Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Analysis / TypeBasedAliasAnalysis.cpp
blobe4dc1a867f6f0c2fa6fa6f3476a22247d0f359b2
1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TypeBasedAliasAnalysis pass, which implements
10 // metadata-based TBAA.
12 // In LLVM IR, memory does not have types, so LLVM's own type system is not
13 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
14 // a type system of a higher level language. This can be used to implement
15 // typical C/C++ TBAA, but it can also be used to implement custom alias
16 // analysis behavior for other languages.
18 // We now support two types of metadata format: scalar TBAA and struct-path
19 // aware TBAA. After all testing cases are upgraded to use struct-path aware
20 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
21 // can be dropped.
23 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
24 // three fields, e.g.:
25 // !0 = !{ !"an example type tree" }
26 // !1 = !{ !"int", !0 }
27 // !2 = !{ !"float", !0 }
28 // !3 = !{ !"const float", !2, i64 1 }
30 // The first field is an identity field. It can be any value, usually
31 // an MDString, which uniquely identifies the type. The most important
32 // name in the tree is the name of the root node. Two trees with
33 // different root node names are entirely disjoint, even if they
34 // have leaves with common names.
36 // The second field identifies the type's parent node in the tree, or
37 // is null or omitted for a root node. A type is considered to alias
38 // all of its descendants and all of its ancestors in the tree. Also,
39 // a type is considered to alias all types in other trees, so that
40 // bitcode produced from multiple front-ends is handled conservatively.
42 // If the third field is present, it's an integer which if equal to 1
43 // indicates that the type is "constant" (meaning pointsToConstantMemory
44 // should return true; see
45 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 // With struct-path aware TBAA, the MDNodes attached to an instruction using
48 // "!tbaa" are called path tag nodes.
50 // The path tag node has 4 fields with the last field being optional.
52 // The first field is the base type node, it can be a struct type node
53 // or a scalar type node. The second field is the access type node, it
54 // must be a scalar type node. The third field is the offset into the base type.
55 // The last field has the same meaning as the last field of our scalar TBAA:
56 // it's an integer which if equal to 1 indicates that the access is "constant".
58 // The struct type node has a name and a list of pairs, one pair for each member
59 // of the struct. The first element of each pair is a type node (a struct type
60 // node or a scalar type node), specifying the type of the member, the second
61 // element of each pair is the offset of the member.
63 // Given an example
64 // typedef struct {
65 // short s;
66 // } A;
67 // typedef struct {
68 // uint16_t s;
69 // A a;
70 // } B;
72 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
73 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
74 // type short) and the offset is 4.
76 // !0 = !{!"Simple C/C++ TBAA"}
77 // !1 = !{!"omnipotent char", !0} // Scalar type node
78 // !2 = !{!"short", !1} // Scalar type node
79 // !3 = !{!"A", !2, i64 0} // Struct type node
80 // !4 = !{!"B", !2, i64 0, !3, i64 4}
81 // // Struct type node
82 // !5 = !{!4, !2, i64 4} // Path tag node
84 // The struct type nodes and the scalar type nodes form a type DAG.
85 // Root (!0)
86 // char (!1) -- edge to Root
87 // short (!2) -- edge to char
88 // A (!3) -- edge with offset 0 to short
89 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 // To check if two tags (tagX and tagY) can alias, we start from the base type
92 // of tagX, follow the edge with the correct offset in the type DAG and adjust
93 // the offset until we reach the base type of tagY or until we reach the Root
94 // node.
95 // If we reach the base type of tagY, compare the adjusted offset with
96 // offset of tagY, return Alias if the offsets are the same, return NoAlias
97 // otherwise.
98 // If we reach the Root node, perform the above starting from base type of tagY
99 // to see if we reach base type of tagX.
101 // If they have different roots, they're part of different potentially
102 // unrelated type systems, so we return Alias to be conservative.
103 // If neither node is an ancestor of the other and they have the same root,
104 // then we say NoAlias.
106 //===----------------------------------------------------------------------===//
108 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
109 #include "llvm/ADT/SetVector.h"
110 #include "llvm/Analysis/AliasAnalysis.h"
111 #include "llvm/Analysis/MemoryLocation.h"
112 #include "llvm/IR/Constants.h"
113 #include "llvm/IR/DerivedTypes.h"
114 #include "llvm/IR/InstrTypes.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/InitializePasses.h"
118 #include "llvm/Pass.h"
119 #include "llvm/Support/Casting.h"
120 #include "llvm/Support/CommandLine.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include <cassert>
123 #include <cstdint>
125 using namespace llvm;
127 // A handy option for disabling TBAA functionality. The same effect can also be
128 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
129 // more convenient.
130 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden);
132 namespace {
134 /// isNewFormatTypeNode - Return true iff the given type node is in the new
135 /// size-aware format.
136 static bool isNewFormatTypeNode(const MDNode *N) {
137 if (N->getNumOperands() < 3)
138 return false;
139 // In the old format the first operand is a string.
140 if (!isa<MDNode>(N->getOperand(0)))
141 return false;
142 return true;
145 /// This is a simple wrapper around an MDNode which provides a higher-level
146 /// interface by hiding the details of how alias analysis information is encoded
147 /// in its operands.
148 template<typename MDNodeTy>
149 class TBAANodeImpl {
150 MDNodeTy *Node = nullptr;
152 public:
153 TBAANodeImpl() = default;
154 explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
156 /// getNode - Get the MDNode for this TBAANode.
157 MDNodeTy *getNode() const { return Node; }
159 /// isNewFormat - Return true iff the wrapped type node is in the new
160 /// size-aware format.
161 bool isNewFormat() const { return isNewFormatTypeNode(Node); }
163 /// getParent - Get this TBAANode's Alias tree parent.
164 TBAANodeImpl<MDNodeTy> getParent() const {
165 if (isNewFormat())
166 return TBAANodeImpl(cast<MDNodeTy>(Node->getOperand(0)));
168 if (Node->getNumOperands() < 2)
169 return TBAANodeImpl<MDNodeTy>();
170 MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
171 if (!P)
172 return TBAANodeImpl<MDNodeTy>();
173 // Ok, this node has a valid parent. Return it.
174 return TBAANodeImpl<MDNodeTy>(P);
177 /// Test if this TBAANode represents a type for objects which are
178 /// not modified (by any means) in the context where this
179 /// AliasAnalysis is relevant.
180 bool isTypeImmutable() const {
181 if (Node->getNumOperands() < 3)
182 return false;
183 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
184 if (!CI)
185 return false;
186 return CI->getValue()[0];
190 /// \name Specializations of \c TBAANodeImpl for const and non const qualified
191 /// \c MDNode.
192 /// @{
193 using TBAANode = TBAANodeImpl<const MDNode>;
194 using MutableTBAANode = TBAANodeImpl<MDNode>;
195 /// @}
197 /// This is a simple wrapper around an MDNode which provides a
198 /// higher-level interface by hiding the details of how alias analysis
199 /// information is encoded in its operands.
200 template<typename MDNodeTy>
201 class TBAAStructTagNodeImpl {
202 /// This node should be created with createTBAAAccessTag().
203 MDNodeTy *Node;
205 public:
206 explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
208 /// Get the MDNode for this TBAAStructTagNode.
209 MDNodeTy *getNode() const { return Node; }
211 /// isNewFormat - Return true iff the wrapped access tag is in the new
212 /// size-aware format.
213 bool isNewFormat() const {
214 if (Node->getNumOperands() < 4)
215 return false;
216 if (MDNodeTy *AccessType = getAccessType())
217 if (!TBAANodeImpl<MDNodeTy>(AccessType).isNewFormat())
218 return false;
219 return true;
222 MDNodeTy *getBaseType() const {
223 return dyn_cast_or_null<MDNode>(Node->getOperand(0));
226 MDNodeTy *getAccessType() const {
227 return dyn_cast_or_null<MDNode>(Node->getOperand(1));
230 uint64_t getOffset() const {
231 return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
234 uint64_t getSize() const {
235 if (!isNewFormat())
236 return UINT64_MAX;
237 return mdconst::extract<ConstantInt>(Node->getOperand(3))->getZExtValue();
240 /// Test if this TBAAStructTagNode represents a type for objects
241 /// which are not modified (by any means) in the context where this
242 /// AliasAnalysis is relevant.
243 bool isTypeImmutable() const {
244 unsigned OpNo = isNewFormat() ? 4 : 3;
245 if (Node->getNumOperands() < OpNo + 1)
246 return false;
247 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(OpNo));
248 if (!CI)
249 return false;
250 return CI->getValue()[0];
254 /// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
255 /// qualified \c MDNods.
256 /// @{
257 using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>;
258 using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>;
259 /// @}
261 /// This is a simple wrapper around an MDNode which provides a
262 /// higher-level interface by hiding the details of how alias analysis
263 /// information is encoded in its operands.
264 class TBAAStructTypeNode {
265 /// This node should be created with createTBAATypeNode().
266 const MDNode *Node = nullptr;
268 public:
269 TBAAStructTypeNode() = default;
270 explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
272 /// Get the MDNode for this TBAAStructTypeNode.
273 const MDNode *getNode() const { return Node; }
275 /// isNewFormat - Return true iff the wrapped type node is in the new
276 /// size-aware format.
277 bool isNewFormat() const { return isNewFormatTypeNode(Node); }
279 bool operator==(const TBAAStructTypeNode &Other) const {
280 return getNode() == Other.getNode();
283 /// getId - Return type identifier.
284 Metadata *getId() const {
285 return Node->getOperand(isNewFormat() ? 2 : 0);
288 unsigned getNumFields() const {
289 unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
290 unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
291 return (getNode()->getNumOperands() - FirstFieldOpNo) / NumOpsPerField;
294 TBAAStructTypeNode getFieldType(unsigned FieldIndex) const {
295 unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
296 unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
297 unsigned OpIndex = FirstFieldOpNo + FieldIndex * NumOpsPerField;
298 auto *TypeNode = cast<MDNode>(getNode()->getOperand(OpIndex));
299 return TBAAStructTypeNode(TypeNode);
302 /// Get this TBAAStructTypeNode's field in the type DAG with
303 /// given offset. Update the offset to be relative to the field type.
304 TBAAStructTypeNode getField(uint64_t &Offset) const {
305 bool NewFormat = isNewFormat();
306 const ArrayRef<MDOperand> Operands = Node->operands();
307 const unsigned NumOperands = Operands.size();
309 if (NewFormat) {
310 // New-format root and scalar type nodes have no fields.
311 if (NumOperands < 6)
312 return TBAAStructTypeNode();
313 } else {
314 // Parent can be omitted for the root node.
315 if (NumOperands < 2)
316 return TBAAStructTypeNode();
318 // Fast path for a scalar type node and a struct type node with a single
319 // field.
320 if (NumOperands <= 3) {
321 uint64_t Cur =
322 NumOperands == 2
324 : mdconst::extract<ConstantInt>(Operands[2])->getZExtValue();
325 Offset -= Cur;
326 MDNode *P = dyn_cast_or_null<MDNode>(Operands[1]);
327 if (!P)
328 return TBAAStructTypeNode();
329 return TBAAStructTypeNode(P);
333 // Assume the offsets are in order. We return the previous field if
334 // the current offset is bigger than the given offset.
335 unsigned FirstFieldOpNo = NewFormat ? 3 : 1;
336 unsigned NumOpsPerField = NewFormat ? 3 : 2;
337 unsigned TheIdx = 0;
339 for (unsigned Idx = FirstFieldOpNo; Idx < NumOperands;
340 Idx += NumOpsPerField) {
341 uint64_t Cur =
342 mdconst::extract<ConstantInt>(Operands[Idx + 1])->getZExtValue();
343 if (Cur > Offset) {
344 assert(Idx >= FirstFieldOpNo + NumOpsPerField &&
345 "TBAAStructTypeNode::getField should have an offset match!");
346 TheIdx = Idx - NumOpsPerField;
347 break;
350 // Move along the last field.
351 if (TheIdx == 0)
352 TheIdx = NumOperands - NumOpsPerField;
353 uint64_t Cur =
354 mdconst::extract<ConstantInt>(Operands[TheIdx + 1])->getZExtValue();
355 Offset -= Cur;
356 MDNode *P = dyn_cast_or_null<MDNode>(Operands[TheIdx]);
357 if (!P)
358 return TBAAStructTypeNode();
359 return TBAAStructTypeNode(P);
363 } // end anonymous namespace
365 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
366 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
367 /// format.
368 static bool isStructPathTBAA(const MDNode *MD) {
369 // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
370 // a TBAA tag.
371 return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
374 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
375 const MemoryLocation &LocB,
376 AAQueryInfo &AAQI, const Instruction *) {
377 if (!EnableTBAA)
378 return AliasResult::MayAlias;
380 if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
381 return AliasResult::MayAlias;
383 // Otherwise return a definitive result.
384 return AliasResult::NoAlias;
387 ModRefInfo TypeBasedAAResult::getModRefInfoMask(const MemoryLocation &Loc,
388 AAQueryInfo &AAQI,
389 bool IgnoreLocals) {
390 if (!EnableTBAA)
391 return ModRefInfo::ModRef;
393 const MDNode *M = Loc.AATags.TBAA;
394 if (!M)
395 return ModRefInfo::ModRef;
397 // If this is an "immutable" type, we can assume the pointer is pointing
398 // to constant memory.
399 if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
400 (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
401 return ModRefInfo::NoModRef;
403 return ModRefInfo::ModRef;
406 MemoryEffects TypeBasedAAResult::getMemoryEffects(const CallBase *Call,
407 AAQueryInfo &AAQI) {
408 if (!EnableTBAA)
409 return MemoryEffects::unknown();
411 // If this is an "immutable" type, the access is not observable.
412 if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
413 if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
414 (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
415 return MemoryEffects::none();
417 return MemoryEffects::unknown();
420 MemoryEffects TypeBasedAAResult::getMemoryEffects(const Function *F) {
421 // Functions don't have metadata.
422 return MemoryEffects::unknown();
425 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call,
426 const MemoryLocation &Loc,
427 AAQueryInfo &AAQI) {
428 if (!EnableTBAA)
429 return ModRefInfo::ModRef;
431 if (const MDNode *L = Loc.AATags.TBAA)
432 if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
433 if (!Aliases(L, M))
434 return ModRefInfo::NoModRef;
436 return ModRefInfo::ModRef;
439 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call1,
440 const CallBase *Call2,
441 AAQueryInfo &AAQI) {
442 if (!EnableTBAA)
443 return ModRefInfo::ModRef;
445 if (const MDNode *M1 = Call1->getMetadata(LLVMContext::MD_tbaa))
446 if (const MDNode *M2 = Call2->getMetadata(LLVMContext::MD_tbaa))
447 if (!Aliases(M1, M2))
448 return ModRefInfo::NoModRef;
450 return ModRefInfo::ModRef;
453 bool MDNode::isTBAAVtableAccess() const {
454 if (!isStructPathTBAA(this)) {
455 if (getNumOperands() < 1)
456 return false;
457 if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
458 if (Tag1->getString() == "vtable pointer")
459 return true;
461 return false;
464 // For struct-path aware TBAA, we use the access type of the tag.
465 TBAAStructTagNode Tag(this);
466 TBAAStructTypeNode AccessType(Tag.getAccessType());
467 if(auto *Id = dyn_cast<MDString>(AccessType.getId()))
468 if (Id->getString() == "vtable pointer")
469 return true;
470 return false;
473 static bool matchAccessTags(const MDNode *A, const MDNode *B,
474 const MDNode **GenericTag = nullptr);
476 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
477 const MDNode *GenericTag;
478 matchAccessTags(A, B, &GenericTag);
479 return const_cast<MDNode*>(GenericTag);
482 static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
483 if (!A || !B)
484 return nullptr;
486 if (A == B)
487 return A;
489 SmallSetVector<const MDNode *, 4> PathA;
490 TBAANode TA(A);
491 while (TA.getNode()) {
492 if (!PathA.insert(TA.getNode()))
493 report_fatal_error("Cycle found in TBAA metadata.");
494 TA = TA.getParent();
497 SmallSetVector<const MDNode *, 4> PathB;
498 TBAANode TB(B);
499 while (TB.getNode()) {
500 if (!PathB.insert(TB.getNode()))
501 report_fatal_error("Cycle found in TBAA metadata.");
502 TB = TB.getParent();
505 int IA = PathA.size() - 1;
506 int IB = PathB.size() - 1;
508 const MDNode *Ret = nullptr;
509 while (IA >= 0 && IB >= 0) {
510 if (PathA[IA] == PathB[IB])
511 Ret = PathA[IA];
512 else
513 break;
514 --IA;
515 --IB;
518 return Ret;
521 AAMDNodes AAMDNodes::merge(const AAMDNodes &Other) const {
522 AAMDNodes Result;
523 Result.TBAA = MDNode::getMostGenericTBAA(TBAA, Other.TBAA);
524 Result.TBAAStruct = nullptr;
525 Result.Scope = MDNode::getMostGenericAliasScope(Scope, Other.Scope);
526 Result.NoAlias = MDNode::intersect(NoAlias, Other.NoAlias);
527 return Result;
530 AAMDNodes AAMDNodes::concat(const AAMDNodes &Other) const {
531 AAMDNodes Result;
532 Result.TBAA = Result.TBAAStruct = nullptr;
533 Result.Scope = MDNode::getMostGenericAliasScope(Scope, Other.Scope);
534 Result.NoAlias = MDNode::intersect(NoAlias, Other.NoAlias);
535 return Result;
538 static const MDNode *createAccessTag(const MDNode *AccessType) {
539 // If there is no access type or the access type is the root node, then
540 // we don't have any useful access tag to return.
541 if (!AccessType || AccessType->getNumOperands() < 2)
542 return nullptr;
544 Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
545 auto *OffsetNode = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));
547 if (TBAAStructTypeNode(AccessType).isNewFormat()) {
548 // TODO: Take access ranges into account when matching access tags and
549 // fix this code to generate actual access sizes for generic tags.
550 uint64_t AccessSize = UINT64_MAX;
551 auto *SizeNode =
552 ConstantAsMetadata::get(ConstantInt::get(Int64, AccessSize));
553 Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
554 const_cast<MDNode*>(AccessType),
555 OffsetNode, SizeNode};
556 return MDNode::get(AccessType->getContext(), Ops);
559 Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
560 const_cast<MDNode*>(AccessType),
561 OffsetNode};
562 return MDNode::get(AccessType->getContext(), Ops);
565 static bool hasField(TBAAStructTypeNode BaseType,
566 TBAAStructTypeNode FieldType) {
567 for (unsigned I = 0, E = BaseType.getNumFields(); I != E; ++I) {
568 TBAAStructTypeNode T = BaseType.getFieldType(I);
569 if (T == FieldType || hasField(T, FieldType))
570 return true;
572 return false;
575 /// Return true if for two given accesses, one of the accessed objects may be a
576 /// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
577 /// describe the accesses to the base object and the subobject respectively.
578 /// \p CommonType must be the metadata node describing the common type of the
579 /// accessed objects. On return, \p MayAlias is set to true iff these accesses
580 /// may alias and \p Generic, if not null, points to the most generic access
581 /// tag for the given two.
582 static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,
583 TBAAStructTagNode SubobjectTag,
584 const MDNode *CommonType,
585 const MDNode **GenericTag,
586 bool &MayAlias) {
587 // If the base object is of the least common type, then this may be an access
588 // to its subobject.
589 if (BaseTag.getAccessType() == BaseTag.getBaseType() &&
590 BaseTag.getAccessType() == CommonType) {
591 if (GenericTag)
592 *GenericTag = createAccessTag(CommonType);
593 MayAlias = true;
594 return true;
597 // If the access to the base object is through a field of the subobject's
598 // type, then this may be an access to that field. To check for that we start
599 // from the base type, follow the edge with the correct offset in the type DAG
600 // and adjust the offset until we reach the field type or until we reach the
601 // access type.
602 bool NewFormat = BaseTag.isNewFormat();
603 TBAAStructTypeNode BaseType(BaseTag.getBaseType());
604 uint64_t OffsetInBase = BaseTag.getOffset();
606 for (;;) {
607 // In the old format there is no distinction between fields and parent
608 // types, so in this case we consider all nodes up to the root.
609 if (!BaseType.getNode()) {
610 assert(!NewFormat && "Did not see access type in access path!");
611 break;
614 if (BaseType.getNode() == SubobjectTag.getBaseType()) {
615 bool SameMemberAccess = OffsetInBase == SubobjectTag.getOffset();
616 if (GenericTag) {
617 *GenericTag = SameMemberAccess ? SubobjectTag.getNode() :
618 createAccessTag(CommonType);
620 MayAlias = SameMemberAccess;
621 return true;
624 // With new-format nodes we stop at the access type.
625 if (NewFormat && BaseType.getNode() == BaseTag.getAccessType())
626 break;
628 // Follow the edge with the correct offset. Offset will be adjusted to
629 // be relative to the field type.
630 BaseType = BaseType.getField(OffsetInBase);
633 // If the base object has a direct or indirect field of the subobject's type,
634 // then this may be an access to that field. We need this to check now that
635 // we support aggregates as access types.
636 if (NewFormat) {
637 // TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
638 TBAAStructTypeNode FieldType(SubobjectTag.getBaseType());
639 if (hasField(BaseType, FieldType)) {
640 if (GenericTag)
641 *GenericTag = createAccessTag(CommonType);
642 MayAlias = true;
643 return true;
647 return false;
650 /// matchTags - Return true if the given couple of accesses are allowed to
651 /// overlap. If \arg GenericTag is not null, then on return it points to the
652 /// most generic access descriptor for the given two.
653 static bool matchAccessTags(const MDNode *A, const MDNode *B,
654 const MDNode **GenericTag) {
655 if (A == B) {
656 if (GenericTag)
657 *GenericTag = A;
658 return true;
661 // Accesses with no TBAA information may alias with any other accesses.
662 if (!A || !B) {
663 if (GenericTag)
664 *GenericTag = nullptr;
665 return true;
668 // Verify that both input nodes are struct-path aware. Auto-upgrade should
669 // have taken care of this.
670 assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
671 assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");
673 TBAAStructTagNode TagA(A), TagB(B);
674 const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
675 TagB.getAccessType());
677 // If the final access types have different roots, they're part of different
678 // potentially unrelated type systems, so we must be conservative.
679 if (!CommonType) {
680 if (GenericTag)
681 *GenericTag = nullptr;
682 return true;
685 // If one of the accessed objects may be a subobject of the other, then such
686 // accesses may alias.
687 bool MayAlias;
688 if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA, /* SubobjectTag= */ TagB,
689 CommonType, GenericTag, MayAlias) ||
690 mayBeAccessToSubobjectOf(/* BaseTag= */ TagB, /* SubobjectTag= */ TagA,
691 CommonType, GenericTag, MayAlias))
692 return MayAlias;
694 // Otherwise, we've proved there's no alias.
695 if (GenericTag)
696 *GenericTag = createAccessTag(CommonType);
697 return false;
700 /// Aliases - Test whether the access represented by tag A may alias the
701 /// access represented by tag B.
702 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
703 return matchAccessTags(A, B);
706 AnalysisKey TypeBasedAA::Key;
708 TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
709 return TypeBasedAAResult();
712 char TypeBasedAAWrapperPass::ID = 0;
713 INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
714 false, true)
716 ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
717 return new TypeBasedAAWrapperPass();
720 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
721 initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
724 bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
725 Result.reset(new TypeBasedAAResult());
726 return false;
729 bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
730 Result.reset();
731 return false;
734 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
735 AU.setPreservesAll();
738 MDNode *AAMDNodes::shiftTBAA(MDNode *MD, size_t Offset) {
739 // Fast path if there's no offset
740 if (Offset == 0)
741 return MD;
742 // Fast path if there's no path tbaa node (and thus scalar)
743 if (!isStructPathTBAA(MD))
744 return MD;
746 // The correct behavior here is to add the offset into the TBAA
747 // struct node offset. The base type, however may not have defined
748 // a type at this additional offset, resulting in errors. Since
749 // this method is only used within a given load/store access
750 // the offset provided is only used to subdivide the previous load
751 // maintaining the validity of the previous TBAA.
753 // This, however, should be revisited in the future.
754 return MD;
757 MDNode *AAMDNodes::shiftTBAAStruct(MDNode *MD, size_t Offset) {
758 // Fast path if there's no offset
759 if (Offset == 0)
760 return MD;
761 SmallVector<Metadata *, 3> Sub;
762 for (size_t i = 0, size = MD->getNumOperands(); i < size; i += 3) {
763 ConstantInt *InnerOffset = mdconst::extract<ConstantInt>(MD->getOperand(i));
764 ConstantInt *InnerSize =
765 mdconst::extract<ConstantInt>(MD->getOperand(i + 1));
766 // Don't include any triples that aren't in bounds
767 if (InnerOffset->getZExtValue() + InnerSize->getZExtValue() <= Offset)
768 continue;
770 uint64_t NewSize = InnerSize->getZExtValue();
771 uint64_t NewOffset = InnerOffset->getZExtValue() - Offset;
772 if (InnerOffset->getZExtValue() < Offset) {
773 NewOffset = 0;
774 NewSize -= Offset - InnerOffset->getZExtValue();
777 // Shift the offset of the triple
778 Sub.push_back(ConstantAsMetadata::get(
779 ConstantInt::get(InnerOffset->getType(), NewOffset)));
780 Sub.push_back(ConstantAsMetadata::get(
781 ConstantInt::get(InnerSize->getType(), NewSize)));
782 Sub.push_back(MD->getOperand(i + 2));
784 return MDNode::get(MD->getContext(), Sub);
787 MDNode *AAMDNodes::extendToTBAA(MDNode *MD, ssize_t Len) {
788 // Fast path if 0-length
789 if (Len == 0)
790 return nullptr;
792 // Regular TBAA is invariant of length, so we only need to consider
793 // struct-path TBAA.
794 if (!isStructPathTBAA(MD))
795 return MD;
797 TBAAStructTagNode Tag(MD);
799 // Only new format TBAA has a size
800 if (!Tag.isNewFormat())
801 return MD;
803 // If unknown size, drop the TBAA.
804 if (Len == -1)
805 return nullptr;
807 // Otherwise, create TBAA with the new Len
808 ArrayRef<MDOperand> MDOperands = MD->operands();
809 SmallVector<Metadata *, 4> NextNodes(MDOperands.begin(), MDOperands.end());
810 ConstantInt *PreviousSize = mdconst::extract<ConstantInt>(NextNodes[3]);
812 // Don't create a new MDNode if it is the same length.
813 if (PreviousSize->equalsInt(Len))
814 return MD;
816 NextNodes[3] =
817 ConstantAsMetadata::get(ConstantInt::get(PreviousSize->getType(), Len));
818 return MDNode::get(MD->getContext(), NextNodes);