1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/PriorityWorklist.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/PassManagerImpl.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/TimeProfiler.h"
29 #include "llvm/Support/raw_ostream.h"
34 #define DEBUG_TYPE "cgscc"
38 // Explicit template instantiations and specialization definitions for core
41 static cl::opt
<bool> AbortOnMaxDevirtIterationsReached(
42 "abort-on-max-devirt-iterations-reached",
43 cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
46 AnalysisKey
ShouldNotRunFunctionPassesAnalysis::Key
;
48 // Explicit instantiations for the core proxy templates.
49 template class AllAnalysesOn
<LazyCallGraph::SCC
>;
50 template class AnalysisManager
<LazyCallGraph::SCC
, LazyCallGraph
&>;
51 template class PassManager
<LazyCallGraph::SCC
, CGSCCAnalysisManager
,
52 LazyCallGraph
&, CGSCCUpdateResult
&>;
53 template class InnerAnalysisManagerProxy
<CGSCCAnalysisManager
, Module
>;
54 template class OuterAnalysisManagerProxy
<ModuleAnalysisManager
,
55 LazyCallGraph::SCC
, LazyCallGraph
&>;
56 template class OuterAnalysisManagerProxy
<CGSCCAnalysisManager
, Function
>;
58 /// Explicitly specialize the pass manager run method to handle call graph
62 PassManager
<LazyCallGraph::SCC
, CGSCCAnalysisManager
, LazyCallGraph
&,
63 CGSCCUpdateResult
&>::run(LazyCallGraph::SCC
&InitialC
,
64 CGSCCAnalysisManager
&AM
,
65 LazyCallGraph
&G
, CGSCCUpdateResult
&UR
) {
66 // Request PassInstrumentation from analysis manager, will use it to run
67 // instrumenting callbacks for the passes later.
68 PassInstrumentation PI
=
69 AM
.getResult
<PassInstrumentationAnalysis
>(InitialC
, G
);
71 PreservedAnalyses PA
= PreservedAnalyses::all();
73 // The SCC may be refined while we are running passes over it, so set up
74 // a pointer that we can update.
75 LazyCallGraph::SCC
*C
= &InitialC
;
77 // Get Function analysis manager from its proxy.
78 FunctionAnalysisManager
&FAM
=
79 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
)->getManager();
81 for (auto &Pass
: Passes
) {
82 // Check the PassInstrumentation's BeforePass callbacks before running the
83 // pass, skip its execution completely if asked to (callback returns false).
84 if (!PI
.runBeforePass(*Pass
, *C
))
87 PreservedAnalyses PassPA
= Pass
->run(*C
, AM
, G
, UR
);
89 // Update the SCC if necessary.
90 C
= UR
.UpdatedC
? UR
.UpdatedC
: C
;
92 // If C is updated, also create a proxy and update FAM inside the result.
94 &AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, G
);
95 ResultFAMCP
->updateFAM(FAM
);
98 // Intersect the final preserved analyses to compute the aggregate
99 // preserved set for this pass manager.
100 PA
.intersect(PassPA
);
102 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
103 // current SCC may simply need to be skipped if invalid.
104 if (UR
.InvalidatedSCCs
.count(C
)) {
105 PI
.runAfterPassInvalidated
<LazyCallGraph::SCC
>(*Pass
, PassPA
);
106 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
110 // Check that we didn't miss any update scenario.
111 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
113 // Update the analysis manager as each pass runs and potentially
114 // invalidates analyses.
115 AM
.invalidate(*C
, PassPA
);
117 PI
.runAfterPass
<LazyCallGraph::SCC
>(*Pass
, *C
, PassPA
);
120 // Before we mark all of *this* SCC's analyses as preserved below, intersect
121 // this with the cross-SCC preserved analysis set. This is used to allow
122 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
124 UR
.CrossSCCPA
.intersect(PA
);
126 // Invalidation was handled after each pass in the above loop for the current
127 // SCC. Therefore, the remaining analysis results in the AnalysisManager are
128 // preserved. We mark this with a set so that we don't need to inspect each
130 PA
.preserveSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
136 ModuleToPostOrderCGSCCPassAdaptor::run(Module
&M
, ModuleAnalysisManager
&AM
) {
137 // Setup the CGSCC analysis manager from its proxy.
138 CGSCCAnalysisManager
&CGAM
=
139 AM
.getResult
<CGSCCAnalysisManagerModuleProxy
>(M
).getManager();
141 // Get the call graph for this module.
142 LazyCallGraph
&CG
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
144 // Get Function analysis manager from its proxy.
145 FunctionAnalysisManager
&FAM
=
146 AM
.getCachedResult
<FunctionAnalysisManagerModuleProxy
>(M
)->getManager();
148 // We keep worklists to allow us to push more work onto the pass manager as
149 // the passes are run.
150 SmallPriorityWorklist
<LazyCallGraph::RefSCC
*, 1> RCWorklist
;
151 SmallPriorityWorklist
<LazyCallGraph::SCC
*, 1> CWorklist
;
153 // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
154 // iterating off the worklists.
155 SmallPtrSet
<LazyCallGraph::RefSCC
*, 4> InvalidRefSCCSet
;
156 SmallPtrSet
<LazyCallGraph::SCC
*, 4> InvalidSCCSet
;
158 SmallDenseSet
<std::pair
<LazyCallGraph::Node
*, LazyCallGraph::SCC
*>, 4>
159 InlinedInternalEdges
;
161 CGSCCUpdateResult UR
= {
162 RCWorklist
, CWorklist
, InvalidRefSCCSet
,
163 InvalidSCCSet
, nullptr, PreservedAnalyses::all(),
164 InlinedInternalEdges
, {}};
166 // Request PassInstrumentation from analysis manager, will use it to run
167 // instrumenting callbacks for the passes later.
168 PassInstrumentation PI
= AM
.getResult
<PassInstrumentationAnalysis
>(M
);
170 PreservedAnalyses PA
= PreservedAnalyses::all();
172 for (LazyCallGraph::RefSCC
&RC
:
173 llvm::make_early_inc_range(CG
.postorder_ref_sccs())) {
174 assert(RCWorklist
.empty() &&
175 "Should always start with an empty RefSCC worklist");
176 // The postorder_ref_sccs range we are walking is lazily constructed, so
177 // we only push the first one onto the worklist. The worklist allows us
178 // to capture *new* RefSCCs created during transformations.
180 // We really want to form RefSCCs lazily because that makes them cheaper
181 // to update as the program is simplified and allows us to have greater
182 // cache locality as forming a RefSCC touches all the parts of all the
183 // functions within that RefSCC.
185 // We also eagerly increment the iterator to the next position because
186 // the CGSCC passes below may delete the current RefSCC.
187 RCWorklist
.insert(&RC
);
190 LazyCallGraph::RefSCC
*RC
= RCWorklist
.pop_back_val();
191 if (InvalidRefSCCSet
.count(RC
)) {
192 LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
196 assert(CWorklist
.empty() &&
197 "Should always start with an empty SCC worklist");
199 LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
202 // The top of the worklist may *also* be the same SCC we just ran over
203 // (and invalidated for). Keep track of that last SCC we processed due
204 // to SCC update to avoid redundant processing when an SCC is both just
205 // updated itself and at the top of the worklist.
206 LazyCallGraph::SCC
*LastUpdatedC
= nullptr;
208 // Push the initial SCCs in reverse post-order as we'll pop off the
209 // back and so see this in post-order.
210 for (LazyCallGraph::SCC
&C
: llvm::reverse(*RC
))
211 CWorklist
.insert(&C
);
214 LazyCallGraph::SCC
*C
= CWorklist
.pop_back_val();
215 // Due to call graph mutations, we may have invalid SCCs or SCCs from
216 // other RefSCCs in the worklist. The invalid ones are dead and the
217 // other RefSCCs should be queued above, so we just need to skip both
219 if (InvalidSCCSet
.count(C
)) {
220 LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
223 if (LastUpdatedC
== C
) {
224 LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C
<< "\n");
227 // We used to also check if the current SCC is part of the current
228 // RefSCC and bail if it wasn't, since it should be in RCWorklist.
229 // However, this can cause compile time explosions in some cases on
230 // modules with a huge RefSCC. If a non-trivial amount of SCCs in the
231 // huge RefSCC can become their own child RefSCC, we create one child
232 // RefSCC, bail on the current RefSCC, visit the child RefSCC, revisit
233 // the huge RefSCC, and repeat. By visiting all SCCs in the original
234 // RefSCC we create all the child RefSCCs in one pass of the RefSCC,
235 // rather one pass of the RefSCC creating one child RefSCC at a time.
237 // Ensure we can proxy analysis updates from the CGSCC analysis manager
238 // into the Function analysis manager by getting a proxy here.
239 // This also needs to update the FunctionAnalysisManager, as this may be
240 // the first time we see this SCC.
241 CGAM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, CG
).updateFAM(
244 // Each time we visit a new SCC pulled off the worklist,
245 // a transformation of a child SCC may have also modified this parent
246 // and invalidated analyses. So we invalidate using the update record's
247 // cross-SCC preserved set. This preserved set is intersected by any
248 // CGSCC pass that handles invalidation (primarily pass managers) prior
249 // to marking its SCC as preserved. That lets us track everything that
250 // might need invalidation across SCCs without excessive invalidations
253 // This essentially allows SCC passes to freely invalidate analyses
254 // of any ancestor SCC. If this becomes detrimental to successfully
255 // caching analyses, we could force each SCC pass to manually
256 // invalidate the analyses for any SCCs other than themselves which
257 // are mutated. However, that seems to lose the robustness of the
258 // pass-manager driven invalidation scheme.
259 CGAM
.invalidate(*C
, UR
.CrossSCCPA
);
262 // Check that we didn't miss any update scenario.
263 assert(!InvalidSCCSet
.count(C
) && "Processing an invalid SCC!");
264 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
266 LastUpdatedC
= UR
.UpdatedC
;
267 UR
.UpdatedC
= nullptr;
269 // Check the PassInstrumentation's BeforePass callbacks before
270 // running the pass, skip its execution completely if asked to
271 // (callback returns false).
272 if (!PI
.runBeforePass
<LazyCallGraph::SCC
>(*Pass
, *C
))
275 PreservedAnalyses PassPA
= Pass
->run(*C
, CGAM
, CG
, UR
);
277 // Update the SCC and RefSCC if necessary.
278 C
= UR
.UpdatedC
? UR
.UpdatedC
: C
;
281 // If we're updating the SCC, also update the FAM inside the proxy's
283 CGAM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, CG
).updateFAM(
287 // Intersect with the cross-SCC preserved set to capture any
288 // cross-SCC invalidation.
289 UR
.CrossSCCPA
.intersect(PassPA
);
290 // Intersect the preserved set so that invalidation of module
291 // analyses will eventually occur when the module pass completes.
292 PA
.intersect(PassPA
);
294 // If the CGSCC pass wasn't able to provide a valid updated SCC,
295 // the current SCC may simply need to be skipped if invalid.
296 if (UR
.InvalidatedSCCs
.count(C
)) {
297 PI
.runAfterPassInvalidated
<LazyCallGraph::SCC
>(*Pass
, PassPA
);
298 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
302 // Check that we didn't miss any update scenario.
303 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
305 // We handle invalidating the CGSCC analysis manager's information
306 // for the (potentially updated) SCC here. Note that any other SCCs
307 // whose structure has changed should have been invalidated by
308 // whatever was updating the call graph. This SCC gets invalidated
309 // late as it contains the nodes that were actively being
311 CGAM
.invalidate(*C
, PassPA
);
313 PI
.runAfterPass
<LazyCallGraph::SCC
>(*Pass
, *C
, PassPA
);
315 // The pass may have restructured the call graph and refined the
316 // current SCC and/or RefSCC. We need to update our current SCC and
317 // RefSCC pointers to follow these. Also, when the current SCC is
318 // refined, re-run the SCC pass over the newly refined SCC in order
319 // to observe the most precise SCC model available. This inherently
320 // cannot cycle excessively as it only happens when we split SCCs
321 // apart, at most converging on a DAG of single nodes.
322 // FIXME: If we ever start having RefSCC passes, we'll want to
323 // iterate there too.
326 << "Re-running SCC passes after a refinement of the "
328 << *UR
.UpdatedC
<< "\n");
330 // Note that both `C` and `RC` may at this point refer to deleted,
331 // invalid SCC and RefSCCs respectively. But we will short circuit
332 // the processing when we check them in the loop above.
333 } while (UR
.UpdatedC
);
334 } while (!CWorklist
.empty());
336 // We only need to keep internal inlined edge information within
337 // a RefSCC, clear it to save on space and let the next time we visit
338 // any of these functions have a fresh start.
339 InlinedInternalEdges
.clear();
340 } while (!RCWorklist
.empty());
343 // By definition we preserve the call garph, all SCC analyses, and the
344 // analysis proxies by handling them above and in any nested pass managers.
345 PA
.preserveSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
346 PA
.preserve
<LazyCallGraphAnalysis
>();
347 PA
.preserve
<CGSCCAnalysisManagerModuleProxy
>();
348 PA
.preserve
<FunctionAnalysisManagerModuleProxy
>();
352 PreservedAnalyses
DevirtSCCRepeatedPass::run(LazyCallGraph::SCC
&InitialC
,
353 CGSCCAnalysisManager
&AM
,
355 CGSCCUpdateResult
&UR
) {
356 PreservedAnalyses PA
= PreservedAnalyses::all();
357 PassInstrumentation PI
=
358 AM
.getResult
<PassInstrumentationAnalysis
>(InitialC
, CG
);
360 // The SCC may be refined while we are running passes over it, so set up
361 // a pointer that we can update.
362 LazyCallGraph::SCC
*C
= &InitialC
;
364 // Struct to track the counts of direct and indirect calls in each function
371 // Put value handles on all of the indirect calls and return the number of
372 // direct calls for each function in the SCC.
373 auto ScanSCC
= [](LazyCallGraph::SCC
&C
,
374 SmallMapVector
<Value
*, WeakTrackingVH
, 16> &CallHandles
) {
375 assert(CallHandles
.empty() && "Must start with a clear set of handles.");
377 SmallDenseMap
<Function
*, CallCount
> CallCounts
;
378 CallCount CountLocal
= {0, 0};
379 for (LazyCallGraph::Node
&N
: C
) {
381 CallCounts
.insert(std::make_pair(&N
.getFunction(), CountLocal
))
383 for (Instruction
&I
: instructions(N
.getFunction()))
384 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
385 if (CB
->getCalledFunction()) {
389 CallHandles
.insert({CB
, WeakTrackingVH(CB
)});
397 UR
.IndirectVHs
.clear();
398 // Populate the initial call handles and get the initial call counts.
399 auto CallCounts
= ScanSCC(*C
, UR
.IndirectVHs
);
401 for (int Iteration
= 0;; ++Iteration
) {
402 if (!PI
.runBeforePass
<LazyCallGraph::SCC
>(*Pass
, *C
))
405 PreservedAnalyses PassPA
= Pass
->run(*C
, AM
, CG
, UR
);
407 PA
.intersect(PassPA
);
409 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
410 // current SCC may simply need to be skipped if invalid.
411 if (UR
.InvalidatedSCCs
.count(C
)) {
412 PI
.runAfterPassInvalidated
<LazyCallGraph::SCC
>(*Pass
, PassPA
);
413 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
417 // Update the analysis manager with each run and intersect the total set
418 // of preserved analyses so we're ready to iterate.
419 AM
.invalidate(*C
, PassPA
);
421 PI
.runAfterPass
<LazyCallGraph::SCC
>(*Pass
, *C
, PassPA
);
423 // If the SCC structure has changed, bail immediately and let the outer
424 // CGSCC layer handle any iteration to reflect the refined structure.
425 if (UR
.UpdatedC
&& UR
.UpdatedC
!= C
)
428 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
430 // Check whether any of the handles were devirtualized.
431 bool Devirt
= llvm::any_of(UR
.IndirectVHs
, [](auto &P
) -> bool {
433 if (CallBase
*CB
= dyn_cast
<CallBase
>(P
.second
)) {
434 if (CB
->getCalledFunction()) {
435 LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB
<< "\n");
443 // Rescan to build up a new set of handles and count how many direct
444 // calls remain. If we decide to iterate, this also sets up the input to
445 // the next iteration.
446 UR
.IndirectVHs
.clear();
447 auto NewCallCounts
= ScanSCC(*C
, UR
.IndirectVHs
);
449 // If we haven't found an explicit devirtualization already see if we
450 // have decreased the number of indirect calls and increased the number
451 // of direct calls for any function in the SCC. This can be fooled by all
452 // manner of transformations such as DCE and other things, but seems to
453 // work well in practice.
455 // Iterate over the keys in NewCallCounts, if Function also exists in
456 // CallCounts, make the check below.
457 for (auto &Pair
: NewCallCounts
) {
458 auto &CallCountNew
= Pair
.second
;
459 auto CountIt
= CallCounts
.find(Pair
.first
);
460 if (CountIt
!= CallCounts
.end()) {
461 const auto &CallCountOld
= CountIt
->second
;
462 if (CallCountOld
.Indirect
> CallCountNew
.Indirect
&&
463 CallCountOld
.Direct
< CallCountNew
.Direct
) {
474 // Otherwise, if we've already hit our max, we're done.
475 if (Iteration
>= MaxIterations
) {
476 if (AbortOnMaxDevirtIterationsReached
)
477 report_fatal_error("Max devirtualization iterations reached");
479 dbgs() << "Found another devirtualization after hitting the max "
480 "number of repetitions ("
481 << MaxIterations
<< ") on SCC: " << *C
<< "\n");
486 dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
489 // Move over the new call counts in preparation for iterating.
490 CallCounts
= std::move(NewCallCounts
);
493 // Note that we don't add any preserved entries here unlike a more normal
494 // "pass manager" because we only handle invalidation *between* iterations,
495 // not after the last iteration.
499 PreservedAnalyses
CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC
&C
,
500 CGSCCAnalysisManager
&AM
,
502 CGSCCUpdateResult
&UR
) {
503 // Setup the function analysis manager from its proxy.
504 FunctionAnalysisManager
&FAM
=
505 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, CG
).getManager();
507 SmallVector
<LazyCallGraph::Node
*, 4> Nodes
;
508 for (LazyCallGraph::Node
&N
: C
)
511 // The SCC may get split while we are optimizing functions due to deleting
512 // edges. If this happens, the current SCC can shift, so keep track of
513 // a pointer we can overwrite.
514 LazyCallGraph::SCC
*CurrentC
= &C
;
516 LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C
<< "\n");
518 PreservedAnalyses PA
= PreservedAnalyses::all();
519 for (LazyCallGraph::Node
*N
: Nodes
) {
520 // Skip nodes from other SCCs. These may have been split out during
521 // processing. We'll eventually visit those SCCs and pick up the nodes
523 if (CG
.lookupSCC(*N
) != CurrentC
)
526 Function
&F
= N
->getFunction();
528 if (NoRerun
&& FAM
.getCachedResult
<ShouldNotRunFunctionPassesAnalysis
>(F
))
531 PassInstrumentation PI
= FAM
.getResult
<PassInstrumentationAnalysis
>(F
);
532 if (!PI
.runBeforePass
<Function
>(*Pass
, F
))
535 PreservedAnalyses PassPA
= Pass
->run(F
, FAM
);
537 // We know that the function pass couldn't have invalidated any other
538 // function's analyses (that's the contract of a function pass), so
539 // directly handle the function analysis manager's invalidation here.
540 FAM
.invalidate(F
, EagerlyInvalidate
? PreservedAnalyses::none() : PassPA
);
542 PI
.runAfterPass
<Function
>(*Pass
, F
, PassPA
);
544 // Then intersect the preserved set so that invalidation of module
545 // analyses will eventually occur when the module pass completes.
546 PA
.intersect(std::move(PassPA
));
548 // If the call graph hasn't been preserved, update it based on this
549 // function pass. This may also update the current SCC to point to
550 // a smaller, more refined SCC.
551 auto PAC
= PA
.getChecker
<LazyCallGraphAnalysis
>();
552 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<Module
>>()) {
553 CurrentC
= &updateCGAndAnalysisManagerForFunctionPass(CG
, *CurrentC
, *N
,
555 assert(CG
.lookupSCC(*N
) == CurrentC
&&
556 "Current SCC not updated to the SCC containing the current node!");
560 // By definition we preserve the proxy. And we preserve all analyses on
561 // Functions. This precludes *any* invalidation of function analyses by the
562 // proxy, but that's OK because we've taken care to invalidate analyses in
563 // the function analysis manager incrementally above.
564 PA
.preserveSet
<AllAnalysesOn
<Function
>>();
565 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
567 // We've also ensured that we updated the call graph along the way.
568 PA
.preserve
<LazyCallGraphAnalysis
>();
573 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
574 Module
&M
, const PreservedAnalyses
&PA
,
575 ModuleAnalysisManager::Invalidator
&Inv
) {
576 // If literally everything is preserved, we're done.
577 if (PA
.areAllPreserved())
578 return false; // This is still a valid proxy.
580 // If this proxy or the call graph is going to be invalidated, we also need
581 // to clear all the keys coming from that analysis.
583 // We also directly invalidate the FAM's module proxy if necessary, and if
584 // that proxy isn't preserved we can't preserve this proxy either. We rely on
585 // it to handle module -> function analysis invalidation in the face of
586 // structural changes and so if it's unavailable we conservatively clear the
587 // entire SCC layer as well rather than trying to do invalidation ourselves.
588 auto PAC
= PA
.getChecker
<CGSCCAnalysisManagerModuleProxy
>();
589 if (!(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Module
>>()) ||
590 Inv
.invalidate
<LazyCallGraphAnalysis
>(M
, PA
) ||
591 Inv
.invalidate
<FunctionAnalysisManagerModuleProxy
>(M
, PA
)) {
594 // And the proxy itself should be marked as invalid so that we can observe
595 // the new call graph. This isn't strictly necessary because we cheat
596 // above, but is still useful.
600 // Directly check if the relevant set is preserved so we can short circuit
601 // invalidating SCCs below.
602 bool AreSCCAnalysesPreserved
=
603 PA
.allAnalysesInSetPreserved
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
605 // Ok, we have a graph, so we can propagate the invalidation down into it.
607 for (auto &RC
: G
->postorder_ref_sccs())
609 std::optional
<PreservedAnalyses
> InnerPA
;
611 // Check to see whether the preserved set needs to be adjusted based on
612 // module-level analysis invalidation triggering deferred invalidation
614 if (auto *OuterProxy
=
615 InnerAM
->getCachedResult
<ModuleAnalysisManagerCGSCCProxy
>(C
))
616 for (const auto &OuterInvalidationPair
:
617 OuterProxy
->getOuterInvalidations()) {
618 AnalysisKey
*OuterAnalysisID
= OuterInvalidationPair
.first
;
619 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
620 if (Inv
.invalidate(OuterAnalysisID
, M
, PA
)) {
623 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
624 InnerPA
->abandon(InnerAnalysisID
);
628 // Check if we needed a custom PA set. If so we'll need to run the inner
631 InnerAM
->invalidate(C
, *InnerPA
);
635 // Otherwise we only need to do invalidation if the original PA set didn't
636 // preserve all SCC analyses.
637 if (!AreSCCAnalysesPreserved
)
638 InnerAM
->invalidate(C
, PA
);
641 // Return false to indicate that this result is still a valid proxy.
646 CGSCCAnalysisManagerModuleProxy::Result
647 CGSCCAnalysisManagerModuleProxy::run(Module
&M
, ModuleAnalysisManager
&AM
) {
648 // Force the Function analysis manager to also be available so that it can
649 // be accessed in an SCC analysis and proxied onward to function passes.
650 // FIXME: It is pretty awkward to just drop the result here and assert that
651 // we can find it again later.
652 (void)AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
);
654 return Result(*InnerAM
, AM
.getResult
<LazyCallGraphAnalysis
>(M
));
657 AnalysisKey
FunctionAnalysisManagerCGSCCProxy::Key
;
659 FunctionAnalysisManagerCGSCCProxy::Result
660 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC
&C
,
661 CGSCCAnalysisManager
&AM
,
663 // Note: unconditionally getting checking that the proxy exists may get it at
664 // this point. There are cases when this is being run unnecessarily, but
665 // it is cheap and having the assertion in place is more valuable.
666 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerCGSCCProxy
>(C
, CG
);
667 Module
&M
= *C
.begin()->getFunction().getParent();
669 MAMProxy
.cachedResultExists
<FunctionAnalysisManagerModuleProxy
>(M
);
670 assert(ProxyExists
&&
671 "The CGSCC pass manager requires that the FAM module proxy is run "
672 "on the module prior to entering the CGSCC walk");
675 // We just return an empty result. The caller will use the updateFAM interface
676 // to correctly register the relevant FunctionAnalysisManager based on the
677 // context in which this proxy is run.
681 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
682 LazyCallGraph::SCC
&C
, const PreservedAnalyses
&PA
,
683 CGSCCAnalysisManager::Invalidator
&Inv
) {
684 // If literally everything is preserved, we're done.
685 if (PA
.areAllPreserved())
686 return false; // This is still a valid proxy.
688 // All updates to preserve valid results are done below, so we don't need to
689 // invalidate this proxy.
691 // Note that in order to preserve this proxy, a module pass must ensure that
692 // the FAM has been completely updated to handle the deletion of functions.
693 // Specifically, any FAM-cached results for those functions need to have been
694 // forcibly cleared. When preserved, this proxy will only invalidate results
695 // cached on functions *still in the module* at the end of the module pass.
696 auto PAC
= PA
.getChecker
<FunctionAnalysisManagerCGSCCProxy
>();
697 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>()) {
698 for (LazyCallGraph::Node
&N
: C
)
699 FAM
->invalidate(N
.getFunction(), PA
);
704 // Directly check if the relevant set is preserved.
705 bool AreFunctionAnalysesPreserved
=
706 PA
.allAnalysesInSetPreserved
<AllAnalysesOn
<Function
>>();
708 // Now walk all the functions to see if any inner analysis invalidation is
710 for (LazyCallGraph::Node
&N
: C
) {
711 Function
&F
= N
.getFunction();
712 std::optional
<PreservedAnalyses
> FunctionPA
;
714 // Check to see whether the preserved set needs to be pruned based on
715 // SCC-level analysis invalidation that triggers deferred invalidation
716 // registered with the outer analysis manager proxy for this function.
717 if (auto *OuterProxy
=
718 FAM
->getCachedResult
<CGSCCAnalysisManagerFunctionProxy
>(F
))
719 for (const auto &OuterInvalidationPair
:
720 OuterProxy
->getOuterInvalidations()) {
721 AnalysisKey
*OuterAnalysisID
= OuterInvalidationPair
.first
;
722 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
723 if (Inv
.invalidate(OuterAnalysisID
, C
, PA
)) {
726 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
727 FunctionPA
->abandon(InnerAnalysisID
);
731 // Check if we needed a custom PA set, and if so we'll need to run the
732 // inner invalidation.
734 FAM
->invalidate(F
, *FunctionPA
);
738 // Otherwise we only need to do invalidation if the original PA set didn't
739 // preserve all function analyses.
740 if (!AreFunctionAnalysesPreserved
)
741 FAM
->invalidate(F
, PA
);
744 // Return false to indicate that this result is still a valid proxy.
748 } // end namespace llvm
750 /// When a new SCC is created for the graph we first update the
751 /// FunctionAnalysisManager in the Proxy's result.
752 /// As there might be function analysis results cached for the functions now in
753 /// that SCC, two forms of updates are required.
755 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
756 /// created so that any subsequent invalidation events to the SCC are
757 /// propagated to the function analysis results cached for functions within it.
759 /// Second, if any of the functions within the SCC have analysis results with
760 /// outer analysis dependencies, then those dependencies would point to the
761 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
762 /// function analyses so that they don't retain stale handles.
763 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC
&C
,
765 CGSCCAnalysisManager
&AM
,
766 FunctionAnalysisManager
&FAM
) {
767 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, G
).updateFAM(FAM
);
769 // Now walk the functions in this SCC and invalidate any function analysis
770 // results that might have outer dependencies on an SCC analysis.
771 for (LazyCallGraph::Node
&N
: C
) {
772 Function
&F
= N
.getFunction();
775 FAM
.getCachedResult
<CGSCCAnalysisManagerFunctionProxy
>(F
);
777 // No outer analyses were queried, nothing to do.
780 // Forcibly abandon all the inner analyses with dependencies, but
781 // invalidate nothing else.
782 auto PA
= PreservedAnalyses::all();
783 for (const auto &OuterInvalidationPair
:
784 OuterProxy
->getOuterInvalidations()) {
785 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
786 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
787 PA
.abandon(InnerAnalysisID
);
790 // Now invalidate anything we found.
791 FAM
.invalidate(F
, PA
);
795 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
796 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
799 /// The range of new SCCs must be in postorder already. The SCC they were split
800 /// out of must be provided as \p C. The current node being mutated and
801 /// triggering updates must be passed as \p N.
803 /// This function returns the SCC containing \p N. This will be either \p C if
804 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
805 template <typename SCCRangeT
>
806 static LazyCallGraph::SCC
*
807 incorporateNewSCCRange(const SCCRangeT
&NewSCCRange
, LazyCallGraph
&G
,
808 LazyCallGraph::Node
&N
, LazyCallGraph::SCC
*C
,
809 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
) {
810 using SCC
= LazyCallGraph::SCC
;
812 if (NewSCCRange
.empty())
815 // Add the current SCC to the worklist as its shape has changed.
816 UR
.CWorklist
.insert(C
);
817 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
822 // Update the current SCC. Note that if we have new SCCs, this must actually
824 assert(C
!= &*NewSCCRange
.begin() &&
825 "Cannot insert new SCCs without changing current SCC!");
826 C
= &*NewSCCRange
.begin();
827 assert(G
.lookupSCC(N
) == C
&& "Failed to update current SCC!");
829 // If we had a cached FAM proxy originally, we will want to create more of
830 // them for each SCC that was split off.
831 FunctionAnalysisManager
*FAM
= nullptr;
833 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(*OldC
))
834 FAM
= &FAMProxy
->getManager();
836 // We need to propagate an invalidation call to all but the newly current SCC
837 // because the outer pass manager won't do that for us after splitting them.
838 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
839 // there are preserved analysis we can avoid invalidating them here for
841 // We know however that this will preserve any FAM proxy so go ahead and mark
843 auto PA
= PreservedAnalyses::allInSet
<AllAnalysesOn
<Function
>>();
844 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
845 AM
.invalidate(*OldC
, PA
);
847 // Ensure the now-current SCC's function analyses are updated.
849 updateNewSCCFunctionAnalyses(*C
, G
, AM
, *FAM
);
851 for (SCC
&NewC
: llvm::reverse(llvm::drop_begin(NewSCCRange
))) {
852 assert(C
!= &NewC
&& "No need to re-visit the current SCC!");
853 assert(OldC
!= &NewC
&& "Already handled the original SCC!");
854 UR
.CWorklist
.insert(&NewC
);
855 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC
<< "\n");
857 // Ensure new SCCs' function analyses are updated.
859 updateNewSCCFunctionAnalyses(NewC
, G
, AM
, *FAM
);
861 // Also propagate a normal invalidation to the new SCC as only the current
862 // will get one from the pass manager infrastructure.
863 AM
.invalidate(NewC
, PA
);
868 static LazyCallGraph::SCC
&updateCGAndAnalysisManagerForPass(
869 LazyCallGraph
&G
, LazyCallGraph::SCC
&InitialC
, LazyCallGraph::Node
&N
,
870 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
,
871 FunctionAnalysisManager
&FAM
, bool FunctionPass
) {
872 using Node
= LazyCallGraph::Node
;
873 using Edge
= LazyCallGraph::Edge
;
874 using SCC
= LazyCallGraph::SCC
;
875 using RefSCC
= LazyCallGraph::RefSCC
;
877 RefSCC
&InitialRC
= InitialC
.getOuterRefSCC();
879 RefSCC
*RC
= &InitialRC
;
880 Function
&F
= N
.getFunction();
882 // Walk the function body and build up the set of retained, promoted, and
884 SmallVector
<Constant
*, 16> Worklist
;
885 SmallPtrSet
<Constant
*, 16> Visited
;
886 SmallPtrSet
<Node
*, 16> RetainedEdges
;
887 SmallSetVector
<Node
*, 4> PromotedRefTargets
;
888 SmallSetVector
<Node
*, 4> DemotedCallTargets
;
889 SmallSetVector
<Node
*, 4> NewCallEdges
;
890 SmallSetVector
<Node
*, 4> NewRefEdges
;
892 // First walk the function and handle all called functions. We do this first
893 // because if there is a single call edge, whether there are ref edges is
895 for (Instruction
&I
: instructions(F
)) {
896 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
897 if (Function
*Callee
= CB
->getCalledFunction()) {
898 if (Visited
.insert(Callee
).second
&& !Callee
->isDeclaration()) {
899 Node
*CalleeN
= G
.lookup(*Callee
);
901 "Visited function should already have an associated node");
902 Edge
*E
= N
->lookup(*CalleeN
);
903 assert((E
|| !FunctionPass
) &&
904 "No function transformations should introduce *new* "
905 "call edges! Any new calls should be modeled as "
906 "promoted existing ref edges!");
907 bool Inserted
= RetainedEdges
.insert(CalleeN
).second
;
909 assert(Inserted
&& "We should never visit a function twice.");
911 NewCallEdges
.insert(CalleeN
);
912 else if (!E
->isCall())
913 PromotedRefTargets
.insert(CalleeN
);
916 // We can miss devirtualization if an indirect call is created then
917 // promoted before updateCGAndAnalysisManagerForPass runs.
918 auto *Entry
= UR
.IndirectVHs
.find(CB
);
919 if (Entry
== UR
.IndirectVHs
.end())
920 UR
.IndirectVHs
.insert({CB
, WeakTrackingVH(CB
)});
921 else if (!Entry
->second
)
922 Entry
->second
= WeakTrackingVH(CB
);
927 // Now walk all references.
928 for (Instruction
&I
: instructions(F
))
929 for (Value
*Op
: I
.operand_values())
930 if (auto *OpC
= dyn_cast
<Constant
>(Op
))
931 if (Visited
.insert(OpC
).second
)
932 Worklist
.push_back(OpC
);
934 auto VisitRef
= [&](Function
&Referee
) {
935 Node
*RefereeN
= G
.lookup(Referee
);
937 "Visited function should already have an associated node");
938 Edge
*E
= N
->lookup(*RefereeN
);
939 assert((E
|| !FunctionPass
) &&
940 "No function transformations should introduce *new* ref "
941 "edges! Any new ref edges would require IPO which "
942 "function passes aren't allowed to do!");
943 bool Inserted
= RetainedEdges
.insert(RefereeN
).second
;
945 assert(Inserted
&& "We should never visit a function twice.");
947 NewRefEdges
.insert(RefereeN
);
948 else if (E
->isCall())
949 DemotedCallTargets
.insert(RefereeN
);
951 LazyCallGraph::visitReferences(Worklist
, Visited
, VisitRef
);
953 // Handle new ref edges.
954 for (Node
*RefTarget
: NewRefEdges
) {
955 SCC
&TargetC
= *G
.lookupSCC(*RefTarget
);
956 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
958 // TODO: This only allows trivial edges to be added for now.
959 #ifdef EXPENSIVE_CHECKS
960 assert((RC
== &TargetRC
||
961 RC
->isAncestorOf(TargetRC
)) && "New ref edge is not trivial!");
963 RC
->insertTrivialRefEdge(N
, *RefTarget
);
966 // Handle new call edges.
967 for (Node
*CallTarget
: NewCallEdges
) {
968 SCC
&TargetC
= *G
.lookupSCC(*CallTarget
);
969 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
971 // TODO: This only allows trivial edges to be added for now.
972 #ifdef EXPENSIVE_CHECKS
973 assert((RC
== &TargetRC
||
974 RC
->isAncestorOf(TargetRC
)) && "New call edge is not trivial!");
976 // Add a trivial ref edge to be promoted later on alongside
977 // PromotedRefTargets.
978 RC
->insertTrivialRefEdge(N
, *CallTarget
);
981 // Include synthetic reference edges to known, defined lib functions.
982 for (auto *LibFn
: G
.getLibFunctions())
983 // While the list of lib functions doesn't have repeats, don't re-visit
984 // anything handled above.
985 if (!Visited
.count(LibFn
))
988 // First remove all of the edges that are no longer present in this function.
989 // The first step makes these edges uniformly ref edges and accumulates them
990 // into a separate data structure so removal doesn't invalidate anything.
991 SmallVector
<Node
*, 4> DeadTargets
;
993 if (RetainedEdges
.count(&E
.getNode()))
996 SCC
&TargetC
= *G
.lookupSCC(E
.getNode());
997 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
998 if (&TargetRC
== RC
&& E
.isCall()) {
1000 // For separate SCCs this is trivial.
1001 RC
->switchTrivialInternalEdgeToRef(N
, E
.getNode());
1003 // Now update the call graph.
1004 C
= incorporateNewSCCRange(RC
->switchInternalEdgeToRef(N
, E
.getNode()),
1009 // Now that this is ready for actual removal, put it into our list.
1010 DeadTargets
.push_back(&E
.getNode());
1012 // Remove the easy cases quickly and actually pull them out of our list.
1013 llvm::erase_if(DeadTargets
, [&](Node
*TargetN
) {
1014 SCC
&TargetC
= *G
.lookupSCC(*TargetN
);
1015 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1017 // We can't trivially remove internal targets, so skip
1019 if (&TargetRC
== RC
)
1022 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N
<< "' to '"
1023 << *TargetN
<< "'\n");
1024 RC
->removeOutgoingEdge(N
, *TargetN
);
1028 // Now do a batch removal of the internal ref edges left.
1029 auto NewRefSCCs
= RC
->removeInternalRefEdge(N
, DeadTargets
);
1030 if (!NewRefSCCs
.empty()) {
1031 // The old RefSCC is dead, mark it as such.
1032 UR
.InvalidatedRefSCCs
.insert(RC
);
1034 // Note that we don't bother to invalidate analyses as ref-edge
1035 // connectivity is not really observable in any way and is intended
1036 // exclusively to be used for ordering of transforms rather than for
1037 // analysis conclusions.
1039 // Update RC to the "bottom".
1040 assert(G
.lookupSCC(N
) == C
&& "Changed the SCC when splitting RefSCCs!");
1041 RC
= &C
->getOuterRefSCC();
1042 assert(G
.lookupRefSCC(N
) == RC
&& "Failed to update current RefSCC!");
1044 // The RC worklist is in reverse postorder, so we enqueue the new ones in
1045 // RPO except for the one which contains the source node as that is the
1046 // "bottom" we will continue processing in the bottom-up walk.
1047 assert(NewRefSCCs
.front() == RC
&&
1048 "New current RefSCC not first in the returned list!");
1049 for (RefSCC
*NewRC
: llvm::reverse(llvm::drop_begin(NewRefSCCs
))) {
1050 assert(NewRC
!= RC
&& "Should not encounter the current RefSCC further "
1051 "in the postorder list of new RefSCCs.");
1052 UR
.RCWorklist
.insert(NewRC
);
1053 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
1058 // Next demote all the call edges that are now ref edges. This helps make
1059 // the SCCs small which should minimize the work below as we don't want to
1060 // form cycles that this would break.
1061 for (Node
*RefTarget
: DemotedCallTargets
) {
1062 SCC
&TargetC
= *G
.lookupSCC(*RefTarget
);
1063 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1065 // The easy case is when the target RefSCC is not this RefSCC. This is
1066 // only supported when the target RefSCC is a child of this RefSCC.
1067 if (&TargetRC
!= RC
) {
1068 #ifdef EXPENSIVE_CHECKS
1069 assert(RC
->isAncestorOf(TargetRC
) &&
1070 "Cannot potentially form RefSCC cycles here!");
1072 RC
->switchOutgoingEdgeToRef(N
, *RefTarget
);
1073 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
1074 << "' to '" << *RefTarget
<< "'\n");
1078 // We are switching an internal call edge to a ref edge. This may split up
1080 if (C
!= &TargetC
) {
1081 // For separate SCCs this is trivial.
1082 RC
->switchTrivialInternalEdgeToRef(N
, *RefTarget
);
1086 // Now update the call graph.
1087 C
= incorporateNewSCCRange(RC
->switchInternalEdgeToRef(N
, *RefTarget
), G
, N
,
1091 // We added a ref edge earlier for new call edges, promote those to call edges
1092 // alongside PromotedRefTargets.
1093 for (Node
*E
: NewCallEdges
)
1094 PromotedRefTargets
.insert(E
);
1096 // Now promote ref edges into call edges.
1097 for (Node
*CallTarget
: PromotedRefTargets
) {
1098 SCC
&TargetC
= *G
.lookupSCC(*CallTarget
);
1099 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1101 // The easy case is when the target RefSCC is not this RefSCC. This is
1102 // only supported when the target RefSCC is a child of this RefSCC.
1103 if (&TargetRC
!= RC
) {
1104 #ifdef EXPENSIVE_CHECKS
1105 assert(RC
->isAncestorOf(TargetRC
) &&
1106 "Cannot potentially form RefSCC cycles here!");
1108 RC
->switchOutgoingEdgeToCall(N
, *CallTarget
);
1109 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
1110 << "' to '" << *CallTarget
<< "'\n");
1113 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
1114 << N
<< "' to '" << *CallTarget
<< "'\n");
1116 // Otherwise we are switching an internal ref edge to a call edge. This
1117 // may merge away some SCCs, and we add those to the UpdateResult. We also
1118 // need to make sure to update the worklist in the event SCCs have moved
1119 // before the current one in the post-order sequence
1120 bool HasFunctionAnalysisProxy
= false;
1121 auto InitialSCCIndex
= RC
->find(*C
) - RC
->begin();
1122 bool FormedCycle
= RC
->switchInternalEdgeToCall(
1123 N
, *CallTarget
, [&](ArrayRef
<SCC
*> MergedSCCs
) {
1124 for (SCC
*MergedC
: MergedSCCs
) {
1125 assert(MergedC
!= &TargetC
&& "Cannot merge away the target SCC!");
1127 HasFunctionAnalysisProxy
|=
1128 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(
1129 *MergedC
) != nullptr;
1131 // Mark that this SCC will no longer be valid.
1132 UR
.InvalidatedSCCs
.insert(MergedC
);
1134 // FIXME: We should really do a 'clear' here to forcibly release
1135 // memory, but we don't have a good way of doing that and
1136 // preserving the function analyses.
1137 auto PA
= PreservedAnalyses::allInSet
<AllAnalysesOn
<Function
>>();
1138 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
1139 AM
.invalidate(*MergedC
, PA
);
1143 // If we formed a cycle by creating this call, we need to update more data
1147 assert(G
.lookupSCC(N
) == C
&& "Failed to update current SCC!");
1149 // If one of the invalidated SCCs had a cached proxy to a function
1150 // analysis manager, we need to create a proxy in the new current SCC as
1151 // the invalidated SCCs had their functions moved.
1152 if (HasFunctionAnalysisProxy
)
1153 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, G
).updateFAM(FAM
);
1155 // Any analyses cached for this SCC are no longer precise as the shape
1156 // has changed by introducing this cycle. However, we have taken care to
1157 // update the proxies so it remains valide.
1158 auto PA
= PreservedAnalyses::allInSet
<AllAnalysesOn
<Function
>>();
1159 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
1160 AM
.invalidate(*C
, PA
);
1162 auto NewSCCIndex
= RC
->find(*C
) - RC
->begin();
1163 // If we have actually moved an SCC to be topologically "below" the current
1164 // one due to merging, we will need to revisit the current SCC after
1165 // visiting those moved SCCs.
1167 // It is critical that we *do not* revisit the current SCC unless we
1168 // actually move SCCs in the process of merging because otherwise we may
1169 // form a cycle where an SCC is split apart, merged, split, merged and so
1171 if (InitialSCCIndex
< NewSCCIndex
) {
1172 // Put our current SCC back onto the worklist as we'll visit other SCCs
1173 // that are now definitively ordered prior to the current one in the
1174 // post-order sequence, and may end up observing more precise context to
1175 // optimize the current SCC.
1176 UR
.CWorklist
.insert(C
);
1177 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
1179 // Enqueue in reverse order as we pop off the back of the worklist.
1180 for (SCC
&MovedC
: llvm::reverse(make_range(RC
->begin() + InitialSCCIndex
,
1181 RC
->begin() + NewSCCIndex
))) {
1182 UR
.CWorklist
.insert(&MovedC
);
1183 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
1189 assert(!UR
.InvalidatedSCCs
.count(C
) && "Invalidated the current SCC!");
1190 assert(!UR
.InvalidatedRefSCCs
.count(RC
) && "Invalidated the current RefSCC!");
1191 assert(&C
->getOuterRefSCC() == RC
&& "Current SCC not in current RefSCC!");
1193 // Record the current SCC for higher layers of the CGSCC pass manager now that
1194 // all the updates have been applied.
1201 LazyCallGraph::SCC
&llvm::updateCGAndAnalysisManagerForFunctionPass(
1202 LazyCallGraph
&G
, LazyCallGraph::SCC
&InitialC
, LazyCallGraph::Node
&N
,
1203 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
,
1204 FunctionAnalysisManager
&FAM
) {
1205 return updateCGAndAnalysisManagerForPass(G
, InitialC
, N
, AM
, UR
, FAM
,
1206 /* FunctionPass */ true);
1208 LazyCallGraph::SCC
&llvm::updateCGAndAnalysisManagerForCGSCCPass(
1209 LazyCallGraph
&G
, LazyCallGraph::SCC
&InitialC
, LazyCallGraph::Node
&N
,
1210 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
,
1211 FunctionAnalysisManager
&FAM
) {
1212 return updateCGAndAnalysisManagerForPass(G
, InitialC
, N
, AM
, UR
, FAM
,
1213 /* FunctionPass */ false);