Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Analysis / ConstantFolding.cpp
blob353cf733a428c04519af2f493160216bf1fc4ee7
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantFold.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/IntrinsicsAArch64.h"
46 #include "llvm/IR/IntrinsicsAMDGPU.h"
47 #include "llvm/IR/IntrinsicsARM.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <cassert>
58 #include <cerrno>
59 #include <cfenv>
60 #include <cmath>
61 #include <cstdint>
63 using namespace llvm;
65 namespace {
67 //===----------------------------------------------------------------------===//
68 // Constant Folding internal helper functions
69 //===----------------------------------------------------------------------===//
71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
72 Constant *C, Type *SrcEltTy,
73 unsigned NumSrcElts,
74 const DataLayout &DL) {
75 // Now that we know that the input value is a vector of integers, just shift
76 // and insert them into our result.
77 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
78 for (unsigned i = 0; i != NumSrcElts; ++i) {
79 Constant *Element;
80 if (DL.isLittleEndian())
81 Element = C->getAggregateElement(NumSrcElts - i - 1);
82 else
83 Element = C->getAggregateElement(i);
85 if (Element && isa<UndefValue>(Element)) {
86 Result <<= BitShift;
87 continue;
90 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
91 if (!ElementCI)
92 return ConstantExpr::getBitCast(C, DestTy);
94 Result <<= BitShift;
95 Result |= ElementCI->getValue().zext(Result.getBitWidth());
98 return nullptr;
101 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
102 /// This always returns a non-null constant, but it may be a
103 /// ConstantExpr if unfoldable.
104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
105 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
106 "Invalid constantexpr bitcast!");
108 // Catch the obvious splat cases.
109 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
110 return Res;
112 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
113 // Handle a vector->scalar integer/fp cast.
114 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
115 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
116 Type *SrcEltTy = VTy->getElementType();
118 // If the vector is a vector of floating point, convert it to vector of int
119 // to simplify things.
120 if (SrcEltTy->isFloatingPointTy()) {
121 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
122 auto *SrcIVTy = FixedVectorType::get(
123 IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
124 // Ask IR to do the conversion now that #elts line up.
125 C = ConstantExpr::getBitCast(C, SrcIVTy);
128 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
129 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
130 SrcEltTy, NumSrcElts, DL))
131 return CE;
133 if (isa<IntegerType>(DestTy))
134 return ConstantInt::get(DestTy, Result);
136 APFloat FP(DestTy->getFltSemantics(), Result);
137 return ConstantFP::get(DestTy->getContext(), FP);
141 // The code below only handles casts to vectors currently.
142 auto *DestVTy = dyn_cast<VectorType>(DestTy);
143 if (!DestVTy)
144 return ConstantExpr::getBitCast(C, DestTy);
146 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
147 // vector so the code below can handle it uniformly.
148 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
149 Constant *Ops = C; // don't take the address of C!
150 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
153 // If this is a bitcast from constant vector -> vector, fold it.
154 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
155 return ConstantExpr::getBitCast(C, DestTy);
157 // If the element types match, IR can fold it.
158 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
159 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
160 if (NumDstElt == NumSrcElt)
161 return ConstantExpr::getBitCast(C, DestTy);
163 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
164 Type *DstEltTy = DestVTy->getElementType();
166 // Otherwise, we're changing the number of elements in a vector, which
167 // requires endianness information to do the right thing. For example,
168 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
169 // folds to (little endian):
170 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
171 // and to (big endian):
172 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
174 // First thing is first. We only want to think about integer here, so if
175 // we have something in FP form, recast it as integer.
176 if (DstEltTy->isFloatingPointTy()) {
177 // Fold to an vector of integers with same size as our FP type.
178 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
179 auto *DestIVTy = FixedVectorType::get(
180 IntegerType::get(C->getContext(), FPWidth), NumDstElt);
181 // Recursively handle this integer conversion, if possible.
182 C = FoldBitCast(C, DestIVTy, DL);
184 // Finally, IR can handle this now that #elts line up.
185 return ConstantExpr::getBitCast(C, DestTy);
188 // Okay, we know the destination is integer, if the input is FP, convert
189 // it to integer first.
190 if (SrcEltTy->isFloatingPointTy()) {
191 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
192 auto *SrcIVTy = FixedVectorType::get(
193 IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
194 // Ask IR to do the conversion now that #elts line up.
195 C = ConstantExpr::getBitCast(C, SrcIVTy);
196 // If IR wasn't able to fold it, bail out.
197 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
198 !isa<ConstantDataVector>(C))
199 return C;
202 // Now we know that the input and output vectors are both integer vectors
203 // of the same size, and that their #elements is not the same. Do the
204 // conversion here, which depends on whether the input or output has
205 // more elements.
206 bool isLittleEndian = DL.isLittleEndian();
208 SmallVector<Constant*, 32> Result;
209 if (NumDstElt < NumSrcElt) {
210 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
211 Constant *Zero = Constant::getNullValue(DstEltTy);
212 unsigned Ratio = NumSrcElt/NumDstElt;
213 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
214 unsigned SrcElt = 0;
215 for (unsigned i = 0; i != NumDstElt; ++i) {
216 // Build each element of the result.
217 Constant *Elt = Zero;
218 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
219 for (unsigned j = 0; j != Ratio; ++j) {
220 Constant *Src = C->getAggregateElement(SrcElt++);
221 if (Src && isa<UndefValue>(Src))
222 Src = Constant::getNullValue(
223 cast<VectorType>(C->getType())->getElementType());
224 else
225 Src = dyn_cast_or_null<ConstantInt>(Src);
226 if (!Src) // Reject constantexpr elements.
227 return ConstantExpr::getBitCast(C, DestTy);
229 // Zero extend the element to the right size.
230 Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
231 DL);
232 assert(Src && "Constant folding cannot fail on plain integers");
234 // Shift it to the right place, depending on endianness.
235 Src = ConstantFoldBinaryOpOperands(
236 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
237 DL);
238 assert(Src && "Constant folding cannot fail on plain integers");
240 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
242 // Mix it in.
243 Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
244 assert(Elt && "Constant folding cannot fail on plain integers");
246 Result.push_back(Elt);
248 return ConstantVector::get(Result);
251 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
252 unsigned Ratio = NumDstElt/NumSrcElt;
253 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
255 // Loop over each source value, expanding into multiple results.
256 for (unsigned i = 0; i != NumSrcElt; ++i) {
257 auto *Element = C->getAggregateElement(i);
259 if (!Element) // Reject constantexpr elements.
260 return ConstantExpr::getBitCast(C, DestTy);
262 if (isa<UndefValue>(Element)) {
263 // Correctly Propagate undef values.
264 Result.append(Ratio, UndefValue::get(DstEltTy));
265 continue;
268 auto *Src = dyn_cast<ConstantInt>(Element);
269 if (!Src)
270 return ConstantExpr::getBitCast(C, DestTy);
272 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
273 for (unsigned j = 0; j != Ratio; ++j) {
274 // Shift the piece of the value into the right place, depending on
275 // endianness.
276 Constant *Elt = ConstantExpr::getLShr(Src,
277 ConstantInt::get(Src->getType(), ShiftAmt));
278 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
280 // Truncate the element to an integer with the same pointer size and
281 // convert the element back to a pointer using a inttoptr.
282 if (DstEltTy->isPointerTy()) {
283 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
284 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
285 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
286 continue;
289 // Truncate and remember this piece.
290 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
294 return ConstantVector::get(Result);
297 } // end anonymous namespace
299 /// If this constant is a constant offset from a global, return the global and
300 /// the constant. Because of constantexprs, this function is recursive.
301 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
302 APInt &Offset, const DataLayout &DL,
303 DSOLocalEquivalent **DSOEquiv) {
304 if (DSOEquiv)
305 *DSOEquiv = nullptr;
307 // Trivial case, constant is the global.
308 if ((GV = dyn_cast<GlobalValue>(C))) {
309 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
310 Offset = APInt(BitWidth, 0);
311 return true;
314 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
315 if (DSOEquiv)
316 *DSOEquiv = FoundDSOEquiv;
317 GV = FoundDSOEquiv->getGlobalValue();
318 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
319 Offset = APInt(BitWidth, 0);
320 return true;
323 // Otherwise, if this isn't a constant expr, bail out.
324 auto *CE = dyn_cast<ConstantExpr>(C);
325 if (!CE) return false;
327 // Look through ptr->int and ptr->ptr casts.
328 if (CE->getOpcode() == Instruction::PtrToInt ||
329 CE->getOpcode() == Instruction::BitCast)
330 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
331 DSOEquiv);
333 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
334 auto *GEP = dyn_cast<GEPOperator>(CE);
335 if (!GEP)
336 return false;
338 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
339 APInt TmpOffset(BitWidth, 0);
341 // If the base isn't a global+constant, we aren't either.
342 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
343 DSOEquiv))
344 return false;
346 // Otherwise, add any offset that our operands provide.
347 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
348 return false;
350 Offset = TmpOffset;
351 return true;
354 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
355 const DataLayout &DL) {
356 do {
357 Type *SrcTy = C->getType();
358 if (SrcTy == DestTy)
359 return C;
361 TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
362 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
363 if (!TypeSize::isKnownGE(SrcSize, DestSize))
364 return nullptr;
366 // Catch the obvious splat cases (since all-zeros can coerce non-integral
367 // pointers legally).
368 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
369 return Res;
371 // If the type sizes are the same and a cast is legal, just directly
372 // cast the constant.
373 // But be careful not to coerce non-integral pointers illegally.
374 if (SrcSize == DestSize &&
375 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
376 DL.isNonIntegralPointerType(DestTy->getScalarType())) {
377 Instruction::CastOps Cast = Instruction::BitCast;
378 // If we are going from a pointer to int or vice versa, we spell the cast
379 // differently.
380 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
381 Cast = Instruction::IntToPtr;
382 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
383 Cast = Instruction::PtrToInt;
385 if (CastInst::castIsValid(Cast, C, DestTy))
386 return ConstantFoldCastOperand(Cast, C, DestTy, DL);
389 // If this isn't an aggregate type, there is nothing we can do to drill down
390 // and find a bitcastable constant.
391 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
392 return nullptr;
394 // We're simulating a load through a pointer that was bitcast to point to
395 // a different type, so we can try to walk down through the initial
396 // elements of an aggregate to see if some part of the aggregate is
397 // castable to implement the "load" semantic model.
398 if (SrcTy->isStructTy()) {
399 // Struct types might have leading zero-length elements like [0 x i32],
400 // which are certainly not what we are looking for, so skip them.
401 unsigned Elem = 0;
402 Constant *ElemC;
403 do {
404 ElemC = C->getAggregateElement(Elem++);
405 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
406 C = ElemC;
407 } else {
408 // For non-byte-sized vector elements, the first element is not
409 // necessarily located at the vector base address.
410 if (auto *VT = dyn_cast<VectorType>(SrcTy))
411 if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
412 return nullptr;
414 C = C->getAggregateElement(0u);
416 } while (C);
418 return nullptr;
421 namespace {
423 /// Recursive helper to read bits out of global. C is the constant being copied
424 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
425 /// results into and BytesLeft is the number of bytes left in
426 /// the CurPtr buffer. DL is the DataLayout.
427 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
428 unsigned BytesLeft, const DataLayout &DL) {
429 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
430 "Out of range access");
432 // If this element is zero or undefined, we can just return since *CurPtr is
433 // zero initialized.
434 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
435 return true;
437 if (auto *CI = dyn_cast<ConstantInt>(C)) {
438 if ((CI->getBitWidth() & 7) != 0)
439 return false;
440 const APInt &Val = CI->getValue();
441 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
443 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
444 unsigned n = ByteOffset;
445 if (!DL.isLittleEndian())
446 n = IntBytes - n - 1;
447 CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
448 ++ByteOffset;
450 return true;
453 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
454 if (CFP->getType()->isDoubleTy()) {
455 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
456 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
458 if (CFP->getType()->isFloatTy()){
459 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
460 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
462 if (CFP->getType()->isHalfTy()){
463 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
464 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
466 return false;
469 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
470 const StructLayout *SL = DL.getStructLayout(CS->getType());
471 unsigned Index = SL->getElementContainingOffset(ByteOffset);
472 uint64_t CurEltOffset = SL->getElementOffset(Index);
473 ByteOffset -= CurEltOffset;
475 while (true) {
476 // If the element access is to the element itself and not to tail padding,
477 // read the bytes from the element.
478 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
480 if (ByteOffset < EltSize &&
481 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
482 BytesLeft, DL))
483 return false;
485 ++Index;
487 // Check to see if we read from the last struct element, if so we're done.
488 if (Index == CS->getType()->getNumElements())
489 return true;
491 // If we read all of the bytes we needed from this element we're done.
492 uint64_t NextEltOffset = SL->getElementOffset(Index);
494 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
495 return true;
497 // Move to the next element of the struct.
498 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
499 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
500 ByteOffset = 0;
501 CurEltOffset = NextEltOffset;
503 // not reached.
506 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
507 isa<ConstantDataSequential>(C)) {
508 uint64_t NumElts, EltSize;
509 Type *EltTy;
510 if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
511 NumElts = AT->getNumElements();
512 EltTy = AT->getElementType();
513 EltSize = DL.getTypeAllocSize(EltTy);
514 } else {
515 NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
516 EltTy = cast<FixedVectorType>(C->getType())->getElementType();
517 // TODO: For non-byte-sized vectors, current implementation assumes there is
518 // padding to the next byte boundary between elements.
519 if (!DL.typeSizeEqualsStoreSize(EltTy))
520 return false;
522 EltSize = DL.getTypeStoreSize(EltTy);
524 uint64_t Index = ByteOffset / EltSize;
525 uint64_t Offset = ByteOffset - Index * EltSize;
527 for (; Index != NumElts; ++Index) {
528 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
529 BytesLeft, DL))
530 return false;
532 uint64_t BytesWritten = EltSize - Offset;
533 assert(BytesWritten <= EltSize && "Not indexing into this element?");
534 if (BytesWritten >= BytesLeft)
535 return true;
537 Offset = 0;
538 BytesLeft -= BytesWritten;
539 CurPtr += BytesWritten;
541 return true;
544 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
545 if (CE->getOpcode() == Instruction::IntToPtr &&
546 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
547 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
548 BytesLeft, DL);
552 // Otherwise, unknown initializer type.
553 return false;
556 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
557 int64_t Offset, const DataLayout &DL) {
558 // Bail out early. Not expect to load from scalable global variable.
559 if (isa<ScalableVectorType>(LoadTy))
560 return nullptr;
562 auto *IntType = dyn_cast<IntegerType>(LoadTy);
564 // If this isn't an integer load we can't fold it directly.
565 if (!IntType) {
566 // If this is a non-integer load, we can try folding it as an int load and
567 // then bitcast the result. This can be useful for union cases. Note
568 // that address spaces don't matter here since we're not going to result in
569 // an actual new load.
570 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
571 !LoadTy->isVectorTy())
572 return nullptr;
574 Type *MapTy = Type::getIntNTy(C->getContext(),
575 DL.getTypeSizeInBits(LoadTy).getFixedValue());
576 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
577 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
578 !LoadTy->isX86_AMXTy())
579 // Materializing a zero can be done trivially without a bitcast
580 return Constant::getNullValue(LoadTy);
581 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
582 Res = FoldBitCast(Res, CastTy, DL);
583 if (LoadTy->isPtrOrPtrVectorTy()) {
584 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
585 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
586 !LoadTy->isX86_AMXTy())
587 return Constant::getNullValue(LoadTy);
588 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
589 // Be careful not to replace a load of an addrspace value with an inttoptr here
590 return nullptr;
591 Res = ConstantExpr::getIntToPtr(Res, LoadTy);
593 return Res;
595 return nullptr;
598 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
599 if (BytesLoaded > 32 || BytesLoaded == 0)
600 return nullptr;
602 // If we're not accessing anything in this constant, the result is undefined.
603 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
604 return PoisonValue::get(IntType);
606 // TODO: We should be able to support scalable types.
607 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
608 if (InitializerSize.isScalable())
609 return nullptr;
611 // If we're not accessing anything in this constant, the result is undefined.
612 if (Offset >= (int64_t)InitializerSize.getFixedValue())
613 return PoisonValue::get(IntType);
615 unsigned char RawBytes[32] = {0};
616 unsigned char *CurPtr = RawBytes;
617 unsigned BytesLeft = BytesLoaded;
619 // If we're loading off the beginning of the global, some bytes may be valid.
620 if (Offset < 0) {
621 CurPtr += -Offset;
622 BytesLeft += Offset;
623 Offset = 0;
626 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
627 return nullptr;
629 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
630 if (DL.isLittleEndian()) {
631 ResultVal = RawBytes[BytesLoaded - 1];
632 for (unsigned i = 1; i != BytesLoaded; ++i) {
633 ResultVal <<= 8;
634 ResultVal |= RawBytes[BytesLoaded - 1 - i];
636 } else {
637 ResultVal = RawBytes[0];
638 for (unsigned i = 1; i != BytesLoaded; ++i) {
639 ResultVal <<= 8;
640 ResultVal |= RawBytes[i];
644 return ConstantInt::get(IntType->getContext(), ResultVal);
647 } // anonymous namespace
649 // If GV is a constant with an initializer read its representation starting
650 // at Offset and return it as a constant array of unsigned char. Otherwise
651 // return null.
652 Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
653 uint64_t Offset) {
654 if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
655 return nullptr;
657 const DataLayout &DL = GV->getParent()->getDataLayout();
658 Constant *Init = const_cast<Constant *>(GV->getInitializer());
659 TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
660 if (InitSize < Offset)
661 return nullptr;
663 uint64_t NBytes = InitSize - Offset;
664 if (NBytes > UINT16_MAX)
665 // Bail for large initializers in excess of 64K to avoid allocating
666 // too much memory.
667 // Offset is assumed to be less than or equal than InitSize (this
668 // is enforced in ReadDataFromGlobal).
669 return nullptr;
671 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
672 unsigned char *CurPtr = RawBytes.data();
674 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
675 return nullptr;
677 return ConstantDataArray::get(GV->getContext(), RawBytes);
680 /// If this Offset points exactly to the start of an aggregate element, return
681 /// that element, otherwise return nullptr.
682 Constant *getConstantAtOffset(Constant *Base, APInt Offset,
683 const DataLayout &DL) {
684 if (Offset.isZero())
685 return Base;
687 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
688 return nullptr;
690 Type *ElemTy = Base->getType();
691 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
692 if (!Offset.isZero() || !Indices[0].isZero())
693 return nullptr;
695 Constant *C = Base;
696 for (const APInt &Index : drop_begin(Indices)) {
697 if (Index.isNegative() || Index.getActiveBits() >= 32)
698 return nullptr;
700 C = C->getAggregateElement(Index.getZExtValue());
701 if (!C)
702 return nullptr;
705 return C;
708 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
709 const APInt &Offset,
710 const DataLayout &DL) {
711 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
712 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
713 return Result;
715 // Explicitly check for out-of-bounds access, so we return poison even if the
716 // constant is a uniform value.
717 TypeSize Size = DL.getTypeAllocSize(C->getType());
718 if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
719 return PoisonValue::get(Ty);
721 // Try an offset-independent fold of a uniform value.
722 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty))
723 return Result;
725 // Try hard to fold loads from bitcasted strange and non-type-safe things.
726 if (Offset.getSignificantBits() <= 64)
727 if (Constant *Result =
728 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
729 return Result;
731 return nullptr;
734 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
735 const DataLayout &DL) {
736 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
739 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
740 APInt Offset,
741 const DataLayout &DL) {
742 // We can only fold loads from constant globals with a definitive initializer.
743 // Check this upfront, to skip expensive offset calculations.
744 auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
745 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
746 return nullptr;
748 C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
749 DL, Offset, /* AllowNonInbounds */ true));
751 if (C == GV)
752 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
753 Offset, DL))
754 return Result;
756 // If this load comes from anywhere in a uniform constant global, the value
757 // is always the same, regardless of the loaded offset.
758 return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty);
761 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
762 const DataLayout &DL) {
763 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
764 return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL);
767 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) {
768 if (isa<PoisonValue>(C))
769 return PoisonValue::get(Ty);
770 if (isa<UndefValue>(C))
771 return UndefValue::get(Ty);
772 if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
773 return Constant::getNullValue(Ty);
774 if (C->isAllOnesValue() &&
775 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
776 return Constant::getAllOnesValue(Ty);
777 return nullptr;
780 namespace {
782 /// One of Op0/Op1 is a constant expression.
783 /// Attempt to symbolically evaluate the result of a binary operator merging
784 /// these together. If target data info is available, it is provided as DL,
785 /// otherwise DL is null.
786 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
787 const DataLayout &DL) {
788 // SROA
790 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
791 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
792 // bits.
794 if (Opc == Instruction::And) {
795 KnownBits Known0 = computeKnownBits(Op0, DL);
796 KnownBits Known1 = computeKnownBits(Op1, DL);
797 if ((Known1.One | Known0.Zero).isAllOnes()) {
798 // All the bits of Op0 that the 'and' could be masking are already zero.
799 return Op0;
801 if ((Known0.One | Known1.Zero).isAllOnes()) {
802 // All the bits of Op1 that the 'and' could be masking are already zero.
803 return Op1;
806 Known0 &= Known1;
807 if (Known0.isConstant())
808 return ConstantInt::get(Op0->getType(), Known0.getConstant());
811 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
812 // constant. This happens frequently when iterating over a global array.
813 if (Opc == Instruction::Sub) {
814 GlobalValue *GV1, *GV2;
815 APInt Offs1, Offs2;
817 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
818 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
819 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
821 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
822 // PtrToInt may change the bitwidth so we have convert to the right size
823 // first.
824 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
825 Offs2.zextOrTrunc(OpSize));
829 return nullptr;
832 /// If array indices are not pointer-sized integers, explicitly cast them so
833 /// that they aren't implicitly casted by the getelementptr.
834 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
835 Type *ResultTy, bool InBounds,
836 std::optional<unsigned> InRangeIndex,
837 const DataLayout &DL, const TargetLibraryInfo *TLI) {
838 Type *IntIdxTy = DL.getIndexType(ResultTy);
839 Type *IntIdxScalarTy = IntIdxTy->getScalarType();
841 bool Any = false;
842 SmallVector<Constant*, 32> NewIdxs;
843 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
844 if ((i == 1 ||
845 !isa<StructType>(GetElementPtrInst::getIndexedType(
846 SrcElemTy, Ops.slice(1, i - 1)))) &&
847 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
848 Any = true;
849 Type *NewType =
850 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
851 Constant *NewIdx = ConstantFoldCastOperand(
852 CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
853 DL);
854 if (!NewIdx)
855 return nullptr;
856 NewIdxs.push_back(NewIdx);
857 } else
858 NewIdxs.push_back(Ops[i]);
861 if (!Any)
862 return nullptr;
864 Constant *C = ConstantExpr::getGetElementPtr(
865 SrcElemTy, Ops[0], NewIdxs, InBounds, InRangeIndex);
866 return ConstantFoldConstant(C, DL, TLI);
869 /// If we can symbolically evaluate the GEP constant expression, do so.
870 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
871 ArrayRef<Constant *> Ops,
872 const DataLayout &DL,
873 const TargetLibraryInfo *TLI) {
874 const GEPOperator *InnermostGEP = GEP;
875 bool InBounds = GEP->isInBounds();
877 Type *SrcElemTy = GEP->getSourceElementType();
878 Type *ResElemTy = GEP->getResultElementType();
879 Type *ResTy = GEP->getType();
880 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
881 return nullptr;
883 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
884 GEP->isInBounds(), GEP->getInRangeIndex(),
885 DL, TLI))
886 return C;
888 Constant *Ptr = Ops[0];
889 if (!Ptr->getType()->isPointerTy())
890 return nullptr;
892 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
894 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
895 if (!isa<ConstantInt>(Ops[i]))
896 return nullptr;
898 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
899 APInt Offset = APInt(
900 BitWidth,
901 DL.getIndexedOffsetInType(
902 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)));
904 // If this is a GEP of a GEP, fold it all into a single GEP.
905 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
906 InnermostGEP = GEP;
907 InBounds &= GEP->isInBounds();
909 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
911 // Do not try the incorporate the sub-GEP if some index is not a number.
912 bool AllConstantInt = true;
913 for (Value *NestedOp : NestedOps)
914 if (!isa<ConstantInt>(NestedOp)) {
915 AllConstantInt = false;
916 break;
918 if (!AllConstantInt)
919 break;
921 Ptr = cast<Constant>(GEP->getOperand(0));
922 SrcElemTy = GEP->getSourceElementType();
923 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
926 // If the base value for this address is a literal integer value, fold the
927 // getelementptr to the resulting integer value casted to the pointer type.
928 APInt BasePtr(BitWidth, 0);
929 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
930 if (CE->getOpcode() == Instruction::IntToPtr) {
931 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
932 BasePtr = Base->getValue().zextOrTrunc(BitWidth);
936 auto *PTy = cast<PointerType>(Ptr->getType());
937 if ((Ptr->isNullValue() || BasePtr != 0) &&
938 !DL.isNonIntegralPointerType(PTy)) {
939 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
940 return ConstantExpr::getIntToPtr(C, ResTy);
943 // Otherwise form a regular getelementptr. Recompute the indices so that
944 // we eliminate over-indexing of the notional static type array bounds.
945 // This makes it easy to determine if the getelementptr is "inbounds".
947 // For GEPs of GlobalValues, use the value type, otherwise use an i8 GEP.
948 if (auto *GV = dyn_cast<GlobalValue>(Ptr))
949 SrcElemTy = GV->getValueType();
950 else
951 SrcElemTy = Type::getInt8Ty(Ptr->getContext());
953 if (!SrcElemTy->isSized())
954 return nullptr;
956 Type *ElemTy = SrcElemTy;
957 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
958 if (Offset != 0)
959 return nullptr;
961 // Try to add additional zero indices to reach the desired result element
962 // type.
963 // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
964 // we'll have to insert a bitcast anyway?
965 while (ElemTy != ResElemTy) {
966 Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
967 if (!NextTy)
968 break;
970 Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
971 ElemTy = NextTy;
974 SmallVector<Constant *, 32> NewIdxs;
975 for (const APInt &Index : Indices)
976 NewIdxs.push_back(ConstantInt::get(
977 Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
979 // Preserve the inrange index from the innermost GEP if possible. We must
980 // have calculated the same indices up to and including the inrange index.
981 std::optional<unsigned> InRangeIndex;
982 if (std::optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
983 if (SrcElemTy == InnermostGEP->getSourceElementType() &&
984 NewIdxs.size() > *LastIRIndex) {
985 InRangeIndex = LastIRIndex;
986 for (unsigned I = 0; I <= *LastIRIndex; ++I)
987 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
988 return nullptr;
991 // Create a GEP.
992 return ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, InBounds,
993 InRangeIndex);
996 /// Attempt to constant fold an instruction with the
997 /// specified opcode and operands. If successful, the constant result is
998 /// returned, if not, null is returned. Note that this function can fail when
999 /// attempting to fold instructions like loads and stores, which have no
1000 /// constant expression form.
1001 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1002 ArrayRef<Constant *> Ops,
1003 const DataLayout &DL,
1004 const TargetLibraryInfo *TLI) {
1005 Type *DestTy = InstOrCE->getType();
1007 if (Instruction::isUnaryOp(Opcode))
1008 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1010 if (Instruction::isBinaryOp(Opcode)) {
1011 switch (Opcode) {
1012 default:
1013 break;
1014 case Instruction::FAdd:
1015 case Instruction::FSub:
1016 case Instruction::FMul:
1017 case Instruction::FDiv:
1018 case Instruction::FRem:
1019 // Handle floating point instructions separately to account for denormals
1020 // TODO: If a constant expression is being folded rather than an
1021 // instruction, denormals will not be flushed/treated as zero
1022 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1023 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I);
1026 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1029 if (Instruction::isCast(Opcode))
1030 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1032 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1033 Type *SrcElemTy = GEP->getSourceElementType();
1034 if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy))
1035 return nullptr;
1037 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1038 return C;
1040 return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1041 GEP->isInBounds(),
1042 GEP->getInRangeIndex());
1045 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) {
1046 if (CE->isCompare())
1047 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1048 DL, TLI);
1049 return CE->getWithOperands(Ops);
1052 switch (Opcode) {
1053 default: return nullptr;
1054 case Instruction::ICmp:
1055 case Instruction::FCmp: {
1056 auto *C = cast<CmpInst>(InstOrCE);
1057 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1058 DL, TLI, C);
1060 case Instruction::Freeze:
1061 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1062 case Instruction::Call:
1063 if (auto *F = dyn_cast<Function>(Ops.back())) {
1064 const auto *Call = cast<CallBase>(InstOrCE);
1065 if (canConstantFoldCallTo(Call, F))
1066 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1068 return nullptr;
1069 case Instruction::Select:
1070 return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1071 case Instruction::ExtractElement:
1072 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1073 case Instruction::ExtractValue:
1074 return ConstantFoldExtractValueInstruction(
1075 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1076 case Instruction::InsertElement:
1077 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1078 case Instruction::InsertValue:
1079 return ConstantFoldInsertValueInstruction(
1080 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1081 case Instruction::ShuffleVector:
1082 return ConstantExpr::getShuffleVector(
1083 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1084 case Instruction::Load: {
1085 const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1086 if (LI->isVolatile())
1087 return nullptr;
1088 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1093 } // end anonymous namespace
1095 //===----------------------------------------------------------------------===//
1096 // Constant Folding public APIs
1097 //===----------------------------------------------------------------------===//
1099 namespace {
1101 Constant *
1102 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1103 const TargetLibraryInfo *TLI,
1104 SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1105 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1106 return const_cast<Constant *>(C);
1108 SmallVector<Constant *, 8> Ops;
1109 for (const Use &OldU : C->operands()) {
1110 Constant *OldC = cast<Constant>(&OldU);
1111 Constant *NewC = OldC;
1112 // Recursively fold the ConstantExpr's operands. If we have already folded
1113 // a ConstantExpr, we don't have to process it again.
1114 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1115 auto It = FoldedOps.find(OldC);
1116 if (It == FoldedOps.end()) {
1117 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1118 FoldedOps.insert({OldC, NewC});
1119 } else {
1120 NewC = It->second;
1123 Ops.push_back(NewC);
1126 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1127 if (Constant *Res =
1128 ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI))
1129 return Res;
1130 return const_cast<Constant *>(C);
1133 assert(isa<ConstantVector>(C));
1134 return ConstantVector::get(Ops);
1137 } // end anonymous namespace
1139 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1140 const TargetLibraryInfo *TLI) {
1141 // Handle PHI nodes quickly here...
1142 if (auto *PN = dyn_cast<PHINode>(I)) {
1143 Constant *CommonValue = nullptr;
1145 SmallDenseMap<Constant *, Constant *> FoldedOps;
1146 for (Value *Incoming : PN->incoming_values()) {
1147 // If the incoming value is undef then skip it. Note that while we could
1148 // skip the value if it is equal to the phi node itself we choose not to
1149 // because that would break the rule that constant folding only applies if
1150 // all operands are constants.
1151 if (isa<UndefValue>(Incoming))
1152 continue;
1153 // If the incoming value is not a constant, then give up.
1154 auto *C = dyn_cast<Constant>(Incoming);
1155 if (!C)
1156 return nullptr;
1157 // Fold the PHI's operands.
1158 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1159 // If the incoming value is a different constant to
1160 // the one we saw previously, then give up.
1161 if (CommonValue && C != CommonValue)
1162 return nullptr;
1163 CommonValue = C;
1166 // If we reach here, all incoming values are the same constant or undef.
1167 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1170 // Scan the operand list, checking to see if they are all constants, if so,
1171 // hand off to ConstantFoldInstOperandsImpl.
1172 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1173 return nullptr;
1175 SmallDenseMap<Constant *, Constant *> FoldedOps;
1176 SmallVector<Constant *, 8> Ops;
1177 for (const Use &OpU : I->operands()) {
1178 auto *Op = cast<Constant>(&OpU);
1179 // Fold the Instruction's operands.
1180 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1181 Ops.push_back(Op);
1184 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1187 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1188 const TargetLibraryInfo *TLI) {
1189 SmallDenseMap<Constant *, Constant *> FoldedOps;
1190 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1193 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1194 ArrayRef<Constant *> Ops,
1195 const DataLayout &DL,
1196 const TargetLibraryInfo *TLI) {
1197 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1200 Constant *llvm::ConstantFoldCompareInstOperands(
1201 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1202 const TargetLibraryInfo *TLI, const Instruction *I) {
1203 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1204 // fold: icmp (inttoptr x), null -> icmp x, 0
1205 // fold: icmp null, (inttoptr x) -> icmp 0, x
1206 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1207 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1208 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1209 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1211 // FIXME: The following comment is out of data and the DataLayout is here now.
1212 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1213 // around to know if bit truncation is happening.
1214 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1215 if (Ops1->isNullValue()) {
1216 if (CE0->getOpcode() == Instruction::IntToPtr) {
1217 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1218 // Convert the integer value to the right size to ensure we get the
1219 // proper extension or truncation.
1220 if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1221 /*IsSigned*/ false, DL)) {
1222 Constant *Null = Constant::getNullValue(C->getType());
1223 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1227 // Only do this transformation if the int is intptrty in size, otherwise
1228 // there is a truncation or extension that we aren't modeling.
1229 if (CE0->getOpcode() == Instruction::PtrToInt) {
1230 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1231 if (CE0->getType() == IntPtrTy) {
1232 Constant *C = CE0->getOperand(0);
1233 Constant *Null = Constant::getNullValue(C->getType());
1234 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1239 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1240 if (CE0->getOpcode() == CE1->getOpcode()) {
1241 if (CE0->getOpcode() == Instruction::IntToPtr) {
1242 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1244 // Convert the integer value to the right size to ensure we get the
1245 // proper extension or truncation.
1246 Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1247 /*IsSigned*/ false, DL);
1248 Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
1249 /*IsSigned*/ false, DL);
1250 if (C0 && C1)
1251 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1254 // Only do this transformation if the int is intptrty in size, otherwise
1255 // there is a truncation or extension that we aren't modeling.
1256 if (CE0->getOpcode() == Instruction::PtrToInt) {
1257 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1258 if (CE0->getType() == IntPtrTy &&
1259 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1260 return ConstantFoldCompareInstOperands(
1261 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1267 // Convert pointer comparison (base+offset1) pred (base+offset2) into
1268 // offset1 pred offset2, for the case where the offset is inbounds. This
1269 // only works for equality and unsigned comparison, as inbounds permits
1270 // crossing the sign boundary. However, the offset comparison itself is
1271 // signed.
1272 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1273 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1274 APInt Offset0(IndexWidth, 0);
1275 Value *Stripped0 =
1276 Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
1277 APInt Offset1(IndexWidth, 0);
1278 Value *Stripped1 =
1279 Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
1280 if (Stripped0 == Stripped1)
1281 return ConstantExpr::getCompare(
1282 ICmpInst::getSignedPredicate(Predicate),
1283 ConstantInt::get(CE0->getContext(), Offset0),
1284 ConstantInt::get(CE0->getContext(), Offset1));
1286 } else if (isa<ConstantExpr>(Ops1)) {
1287 // If RHS is a constant expression, but the left side isn't, swap the
1288 // operands and try again.
1289 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1290 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1293 // Flush any denormal constant float input according to denormal handling
1294 // mode.
1295 Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false);
1296 if (!Ops0)
1297 return nullptr;
1298 Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false);
1299 if (!Ops1)
1300 return nullptr;
1302 return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1305 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1306 const DataLayout &DL) {
1307 assert(Instruction::isUnaryOp(Opcode));
1309 return ConstantFoldUnaryInstruction(Opcode, Op);
1312 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1313 Constant *RHS,
1314 const DataLayout &DL) {
1315 assert(Instruction::isBinaryOp(Opcode));
1316 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1317 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1318 return C;
1320 if (ConstantExpr::isDesirableBinOp(Opcode))
1321 return ConstantExpr::get(Opcode, LHS, RHS);
1322 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1325 Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I,
1326 bool IsOutput) {
1327 if (!I || !I->getParent() || !I->getFunction())
1328 return Operand;
1330 ConstantFP *CFP = dyn_cast<ConstantFP>(Operand);
1331 if (!CFP)
1332 return Operand;
1334 const APFloat &APF = CFP->getValueAPF();
1335 // TODO: Should this canonicalize nans?
1336 if (!APF.isDenormal())
1337 return Operand;
1339 Type *Ty = CFP->getType();
1340 DenormalMode DenormMode =
1341 I->getFunction()->getDenormalMode(Ty->getFltSemantics());
1342 DenormalMode::DenormalModeKind Mode =
1343 IsOutput ? DenormMode.Output : DenormMode.Input;
1344 switch (Mode) {
1345 default:
1346 llvm_unreachable("unknown denormal mode");
1347 case DenormalMode::Dynamic:
1348 return nullptr;
1349 case DenormalMode::IEEE:
1350 return Operand;
1351 case DenormalMode::PreserveSign:
1352 if (APF.isDenormal()) {
1353 return ConstantFP::get(
1354 Ty->getContext(),
1355 APFloat::getZero(Ty->getFltSemantics(), APF.isNegative()));
1357 return Operand;
1358 case DenormalMode::PositiveZero:
1359 if (APF.isDenormal()) {
1360 return ConstantFP::get(Ty->getContext(),
1361 APFloat::getZero(Ty->getFltSemantics(), false));
1363 return Operand;
1365 return Operand;
1368 Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
1369 Constant *RHS, const DataLayout &DL,
1370 const Instruction *I) {
1371 if (Instruction::isBinaryOp(Opcode)) {
1372 // Flush denormal inputs if needed.
1373 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1374 if (!Op0)
1375 return nullptr;
1376 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1377 if (!Op1)
1378 return nullptr;
1380 // Calculate constant result.
1381 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1382 if (!C)
1383 return nullptr;
1385 // Flush denormal output if needed.
1386 return FlushFPConstant(C, I, /* IsOutput */ true);
1388 // If instruction lacks a parent/function and the denormal mode cannot be
1389 // determined, use the default (IEEE).
1390 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1393 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1394 Type *DestTy, const DataLayout &DL) {
1395 assert(Instruction::isCast(Opcode));
1396 switch (Opcode) {
1397 default:
1398 llvm_unreachable("Missing case");
1399 case Instruction::PtrToInt:
1400 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1401 Constant *FoldedValue = nullptr;
1402 // If the input is a inttoptr, eliminate the pair. This requires knowing
1403 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1404 if (CE->getOpcode() == Instruction::IntToPtr) {
1405 // zext/trunc the inttoptr to pointer size.
1406 FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0),
1407 DL.getIntPtrType(CE->getType()),
1408 /*IsSigned=*/false, DL);
1409 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1410 // If we have GEP, we can perform the following folds:
1411 // (ptrtoint (gep null, x)) -> x
1412 // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1413 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1414 APInt BaseOffset(BitWidth, 0);
1415 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1416 DL, BaseOffset, /*AllowNonInbounds=*/true));
1417 if (Base->isNullValue()) {
1418 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1419 } else {
1420 // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1421 if (GEP->getNumIndices() == 1 &&
1422 GEP->getSourceElementType()->isIntegerTy(8)) {
1423 auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1424 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1425 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1426 if (Sub && Sub->getType() == IntIdxTy &&
1427 Sub->getOpcode() == Instruction::Sub &&
1428 Sub->getOperand(0)->isNullValue())
1429 FoldedValue = ConstantExpr::getSub(
1430 ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
1434 if (FoldedValue) {
1435 // Do a zext or trunc to get to the ptrtoint dest size.
1436 return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
1437 DL);
1440 break;
1441 case Instruction::IntToPtr:
1442 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1443 // the int size is >= the ptr size and the address spaces are the same.
1444 // This requires knowing the width of a pointer, so it can't be done in
1445 // ConstantExpr::getCast.
1446 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1447 if (CE->getOpcode() == Instruction::PtrToInt) {
1448 Constant *SrcPtr = CE->getOperand(0);
1449 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1450 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1452 if (MidIntSize >= SrcPtrSize) {
1453 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1454 if (SrcAS == DestTy->getPointerAddressSpace())
1455 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1459 break;
1460 case Instruction::Trunc:
1461 case Instruction::ZExt:
1462 case Instruction::SExt:
1463 case Instruction::FPTrunc:
1464 case Instruction::FPExt:
1465 case Instruction::UIToFP:
1466 case Instruction::SIToFP:
1467 case Instruction::FPToUI:
1468 case Instruction::FPToSI:
1469 case Instruction::AddrSpaceCast:
1470 break;
1471 case Instruction::BitCast:
1472 return FoldBitCast(C, DestTy, DL);
1475 if (ConstantExpr::isDesirableCastOp(Opcode))
1476 return ConstantExpr::getCast(Opcode, C, DestTy);
1477 return ConstantFoldCastInstruction(Opcode, C, DestTy);
1480 Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy,
1481 bool IsSigned, const DataLayout &DL) {
1482 Type *SrcTy = C->getType();
1483 if (SrcTy == DestTy)
1484 return C;
1485 if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1486 return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
1487 if (IsSigned)
1488 return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
1489 return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
1492 //===----------------------------------------------------------------------===//
1493 // Constant Folding for Calls
1496 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1497 if (Call->isNoBuiltin())
1498 return false;
1499 if (Call->getFunctionType() != F->getFunctionType())
1500 return false;
1501 switch (F->getIntrinsicID()) {
1502 // Operations that do not operate floating-point numbers and do not depend on
1503 // FP environment can be folded even in strictfp functions.
1504 case Intrinsic::bswap:
1505 case Intrinsic::ctpop:
1506 case Intrinsic::ctlz:
1507 case Intrinsic::cttz:
1508 case Intrinsic::fshl:
1509 case Intrinsic::fshr:
1510 case Intrinsic::launder_invariant_group:
1511 case Intrinsic::strip_invariant_group:
1512 case Intrinsic::masked_load:
1513 case Intrinsic::get_active_lane_mask:
1514 case Intrinsic::abs:
1515 case Intrinsic::smax:
1516 case Intrinsic::smin:
1517 case Intrinsic::umax:
1518 case Intrinsic::umin:
1519 case Intrinsic::sadd_with_overflow:
1520 case Intrinsic::uadd_with_overflow:
1521 case Intrinsic::ssub_with_overflow:
1522 case Intrinsic::usub_with_overflow:
1523 case Intrinsic::smul_with_overflow:
1524 case Intrinsic::umul_with_overflow:
1525 case Intrinsic::sadd_sat:
1526 case Intrinsic::uadd_sat:
1527 case Intrinsic::ssub_sat:
1528 case Intrinsic::usub_sat:
1529 case Intrinsic::smul_fix:
1530 case Intrinsic::smul_fix_sat:
1531 case Intrinsic::bitreverse:
1532 case Intrinsic::is_constant:
1533 case Intrinsic::vector_reduce_add:
1534 case Intrinsic::vector_reduce_mul:
1535 case Intrinsic::vector_reduce_and:
1536 case Intrinsic::vector_reduce_or:
1537 case Intrinsic::vector_reduce_xor:
1538 case Intrinsic::vector_reduce_smin:
1539 case Intrinsic::vector_reduce_smax:
1540 case Intrinsic::vector_reduce_umin:
1541 case Intrinsic::vector_reduce_umax:
1542 // Target intrinsics
1543 case Intrinsic::amdgcn_perm:
1544 case Intrinsic::amdgcn_wave_reduce_umin:
1545 case Intrinsic::amdgcn_wave_reduce_umax:
1546 case Intrinsic::arm_mve_vctp8:
1547 case Intrinsic::arm_mve_vctp16:
1548 case Intrinsic::arm_mve_vctp32:
1549 case Intrinsic::arm_mve_vctp64:
1550 case Intrinsic::aarch64_sve_convert_from_svbool:
1551 // WebAssembly float semantics are always known
1552 case Intrinsic::wasm_trunc_signed:
1553 case Intrinsic::wasm_trunc_unsigned:
1554 return true;
1556 // Floating point operations cannot be folded in strictfp functions in
1557 // general case. They can be folded if FP environment is known to compiler.
1558 case Intrinsic::minnum:
1559 case Intrinsic::maxnum:
1560 case Intrinsic::minimum:
1561 case Intrinsic::maximum:
1562 case Intrinsic::log:
1563 case Intrinsic::log2:
1564 case Intrinsic::log10:
1565 case Intrinsic::exp:
1566 case Intrinsic::exp2:
1567 case Intrinsic::exp10:
1568 case Intrinsic::sqrt:
1569 case Intrinsic::sin:
1570 case Intrinsic::cos:
1571 case Intrinsic::pow:
1572 case Intrinsic::powi:
1573 case Intrinsic::ldexp:
1574 case Intrinsic::fma:
1575 case Intrinsic::fmuladd:
1576 case Intrinsic::frexp:
1577 case Intrinsic::fptoui_sat:
1578 case Intrinsic::fptosi_sat:
1579 case Intrinsic::convert_from_fp16:
1580 case Intrinsic::convert_to_fp16:
1581 case Intrinsic::amdgcn_cos:
1582 case Intrinsic::amdgcn_cubeid:
1583 case Intrinsic::amdgcn_cubema:
1584 case Intrinsic::amdgcn_cubesc:
1585 case Intrinsic::amdgcn_cubetc:
1586 case Intrinsic::amdgcn_fmul_legacy:
1587 case Intrinsic::amdgcn_fma_legacy:
1588 case Intrinsic::amdgcn_fract:
1589 case Intrinsic::amdgcn_sin:
1590 // The intrinsics below depend on rounding mode in MXCSR.
1591 case Intrinsic::x86_sse_cvtss2si:
1592 case Intrinsic::x86_sse_cvtss2si64:
1593 case Intrinsic::x86_sse_cvttss2si:
1594 case Intrinsic::x86_sse_cvttss2si64:
1595 case Intrinsic::x86_sse2_cvtsd2si:
1596 case Intrinsic::x86_sse2_cvtsd2si64:
1597 case Intrinsic::x86_sse2_cvttsd2si:
1598 case Intrinsic::x86_sse2_cvttsd2si64:
1599 case Intrinsic::x86_avx512_vcvtss2si32:
1600 case Intrinsic::x86_avx512_vcvtss2si64:
1601 case Intrinsic::x86_avx512_cvttss2si:
1602 case Intrinsic::x86_avx512_cvttss2si64:
1603 case Intrinsic::x86_avx512_vcvtsd2si32:
1604 case Intrinsic::x86_avx512_vcvtsd2si64:
1605 case Intrinsic::x86_avx512_cvttsd2si:
1606 case Intrinsic::x86_avx512_cvttsd2si64:
1607 case Intrinsic::x86_avx512_vcvtss2usi32:
1608 case Intrinsic::x86_avx512_vcvtss2usi64:
1609 case Intrinsic::x86_avx512_cvttss2usi:
1610 case Intrinsic::x86_avx512_cvttss2usi64:
1611 case Intrinsic::x86_avx512_vcvtsd2usi32:
1612 case Intrinsic::x86_avx512_vcvtsd2usi64:
1613 case Intrinsic::x86_avx512_cvttsd2usi:
1614 case Intrinsic::x86_avx512_cvttsd2usi64:
1615 return !Call->isStrictFP();
1617 // Sign operations are actually bitwise operations, they do not raise
1618 // exceptions even for SNANs.
1619 case Intrinsic::fabs:
1620 case Intrinsic::copysign:
1621 case Intrinsic::is_fpclass:
1622 // Non-constrained variants of rounding operations means default FP
1623 // environment, they can be folded in any case.
1624 case Intrinsic::ceil:
1625 case Intrinsic::floor:
1626 case Intrinsic::round:
1627 case Intrinsic::roundeven:
1628 case Intrinsic::trunc:
1629 case Intrinsic::nearbyint:
1630 case Intrinsic::rint:
1631 case Intrinsic::canonicalize:
1632 // Constrained intrinsics can be folded if FP environment is known
1633 // to compiler.
1634 case Intrinsic::experimental_constrained_fma:
1635 case Intrinsic::experimental_constrained_fmuladd:
1636 case Intrinsic::experimental_constrained_fadd:
1637 case Intrinsic::experimental_constrained_fsub:
1638 case Intrinsic::experimental_constrained_fmul:
1639 case Intrinsic::experimental_constrained_fdiv:
1640 case Intrinsic::experimental_constrained_frem:
1641 case Intrinsic::experimental_constrained_ceil:
1642 case Intrinsic::experimental_constrained_floor:
1643 case Intrinsic::experimental_constrained_round:
1644 case Intrinsic::experimental_constrained_roundeven:
1645 case Intrinsic::experimental_constrained_trunc:
1646 case Intrinsic::experimental_constrained_nearbyint:
1647 case Intrinsic::experimental_constrained_rint:
1648 case Intrinsic::experimental_constrained_fcmp:
1649 case Intrinsic::experimental_constrained_fcmps:
1650 return true;
1651 default:
1652 return false;
1653 case Intrinsic::not_intrinsic: break;
1656 if (!F->hasName() || Call->isStrictFP())
1657 return false;
1659 // In these cases, the check of the length is required. We don't want to
1660 // return true for a name like "cos\0blah" which strcmp would return equal to
1661 // "cos", but has length 8.
1662 StringRef Name = F->getName();
1663 switch (Name[0]) {
1664 default:
1665 return false;
1666 case 'a':
1667 return Name == "acos" || Name == "acosf" ||
1668 Name == "asin" || Name == "asinf" ||
1669 Name == "atan" || Name == "atanf" ||
1670 Name == "atan2" || Name == "atan2f";
1671 case 'c':
1672 return Name == "ceil" || Name == "ceilf" ||
1673 Name == "cos" || Name == "cosf" ||
1674 Name == "cosh" || Name == "coshf";
1675 case 'e':
1676 return Name == "exp" || Name == "expf" ||
1677 Name == "exp2" || Name == "exp2f";
1678 case 'f':
1679 return Name == "fabs" || Name == "fabsf" ||
1680 Name == "floor" || Name == "floorf" ||
1681 Name == "fmod" || Name == "fmodf";
1682 case 'l':
1683 return Name == "log" || Name == "logf" ||
1684 Name == "log2" || Name == "log2f" ||
1685 Name == "log10" || Name == "log10f";
1686 case 'n':
1687 return Name == "nearbyint" || Name == "nearbyintf";
1688 case 'p':
1689 return Name == "pow" || Name == "powf";
1690 case 'r':
1691 return Name == "remainder" || Name == "remainderf" ||
1692 Name == "rint" || Name == "rintf" ||
1693 Name == "round" || Name == "roundf";
1694 case 's':
1695 return Name == "sin" || Name == "sinf" ||
1696 Name == "sinh" || Name == "sinhf" ||
1697 Name == "sqrt" || Name == "sqrtf";
1698 case 't':
1699 return Name == "tan" || Name == "tanf" ||
1700 Name == "tanh" || Name == "tanhf" ||
1701 Name == "trunc" || Name == "truncf";
1702 case '_':
1703 // Check for various function names that get used for the math functions
1704 // when the header files are preprocessed with the macro
1705 // __FINITE_MATH_ONLY__ enabled.
1706 // The '12' here is the length of the shortest name that can match.
1707 // We need to check the size before looking at Name[1] and Name[2]
1708 // so we may as well check a limit that will eliminate mismatches.
1709 if (Name.size() < 12 || Name[1] != '_')
1710 return false;
1711 switch (Name[2]) {
1712 default:
1713 return false;
1714 case 'a':
1715 return Name == "__acos_finite" || Name == "__acosf_finite" ||
1716 Name == "__asin_finite" || Name == "__asinf_finite" ||
1717 Name == "__atan2_finite" || Name == "__atan2f_finite";
1718 case 'c':
1719 return Name == "__cosh_finite" || Name == "__coshf_finite";
1720 case 'e':
1721 return Name == "__exp_finite" || Name == "__expf_finite" ||
1722 Name == "__exp2_finite" || Name == "__exp2f_finite";
1723 case 'l':
1724 return Name == "__log_finite" || Name == "__logf_finite" ||
1725 Name == "__log10_finite" || Name == "__log10f_finite";
1726 case 'p':
1727 return Name == "__pow_finite" || Name == "__powf_finite";
1728 case 's':
1729 return Name == "__sinh_finite" || Name == "__sinhf_finite";
1734 namespace {
1736 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1737 if (Ty->isHalfTy() || Ty->isFloatTy()) {
1738 APFloat APF(V);
1739 bool unused;
1740 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1741 return ConstantFP::get(Ty->getContext(), APF);
1743 if (Ty->isDoubleTy())
1744 return ConstantFP::get(Ty->getContext(), APFloat(V));
1745 llvm_unreachable("Can only constant fold half/float/double");
1748 /// Clear the floating-point exception state.
1749 inline void llvm_fenv_clearexcept() {
1750 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1751 feclearexcept(FE_ALL_EXCEPT);
1752 #endif
1753 errno = 0;
1756 /// Test if a floating-point exception was raised.
1757 inline bool llvm_fenv_testexcept() {
1758 int errno_val = errno;
1759 if (errno_val == ERANGE || errno_val == EDOM)
1760 return true;
1761 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1762 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1763 return true;
1764 #endif
1765 return false;
1768 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1769 Type *Ty) {
1770 llvm_fenv_clearexcept();
1771 double Result = NativeFP(V.convertToDouble());
1772 if (llvm_fenv_testexcept()) {
1773 llvm_fenv_clearexcept();
1774 return nullptr;
1777 return GetConstantFoldFPValue(Result, Ty);
1780 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1781 const APFloat &V, const APFloat &W, Type *Ty) {
1782 llvm_fenv_clearexcept();
1783 double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1784 if (llvm_fenv_testexcept()) {
1785 llvm_fenv_clearexcept();
1786 return nullptr;
1789 return GetConstantFoldFPValue(Result, Ty);
1792 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1793 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1794 if (!VT)
1795 return nullptr;
1797 // This isn't strictly necessary, but handle the special/common case of zero:
1798 // all integer reductions of a zero input produce zero.
1799 if (isa<ConstantAggregateZero>(Op))
1800 return ConstantInt::get(VT->getElementType(), 0);
1802 // This is the same as the underlying binops - poison propagates.
1803 if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1804 return PoisonValue::get(VT->getElementType());
1806 // TODO: Handle undef.
1807 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1808 return nullptr;
1810 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1811 if (!EltC)
1812 return nullptr;
1814 APInt Acc = EltC->getValue();
1815 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1816 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1817 return nullptr;
1818 const APInt &X = EltC->getValue();
1819 switch (IID) {
1820 case Intrinsic::vector_reduce_add:
1821 Acc = Acc + X;
1822 break;
1823 case Intrinsic::vector_reduce_mul:
1824 Acc = Acc * X;
1825 break;
1826 case Intrinsic::vector_reduce_and:
1827 Acc = Acc & X;
1828 break;
1829 case Intrinsic::vector_reduce_or:
1830 Acc = Acc | X;
1831 break;
1832 case Intrinsic::vector_reduce_xor:
1833 Acc = Acc ^ X;
1834 break;
1835 case Intrinsic::vector_reduce_smin:
1836 Acc = APIntOps::smin(Acc, X);
1837 break;
1838 case Intrinsic::vector_reduce_smax:
1839 Acc = APIntOps::smax(Acc, X);
1840 break;
1841 case Intrinsic::vector_reduce_umin:
1842 Acc = APIntOps::umin(Acc, X);
1843 break;
1844 case Intrinsic::vector_reduce_umax:
1845 Acc = APIntOps::umax(Acc, X);
1846 break;
1850 return ConstantInt::get(Op->getContext(), Acc);
1853 /// Attempt to fold an SSE floating point to integer conversion of a constant
1854 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1855 /// used (toward nearest, ties to even). This matches the behavior of the
1856 /// non-truncating SSE instructions in the default rounding mode. The desired
1857 /// integer type Ty is used to select how many bits are available for the
1858 /// result. Returns null if the conversion cannot be performed, otherwise
1859 /// returns the Constant value resulting from the conversion.
1860 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1861 Type *Ty, bool IsSigned) {
1862 // All of these conversion intrinsics form an integer of at most 64bits.
1863 unsigned ResultWidth = Ty->getIntegerBitWidth();
1864 assert(ResultWidth <= 64 &&
1865 "Can only constant fold conversions to 64 and 32 bit ints");
1867 uint64_t UIntVal;
1868 bool isExact = false;
1869 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1870 : APFloat::rmNearestTiesToEven;
1871 APFloat::opStatus status =
1872 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
1873 IsSigned, mode, &isExact);
1874 if (status != APFloat::opOK &&
1875 (!roundTowardZero || status != APFloat::opInexact))
1876 return nullptr;
1877 return ConstantInt::get(Ty, UIntVal, IsSigned);
1880 double getValueAsDouble(ConstantFP *Op) {
1881 Type *Ty = Op->getType();
1883 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1884 return Op->getValueAPF().convertToDouble();
1886 bool unused;
1887 APFloat APF = Op->getValueAPF();
1888 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1889 return APF.convertToDouble();
1892 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1893 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1894 C = &CI->getValue();
1895 return true;
1897 if (isa<UndefValue>(Op)) {
1898 C = nullptr;
1899 return true;
1901 return false;
1904 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1905 /// to be folded.
1907 /// \param CI Constrained intrinsic call.
1908 /// \param St Exception flags raised during constant evaluation.
1909 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1910 APFloat::opStatus St) {
1911 std::optional<RoundingMode> ORM = CI->getRoundingMode();
1912 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1914 // If the operation does not change exception status flags, it is safe
1915 // to fold.
1916 if (St == APFloat::opStatus::opOK)
1917 return true;
1919 // If evaluation raised FP exception, the result can depend on rounding
1920 // mode. If the latter is unknown, folding is not possible.
1921 if (ORM && *ORM == RoundingMode::Dynamic)
1922 return false;
1924 // If FP exceptions are ignored, fold the call, even if such exception is
1925 // raised.
1926 if (EB && *EB != fp::ExceptionBehavior::ebStrict)
1927 return true;
1929 // Leave the calculation for runtime so that exception flags be correctly set
1930 // in hardware.
1931 return false;
1934 /// Returns the rounding mode that should be used for constant evaluation.
1935 static RoundingMode
1936 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1937 std::optional<RoundingMode> ORM = CI->getRoundingMode();
1938 if (!ORM || *ORM == RoundingMode::Dynamic)
1939 // Even if the rounding mode is unknown, try evaluating the operation.
1940 // If it does not raise inexact exception, rounding was not applied,
1941 // so the result is exact and does not depend on rounding mode. Whether
1942 // other FP exceptions are raised, it does not depend on rounding mode.
1943 return RoundingMode::NearestTiesToEven;
1944 return *ORM;
1947 /// Try to constant fold llvm.canonicalize for the given caller and value.
1948 static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
1949 const APFloat &Src) {
1950 // Zero, positive and negative, is always OK to fold.
1951 if (Src.isZero()) {
1952 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
1953 return ConstantFP::get(
1954 CI->getContext(),
1955 APFloat::getZero(Src.getSemantics(), Src.isNegative()));
1958 if (!Ty->isIEEELikeFPTy())
1959 return nullptr;
1961 // Zero is always canonical and the sign must be preserved.
1963 // Denorms and nans may have special encodings, but it should be OK to fold a
1964 // totally average number.
1965 if (Src.isNormal() || Src.isInfinity())
1966 return ConstantFP::get(CI->getContext(), Src);
1968 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
1969 DenormalMode DenormMode =
1970 CI->getFunction()->getDenormalMode(Src.getSemantics());
1972 if (DenormMode == DenormalMode::getIEEE())
1973 return ConstantFP::get(CI->getContext(), Src);
1975 if (DenormMode.Input == DenormalMode::Dynamic)
1976 return nullptr;
1978 // If we know if either input or output is flushed, we can fold.
1979 if ((DenormMode.Input == DenormalMode::Dynamic &&
1980 DenormMode.Output == DenormalMode::IEEE) ||
1981 (DenormMode.Input == DenormalMode::IEEE &&
1982 DenormMode.Output == DenormalMode::Dynamic))
1983 return nullptr;
1985 bool IsPositive =
1986 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
1987 (DenormMode.Output == DenormalMode::PositiveZero &&
1988 DenormMode.Input == DenormalMode::IEEE));
1990 return ConstantFP::get(CI->getContext(),
1991 APFloat::getZero(Src.getSemantics(), !IsPositive));
1994 return nullptr;
1997 static Constant *ConstantFoldScalarCall1(StringRef Name,
1998 Intrinsic::ID IntrinsicID,
1999 Type *Ty,
2000 ArrayRef<Constant *> Operands,
2001 const TargetLibraryInfo *TLI,
2002 const CallBase *Call) {
2003 assert(Operands.size() == 1 && "Wrong number of operands.");
2005 if (IntrinsicID == Intrinsic::is_constant) {
2006 // We know we have a "Constant" argument. But we want to only
2007 // return true for manifest constants, not those that depend on
2008 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2009 if (Operands[0]->isManifestConstant())
2010 return ConstantInt::getTrue(Ty->getContext());
2011 return nullptr;
2014 if (isa<PoisonValue>(Operands[0])) {
2015 // TODO: All of these operations should probably propagate poison.
2016 if (IntrinsicID == Intrinsic::canonicalize)
2017 return PoisonValue::get(Ty);
2020 if (isa<UndefValue>(Operands[0])) {
2021 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2022 // ctpop() is between 0 and bitwidth, pick 0 for undef.
2023 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2024 if (IntrinsicID == Intrinsic::cos ||
2025 IntrinsicID == Intrinsic::ctpop ||
2026 IntrinsicID == Intrinsic::fptoui_sat ||
2027 IntrinsicID == Intrinsic::fptosi_sat ||
2028 IntrinsicID == Intrinsic::canonicalize)
2029 return Constant::getNullValue(Ty);
2030 if (IntrinsicID == Intrinsic::bswap ||
2031 IntrinsicID == Intrinsic::bitreverse ||
2032 IntrinsicID == Intrinsic::launder_invariant_group ||
2033 IntrinsicID == Intrinsic::strip_invariant_group)
2034 return Operands[0];
2037 if (isa<ConstantPointerNull>(Operands[0])) {
2038 // launder(null) == null == strip(null) iff in addrspace 0
2039 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2040 IntrinsicID == Intrinsic::strip_invariant_group) {
2041 // If instruction is not yet put in a basic block (e.g. when cloning
2042 // a function during inlining), Call's caller may not be available.
2043 // So check Call's BB first before querying Call->getCaller.
2044 const Function *Caller =
2045 Call->getParent() ? Call->getCaller() : nullptr;
2046 if (Caller &&
2047 !NullPointerIsDefined(
2048 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2049 return Operands[0];
2051 return nullptr;
2055 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2056 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2057 APFloat Val(Op->getValueAPF());
2059 bool lost = false;
2060 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
2062 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2065 APFloat U = Op->getValueAPF();
2067 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2068 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2069 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2071 if (U.isNaN())
2072 return nullptr;
2074 unsigned Width = Ty->getIntegerBitWidth();
2075 APSInt Int(Width, !Signed);
2076 bool IsExact = false;
2077 APFloat::opStatus Status =
2078 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2080 if (Status == APFloat::opOK || Status == APFloat::opInexact)
2081 return ConstantInt::get(Ty, Int);
2083 return nullptr;
2086 if (IntrinsicID == Intrinsic::fptoui_sat ||
2087 IntrinsicID == Intrinsic::fptosi_sat) {
2088 // convertToInteger() already has the desired saturation semantics.
2089 APSInt Int(Ty->getIntegerBitWidth(),
2090 IntrinsicID == Intrinsic::fptoui_sat);
2091 bool IsExact;
2092 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2093 return ConstantInt::get(Ty, Int);
2096 if (IntrinsicID == Intrinsic::canonicalize)
2097 return constantFoldCanonicalize(Ty, Call, U);
2099 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2100 return nullptr;
2102 // Use internal versions of these intrinsics.
2104 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2105 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2106 return ConstantFP::get(Ty->getContext(), U);
2109 if (IntrinsicID == Intrinsic::round) {
2110 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2111 return ConstantFP::get(Ty->getContext(), U);
2114 if (IntrinsicID == Intrinsic::roundeven) {
2115 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2116 return ConstantFP::get(Ty->getContext(), U);
2119 if (IntrinsicID == Intrinsic::ceil) {
2120 U.roundToIntegral(APFloat::rmTowardPositive);
2121 return ConstantFP::get(Ty->getContext(), U);
2124 if (IntrinsicID == Intrinsic::floor) {
2125 U.roundToIntegral(APFloat::rmTowardNegative);
2126 return ConstantFP::get(Ty->getContext(), U);
2129 if (IntrinsicID == Intrinsic::trunc) {
2130 U.roundToIntegral(APFloat::rmTowardZero);
2131 return ConstantFP::get(Ty->getContext(), U);
2134 if (IntrinsicID == Intrinsic::fabs) {
2135 U.clearSign();
2136 return ConstantFP::get(Ty->getContext(), U);
2139 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2140 // The v_fract instruction behaves like the OpenCL spec, which defines
2141 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2142 // there to prevent fract(-small) from returning 1.0. It returns the
2143 // largest positive floating-point number less than 1.0."
2144 APFloat FloorU(U);
2145 FloorU.roundToIntegral(APFloat::rmTowardNegative);
2146 APFloat FractU(U - FloorU);
2147 APFloat AlmostOne(U.getSemantics(), 1);
2148 AlmostOne.next(/*nextDown*/ true);
2149 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2152 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2153 // raise FP exceptions, unless the argument is signaling NaN.
2155 std::optional<APFloat::roundingMode> RM;
2156 switch (IntrinsicID) {
2157 default:
2158 break;
2159 case Intrinsic::experimental_constrained_nearbyint:
2160 case Intrinsic::experimental_constrained_rint: {
2161 auto CI = cast<ConstrainedFPIntrinsic>(Call);
2162 RM = CI->getRoundingMode();
2163 if (!RM || *RM == RoundingMode::Dynamic)
2164 return nullptr;
2165 break;
2167 case Intrinsic::experimental_constrained_round:
2168 RM = APFloat::rmNearestTiesToAway;
2169 break;
2170 case Intrinsic::experimental_constrained_ceil:
2171 RM = APFloat::rmTowardPositive;
2172 break;
2173 case Intrinsic::experimental_constrained_floor:
2174 RM = APFloat::rmTowardNegative;
2175 break;
2176 case Intrinsic::experimental_constrained_trunc:
2177 RM = APFloat::rmTowardZero;
2178 break;
2180 if (RM) {
2181 auto CI = cast<ConstrainedFPIntrinsic>(Call);
2182 if (U.isFinite()) {
2183 APFloat::opStatus St = U.roundToIntegral(*RM);
2184 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2185 St == APFloat::opInexact) {
2186 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2187 if (EB && *EB == fp::ebStrict)
2188 return nullptr;
2190 } else if (U.isSignaling()) {
2191 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2192 if (EB && *EB != fp::ebIgnore)
2193 return nullptr;
2194 U = APFloat::getQNaN(U.getSemantics());
2196 return ConstantFP::get(Ty->getContext(), U);
2199 /// We only fold functions with finite arguments. Folding NaN and inf is
2200 /// likely to be aborted with an exception anyway, and some host libms
2201 /// have known errors raising exceptions.
2202 if (!U.isFinite())
2203 return nullptr;
2205 /// Currently APFloat versions of these functions do not exist, so we use
2206 /// the host native double versions. Float versions are not called
2207 /// directly but for all these it is true (float)(f((double)arg)) ==
2208 /// f(arg). Long double not supported yet.
2209 const APFloat &APF = Op->getValueAPF();
2211 switch (IntrinsicID) {
2212 default: break;
2213 case Intrinsic::log:
2214 return ConstantFoldFP(log, APF, Ty);
2215 case Intrinsic::log2:
2216 // TODO: What about hosts that lack a C99 library?
2217 return ConstantFoldFP(log2, APF, Ty);
2218 case Intrinsic::log10:
2219 // TODO: What about hosts that lack a C99 library?
2220 return ConstantFoldFP(log10, APF, Ty);
2221 case Intrinsic::exp:
2222 return ConstantFoldFP(exp, APF, Ty);
2223 case Intrinsic::exp2:
2224 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2225 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2226 case Intrinsic::exp10:
2227 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2228 return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
2229 case Intrinsic::sin:
2230 return ConstantFoldFP(sin, APF, Ty);
2231 case Intrinsic::cos:
2232 return ConstantFoldFP(cos, APF, Ty);
2233 case Intrinsic::sqrt:
2234 return ConstantFoldFP(sqrt, APF, Ty);
2235 case Intrinsic::amdgcn_cos:
2236 case Intrinsic::amdgcn_sin: {
2237 double V = getValueAsDouble(Op);
2238 if (V < -256.0 || V > 256.0)
2239 // The gfx8 and gfx9 architectures handle arguments outside the range
2240 // [-256, 256] differently. This should be a rare case so bail out
2241 // rather than trying to handle the difference.
2242 return nullptr;
2243 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2244 double V4 = V * 4.0;
2245 if (V4 == floor(V4)) {
2246 // Force exact results for quarter-integer inputs.
2247 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2248 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2249 } else {
2250 if (IsCos)
2251 V = cos(V * 2.0 * numbers::pi);
2252 else
2253 V = sin(V * 2.0 * numbers::pi);
2255 return GetConstantFoldFPValue(V, Ty);
2259 if (!TLI)
2260 return nullptr;
2262 LibFunc Func = NotLibFunc;
2263 if (!TLI->getLibFunc(Name, Func))
2264 return nullptr;
2266 switch (Func) {
2267 default:
2268 break;
2269 case LibFunc_acos:
2270 case LibFunc_acosf:
2271 case LibFunc_acos_finite:
2272 case LibFunc_acosf_finite:
2273 if (TLI->has(Func))
2274 return ConstantFoldFP(acos, APF, Ty);
2275 break;
2276 case LibFunc_asin:
2277 case LibFunc_asinf:
2278 case LibFunc_asin_finite:
2279 case LibFunc_asinf_finite:
2280 if (TLI->has(Func))
2281 return ConstantFoldFP(asin, APF, Ty);
2282 break;
2283 case LibFunc_atan:
2284 case LibFunc_atanf:
2285 if (TLI->has(Func))
2286 return ConstantFoldFP(atan, APF, Ty);
2287 break;
2288 case LibFunc_ceil:
2289 case LibFunc_ceilf:
2290 if (TLI->has(Func)) {
2291 U.roundToIntegral(APFloat::rmTowardPositive);
2292 return ConstantFP::get(Ty->getContext(), U);
2294 break;
2295 case LibFunc_cos:
2296 case LibFunc_cosf:
2297 if (TLI->has(Func))
2298 return ConstantFoldFP(cos, APF, Ty);
2299 break;
2300 case LibFunc_cosh:
2301 case LibFunc_coshf:
2302 case LibFunc_cosh_finite:
2303 case LibFunc_coshf_finite:
2304 if (TLI->has(Func))
2305 return ConstantFoldFP(cosh, APF, Ty);
2306 break;
2307 case LibFunc_exp:
2308 case LibFunc_expf:
2309 case LibFunc_exp_finite:
2310 case LibFunc_expf_finite:
2311 if (TLI->has(Func))
2312 return ConstantFoldFP(exp, APF, Ty);
2313 break;
2314 case LibFunc_exp2:
2315 case LibFunc_exp2f:
2316 case LibFunc_exp2_finite:
2317 case LibFunc_exp2f_finite:
2318 if (TLI->has(Func))
2319 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2320 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2321 break;
2322 case LibFunc_fabs:
2323 case LibFunc_fabsf:
2324 if (TLI->has(Func)) {
2325 U.clearSign();
2326 return ConstantFP::get(Ty->getContext(), U);
2328 break;
2329 case LibFunc_floor:
2330 case LibFunc_floorf:
2331 if (TLI->has(Func)) {
2332 U.roundToIntegral(APFloat::rmTowardNegative);
2333 return ConstantFP::get(Ty->getContext(), U);
2335 break;
2336 case LibFunc_log:
2337 case LibFunc_logf:
2338 case LibFunc_log_finite:
2339 case LibFunc_logf_finite:
2340 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2341 return ConstantFoldFP(log, APF, Ty);
2342 break;
2343 case LibFunc_log2:
2344 case LibFunc_log2f:
2345 case LibFunc_log2_finite:
2346 case LibFunc_log2f_finite:
2347 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2348 // TODO: What about hosts that lack a C99 library?
2349 return ConstantFoldFP(log2, APF, Ty);
2350 break;
2351 case LibFunc_log10:
2352 case LibFunc_log10f:
2353 case LibFunc_log10_finite:
2354 case LibFunc_log10f_finite:
2355 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2356 // TODO: What about hosts that lack a C99 library?
2357 return ConstantFoldFP(log10, APF, Ty);
2358 break;
2359 case LibFunc_nearbyint:
2360 case LibFunc_nearbyintf:
2361 case LibFunc_rint:
2362 case LibFunc_rintf:
2363 if (TLI->has(Func)) {
2364 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2365 return ConstantFP::get(Ty->getContext(), U);
2367 break;
2368 case LibFunc_round:
2369 case LibFunc_roundf:
2370 if (TLI->has(Func)) {
2371 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2372 return ConstantFP::get(Ty->getContext(), U);
2374 break;
2375 case LibFunc_sin:
2376 case LibFunc_sinf:
2377 if (TLI->has(Func))
2378 return ConstantFoldFP(sin, APF, Ty);
2379 break;
2380 case LibFunc_sinh:
2381 case LibFunc_sinhf:
2382 case LibFunc_sinh_finite:
2383 case LibFunc_sinhf_finite:
2384 if (TLI->has(Func))
2385 return ConstantFoldFP(sinh, APF, Ty);
2386 break;
2387 case LibFunc_sqrt:
2388 case LibFunc_sqrtf:
2389 if (!APF.isNegative() && TLI->has(Func))
2390 return ConstantFoldFP(sqrt, APF, Ty);
2391 break;
2392 case LibFunc_tan:
2393 case LibFunc_tanf:
2394 if (TLI->has(Func))
2395 return ConstantFoldFP(tan, APF, Ty);
2396 break;
2397 case LibFunc_tanh:
2398 case LibFunc_tanhf:
2399 if (TLI->has(Func))
2400 return ConstantFoldFP(tanh, APF, Ty);
2401 break;
2402 case LibFunc_trunc:
2403 case LibFunc_truncf:
2404 if (TLI->has(Func)) {
2405 U.roundToIntegral(APFloat::rmTowardZero);
2406 return ConstantFP::get(Ty->getContext(), U);
2408 break;
2410 return nullptr;
2413 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2414 switch (IntrinsicID) {
2415 case Intrinsic::bswap:
2416 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2417 case Intrinsic::ctpop:
2418 return ConstantInt::get(Ty, Op->getValue().popcount());
2419 case Intrinsic::bitreverse:
2420 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2421 case Intrinsic::convert_from_fp16: {
2422 APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2424 bool lost = false;
2425 APFloat::opStatus status = Val.convert(
2426 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2428 // Conversion is always precise.
2429 (void)status;
2430 assert(status != APFloat::opInexact && !lost &&
2431 "Precision lost during fp16 constfolding");
2433 return ConstantFP::get(Ty->getContext(), Val);
2435 default:
2436 return nullptr;
2440 switch (IntrinsicID) {
2441 default: break;
2442 case Intrinsic::vector_reduce_add:
2443 case Intrinsic::vector_reduce_mul:
2444 case Intrinsic::vector_reduce_and:
2445 case Intrinsic::vector_reduce_or:
2446 case Intrinsic::vector_reduce_xor:
2447 case Intrinsic::vector_reduce_smin:
2448 case Intrinsic::vector_reduce_smax:
2449 case Intrinsic::vector_reduce_umin:
2450 case Intrinsic::vector_reduce_umax:
2451 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2452 return C;
2453 break;
2456 // Support ConstantVector in case we have an Undef in the top.
2457 if (isa<ConstantVector>(Operands[0]) ||
2458 isa<ConstantDataVector>(Operands[0])) {
2459 auto *Op = cast<Constant>(Operands[0]);
2460 switch (IntrinsicID) {
2461 default: break;
2462 case Intrinsic::x86_sse_cvtss2si:
2463 case Intrinsic::x86_sse_cvtss2si64:
2464 case Intrinsic::x86_sse2_cvtsd2si:
2465 case Intrinsic::x86_sse2_cvtsd2si64:
2466 if (ConstantFP *FPOp =
2467 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2468 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2469 /*roundTowardZero=*/false, Ty,
2470 /*IsSigned*/true);
2471 break;
2472 case Intrinsic::x86_sse_cvttss2si:
2473 case Intrinsic::x86_sse_cvttss2si64:
2474 case Intrinsic::x86_sse2_cvttsd2si:
2475 case Intrinsic::x86_sse2_cvttsd2si64:
2476 if (ConstantFP *FPOp =
2477 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2478 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2479 /*roundTowardZero=*/true, Ty,
2480 /*IsSigned*/true);
2481 break;
2485 return nullptr;
2488 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
2489 const ConstrainedFPIntrinsic *Call) {
2490 APFloat::opStatus St = APFloat::opOK;
2491 auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
2492 FCmpInst::Predicate Cond = FCmp->getPredicate();
2493 if (FCmp->isSignaling()) {
2494 if (Op1.isNaN() || Op2.isNaN())
2495 St = APFloat::opInvalidOp;
2496 } else {
2497 if (Op1.isSignaling() || Op2.isSignaling())
2498 St = APFloat::opInvalidOp;
2500 bool Result = FCmpInst::compare(Op1, Op2, Cond);
2501 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
2502 return ConstantInt::get(Call->getType()->getScalarType(), Result);
2503 return nullptr;
2506 static Constant *ConstantFoldScalarCall2(StringRef Name,
2507 Intrinsic::ID IntrinsicID,
2508 Type *Ty,
2509 ArrayRef<Constant *> Operands,
2510 const TargetLibraryInfo *TLI,
2511 const CallBase *Call) {
2512 assert(Operands.size() == 2 && "Wrong number of operands.");
2514 if (Ty->isFloatingPointTy()) {
2515 // TODO: We should have undef handling for all of the FP intrinsics that
2516 // are attempted to be folded in this function.
2517 bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2518 bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2519 switch (IntrinsicID) {
2520 case Intrinsic::maxnum:
2521 case Intrinsic::minnum:
2522 case Intrinsic::maximum:
2523 case Intrinsic::minimum:
2524 // If one argument is undef, return the other argument.
2525 if (IsOp0Undef)
2526 return Operands[1];
2527 if (IsOp1Undef)
2528 return Operands[0];
2529 break;
2533 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2534 const APFloat &Op1V = Op1->getValueAPF();
2536 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2537 if (Op2->getType() != Op1->getType())
2538 return nullptr;
2539 const APFloat &Op2V = Op2->getValueAPF();
2541 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2542 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2543 APFloat Res = Op1V;
2544 APFloat::opStatus St;
2545 switch (IntrinsicID) {
2546 default:
2547 return nullptr;
2548 case Intrinsic::experimental_constrained_fadd:
2549 St = Res.add(Op2V, RM);
2550 break;
2551 case Intrinsic::experimental_constrained_fsub:
2552 St = Res.subtract(Op2V, RM);
2553 break;
2554 case Intrinsic::experimental_constrained_fmul:
2555 St = Res.multiply(Op2V, RM);
2556 break;
2557 case Intrinsic::experimental_constrained_fdiv:
2558 St = Res.divide(Op2V, RM);
2559 break;
2560 case Intrinsic::experimental_constrained_frem:
2561 St = Res.mod(Op2V);
2562 break;
2563 case Intrinsic::experimental_constrained_fcmp:
2564 case Intrinsic::experimental_constrained_fcmps:
2565 return evaluateCompare(Op1V, Op2V, ConstrIntr);
2567 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2568 St))
2569 return ConstantFP::get(Ty->getContext(), Res);
2570 return nullptr;
2573 switch (IntrinsicID) {
2574 default:
2575 break;
2576 case Intrinsic::copysign:
2577 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2578 case Intrinsic::minnum:
2579 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2580 case Intrinsic::maxnum:
2581 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2582 case Intrinsic::minimum:
2583 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2584 case Intrinsic::maximum:
2585 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2588 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2589 return nullptr;
2591 switch (IntrinsicID) {
2592 default:
2593 break;
2594 case Intrinsic::pow:
2595 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2596 case Intrinsic::amdgcn_fmul_legacy:
2597 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2598 // NaN or infinity, gives +0.0.
2599 if (Op1V.isZero() || Op2V.isZero())
2600 return ConstantFP::getZero(Ty);
2601 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2604 if (!TLI)
2605 return nullptr;
2607 LibFunc Func = NotLibFunc;
2608 if (!TLI->getLibFunc(Name, Func))
2609 return nullptr;
2611 switch (Func) {
2612 default:
2613 break;
2614 case LibFunc_pow:
2615 case LibFunc_powf:
2616 case LibFunc_pow_finite:
2617 case LibFunc_powf_finite:
2618 if (TLI->has(Func))
2619 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2620 break;
2621 case LibFunc_fmod:
2622 case LibFunc_fmodf:
2623 if (TLI->has(Func)) {
2624 APFloat V = Op1->getValueAPF();
2625 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2626 return ConstantFP::get(Ty->getContext(), V);
2628 break;
2629 case LibFunc_remainder:
2630 case LibFunc_remainderf:
2631 if (TLI->has(Func)) {
2632 APFloat V = Op1->getValueAPF();
2633 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2634 return ConstantFP::get(Ty->getContext(), V);
2636 break;
2637 case LibFunc_atan2:
2638 case LibFunc_atan2f:
2639 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
2640 // (Solaris), so we do not assume a known result for that.
2641 if (Op1V.isZero() && Op2V.isZero())
2642 return nullptr;
2643 [[fallthrough]];
2644 case LibFunc_atan2_finite:
2645 case LibFunc_atan2f_finite:
2646 if (TLI->has(Func))
2647 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2648 break;
2650 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2651 switch (IntrinsicID) {
2652 case Intrinsic::ldexp: {
2653 return ConstantFP::get(
2654 Ty->getContext(),
2655 scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven));
2657 case Intrinsic::is_fpclass: {
2658 FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
2659 bool Result =
2660 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
2661 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
2662 ((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
2663 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
2664 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
2665 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
2666 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
2667 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
2668 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
2669 ((Mask & fcPosInf) && Op1V.isPosInfinity());
2670 return ConstantInt::get(Ty, Result);
2672 default:
2673 break;
2676 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2677 return nullptr;
2678 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2679 return ConstantFP::get(
2680 Ty->getContext(),
2681 APFloat((float)std::pow((float)Op1V.convertToDouble(),
2682 (int)Op2C->getZExtValue())));
2683 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2684 return ConstantFP::get(
2685 Ty->getContext(),
2686 APFloat((float)std::pow((float)Op1V.convertToDouble(),
2687 (int)Op2C->getZExtValue())));
2688 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2689 return ConstantFP::get(
2690 Ty->getContext(),
2691 APFloat((double)std::pow(Op1V.convertToDouble(),
2692 (int)Op2C->getZExtValue())));
2694 return nullptr;
2697 if (Operands[0]->getType()->isIntegerTy() &&
2698 Operands[1]->getType()->isIntegerTy()) {
2699 const APInt *C0, *C1;
2700 if (!getConstIntOrUndef(Operands[0], C0) ||
2701 !getConstIntOrUndef(Operands[1], C1))
2702 return nullptr;
2704 switch (IntrinsicID) {
2705 default: break;
2706 case Intrinsic::smax:
2707 case Intrinsic::smin:
2708 case Intrinsic::umax:
2709 case Intrinsic::umin:
2710 // This is the same as for binary ops - poison propagates.
2711 // TODO: Poison handling should be consolidated.
2712 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2713 return PoisonValue::get(Ty);
2715 if (!C0 && !C1)
2716 return UndefValue::get(Ty);
2717 if (!C0 || !C1)
2718 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
2719 return ConstantInt::get(
2720 Ty, ICmpInst::compare(*C0, *C1,
2721 MinMaxIntrinsic::getPredicate(IntrinsicID))
2722 ? *C0
2723 : *C1);
2725 case Intrinsic::usub_with_overflow:
2726 case Intrinsic::ssub_with_overflow:
2727 // X - undef -> { 0, false }
2728 // undef - X -> { 0, false }
2729 if (!C0 || !C1)
2730 return Constant::getNullValue(Ty);
2731 [[fallthrough]];
2732 case Intrinsic::uadd_with_overflow:
2733 case Intrinsic::sadd_with_overflow:
2734 // X + undef -> { -1, false }
2735 // undef + x -> { -1, false }
2736 if (!C0 || !C1) {
2737 return ConstantStruct::get(
2738 cast<StructType>(Ty),
2739 {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2740 Constant::getNullValue(Ty->getStructElementType(1))});
2742 [[fallthrough]];
2743 case Intrinsic::smul_with_overflow:
2744 case Intrinsic::umul_with_overflow: {
2745 // undef * X -> { 0, false }
2746 // X * undef -> { 0, false }
2747 if (!C0 || !C1)
2748 return Constant::getNullValue(Ty);
2750 APInt Res;
2751 bool Overflow;
2752 switch (IntrinsicID) {
2753 default: llvm_unreachable("Invalid case");
2754 case Intrinsic::sadd_with_overflow:
2755 Res = C0->sadd_ov(*C1, Overflow);
2756 break;
2757 case Intrinsic::uadd_with_overflow:
2758 Res = C0->uadd_ov(*C1, Overflow);
2759 break;
2760 case Intrinsic::ssub_with_overflow:
2761 Res = C0->ssub_ov(*C1, Overflow);
2762 break;
2763 case Intrinsic::usub_with_overflow:
2764 Res = C0->usub_ov(*C1, Overflow);
2765 break;
2766 case Intrinsic::smul_with_overflow:
2767 Res = C0->smul_ov(*C1, Overflow);
2768 break;
2769 case Intrinsic::umul_with_overflow:
2770 Res = C0->umul_ov(*C1, Overflow);
2771 break;
2773 Constant *Ops[] = {
2774 ConstantInt::get(Ty->getContext(), Res),
2775 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2777 return ConstantStruct::get(cast<StructType>(Ty), Ops);
2779 case Intrinsic::uadd_sat:
2780 case Intrinsic::sadd_sat:
2781 // This is the same as for binary ops - poison propagates.
2782 // TODO: Poison handling should be consolidated.
2783 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2784 return PoisonValue::get(Ty);
2786 if (!C0 && !C1)
2787 return UndefValue::get(Ty);
2788 if (!C0 || !C1)
2789 return Constant::getAllOnesValue(Ty);
2790 if (IntrinsicID == Intrinsic::uadd_sat)
2791 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2792 else
2793 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2794 case Intrinsic::usub_sat:
2795 case Intrinsic::ssub_sat:
2796 // This is the same as for binary ops - poison propagates.
2797 // TODO: Poison handling should be consolidated.
2798 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2799 return PoisonValue::get(Ty);
2801 if (!C0 && !C1)
2802 return UndefValue::get(Ty);
2803 if (!C0 || !C1)
2804 return Constant::getNullValue(Ty);
2805 if (IntrinsicID == Intrinsic::usub_sat)
2806 return ConstantInt::get(Ty, C0->usub_sat(*C1));
2807 else
2808 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2809 case Intrinsic::cttz:
2810 case Intrinsic::ctlz:
2811 assert(C1 && "Must be constant int");
2813 // cttz(0, 1) and ctlz(0, 1) are poison.
2814 if (C1->isOne() && (!C0 || C0->isZero()))
2815 return PoisonValue::get(Ty);
2816 if (!C0)
2817 return Constant::getNullValue(Ty);
2818 if (IntrinsicID == Intrinsic::cttz)
2819 return ConstantInt::get(Ty, C0->countr_zero());
2820 else
2821 return ConstantInt::get(Ty, C0->countl_zero());
2823 case Intrinsic::abs:
2824 assert(C1 && "Must be constant int");
2825 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
2827 // Undef or minimum val operand with poison min --> undef
2828 if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
2829 return UndefValue::get(Ty);
2831 // Undef operand with no poison min --> 0 (sign bit must be clear)
2832 if (!C0)
2833 return Constant::getNullValue(Ty);
2835 return ConstantInt::get(Ty, C0->abs());
2836 case Intrinsic::amdgcn_wave_reduce_umin:
2837 case Intrinsic::amdgcn_wave_reduce_umax:
2838 return dyn_cast<Constant>(Operands[0]);
2841 return nullptr;
2844 // Support ConstantVector in case we have an Undef in the top.
2845 if ((isa<ConstantVector>(Operands[0]) ||
2846 isa<ConstantDataVector>(Operands[0])) &&
2847 // Check for default rounding mode.
2848 // FIXME: Support other rounding modes?
2849 isa<ConstantInt>(Operands[1]) &&
2850 cast<ConstantInt>(Operands[1])->getValue() == 4) {
2851 auto *Op = cast<Constant>(Operands[0]);
2852 switch (IntrinsicID) {
2853 default: break;
2854 case Intrinsic::x86_avx512_vcvtss2si32:
2855 case Intrinsic::x86_avx512_vcvtss2si64:
2856 case Intrinsic::x86_avx512_vcvtsd2si32:
2857 case Intrinsic::x86_avx512_vcvtsd2si64:
2858 if (ConstantFP *FPOp =
2859 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2860 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2861 /*roundTowardZero=*/false, Ty,
2862 /*IsSigned*/true);
2863 break;
2864 case Intrinsic::x86_avx512_vcvtss2usi32:
2865 case Intrinsic::x86_avx512_vcvtss2usi64:
2866 case Intrinsic::x86_avx512_vcvtsd2usi32:
2867 case Intrinsic::x86_avx512_vcvtsd2usi64:
2868 if (ConstantFP *FPOp =
2869 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2870 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2871 /*roundTowardZero=*/false, Ty,
2872 /*IsSigned*/false);
2873 break;
2874 case Intrinsic::x86_avx512_cvttss2si:
2875 case Intrinsic::x86_avx512_cvttss2si64:
2876 case Intrinsic::x86_avx512_cvttsd2si:
2877 case Intrinsic::x86_avx512_cvttsd2si64:
2878 if (ConstantFP *FPOp =
2879 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2880 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2881 /*roundTowardZero=*/true, Ty,
2882 /*IsSigned*/true);
2883 break;
2884 case Intrinsic::x86_avx512_cvttss2usi:
2885 case Intrinsic::x86_avx512_cvttss2usi64:
2886 case Intrinsic::x86_avx512_cvttsd2usi:
2887 case Intrinsic::x86_avx512_cvttsd2usi64:
2888 if (ConstantFP *FPOp =
2889 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2890 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2891 /*roundTowardZero=*/true, Ty,
2892 /*IsSigned*/false);
2893 break;
2896 return nullptr;
2899 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2900 const APFloat &S0,
2901 const APFloat &S1,
2902 const APFloat &S2) {
2903 unsigned ID;
2904 const fltSemantics &Sem = S0.getSemantics();
2905 APFloat MA(Sem), SC(Sem), TC(Sem);
2906 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2907 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2908 // S2 < 0
2909 ID = 5;
2910 SC = -S0;
2911 } else {
2912 ID = 4;
2913 SC = S0;
2915 MA = S2;
2916 TC = -S1;
2917 } else if (abs(S1) >= abs(S0)) {
2918 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2919 // S1 < 0
2920 ID = 3;
2921 TC = -S2;
2922 } else {
2923 ID = 2;
2924 TC = S2;
2926 MA = S1;
2927 SC = S0;
2928 } else {
2929 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2930 // S0 < 0
2931 ID = 1;
2932 SC = S2;
2933 } else {
2934 ID = 0;
2935 SC = -S2;
2937 MA = S0;
2938 TC = -S1;
2940 switch (IntrinsicID) {
2941 default:
2942 llvm_unreachable("unhandled amdgcn cube intrinsic");
2943 case Intrinsic::amdgcn_cubeid:
2944 return APFloat(Sem, ID);
2945 case Intrinsic::amdgcn_cubema:
2946 return MA + MA;
2947 case Intrinsic::amdgcn_cubesc:
2948 return SC;
2949 case Intrinsic::amdgcn_cubetc:
2950 return TC;
2954 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2955 Type *Ty) {
2956 const APInt *C0, *C1, *C2;
2957 if (!getConstIntOrUndef(Operands[0], C0) ||
2958 !getConstIntOrUndef(Operands[1], C1) ||
2959 !getConstIntOrUndef(Operands[2], C2))
2960 return nullptr;
2962 if (!C2)
2963 return UndefValue::get(Ty);
2965 APInt Val(32, 0);
2966 unsigned NumUndefBytes = 0;
2967 for (unsigned I = 0; I < 32; I += 8) {
2968 unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2969 unsigned B = 0;
2971 if (Sel >= 13)
2972 B = 0xff;
2973 else if (Sel == 12)
2974 B = 0x00;
2975 else {
2976 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
2977 if (!Src)
2978 ++NumUndefBytes;
2979 else if (Sel < 8)
2980 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
2981 else
2982 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
2985 Val.insertBits(B, I, 8);
2988 if (NumUndefBytes == 4)
2989 return UndefValue::get(Ty);
2991 return ConstantInt::get(Ty, Val);
2994 static Constant *ConstantFoldScalarCall3(StringRef Name,
2995 Intrinsic::ID IntrinsicID,
2996 Type *Ty,
2997 ArrayRef<Constant *> Operands,
2998 const TargetLibraryInfo *TLI,
2999 const CallBase *Call) {
3000 assert(Operands.size() == 3 && "Wrong number of operands.");
3002 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3003 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3004 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3005 const APFloat &C1 = Op1->getValueAPF();
3006 const APFloat &C2 = Op2->getValueAPF();
3007 const APFloat &C3 = Op3->getValueAPF();
3009 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3010 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3011 APFloat Res = C1;
3012 APFloat::opStatus St;
3013 switch (IntrinsicID) {
3014 default:
3015 return nullptr;
3016 case Intrinsic::experimental_constrained_fma:
3017 case Intrinsic::experimental_constrained_fmuladd:
3018 St = Res.fusedMultiplyAdd(C2, C3, RM);
3019 break;
3021 if (mayFoldConstrained(
3022 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3023 return ConstantFP::get(Ty->getContext(), Res);
3024 return nullptr;
3027 switch (IntrinsicID) {
3028 default: break;
3029 case Intrinsic::amdgcn_fma_legacy: {
3030 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3031 // NaN or infinity, gives +0.0.
3032 if (C1.isZero() || C2.isZero()) {
3033 // It's tempting to just return C3 here, but that would give the
3034 // wrong result if C3 was -0.0.
3035 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3037 [[fallthrough]];
3039 case Intrinsic::fma:
3040 case Intrinsic::fmuladd: {
3041 APFloat V = C1;
3042 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
3043 return ConstantFP::get(Ty->getContext(), V);
3045 case Intrinsic::amdgcn_cubeid:
3046 case Intrinsic::amdgcn_cubema:
3047 case Intrinsic::amdgcn_cubesc:
3048 case Intrinsic::amdgcn_cubetc: {
3049 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3050 return ConstantFP::get(Ty->getContext(), V);
3057 if (IntrinsicID == Intrinsic::smul_fix ||
3058 IntrinsicID == Intrinsic::smul_fix_sat) {
3059 // poison * C -> poison
3060 // C * poison -> poison
3061 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3062 return PoisonValue::get(Ty);
3064 const APInt *C0, *C1;
3065 if (!getConstIntOrUndef(Operands[0], C0) ||
3066 !getConstIntOrUndef(Operands[1], C1))
3067 return nullptr;
3069 // undef * C -> 0
3070 // C * undef -> 0
3071 if (!C0 || !C1)
3072 return Constant::getNullValue(Ty);
3074 // This code performs rounding towards negative infinity in case the result
3075 // cannot be represented exactly for the given scale. Targets that do care
3076 // about rounding should use a target hook for specifying how rounding
3077 // should be done, and provide their own folding to be consistent with
3078 // rounding. This is the same approach as used by
3079 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3080 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
3081 unsigned Width = C0->getBitWidth();
3082 assert(Scale < Width && "Illegal scale.");
3083 unsigned ExtendedWidth = Width * 2;
3084 APInt Product =
3085 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
3086 if (IntrinsicID == Intrinsic::smul_fix_sat) {
3087 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
3088 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
3089 Product = APIntOps::smin(Product, Max);
3090 Product = APIntOps::smax(Product, Min);
3092 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
3095 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3096 const APInt *C0, *C1, *C2;
3097 if (!getConstIntOrUndef(Operands[0], C0) ||
3098 !getConstIntOrUndef(Operands[1], C1) ||
3099 !getConstIntOrUndef(Operands[2], C2))
3100 return nullptr;
3102 bool IsRight = IntrinsicID == Intrinsic::fshr;
3103 if (!C2)
3104 return Operands[IsRight ? 1 : 0];
3105 if (!C0 && !C1)
3106 return UndefValue::get(Ty);
3108 // The shift amount is interpreted as modulo the bitwidth. If the shift
3109 // amount is effectively 0, avoid UB due to oversized inverse shift below.
3110 unsigned BitWidth = C2->getBitWidth();
3111 unsigned ShAmt = C2->urem(BitWidth);
3112 if (!ShAmt)
3113 return Operands[IsRight ? 1 : 0];
3115 // (C0 << ShlAmt) | (C1 >> LshrAmt)
3116 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
3117 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
3118 if (!C0)
3119 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
3120 if (!C1)
3121 return ConstantInt::get(Ty, C0->shl(ShlAmt));
3122 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
3125 if (IntrinsicID == Intrinsic::amdgcn_perm)
3126 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
3128 return nullptr;
3131 static Constant *ConstantFoldScalarCall(StringRef Name,
3132 Intrinsic::ID IntrinsicID,
3133 Type *Ty,
3134 ArrayRef<Constant *> Operands,
3135 const TargetLibraryInfo *TLI,
3136 const CallBase *Call) {
3137 if (Operands.size() == 1)
3138 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
3140 if (Operands.size() == 2)
3141 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
3143 if (Operands.size() == 3)
3144 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
3146 return nullptr;
3149 static Constant *ConstantFoldFixedVectorCall(
3150 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
3151 ArrayRef<Constant *> Operands, const DataLayout &DL,
3152 const TargetLibraryInfo *TLI, const CallBase *Call) {
3153 SmallVector<Constant *, 4> Result(FVTy->getNumElements());
3154 SmallVector<Constant *, 4> Lane(Operands.size());
3155 Type *Ty = FVTy->getElementType();
3157 switch (IntrinsicID) {
3158 case Intrinsic::masked_load: {
3159 auto *SrcPtr = Operands[0];
3160 auto *Mask = Operands[2];
3161 auto *Passthru = Operands[3];
3163 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
3165 SmallVector<Constant *, 32> NewElements;
3166 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3167 auto *MaskElt = Mask->getAggregateElement(I);
3168 if (!MaskElt)
3169 break;
3170 auto *PassthruElt = Passthru->getAggregateElement(I);
3171 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3172 if (isa<UndefValue>(MaskElt)) {
3173 if (PassthruElt)
3174 NewElements.push_back(PassthruElt);
3175 else if (VecElt)
3176 NewElements.push_back(VecElt);
3177 else
3178 return nullptr;
3180 if (MaskElt->isNullValue()) {
3181 if (!PassthruElt)
3182 return nullptr;
3183 NewElements.push_back(PassthruElt);
3184 } else if (MaskElt->isOneValue()) {
3185 if (!VecElt)
3186 return nullptr;
3187 NewElements.push_back(VecElt);
3188 } else {
3189 return nullptr;
3192 if (NewElements.size() != FVTy->getNumElements())
3193 return nullptr;
3194 return ConstantVector::get(NewElements);
3196 case Intrinsic::arm_mve_vctp8:
3197 case Intrinsic::arm_mve_vctp16:
3198 case Intrinsic::arm_mve_vctp32:
3199 case Intrinsic::arm_mve_vctp64: {
3200 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3201 unsigned Lanes = FVTy->getNumElements();
3202 uint64_t Limit = Op->getZExtValue();
3204 SmallVector<Constant *, 16> NCs;
3205 for (unsigned i = 0; i < Lanes; i++) {
3206 if (i < Limit)
3207 NCs.push_back(ConstantInt::getTrue(Ty));
3208 else
3209 NCs.push_back(ConstantInt::getFalse(Ty));
3211 return ConstantVector::get(NCs);
3213 return nullptr;
3215 case Intrinsic::get_active_lane_mask: {
3216 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3217 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3218 if (Op0 && Op1) {
3219 unsigned Lanes = FVTy->getNumElements();
3220 uint64_t Base = Op0->getZExtValue();
3221 uint64_t Limit = Op1->getZExtValue();
3223 SmallVector<Constant *, 16> NCs;
3224 for (unsigned i = 0; i < Lanes; i++) {
3225 if (Base + i < Limit)
3226 NCs.push_back(ConstantInt::getTrue(Ty));
3227 else
3228 NCs.push_back(ConstantInt::getFalse(Ty));
3230 return ConstantVector::get(NCs);
3232 return nullptr;
3234 default:
3235 break;
3238 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3239 // Gather a column of constants.
3240 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3241 // Some intrinsics use a scalar type for certain arguments.
3242 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) {
3243 Lane[J] = Operands[J];
3244 continue;
3247 Constant *Agg = Operands[J]->getAggregateElement(I);
3248 if (!Agg)
3249 return nullptr;
3251 Lane[J] = Agg;
3254 // Use the regular scalar folding to simplify this column.
3255 Constant *Folded =
3256 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3257 if (!Folded)
3258 return nullptr;
3259 Result[I] = Folded;
3262 return ConstantVector::get(Result);
3265 static Constant *ConstantFoldScalableVectorCall(
3266 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3267 ArrayRef<Constant *> Operands, const DataLayout &DL,
3268 const TargetLibraryInfo *TLI, const CallBase *Call) {
3269 switch (IntrinsicID) {
3270 case Intrinsic::aarch64_sve_convert_from_svbool: {
3271 auto *Src = dyn_cast<Constant>(Operands[0]);
3272 if (!Src || !Src->isNullValue())
3273 break;
3275 return ConstantInt::getFalse(SVTy);
3277 default:
3278 break;
3280 return nullptr;
3283 static std::pair<Constant *, Constant *>
3284 ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
3285 if (isa<PoisonValue>(Op))
3286 return {Op, PoisonValue::get(IntTy)};
3288 auto *ConstFP = dyn_cast<ConstantFP>(Op);
3289 if (!ConstFP)
3290 return {};
3292 const APFloat &U = ConstFP->getValueAPF();
3293 int FrexpExp;
3294 APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
3295 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
3297 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
3298 // using undef.
3299 Constant *Result1 = FrexpMant.isFinite() ? ConstantInt::get(IntTy, FrexpExp)
3300 : ConstantInt::getNullValue(IntTy);
3301 return {Result0, Result1};
3304 /// Handle intrinsics that return tuples, which may be tuples of vectors.
3305 static Constant *
3306 ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
3307 StructType *StTy, ArrayRef<Constant *> Operands,
3308 const DataLayout &DL, const TargetLibraryInfo *TLI,
3309 const CallBase *Call) {
3311 switch (IntrinsicID) {
3312 case Intrinsic::frexp: {
3313 Type *Ty0 = StTy->getContainedType(0);
3314 Type *Ty1 = StTy->getContainedType(1)->getScalarType();
3316 if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
3317 SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
3318 SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
3320 for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
3321 Constant *Lane = Operands[0]->getAggregateElement(I);
3322 std::tie(Results0[I], Results1[I]) =
3323 ConstantFoldScalarFrexpCall(Lane, Ty1);
3324 if (!Results0[I])
3325 return nullptr;
3328 return ConstantStruct::get(StTy, ConstantVector::get(Results0),
3329 ConstantVector::get(Results1));
3332 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
3333 if (!Result0)
3334 return nullptr;
3335 return ConstantStruct::get(StTy, Result0, Result1);
3337 default:
3338 // TODO: Constant folding of vector intrinsics that fall through here does
3339 // not work (e.g. overflow intrinsics)
3340 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
3343 return nullptr;
3346 } // end anonymous namespace
3348 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3349 ArrayRef<Constant *> Operands,
3350 const TargetLibraryInfo *TLI) {
3351 if (Call->isNoBuiltin())
3352 return nullptr;
3353 if (!F->hasName())
3354 return nullptr;
3356 // If this is not an intrinsic and not recognized as a library call, bail out.
3357 Intrinsic::ID IID = F->getIntrinsicID();
3358 if (IID == Intrinsic::not_intrinsic) {
3359 if (!TLI)
3360 return nullptr;
3361 LibFunc LibF;
3362 if (!TLI->getLibFunc(*F, LibF))
3363 return nullptr;
3366 StringRef Name = F->getName();
3367 Type *Ty = F->getReturnType();
3368 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3369 return ConstantFoldFixedVectorCall(
3370 Name, IID, FVTy, Operands, F->getParent()->getDataLayout(), TLI, Call);
3372 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3373 return ConstantFoldScalableVectorCall(
3374 Name, IID, SVTy, Operands, F->getParent()->getDataLayout(), TLI, Call);
3376 if (auto *StTy = dyn_cast<StructType>(Ty))
3377 return ConstantFoldStructCall(Name, IID, StTy, Operands,
3378 F->getParent()->getDataLayout(), TLI, Call);
3380 // TODO: If this is a library function, we already discovered that above,
3381 // so we should pass the LibFunc, not the name (and it might be better
3382 // still to separate intrinsic handling from libcalls).
3383 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
3386 bool llvm::isMathLibCallNoop(const CallBase *Call,
3387 const TargetLibraryInfo *TLI) {
3388 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3389 // (and to some extent ConstantFoldScalarCall).
3390 if (Call->isNoBuiltin() || Call->isStrictFP())
3391 return false;
3392 Function *F = Call->getCalledFunction();
3393 if (!F)
3394 return false;
3396 LibFunc Func;
3397 if (!TLI || !TLI->getLibFunc(*F, Func))
3398 return false;
3400 if (Call->arg_size() == 1) {
3401 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3402 const APFloat &Op = OpC->getValueAPF();
3403 switch (Func) {
3404 case LibFunc_logl:
3405 case LibFunc_log:
3406 case LibFunc_logf:
3407 case LibFunc_log2l:
3408 case LibFunc_log2:
3409 case LibFunc_log2f:
3410 case LibFunc_log10l:
3411 case LibFunc_log10:
3412 case LibFunc_log10f:
3413 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3415 case LibFunc_expl:
3416 case LibFunc_exp:
3417 case LibFunc_expf:
3418 // FIXME: These boundaries are slightly conservative.
3419 if (OpC->getType()->isDoubleTy())
3420 return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3421 if (OpC->getType()->isFloatTy())
3422 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3423 break;
3425 case LibFunc_exp2l:
3426 case LibFunc_exp2:
3427 case LibFunc_exp2f:
3428 // FIXME: These boundaries are slightly conservative.
3429 if (OpC->getType()->isDoubleTy())
3430 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3431 if (OpC->getType()->isFloatTy())
3432 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3433 break;
3435 case LibFunc_sinl:
3436 case LibFunc_sin:
3437 case LibFunc_sinf:
3438 case LibFunc_cosl:
3439 case LibFunc_cos:
3440 case LibFunc_cosf:
3441 return !Op.isInfinity();
3443 case LibFunc_tanl:
3444 case LibFunc_tan:
3445 case LibFunc_tanf: {
3446 // FIXME: Stop using the host math library.
3447 // FIXME: The computation isn't done in the right precision.
3448 Type *Ty = OpC->getType();
3449 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3450 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3451 break;
3454 case LibFunc_atan:
3455 case LibFunc_atanf:
3456 case LibFunc_atanl:
3457 // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
3458 return true;
3461 case LibFunc_asinl:
3462 case LibFunc_asin:
3463 case LibFunc_asinf:
3464 case LibFunc_acosl:
3465 case LibFunc_acos:
3466 case LibFunc_acosf:
3467 return !(Op < APFloat(Op.getSemantics(), "-1") ||
3468 Op > APFloat(Op.getSemantics(), "1"));
3470 case LibFunc_sinh:
3471 case LibFunc_cosh:
3472 case LibFunc_sinhf:
3473 case LibFunc_coshf:
3474 case LibFunc_sinhl:
3475 case LibFunc_coshl:
3476 // FIXME: These boundaries are slightly conservative.
3477 if (OpC->getType()->isDoubleTy())
3478 return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3479 if (OpC->getType()->isFloatTy())
3480 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3481 break;
3483 case LibFunc_sqrtl:
3484 case LibFunc_sqrt:
3485 case LibFunc_sqrtf:
3486 return Op.isNaN() || Op.isZero() || !Op.isNegative();
3488 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3489 // maybe others?
3490 default:
3491 break;
3496 if (Call->arg_size() == 2) {
3497 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3498 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3499 if (Op0C && Op1C) {
3500 const APFloat &Op0 = Op0C->getValueAPF();
3501 const APFloat &Op1 = Op1C->getValueAPF();
3503 switch (Func) {
3504 case LibFunc_powl:
3505 case LibFunc_pow:
3506 case LibFunc_powf: {
3507 // FIXME: Stop using the host math library.
3508 // FIXME: The computation isn't done in the right precision.
3509 Type *Ty = Op0C->getType();
3510 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3511 if (Ty == Op1C->getType())
3512 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3514 break;
3517 case LibFunc_fmodl:
3518 case LibFunc_fmod:
3519 case LibFunc_fmodf:
3520 case LibFunc_remainderl:
3521 case LibFunc_remainder:
3522 case LibFunc_remainderf:
3523 return Op0.isNaN() || Op1.isNaN() ||
3524 (!Op0.isInfinity() && !Op1.isZero());
3526 case LibFunc_atan2:
3527 case LibFunc_atan2f:
3528 case LibFunc_atan2l:
3529 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
3530 // GLIBC and MSVC do not appear to raise an error on those, we
3531 // cannot rely on that behavior. POSIX and C11 say that a domain error
3532 // may occur, so allow for that possibility.
3533 return !Op0.isZero() || !Op1.isZero();
3535 default:
3536 break;
3541 return false;
3544 void TargetFolder::anchor() {}