::max(fileSize
, sec
->offset
+ sec
->size
);
2653 static std::string
rangeToString(uint64_t addr
, uint64_t len
) {
2654 return "[0x" + utohexstr(addr
) + ", 0x" + utohexstr(addr
+ len
- 1) + "]";
2657 // Assign file offsets to output sections.
2658 template <class ELFT
> void Writer
<ELFT
>::assignFileOffsets() {
2659 Out::programHeaders
->offset
= Out::elfHeader
->size
;
2660 uint64_t off
= Out::elfHeader
->size
+ Out::programHeaders
->size
;
2662 PhdrEntry
*lastRX
= nullptr;
2663 for (Partition
&part
: partitions
)
2664 for (PhdrEntry
*p
: part
.phdrs
)
2665 if (p
->p_type
== PT_LOAD
&& (p
->p_flags
& PF_X
))
2668 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2669 // will not occupy file offsets contained by a PT_LOAD.
2670 for (OutputSection
*sec
: outputSections
) {
2671 if (!(sec
->flags
& SHF_ALLOC
))
2673 off
= computeFileOffset(sec
, off
);
2675 if (sec
->type
!= SHT_NOBITS
)
2678 // If this is a last section of the last executable segment and that
2679 // segment is the last loadable segment, align the offset of the
2680 // following section to avoid loading non-segments parts of the file.
2681 if (config
->zSeparate
!= SeparateSegmentKind::None
&& lastRX
&&
2682 lastRX
->lastSec
== sec
)
2683 off
= alignToPowerOf2(off
, config
->maxPageSize
);
2685 for (OutputSection
*osec
: outputSections
)
2686 if (!(osec
->flags
& SHF_ALLOC
)) {
2687 osec
->offset
= alignToPowerOf2(off
, osec
->addralign
);
2688 off
= osec
->offset
+ osec
->size
;
2691 sectionHeaderOff
= alignToPowerOf2(off
, config
->wordsize
);
2692 fileSize
= sectionHeaderOff
+ (outputSections
.size() + 1) * sizeof(Elf_Shdr
);
2694 // Our logic assumes that sections have rising VA within the same segment.
2695 // With use of linker scripts it is possible to violate this rule and get file
2696 // offset overlaps or overflows. That should never happen with a valid script
2697 // which does not move the location counter backwards and usually scripts do
2698 // not do that. Unfortunately, there are apps in the wild, for example, Linux
2699 // kernel, which control segment distribution explicitly and move the counter
2700 // backwards, so we have to allow doing that to support linking them. We
2701 // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2702 // we want to prevent file size overflows because it would crash the linker.
2703 for (OutputSection
*sec
: outputSections
) {
2704 if (sec
->type
== SHT_NOBITS
)
2706 if ((sec
->offset
> fileSize
) || (sec
->offset
+ sec
->size
> fileSize
))
2707 error("unable to place section " + sec
->name
+ " at file offset " +
2708 rangeToString(sec
->offset
, sec
->size
) +
2709 "; check your linker script for overflows");
2713 // Finalize the program headers. We call this function after we assign
2714 // file offsets and VAs to all sections.
2715 template <class ELFT
> void Writer
<ELFT
>::setPhdrs(Partition
&part
) {
2716 for (PhdrEntry
*p
: part
.phdrs
) {
2717 OutputSection
*first
= p
->firstSec
;
2718 OutputSection
*last
= p
->lastSec
;
2720 // .ARM.exidx sections may not be within a single .ARM.exidx
2721 // output section. We always want to describe just the
2722 // SyntheticSection.
2723 if (part
.armExidx
&& p
->p_type
== PT_ARM_EXIDX
) {
2724 p
->p_filesz
= part
.armExidx
->getSize();
2725 p
->p_memsz
= part
.armExidx
->getSize();
2726 p
->p_offset
= first
->offset
+ part
.armExidx
->outSecOff
;
2727 p
->p_vaddr
= first
->addr
+ part
.armExidx
->outSecOff
;
2728 p
->p_align
= part
.armExidx
->addralign
;
2730 p
->p_offset
-= part
.elfHeader
->getParent()->offset
;
2733 p
->p_paddr
= first
->getLMA() + part
.armExidx
->outSecOff
;
2738 p
->p_filesz
= last
->offset
- first
->offset
;
2739 if (last
->type
!= SHT_NOBITS
)
2740 p
->p_filesz
+= last
->size
;
2742 p
->p_memsz
= last
->addr
+ last
->size
- first
->addr
;
2743 p
->p_offset
= first
->offset
;
2744 p
->p_vaddr
= first
->addr
;
2746 // File offsets in partitions other than the main partition are relative
2747 // to the offset of the ELF headers. Perform that adjustment now.
2749 p
->p_offset
-= part
.elfHeader
->getParent()->offset
;
2752 p
->p_paddr
= first
->getLMA();
2757 // A helper struct for checkSectionOverlap.
2759 struct SectionOffset
{
2765 // Check whether sections overlap for a specific address range (file offsets,
2766 // load and virtual addresses).
2767 static void checkOverlap(StringRef name
, std::vector
<SectionOffset
> §ions
,
2768 bool isVirtualAddr
) {
2769 llvm::sort(sections
, [=](const SectionOffset
&a
, const SectionOffset
&b
) {
2770 return a
.offset
< b
.offset
;
2773 // Finding overlap is easy given a vector is sorted by start position.
2774 // If an element starts before the end of the previous element, they overlap.
2775 for (size_t i
= 1, end
= sections
.size(); i
< end
; ++i
) {
2776 SectionOffset a
= sections
[i
- 1];
2777 SectionOffset b
= sections
[i
];
2778 if (b
.offset
>= a
.offset
+ a
.sec
->size
)
2781 // If both sections are in OVERLAY we allow the overlapping of virtual
2782 // addresses, because it is what OVERLAY was designed for.
2783 if (isVirtualAddr
&& a
.sec
->inOverlay
&& b
.sec
->inOverlay
)
2786 errorOrWarn("section " + a
.sec
->name
+ " " + name
+
2787 " range overlaps with " + b
.sec
->name
+ "\n>>> " + a
.sec
->name
+
2788 " range is " + rangeToString(a
.offset
, a
.sec
->size
) + "\n>>> " +
2789 b
.sec
->name
+ " range is " +
2790 rangeToString(b
.offset
, b
.sec
->size
));
2794 // Check for overlapping sections and address overflows.
2796 // In this function we check that none of the output sections have overlapping
2797 // file offsets. For SHF_ALLOC sections we also check that the load address
2798 // ranges and the virtual address ranges don't overlap
2799 template <class ELFT
> void Writer
<ELFT
>::checkSections() {
2800 // First, check that section's VAs fit in available address space for target.
2801 for (OutputSection
*os
: outputSections
)
2802 if ((os
->addr
+ os
->size
< os
->addr
) ||
2803 (!ELFT::Is64Bits
&& os
->addr
+ os
->size
> uint64_t(UINT32_MAX
) + 1))
2804 errorOrWarn("section " + os
->name
+ " at 0x" + utohexstr(os
->addr
) +
2805 " of size 0x" + utohexstr(os
->size
) +
2806 " exceeds available address space");
2808 // Check for overlapping file offsets. In this case we need to skip any
2809 // section marked as SHT_NOBITS. These sections don't actually occupy space in
2810 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2811 // binary is specified only add SHF_ALLOC sections are added to the output
2812 // file so we skip any non-allocated sections in that case.
2813 std::vector
<SectionOffset
> fileOffs
;
2814 for (OutputSection
*sec
: outputSections
)
2815 if (sec
->size
> 0 && sec
->type
!= SHT_NOBITS
&&
2816 (!config
->oFormatBinary
|| (sec
->flags
& SHF_ALLOC
)))
2817 fileOffs
.push_back({sec
, sec
->offset
});
2818 checkOverlap("file", fileOffs
, false);
2820 // When linking with -r there is no need to check for overlapping virtual/load
2821 // addresses since those addresses will only be assigned when the final
2822 // executable/shared object is created.
2823 if (config
->relocatable
)
2826 // Checking for overlapping virtual and load addresses only needs to take
2827 // into account SHF_ALLOC sections since others will not be loaded.
2828 // Furthermore, we also need to skip SHF_TLS sections since these will be
2829 // mapped to other addresses at runtime and can therefore have overlapping
2830 // ranges in the file.
2831 std::vector
<SectionOffset
> vmas
;
2832 for (OutputSection
*sec
: outputSections
)
2833 if (sec
->size
> 0 && (sec
->flags
& SHF_ALLOC
) && !(sec
->flags
& SHF_TLS
))
2834 vmas
.push_back({sec
, sec
->addr
});
2835 checkOverlap("virtual address", vmas
, true);
2837 // Finally, check that the load addresses don't overlap. This will usually be
2838 // the same as the virtual addresses but can be different when using a linker
2839 // script with AT().
2840 std::vector
<SectionOffset
> lmas
;
2841 for (OutputSection
*sec
: outputSections
)
2842 if (sec
->size
> 0 && (sec
->flags
& SHF_ALLOC
) && !(sec
->flags
& SHF_TLS
))
2843 lmas
.push_back({sec
, sec
->getLMA()});
2844 checkOverlap("load address", lmas
, false);
2847 // The entry point address is chosen in the following ways.
2849 // 1. the '-e' entry command-line option;
2850 // 2. the ENTRY(symbol) command in a linker control script;
2851 // 3. the value of the symbol _start, if present;
2852 // 4. the number represented by the entry symbol, if it is a number;
2853 // 5. the address 0.
2854 static uint64_t getEntryAddr() {
2856 if (Symbol
*b
= symtab
.find(config
->entry
))
2861 if (to_integer(config
->entry
, addr
))
2865 if (config
->warnMissingEntry
)
2866 warn("cannot find entry symbol " + config
->entry
+
2867 "; not setting start address");
2871 static uint16_t getELFType() {
2874 if (config
->relocatable
)
2879 template <class ELFT
> void Writer
<ELFT
>::writeHeader() {
2880 writeEhdr
<ELFT
>(Out::bufferStart
, *mainPart
);
2881 writePhdrs
<ELFT
>(Out::bufferStart
+ sizeof(Elf_Ehdr
), *mainPart
);
2883 auto *eHdr
= reinterpret_cast<Elf_Ehdr
*>(Out::bufferStart
);
2884 eHdr
->e_type
= getELFType();
2885 eHdr
->e_entry
= getEntryAddr();
2886 eHdr
->e_shoff
= sectionHeaderOff
;
2888 // Write the section header table.
2890 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2891 // and e_shstrndx fields. When the value of one of these fields exceeds
2892 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2893 // use fields in the section header at index 0 to store
2894 // the value. The sentinel values and fields are:
2895 // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2896 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2897 auto *sHdrs
= reinterpret_cast<Elf_Shdr
*>(Out::bufferStart
+ eHdr
->e_shoff
);
2898 size_t num
= outputSections
.size() + 1;
2899 if (num
>= SHN_LORESERVE
)
2900 sHdrs
->sh_size
= num
;
2902 eHdr
->e_shnum
= num
;
2904 uint32_t strTabIndex
= in
.shStrTab
->getParent()->sectionIndex
;
2905 if (strTabIndex
>= SHN_LORESERVE
) {
2906 sHdrs
->sh_link
= strTabIndex
;
2907 eHdr
->e_shstrndx
= SHN_XINDEX
;
2909 eHdr
->e_shstrndx
= strTabIndex
;
2912 for (OutputSection
*sec
: outputSections
)
2913 sec
->writeHeaderTo
<ELFT
>(++sHdrs
);
2916 // Open a result file.
2917 template <class ELFT
> void Writer
<ELFT
>::openFile() {
2918 uint64_t maxSize
= config
->is64
? INT64_MAX
: UINT32_MAX
;
2919 if (fileSize
!= size_t(fileSize
) || maxSize
< fileSize
) {
2921 raw_string_ostream
s(msg
);
2922 s
<< "output file too large: " << Twine(fileSize
) << " bytes\n"
2923 << "section sizes:\n";
2924 for (OutputSection
*os
: outputSections
)
2925 s
<< os
->name
<< ' ' << os
->size
<< "\n";
2930 unlinkAsync(config
->outputFile
);
2932 if (!config
->relocatable
)
2933 flags
|= FileOutputBuffer::F_executable
;
2934 if (!config
->mmapOutputFile
)
2935 flags
|= FileOutputBuffer::F_no_mmap
;
2936 Expected
<std::unique_ptr
<FileOutputBuffer
>> bufferOrErr
=
2937 FileOutputBuffer::create(config
->outputFile
, fileSize
, flags
);
2940 error("failed to open " + config
->outputFile
+ ": " +
2941 llvm::toString(bufferOrErr
.takeError()));
2944 buffer
= std::move(*bufferOrErr
);
2945 Out::bufferStart
= buffer
->getBufferStart();
2948 template <class ELFT
> void Writer
<ELFT
>::writeSectionsBinary() {
2949 parallel::TaskGroup tg
;
2950 for (OutputSection
*sec
: outputSections
)
2951 if (sec
->flags
& SHF_ALLOC
)
2952 sec
->writeTo
<ELFT
>(Out::bufferStart
+ sec
->offset
, tg
);
2955 static void fillTrap(uint8_t *i
, uint8_t *end
) {
2956 for (; i
+ 4 <= end
; i
+= 4)
2957 memcpy(i
, &target
->trapInstr
, 4);
2960 // Fill the last page of executable segments with trap instructions
2961 // instead of leaving them as zero. Even though it is not required by any
2962 // standard, it is in general a good thing to do for security reasons.
2964 // We'll leave other pages in segments as-is because the rest will be
2965 // overwritten by output sections.
2966 template <class ELFT
> void Writer
<ELFT
>::writeTrapInstr() {
2967 for (Partition
&part
: partitions
) {
2968 // Fill the last page.
2969 for (PhdrEntry
*p
: part
.phdrs
)
2970 if (p
->p_type
== PT_LOAD
&& (p
->p_flags
& PF_X
))
2971 fillTrap(Out::bufferStart
+
2972 alignDown(p
->firstSec
->offset
+ p
->p_filesz
, 4),
2974 alignToPowerOf2(p
->firstSec
->offset
+ p
->p_filesz
,
2975 config
->maxPageSize
));
2977 // Round up the file size of the last segment to the page boundary iff it is
2978 // an executable segment to ensure that other tools don't accidentally
2979 // trim the instruction padding (e.g. when stripping the file).
2980 PhdrEntry
*last
= nullptr;
2981 for (PhdrEntry
*p
: part
.phdrs
)
2982 if (p
->p_type
== PT_LOAD
)
2985 if (last
&& (last
->p_flags
& PF_X
))
2986 last
->p_memsz
= last
->p_filesz
=
2987 alignToPowerOf2(last
->p_filesz
, config
->maxPageSize
);
2991 // Write section contents to a mmap'ed file.
2992 template <class ELFT
> void Writer
<ELFT
>::writeSections() {
2993 llvm::TimeTraceScope
timeScope("Write sections");
2996 // In -r or --emit-relocs mode, write the relocation sections first as in
2997 // ELf_Rel targets we might find out that we need to modify the relocated
2998 // section while doing it.
2999 parallel::TaskGroup tg
;
3000 for (OutputSection
*sec
: outputSections
)
3001 if (sec
->type
== SHT_REL
|| sec
->type
== SHT_RELA
)
3002 sec
->writeTo
<ELFT
>(Out::bufferStart
+ sec
->offset
, tg
);
3005 parallel::TaskGroup tg
;
3006 for (OutputSection
*sec
: outputSections
)
3007 if (sec
->type
!= SHT_REL
&& sec
->type
!= SHT_RELA
)
3008 sec
->writeTo
<ELFT
>(Out::bufferStart
+ sec
->offset
, tg
);
3011 // Finally, check that all dynamic relocation addends were written correctly.
3012 if (config
->checkDynamicRelocs
&& config
->writeAddends
) {
3013 for (OutputSection
*sec
: outputSections
)
3014 if (sec
->type
== SHT_REL
|| sec
->type
== SHT_RELA
)
3015 sec
->checkDynRelAddends(Out::bufferStart
);
3019 // Computes a hash value of Data using a given hash function.
3020 // In order to utilize multiple cores, we first split data into 1MB
3021 // chunks, compute a hash for each chunk, and then compute a hash value
3022 // of the hash values.
3024 computeHash(llvm::MutableArrayRef
<uint8_t> hashBuf
,
3025 llvm::ArrayRef
<uint8_t> data
,
3026 std::function
<void(uint8_t *dest
, ArrayRef
<uint8_t> arr
)> hashFn
) {
3027 std::vector
<ArrayRef
<uint8_t>> chunks
= split(data
, 1024 * 1024);
3028 const size_t hashesSize
= chunks
.size() * hashBuf
.size();
3029 std::unique_ptr
<uint8_t[]> hashes(new uint8_t[hashesSize
]);
3031 // Compute hash values.
3032 parallelFor(0, chunks
.size(), [&](size_t i
) {
3033 hashFn(hashes
.get() + i
* hashBuf
.size(), chunks
[i
]);
3036 // Write to the final output buffer.
3037 hashFn(hashBuf
.data(), ArrayRef(hashes
.get(), hashesSize
));
3040 template <class ELFT
> void Writer
<ELFT
>::writeBuildId() {
3041 if (!mainPart
->buildId
|| !mainPart
->buildId
->getParent())
3044 if (config
->buildId
== BuildIdKind::Hexstring
) {
3045 for (Partition
&part
: partitions
)
3046 part
.buildId
->writeBuildId(config
->buildIdVector
);
3050 // Compute a hash of all sections of the output file.
3051 size_t hashSize
= mainPart
->buildId
->hashSize
;
3052 std::unique_ptr
<uint8_t[]> buildId(new uint8_t[hashSize
]);
3053 MutableArrayRef
<uint8_t> output(buildId
.get(), hashSize
);
3054 llvm::ArrayRef
<uint8_t> input
{Out::bufferStart
, size_t(fileSize
)};
3056 // Fedora introduced build ID as "approximation of true uniqueness across all
3057 // binaries that might be used by overlapping sets of people". It does not
3058 // need some security goals that some hash algorithms strive to provide, e.g.
3059 // (second-)preimage and collision resistance. In practice people use 'md5'
3060 // and 'sha1' just for different lengths. Implement them with the more
3061 // efficient BLAKE3.
3062 switch (config
->buildId
) {
3063 case BuildIdKind::Fast
:
3064 computeHash(output
, input
, [](uint8_t *dest
, ArrayRef
<uint8_t> arr
) {
3065 write64le(dest
, xxh3_64bits(arr
));
3068 case BuildIdKind::Md5
:
3069 computeHash(output
, input
, [&](uint8_t *dest
, ArrayRef
<uint8_t> arr
) {
3070 memcpy(dest
, BLAKE3::hash
<16>(arr
).data(), hashSize
);
3073 case BuildIdKind::Sha1
:
3074 computeHash(output
, input
, [&](uint8_t *dest
, ArrayRef
<uint8_t> arr
) {
3075 memcpy(dest
, BLAKE3::hash
<20>(arr
).data(), hashSize
);
3078 case BuildIdKind::Uuid
:
3079 if (auto ec
= llvm::getRandomBytes(buildId
.get(), hashSize
))
3080 error("entropy source failure: " + ec
.message());
3083 llvm_unreachable("unknown BuildIdKind");
3085 for (Partition
&part
: partitions
)
3086 part
.buildId
->writeBuildId(output
);
3089 template void elf::createSyntheticSections
<ELF32LE
>();
3090 template void elf::createSyntheticSections
<ELF32BE
>();
3091 template void elf::createSyntheticSections
<ELF64LE
>();
3092 template void elf::createSyntheticSections
<ELF64BE
>();
3094 template void elf::writeResult
<ELF32LE
>();
3095 template void elf::writeResult
<ELF32BE
>();
3096 template void elf::writeResult
<ELF64LE
>();
3097 template void elf::writeResult
<ELF64BE
>();