Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lldb / source / Plugins / Process / minidump / MinidumpParser.cpp
blobbe9fae938e22762b2545e012af6b9fcff0af51f7
1 //===-- MinidumpParser.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "MinidumpParser.h"
10 #include "NtStructures.h"
11 #include "RegisterContextMinidump_x86_32.h"
13 #include "Plugins/Process/Utility/LinuxProcMaps.h"
14 #include "lldb/Utility/LLDBAssert.h"
15 #include "lldb/Utility/LLDBLog.h"
16 #include "lldb/Utility/Log.h"
18 // C includes
19 // C++ includes
20 #include <algorithm>
21 #include <map>
22 #include <optional>
23 #include <vector>
24 #include <utility>
26 using namespace lldb_private;
27 using namespace minidump;
29 llvm::Expected<MinidumpParser>
30 MinidumpParser::Create(const lldb::DataBufferSP &data_sp) {
31 auto ExpectedFile = llvm::object::MinidumpFile::create(
32 llvm::MemoryBufferRef(toStringRef(data_sp->GetData()), "minidump"));
33 if (!ExpectedFile)
34 return ExpectedFile.takeError();
36 return MinidumpParser(data_sp, std::move(*ExpectedFile));
39 MinidumpParser::MinidumpParser(lldb::DataBufferSP data_sp,
40 std::unique_ptr<llvm::object::MinidumpFile> file)
41 : m_data_sp(std::move(data_sp)), m_file(std::move(file)) {}
43 llvm::ArrayRef<uint8_t> MinidumpParser::GetData() {
44 return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes(),
45 m_data_sp->GetByteSize());
48 llvm::ArrayRef<uint8_t> MinidumpParser::GetStream(StreamType stream_type) {
49 return m_file->getRawStream(stream_type).value_or(llvm::ArrayRef<uint8_t>());
52 UUID MinidumpParser::GetModuleUUID(const minidump::Module *module) {
53 auto cv_record =
54 GetData().slice(module->CvRecord.RVA, module->CvRecord.DataSize);
56 // Read the CV record signature
57 const llvm::support::ulittle32_t *signature = nullptr;
58 Status error = consumeObject(cv_record, signature);
59 if (error.Fail())
60 return UUID();
62 const CvSignature cv_signature =
63 static_cast<CvSignature>(static_cast<uint32_t>(*signature));
65 if (cv_signature == CvSignature::Pdb70) {
66 const UUID::CvRecordPdb70 *pdb70_uuid = nullptr;
67 Status error = consumeObject(cv_record, pdb70_uuid);
68 if (error.Fail())
69 return UUID();
70 if (GetArchitecture().GetTriple().isOSBinFormatELF()) {
71 if (pdb70_uuid->Age != 0)
72 return UUID(pdb70_uuid, sizeof(*pdb70_uuid));
73 return UUID(&pdb70_uuid->Uuid,
74 sizeof(pdb70_uuid->Uuid));
76 return UUID(*pdb70_uuid);
77 } else if (cv_signature == CvSignature::ElfBuildId)
78 return UUID(cv_record);
80 return UUID();
83 llvm::ArrayRef<minidump::Thread> MinidumpParser::GetThreads() {
84 auto ExpectedThreads = GetMinidumpFile().getThreadList();
85 if (ExpectedThreads)
86 return *ExpectedThreads;
88 LLDB_LOG_ERROR(GetLog(LLDBLog::Thread), ExpectedThreads.takeError(),
89 "Failed to read thread list: {0}");
90 return {};
93 llvm::ArrayRef<uint8_t>
94 MinidumpParser::GetThreadContext(const LocationDescriptor &location) {
95 if (location.RVA + location.DataSize > GetData().size())
96 return {};
97 return GetData().slice(location.RVA, location.DataSize);
100 llvm::ArrayRef<uint8_t>
101 MinidumpParser::GetThreadContext(const minidump::Thread &td) {
102 return GetThreadContext(td.Context);
105 llvm::ArrayRef<uint8_t>
106 MinidumpParser::GetThreadContextWow64(const minidump::Thread &td) {
107 // On Windows, a 32-bit process can run on a 64-bit machine under WOW64. If
108 // the minidump was captured with a 64-bit debugger, then the CONTEXT we just
109 // grabbed from the mini_dump_thread is the one for the 64-bit "native"
110 // process rather than the 32-bit "guest" process we care about. In this
111 // case, we can get the 32-bit CONTEXT from the TEB (Thread Environment
112 // Block) of the 64-bit process.
113 auto teb_mem = GetMemory(td.EnvironmentBlock, sizeof(TEB64));
114 if (teb_mem.empty())
115 return {};
117 const TEB64 *wow64teb;
118 Status error = consumeObject(teb_mem, wow64teb);
119 if (error.Fail())
120 return {};
122 // Slot 1 of the thread-local storage in the 64-bit TEB points to a structure
123 // that includes the 32-bit CONTEXT (after a ULONG). See:
124 // https://msdn.microsoft.com/en-us/library/ms681670.aspx
125 auto context =
126 GetMemory(wow64teb->tls_slots[1] + 4, sizeof(MinidumpContext_x86_32));
127 if (context.size() < sizeof(MinidumpContext_x86_32))
128 return {};
130 return context;
131 // NOTE: We don't currently use the TEB for anything else. If we
132 // need it in the future, the 32-bit TEB is located according to the address
133 // stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
136 ArchSpec MinidumpParser::GetArchitecture() {
137 if (m_arch.IsValid())
138 return m_arch;
140 // Set the architecture in m_arch
141 llvm::Expected<const SystemInfo &> system_info = m_file->getSystemInfo();
143 if (!system_info) {
144 LLDB_LOG_ERROR(GetLog(LLDBLog::Process), system_info.takeError(),
145 "Failed to read SystemInfo stream: {0}");
146 return m_arch;
149 // TODO what to do about big endiand flavors of arm ?
150 // TODO set the arm subarch stuff if the minidump has info about it
152 llvm::Triple triple;
153 triple.setVendor(llvm::Triple::VendorType::UnknownVendor);
155 switch (system_info->ProcessorArch) {
156 case ProcessorArchitecture::X86:
157 triple.setArch(llvm::Triple::ArchType::x86);
158 break;
159 case ProcessorArchitecture::AMD64:
160 triple.setArch(llvm::Triple::ArchType::x86_64);
161 break;
162 case ProcessorArchitecture::ARM:
163 triple.setArch(llvm::Triple::ArchType::arm);
164 break;
165 case ProcessorArchitecture::ARM64:
166 case ProcessorArchitecture::BP_ARM64:
167 triple.setArch(llvm::Triple::ArchType::aarch64);
168 break;
169 default:
170 triple.setArch(llvm::Triple::ArchType::UnknownArch);
171 break;
174 // TODO add all of the OSes that Minidump/breakpad distinguishes?
175 switch (system_info->PlatformId) {
176 case OSPlatform::Win32S:
177 case OSPlatform::Win32Windows:
178 case OSPlatform::Win32NT:
179 case OSPlatform::Win32CE:
180 triple.setOS(llvm::Triple::OSType::Win32);
181 triple.setVendor(llvm::Triple::VendorType::PC);
182 break;
183 case OSPlatform::Linux:
184 triple.setOS(llvm::Triple::OSType::Linux);
185 break;
186 case OSPlatform::MacOSX:
187 triple.setOS(llvm::Triple::OSType::MacOSX);
188 triple.setVendor(llvm::Triple::Apple);
189 break;
190 case OSPlatform::IOS:
191 triple.setOS(llvm::Triple::OSType::IOS);
192 triple.setVendor(llvm::Triple::Apple);
193 break;
194 case OSPlatform::Android:
195 triple.setOS(llvm::Triple::OSType::Linux);
196 triple.setEnvironment(llvm::Triple::EnvironmentType::Android);
197 break;
198 default: {
199 triple.setOS(llvm::Triple::OSType::UnknownOS);
200 auto ExpectedCSD = m_file->getString(system_info->CSDVersionRVA);
201 if (!ExpectedCSD) {
202 LLDB_LOG_ERROR(GetLog(LLDBLog::Process), ExpectedCSD.takeError(),
203 "Failed to CSD Version string: {0}");
204 } else {
205 if (ExpectedCSD->find("Linux") != std::string::npos)
206 triple.setOS(llvm::Triple::OSType::Linux);
208 break;
211 m_arch.SetTriple(triple);
212 return m_arch;
215 const MinidumpMiscInfo *MinidumpParser::GetMiscInfo() {
216 llvm::ArrayRef<uint8_t> data = GetStream(StreamType::MiscInfo);
218 if (data.size() == 0)
219 return nullptr;
221 return MinidumpMiscInfo::Parse(data);
224 std::optional<LinuxProcStatus> MinidumpParser::GetLinuxProcStatus() {
225 llvm::ArrayRef<uint8_t> data = GetStream(StreamType::LinuxProcStatus);
227 if (data.size() == 0)
228 return std::nullopt;
230 return LinuxProcStatus::Parse(data);
233 std::optional<lldb::pid_t> MinidumpParser::GetPid() {
234 const MinidumpMiscInfo *misc_info = GetMiscInfo();
235 if (misc_info != nullptr) {
236 return misc_info->GetPid();
239 std::optional<LinuxProcStatus> proc_status = GetLinuxProcStatus();
240 if (proc_status) {
241 return proc_status->GetPid();
244 return std::nullopt;
247 llvm::ArrayRef<minidump::Module> MinidumpParser::GetModuleList() {
248 auto ExpectedModules = GetMinidumpFile().getModuleList();
249 if (ExpectedModules)
250 return *ExpectedModules;
252 LLDB_LOG_ERROR(GetLog(LLDBLog::Modules), ExpectedModules.takeError(),
253 "Failed to read module list: {0}");
254 return {};
257 static bool
258 CreateRegionsCacheFromLinuxMaps(MinidumpParser &parser,
259 std::vector<MemoryRegionInfo> &regions) {
260 auto data = parser.GetStream(StreamType::LinuxMaps);
261 if (data.empty())
262 return false;
264 Log *log = GetLog(LLDBLog::Expressions);
265 ParseLinuxMapRegions(
266 llvm::toStringRef(data),
267 [&regions, &log](llvm::Expected<MemoryRegionInfo> region) -> bool {
268 if (region)
269 regions.push_back(*region);
270 else
271 LLDB_LOG_ERROR(log, region.takeError(),
272 "Reading memory region from minidump failed: {0}");
273 return true;
275 return !regions.empty();
278 /// Check for the memory regions starting at \a load_addr for a contiguous
279 /// section that has execute permissions that matches the module path.
281 /// When we load a breakpad generated minidump file, we might have the
282 /// /proc/<pid>/maps text for a process that details the memory map of the
283 /// process that the minidump is describing. This checks the sorted memory
284 /// regions for a section that has execute permissions. A sample maps files
285 /// might look like:
287 /// 00400000-00401000 r--p 00000000 fd:01 2838574 /tmp/a.out
288 /// 00401000-00402000 r-xp 00001000 fd:01 2838574 /tmp/a.out
289 /// 00402000-00403000 r--p 00002000 fd:01 2838574 /tmp/a.out
290 /// 00403000-00404000 r--p 00002000 fd:01 2838574 /tmp/a.out
291 /// 00404000-00405000 rw-p 00003000 fd:01 2838574 /tmp/a.out
292 /// ...
294 /// This function should return true when given 0x00400000 and "/tmp/a.out"
295 /// is passed in as the path since it has a consecutive memory region for
296 /// "/tmp/a.out" that has execute permissions at 0x00401000. This will help us
297 /// differentiate if a file has been memory mapped into a process for reading
298 /// and breakpad ends up saving a minidump file that has two module entries for
299 /// a given file: one that is read only for the entire file, and then one that
300 /// is the real executable that is loaded into memory for execution. For memory
301 /// mapped files they will typically show up and r--p permissions and a range
302 /// matcning the entire range of the file on disk:
304 /// 00800000-00805000 r--p 00000000 fd:01 2838574 /tmp/a.out
305 /// 00805000-00806000 r-xp 00001000 fd:01 1234567 /usr/lib/libc.so
307 /// This function should return false when asked about 0x00800000 with
308 /// "/tmp/a.out" as the path.
310 /// \param[in] path
311 /// The path to the module to check for in the memory regions. Only sequential
312 /// memory regions whose paths match this path will be considered when looking
313 /// for execute permissions.
315 /// \param[in] regions
316 /// A sorted list of memory regions obtained from a call to
317 /// CreateRegionsCacheFromLinuxMaps.
319 /// \param[in] base_of_image
320 /// The load address of this module from BaseOfImage in the modules list.
322 /// \return
323 /// True if a contiguous region of memory belonging to the module with a
324 /// matching path exists that has executable permissions. Returns false if
325 /// \a regions is empty or if there are no regions with execute permissions
326 /// that match \a path.
328 static bool CheckForLinuxExecutable(ConstString path,
329 const MemoryRegionInfos &regions,
330 lldb::addr_t base_of_image) {
331 if (regions.empty())
332 return false;
333 lldb::addr_t addr = base_of_image;
334 MemoryRegionInfo region = MinidumpParser::GetMemoryRegionInfo(regions, addr);
335 while (region.GetName() == path) {
336 if (region.GetExecutable() == MemoryRegionInfo::eYes)
337 return true;
338 addr += region.GetRange().GetByteSize();
339 region = MinidumpParser::GetMemoryRegionInfo(regions, addr);
341 return false;
344 std::vector<const minidump::Module *> MinidumpParser::GetFilteredModuleList() {
345 Log *log = GetLog(LLDBLog::Modules);
346 auto ExpectedModules = GetMinidumpFile().getModuleList();
347 if (!ExpectedModules) {
348 LLDB_LOG_ERROR(log, ExpectedModules.takeError(),
349 "Failed to read module list: {0}");
350 return {};
353 // Create memory regions from the linux maps only. We do this to avoid issues
354 // with breakpad generated minidumps where if someone has mmap'ed a shared
355 // library into memory to access its data in the object file, we can get a
356 // minidump with two mappings for a binary: one whose base image points to a
357 // memory region that is read + execute and one that is read only.
358 MemoryRegionInfos linux_regions;
359 if (CreateRegionsCacheFromLinuxMaps(*this, linux_regions))
360 llvm::sort(linux_regions);
362 // map module_name -> filtered_modules index
363 typedef llvm::StringMap<size_t> MapType;
364 MapType module_name_to_filtered_index;
366 std::vector<const minidump::Module *> filtered_modules;
368 for (const auto &module : *ExpectedModules) {
369 auto ExpectedName = m_file->getString(module.ModuleNameRVA);
370 if (!ExpectedName) {
371 LLDB_LOG_ERROR(log, ExpectedName.takeError(),
372 "Failed to get module name: {0}");
373 continue;
376 MapType::iterator iter;
377 bool inserted;
378 // See if we have inserted this module aready into filtered_modules. If we
379 // haven't insert an entry into module_name_to_filtered_index with the
380 // index where we will insert it if it isn't in the vector already.
381 std::tie(iter, inserted) = module_name_to_filtered_index.try_emplace(
382 *ExpectedName, filtered_modules.size());
384 if (inserted) {
385 // This module has not been seen yet, insert it into filtered_modules at
386 // the index that was inserted into module_name_to_filtered_index using
387 // "filtered_modules.size()" above.
388 filtered_modules.push_back(&module);
389 } else {
390 // We have a duplicate module entry. Check the linux regions to see if
391 // either module is not really a mapped executable. If one but not the
392 // other is a real mapped executable, prefer the executable one. This
393 // can happen when a process mmap's in the file for an executable in
394 // order to read bytes from the executable file. A memory region mapping
395 // will exist for the mmap'ed version and for the loaded executable, but
396 // only one will have a consecutive region that is executable in the
397 // memory regions.
398 auto dup_module = filtered_modules[iter->second];
399 ConstString name(*ExpectedName);
400 bool is_executable =
401 CheckForLinuxExecutable(name, linux_regions, module.BaseOfImage);
402 bool dup_is_executable =
403 CheckForLinuxExecutable(name, linux_regions, dup_module->BaseOfImage);
405 if (is_executable != dup_is_executable) {
406 if (is_executable)
407 filtered_modules[iter->second] = &module;
408 continue;
410 // This module has been seen. Modules are sometimes mentioned multiple
411 // times when they are mapped discontiguously, so find the module with
412 // the lowest "base_of_image" and use that as the filtered module.
413 if (module.BaseOfImage < dup_module->BaseOfImage)
414 filtered_modules[iter->second] = &module;
417 return filtered_modules;
420 const minidump::ExceptionStream *MinidumpParser::GetExceptionStream() {
421 auto ExpectedStream = GetMinidumpFile().getExceptionStream();
422 if (ExpectedStream)
423 return &*ExpectedStream;
425 LLDB_LOG_ERROR(GetLog(LLDBLog::Process), ExpectedStream.takeError(),
426 "Failed to read minidump exception stream: {0}");
427 return nullptr;
430 std::optional<minidump::Range>
431 MinidumpParser::FindMemoryRange(lldb::addr_t addr) {
432 llvm::ArrayRef<uint8_t> data64 = GetStream(StreamType::Memory64List);
433 Log *log = GetLog(LLDBLog::Modules);
435 auto ExpectedMemory = GetMinidumpFile().getMemoryList();
436 if (!ExpectedMemory) {
437 LLDB_LOG_ERROR(log, ExpectedMemory.takeError(),
438 "Failed to read memory list: {0}");
439 } else {
440 for (const auto &memory_desc : *ExpectedMemory) {
441 const LocationDescriptor &loc_desc = memory_desc.Memory;
442 const lldb::addr_t range_start = memory_desc.StartOfMemoryRange;
443 const size_t range_size = loc_desc.DataSize;
445 if (loc_desc.RVA + loc_desc.DataSize > GetData().size())
446 return std::nullopt;
448 if (range_start <= addr && addr < range_start + range_size) {
449 auto ExpectedSlice = GetMinidumpFile().getRawData(loc_desc);
450 if (!ExpectedSlice) {
451 LLDB_LOG_ERROR(log, ExpectedSlice.takeError(),
452 "Failed to get memory slice: {0}");
453 return std::nullopt;
455 return minidump::Range(range_start, *ExpectedSlice);
460 // Some Minidumps have a Memory64ListStream that captures all the heap memory
461 // (full-memory Minidumps). We can't exactly use the same loop as above,
462 // because the Minidump uses slightly different data structures to describe
463 // those
465 if (!data64.empty()) {
466 llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
467 uint64_t base_rva;
468 std::tie(memory64_list, base_rva) =
469 MinidumpMemoryDescriptor64::ParseMemory64List(data64);
471 if (memory64_list.empty())
472 return std::nullopt;
474 for (const auto &memory_desc64 : memory64_list) {
475 const lldb::addr_t range_start = memory_desc64.start_of_memory_range;
476 const size_t range_size = memory_desc64.data_size;
478 if (base_rva + range_size > GetData().size())
479 return std::nullopt;
481 if (range_start <= addr && addr < range_start + range_size) {
482 return minidump::Range(range_start,
483 GetData().slice(base_rva, range_size));
485 base_rva += range_size;
489 return std::nullopt;
492 llvm::ArrayRef<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr,
493 size_t size) {
494 // I don't have a sense of how frequently this is called or how many memory
495 // ranges a Minidump typically has, so I'm not sure if searching for the
496 // appropriate range linearly each time is stupid. Perhaps we should build
497 // an index for faster lookups.
498 std::optional<minidump::Range> range = FindMemoryRange(addr);
499 if (!range)
500 return {};
502 // There's at least some overlap between the beginning of the desired range
503 // (addr) and the current range. Figure out where the overlap begins and how
504 // much overlap there is.
506 const size_t offset = addr - range->start;
508 if (addr < range->start || offset >= range->range_ref.size())
509 return {};
511 const size_t overlap = std::min(size, range->range_ref.size() - offset);
512 return range->range_ref.slice(offset, overlap);
515 static bool
516 CreateRegionsCacheFromMemoryInfoList(MinidumpParser &parser,
517 std::vector<MemoryRegionInfo> &regions) {
518 Log *log = GetLog(LLDBLog::Modules);
519 auto ExpectedInfo = parser.GetMinidumpFile().getMemoryInfoList();
520 if (!ExpectedInfo) {
521 LLDB_LOG_ERROR(log, ExpectedInfo.takeError(),
522 "Failed to read memory info list: {0}");
523 return false;
525 constexpr auto yes = MemoryRegionInfo::eYes;
526 constexpr auto no = MemoryRegionInfo::eNo;
527 for (const MemoryInfo &entry : *ExpectedInfo) {
528 MemoryRegionInfo region;
529 region.GetRange().SetRangeBase(entry.BaseAddress);
530 region.GetRange().SetByteSize(entry.RegionSize);
532 MemoryProtection prot = entry.Protect;
533 region.SetReadable(bool(prot & MemoryProtection::NoAccess) ? no : yes);
534 region.SetWritable(
535 bool(prot & (MemoryProtection::ReadWrite | MemoryProtection::WriteCopy |
536 MemoryProtection::ExecuteReadWrite |
537 MemoryProtection::ExeciteWriteCopy))
538 ? yes
539 : no);
540 region.SetExecutable(
541 bool(prot & (MemoryProtection::Execute | MemoryProtection::ExecuteRead |
542 MemoryProtection::ExecuteReadWrite |
543 MemoryProtection::ExeciteWriteCopy))
544 ? yes
545 : no);
546 region.SetMapped(entry.State != MemoryState::Free ? yes : no);
547 regions.push_back(region);
549 return !regions.empty();
552 static bool
553 CreateRegionsCacheFromMemoryList(MinidumpParser &parser,
554 std::vector<MemoryRegionInfo> &regions) {
555 Log *log = GetLog(LLDBLog::Modules);
556 auto ExpectedMemory = parser.GetMinidumpFile().getMemoryList();
557 if (!ExpectedMemory) {
558 LLDB_LOG_ERROR(log, ExpectedMemory.takeError(),
559 "Failed to read memory list: {0}");
560 return false;
562 regions.reserve(ExpectedMemory->size());
563 for (const MemoryDescriptor &memory_desc : *ExpectedMemory) {
564 if (memory_desc.Memory.DataSize == 0)
565 continue;
566 MemoryRegionInfo region;
567 region.GetRange().SetRangeBase(memory_desc.StartOfMemoryRange);
568 region.GetRange().SetByteSize(memory_desc.Memory.DataSize);
569 region.SetReadable(MemoryRegionInfo::eYes);
570 region.SetMapped(MemoryRegionInfo::eYes);
571 regions.push_back(region);
573 regions.shrink_to_fit();
574 return !regions.empty();
577 static bool
578 CreateRegionsCacheFromMemory64List(MinidumpParser &parser,
579 std::vector<MemoryRegionInfo> &regions) {
580 llvm::ArrayRef<uint8_t> data =
581 parser.GetStream(StreamType::Memory64List);
582 if (data.empty())
583 return false;
584 llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
585 uint64_t base_rva;
586 std::tie(memory64_list, base_rva) =
587 MinidumpMemoryDescriptor64::ParseMemory64List(data);
589 if (memory64_list.empty())
590 return false;
592 regions.reserve(memory64_list.size());
593 for (const auto &memory_desc : memory64_list) {
594 if (memory_desc.data_size == 0)
595 continue;
596 MemoryRegionInfo region;
597 region.GetRange().SetRangeBase(memory_desc.start_of_memory_range);
598 region.GetRange().SetByteSize(memory_desc.data_size);
599 region.SetReadable(MemoryRegionInfo::eYes);
600 region.SetMapped(MemoryRegionInfo::eYes);
601 regions.push_back(region);
603 regions.shrink_to_fit();
604 return !regions.empty();
607 std::pair<MemoryRegionInfos, bool> MinidumpParser::BuildMemoryRegions() {
608 // We create the region cache using the best source. We start with
609 // the linux maps since they are the most complete and have names for the
610 // regions. Next we try the MemoryInfoList since it has
611 // read/write/execute/map data, and then fall back to the MemoryList and
612 // Memory64List to just get a list of the memory that is mapped in this
613 // core file
614 MemoryRegionInfos result;
615 const auto &return_sorted = [&](bool is_complete) {
616 llvm::sort(result);
617 return std::make_pair(std::move(result), is_complete);
619 if (CreateRegionsCacheFromLinuxMaps(*this, result))
620 return return_sorted(true);
621 if (CreateRegionsCacheFromMemoryInfoList(*this, result))
622 return return_sorted(true);
623 if (CreateRegionsCacheFromMemoryList(*this, result))
624 return return_sorted(false);
625 CreateRegionsCacheFromMemory64List(*this, result);
626 return return_sorted(false);
629 #define ENUM_TO_CSTR(ST) \
630 case StreamType::ST: \
631 return #ST
633 llvm::StringRef
634 MinidumpParser::GetStreamTypeAsString(StreamType stream_type) {
635 switch (stream_type) {
636 ENUM_TO_CSTR(Unused);
637 ENUM_TO_CSTR(ThreadList);
638 ENUM_TO_CSTR(ModuleList);
639 ENUM_TO_CSTR(MemoryList);
640 ENUM_TO_CSTR(Exception);
641 ENUM_TO_CSTR(SystemInfo);
642 ENUM_TO_CSTR(ThreadExList);
643 ENUM_TO_CSTR(Memory64List);
644 ENUM_TO_CSTR(CommentA);
645 ENUM_TO_CSTR(CommentW);
646 ENUM_TO_CSTR(HandleData);
647 ENUM_TO_CSTR(FunctionTable);
648 ENUM_TO_CSTR(UnloadedModuleList);
649 ENUM_TO_CSTR(MiscInfo);
650 ENUM_TO_CSTR(MemoryInfoList);
651 ENUM_TO_CSTR(ThreadInfoList);
652 ENUM_TO_CSTR(HandleOperationList);
653 ENUM_TO_CSTR(Token);
654 ENUM_TO_CSTR(JavascriptData);
655 ENUM_TO_CSTR(SystemMemoryInfo);
656 ENUM_TO_CSTR(ProcessVMCounters);
657 ENUM_TO_CSTR(LastReserved);
658 ENUM_TO_CSTR(BreakpadInfo);
659 ENUM_TO_CSTR(AssertionInfo);
660 ENUM_TO_CSTR(LinuxCPUInfo);
661 ENUM_TO_CSTR(LinuxProcStatus);
662 ENUM_TO_CSTR(LinuxLSBRelease);
663 ENUM_TO_CSTR(LinuxCMDLine);
664 ENUM_TO_CSTR(LinuxEnviron);
665 ENUM_TO_CSTR(LinuxAuxv);
666 ENUM_TO_CSTR(LinuxMaps);
667 ENUM_TO_CSTR(LinuxDSODebug);
668 ENUM_TO_CSTR(LinuxProcStat);
669 ENUM_TO_CSTR(LinuxProcUptime);
670 ENUM_TO_CSTR(LinuxProcFD);
671 ENUM_TO_CSTR(FacebookAppCustomData);
672 ENUM_TO_CSTR(FacebookBuildID);
673 ENUM_TO_CSTR(FacebookAppVersionName);
674 ENUM_TO_CSTR(FacebookJavaStack);
675 ENUM_TO_CSTR(FacebookDalvikInfo);
676 ENUM_TO_CSTR(FacebookUnwindSymbols);
677 ENUM_TO_CSTR(FacebookDumpErrorLog);
678 ENUM_TO_CSTR(FacebookAppStateLog);
679 ENUM_TO_CSTR(FacebookAbortReason);
680 ENUM_TO_CSTR(FacebookThreadName);
681 ENUM_TO_CSTR(FacebookLogcat);
683 return "unknown stream type";
686 MemoryRegionInfo
687 MinidumpParser::GetMemoryRegionInfo(const MemoryRegionInfos &regions,
688 lldb::addr_t load_addr) {
689 MemoryRegionInfo region;
690 auto pos = llvm::upper_bound(regions, load_addr);
691 if (pos != regions.begin() &&
692 std::prev(pos)->GetRange().Contains(load_addr)) {
693 return *std::prev(pos);
696 if (pos == regions.begin())
697 region.GetRange().SetRangeBase(0);
698 else
699 region.GetRange().SetRangeBase(std::prev(pos)->GetRange().GetRangeEnd());
701 if (pos == regions.end())
702 region.GetRange().SetRangeEnd(UINT64_MAX);
703 else
704 region.GetRange().SetRangeEnd(pos->GetRange().GetRangeBase());
706 region.SetReadable(MemoryRegionInfo::eNo);
707 region.SetWritable(MemoryRegionInfo::eNo);
708 region.SetExecutable(MemoryRegionInfo::eNo);
709 region.SetMapped(MemoryRegionInfo::eNo);
710 return region;