Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Analysis / ModuleSummaryAnalysis.cpp
blob058a107691674ce7bd8b2f665fa2f594493df012
1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryProfileInfo.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/Analysis/StackSafetyAnalysis.h"
30 #include "llvm/Analysis/TypeMetadataUtils.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Object/ModuleSymbolTable.h"
49 #include "llvm/Object/SymbolicFile.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/FileSystem.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <vector>
59 using namespace llvm;
60 using namespace llvm::memprof;
62 #define DEBUG_TYPE "module-summary-analysis"
64 // Option to force edges cold which will block importing when the
65 // -import-cold-multiplier is set to 0. Useful for debugging.
66 namespace llvm {
67 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
68 FunctionSummary::FSHT_None;
69 } // namespace llvm
71 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
72 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
73 cl::desc("Force all edges in the function summary to cold"),
74 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
75 clEnumValN(FunctionSummary::FSHT_AllNonCritical,
76 "all-non-critical", "All non-critical edges."),
77 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
79 static cl::opt<std::string> ModuleSummaryDotFile(
80 "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"),
81 cl::desc("File to emit dot graph of new summary into"));
83 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize;
85 // Walk through the operands of a given User via worklist iteration and populate
86 // the set of GlobalValue references encountered. Invoked either on an
87 // Instruction or a GlobalVariable (which walks its initializer).
88 // Return true if any of the operands contains blockaddress. This is important
89 // to know when computing summary for global var, because if global variable
90 // references basic block address we can't import it separately from function
91 // containing that basic block. For simplicity we currently don't import such
92 // global vars at all. When importing function we aren't interested if any
93 // instruction in it takes an address of any basic block, because instruction
94 // can only take an address of basic block located in the same function.
95 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
96 SetVector<ValueInfo, std::vector<ValueInfo>> &RefEdges,
97 SmallPtrSet<const User *, 8> &Visited) {
98 bool HasBlockAddress = false;
99 SmallVector<const User *, 32> Worklist;
100 if (Visited.insert(CurUser).second)
101 Worklist.push_back(CurUser);
103 while (!Worklist.empty()) {
104 const User *U = Worklist.pop_back_val();
105 const auto *CB = dyn_cast<CallBase>(U);
107 for (const auto &OI : U->operands()) {
108 const User *Operand = dyn_cast<User>(OI);
109 if (!Operand)
110 continue;
111 if (isa<BlockAddress>(Operand)) {
112 HasBlockAddress = true;
113 continue;
115 if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
116 // We have a reference to a global value. This should be added to
117 // the reference set unless it is a callee. Callees are handled
118 // specially by WriteFunction and are added to a separate list.
119 if (!(CB && CB->isCallee(&OI)))
120 RefEdges.insert(Index.getOrInsertValueInfo(GV));
121 continue;
123 if (Visited.insert(Operand).second)
124 Worklist.push_back(Operand);
127 return HasBlockAddress;
130 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
131 ProfileSummaryInfo *PSI) {
132 if (!PSI)
133 return CalleeInfo::HotnessType::Unknown;
134 if (PSI->isHotCount(ProfileCount))
135 return CalleeInfo::HotnessType::Hot;
136 if (PSI->isColdCount(ProfileCount))
137 return CalleeInfo::HotnessType::Cold;
138 return CalleeInfo::HotnessType::None;
141 static bool isNonRenamableLocal(const GlobalValue &GV) {
142 return GV.hasSection() && GV.hasLocalLinkage();
145 /// Determine whether this call has all constant integer arguments (excluding
146 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
147 static void addVCallToSet(
148 DevirtCallSite Call, GlobalValue::GUID Guid,
149 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
150 &VCalls,
151 SetVector<FunctionSummary::ConstVCall,
152 std::vector<FunctionSummary::ConstVCall>> &ConstVCalls) {
153 std::vector<uint64_t> Args;
154 // Start from the second argument to skip the "this" pointer.
155 for (auto &Arg : drop_begin(Call.CB.args())) {
156 auto *CI = dyn_cast<ConstantInt>(Arg);
157 if (!CI || CI->getBitWidth() > 64) {
158 VCalls.insert({Guid, Call.Offset});
159 return;
161 Args.push_back(CI->getZExtValue());
163 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
166 /// If this intrinsic call requires that we add information to the function
167 /// summary, do so via the non-constant reference arguments.
168 static void addIntrinsicToSummary(
169 const CallInst *CI,
170 SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> &TypeTests,
171 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
172 &TypeTestAssumeVCalls,
173 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
174 &TypeCheckedLoadVCalls,
175 SetVector<FunctionSummary::ConstVCall,
176 std::vector<FunctionSummary::ConstVCall>>
177 &TypeTestAssumeConstVCalls,
178 SetVector<FunctionSummary::ConstVCall,
179 std::vector<FunctionSummary::ConstVCall>>
180 &TypeCheckedLoadConstVCalls,
181 DominatorTree &DT) {
182 switch (CI->getCalledFunction()->getIntrinsicID()) {
183 case Intrinsic::type_test:
184 case Intrinsic::public_type_test: {
185 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
186 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
187 if (!TypeId)
188 break;
189 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
191 // Produce a summary from type.test intrinsics. We only summarize type.test
192 // intrinsics that are used other than by an llvm.assume intrinsic.
193 // Intrinsics that are assumed are relevant only to the devirtualization
194 // pass, not the type test lowering pass.
195 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
196 return !isa<AssumeInst>(CIU.getUser());
198 if (HasNonAssumeUses)
199 TypeTests.insert(Guid);
201 SmallVector<DevirtCallSite, 4> DevirtCalls;
202 SmallVector<CallInst *, 4> Assumes;
203 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
204 for (auto &Call : DevirtCalls)
205 addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
206 TypeTestAssumeConstVCalls);
208 break;
211 case Intrinsic::type_checked_load_relative:
212 case Intrinsic::type_checked_load: {
213 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
214 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
215 if (!TypeId)
216 break;
217 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
219 SmallVector<DevirtCallSite, 4> DevirtCalls;
220 SmallVector<Instruction *, 4> LoadedPtrs;
221 SmallVector<Instruction *, 4> Preds;
222 bool HasNonCallUses = false;
223 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
224 HasNonCallUses, CI, DT);
225 // Any non-call uses of the result of llvm.type.checked.load will
226 // prevent us from optimizing away the llvm.type.test.
227 if (HasNonCallUses)
228 TypeTests.insert(Guid);
229 for (auto &Call : DevirtCalls)
230 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
231 TypeCheckedLoadConstVCalls);
233 break;
235 default:
236 break;
240 static bool isNonVolatileLoad(const Instruction *I) {
241 if (const auto *LI = dyn_cast<LoadInst>(I))
242 return !LI->isVolatile();
244 return false;
247 static bool isNonVolatileStore(const Instruction *I) {
248 if (const auto *SI = dyn_cast<StoreInst>(I))
249 return !SI->isVolatile();
251 return false;
254 // Returns true if the function definition must be unreachable.
256 // Note if this helper function returns true, `F` is guaranteed
257 // to be unreachable; if it returns false, `F` might still
258 // be unreachable but not covered by this helper function.
259 static bool mustBeUnreachableFunction(const Function &F) {
260 // A function must be unreachable if its entry block ends with an
261 // 'unreachable'.
262 assert(!F.isDeclaration());
263 return isa<UnreachableInst>(F.getEntryBlock().getTerminator());
266 static void computeFunctionSummary(
267 ModuleSummaryIndex &Index, const Module &M, const Function &F,
268 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
269 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
270 bool IsThinLTO,
271 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
272 // Summary not currently supported for anonymous functions, they should
273 // have been named.
274 assert(F.hasName());
276 unsigned NumInsts = 0;
277 // Map from callee ValueId to profile count. Used to accumulate profile
278 // counts for all static calls to a given callee.
279 MapVector<ValueInfo, CalleeInfo, DenseMap<ValueInfo, unsigned>,
280 std::vector<std::pair<ValueInfo, CalleeInfo>>>
281 CallGraphEdges;
282 SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges, LoadRefEdges,
283 StoreRefEdges;
284 SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> TypeTests;
285 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
286 TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
287 SetVector<FunctionSummary::ConstVCall,
288 std::vector<FunctionSummary::ConstVCall>>
289 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls;
290 ICallPromotionAnalysis ICallAnalysis;
291 SmallPtrSet<const User *, 8> Visited;
293 // Add personality function, prefix data and prologue data to function's ref
294 // list.
295 findRefEdges(Index, &F, RefEdges, Visited);
296 std::vector<const Instruction *> NonVolatileLoads;
297 std::vector<const Instruction *> NonVolatileStores;
299 std::vector<CallsiteInfo> Callsites;
300 std::vector<AllocInfo> Allocs;
302 #ifndef NDEBUG
303 DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary;
304 #endif
306 bool HasInlineAsmMaybeReferencingInternal = false;
307 bool HasIndirBranchToBlockAddress = false;
308 bool HasIFuncCall = false;
309 bool HasUnknownCall = false;
310 bool MayThrow = false;
311 for (const BasicBlock &BB : F) {
312 // We don't allow inlining of function with indirect branch to blockaddress.
313 // If the blockaddress escapes the function, e.g., via a global variable,
314 // inlining may lead to an invalid cross-function reference. So we shouldn't
315 // import such function either.
316 if (BB.hasAddressTaken()) {
317 for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users())
318 if (!isa<CallBrInst>(*U)) {
319 HasIndirBranchToBlockAddress = true;
320 break;
324 for (const Instruction &I : BB) {
325 if (I.isDebugOrPseudoInst())
326 continue;
327 ++NumInsts;
329 // Regular LTO module doesn't participate in ThinLTO import,
330 // so no reference from it can be read/writeonly, since this
331 // would require importing variable as local copy
332 if (IsThinLTO) {
333 if (isNonVolatileLoad(&I)) {
334 // Postpone processing of non-volatile load instructions
335 // See comments below
336 Visited.insert(&I);
337 NonVolatileLoads.push_back(&I);
338 continue;
339 } else if (isNonVolatileStore(&I)) {
340 Visited.insert(&I);
341 NonVolatileStores.push_back(&I);
342 // All references from second operand of store (destination address)
343 // can be considered write-only if they're not referenced by any
344 // non-store instruction. References from first operand of store
345 // (stored value) can't be treated either as read- or as write-only
346 // so we add them to RefEdges as we do with all other instructions
347 // except non-volatile load.
348 Value *Stored = I.getOperand(0);
349 if (auto *GV = dyn_cast<GlobalValue>(Stored))
350 // findRefEdges will try to examine GV operands, so instead
351 // of calling it we should add GV to RefEdges directly.
352 RefEdges.insert(Index.getOrInsertValueInfo(GV));
353 else if (auto *U = dyn_cast<User>(Stored))
354 findRefEdges(Index, U, RefEdges, Visited);
355 continue;
358 findRefEdges(Index, &I, RefEdges, Visited);
359 const auto *CB = dyn_cast<CallBase>(&I);
360 if (!CB) {
361 if (I.mayThrow())
362 MayThrow = true;
363 continue;
366 const auto *CI = dyn_cast<CallInst>(&I);
367 // Since we don't know exactly which local values are referenced in inline
368 // assembly, conservatively mark the function as possibly referencing
369 // a local value from inline assembly to ensure we don't export a
370 // reference (which would require renaming and promotion of the
371 // referenced value).
372 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
373 HasInlineAsmMaybeReferencingInternal = true;
375 auto *CalledValue = CB->getCalledOperand();
376 auto *CalledFunction = CB->getCalledFunction();
377 if (CalledValue && !CalledFunction) {
378 CalledValue = CalledValue->stripPointerCasts();
379 // Stripping pointer casts can reveal a called function.
380 CalledFunction = dyn_cast<Function>(CalledValue);
382 // Check if this is an alias to a function. If so, get the
383 // called aliasee for the checks below.
384 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
385 assert(!CalledFunction && "Expected null called function in callsite for alias");
386 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
388 // Check if this is a direct call to a known function or a known
389 // intrinsic, or an indirect call with profile data.
390 if (CalledFunction) {
391 if (CI && CalledFunction->isIntrinsic()) {
392 addIntrinsicToSummary(
393 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
394 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
395 continue;
397 // We should have named any anonymous globals
398 assert(CalledFunction->hasName());
399 auto ScaledCount = PSI->getProfileCount(*CB, BFI);
400 auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI)
401 : CalleeInfo::HotnessType::Unknown;
402 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
403 Hotness = CalleeInfo::HotnessType::Cold;
405 // Use the original CalledValue, in case it was an alias. We want
406 // to record the call edge to the alias in that case. Eventually
407 // an alias summary will be created to associate the alias and
408 // aliasee.
409 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
410 cast<GlobalValue>(CalledValue))];
411 ValueInfo.updateHotness(Hotness);
412 // Add the relative block frequency to CalleeInfo if there is no profile
413 // information.
414 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
415 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
416 uint64_t EntryFreq = BFI->getEntryFreq().getFrequency();
417 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
419 } else {
420 HasUnknownCall = true;
421 // If F is imported, a local linkage ifunc (e.g. target_clones on a
422 // static function) called by F will be cloned. Since summaries don't
423 // track ifunc, we do not know implementation functions referenced by
424 // the ifunc resolver need to be promoted in the exporter, and we will
425 // get linker errors due to cloned declarations for implementation
426 // functions. As a simple fix, just mark F as not eligible for import.
427 // Non-local ifunc is not cloned and does not have the issue.
428 if (auto *GI = dyn_cast_if_present<GlobalIFunc>(CalledValue))
429 if (GI->hasLocalLinkage())
430 HasIFuncCall = true;
431 // Skip inline assembly calls.
432 if (CI && CI->isInlineAsm())
433 continue;
434 // Skip direct calls.
435 if (!CalledValue || isa<Constant>(CalledValue))
436 continue;
438 // Check if the instruction has a callees metadata. If so, add callees
439 // to CallGraphEdges to reflect the references from the metadata, and
440 // to enable importing for subsequent indirect call promotion and
441 // inlining.
442 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
443 for (const auto &Op : MD->operands()) {
444 Function *Callee = mdconst::extract_or_null<Function>(Op);
445 if (Callee)
446 CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
450 uint32_t NumVals, NumCandidates;
451 uint64_t TotalCount;
452 auto CandidateProfileData =
453 ICallAnalysis.getPromotionCandidatesForInstruction(
454 &I, NumVals, TotalCount, NumCandidates);
455 for (const auto &Candidate : CandidateProfileData)
456 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
457 .updateHotness(getHotness(Candidate.Count, PSI));
460 // Summarize memprof related metadata. This is only needed for ThinLTO.
461 if (!IsThinLTO)
462 continue;
464 // TODO: Skip indirect calls for now. Need to handle these better, likely
465 // by creating multiple Callsites, one per target, then speculatively
466 // devirtualize while applying clone info in the ThinLTO backends. This
467 // will also be important because we will have a different set of clone
468 // versions per target. This handling needs to match that in the ThinLTO
469 // backend so we handle things consistently for matching of callsite
470 // summaries to instructions.
471 if (!CalledFunction)
472 continue;
474 // Ensure we keep this analysis in sync with the handling in the ThinLTO
475 // backend (see MemProfContextDisambiguation::applyImport). Save this call
476 // so that we can skip it in checking the reverse case later.
477 assert(mayHaveMemprofSummary(CB));
478 #ifndef NDEBUG
479 CallsThatMayHaveMemprofSummary.insert(CB);
480 #endif
482 // Compute the list of stack ids first (so we can trim them from the stack
483 // ids on any MIBs).
484 CallStack<MDNode, MDNode::op_iterator> InstCallsite(
485 I.getMetadata(LLVMContext::MD_callsite));
486 auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);
487 if (MemProfMD) {
488 std::vector<MIBInfo> MIBs;
489 for (auto &MDOp : MemProfMD->operands()) {
490 auto *MIBMD = cast<const MDNode>(MDOp);
491 MDNode *StackNode = getMIBStackNode(MIBMD);
492 assert(StackNode);
493 SmallVector<unsigned> StackIdIndices;
494 CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode);
495 // Collapse out any on the allocation call (inlining).
496 for (auto ContextIter =
497 StackContext.beginAfterSharedPrefix(InstCallsite);
498 ContextIter != StackContext.end(); ++ContextIter) {
499 unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter);
500 // If this is a direct recursion, simply skip the duplicate
501 // entries. If this is mutual recursion, handling is left to
502 // the LTO link analysis client.
503 if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx)
504 StackIdIndices.push_back(StackIdIdx);
506 MIBs.push_back(
507 MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices)));
509 Allocs.push_back(AllocInfo(std::move(MIBs)));
510 } else if (!InstCallsite.empty()) {
511 SmallVector<unsigned> StackIdIndices;
512 for (auto StackId : InstCallsite)
513 StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId));
514 // Use the original CalledValue, in case it was an alias. We want
515 // to record the call edge to the alias in that case. Eventually
516 // an alias summary will be created to associate the alias and
517 // aliasee.
518 auto CalleeValueInfo =
519 Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue));
520 Callsites.push_back({CalleeValueInfo, StackIdIndices});
525 if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize)
526 Index.addBlockCount(F.size());
528 std::vector<ValueInfo> Refs;
529 if (IsThinLTO) {
530 auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
531 SetVector<ValueInfo, std::vector<ValueInfo>> &Edges,
532 SmallPtrSet<const User *, 8> &Cache) {
533 for (const auto *I : Instrs) {
534 Cache.erase(I);
535 findRefEdges(Index, I, Edges, Cache);
539 // By now we processed all instructions in a function, except
540 // non-volatile loads and non-volatile value stores. Let's find
541 // ref edges for both of instruction sets
542 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
543 // We can add some values to the Visited set when processing load
544 // instructions which are also used by stores in NonVolatileStores.
545 // For example this can happen if we have following code:
547 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
548 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
550 // After processing loads we'll add bitcast to the Visited set, and if
551 // we use the same set while processing stores, we'll never see store
552 // to @bar and @bar will be mistakenly treated as readonly.
553 SmallPtrSet<const llvm::User *, 8> StoreCache;
554 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
556 // If both load and store instruction reference the same variable
557 // we won't be able to optimize it. Add all such reference edges
558 // to RefEdges set.
559 for (const auto &VI : StoreRefEdges)
560 if (LoadRefEdges.remove(VI))
561 RefEdges.insert(VI);
563 unsigned RefCnt = RefEdges.size();
564 // All new reference edges inserted in two loops below are either
565 // read or write only. They will be grouped in the end of RefEdges
566 // vector, so we can use a single integer value to identify them.
567 for (const auto &VI : LoadRefEdges)
568 RefEdges.insert(VI);
570 unsigned FirstWORef = RefEdges.size();
571 for (const auto &VI : StoreRefEdges)
572 RefEdges.insert(VI);
574 Refs = RefEdges.takeVector();
575 for (; RefCnt < FirstWORef; ++RefCnt)
576 Refs[RefCnt].setReadOnly();
578 for (; RefCnt < Refs.size(); ++RefCnt)
579 Refs[RefCnt].setWriteOnly();
580 } else {
581 Refs = RefEdges.takeVector();
583 // Explicit add hot edges to enforce importing for designated GUIDs for
584 // sample PGO, to enable the same inlines as the profiled optimized binary.
585 for (auto &I : F.getImportGUIDs())
586 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
587 ForceSummaryEdgesCold == FunctionSummary::FSHT_All
588 ? CalleeInfo::HotnessType::Cold
589 : CalleeInfo::HotnessType::Critical);
591 #ifndef NDEBUG
592 // Make sure that all calls we decided could not have memprof summaries get a
593 // false value for mayHaveMemprofSummary, to ensure that this handling remains
594 // in sync with the ThinLTO backend handling.
595 if (IsThinLTO) {
596 for (const BasicBlock &BB : F) {
597 for (const Instruction &I : BB) {
598 const auto *CB = dyn_cast<CallBase>(&I);
599 if (!CB)
600 continue;
601 // We already checked these above.
602 if (CallsThatMayHaveMemprofSummary.count(CB))
603 continue;
604 assert(!mayHaveMemprofSummary(CB));
608 #endif
610 bool NonRenamableLocal = isNonRenamableLocal(F);
611 bool NotEligibleForImport = NonRenamableLocal ||
612 HasInlineAsmMaybeReferencingInternal ||
613 HasIndirBranchToBlockAddress || HasIFuncCall;
614 GlobalValueSummary::GVFlags Flags(
615 F.getLinkage(), F.getVisibility(), NotEligibleForImport,
616 /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable());
617 FunctionSummary::FFlags FunFlags{
618 F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(),
619 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
620 // FIXME: refactor this to use the same code that inliner is using.
621 // Don't try to import functions with noinline attribute.
622 F.getAttributes().hasFnAttr(Attribute::NoInline),
623 F.hasFnAttribute(Attribute::AlwaysInline),
624 F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall,
625 mustBeUnreachableFunction(F)};
626 std::vector<FunctionSummary::ParamAccess> ParamAccesses;
627 if (auto *SSI = GetSSICallback(F))
628 ParamAccesses = SSI->getParamAccesses(Index);
629 auto FuncSummary = std::make_unique<FunctionSummary>(
630 Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
631 CallGraphEdges.takeVector(), TypeTests.takeVector(),
632 TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
633 TypeTestAssumeConstVCalls.takeVector(),
634 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses),
635 std::move(Callsites), std::move(Allocs));
636 if (NonRenamableLocal)
637 CantBePromoted.insert(F.getGUID());
638 Index.addGlobalValueSummary(F, std::move(FuncSummary));
641 /// Find function pointers referenced within the given vtable initializer
642 /// (or subset of an initializer) \p I. The starting offset of \p I within
643 /// the vtable initializer is \p StartingOffset. Any discovered function
644 /// pointers are added to \p VTableFuncs along with their cumulative offset
645 /// within the initializer.
646 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
647 const Module &M, ModuleSummaryIndex &Index,
648 VTableFuncList &VTableFuncs) {
649 // First check if this is a function pointer.
650 if (I->getType()->isPointerTy()) {
651 auto C = I->stripPointerCasts();
652 auto A = dyn_cast<GlobalAlias>(C);
653 if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) {
654 auto GV = dyn_cast<GlobalValue>(C);
655 assert(GV);
656 // We can disregard __cxa_pure_virtual as a possible call target, as
657 // calls to pure virtuals are UB.
658 if (GV && GV->getName() != "__cxa_pure_virtual")
659 VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset});
660 return;
664 // Walk through the elements in the constant struct or array and recursively
665 // look for virtual function pointers.
666 const DataLayout &DL = M.getDataLayout();
667 if (auto *C = dyn_cast<ConstantStruct>(I)) {
668 StructType *STy = dyn_cast<StructType>(C->getType());
669 assert(STy);
670 const StructLayout *SL = DL.getStructLayout(C->getType());
672 for (auto EI : llvm::enumerate(STy->elements())) {
673 auto Offset = SL->getElementOffset(EI.index());
674 unsigned Op = SL->getElementContainingOffset(Offset);
675 findFuncPointers(cast<Constant>(I->getOperand(Op)),
676 StartingOffset + Offset, M, Index, VTableFuncs);
678 } else if (auto *C = dyn_cast<ConstantArray>(I)) {
679 ArrayType *ATy = C->getType();
680 Type *EltTy = ATy->getElementType();
681 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
682 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
683 findFuncPointers(cast<Constant>(I->getOperand(i)),
684 StartingOffset + i * EltSize, M, Index, VTableFuncs);
689 // Identify the function pointers referenced by vtable definition \p V.
690 static void computeVTableFuncs(ModuleSummaryIndex &Index,
691 const GlobalVariable &V, const Module &M,
692 VTableFuncList &VTableFuncs) {
693 if (!V.isConstant())
694 return;
696 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
697 VTableFuncs);
699 #ifndef NDEBUG
700 // Validate that the VTableFuncs list is ordered by offset.
701 uint64_t PrevOffset = 0;
702 for (auto &P : VTableFuncs) {
703 // The findVFuncPointers traversal should have encountered the
704 // functions in offset order. We need to use ">=" since PrevOffset
705 // starts at 0.
706 assert(P.VTableOffset >= PrevOffset);
707 PrevOffset = P.VTableOffset;
709 #endif
712 /// Record vtable definition \p V for each type metadata it references.
713 static void
714 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
715 const GlobalVariable &V,
716 SmallVectorImpl<MDNode *> &Types) {
717 for (MDNode *Type : Types) {
718 auto TypeID = Type->getOperand(1).get();
720 uint64_t Offset =
721 cast<ConstantInt>(
722 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
723 ->getZExtValue();
725 if (auto *TypeId = dyn_cast<MDString>(TypeID))
726 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
727 .push_back({Offset, Index.getOrInsertValueInfo(&V)});
731 static void computeVariableSummary(ModuleSummaryIndex &Index,
732 const GlobalVariable &V,
733 DenseSet<GlobalValue::GUID> &CantBePromoted,
734 const Module &M,
735 SmallVectorImpl<MDNode *> &Types) {
736 SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges;
737 SmallPtrSet<const User *, 8> Visited;
738 bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
739 bool NonRenamableLocal = isNonRenamableLocal(V);
740 GlobalValueSummary::GVFlags Flags(
741 V.getLinkage(), V.getVisibility(), NonRenamableLocal,
742 /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable());
744 VTableFuncList VTableFuncs;
745 // If splitting is not enabled, then we compute the summary information
746 // necessary for index-based whole program devirtualization.
747 if (!Index.enableSplitLTOUnit()) {
748 Types.clear();
749 V.getMetadata(LLVMContext::MD_type, Types);
750 if (!Types.empty()) {
751 // Identify the function pointers referenced by this vtable definition.
752 computeVTableFuncs(Index, V, M, VTableFuncs);
754 // Record this vtable definition for each type metadata it references.
755 recordTypeIdCompatibleVtableReferences(Index, V, Types);
759 // Don't mark variables we won't be able to internalize as read/write-only.
760 bool CanBeInternalized =
761 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
762 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
763 bool Constant = V.isConstant();
764 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
765 Constant ? false : CanBeInternalized,
766 Constant, V.getVCallVisibility());
767 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
768 RefEdges.takeVector());
769 if (NonRenamableLocal)
770 CantBePromoted.insert(V.getGUID());
771 if (HasBlockAddress)
772 GVarSummary->setNotEligibleToImport();
773 if (!VTableFuncs.empty())
774 GVarSummary->setVTableFuncs(VTableFuncs);
775 Index.addGlobalValueSummary(V, std::move(GVarSummary));
778 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
779 DenseSet<GlobalValue::GUID> &CantBePromoted) {
780 // Skip summary for indirect function aliases as summary for aliasee will not
781 // be emitted.
782 const GlobalObject *Aliasee = A.getAliaseeObject();
783 if (isa<GlobalIFunc>(Aliasee))
784 return;
785 bool NonRenamableLocal = isNonRenamableLocal(A);
786 GlobalValueSummary::GVFlags Flags(
787 A.getLinkage(), A.getVisibility(), NonRenamableLocal,
788 /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable());
789 auto AS = std::make_unique<AliasSummary>(Flags);
790 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
791 assert(AliaseeVI && "Alias expects aliasee summary to be available");
792 assert(AliaseeVI.getSummaryList().size() == 1 &&
793 "Expected a single entry per aliasee in per-module index");
794 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
795 if (NonRenamableLocal)
796 CantBePromoted.insert(A.getGUID());
797 Index.addGlobalValueSummary(A, std::move(AS));
800 // Set LiveRoot flag on entries matching the given value name.
801 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
802 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
803 for (const auto &Summary : VI.getSummaryList())
804 Summary->setLive(true);
807 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
808 const Module &M,
809 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
810 ProfileSummaryInfo *PSI,
811 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
812 assert(PSI);
813 bool EnableSplitLTOUnit = false;
814 bool UnifiedLTO = false;
815 if (auto *MD = mdconst::extract_or_null<ConstantInt>(
816 M.getModuleFlag("EnableSplitLTOUnit")))
817 EnableSplitLTOUnit = MD->getZExtValue();
818 if (auto *MD =
819 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO")))
820 UnifiedLTO = MD->getZExtValue();
821 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit, UnifiedLTO);
823 // Identify the local values in the llvm.used and llvm.compiler.used sets,
824 // which should not be exported as they would then require renaming and
825 // promotion, but we may have opaque uses e.g. in inline asm. We collect them
826 // here because we use this information to mark functions containing inline
827 // assembly calls as not importable.
828 SmallPtrSet<GlobalValue *, 4> LocalsUsed;
829 SmallVector<GlobalValue *, 4> Used;
830 // First collect those in the llvm.used set.
831 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
832 // Next collect those in the llvm.compiler.used set.
833 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
834 DenseSet<GlobalValue::GUID> CantBePromoted;
835 for (auto *V : Used) {
836 if (V->hasLocalLinkage()) {
837 LocalsUsed.insert(V);
838 CantBePromoted.insert(V->getGUID());
842 bool HasLocalInlineAsmSymbol = false;
843 if (!M.getModuleInlineAsm().empty()) {
844 // Collect the local values defined by module level asm, and set up
845 // summaries for these symbols so that they can be marked as NoRename,
846 // to prevent export of any use of them in regular IR that would require
847 // renaming within the module level asm. Note we don't need to create a
848 // summary for weak or global defs, as they don't need to be flagged as
849 // NoRename, and defs in module level asm can't be imported anyway.
850 // Also, any values used but not defined within module level asm should
851 // be listed on the llvm.used or llvm.compiler.used global and marked as
852 // referenced from there.
853 ModuleSymbolTable::CollectAsmSymbols(
854 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
855 // Symbols not marked as Weak or Global are local definitions.
856 if (Flags & (object::BasicSymbolRef::SF_Weak |
857 object::BasicSymbolRef::SF_Global))
858 return;
859 HasLocalInlineAsmSymbol = true;
860 GlobalValue *GV = M.getNamedValue(Name);
861 if (!GV)
862 return;
863 assert(GV->isDeclaration() && "Def in module asm already has definition");
864 GlobalValueSummary::GVFlags GVFlags(
865 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
866 /* NotEligibleToImport = */ true,
867 /* Live = */ true,
868 /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable());
869 CantBePromoted.insert(GV->getGUID());
870 // Create the appropriate summary type.
871 if (Function *F = dyn_cast<Function>(GV)) {
872 std::unique_ptr<FunctionSummary> Summary =
873 std::make_unique<FunctionSummary>(
874 GVFlags, /*InstCount=*/0,
875 FunctionSummary::FFlags{
876 F->hasFnAttribute(Attribute::ReadNone),
877 F->hasFnAttribute(Attribute::ReadOnly),
878 F->hasFnAttribute(Attribute::NoRecurse),
879 F->returnDoesNotAlias(),
880 /* NoInline = */ false,
881 F->hasFnAttribute(Attribute::AlwaysInline),
882 F->hasFnAttribute(Attribute::NoUnwind),
883 /* MayThrow */ true,
884 /* HasUnknownCall */ true,
885 /* MustBeUnreachable */ false},
886 /*EntryCount=*/0, ArrayRef<ValueInfo>{},
887 ArrayRef<FunctionSummary::EdgeTy>{},
888 ArrayRef<GlobalValue::GUID>{},
889 ArrayRef<FunctionSummary::VFuncId>{},
890 ArrayRef<FunctionSummary::VFuncId>{},
891 ArrayRef<FunctionSummary::ConstVCall>{},
892 ArrayRef<FunctionSummary::ConstVCall>{},
893 ArrayRef<FunctionSummary::ParamAccess>{},
894 ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{});
895 Index.addGlobalValueSummary(*GV, std::move(Summary));
896 } else {
897 std::unique_ptr<GlobalVarSummary> Summary =
898 std::make_unique<GlobalVarSummary>(
899 GVFlags,
900 GlobalVarSummary::GVarFlags(
901 false, false, cast<GlobalVariable>(GV)->isConstant(),
902 GlobalObject::VCallVisibilityPublic),
903 ArrayRef<ValueInfo>{});
904 Index.addGlobalValueSummary(*GV, std::move(Summary));
909 bool IsThinLTO = true;
910 if (auto *MD =
911 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
912 IsThinLTO = MD->getZExtValue();
914 // Compute summaries for all functions defined in module, and save in the
915 // index.
916 for (const auto &F : M) {
917 if (F.isDeclaration())
918 continue;
920 DominatorTree DT(const_cast<Function &>(F));
921 BlockFrequencyInfo *BFI = nullptr;
922 std::unique_ptr<BlockFrequencyInfo> BFIPtr;
923 if (GetBFICallback)
924 BFI = GetBFICallback(F);
925 else if (F.hasProfileData()) {
926 LoopInfo LI{DT};
927 BranchProbabilityInfo BPI{F, LI};
928 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
929 BFI = BFIPtr.get();
932 computeFunctionSummary(Index, M, F, BFI, PSI, DT,
933 !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
934 CantBePromoted, IsThinLTO, GetSSICallback);
937 // Compute summaries for all variables defined in module, and save in the
938 // index.
939 SmallVector<MDNode *, 2> Types;
940 for (const GlobalVariable &G : M.globals()) {
941 if (G.isDeclaration())
942 continue;
943 computeVariableSummary(Index, G, CantBePromoted, M, Types);
946 // Compute summaries for all aliases defined in module, and save in the
947 // index.
948 for (const GlobalAlias &A : M.aliases())
949 computeAliasSummary(Index, A, CantBePromoted);
951 // Iterate through ifuncs, set their resolvers all alive.
952 for (const GlobalIFunc &I : M.ifuncs()) {
953 I.applyAlongResolverPath([&Index](const GlobalValue &GV) {
954 Index.getGlobalValueSummary(GV)->setLive(true);
958 for (auto *V : LocalsUsed) {
959 auto *Summary = Index.getGlobalValueSummary(*V);
960 assert(Summary && "Missing summary for global value");
961 Summary->setNotEligibleToImport();
964 // The linker doesn't know about these LLVM produced values, so we need
965 // to flag them as live in the index to ensure index-based dead value
966 // analysis treats them as live roots of the analysis.
967 setLiveRoot(Index, "llvm.used");
968 setLiveRoot(Index, "llvm.compiler.used");
969 setLiveRoot(Index, "llvm.global_ctors");
970 setLiveRoot(Index, "llvm.global_dtors");
971 setLiveRoot(Index, "llvm.global.annotations");
973 for (auto &GlobalList : Index) {
974 // Ignore entries for references that are undefined in the current module.
975 if (GlobalList.second.SummaryList.empty())
976 continue;
978 assert(GlobalList.second.SummaryList.size() == 1 &&
979 "Expected module's index to have one summary per GUID");
980 auto &Summary = GlobalList.second.SummaryList[0];
981 if (!IsThinLTO) {
982 Summary->setNotEligibleToImport();
983 continue;
986 bool AllRefsCanBeExternallyReferenced =
987 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
988 return !CantBePromoted.count(VI.getGUID());
990 if (!AllRefsCanBeExternallyReferenced) {
991 Summary->setNotEligibleToImport();
992 continue;
995 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
996 bool AllCallsCanBeExternallyReferenced = llvm::all_of(
997 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
998 return !CantBePromoted.count(Edge.first.getGUID());
1000 if (!AllCallsCanBeExternallyReferenced)
1001 Summary->setNotEligibleToImport();
1005 if (!ModuleSummaryDotFile.empty()) {
1006 std::error_code EC;
1007 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
1008 if (EC)
1009 report_fatal_error(Twine("Failed to open dot file ") +
1010 ModuleSummaryDotFile + ": " + EC.message() + "\n");
1011 Index.exportToDot(OSDot, {});
1014 return Index;
1017 AnalysisKey ModuleSummaryIndexAnalysis::Key;
1019 ModuleSummaryIndex
1020 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
1021 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
1022 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1023 bool NeedSSI = needsParamAccessSummary(M);
1024 return buildModuleSummaryIndex(
1026 [&FAM](const Function &F) {
1027 return &FAM.getResult<BlockFrequencyAnalysis>(
1028 *const_cast<Function *>(&F));
1030 &PSI,
1031 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
1032 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
1033 const_cast<Function &>(F))
1034 : nullptr;
1038 char ModuleSummaryIndexWrapperPass::ID = 0;
1040 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1041 "Module Summary Analysis", false, true)
1042 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
1043 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1044 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
1045 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1046 "Module Summary Analysis", false, true)
1048 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
1049 return new ModuleSummaryIndexWrapperPass();
1052 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
1053 : ModulePass(ID) {
1054 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
1057 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
1058 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1059 bool NeedSSI = needsParamAccessSummary(M);
1060 Index.emplace(buildModuleSummaryIndex(
1062 [this](const Function &F) {
1063 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
1064 *const_cast<Function *>(&F))
1065 .getBFI());
1067 PSI,
1068 [&](const Function &F) -> const StackSafetyInfo * {
1069 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
1070 const_cast<Function &>(F))
1071 .getResult()
1072 : nullptr;
1073 }));
1074 return false;
1077 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
1078 Index.reset();
1079 return false;
1082 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1083 AU.setPreservesAll();
1084 AU.addRequired<BlockFrequencyInfoWrapperPass>();
1085 AU.addRequired<ProfileSummaryInfoWrapperPass>();
1086 AU.addRequired<StackSafetyInfoWrapperPass>();
1089 char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
1091 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
1092 const ModuleSummaryIndex *Index)
1093 : ImmutablePass(ID), Index(Index) {
1094 initializeImmutableModuleSummaryIndexWrapperPassPass(
1095 *PassRegistry::getPassRegistry());
1098 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
1099 AnalysisUsage &AU) const {
1100 AU.setPreservesAll();
1103 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
1104 const ModuleSummaryIndex *Index) {
1105 return new ImmutableModuleSummaryIndexWrapperPass(Index);
1108 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
1109 "Module summary info", false, true)
1111 bool llvm::mayHaveMemprofSummary(const CallBase *CB) {
1112 if (!CB)
1113 return false;
1114 if (CB->isDebugOrPseudoInst())
1115 return false;
1116 auto *CI = dyn_cast<CallInst>(CB);
1117 auto *CalledValue = CB->getCalledOperand();
1118 auto *CalledFunction = CB->getCalledFunction();
1119 if (CalledValue && !CalledFunction) {
1120 CalledValue = CalledValue->stripPointerCasts();
1121 // Stripping pointer casts can reveal a called function.
1122 CalledFunction = dyn_cast<Function>(CalledValue);
1124 // Check if this is an alias to a function. If so, get the
1125 // called aliasee for the checks below.
1126 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
1127 assert(!CalledFunction &&
1128 "Expected null called function in callsite for alias");
1129 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
1131 // Check if this is a direct call to a known function or a known
1132 // intrinsic, or an indirect call with profile data.
1133 if (CalledFunction) {
1134 if (CI && CalledFunction->isIntrinsic())
1135 return false;
1136 } else {
1137 // TODO: For now skip indirect calls. See comments in
1138 // computeFunctionSummary for what is needed to handle this.
1139 return false;
1141 return true;