1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the TypeBasedAliasAnalysis pass, which implements
10 // metadata-based TBAA.
12 // In LLVM IR, memory does not have types, so LLVM's own type system is not
13 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
14 // a type system of a higher level language. This can be used to implement
15 // typical C/C++ TBAA, but it can also be used to implement custom alias
16 // analysis behavior for other languages.
18 // We now support two types of metadata format: scalar TBAA and struct-path
19 // aware TBAA. After all testing cases are upgraded to use struct-path aware
20 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
23 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
24 // three fields, e.g.:
25 // !0 = !{ !"an example type tree" }
26 // !1 = !{ !"int", !0 }
27 // !2 = !{ !"float", !0 }
28 // !3 = !{ !"const float", !2, i64 1 }
30 // The first field is an identity field. It can be any value, usually
31 // an MDString, which uniquely identifies the type. The most important
32 // name in the tree is the name of the root node. Two trees with
33 // different root node names are entirely disjoint, even if they
34 // have leaves with common names.
36 // The second field identifies the type's parent node in the tree, or
37 // is null or omitted for a root node. A type is considered to alias
38 // all of its descendants and all of its ancestors in the tree. Also,
39 // a type is considered to alias all types in other trees, so that
40 // bitcode produced from multiple front-ends is handled conservatively.
42 // If the third field is present, it's an integer which if equal to 1
43 // indicates that the type is "constant" (meaning pointsToConstantMemory
44 // should return true; see
45 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 // With struct-path aware TBAA, the MDNodes attached to an instruction using
48 // "!tbaa" are called path tag nodes.
50 // The path tag node has 4 fields with the last field being optional.
52 // The first field is the base type node, it can be a struct type node
53 // or a scalar type node. The second field is the access type node, it
54 // must be a scalar type node. The third field is the offset into the base type.
55 // The last field has the same meaning as the last field of our scalar TBAA:
56 // it's an integer which if equal to 1 indicates that the access is "constant".
58 // The struct type node has a name and a list of pairs, one pair for each member
59 // of the struct. The first element of each pair is a type node (a struct type
60 // node or a scalar type node), specifying the type of the member, the second
61 // element of each pair is the offset of the member.
72 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
73 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
74 // type short) and the offset is 4.
76 // !0 = !{!"Simple C/C++ TBAA"}
77 // !1 = !{!"omnipotent char", !0} // Scalar type node
78 // !2 = !{!"short", !1} // Scalar type node
79 // !3 = !{!"A", !2, i64 0} // Struct type node
80 // !4 = !{!"B", !2, i64 0, !3, i64 4}
81 // // Struct type node
82 // !5 = !{!4, !2, i64 4} // Path tag node
84 // The struct type nodes and the scalar type nodes form a type DAG.
86 // char (!1) -- edge to Root
87 // short (!2) -- edge to char
88 // A (!3) -- edge with offset 0 to short
89 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 // To check if two tags (tagX and tagY) can alias, we start from the base type
92 // of tagX, follow the edge with the correct offset in the type DAG and adjust
93 // the offset until we reach the base type of tagY or until we reach the Root
95 // If we reach the base type of tagY, compare the adjusted offset with
96 // offset of tagY, return Alias if the offsets are the same, return NoAlias
98 // If we reach the Root node, perform the above starting from base type of tagY
99 // to see if we reach base type of tagX.
101 // If they have different roots, they're part of different potentially
102 // unrelated type systems, so we return Alias to be conservative.
103 // If neither node is an ancestor of the other and they have the same root,
104 // then we say NoAlias.
106 //===----------------------------------------------------------------------===//
108 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
109 #include "llvm/ADT/SetVector.h"
110 #include "llvm/Analysis/AliasAnalysis.h"
111 #include "llvm/Analysis/MemoryLocation.h"
112 #include "llvm/IR/Constants.h"
113 #include "llvm/IR/DerivedTypes.h"
114 #include "llvm/IR/InstrTypes.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/InitializePasses.h"
118 #include "llvm/Pass.h"
119 #include "llvm/Support/Casting.h"
120 #include "llvm/Support/CommandLine.h"
121 #include "llvm/Support/ErrorHandling.h"
125 using namespace llvm
;
127 // A handy option for disabling TBAA functionality. The same effect can also be
128 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
130 static cl::opt
<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden
);
134 /// isNewFormatTypeNode - Return true iff the given type node is in the new
135 /// size-aware format.
136 static bool isNewFormatTypeNode(const MDNode
*N
) {
137 if (N
->getNumOperands() < 3)
139 // In the old format the first operand is a string.
140 if (!isa
<MDNode
>(N
->getOperand(0)))
145 /// This is a simple wrapper around an MDNode which provides a higher-level
146 /// interface by hiding the details of how alias analysis information is encoded
148 template<typename MDNodeTy
>
150 MDNodeTy
*Node
= nullptr;
153 TBAANodeImpl() = default;
154 explicit TBAANodeImpl(MDNodeTy
*N
) : Node(N
) {}
156 /// getNode - Get the MDNode for this TBAANode.
157 MDNodeTy
*getNode() const { return Node
; }
159 /// isNewFormat - Return true iff the wrapped type node is in the new
160 /// size-aware format.
161 bool isNewFormat() const { return isNewFormatTypeNode(Node
); }
163 /// getParent - Get this TBAANode's Alias tree parent.
164 TBAANodeImpl
<MDNodeTy
> getParent() const {
166 return TBAANodeImpl(cast
<MDNodeTy
>(Node
->getOperand(0)));
168 if (Node
->getNumOperands() < 2)
169 return TBAANodeImpl
<MDNodeTy
>();
170 MDNodeTy
*P
= dyn_cast_or_null
<MDNodeTy
>(Node
->getOperand(1));
172 return TBAANodeImpl
<MDNodeTy
>();
173 // Ok, this node has a valid parent. Return it.
174 return TBAANodeImpl
<MDNodeTy
>(P
);
177 /// Test if this TBAANode represents a type for objects which are
178 /// not modified (by any means) in the context where this
179 /// AliasAnalysis is relevant.
180 bool isTypeImmutable() const {
181 if (Node
->getNumOperands() < 3)
183 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(Node
->getOperand(2));
186 return CI
->getValue()[0];
190 /// \name Specializations of \c TBAANodeImpl for const and non const qualified
193 using TBAANode
= TBAANodeImpl
<const MDNode
>;
194 using MutableTBAANode
= TBAANodeImpl
<MDNode
>;
197 /// This is a simple wrapper around an MDNode which provides a
198 /// higher-level interface by hiding the details of how alias analysis
199 /// information is encoded in its operands.
200 template<typename MDNodeTy
>
201 class TBAAStructTagNodeImpl
{
202 /// This node should be created with createTBAAAccessTag().
206 explicit TBAAStructTagNodeImpl(MDNodeTy
*N
) : Node(N
) {}
208 /// Get the MDNode for this TBAAStructTagNode.
209 MDNodeTy
*getNode() const { return Node
; }
211 /// isNewFormat - Return true iff the wrapped access tag is in the new
212 /// size-aware format.
213 bool isNewFormat() const {
214 if (Node
->getNumOperands() < 4)
216 if (MDNodeTy
*AccessType
= getAccessType())
217 if (!TBAANodeImpl
<MDNodeTy
>(AccessType
).isNewFormat())
222 MDNodeTy
*getBaseType() const {
223 return dyn_cast_or_null
<MDNode
>(Node
->getOperand(0));
226 MDNodeTy
*getAccessType() const {
227 return dyn_cast_or_null
<MDNode
>(Node
->getOperand(1));
230 uint64_t getOffset() const {
231 return mdconst::extract
<ConstantInt
>(Node
->getOperand(2))->getZExtValue();
234 uint64_t getSize() const {
237 return mdconst::extract
<ConstantInt
>(Node
->getOperand(3))->getZExtValue();
240 /// Test if this TBAAStructTagNode represents a type for objects
241 /// which are not modified (by any means) in the context where this
242 /// AliasAnalysis is relevant.
243 bool isTypeImmutable() const {
244 unsigned OpNo
= isNewFormat() ? 4 : 3;
245 if (Node
->getNumOperands() < OpNo
+ 1)
247 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(Node
->getOperand(OpNo
));
250 return CI
->getValue()[0];
254 /// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
255 /// qualified \c MDNods.
257 using TBAAStructTagNode
= TBAAStructTagNodeImpl
<const MDNode
>;
258 using MutableTBAAStructTagNode
= TBAAStructTagNodeImpl
<MDNode
>;
261 /// This is a simple wrapper around an MDNode which provides a
262 /// higher-level interface by hiding the details of how alias analysis
263 /// information is encoded in its operands.
264 class TBAAStructTypeNode
{
265 /// This node should be created with createTBAATypeNode().
266 const MDNode
*Node
= nullptr;
269 TBAAStructTypeNode() = default;
270 explicit TBAAStructTypeNode(const MDNode
*N
) : Node(N
) {}
272 /// Get the MDNode for this TBAAStructTypeNode.
273 const MDNode
*getNode() const { return Node
; }
275 /// isNewFormat - Return true iff the wrapped type node is in the new
276 /// size-aware format.
277 bool isNewFormat() const { return isNewFormatTypeNode(Node
); }
279 bool operator==(const TBAAStructTypeNode
&Other
) const {
280 return getNode() == Other
.getNode();
283 /// getId - Return type identifier.
284 Metadata
*getId() const {
285 return Node
->getOperand(isNewFormat() ? 2 : 0);
288 unsigned getNumFields() const {
289 unsigned FirstFieldOpNo
= isNewFormat() ? 3 : 1;
290 unsigned NumOpsPerField
= isNewFormat() ? 3 : 2;
291 return (getNode()->getNumOperands() - FirstFieldOpNo
) / NumOpsPerField
;
294 TBAAStructTypeNode
getFieldType(unsigned FieldIndex
) const {
295 unsigned FirstFieldOpNo
= isNewFormat() ? 3 : 1;
296 unsigned NumOpsPerField
= isNewFormat() ? 3 : 2;
297 unsigned OpIndex
= FirstFieldOpNo
+ FieldIndex
* NumOpsPerField
;
298 auto *TypeNode
= cast
<MDNode
>(getNode()->getOperand(OpIndex
));
299 return TBAAStructTypeNode(TypeNode
);
302 /// Get this TBAAStructTypeNode's field in the type DAG with
303 /// given offset. Update the offset to be relative to the field type.
304 TBAAStructTypeNode
getField(uint64_t &Offset
) const {
305 bool NewFormat
= isNewFormat();
306 const ArrayRef
<MDOperand
> Operands
= Node
->operands();
307 const unsigned NumOperands
= Operands
.size();
310 // New-format root and scalar type nodes have no fields.
312 return TBAAStructTypeNode();
314 // Parent can be omitted for the root node.
316 return TBAAStructTypeNode();
318 // Fast path for a scalar type node and a struct type node with a single
320 if (NumOperands
<= 3) {
324 : mdconst::extract
<ConstantInt
>(Operands
[2])->getZExtValue();
326 MDNode
*P
= dyn_cast_or_null
<MDNode
>(Operands
[1]);
328 return TBAAStructTypeNode();
329 return TBAAStructTypeNode(P
);
333 // Assume the offsets are in order. We return the previous field if
334 // the current offset is bigger than the given offset.
335 unsigned FirstFieldOpNo
= NewFormat
? 3 : 1;
336 unsigned NumOpsPerField
= NewFormat
? 3 : 2;
339 for (unsigned Idx
= FirstFieldOpNo
; Idx
< NumOperands
;
340 Idx
+= NumOpsPerField
) {
342 mdconst::extract
<ConstantInt
>(Operands
[Idx
+ 1])->getZExtValue();
344 assert(Idx
>= FirstFieldOpNo
+ NumOpsPerField
&&
345 "TBAAStructTypeNode::getField should have an offset match!");
346 TheIdx
= Idx
- NumOpsPerField
;
350 // Move along the last field.
352 TheIdx
= NumOperands
- NumOpsPerField
;
354 mdconst::extract
<ConstantInt
>(Operands
[TheIdx
+ 1])->getZExtValue();
356 MDNode
*P
= dyn_cast_or_null
<MDNode
>(Operands
[TheIdx
]);
358 return TBAAStructTypeNode();
359 return TBAAStructTypeNode(P
);
363 } // end anonymous namespace
365 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
366 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
368 static bool isStructPathTBAA(const MDNode
*MD
) {
369 // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
371 return isa
<MDNode
>(MD
->getOperand(0)) && MD
->getNumOperands() >= 3;
374 AliasResult
TypeBasedAAResult::alias(const MemoryLocation
&LocA
,
375 const MemoryLocation
&LocB
,
376 AAQueryInfo
&AAQI
, const Instruction
*) {
378 return AliasResult::MayAlias
;
380 if (Aliases(LocA
.AATags
.TBAA
, LocB
.AATags
.TBAA
))
381 return AliasResult::MayAlias
;
383 // Otherwise return a definitive result.
384 return AliasResult::NoAlias
;
387 ModRefInfo
TypeBasedAAResult::getModRefInfoMask(const MemoryLocation
&Loc
,
391 return ModRefInfo::ModRef
;
393 const MDNode
*M
= Loc
.AATags
.TBAA
;
395 return ModRefInfo::ModRef
;
397 // If this is an "immutable" type, we can assume the pointer is pointing
398 // to constant memory.
399 if ((!isStructPathTBAA(M
) && TBAANode(M
).isTypeImmutable()) ||
400 (isStructPathTBAA(M
) && TBAAStructTagNode(M
).isTypeImmutable()))
401 return ModRefInfo::NoModRef
;
403 return ModRefInfo::ModRef
;
406 MemoryEffects
TypeBasedAAResult::getMemoryEffects(const CallBase
*Call
,
409 return MemoryEffects::unknown();
411 // If this is an "immutable" type, the access is not observable.
412 if (const MDNode
*M
= Call
->getMetadata(LLVMContext::MD_tbaa
))
413 if ((!isStructPathTBAA(M
) && TBAANode(M
).isTypeImmutable()) ||
414 (isStructPathTBAA(M
) && TBAAStructTagNode(M
).isTypeImmutable()))
415 return MemoryEffects::none();
417 return MemoryEffects::unknown();
420 MemoryEffects
TypeBasedAAResult::getMemoryEffects(const Function
*F
) {
421 // Functions don't have metadata.
422 return MemoryEffects::unknown();
425 ModRefInfo
TypeBasedAAResult::getModRefInfo(const CallBase
*Call
,
426 const MemoryLocation
&Loc
,
429 return ModRefInfo::ModRef
;
431 if (const MDNode
*L
= Loc
.AATags
.TBAA
)
432 if (const MDNode
*M
= Call
->getMetadata(LLVMContext::MD_tbaa
))
434 return ModRefInfo::NoModRef
;
436 return ModRefInfo::ModRef
;
439 ModRefInfo
TypeBasedAAResult::getModRefInfo(const CallBase
*Call1
,
440 const CallBase
*Call2
,
443 return ModRefInfo::ModRef
;
445 if (const MDNode
*M1
= Call1
->getMetadata(LLVMContext::MD_tbaa
))
446 if (const MDNode
*M2
= Call2
->getMetadata(LLVMContext::MD_tbaa
))
447 if (!Aliases(M1
, M2
))
448 return ModRefInfo::NoModRef
;
450 return ModRefInfo::ModRef
;
453 bool MDNode::isTBAAVtableAccess() const {
454 if (!isStructPathTBAA(this)) {
455 if (getNumOperands() < 1)
457 if (MDString
*Tag1
= dyn_cast
<MDString
>(getOperand(0))) {
458 if (Tag1
->getString() == "vtable pointer")
464 // For struct-path aware TBAA, we use the access type of the tag.
465 TBAAStructTagNode
Tag(this);
466 TBAAStructTypeNode
AccessType(Tag
.getAccessType());
467 if(auto *Id
= dyn_cast
<MDString
>(AccessType
.getId()))
468 if (Id
->getString() == "vtable pointer")
473 static bool matchAccessTags(const MDNode
*A
, const MDNode
*B
,
474 const MDNode
**GenericTag
= nullptr);
476 MDNode
*MDNode::getMostGenericTBAA(MDNode
*A
, MDNode
*B
) {
477 const MDNode
*GenericTag
;
478 matchAccessTags(A
, B
, &GenericTag
);
479 return const_cast<MDNode
*>(GenericTag
);
482 static const MDNode
*getLeastCommonType(const MDNode
*A
, const MDNode
*B
) {
489 SmallSetVector
<const MDNode
*, 4> PathA
;
491 while (TA
.getNode()) {
492 if (!PathA
.insert(TA
.getNode()))
493 report_fatal_error("Cycle found in TBAA metadata.");
497 SmallSetVector
<const MDNode
*, 4> PathB
;
499 while (TB
.getNode()) {
500 if (!PathB
.insert(TB
.getNode()))
501 report_fatal_error("Cycle found in TBAA metadata.");
505 int IA
= PathA
.size() - 1;
506 int IB
= PathB
.size() - 1;
508 const MDNode
*Ret
= nullptr;
509 while (IA
>= 0 && IB
>= 0) {
510 if (PathA
[IA
] == PathB
[IB
])
521 AAMDNodes
AAMDNodes::merge(const AAMDNodes
&Other
) const {
523 Result
.TBAA
= MDNode::getMostGenericTBAA(TBAA
, Other
.TBAA
);
524 Result
.TBAAStruct
= nullptr;
525 Result
.Scope
= MDNode::getMostGenericAliasScope(Scope
, Other
.Scope
);
526 Result
.NoAlias
= MDNode::intersect(NoAlias
, Other
.NoAlias
);
530 AAMDNodes
AAMDNodes::concat(const AAMDNodes
&Other
) const {
532 Result
.TBAA
= Result
.TBAAStruct
= nullptr;
533 Result
.Scope
= MDNode::getMostGenericAliasScope(Scope
, Other
.Scope
);
534 Result
.NoAlias
= MDNode::intersect(NoAlias
, Other
.NoAlias
);
538 static const MDNode
*createAccessTag(const MDNode
*AccessType
) {
539 // If there is no access type or the access type is the root node, then
540 // we don't have any useful access tag to return.
541 if (!AccessType
|| AccessType
->getNumOperands() < 2)
544 Type
*Int64
= IntegerType::get(AccessType
->getContext(), 64);
545 auto *OffsetNode
= ConstantAsMetadata::get(ConstantInt::get(Int64
, 0));
547 if (TBAAStructTypeNode(AccessType
).isNewFormat()) {
548 // TODO: Take access ranges into account when matching access tags and
549 // fix this code to generate actual access sizes for generic tags.
550 uint64_t AccessSize
= UINT64_MAX
;
552 ConstantAsMetadata::get(ConstantInt::get(Int64
, AccessSize
));
553 Metadata
*Ops
[] = {const_cast<MDNode
*>(AccessType
),
554 const_cast<MDNode
*>(AccessType
),
555 OffsetNode
, SizeNode
};
556 return MDNode::get(AccessType
->getContext(), Ops
);
559 Metadata
*Ops
[] = {const_cast<MDNode
*>(AccessType
),
560 const_cast<MDNode
*>(AccessType
),
562 return MDNode::get(AccessType
->getContext(), Ops
);
565 static bool hasField(TBAAStructTypeNode BaseType
,
566 TBAAStructTypeNode FieldType
) {
567 for (unsigned I
= 0, E
= BaseType
.getNumFields(); I
!= E
; ++I
) {
568 TBAAStructTypeNode T
= BaseType
.getFieldType(I
);
569 if (T
== FieldType
|| hasField(T
, FieldType
))
575 /// Return true if for two given accesses, one of the accessed objects may be a
576 /// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
577 /// describe the accesses to the base object and the subobject respectively.
578 /// \p CommonType must be the metadata node describing the common type of the
579 /// accessed objects. On return, \p MayAlias is set to true iff these accesses
580 /// may alias and \p Generic, if not null, points to the most generic access
581 /// tag for the given two.
582 static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag
,
583 TBAAStructTagNode SubobjectTag
,
584 const MDNode
*CommonType
,
585 const MDNode
**GenericTag
,
587 // If the base object is of the least common type, then this may be an access
589 if (BaseTag
.getAccessType() == BaseTag
.getBaseType() &&
590 BaseTag
.getAccessType() == CommonType
) {
592 *GenericTag
= createAccessTag(CommonType
);
597 // If the access to the base object is through a field of the subobject's
598 // type, then this may be an access to that field. To check for that we start
599 // from the base type, follow the edge with the correct offset in the type DAG
600 // and adjust the offset until we reach the field type or until we reach the
602 bool NewFormat
= BaseTag
.isNewFormat();
603 TBAAStructTypeNode
BaseType(BaseTag
.getBaseType());
604 uint64_t OffsetInBase
= BaseTag
.getOffset();
607 // In the old format there is no distinction between fields and parent
608 // types, so in this case we consider all nodes up to the root.
609 if (!BaseType
.getNode()) {
610 assert(!NewFormat
&& "Did not see access type in access path!");
614 if (BaseType
.getNode() == SubobjectTag
.getBaseType()) {
615 bool SameMemberAccess
= OffsetInBase
== SubobjectTag
.getOffset();
617 *GenericTag
= SameMemberAccess
? SubobjectTag
.getNode() :
618 createAccessTag(CommonType
);
620 MayAlias
= SameMemberAccess
;
624 // With new-format nodes we stop at the access type.
625 if (NewFormat
&& BaseType
.getNode() == BaseTag
.getAccessType())
628 // Follow the edge with the correct offset. Offset will be adjusted to
629 // be relative to the field type.
630 BaseType
= BaseType
.getField(OffsetInBase
);
633 // If the base object has a direct or indirect field of the subobject's type,
634 // then this may be an access to that field. We need this to check now that
635 // we support aggregates as access types.
637 // TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
638 TBAAStructTypeNode
FieldType(SubobjectTag
.getBaseType());
639 if (hasField(BaseType
, FieldType
)) {
641 *GenericTag
= createAccessTag(CommonType
);
650 /// matchTags - Return true if the given couple of accesses are allowed to
651 /// overlap. If \arg GenericTag is not null, then on return it points to the
652 /// most generic access descriptor for the given two.
653 static bool matchAccessTags(const MDNode
*A
, const MDNode
*B
,
654 const MDNode
**GenericTag
) {
661 // Accesses with no TBAA information may alias with any other accesses.
664 *GenericTag
= nullptr;
668 // Verify that both input nodes are struct-path aware. Auto-upgrade should
669 // have taken care of this.
670 assert(isStructPathTBAA(A
) && "Access A is not struct-path aware!");
671 assert(isStructPathTBAA(B
) && "Access B is not struct-path aware!");
673 TBAAStructTagNode
TagA(A
), TagB(B
);
674 const MDNode
*CommonType
= getLeastCommonType(TagA
.getAccessType(),
675 TagB
.getAccessType());
677 // If the final access types have different roots, they're part of different
678 // potentially unrelated type systems, so we must be conservative.
681 *GenericTag
= nullptr;
685 // If one of the accessed objects may be a subobject of the other, then such
686 // accesses may alias.
688 if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA
, /* SubobjectTag= */ TagB
,
689 CommonType
, GenericTag
, MayAlias
) ||
690 mayBeAccessToSubobjectOf(/* BaseTag= */ TagB
, /* SubobjectTag= */ TagA
,
691 CommonType
, GenericTag
, MayAlias
))
694 // Otherwise, we've proved there's no alias.
696 *GenericTag
= createAccessTag(CommonType
);
700 /// Aliases - Test whether the access represented by tag A may alias the
701 /// access represented by tag B.
702 bool TypeBasedAAResult::Aliases(const MDNode
*A
, const MDNode
*B
) const {
703 return matchAccessTags(A
, B
);
706 AnalysisKey
TypeBasedAA::Key
;
708 TypeBasedAAResult
TypeBasedAA::run(Function
&F
, FunctionAnalysisManager
&AM
) {
709 return TypeBasedAAResult();
712 char TypeBasedAAWrapperPass::ID
= 0;
713 INITIALIZE_PASS(TypeBasedAAWrapperPass
, "tbaa", "Type-Based Alias Analysis",
716 ImmutablePass
*llvm::createTypeBasedAAWrapperPass() {
717 return new TypeBasedAAWrapperPass();
720 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID
) {
721 initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
724 bool TypeBasedAAWrapperPass::doInitialization(Module
&M
) {
725 Result
.reset(new TypeBasedAAResult());
729 bool TypeBasedAAWrapperPass::doFinalization(Module
&M
) {
734 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
735 AU
.setPreservesAll();
738 MDNode
*AAMDNodes::shiftTBAA(MDNode
*MD
, size_t Offset
) {
739 // Fast path if there's no offset
742 // Fast path if there's no path tbaa node (and thus scalar)
743 if (!isStructPathTBAA(MD
))
746 // The correct behavior here is to add the offset into the TBAA
747 // struct node offset. The base type, however may not have defined
748 // a type at this additional offset, resulting in errors. Since
749 // this method is only used within a given load/store access
750 // the offset provided is only used to subdivide the previous load
751 // maintaining the validity of the previous TBAA.
753 // This, however, should be revisited in the future.
757 MDNode
*AAMDNodes::shiftTBAAStruct(MDNode
*MD
, size_t Offset
) {
758 // Fast path if there's no offset
761 SmallVector
<Metadata
*, 3> Sub
;
762 for (size_t i
= 0, size
= MD
->getNumOperands(); i
< size
; i
+= 3) {
763 ConstantInt
*InnerOffset
= mdconst::extract
<ConstantInt
>(MD
->getOperand(i
));
764 ConstantInt
*InnerSize
=
765 mdconst::extract
<ConstantInt
>(MD
->getOperand(i
+ 1));
766 // Don't include any triples that aren't in bounds
767 if (InnerOffset
->getZExtValue() + InnerSize
->getZExtValue() <= Offset
)
770 uint64_t NewSize
= InnerSize
->getZExtValue();
771 uint64_t NewOffset
= InnerOffset
->getZExtValue() - Offset
;
772 if (InnerOffset
->getZExtValue() < Offset
) {
774 NewSize
-= Offset
- InnerOffset
->getZExtValue();
777 // Shift the offset of the triple
778 Sub
.push_back(ConstantAsMetadata::get(
779 ConstantInt::get(InnerOffset
->getType(), NewOffset
)));
780 Sub
.push_back(ConstantAsMetadata::get(
781 ConstantInt::get(InnerSize
->getType(), NewSize
)));
782 Sub
.push_back(MD
->getOperand(i
+ 2));
784 return MDNode::get(MD
->getContext(), Sub
);
787 MDNode
*AAMDNodes::extendToTBAA(MDNode
*MD
, ssize_t Len
) {
788 // Fast path if 0-length
792 // Regular TBAA is invariant of length, so we only need to consider
794 if (!isStructPathTBAA(MD
))
797 TBAAStructTagNode
Tag(MD
);
799 // Only new format TBAA has a size
800 if (!Tag
.isNewFormat())
803 // If unknown size, drop the TBAA.
807 // Otherwise, create TBAA with the new Len
808 ArrayRef
<MDOperand
> MDOperands
= MD
->operands();
809 SmallVector
<Metadata
*, 4> NextNodes(MDOperands
.begin(), MDOperands
.end());
810 ConstantInt
*PreviousSize
= mdconst::extract
<ConstantInt
>(NextNodes
[3]);
812 // Don't create a new MDNode if it is the same length.
813 if (PreviousSize
->equalsInt(Len
))
817 ConstantAsMetadata::get(ConstantInt::get(PreviousSize
->getType(), Len
));
818 return MDNode::get(MD
->getContext(), NextNodes
);