1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryProfileInfo.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/Analysis/StackSafetyAnalysis.h"
30 #include "llvm/Analysis/TypeMetadataUtils.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Object/ModuleSymbolTable.h"
49 #include "llvm/Object/SymbolicFile.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/FileSystem.h"
60 using namespace llvm::memprof
;
62 #define DEBUG_TYPE "module-summary-analysis"
64 // Option to force edges cold which will block importing when the
65 // -import-cold-multiplier is set to 0. Useful for debugging.
67 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold
=
68 FunctionSummary::FSHT_None
;
71 static cl::opt
<FunctionSummary::ForceSummaryHotnessType
, true> FSEC(
72 "force-summary-edges-cold", cl::Hidden
, cl::location(ForceSummaryEdgesCold
),
73 cl::desc("Force all edges in the function summary to cold"),
74 cl::values(clEnumValN(FunctionSummary::FSHT_None
, "none", "None."),
75 clEnumValN(FunctionSummary::FSHT_AllNonCritical
,
76 "all-non-critical", "All non-critical edges."),
77 clEnumValN(FunctionSummary::FSHT_All
, "all", "All edges.")));
79 static cl::opt
<std::string
> ModuleSummaryDotFile(
80 "module-summary-dot-file", cl::Hidden
, cl::value_desc("filename"),
81 cl::desc("File to emit dot graph of new summary into"));
83 extern cl::opt
<bool> ScalePartialSampleProfileWorkingSetSize
;
85 // Walk through the operands of a given User via worklist iteration and populate
86 // the set of GlobalValue references encountered. Invoked either on an
87 // Instruction or a GlobalVariable (which walks its initializer).
88 // Return true if any of the operands contains blockaddress. This is important
89 // to know when computing summary for global var, because if global variable
90 // references basic block address we can't import it separately from function
91 // containing that basic block. For simplicity we currently don't import such
92 // global vars at all. When importing function we aren't interested if any
93 // instruction in it takes an address of any basic block, because instruction
94 // can only take an address of basic block located in the same function.
95 static bool findRefEdges(ModuleSummaryIndex
&Index
, const User
*CurUser
,
96 SetVector
<ValueInfo
, std::vector
<ValueInfo
>> &RefEdges
,
97 SmallPtrSet
<const User
*, 8> &Visited
) {
98 bool HasBlockAddress
= false;
99 SmallVector
<const User
*, 32> Worklist
;
100 if (Visited
.insert(CurUser
).second
)
101 Worklist
.push_back(CurUser
);
103 while (!Worklist
.empty()) {
104 const User
*U
= Worklist
.pop_back_val();
105 const auto *CB
= dyn_cast
<CallBase
>(U
);
107 for (const auto &OI
: U
->operands()) {
108 const User
*Operand
= dyn_cast
<User
>(OI
);
111 if (isa
<BlockAddress
>(Operand
)) {
112 HasBlockAddress
= true;
115 if (auto *GV
= dyn_cast
<GlobalValue
>(Operand
)) {
116 // We have a reference to a global value. This should be added to
117 // the reference set unless it is a callee. Callees are handled
118 // specially by WriteFunction and are added to a separate list.
119 if (!(CB
&& CB
->isCallee(&OI
)))
120 RefEdges
.insert(Index
.getOrInsertValueInfo(GV
));
123 if (Visited
.insert(Operand
).second
)
124 Worklist
.push_back(Operand
);
127 return HasBlockAddress
;
130 static CalleeInfo::HotnessType
getHotness(uint64_t ProfileCount
,
131 ProfileSummaryInfo
*PSI
) {
133 return CalleeInfo::HotnessType::Unknown
;
134 if (PSI
->isHotCount(ProfileCount
))
135 return CalleeInfo::HotnessType::Hot
;
136 if (PSI
->isColdCount(ProfileCount
))
137 return CalleeInfo::HotnessType::Cold
;
138 return CalleeInfo::HotnessType::None
;
141 static bool isNonRenamableLocal(const GlobalValue
&GV
) {
142 return GV
.hasSection() && GV
.hasLocalLinkage();
145 /// Determine whether this call has all constant integer arguments (excluding
146 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
147 static void addVCallToSet(
148 DevirtCallSite Call
, GlobalValue::GUID Guid
,
149 SetVector
<FunctionSummary::VFuncId
, std::vector
<FunctionSummary::VFuncId
>>
151 SetVector
<FunctionSummary::ConstVCall
,
152 std::vector
<FunctionSummary::ConstVCall
>> &ConstVCalls
) {
153 std::vector
<uint64_t> Args
;
154 // Start from the second argument to skip the "this" pointer.
155 for (auto &Arg
: drop_begin(Call
.CB
.args())) {
156 auto *CI
= dyn_cast
<ConstantInt
>(Arg
);
157 if (!CI
|| CI
->getBitWidth() > 64) {
158 VCalls
.insert({Guid
, Call
.Offset
});
161 Args
.push_back(CI
->getZExtValue());
163 ConstVCalls
.insert({{Guid
, Call
.Offset
}, std::move(Args
)});
166 /// If this intrinsic call requires that we add information to the function
167 /// summary, do so via the non-constant reference arguments.
168 static void addIntrinsicToSummary(
170 SetVector
<GlobalValue::GUID
, std::vector
<GlobalValue::GUID
>> &TypeTests
,
171 SetVector
<FunctionSummary::VFuncId
, std::vector
<FunctionSummary::VFuncId
>>
172 &TypeTestAssumeVCalls
,
173 SetVector
<FunctionSummary::VFuncId
, std::vector
<FunctionSummary::VFuncId
>>
174 &TypeCheckedLoadVCalls
,
175 SetVector
<FunctionSummary::ConstVCall
,
176 std::vector
<FunctionSummary::ConstVCall
>>
177 &TypeTestAssumeConstVCalls
,
178 SetVector
<FunctionSummary::ConstVCall
,
179 std::vector
<FunctionSummary::ConstVCall
>>
180 &TypeCheckedLoadConstVCalls
,
182 switch (CI
->getCalledFunction()->getIntrinsicID()) {
183 case Intrinsic::type_test
:
184 case Intrinsic::public_type_test
: {
185 auto *TypeMDVal
= cast
<MetadataAsValue
>(CI
->getArgOperand(1));
186 auto *TypeId
= dyn_cast
<MDString
>(TypeMDVal
->getMetadata());
189 GlobalValue::GUID Guid
= GlobalValue::getGUID(TypeId
->getString());
191 // Produce a summary from type.test intrinsics. We only summarize type.test
192 // intrinsics that are used other than by an llvm.assume intrinsic.
193 // Intrinsics that are assumed are relevant only to the devirtualization
194 // pass, not the type test lowering pass.
195 bool HasNonAssumeUses
= llvm::any_of(CI
->uses(), [](const Use
&CIU
) {
196 return !isa
<AssumeInst
>(CIU
.getUser());
198 if (HasNonAssumeUses
)
199 TypeTests
.insert(Guid
);
201 SmallVector
<DevirtCallSite
, 4> DevirtCalls
;
202 SmallVector
<CallInst
*, 4> Assumes
;
203 findDevirtualizableCallsForTypeTest(DevirtCalls
, Assumes
, CI
, DT
);
204 for (auto &Call
: DevirtCalls
)
205 addVCallToSet(Call
, Guid
, TypeTestAssumeVCalls
,
206 TypeTestAssumeConstVCalls
);
211 case Intrinsic::type_checked_load_relative
:
212 case Intrinsic::type_checked_load
: {
213 auto *TypeMDVal
= cast
<MetadataAsValue
>(CI
->getArgOperand(2));
214 auto *TypeId
= dyn_cast
<MDString
>(TypeMDVal
->getMetadata());
217 GlobalValue::GUID Guid
= GlobalValue::getGUID(TypeId
->getString());
219 SmallVector
<DevirtCallSite
, 4> DevirtCalls
;
220 SmallVector
<Instruction
*, 4> LoadedPtrs
;
221 SmallVector
<Instruction
*, 4> Preds
;
222 bool HasNonCallUses
= false;
223 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls
, LoadedPtrs
, Preds
,
224 HasNonCallUses
, CI
, DT
);
225 // Any non-call uses of the result of llvm.type.checked.load will
226 // prevent us from optimizing away the llvm.type.test.
228 TypeTests
.insert(Guid
);
229 for (auto &Call
: DevirtCalls
)
230 addVCallToSet(Call
, Guid
, TypeCheckedLoadVCalls
,
231 TypeCheckedLoadConstVCalls
);
240 static bool isNonVolatileLoad(const Instruction
*I
) {
241 if (const auto *LI
= dyn_cast
<LoadInst
>(I
))
242 return !LI
->isVolatile();
247 static bool isNonVolatileStore(const Instruction
*I
) {
248 if (const auto *SI
= dyn_cast
<StoreInst
>(I
))
249 return !SI
->isVolatile();
254 // Returns true if the function definition must be unreachable.
256 // Note if this helper function returns true, `F` is guaranteed
257 // to be unreachable; if it returns false, `F` might still
258 // be unreachable but not covered by this helper function.
259 static bool mustBeUnreachableFunction(const Function
&F
) {
260 // A function must be unreachable if its entry block ends with an
262 assert(!F
.isDeclaration());
263 return isa
<UnreachableInst
>(F
.getEntryBlock().getTerminator());
266 static void computeFunctionSummary(
267 ModuleSummaryIndex
&Index
, const Module
&M
, const Function
&F
,
268 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
, DominatorTree
&DT
,
269 bool HasLocalsInUsedOrAsm
, DenseSet
<GlobalValue::GUID
> &CantBePromoted
,
271 std::function
<const StackSafetyInfo
*(const Function
&F
)> GetSSICallback
) {
272 // Summary not currently supported for anonymous functions, they should
276 unsigned NumInsts
= 0;
277 // Map from callee ValueId to profile count. Used to accumulate profile
278 // counts for all static calls to a given callee.
279 MapVector
<ValueInfo
, CalleeInfo
, DenseMap
<ValueInfo
, unsigned>,
280 std::vector
<std::pair
<ValueInfo
, CalleeInfo
>>>
282 SetVector
<ValueInfo
, std::vector
<ValueInfo
>> RefEdges
, LoadRefEdges
,
284 SetVector
<GlobalValue::GUID
, std::vector
<GlobalValue::GUID
>> TypeTests
;
285 SetVector
<FunctionSummary::VFuncId
, std::vector
<FunctionSummary::VFuncId
>>
286 TypeTestAssumeVCalls
, TypeCheckedLoadVCalls
;
287 SetVector
<FunctionSummary::ConstVCall
,
288 std::vector
<FunctionSummary::ConstVCall
>>
289 TypeTestAssumeConstVCalls
, TypeCheckedLoadConstVCalls
;
290 ICallPromotionAnalysis ICallAnalysis
;
291 SmallPtrSet
<const User
*, 8> Visited
;
293 // Add personality function, prefix data and prologue data to function's ref
295 findRefEdges(Index
, &F
, RefEdges
, Visited
);
296 std::vector
<const Instruction
*> NonVolatileLoads
;
297 std::vector
<const Instruction
*> NonVolatileStores
;
299 std::vector
<CallsiteInfo
> Callsites
;
300 std::vector
<AllocInfo
> Allocs
;
303 DenseSet
<const CallBase
*> CallsThatMayHaveMemprofSummary
;
306 bool HasInlineAsmMaybeReferencingInternal
= false;
307 bool HasIndirBranchToBlockAddress
= false;
308 bool HasIFuncCall
= false;
309 bool HasUnknownCall
= false;
310 bool MayThrow
= false;
311 for (const BasicBlock
&BB
: F
) {
312 // We don't allow inlining of function with indirect branch to blockaddress.
313 // If the blockaddress escapes the function, e.g., via a global variable,
314 // inlining may lead to an invalid cross-function reference. So we shouldn't
315 // import such function either.
316 if (BB
.hasAddressTaken()) {
317 for (User
*U
: BlockAddress::get(const_cast<BasicBlock
*>(&BB
))->users())
318 if (!isa
<CallBrInst
>(*U
)) {
319 HasIndirBranchToBlockAddress
= true;
324 for (const Instruction
&I
: BB
) {
325 if (I
.isDebugOrPseudoInst())
329 // Regular LTO module doesn't participate in ThinLTO import,
330 // so no reference from it can be read/writeonly, since this
331 // would require importing variable as local copy
333 if (isNonVolatileLoad(&I
)) {
334 // Postpone processing of non-volatile load instructions
335 // See comments below
337 NonVolatileLoads
.push_back(&I
);
339 } else if (isNonVolatileStore(&I
)) {
341 NonVolatileStores
.push_back(&I
);
342 // All references from second operand of store (destination address)
343 // can be considered write-only if they're not referenced by any
344 // non-store instruction. References from first operand of store
345 // (stored value) can't be treated either as read- or as write-only
346 // so we add them to RefEdges as we do with all other instructions
347 // except non-volatile load.
348 Value
*Stored
= I
.getOperand(0);
349 if (auto *GV
= dyn_cast
<GlobalValue
>(Stored
))
350 // findRefEdges will try to examine GV operands, so instead
351 // of calling it we should add GV to RefEdges directly.
352 RefEdges
.insert(Index
.getOrInsertValueInfo(GV
));
353 else if (auto *U
= dyn_cast
<User
>(Stored
))
354 findRefEdges(Index
, U
, RefEdges
, Visited
);
358 findRefEdges(Index
, &I
, RefEdges
, Visited
);
359 const auto *CB
= dyn_cast
<CallBase
>(&I
);
366 const auto *CI
= dyn_cast
<CallInst
>(&I
);
367 // Since we don't know exactly which local values are referenced in inline
368 // assembly, conservatively mark the function as possibly referencing
369 // a local value from inline assembly to ensure we don't export a
370 // reference (which would require renaming and promotion of the
371 // referenced value).
372 if (HasLocalsInUsedOrAsm
&& CI
&& CI
->isInlineAsm())
373 HasInlineAsmMaybeReferencingInternal
= true;
375 auto *CalledValue
= CB
->getCalledOperand();
376 auto *CalledFunction
= CB
->getCalledFunction();
377 if (CalledValue
&& !CalledFunction
) {
378 CalledValue
= CalledValue
->stripPointerCasts();
379 // Stripping pointer casts can reveal a called function.
380 CalledFunction
= dyn_cast
<Function
>(CalledValue
);
382 // Check if this is an alias to a function. If so, get the
383 // called aliasee for the checks below.
384 if (auto *GA
= dyn_cast
<GlobalAlias
>(CalledValue
)) {
385 assert(!CalledFunction
&& "Expected null called function in callsite for alias");
386 CalledFunction
= dyn_cast
<Function
>(GA
->getAliaseeObject());
388 // Check if this is a direct call to a known function or a known
389 // intrinsic, or an indirect call with profile data.
390 if (CalledFunction
) {
391 if (CI
&& CalledFunction
->isIntrinsic()) {
392 addIntrinsicToSummary(
393 CI
, TypeTests
, TypeTestAssumeVCalls
, TypeCheckedLoadVCalls
,
394 TypeTestAssumeConstVCalls
, TypeCheckedLoadConstVCalls
, DT
);
397 // We should have named any anonymous globals
398 assert(CalledFunction
->hasName());
399 auto ScaledCount
= PSI
->getProfileCount(*CB
, BFI
);
400 auto Hotness
= ScaledCount
? getHotness(*ScaledCount
, PSI
)
401 : CalleeInfo::HotnessType::Unknown
;
402 if (ForceSummaryEdgesCold
!= FunctionSummary::FSHT_None
)
403 Hotness
= CalleeInfo::HotnessType::Cold
;
405 // Use the original CalledValue, in case it was an alias. We want
406 // to record the call edge to the alias in that case. Eventually
407 // an alias summary will be created to associate the alias and
409 auto &ValueInfo
= CallGraphEdges
[Index
.getOrInsertValueInfo(
410 cast
<GlobalValue
>(CalledValue
))];
411 ValueInfo
.updateHotness(Hotness
);
412 // Add the relative block frequency to CalleeInfo if there is no profile
414 if (BFI
!= nullptr && Hotness
== CalleeInfo::HotnessType::Unknown
) {
415 uint64_t BBFreq
= BFI
->getBlockFreq(&BB
).getFrequency();
416 uint64_t EntryFreq
= BFI
->getEntryFreq().getFrequency();
417 ValueInfo
.updateRelBlockFreq(BBFreq
, EntryFreq
);
420 HasUnknownCall
= true;
421 // If F is imported, a local linkage ifunc (e.g. target_clones on a
422 // static function) called by F will be cloned. Since summaries don't
423 // track ifunc, we do not know implementation functions referenced by
424 // the ifunc resolver need to be promoted in the exporter, and we will
425 // get linker errors due to cloned declarations for implementation
426 // functions. As a simple fix, just mark F as not eligible for import.
427 // Non-local ifunc is not cloned and does not have the issue.
428 if (auto *GI
= dyn_cast_if_present
<GlobalIFunc
>(CalledValue
))
429 if (GI
->hasLocalLinkage())
431 // Skip inline assembly calls.
432 if (CI
&& CI
->isInlineAsm())
434 // Skip direct calls.
435 if (!CalledValue
|| isa
<Constant
>(CalledValue
))
438 // Check if the instruction has a callees metadata. If so, add callees
439 // to CallGraphEdges to reflect the references from the metadata, and
440 // to enable importing for subsequent indirect call promotion and
442 if (auto *MD
= I
.getMetadata(LLVMContext::MD_callees
)) {
443 for (const auto &Op
: MD
->operands()) {
444 Function
*Callee
= mdconst::extract_or_null
<Function
>(Op
);
446 CallGraphEdges
[Index
.getOrInsertValueInfo(Callee
)];
450 uint32_t NumVals
, NumCandidates
;
452 auto CandidateProfileData
=
453 ICallAnalysis
.getPromotionCandidatesForInstruction(
454 &I
, NumVals
, TotalCount
, NumCandidates
);
455 for (const auto &Candidate
: CandidateProfileData
)
456 CallGraphEdges
[Index
.getOrInsertValueInfo(Candidate
.Value
)]
457 .updateHotness(getHotness(Candidate
.Count
, PSI
));
460 // Summarize memprof related metadata. This is only needed for ThinLTO.
464 // TODO: Skip indirect calls for now. Need to handle these better, likely
465 // by creating multiple Callsites, one per target, then speculatively
466 // devirtualize while applying clone info in the ThinLTO backends. This
467 // will also be important because we will have a different set of clone
468 // versions per target. This handling needs to match that in the ThinLTO
469 // backend so we handle things consistently for matching of callsite
470 // summaries to instructions.
474 // Ensure we keep this analysis in sync with the handling in the ThinLTO
475 // backend (see MemProfContextDisambiguation::applyImport). Save this call
476 // so that we can skip it in checking the reverse case later.
477 assert(mayHaveMemprofSummary(CB
));
479 CallsThatMayHaveMemprofSummary
.insert(CB
);
482 // Compute the list of stack ids first (so we can trim them from the stack
484 CallStack
<MDNode
, MDNode::op_iterator
> InstCallsite(
485 I
.getMetadata(LLVMContext::MD_callsite
));
486 auto *MemProfMD
= I
.getMetadata(LLVMContext::MD_memprof
);
488 std::vector
<MIBInfo
> MIBs
;
489 for (auto &MDOp
: MemProfMD
->operands()) {
490 auto *MIBMD
= cast
<const MDNode
>(MDOp
);
491 MDNode
*StackNode
= getMIBStackNode(MIBMD
);
493 SmallVector
<unsigned> StackIdIndices
;
494 CallStack
<MDNode
, MDNode::op_iterator
> StackContext(StackNode
);
495 // Collapse out any on the allocation call (inlining).
496 for (auto ContextIter
=
497 StackContext
.beginAfterSharedPrefix(InstCallsite
);
498 ContextIter
!= StackContext
.end(); ++ContextIter
) {
499 unsigned StackIdIdx
= Index
.addOrGetStackIdIndex(*ContextIter
);
500 // If this is a direct recursion, simply skip the duplicate
501 // entries. If this is mutual recursion, handling is left to
502 // the LTO link analysis client.
503 if (StackIdIndices
.empty() || StackIdIndices
.back() != StackIdIdx
)
504 StackIdIndices
.push_back(StackIdIdx
);
507 MIBInfo(getMIBAllocType(MIBMD
), std::move(StackIdIndices
)));
509 Allocs
.push_back(AllocInfo(std::move(MIBs
)));
510 } else if (!InstCallsite
.empty()) {
511 SmallVector
<unsigned> StackIdIndices
;
512 for (auto StackId
: InstCallsite
)
513 StackIdIndices
.push_back(Index
.addOrGetStackIdIndex(StackId
));
514 // Use the original CalledValue, in case it was an alias. We want
515 // to record the call edge to the alias in that case. Eventually
516 // an alias summary will be created to associate the alias and
518 auto CalleeValueInfo
=
519 Index
.getOrInsertValueInfo(cast
<GlobalValue
>(CalledValue
));
520 Callsites
.push_back({CalleeValueInfo
, StackIdIndices
});
525 if (PSI
->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize
)
526 Index
.addBlockCount(F
.size());
528 std::vector
<ValueInfo
> Refs
;
530 auto AddRefEdges
= [&](const std::vector
<const Instruction
*> &Instrs
,
531 SetVector
<ValueInfo
, std::vector
<ValueInfo
>> &Edges
,
532 SmallPtrSet
<const User
*, 8> &Cache
) {
533 for (const auto *I
: Instrs
) {
535 findRefEdges(Index
, I
, Edges
, Cache
);
539 // By now we processed all instructions in a function, except
540 // non-volatile loads and non-volatile value stores. Let's find
541 // ref edges for both of instruction sets
542 AddRefEdges(NonVolatileLoads
, LoadRefEdges
, Visited
);
543 // We can add some values to the Visited set when processing load
544 // instructions which are also used by stores in NonVolatileStores.
545 // For example this can happen if we have following code:
547 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
548 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
550 // After processing loads we'll add bitcast to the Visited set, and if
551 // we use the same set while processing stores, we'll never see store
552 // to @bar and @bar will be mistakenly treated as readonly.
553 SmallPtrSet
<const llvm::User
*, 8> StoreCache
;
554 AddRefEdges(NonVolatileStores
, StoreRefEdges
, StoreCache
);
556 // If both load and store instruction reference the same variable
557 // we won't be able to optimize it. Add all such reference edges
559 for (const auto &VI
: StoreRefEdges
)
560 if (LoadRefEdges
.remove(VI
))
563 unsigned RefCnt
= RefEdges
.size();
564 // All new reference edges inserted in two loops below are either
565 // read or write only. They will be grouped in the end of RefEdges
566 // vector, so we can use a single integer value to identify them.
567 for (const auto &VI
: LoadRefEdges
)
570 unsigned FirstWORef
= RefEdges
.size();
571 for (const auto &VI
: StoreRefEdges
)
574 Refs
= RefEdges
.takeVector();
575 for (; RefCnt
< FirstWORef
; ++RefCnt
)
576 Refs
[RefCnt
].setReadOnly();
578 for (; RefCnt
< Refs
.size(); ++RefCnt
)
579 Refs
[RefCnt
].setWriteOnly();
581 Refs
= RefEdges
.takeVector();
583 // Explicit add hot edges to enforce importing for designated GUIDs for
584 // sample PGO, to enable the same inlines as the profiled optimized binary.
585 for (auto &I
: F
.getImportGUIDs())
586 CallGraphEdges
[Index
.getOrInsertValueInfo(I
)].updateHotness(
587 ForceSummaryEdgesCold
== FunctionSummary::FSHT_All
588 ? CalleeInfo::HotnessType::Cold
589 : CalleeInfo::HotnessType::Critical
);
592 // Make sure that all calls we decided could not have memprof summaries get a
593 // false value for mayHaveMemprofSummary, to ensure that this handling remains
594 // in sync with the ThinLTO backend handling.
596 for (const BasicBlock
&BB
: F
) {
597 for (const Instruction
&I
: BB
) {
598 const auto *CB
= dyn_cast
<CallBase
>(&I
);
601 // We already checked these above.
602 if (CallsThatMayHaveMemprofSummary
.count(CB
))
604 assert(!mayHaveMemprofSummary(CB
));
610 bool NonRenamableLocal
= isNonRenamableLocal(F
);
611 bool NotEligibleForImport
= NonRenamableLocal
||
612 HasInlineAsmMaybeReferencingInternal
||
613 HasIndirBranchToBlockAddress
|| HasIFuncCall
;
614 GlobalValueSummary::GVFlags
Flags(
615 F
.getLinkage(), F
.getVisibility(), NotEligibleForImport
,
616 /* Live = */ false, F
.isDSOLocal(), F
.canBeOmittedFromSymbolTable());
617 FunctionSummary::FFlags FunFlags
{
618 F
.doesNotAccessMemory(), F
.onlyReadsMemory() && !F
.doesNotAccessMemory(),
619 F
.hasFnAttribute(Attribute::NoRecurse
), F
.returnDoesNotAlias(),
620 // FIXME: refactor this to use the same code that inliner is using.
621 // Don't try to import functions with noinline attribute.
622 F
.getAttributes().hasFnAttr(Attribute::NoInline
),
623 F
.hasFnAttribute(Attribute::AlwaysInline
),
624 F
.hasFnAttribute(Attribute::NoUnwind
), MayThrow
, HasUnknownCall
,
625 mustBeUnreachableFunction(F
)};
626 std::vector
<FunctionSummary::ParamAccess
> ParamAccesses
;
627 if (auto *SSI
= GetSSICallback(F
))
628 ParamAccesses
= SSI
->getParamAccesses(Index
);
629 auto FuncSummary
= std::make_unique
<FunctionSummary
>(
630 Flags
, NumInsts
, FunFlags
, /*EntryCount=*/0, std::move(Refs
),
631 CallGraphEdges
.takeVector(), TypeTests
.takeVector(),
632 TypeTestAssumeVCalls
.takeVector(), TypeCheckedLoadVCalls
.takeVector(),
633 TypeTestAssumeConstVCalls
.takeVector(),
634 TypeCheckedLoadConstVCalls
.takeVector(), std::move(ParamAccesses
),
635 std::move(Callsites
), std::move(Allocs
));
636 if (NonRenamableLocal
)
637 CantBePromoted
.insert(F
.getGUID());
638 Index
.addGlobalValueSummary(F
, std::move(FuncSummary
));
641 /// Find function pointers referenced within the given vtable initializer
642 /// (or subset of an initializer) \p I. The starting offset of \p I within
643 /// the vtable initializer is \p StartingOffset. Any discovered function
644 /// pointers are added to \p VTableFuncs along with their cumulative offset
645 /// within the initializer.
646 static void findFuncPointers(const Constant
*I
, uint64_t StartingOffset
,
647 const Module
&M
, ModuleSummaryIndex
&Index
,
648 VTableFuncList
&VTableFuncs
) {
649 // First check if this is a function pointer.
650 if (I
->getType()->isPointerTy()) {
651 auto C
= I
->stripPointerCasts();
652 auto A
= dyn_cast
<GlobalAlias
>(C
);
653 if (isa
<Function
>(C
) || (A
&& isa
<Function
>(A
->getAliasee()))) {
654 auto GV
= dyn_cast
<GlobalValue
>(C
);
656 // We can disregard __cxa_pure_virtual as a possible call target, as
657 // calls to pure virtuals are UB.
658 if (GV
&& GV
->getName() != "__cxa_pure_virtual")
659 VTableFuncs
.push_back({Index
.getOrInsertValueInfo(GV
), StartingOffset
});
664 // Walk through the elements in the constant struct or array and recursively
665 // look for virtual function pointers.
666 const DataLayout
&DL
= M
.getDataLayout();
667 if (auto *C
= dyn_cast
<ConstantStruct
>(I
)) {
668 StructType
*STy
= dyn_cast
<StructType
>(C
->getType());
670 const StructLayout
*SL
= DL
.getStructLayout(C
->getType());
672 for (auto EI
: llvm::enumerate(STy
->elements())) {
673 auto Offset
= SL
->getElementOffset(EI
.index());
674 unsigned Op
= SL
->getElementContainingOffset(Offset
);
675 findFuncPointers(cast
<Constant
>(I
->getOperand(Op
)),
676 StartingOffset
+ Offset
, M
, Index
, VTableFuncs
);
678 } else if (auto *C
= dyn_cast
<ConstantArray
>(I
)) {
679 ArrayType
*ATy
= C
->getType();
680 Type
*EltTy
= ATy
->getElementType();
681 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
);
682 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
) {
683 findFuncPointers(cast
<Constant
>(I
->getOperand(i
)),
684 StartingOffset
+ i
* EltSize
, M
, Index
, VTableFuncs
);
689 // Identify the function pointers referenced by vtable definition \p V.
690 static void computeVTableFuncs(ModuleSummaryIndex
&Index
,
691 const GlobalVariable
&V
, const Module
&M
,
692 VTableFuncList
&VTableFuncs
) {
696 findFuncPointers(V
.getInitializer(), /*StartingOffset=*/0, M
, Index
,
700 // Validate that the VTableFuncs list is ordered by offset.
701 uint64_t PrevOffset
= 0;
702 for (auto &P
: VTableFuncs
) {
703 // The findVFuncPointers traversal should have encountered the
704 // functions in offset order. We need to use ">=" since PrevOffset
706 assert(P
.VTableOffset
>= PrevOffset
);
707 PrevOffset
= P
.VTableOffset
;
712 /// Record vtable definition \p V for each type metadata it references.
714 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex
&Index
,
715 const GlobalVariable
&V
,
716 SmallVectorImpl
<MDNode
*> &Types
) {
717 for (MDNode
*Type
: Types
) {
718 auto TypeID
= Type
->getOperand(1).get();
722 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
725 if (auto *TypeId
= dyn_cast
<MDString
>(TypeID
))
726 Index
.getOrInsertTypeIdCompatibleVtableSummary(TypeId
->getString())
727 .push_back({Offset
, Index
.getOrInsertValueInfo(&V
)});
731 static void computeVariableSummary(ModuleSummaryIndex
&Index
,
732 const GlobalVariable
&V
,
733 DenseSet
<GlobalValue::GUID
> &CantBePromoted
,
735 SmallVectorImpl
<MDNode
*> &Types
) {
736 SetVector
<ValueInfo
, std::vector
<ValueInfo
>> RefEdges
;
737 SmallPtrSet
<const User
*, 8> Visited
;
738 bool HasBlockAddress
= findRefEdges(Index
, &V
, RefEdges
, Visited
);
739 bool NonRenamableLocal
= isNonRenamableLocal(V
);
740 GlobalValueSummary::GVFlags
Flags(
741 V
.getLinkage(), V
.getVisibility(), NonRenamableLocal
,
742 /* Live = */ false, V
.isDSOLocal(), V
.canBeOmittedFromSymbolTable());
744 VTableFuncList VTableFuncs
;
745 // If splitting is not enabled, then we compute the summary information
746 // necessary for index-based whole program devirtualization.
747 if (!Index
.enableSplitLTOUnit()) {
749 V
.getMetadata(LLVMContext::MD_type
, Types
);
750 if (!Types
.empty()) {
751 // Identify the function pointers referenced by this vtable definition.
752 computeVTableFuncs(Index
, V
, M
, VTableFuncs
);
754 // Record this vtable definition for each type metadata it references.
755 recordTypeIdCompatibleVtableReferences(Index
, V
, Types
);
759 // Don't mark variables we won't be able to internalize as read/write-only.
760 bool CanBeInternalized
=
761 !V
.hasComdat() && !V
.hasAppendingLinkage() && !V
.isInterposable() &&
762 !V
.hasAvailableExternallyLinkage() && !V
.hasDLLExportStorageClass();
763 bool Constant
= V
.isConstant();
764 GlobalVarSummary::GVarFlags
VarFlags(CanBeInternalized
,
765 Constant
? false : CanBeInternalized
,
766 Constant
, V
.getVCallVisibility());
767 auto GVarSummary
= std::make_unique
<GlobalVarSummary
>(Flags
, VarFlags
,
768 RefEdges
.takeVector());
769 if (NonRenamableLocal
)
770 CantBePromoted
.insert(V
.getGUID());
772 GVarSummary
->setNotEligibleToImport();
773 if (!VTableFuncs
.empty())
774 GVarSummary
->setVTableFuncs(VTableFuncs
);
775 Index
.addGlobalValueSummary(V
, std::move(GVarSummary
));
778 static void computeAliasSummary(ModuleSummaryIndex
&Index
, const GlobalAlias
&A
,
779 DenseSet
<GlobalValue::GUID
> &CantBePromoted
) {
780 // Skip summary for indirect function aliases as summary for aliasee will not
782 const GlobalObject
*Aliasee
= A
.getAliaseeObject();
783 if (isa
<GlobalIFunc
>(Aliasee
))
785 bool NonRenamableLocal
= isNonRenamableLocal(A
);
786 GlobalValueSummary::GVFlags
Flags(
787 A
.getLinkage(), A
.getVisibility(), NonRenamableLocal
,
788 /* Live = */ false, A
.isDSOLocal(), A
.canBeOmittedFromSymbolTable());
789 auto AS
= std::make_unique
<AliasSummary
>(Flags
);
790 auto AliaseeVI
= Index
.getValueInfo(Aliasee
->getGUID());
791 assert(AliaseeVI
&& "Alias expects aliasee summary to be available");
792 assert(AliaseeVI
.getSummaryList().size() == 1 &&
793 "Expected a single entry per aliasee in per-module index");
794 AS
->setAliasee(AliaseeVI
, AliaseeVI
.getSummaryList()[0].get());
795 if (NonRenamableLocal
)
796 CantBePromoted
.insert(A
.getGUID());
797 Index
.addGlobalValueSummary(A
, std::move(AS
));
800 // Set LiveRoot flag on entries matching the given value name.
801 static void setLiveRoot(ModuleSummaryIndex
&Index
, StringRef Name
) {
802 if (ValueInfo VI
= Index
.getValueInfo(GlobalValue::getGUID(Name
)))
803 for (const auto &Summary
: VI
.getSummaryList())
804 Summary
->setLive(true);
807 ModuleSummaryIndex
llvm::buildModuleSummaryIndex(
809 std::function
<BlockFrequencyInfo
*(const Function
&F
)> GetBFICallback
,
810 ProfileSummaryInfo
*PSI
,
811 std::function
<const StackSafetyInfo
*(const Function
&F
)> GetSSICallback
) {
813 bool EnableSplitLTOUnit
= false;
814 bool UnifiedLTO
= false;
815 if (auto *MD
= mdconst::extract_or_null
<ConstantInt
>(
816 M
.getModuleFlag("EnableSplitLTOUnit")))
817 EnableSplitLTOUnit
= MD
->getZExtValue();
819 mdconst::extract_or_null
<ConstantInt
>(M
.getModuleFlag("UnifiedLTO")))
820 UnifiedLTO
= MD
->getZExtValue();
821 ModuleSummaryIndex
Index(/*HaveGVs=*/true, EnableSplitLTOUnit
, UnifiedLTO
);
823 // Identify the local values in the llvm.used and llvm.compiler.used sets,
824 // which should not be exported as they would then require renaming and
825 // promotion, but we may have opaque uses e.g. in inline asm. We collect them
826 // here because we use this information to mark functions containing inline
827 // assembly calls as not importable.
828 SmallPtrSet
<GlobalValue
*, 4> LocalsUsed
;
829 SmallVector
<GlobalValue
*, 4> Used
;
830 // First collect those in the llvm.used set.
831 collectUsedGlobalVariables(M
, Used
, /*CompilerUsed=*/false);
832 // Next collect those in the llvm.compiler.used set.
833 collectUsedGlobalVariables(M
, Used
, /*CompilerUsed=*/true);
834 DenseSet
<GlobalValue::GUID
> CantBePromoted
;
835 for (auto *V
: Used
) {
836 if (V
->hasLocalLinkage()) {
837 LocalsUsed
.insert(V
);
838 CantBePromoted
.insert(V
->getGUID());
842 bool HasLocalInlineAsmSymbol
= false;
843 if (!M
.getModuleInlineAsm().empty()) {
844 // Collect the local values defined by module level asm, and set up
845 // summaries for these symbols so that they can be marked as NoRename,
846 // to prevent export of any use of them in regular IR that would require
847 // renaming within the module level asm. Note we don't need to create a
848 // summary for weak or global defs, as they don't need to be flagged as
849 // NoRename, and defs in module level asm can't be imported anyway.
850 // Also, any values used but not defined within module level asm should
851 // be listed on the llvm.used or llvm.compiler.used global and marked as
852 // referenced from there.
853 ModuleSymbolTable::CollectAsmSymbols(
854 M
, [&](StringRef Name
, object::BasicSymbolRef::Flags Flags
) {
855 // Symbols not marked as Weak or Global are local definitions.
856 if (Flags
& (object::BasicSymbolRef::SF_Weak
|
857 object::BasicSymbolRef::SF_Global
))
859 HasLocalInlineAsmSymbol
= true;
860 GlobalValue
*GV
= M
.getNamedValue(Name
);
863 assert(GV
->isDeclaration() && "Def in module asm already has definition");
864 GlobalValueSummary::GVFlags
GVFlags(
865 GlobalValue::InternalLinkage
, GlobalValue::DefaultVisibility
,
866 /* NotEligibleToImport = */ true,
868 /* Local */ GV
->isDSOLocal(), GV
->canBeOmittedFromSymbolTable());
869 CantBePromoted
.insert(GV
->getGUID());
870 // Create the appropriate summary type.
871 if (Function
*F
= dyn_cast
<Function
>(GV
)) {
872 std::unique_ptr
<FunctionSummary
> Summary
=
873 std::make_unique
<FunctionSummary
>(
874 GVFlags
, /*InstCount=*/0,
875 FunctionSummary::FFlags
{
876 F
->hasFnAttribute(Attribute::ReadNone
),
877 F
->hasFnAttribute(Attribute::ReadOnly
),
878 F
->hasFnAttribute(Attribute::NoRecurse
),
879 F
->returnDoesNotAlias(),
880 /* NoInline = */ false,
881 F
->hasFnAttribute(Attribute::AlwaysInline
),
882 F
->hasFnAttribute(Attribute::NoUnwind
),
884 /* HasUnknownCall */ true,
885 /* MustBeUnreachable */ false},
886 /*EntryCount=*/0, ArrayRef
<ValueInfo
>{},
887 ArrayRef
<FunctionSummary::EdgeTy
>{},
888 ArrayRef
<GlobalValue::GUID
>{},
889 ArrayRef
<FunctionSummary::VFuncId
>{},
890 ArrayRef
<FunctionSummary::VFuncId
>{},
891 ArrayRef
<FunctionSummary::ConstVCall
>{},
892 ArrayRef
<FunctionSummary::ConstVCall
>{},
893 ArrayRef
<FunctionSummary::ParamAccess
>{},
894 ArrayRef
<CallsiteInfo
>{}, ArrayRef
<AllocInfo
>{});
895 Index
.addGlobalValueSummary(*GV
, std::move(Summary
));
897 std::unique_ptr
<GlobalVarSummary
> Summary
=
898 std::make_unique
<GlobalVarSummary
>(
900 GlobalVarSummary::GVarFlags(
901 false, false, cast
<GlobalVariable
>(GV
)->isConstant(),
902 GlobalObject::VCallVisibilityPublic
),
903 ArrayRef
<ValueInfo
>{});
904 Index
.addGlobalValueSummary(*GV
, std::move(Summary
));
909 bool IsThinLTO
= true;
911 mdconst::extract_or_null
<ConstantInt
>(M
.getModuleFlag("ThinLTO")))
912 IsThinLTO
= MD
->getZExtValue();
914 // Compute summaries for all functions defined in module, and save in the
916 for (const auto &F
: M
) {
917 if (F
.isDeclaration())
920 DominatorTree
DT(const_cast<Function
&>(F
));
921 BlockFrequencyInfo
*BFI
= nullptr;
922 std::unique_ptr
<BlockFrequencyInfo
> BFIPtr
;
924 BFI
= GetBFICallback(F
);
925 else if (F
.hasProfileData()) {
927 BranchProbabilityInfo BPI
{F
, LI
};
928 BFIPtr
= std::make_unique
<BlockFrequencyInfo
>(F
, BPI
, LI
);
932 computeFunctionSummary(Index
, M
, F
, BFI
, PSI
, DT
,
933 !LocalsUsed
.empty() || HasLocalInlineAsmSymbol
,
934 CantBePromoted
, IsThinLTO
, GetSSICallback
);
937 // Compute summaries for all variables defined in module, and save in the
939 SmallVector
<MDNode
*, 2> Types
;
940 for (const GlobalVariable
&G
: M
.globals()) {
941 if (G
.isDeclaration())
943 computeVariableSummary(Index
, G
, CantBePromoted
, M
, Types
);
946 // Compute summaries for all aliases defined in module, and save in the
948 for (const GlobalAlias
&A
: M
.aliases())
949 computeAliasSummary(Index
, A
, CantBePromoted
);
951 // Iterate through ifuncs, set their resolvers all alive.
952 for (const GlobalIFunc
&I
: M
.ifuncs()) {
953 I
.applyAlongResolverPath([&Index
](const GlobalValue
&GV
) {
954 Index
.getGlobalValueSummary(GV
)->setLive(true);
958 for (auto *V
: LocalsUsed
) {
959 auto *Summary
= Index
.getGlobalValueSummary(*V
);
960 assert(Summary
&& "Missing summary for global value");
961 Summary
->setNotEligibleToImport();
964 // The linker doesn't know about these LLVM produced values, so we need
965 // to flag them as live in the index to ensure index-based dead value
966 // analysis treats them as live roots of the analysis.
967 setLiveRoot(Index
, "llvm.used");
968 setLiveRoot(Index
, "llvm.compiler.used");
969 setLiveRoot(Index
, "llvm.global_ctors");
970 setLiveRoot(Index
, "llvm.global_dtors");
971 setLiveRoot(Index
, "llvm.global.annotations");
973 for (auto &GlobalList
: Index
) {
974 // Ignore entries for references that are undefined in the current module.
975 if (GlobalList
.second
.SummaryList
.empty())
978 assert(GlobalList
.second
.SummaryList
.size() == 1 &&
979 "Expected module's index to have one summary per GUID");
980 auto &Summary
= GlobalList
.second
.SummaryList
[0];
982 Summary
->setNotEligibleToImport();
986 bool AllRefsCanBeExternallyReferenced
=
987 llvm::all_of(Summary
->refs(), [&](const ValueInfo
&VI
) {
988 return !CantBePromoted
.count(VI
.getGUID());
990 if (!AllRefsCanBeExternallyReferenced
) {
991 Summary
->setNotEligibleToImport();
995 if (auto *FuncSummary
= dyn_cast
<FunctionSummary
>(Summary
.get())) {
996 bool AllCallsCanBeExternallyReferenced
= llvm::all_of(
997 FuncSummary
->calls(), [&](const FunctionSummary::EdgeTy
&Edge
) {
998 return !CantBePromoted
.count(Edge
.first
.getGUID());
1000 if (!AllCallsCanBeExternallyReferenced
)
1001 Summary
->setNotEligibleToImport();
1005 if (!ModuleSummaryDotFile
.empty()) {
1007 raw_fd_ostream
OSDot(ModuleSummaryDotFile
, EC
, sys::fs::OpenFlags::OF_None
);
1009 report_fatal_error(Twine("Failed to open dot file ") +
1010 ModuleSummaryDotFile
+ ": " + EC
.message() + "\n");
1011 Index
.exportToDot(OSDot
, {});
1017 AnalysisKey
ModuleSummaryIndexAnalysis::Key
;
1020 ModuleSummaryIndexAnalysis::run(Module
&M
, ModuleAnalysisManager
&AM
) {
1021 ProfileSummaryInfo
&PSI
= AM
.getResult
<ProfileSummaryAnalysis
>(M
);
1022 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
1023 bool NeedSSI
= needsParamAccessSummary(M
);
1024 return buildModuleSummaryIndex(
1026 [&FAM
](const Function
&F
) {
1027 return &FAM
.getResult
<BlockFrequencyAnalysis
>(
1028 *const_cast<Function
*>(&F
));
1031 [&FAM
, NeedSSI
](const Function
&F
) -> const StackSafetyInfo
* {
1032 return NeedSSI
? &FAM
.getResult
<StackSafetyAnalysis
>(
1033 const_cast<Function
&>(F
))
1038 char ModuleSummaryIndexWrapperPass::ID
= 0;
1040 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass
, "module-summary-analysis",
1041 "Module Summary Analysis", false, true)
1042 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass
)
1043 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
1044 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass
)
1045 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass
, "module-summary-analysis",
1046 "Module Summary Analysis", false, true)
1048 ModulePass
*llvm::createModuleSummaryIndexWrapperPass() {
1049 return new ModuleSummaryIndexWrapperPass();
1052 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
1054 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
1057 bool ModuleSummaryIndexWrapperPass::runOnModule(Module
&M
) {
1058 auto *PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
1059 bool NeedSSI
= needsParamAccessSummary(M
);
1060 Index
.emplace(buildModuleSummaryIndex(
1062 [this](const Function
&F
) {
1063 return &(this->getAnalysis
<BlockFrequencyInfoWrapperPass
>(
1064 *const_cast<Function
*>(&F
))
1068 [&](const Function
&F
) -> const StackSafetyInfo
* {
1069 return NeedSSI
? &getAnalysis
<StackSafetyInfoWrapperPass
>(
1070 const_cast<Function
&>(F
))
1077 bool ModuleSummaryIndexWrapperPass::doFinalization(Module
&M
) {
1082 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
1083 AU
.setPreservesAll();
1084 AU
.addRequired
<BlockFrequencyInfoWrapperPass
>();
1085 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
1086 AU
.addRequired
<StackSafetyInfoWrapperPass
>();
1089 char ImmutableModuleSummaryIndexWrapperPass::ID
= 0;
1091 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
1092 const ModuleSummaryIndex
*Index
)
1093 : ImmutablePass(ID
), Index(Index
) {
1094 initializeImmutableModuleSummaryIndexWrapperPassPass(
1095 *PassRegistry::getPassRegistry());
1098 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
1099 AnalysisUsage
&AU
) const {
1100 AU
.setPreservesAll();
1103 ImmutablePass
*llvm::createImmutableModuleSummaryIndexWrapperPass(
1104 const ModuleSummaryIndex
*Index
) {
1105 return new ImmutableModuleSummaryIndexWrapperPass(Index
);
1108 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass
, "module-summary-info",
1109 "Module summary info", false, true)
1111 bool llvm::mayHaveMemprofSummary(const CallBase
*CB
) {
1114 if (CB
->isDebugOrPseudoInst())
1116 auto *CI
= dyn_cast
<CallInst
>(CB
);
1117 auto *CalledValue
= CB
->getCalledOperand();
1118 auto *CalledFunction
= CB
->getCalledFunction();
1119 if (CalledValue
&& !CalledFunction
) {
1120 CalledValue
= CalledValue
->stripPointerCasts();
1121 // Stripping pointer casts can reveal a called function.
1122 CalledFunction
= dyn_cast
<Function
>(CalledValue
);
1124 // Check if this is an alias to a function. If so, get the
1125 // called aliasee for the checks below.
1126 if (auto *GA
= dyn_cast
<GlobalAlias
>(CalledValue
)) {
1127 assert(!CalledFunction
&&
1128 "Expected null called function in callsite for alias");
1129 CalledFunction
= dyn_cast
<Function
>(GA
->getAliaseeObject());
1131 // Check if this is a direct call to a known function or a known
1132 // intrinsic, or an indirect call with profile data.
1133 if (CalledFunction
) {
1134 if (CI
&& CalledFunction
->isIntrinsic())
1137 // TODO: For now skip indirect calls. See comments in
1138 // computeFunctionSummary for what is needed to handle this.