Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lldb / source / Plugins / ABI / AArch64 / ABISysV_arm64.cpp
blobbf3c5ddd588977e91a3900cd260c2e3a9d4f5479
1 //===-- ABISysV_arm64.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "ABISysV_arm64.h"
11 #include <optional>
12 #include <vector>
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/TargetParser/Triple.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/PluginManager.h"
19 #include "lldb/Core/Value.h"
20 #include "lldb/Core/ValueObjectConstResult.h"
21 #include "lldb/Symbol/UnwindPlan.h"
22 #include "lldb/Target/Process.h"
23 #include "lldb/Target/RegisterContext.h"
24 #include "lldb/Target/Target.h"
25 #include "lldb/Target/Thread.h"
26 #include "lldb/Utility/ConstString.h"
27 #include "lldb/Utility/LLDBLog.h"
28 #include "lldb/Utility/Log.h"
29 #include "lldb/Utility/RegisterValue.h"
30 #include "lldb/Utility/Scalar.h"
31 #include "lldb/Utility/Status.h"
33 #include "Utility/ARM64_DWARF_Registers.h"
35 using namespace lldb;
36 using namespace lldb_private;
38 bool ABISysV_arm64::GetPointerReturnRegister(const char *&name) {
39 name = "x0";
40 return true;
43 size_t ABISysV_arm64::GetRedZoneSize() const { return 128; }
45 // Static Functions
47 ABISP
48 ABISysV_arm64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
49 const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch();
50 const llvm::Triple::VendorType vendor_type = arch.GetTriple().getVendor();
52 if (vendor_type != llvm::Triple::Apple) {
53 if (arch_type == llvm::Triple::aarch64 ||
54 arch_type == llvm::Triple::aarch64_32) {
55 return ABISP(
56 new ABISysV_arm64(std::move(process_sp), MakeMCRegisterInfo(arch)));
60 return ABISP();
63 bool ABISysV_arm64::PrepareTrivialCall(Thread &thread, addr_t sp,
64 addr_t func_addr, addr_t return_addr,
65 llvm::ArrayRef<addr_t> args) const {
66 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
67 if (!reg_ctx)
68 return false;
70 Log *log = GetLog(LLDBLog::Expressions);
72 if (log) {
73 StreamString s;
74 s.Printf("ABISysV_arm64::PrepareTrivialCall (tid = 0x%" PRIx64
75 ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
76 ", return_addr = 0x%" PRIx64,
77 thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
78 (uint64_t)return_addr);
80 for (size_t i = 0; i < args.size(); ++i)
81 s.Printf(", arg%d = 0x%" PRIx64, static_cast<int>(i + 1), args[i]);
82 s.PutCString(")");
83 log->PutString(s.GetString());
86 // x0 - x7 contain first 8 simple args
87 if (args.size() > 8)
88 return false;
90 for (size_t i = 0; i < args.size(); ++i) {
91 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfo(
92 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + i);
93 LLDB_LOGF(log, "About to write arg%d (0x%" PRIx64 ") into %s",
94 static_cast<int>(i + 1), args[i], reg_info->name);
95 if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
96 return false;
99 // Set "lr" to the return address
100 if (!reg_ctx->WriteRegisterFromUnsigned(
101 reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
102 LLDB_REGNUM_GENERIC_RA),
103 return_addr))
104 return false;
106 // Set "sp" to the requested value
107 if (!reg_ctx->WriteRegisterFromUnsigned(
108 reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
109 LLDB_REGNUM_GENERIC_SP),
110 sp))
111 return false;
113 // Set "pc" to the address requested
114 if (!reg_ctx->WriteRegisterFromUnsigned(
115 reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
116 LLDB_REGNUM_GENERIC_PC),
117 func_addr))
118 return false;
120 return true;
123 // TODO: We dont support fp/SIMD arguments in v0-v7
124 bool ABISysV_arm64::GetArgumentValues(Thread &thread, ValueList &values) const {
125 uint32_t num_values = values.GetSize();
127 ExecutionContext exe_ctx(thread.shared_from_this());
129 // Extract the register context so we can read arguments from registers
131 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
133 if (!reg_ctx)
134 return false;
136 addr_t sp = 0;
138 for (uint32_t value_idx = 0; value_idx < num_values; ++value_idx) {
139 // We currently only support extracting values with Clang QualTypes. Do we
140 // care about others?
141 Value *value = values.GetValueAtIndex(value_idx);
143 if (!value)
144 return false;
146 CompilerType value_type = value->GetCompilerType();
147 if (value_type) {
148 bool is_signed = false;
149 size_t bit_width = 0;
150 std::optional<uint64_t> bit_size = value_type.GetBitSize(&thread);
151 if (!bit_size)
152 return false;
153 if (value_type.IsIntegerOrEnumerationType(is_signed)) {
154 bit_width = *bit_size;
155 } else if (value_type.IsPointerOrReferenceType()) {
156 bit_width = *bit_size;
157 } else {
158 // We only handle integer, pointer and reference types currently...
159 return false;
162 if (bit_width <= (exe_ctx.GetProcessRef().GetAddressByteSize() * 8)) {
163 if (value_idx < 8) {
164 // Arguments 1-8 are in x0-x7...
165 const RegisterInfo *reg_info = nullptr;
166 reg_info = reg_ctx->GetRegisterInfo(
167 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + value_idx);
169 if (reg_info) {
170 RegisterValue reg_value;
172 if (reg_ctx->ReadRegister(reg_info, reg_value)) {
173 if (is_signed)
174 reg_value.SignExtend(bit_width);
175 if (!reg_value.GetScalarValue(value->GetScalar()))
176 return false;
177 continue;
180 return false;
181 } else {
182 // TODO: Verify for stack layout for SysV
183 if (sp == 0) {
184 // Read the stack pointer if we already haven't read it
185 sp = reg_ctx->GetSP(0);
186 if (sp == 0)
187 return false;
190 // Arguments 5 on up are on the stack
191 const uint32_t arg_byte_size = (bit_width + (8 - 1)) / 8;
192 Status error;
193 if (!exe_ctx.GetProcessRef().ReadScalarIntegerFromMemory(
194 sp, arg_byte_size, is_signed, value->GetScalar(), error))
195 return false;
197 sp += arg_byte_size;
198 // Align up to the next 8 byte boundary if needed
199 if (sp % 8) {
200 sp >>= 3;
201 sp += 1;
202 sp <<= 3;
208 return true;
211 Status ABISysV_arm64::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
212 lldb::ValueObjectSP &new_value_sp) {
213 Status error;
214 if (!new_value_sp) {
215 error.SetErrorString("Empty value object for return value.");
216 return error;
219 CompilerType return_value_type = new_value_sp->GetCompilerType();
220 if (!return_value_type) {
221 error.SetErrorString("Null clang type for return value.");
222 return error;
225 Thread *thread = frame_sp->GetThread().get();
227 RegisterContext *reg_ctx = thread->GetRegisterContext().get();
229 if (reg_ctx) {
230 DataExtractor data;
231 Status data_error;
232 const uint64_t byte_size = new_value_sp->GetData(data, data_error);
233 if (data_error.Fail()) {
234 error.SetErrorStringWithFormat(
235 "Couldn't convert return value to raw data: %s",
236 data_error.AsCString());
237 return error;
240 const uint32_t type_flags = return_value_type.GetTypeInfo(nullptr);
241 if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) {
242 if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer) {
243 // Extract the register context so we can read arguments from registers
244 lldb::offset_t offset = 0;
245 if (byte_size <= 16) {
246 const RegisterInfo *x0_info = reg_ctx->GetRegisterInfo(
247 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1);
248 if (byte_size <= 8) {
249 uint64_t raw_value = data.GetMaxU64(&offset, byte_size);
251 if (!reg_ctx->WriteRegisterFromUnsigned(x0_info, raw_value))
252 error.SetErrorString("failed to write register x0");
253 } else {
254 uint64_t raw_value = data.GetMaxU64(&offset, 8);
256 if (reg_ctx->WriteRegisterFromUnsigned(x0_info, raw_value)) {
257 const RegisterInfo *x1_info = reg_ctx->GetRegisterInfo(
258 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2);
259 raw_value = data.GetMaxU64(&offset, byte_size - offset);
261 if (!reg_ctx->WriteRegisterFromUnsigned(x1_info, raw_value))
262 error.SetErrorString("failed to write register x1");
265 } else {
266 error.SetErrorString("We don't support returning longer than 128 bit "
267 "integer values at present.");
269 } else if (type_flags & eTypeIsFloat) {
270 if (type_flags & eTypeIsComplex) {
271 // Don't handle complex yet.
272 error.SetErrorString(
273 "returning complex float values are not supported");
274 } else {
275 const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName("v0", 0);
277 if (v0_info) {
278 if (byte_size <= 16) {
279 RegisterValue reg_value;
280 error = reg_value.SetValueFromData(*v0_info, data, 0, true);
281 if (error.Success())
282 if (!reg_ctx->WriteRegister(v0_info, reg_value))
283 error.SetErrorString("failed to write register v0");
284 } else {
285 error.SetErrorString("returning float values longer than 128 "
286 "bits are not supported");
288 } else
289 error.SetErrorString("v0 register is not available on this target");
292 } else if (type_flags & eTypeIsVector) {
293 if (byte_size > 0) {
294 const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName("v0", 0);
296 if (v0_info) {
297 if (byte_size <= v0_info->byte_size) {
298 RegisterValue reg_value;
299 error = reg_value.SetValueFromData(*v0_info, data, 0, true);
300 if (error.Success()) {
301 if (!reg_ctx->WriteRegister(v0_info, reg_value))
302 error.SetErrorString("failed to write register v0");
308 } else {
309 error.SetErrorString("no registers are available");
312 return error;
315 bool ABISysV_arm64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
316 unwind_plan.Clear();
317 unwind_plan.SetRegisterKind(eRegisterKindDWARF);
319 uint32_t lr_reg_num = arm64_dwarf::lr;
320 uint32_t sp_reg_num = arm64_dwarf::sp;
322 UnwindPlan::RowSP row(new UnwindPlan::Row);
324 // Our previous Call Frame Address is the stack pointer
325 row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0);
327 unwind_plan.AppendRow(row);
328 unwind_plan.SetReturnAddressRegister(lr_reg_num);
330 // All other registers are the same.
332 unwind_plan.SetSourceName("arm64 at-func-entry default");
333 unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
334 unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
335 unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
337 return true;
340 bool ABISysV_arm64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
341 unwind_plan.Clear();
342 unwind_plan.SetRegisterKind(eRegisterKindDWARF);
344 uint32_t fp_reg_num = arm64_dwarf::fp;
345 uint32_t pc_reg_num = arm64_dwarf::pc;
347 UnwindPlan::RowSP row(new UnwindPlan::Row);
348 const int32_t ptr_size = 8;
350 row->GetCFAValue().SetIsRegisterPlusOffset(fp_reg_num, 2 * ptr_size);
351 row->SetOffset(0);
352 row->SetUnspecifiedRegistersAreUndefined(true);
354 row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
355 row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
357 unwind_plan.AppendRow(row);
358 unwind_plan.SetSourceName("arm64 default unwind plan");
359 unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
360 unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
361 unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
363 return true;
366 // AAPCS64 (Procedure Call Standard for the ARM 64-bit Architecture) says
367 // registers x19 through x28 and sp are callee preserved. v8-v15 are non-
368 // volatile (and specifically only the lower 8 bytes of these regs), the rest
369 // of the fp/SIMD registers are volatile.
371 // We treat x29 as callee preserved also, else the unwinder won't try to
372 // retrieve fp saves.
374 bool ABISysV_arm64::RegisterIsVolatile(const RegisterInfo *reg_info) {
375 if (reg_info) {
376 const char *name = reg_info->name;
378 // Sometimes we'll be called with the "alternate" name for these registers;
379 // recognize them as non-volatile.
381 if (name[0] == 'p' && name[1] == 'c') // pc
382 return false;
383 if (name[0] == 'f' && name[1] == 'p') // fp
384 return false;
385 if (name[0] == 's' && name[1] == 'p') // sp
386 return false;
387 if (name[0] == 'l' && name[1] == 'r') // lr
388 return false;
390 if (name[0] == 'x' || name[0] == 'r') {
391 // Volatile registers: x0-x18
392 // Although documentation says only x19-28 + sp are callee saved We ll
393 // also have to treat x30 as non-volatile. Each dwarf frame has its own
394 // value of lr. Return false for the non-volatile gpr regs, true for
395 // everything else
396 switch (name[1]) {
397 case '1':
398 switch (name[2]) {
399 case '9':
400 return false; // x19 is non-volatile
401 default:
402 return true;
404 break;
405 case '2':
406 switch (name[2]) {
407 case '0':
408 case '1':
409 case '2':
410 case '3':
411 case '4':
412 case '5':
413 case '6':
414 case '7':
415 case '8':
416 return false; // x20 - 28 are non-volatile
417 case '9':
418 return false; // x29 aka fp treat as non-volatile
419 default:
420 return true;
422 case '3': // x30 (lr) and x31 (sp) treat as non-volatile
423 if (name[2] == '0' || name[2] == '1')
424 return false;
425 break;
426 default:
427 return true; // all volatile cases not handled above fall here.
429 } else if (name[0] == 'v' || name[0] == 's' || name[0] == 'd') {
430 // Volatile registers: v0-7, v16-v31
431 // Return false for non-volatile fp/SIMD regs, true for everything else
432 switch (name[1]) {
433 case '8':
434 case '9':
435 return false; // v8-v9 are non-volatile
436 case '1':
437 switch (name[2]) {
438 case '0':
439 case '1':
440 case '2':
441 case '3':
442 case '4':
443 case '5':
444 return false; // v10-v15 are non-volatile
445 default:
446 return true;
448 default:
449 return true;
453 return true;
456 static bool LoadValueFromConsecutiveGPRRegisters(
457 ExecutionContext &exe_ctx, RegisterContext *reg_ctx,
458 const CompilerType &value_type,
459 bool is_return_value, // false => parameter, true => return value
460 uint32_t &NGRN, // NGRN (see ABI documentation)
461 uint32_t &NSRN, // NSRN (see ABI documentation)
462 DataExtractor &data) {
463 std::optional<uint64_t> byte_size =
464 value_type.GetByteSize(exe_ctx.GetBestExecutionContextScope());
466 if (byte_size || *byte_size == 0)
467 return false;
469 std::unique_ptr<DataBufferHeap> heap_data_up(
470 new DataBufferHeap(*byte_size, 0));
471 const ByteOrder byte_order = exe_ctx.GetProcessRef().GetByteOrder();
472 Status error;
474 CompilerType base_type;
475 const uint32_t homogeneous_count =
476 value_type.IsHomogeneousAggregate(&base_type);
477 if (homogeneous_count > 0 && homogeneous_count <= 8) {
478 // Make sure we have enough registers
479 if (NSRN < 8 && (8 - NSRN) >= homogeneous_count) {
480 if (!base_type)
481 return false;
482 std::optional<uint64_t> base_byte_size =
483 base_type.GetByteSize(exe_ctx.GetBestExecutionContextScope());
484 if (!base_byte_size)
485 return false;
486 uint32_t data_offset = 0;
488 for (uint32_t i = 0; i < homogeneous_count; ++i) {
489 char v_name[8];
490 ::snprintf(v_name, sizeof(v_name), "v%u", NSRN);
491 const RegisterInfo *reg_info =
492 reg_ctx->GetRegisterInfoByName(v_name, 0);
493 if (reg_info == nullptr)
494 return false;
496 if (*base_byte_size > reg_info->byte_size)
497 return false;
499 RegisterValue reg_value;
501 if (!reg_ctx->ReadRegister(reg_info, reg_value))
502 return false;
504 // Make sure we have enough room in "heap_data_up"
505 if ((data_offset + *base_byte_size) <= heap_data_up->GetByteSize()) {
506 const size_t bytes_copied = reg_value.GetAsMemoryData(
507 *reg_info, heap_data_up->GetBytes() + data_offset,
508 *base_byte_size, byte_order, error);
509 if (bytes_copied != *base_byte_size)
510 return false;
511 data_offset += bytes_copied;
512 ++NSRN;
513 } else
514 return false;
516 data.SetByteOrder(byte_order);
517 data.SetAddressByteSize(exe_ctx.GetProcessRef().GetAddressByteSize());
518 data.SetData(DataBufferSP(heap_data_up.release()));
519 return true;
523 const size_t max_reg_byte_size = 16;
524 if (*byte_size <= max_reg_byte_size) {
525 size_t bytes_left = *byte_size;
526 uint32_t data_offset = 0;
527 while (data_offset < *byte_size) {
528 if (NGRN >= 8)
529 return false;
531 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfo(
532 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + NGRN);
533 if (reg_info == nullptr)
534 return false;
536 RegisterValue reg_value;
538 if (!reg_ctx->ReadRegister(reg_info, reg_value))
539 return false;
541 const size_t curr_byte_size = std::min<size_t>(8, bytes_left);
542 const size_t bytes_copied = reg_value.GetAsMemoryData(
543 *reg_info, heap_data_up->GetBytes() + data_offset, curr_byte_size,
544 byte_order, error);
545 if (bytes_copied == 0)
546 return false;
547 if (bytes_copied >= bytes_left)
548 break;
549 data_offset += bytes_copied;
550 bytes_left -= bytes_copied;
551 ++NGRN;
553 } else {
554 const RegisterInfo *reg_info = nullptr;
555 if (is_return_value) {
556 // The SysV arm64 ABI doesn't require you to write the return location
557 // back to x8 before returning from the function the way the x86_64 ABI
558 // does. It looks like all the users of this ABI currently choose not to
559 // do that, and so we can't reconstruct stack based returns on exit
560 // from the function.
561 return false;
562 } else {
563 // We are assuming we are stopped at the first instruction in a function
564 // and that the ABI is being respected so all parameters appear where
565 // they should be (functions with no external linkage can legally violate
566 // the ABI).
567 if (NGRN >= 8)
568 return false;
570 reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
571 LLDB_REGNUM_GENERIC_ARG1 + NGRN);
572 if (reg_info == nullptr)
573 return false;
574 ++NGRN;
577 const lldb::addr_t value_addr =
578 reg_ctx->ReadRegisterAsUnsigned(reg_info, LLDB_INVALID_ADDRESS);
580 if (value_addr == LLDB_INVALID_ADDRESS)
581 return false;
583 if (exe_ctx.GetProcessRef().ReadMemory(
584 value_addr, heap_data_up->GetBytes(), heap_data_up->GetByteSize(),
585 error) != heap_data_up->GetByteSize()) {
586 return false;
590 data.SetByteOrder(byte_order);
591 data.SetAddressByteSize(exe_ctx.GetProcessRef().GetAddressByteSize());
592 data.SetData(DataBufferSP(heap_data_up.release()));
593 return true;
596 ValueObjectSP ABISysV_arm64::GetReturnValueObjectImpl(
597 Thread &thread, CompilerType &return_compiler_type) const {
598 ValueObjectSP return_valobj_sp;
599 Value value;
601 ExecutionContext exe_ctx(thread.shared_from_this());
602 if (exe_ctx.GetTargetPtr() == nullptr || exe_ctx.GetProcessPtr() == nullptr)
603 return return_valobj_sp;
605 // value.SetContext (Value::eContextTypeClangType, return_compiler_type);
606 value.SetCompilerType(return_compiler_type);
608 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
609 if (!reg_ctx)
610 return return_valobj_sp;
612 std::optional<uint64_t> byte_size = return_compiler_type.GetByteSize(&thread);
613 if (!byte_size)
614 return return_valobj_sp;
616 const uint32_t type_flags = return_compiler_type.GetTypeInfo(nullptr);
617 if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) {
618 value.SetValueType(Value::ValueType::Scalar);
620 bool success = false;
621 if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer) {
622 // Extract the register context so we can read arguments from registers
623 if (*byte_size <= 8) {
624 const RegisterInfo *x0_reg_info = nullptr;
625 x0_reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
626 LLDB_REGNUM_GENERIC_ARG1);
627 if (x0_reg_info) {
628 uint64_t raw_value =
629 thread.GetRegisterContext()->ReadRegisterAsUnsigned(x0_reg_info,
631 const bool is_signed = (type_flags & eTypeIsSigned) != 0;
632 switch (*byte_size) {
633 default:
634 break;
635 case 16: // uint128_t
636 // In register x0 and x1
638 const RegisterInfo *x1_reg_info = nullptr;
639 x1_reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
640 LLDB_REGNUM_GENERIC_ARG2);
642 if (x1_reg_info) {
643 if (*byte_size <=
644 x0_reg_info->byte_size + x1_reg_info->byte_size) {
645 std::unique_ptr<DataBufferHeap> heap_data_up(
646 new DataBufferHeap(*byte_size, 0));
647 const ByteOrder byte_order =
648 exe_ctx.GetProcessRef().GetByteOrder();
649 RegisterValue x0_reg_value;
650 RegisterValue x1_reg_value;
651 if (reg_ctx->ReadRegister(x0_reg_info, x0_reg_value) &&
652 reg_ctx->ReadRegister(x1_reg_info, x1_reg_value)) {
653 Status error;
654 if (x0_reg_value.GetAsMemoryData(
655 *x0_reg_info, heap_data_up->GetBytes() + 0, 8,
656 byte_order, error) &&
657 x1_reg_value.GetAsMemoryData(
658 *x1_reg_info, heap_data_up->GetBytes() + 8, 8,
659 byte_order, error)) {
660 DataExtractor data(
661 DataBufferSP(heap_data_up.release()), byte_order,
662 exe_ctx.GetProcessRef().GetAddressByteSize());
664 return_valobj_sp = ValueObjectConstResult::Create(
665 &thread, return_compiler_type, ConstString(""), data);
666 return return_valobj_sp;
672 break;
673 case sizeof(uint64_t):
674 if (is_signed)
675 value.GetScalar() = (int64_t)(raw_value);
676 else
677 value.GetScalar() = (uint64_t)(raw_value);
678 success = true;
679 break;
681 case sizeof(uint32_t):
682 if (is_signed)
683 value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
684 else
685 value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
686 success = true;
687 break;
689 case sizeof(uint16_t):
690 if (is_signed)
691 value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
692 else
693 value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
694 success = true;
695 break;
697 case sizeof(uint8_t):
698 if (is_signed)
699 value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
700 else
701 value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
702 success = true;
703 break;
707 } else if (type_flags & eTypeIsFloat) {
708 if (type_flags & eTypeIsComplex) {
709 // Don't handle complex yet.
710 } else {
711 if (*byte_size <= sizeof(long double)) {
712 const RegisterInfo *v0_reg_info =
713 reg_ctx->GetRegisterInfoByName("v0", 0);
714 RegisterValue v0_value;
715 if (reg_ctx->ReadRegister(v0_reg_info, v0_value)) {
716 DataExtractor data;
717 if (v0_value.GetData(data)) {
718 lldb::offset_t offset = 0;
719 if (*byte_size == sizeof(float)) {
720 value.GetScalar() = data.GetFloat(&offset);
721 success = true;
722 } else if (*byte_size == sizeof(double)) {
723 value.GetScalar() = data.GetDouble(&offset);
724 success = true;
725 } else if (*byte_size == sizeof(long double)) {
726 value.GetScalar() = data.GetLongDouble(&offset);
727 success = true;
735 if (success)
736 return_valobj_sp = ValueObjectConstResult::Create(
737 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
738 } else if (type_flags & eTypeIsVector && *byte_size <= 16) {
739 if (*byte_size > 0) {
740 const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName("v0", 0);
742 if (v0_info) {
743 std::unique_ptr<DataBufferHeap> heap_data_up(
744 new DataBufferHeap(*byte_size, 0));
745 const ByteOrder byte_order = exe_ctx.GetProcessRef().GetByteOrder();
746 RegisterValue reg_value;
747 if (reg_ctx->ReadRegister(v0_info, reg_value)) {
748 Status error;
749 if (reg_value.GetAsMemoryData(*v0_info, heap_data_up->GetBytes(),
750 heap_data_up->GetByteSize(), byte_order,
751 error)) {
752 DataExtractor data(DataBufferSP(heap_data_up.release()), byte_order,
753 exe_ctx.GetProcessRef().GetAddressByteSize());
754 return_valobj_sp = ValueObjectConstResult::Create(
755 &thread, return_compiler_type, ConstString(""), data);
760 } else if (type_flags & eTypeIsStructUnion || type_flags & eTypeIsClass ||
761 (type_flags & eTypeIsVector && *byte_size > 16)) {
762 DataExtractor data;
764 uint32_t NGRN = 0; // Search ABI docs for NGRN
765 uint32_t NSRN = 0; // Search ABI docs for NSRN
766 const bool is_return_value = true;
767 if (LoadValueFromConsecutiveGPRRegisters(
768 exe_ctx, reg_ctx, return_compiler_type, is_return_value, NGRN, NSRN,
769 data)) {
770 return_valobj_sp = ValueObjectConstResult::Create(
771 &thread, return_compiler_type, ConstString(""), data);
774 return return_valobj_sp;
777 lldb::addr_t ABISysV_arm64::FixAddress(addr_t pc, addr_t mask) {
778 lldb::addr_t pac_sign_extension = 0x0080000000000000ULL;
779 return (pc & pac_sign_extension) ? pc | mask : pc & (~mask);
782 // Reads code or data address mask for the current Linux process.
783 static lldb::addr_t ReadLinuxProcessAddressMask(lldb::ProcessSP process_sp,
784 llvm::StringRef reg_name) {
785 // 0 means there isn't a mask or it has not been read yet.
786 // We do not return the top byte mask unless thread_sp is valid.
787 // This prevents calls to this function before the thread is setup locking
788 // in the value to just the top byte mask, in cases where pointer
789 // authentication might also be active.
790 uint64_t address_mask = 0;
791 lldb::ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
792 if (thread_sp) {
793 // Linux configures user-space virtual addresses with top byte ignored.
794 // We set default value of mask such that top byte is masked out.
795 address_mask = ~((1ULL << 56) - 1);
796 // If Pointer Authentication feature is enabled then Linux exposes
797 // PAC data and code mask register. Try reading relevant register
798 // below and merge it with default address mask calculated above.
799 lldb::RegisterContextSP reg_ctx_sp = thread_sp->GetRegisterContext();
800 if (reg_ctx_sp) {
801 const RegisterInfo *reg_info =
802 reg_ctx_sp->GetRegisterInfoByName(reg_name, 0);
803 if (reg_info) {
804 lldb::addr_t mask_reg_val = reg_ctx_sp->ReadRegisterAsUnsigned(
805 reg_info->kinds[eRegisterKindLLDB], LLDB_INVALID_ADDRESS);
806 if (mask_reg_val != LLDB_INVALID_ADDRESS)
807 address_mask |= mask_reg_val;
811 return address_mask;
814 lldb::addr_t ABISysV_arm64::FixCodeAddress(lldb::addr_t pc) {
815 if (lldb::ProcessSP process_sp = GetProcessSP()) {
816 if (process_sp->GetTarget().GetArchitecture().GetTriple().isOSLinux() &&
817 !process_sp->GetCodeAddressMask())
818 process_sp->SetCodeAddressMask(
819 ReadLinuxProcessAddressMask(process_sp, "code_mask"));
821 return FixAddress(pc, process_sp->GetCodeAddressMask());
823 return pc;
826 lldb::addr_t ABISysV_arm64::FixDataAddress(lldb::addr_t pc) {
827 if (lldb::ProcessSP process_sp = GetProcessSP()) {
828 if (process_sp->GetTarget().GetArchitecture().GetTriple().isOSLinux() &&
829 !process_sp->GetDataAddressMask())
830 process_sp->SetDataAddressMask(
831 ReadLinuxProcessAddressMask(process_sp, "data_mask"));
833 return FixAddress(pc, process_sp->GetDataAddressMask());
835 return pc;
838 void ABISysV_arm64::Initialize() {
839 PluginManager::RegisterPlugin(GetPluginNameStatic(),
840 "SysV ABI for AArch64 targets", CreateInstance);
843 void ABISysV_arm64::Terminate() {
844 PluginManager::UnregisterPlugin(CreateInstance);