Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / CodeGen / MachineInstr.cpp
blob048563cc2bcc4e415ecd7ecc99a3a32b2123c43e
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/MemoryLocation.h"
21 #include "llvm/CodeGen/LowLevelType.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/Register.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/ModuleSlotTracker.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/FormattedStream.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstdint>
59 #include <cstring>
60 #include <utility>
62 using namespace llvm;
64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
65 if (const MachineBasicBlock *MBB = MI.getParent())
66 if (const MachineFunction *MF = MBB->getParent())
67 return MF;
68 return nullptr;
71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
72 // it.
73 static void tryToGetTargetInfo(const MachineInstr &MI,
74 const TargetRegisterInfo *&TRI,
75 const MachineRegisterInfo *&MRI,
76 const TargetIntrinsicInfo *&IntrinsicInfo,
77 const TargetInstrInfo *&TII) {
79 if (const MachineFunction *MF = getMFIfAvailable(MI)) {
80 TRI = MF->getSubtarget().getRegisterInfo();
81 MRI = &MF->getRegInfo();
82 IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
83 TII = MF->getSubtarget().getInstrInfo();
87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
88 for (MCPhysReg ImpDef : MCID->implicit_defs())
89 addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true));
90 for (MCPhysReg ImpUse : MCID->implicit_uses())
91 addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true));
94 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
95 /// implicit operands. It reserves space for the number of operands specified by
96 /// the MCInstrDesc.
97 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
98 DebugLoc DL, bool NoImp)
99 : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0),
100 DbgLoc(std::move(DL)), DebugInstrNum(0) {
101 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
103 // Reserve space for the expected number of operands.
104 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() +
105 MCID->implicit_uses().size()) {
106 CapOperands = OperandCapacity::get(NumOps);
107 Operands = MF.allocateOperandArray(CapOperands);
110 if (!NoImp)
111 addImplicitDefUseOperands(MF);
114 /// MachineInstr ctor - Copies MachineInstr arg exactly.
115 /// Does not copy the number from debug instruction numbering, to preserve
116 /// uniqueness.
117 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
118 : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
119 Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0) {
120 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
122 CapOperands = OperandCapacity::get(MI.getNumOperands());
123 Operands = MF.allocateOperandArray(CapOperands);
125 // Copy operands.
126 for (const MachineOperand &MO : MI.operands())
127 addOperand(MF, MO);
129 // Replicate ties between the operands, which addOperand was not
130 // able to do reliably.
131 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
132 MachineOperand &NewMO = getOperand(i);
133 const MachineOperand &OrigMO = MI.getOperand(i);
134 NewMO.TiedTo = OrigMO.TiedTo;
137 // Copy all the sensible flags.
138 setFlags(MI.Flags);
141 void MachineInstr::setDesc(const MCInstrDesc &TID) {
142 if (getParent())
143 getMF()->handleChangeDesc(*this, TID);
144 MCID = &TID;
147 void MachineInstr::moveBefore(MachineInstr *MovePos) {
148 MovePos->getParent()->splice(MovePos, getParent(), getIterator());
151 /// getRegInfo - If this instruction is embedded into a MachineFunction,
152 /// return the MachineRegisterInfo object for the current function, otherwise
153 /// return null.
154 MachineRegisterInfo *MachineInstr::getRegInfo() {
155 if (MachineBasicBlock *MBB = getParent())
156 return &MBB->getParent()->getRegInfo();
157 return nullptr;
160 const MachineRegisterInfo *MachineInstr::getRegInfo() const {
161 if (const MachineBasicBlock *MBB = getParent())
162 return &MBB->getParent()->getRegInfo();
163 return nullptr;
166 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
167 for (MachineOperand &MO : operands())
168 if (MO.isReg())
169 MRI.removeRegOperandFromUseList(&MO);
172 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
173 for (MachineOperand &MO : operands())
174 if (MO.isReg())
175 MRI.addRegOperandToUseList(&MO);
178 void MachineInstr::addOperand(const MachineOperand &Op) {
179 MachineBasicBlock *MBB = getParent();
180 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
181 MachineFunction *MF = MBB->getParent();
182 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
183 addOperand(*MF, Op);
186 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
187 /// ranges. If MRI is non-null also update use-def chains.
188 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
189 unsigned NumOps, MachineRegisterInfo *MRI) {
190 if (MRI)
191 return MRI->moveOperands(Dst, Src, NumOps);
192 // MachineOperand is a trivially copyable type so we can just use memmove.
193 assert(Dst && Src && "Unknown operands");
194 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
197 /// addOperand - Add the specified operand to the instruction. If it is an
198 /// implicit operand, it is added to the end of the operand list. If it is
199 /// an explicit operand it is added at the end of the explicit operand list
200 /// (before the first implicit operand).
201 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
202 assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) &&
203 "Cannot add more operands.");
204 assert(MCID && "Cannot add operands before providing an instr descriptor");
206 // Check if we're adding one of our existing operands.
207 if (&Op >= Operands && &Op < Operands + NumOperands) {
208 // This is unusual: MI->addOperand(MI->getOperand(i)).
209 // If adding Op requires reallocating or moving existing operands around,
210 // the Op reference could go stale. Support it by copying Op.
211 MachineOperand CopyOp(Op);
212 return addOperand(MF, CopyOp);
215 // Find the insert location for the new operand. Implicit registers go at
216 // the end, everything else goes before the implicit regs.
218 // FIXME: Allow mixed explicit and implicit operands on inline asm.
219 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
220 // implicit-defs, but they must not be moved around. See the FIXME in
221 // InstrEmitter.cpp.
222 unsigned OpNo = getNumOperands();
223 bool isImpReg = Op.isReg() && Op.isImplicit();
224 if (!isImpReg && !isInlineAsm()) {
225 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
226 --OpNo;
227 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
231 // OpNo now points as the desired insertion point. Unless this is a variadic
232 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
233 // RegMask operands go between the explicit and implicit operands.
234 assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
235 Op.isValidExcessOperand()) &&
236 "Trying to add an operand to a machine instr that is already done!");
238 MachineRegisterInfo *MRI = getRegInfo();
240 // Determine if the Operands array needs to be reallocated.
241 // Save the old capacity and operand array.
242 OperandCapacity OldCap = CapOperands;
243 MachineOperand *OldOperands = Operands;
244 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
245 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
246 Operands = MF.allocateOperandArray(CapOperands);
247 // Move the operands before the insertion point.
248 if (OpNo)
249 moveOperands(Operands, OldOperands, OpNo, MRI);
252 // Move the operands following the insertion point.
253 if (OpNo != NumOperands)
254 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
255 MRI);
256 ++NumOperands;
258 // Deallocate the old operand array.
259 if (OldOperands != Operands && OldOperands)
260 MF.deallocateOperandArray(OldCap, OldOperands);
262 // Copy Op into place. It still needs to be inserted into the MRI use lists.
263 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
264 NewMO->ParentMI = this;
266 // When adding a register operand, tell MRI about it.
267 if (NewMO->isReg()) {
268 // Ensure isOnRegUseList() returns false, regardless of Op's status.
269 NewMO->Contents.Reg.Prev = nullptr;
270 // Ignore existing ties. This is not a property that can be copied.
271 NewMO->TiedTo = 0;
272 // Add the new operand to MRI, but only for instructions in an MBB.
273 if (MRI)
274 MRI->addRegOperandToUseList(NewMO);
275 // The MCID operand information isn't accurate until we start adding
276 // explicit operands. The implicit operands are added first, then the
277 // explicits are inserted before them.
278 if (!isImpReg) {
279 // Tie uses to defs as indicated in MCInstrDesc.
280 if (NewMO->isUse()) {
281 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
282 if (DefIdx != -1)
283 tieOperands(DefIdx, OpNo);
285 // If the register operand is flagged as early, mark the operand as such.
286 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
287 NewMO->setIsEarlyClobber(true);
289 // Ensure debug instructions set debug flag on register uses.
290 if (NewMO->isUse() && isDebugInstr())
291 NewMO->setIsDebug();
295 void MachineInstr::removeOperand(unsigned OpNo) {
296 assert(OpNo < getNumOperands() && "Invalid operand number");
297 untieRegOperand(OpNo);
299 #ifndef NDEBUG
300 // Moving tied operands would break the ties.
301 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
302 if (Operands[i].isReg())
303 assert(!Operands[i].isTied() && "Cannot move tied operands");
304 #endif
306 MachineRegisterInfo *MRI = getRegInfo();
307 if (MRI && Operands[OpNo].isReg())
308 MRI->removeRegOperandFromUseList(Operands + OpNo);
310 // Don't call the MachineOperand destructor. A lot of this code depends on
311 // MachineOperand having a trivial destructor anyway, and adding a call here
312 // wouldn't make it 'destructor-correct'.
314 if (unsigned N = NumOperands - 1 - OpNo)
315 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
316 --NumOperands;
319 void MachineInstr::setExtraInfo(MachineFunction &MF,
320 ArrayRef<MachineMemOperand *> MMOs,
321 MCSymbol *PreInstrSymbol,
322 MCSymbol *PostInstrSymbol,
323 MDNode *HeapAllocMarker, MDNode *PCSections,
324 uint32_t CFIType) {
325 bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
326 bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
327 bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
328 bool HasPCSections = PCSections != nullptr;
329 bool HasCFIType = CFIType != 0;
330 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
331 HasHeapAllocMarker + HasPCSections + HasCFIType;
333 // Drop all extra info if there is none.
334 if (NumPointers <= 0) {
335 Info.clear();
336 return;
339 // If more than one pointer, then store out of line. Store heap alloc markers
340 // out of line because PointerSumType cannot hold more than 4 tag types with
341 // 32-bit pointers.
342 // FIXME: Maybe we should make the symbols in the extra info mutable?
343 else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections ||
344 HasCFIType) {
345 Info.set<EIIK_OutOfLine>(
346 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol,
347 HeapAllocMarker, PCSections, CFIType));
348 return;
351 // Otherwise store the single pointer inline.
352 if (HasPreInstrSymbol)
353 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
354 else if (HasPostInstrSymbol)
355 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
356 else
357 Info.set<EIIK_MMO>(MMOs[0]);
360 void MachineInstr::dropMemRefs(MachineFunction &MF) {
361 if (memoperands_empty())
362 return;
364 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
365 getHeapAllocMarker(), getPCSections(), getCFIType());
368 void MachineInstr::setMemRefs(MachineFunction &MF,
369 ArrayRef<MachineMemOperand *> MMOs) {
370 if (MMOs.empty()) {
371 dropMemRefs(MF);
372 return;
375 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
376 getHeapAllocMarker(), getPCSections(), getCFIType());
379 void MachineInstr::addMemOperand(MachineFunction &MF,
380 MachineMemOperand *MO) {
381 SmallVector<MachineMemOperand *, 2> MMOs;
382 MMOs.append(memoperands_begin(), memoperands_end());
383 MMOs.push_back(MO);
384 setMemRefs(MF, MMOs);
387 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
388 if (this == &MI)
389 // Nothing to do for a self-clone!
390 return;
392 assert(&MF == MI.getMF() &&
393 "Invalid machine functions when cloning memory refrences!");
394 // See if we can just steal the extra info already allocated for the
395 // instruction. We can do this whenever the pre- and post-instruction symbols
396 // are the same (including null).
397 if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
398 getPostInstrSymbol() == MI.getPostInstrSymbol() &&
399 getHeapAllocMarker() == MI.getHeapAllocMarker() &&
400 getPCSections() == MI.getPCSections()) {
401 Info = MI.Info;
402 return;
405 // Otherwise, fall back on a copy-based clone.
406 setMemRefs(MF, MI.memoperands());
409 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
410 /// identical.
411 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
412 ArrayRef<MachineMemOperand *> RHS) {
413 if (LHS.size() != RHS.size())
414 return false;
416 auto LHSPointees = make_pointee_range(LHS);
417 auto RHSPointees = make_pointee_range(RHS);
418 return std::equal(LHSPointees.begin(), LHSPointees.end(),
419 RHSPointees.begin());
422 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
423 ArrayRef<const MachineInstr *> MIs) {
424 // Try handling easy numbers of MIs with simpler mechanisms.
425 if (MIs.empty()) {
426 dropMemRefs(MF);
427 return;
429 if (MIs.size() == 1) {
430 cloneMemRefs(MF, *MIs[0]);
431 return;
433 // Because an empty memoperands list provides *no* information and must be
434 // handled conservatively (assuming the instruction can do anything), the only
435 // way to merge with it is to drop all other memoperands.
436 if (MIs[0]->memoperands_empty()) {
437 dropMemRefs(MF);
438 return;
441 // Handle the general case.
442 SmallVector<MachineMemOperand *, 2> MergedMMOs;
443 // Start with the first instruction.
444 assert(&MF == MIs[0]->getMF() &&
445 "Invalid machine functions when cloning memory references!");
446 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
447 // Now walk all the other instructions and accumulate any different MMOs.
448 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
449 assert(&MF == MI.getMF() &&
450 "Invalid machine functions when cloning memory references!");
452 // Skip MIs with identical operands to the first. This is a somewhat
453 // arbitrary hack but will catch common cases without being quadratic.
454 // TODO: We could fully implement merge semantics here if needed.
455 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
456 continue;
458 // Because an empty memoperands list provides *no* information and must be
459 // handled conservatively (assuming the instruction can do anything), the
460 // only way to merge with it is to drop all other memoperands.
461 if (MI.memoperands_empty()) {
462 dropMemRefs(MF);
463 return;
466 // Otherwise accumulate these into our temporary buffer of the merged state.
467 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
470 setMemRefs(MF, MergedMMOs);
473 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
474 // Do nothing if old and new symbols are the same.
475 if (Symbol == getPreInstrSymbol())
476 return;
478 // If there was only one symbol and we're removing it, just clear info.
479 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
480 Info.clear();
481 return;
484 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
485 getHeapAllocMarker(), getPCSections(), getCFIType());
488 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
489 // Do nothing if old and new symbols are the same.
490 if (Symbol == getPostInstrSymbol())
491 return;
493 // If there was only one symbol and we're removing it, just clear info.
494 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
495 Info.clear();
496 return;
499 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
500 getHeapAllocMarker(), getPCSections(), getCFIType());
503 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
504 // Do nothing if old and new symbols are the same.
505 if (Marker == getHeapAllocMarker())
506 return;
508 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
509 Marker, getPCSections(), getCFIType());
512 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) {
513 // Do nothing if old and new symbols are the same.
514 if (PCSections == getPCSections())
515 return;
517 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
518 getHeapAllocMarker(), PCSections, getCFIType());
521 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
522 // Do nothing if old and new types are the same.
523 if (Type == getCFIType())
524 return;
526 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
527 getHeapAllocMarker(), getPCSections(), Type);
530 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
531 const MachineInstr &MI) {
532 if (this == &MI)
533 // Nothing to do for a self-clone!
534 return;
536 assert(&MF == MI.getMF() &&
537 "Invalid machine functions when cloning instruction symbols!");
539 setPreInstrSymbol(MF, MI.getPreInstrSymbol());
540 setPostInstrSymbol(MF, MI.getPostInstrSymbol());
541 setHeapAllocMarker(MF, MI.getHeapAllocMarker());
542 setPCSections(MF, MI.getPCSections());
545 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
546 // For now, the just return the union of the flags. If the flags get more
547 // complicated over time, we might need more logic here.
548 return getFlags() | Other.getFlags();
551 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
552 uint32_t MIFlags = 0;
553 // Copy the wrapping flags.
554 if (const OverflowingBinaryOperator *OB =
555 dyn_cast<OverflowingBinaryOperator>(&I)) {
556 if (OB->hasNoSignedWrap())
557 MIFlags |= MachineInstr::MIFlag::NoSWrap;
558 if (OB->hasNoUnsignedWrap())
559 MIFlags |= MachineInstr::MIFlag::NoUWrap;
562 // Copy the exact flag.
563 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
564 if (PE->isExact())
565 MIFlags |= MachineInstr::MIFlag::IsExact;
567 // Copy the fast-math flags.
568 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
569 const FastMathFlags Flags = FP->getFastMathFlags();
570 if (Flags.noNaNs())
571 MIFlags |= MachineInstr::MIFlag::FmNoNans;
572 if (Flags.noInfs())
573 MIFlags |= MachineInstr::MIFlag::FmNoInfs;
574 if (Flags.noSignedZeros())
575 MIFlags |= MachineInstr::MIFlag::FmNsz;
576 if (Flags.allowReciprocal())
577 MIFlags |= MachineInstr::MIFlag::FmArcp;
578 if (Flags.allowContract())
579 MIFlags |= MachineInstr::MIFlag::FmContract;
580 if (Flags.approxFunc())
581 MIFlags |= MachineInstr::MIFlag::FmAfn;
582 if (Flags.allowReassoc())
583 MIFlags |= MachineInstr::MIFlag::FmReassoc;
586 if (I.getMetadata(LLVMContext::MD_unpredictable))
587 MIFlags |= MachineInstr::MIFlag::Unpredictable;
589 return MIFlags;
592 void MachineInstr::copyIRFlags(const Instruction &I) {
593 Flags = copyFlagsFromInstruction(I);
596 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
597 assert(!isBundledWithPred() && "Must be called on bundle header");
598 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
599 if (MII->getDesc().getFlags() & Mask) {
600 if (Type == AnyInBundle)
601 return true;
602 } else {
603 if (Type == AllInBundle && !MII->isBundle())
604 return false;
606 // This was the last instruction in the bundle.
607 if (!MII->isBundledWithSucc())
608 return Type == AllInBundle;
612 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
613 MICheckType Check) const {
614 // If opcodes or number of operands are not the same then the two
615 // instructions are obviously not identical.
616 if (Other.getOpcode() != getOpcode() ||
617 Other.getNumOperands() != getNumOperands())
618 return false;
620 if (isBundle()) {
621 // We have passed the test above that both instructions have the same
622 // opcode, so we know that both instructions are bundles here. Let's compare
623 // MIs inside the bundle.
624 assert(Other.isBundle() && "Expected that both instructions are bundles.");
625 MachineBasicBlock::const_instr_iterator I1 = getIterator();
626 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
627 // Loop until we analysed the last intruction inside at least one of the
628 // bundles.
629 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
630 ++I1;
631 ++I2;
632 if (!I1->isIdenticalTo(*I2, Check))
633 return false;
635 // If we've reached the end of just one of the two bundles, but not both,
636 // the instructions are not identical.
637 if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
638 return false;
641 // Check operands to make sure they match.
642 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
643 const MachineOperand &MO = getOperand(i);
644 const MachineOperand &OMO = Other.getOperand(i);
645 if (!MO.isReg()) {
646 if (!MO.isIdenticalTo(OMO))
647 return false;
648 continue;
651 // Clients may or may not want to ignore defs when testing for equality.
652 // For example, machine CSE pass only cares about finding common
653 // subexpressions, so it's safe to ignore virtual register defs.
654 if (MO.isDef()) {
655 if (Check == IgnoreDefs)
656 continue;
657 else if (Check == IgnoreVRegDefs) {
658 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual())
659 if (!MO.isIdenticalTo(OMO))
660 return false;
661 } else {
662 if (!MO.isIdenticalTo(OMO))
663 return false;
664 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
665 return false;
667 } else {
668 if (!MO.isIdenticalTo(OMO))
669 return false;
670 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
671 return false;
674 // If DebugLoc does not match then two debug instructions are not identical.
675 if (isDebugInstr())
676 if (getDebugLoc() && Other.getDebugLoc() &&
677 getDebugLoc() != Other.getDebugLoc())
678 return false;
679 // If pre- or post-instruction symbols do not match then the two instructions
680 // are not identical.
681 if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
682 getPostInstrSymbol() != Other.getPostInstrSymbol())
683 return false;
684 // Call instructions with different CFI types are not identical.
685 if (isCall() && getCFIType() != Other.getCFIType())
686 return false;
688 return true;
691 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const {
692 if (!isDebugValueLike() || !Other.isDebugValueLike())
693 return false;
694 if (getDebugLoc() != Other.getDebugLoc())
695 return false;
696 if (getDebugVariable() != Other.getDebugVariable())
697 return false;
698 if (getNumDebugOperands() != Other.getNumDebugOperands())
699 return false;
700 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx)
701 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx)))
702 return false;
703 if (!DIExpression::isEqualExpression(
704 getDebugExpression(), isIndirectDebugValue(),
705 Other.getDebugExpression(), Other.isIndirectDebugValue()))
706 return false;
707 return true;
710 const MachineFunction *MachineInstr::getMF() const {
711 return getParent()->getParent();
714 MachineInstr *MachineInstr::removeFromParent() {
715 assert(getParent() && "Not embedded in a basic block!");
716 return getParent()->remove(this);
719 MachineInstr *MachineInstr::removeFromBundle() {
720 assert(getParent() && "Not embedded in a basic block!");
721 return getParent()->remove_instr(this);
724 void MachineInstr::eraseFromParent() {
725 assert(getParent() && "Not embedded in a basic block!");
726 getParent()->erase(this);
729 void MachineInstr::eraseFromBundle() {
730 assert(getParent() && "Not embedded in a basic block!");
731 getParent()->erase_instr(this);
734 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
735 if (!isCall(Type))
736 return false;
737 switch (getOpcode()) {
738 case TargetOpcode::PATCHPOINT:
739 case TargetOpcode::STACKMAP:
740 case TargetOpcode::STATEPOINT:
741 case TargetOpcode::FENTRY_CALL:
742 return false;
744 return true;
747 bool MachineInstr::shouldUpdateCallSiteInfo() const {
748 if (isBundle())
749 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
750 return isCandidateForCallSiteEntry();
753 unsigned MachineInstr::getNumExplicitOperands() const {
754 unsigned NumOperands = MCID->getNumOperands();
755 if (!MCID->isVariadic())
756 return NumOperands;
758 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
759 const MachineOperand &MO = getOperand(I);
760 // The operands must always be in the following order:
761 // - explicit reg defs,
762 // - other explicit operands (reg uses, immediates, etc.),
763 // - implicit reg defs
764 // - implicit reg uses
765 if (MO.isReg() && MO.isImplicit())
766 break;
767 ++NumOperands;
769 return NumOperands;
772 unsigned MachineInstr::getNumExplicitDefs() const {
773 unsigned NumDefs = MCID->getNumDefs();
774 if (!MCID->isVariadic())
775 return NumDefs;
777 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
778 const MachineOperand &MO = getOperand(I);
779 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
780 break;
781 ++NumDefs;
783 return NumDefs;
786 void MachineInstr::bundleWithPred() {
787 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
788 setFlag(BundledPred);
789 MachineBasicBlock::instr_iterator Pred = getIterator();
790 --Pred;
791 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
792 Pred->setFlag(BundledSucc);
795 void MachineInstr::bundleWithSucc() {
796 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
797 setFlag(BundledSucc);
798 MachineBasicBlock::instr_iterator Succ = getIterator();
799 ++Succ;
800 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
801 Succ->setFlag(BundledPred);
804 void MachineInstr::unbundleFromPred() {
805 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
806 clearFlag(BundledPred);
807 MachineBasicBlock::instr_iterator Pred = getIterator();
808 --Pred;
809 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
810 Pred->clearFlag(BundledSucc);
813 void MachineInstr::unbundleFromSucc() {
814 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
815 clearFlag(BundledSucc);
816 MachineBasicBlock::instr_iterator Succ = getIterator();
817 ++Succ;
818 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
819 Succ->clearFlag(BundledPred);
822 bool MachineInstr::isStackAligningInlineAsm() const {
823 if (isInlineAsm()) {
824 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
825 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
826 return true;
828 return false;
831 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
832 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
833 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
834 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
837 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
838 unsigned *GroupNo) const {
839 assert(isInlineAsm() && "Expected an inline asm instruction");
840 assert(OpIdx < getNumOperands() && "OpIdx out of range");
842 // Ignore queries about the initial operands.
843 if (OpIdx < InlineAsm::MIOp_FirstOperand)
844 return -1;
846 unsigned Group = 0;
847 unsigned NumOps;
848 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
849 i += NumOps) {
850 const MachineOperand &FlagMO = getOperand(i);
851 // If we reach the implicit register operands, stop looking.
852 if (!FlagMO.isImm())
853 return -1;
854 const InlineAsm::Flag F(FlagMO.getImm());
855 NumOps = 1 + F.getNumOperandRegisters();
856 if (i + NumOps > OpIdx) {
857 if (GroupNo)
858 *GroupNo = Group;
859 return i;
861 ++Group;
863 return -1;
866 const DILabel *MachineInstr::getDebugLabel() const {
867 assert(isDebugLabel() && "not a DBG_LABEL");
868 return cast<DILabel>(getOperand(0).getMetadata());
871 const MachineOperand &MachineInstr::getDebugVariableOp() const {
872 assert((isDebugValueLike()) && "not a DBG_VALUE*");
873 unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
874 return getOperand(VariableOp);
877 MachineOperand &MachineInstr::getDebugVariableOp() {
878 assert((isDebugValueLike()) && "not a DBG_VALUE*");
879 unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
880 return getOperand(VariableOp);
883 const DILocalVariable *MachineInstr::getDebugVariable() const {
884 return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
887 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
888 assert((isDebugValueLike()) && "not a DBG_VALUE*");
889 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
890 return getOperand(ExpressionOp);
893 MachineOperand &MachineInstr::getDebugExpressionOp() {
894 assert((isDebugValueLike()) && "not a DBG_VALUE*");
895 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
896 return getOperand(ExpressionOp);
899 const DIExpression *MachineInstr::getDebugExpression() const {
900 return cast<DIExpression>(getDebugExpressionOp().getMetadata());
903 bool MachineInstr::isDebugEntryValue() const {
904 return isDebugValue() && getDebugExpression()->isEntryValue();
907 const TargetRegisterClass*
908 MachineInstr::getRegClassConstraint(unsigned OpIdx,
909 const TargetInstrInfo *TII,
910 const TargetRegisterInfo *TRI) const {
911 assert(getParent() && "Can't have an MBB reference here!");
912 assert(getMF() && "Can't have an MF reference here!");
913 const MachineFunction &MF = *getMF();
915 // Most opcodes have fixed constraints in their MCInstrDesc.
916 if (!isInlineAsm())
917 return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
919 if (!getOperand(OpIdx).isReg())
920 return nullptr;
922 // For tied uses on inline asm, get the constraint from the def.
923 unsigned DefIdx;
924 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
925 OpIdx = DefIdx;
927 // Inline asm stores register class constraints in the flag word.
928 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
929 if (FlagIdx < 0)
930 return nullptr;
932 const InlineAsm::Flag F(getOperand(FlagIdx).getImm());
933 unsigned RCID;
934 if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) &&
935 F.hasRegClassConstraint(RCID))
936 return TRI->getRegClass(RCID);
938 // Assume that all registers in a memory operand are pointers.
939 if (F.isMemKind())
940 return TRI->getPointerRegClass(MF);
942 return nullptr;
945 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
946 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
947 const TargetRegisterInfo *TRI, bool ExploreBundle) const {
948 // Check every operands inside the bundle if we have
949 // been asked to.
950 if (ExploreBundle)
951 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
952 ++OpndIt)
953 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
954 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
955 else
956 // Otherwise, just check the current operands.
957 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
958 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
959 return CurRC;
962 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
963 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
964 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
965 assert(CurRC && "Invalid initial register class");
966 // Check if Reg is constrained by some of its use/def from MI.
967 const MachineOperand &MO = getOperand(OpIdx);
968 if (!MO.isReg() || MO.getReg() != Reg)
969 return CurRC;
970 // If yes, accumulate the constraints through the operand.
971 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
974 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
975 unsigned OpIdx, const TargetRegisterClass *CurRC,
976 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
977 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
978 const MachineOperand &MO = getOperand(OpIdx);
979 assert(MO.isReg() &&
980 "Cannot get register constraints for non-register operand");
981 assert(CurRC && "Invalid initial register class");
982 if (unsigned SubIdx = MO.getSubReg()) {
983 if (OpRC)
984 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
985 else
986 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
987 } else if (OpRC)
988 CurRC = TRI->getCommonSubClass(CurRC, OpRC);
989 return CurRC;
992 /// Return the number of instructions inside the MI bundle, not counting the
993 /// header instruction.
994 unsigned MachineInstr::getBundleSize() const {
995 MachineBasicBlock::const_instr_iterator I = getIterator();
996 unsigned Size = 0;
997 while (I->isBundledWithSucc()) {
998 ++Size;
999 ++I;
1001 return Size;
1004 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1005 /// the given register (not considering sub/super-registers).
1006 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
1007 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1008 const MachineOperand &MO = getOperand(i);
1009 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1010 return true;
1012 return false;
1015 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1016 /// the specific register or -1 if it is not found. It further tightens
1017 /// the search criteria to a use that kills the register if isKill is true.
1018 int MachineInstr::findRegisterUseOperandIdx(
1019 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
1020 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1021 const MachineOperand &MO = getOperand(i);
1022 if (!MO.isReg() || !MO.isUse())
1023 continue;
1024 Register MOReg = MO.getReg();
1025 if (!MOReg)
1026 continue;
1027 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
1028 if (!isKill || MO.isKill())
1029 return i;
1031 return -1;
1034 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1035 /// indicating if this instruction reads or writes Reg. This also considers
1036 /// partial defines.
1037 std::pair<bool,bool>
1038 MachineInstr::readsWritesVirtualRegister(Register Reg,
1039 SmallVectorImpl<unsigned> *Ops) const {
1040 bool PartDef = false; // Partial redefine.
1041 bool FullDef = false; // Full define.
1042 bool Use = false;
1044 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1045 const MachineOperand &MO = getOperand(i);
1046 if (!MO.isReg() || MO.getReg() != Reg)
1047 continue;
1048 if (Ops)
1049 Ops->push_back(i);
1050 if (MO.isUse())
1051 Use |= !MO.isUndef();
1052 else if (MO.getSubReg() && !MO.isUndef())
1053 // A partial def undef doesn't count as reading the register.
1054 PartDef = true;
1055 else
1056 FullDef = true;
1058 // A partial redefine uses Reg unless there is also a full define.
1059 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1062 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1063 /// the specified register or -1 if it is not found. If isDead is true, defs
1064 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1065 /// also checks if there is a def of a super-register.
1067 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1068 const TargetRegisterInfo *TRI) const {
1069 bool isPhys = Reg.isPhysical();
1070 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1071 const MachineOperand &MO = getOperand(i);
1072 // Accept regmask operands when Overlap is set.
1073 // Ignore them when looking for a specific def operand (Overlap == false).
1074 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1075 return i;
1076 if (!MO.isReg() || !MO.isDef())
1077 continue;
1078 Register MOReg = MO.getReg();
1079 bool Found = (MOReg == Reg);
1080 if (!Found && TRI && isPhys && MOReg.isPhysical()) {
1081 if (Overlap)
1082 Found = TRI->regsOverlap(MOReg, Reg);
1083 else
1084 Found = TRI->isSubRegister(MOReg, Reg);
1086 if (Found && (!isDead || MO.isDead()))
1087 return i;
1089 return -1;
1092 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1093 /// operand list that is used to represent the predicate. It returns -1 if
1094 /// none is found.
1095 int MachineInstr::findFirstPredOperandIdx() const {
1096 // Don't call MCID.findFirstPredOperandIdx() because this variant
1097 // is sometimes called on an instruction that's not yet complete, and
1098 // so the number of operands is less than the MCID indicates. In
1099 // particular, the PTX target does this.
1100 const MCInstrDesc &MCID = getDesc();
1101 if (MCID.isPredicable()) {
1102 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1103 if (MCID.operands()[i].isPredicate())
1104 return i;
1107 return -1;
1110 // MachineOperand::TiedTo is 4 bits wide.
1111 const unsigned TiedMax = 15;
1113 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1115 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1116 /// field. TiedTo can have these values:
1118 /// 0: Operand is not tied to anything.
1119 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1120 /// TiedMax: Tied to an operand >= TiedMax-1.
1122 /// The tied def must be one of the first TiedMax operands on a normal
1123 /// instruction. INLINEASM instructions allow more tied defs.
1125 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1126 MachineOperand &DefMO = getOperand(DefIdx);
1127 MachineOperand &UseMO = getOperand(UseIdx);
1128 assert(DefMO.isDef() && "DefIdx must be a def operand");
1129 assert(UseMO.isUse() && "UseIdx must be a use operand");
1130 assert(!DefMO.isTied() && "Def is already tied to another use");
1131 assert(!UseMO.isTied() && "Use is already tied to another def");
1133 if (DefIdx < TiedMax)
1134 UseMO.TiedTo = DefIdx + 1;
1135 else {
1136 // Inline asm can use the group descriptors to find tied operands,
1137 // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1138 // but on normal instruction, the tied def must be within the first TiedMax
1139 // operands.
1140 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1141 "DefIdx out of range");
1142 UseMO.TiedTo = TiedMax;
1145 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1146 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1149 /// Given the index of a tied register operand, find the operand it is tied to.
1150 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1151 /// which must exist.
1152 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1153 const MachineOperand &MO = getOperand(OpIdx);
1154 assert(MO.isTied() && "Operand isn't tied");
1156 // Normally TiedTo is in range.
1157 if (MO.TiedTo < TiedMax)
1158 return MO.TiedTo - 1;
1160 // Uses on normal instructions can be out of range.
1161 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1162 // Normal tied defs must be in the 0..TiedMax-1 range.
1163 if (MO.isUse())
1164 return TiedMax - 1;
1165 // MO is a def. Search for the tied use.
1166 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1167 const MachineOperand &UseMO = getOperand(i);
1168 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1169 return i;
1171 llvm_unreachable("Can't find tied use");
1174 if (getOpcode() == TargetOpcode::STATEPOINT) {
1175 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1176 // on registers.
1177 StatepointOpers SO(this);
1178 unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1179 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1180 unsigned NumDefs = getNumDefs();
1181 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1182 while (!getOperand(CurUseIdx).isReg())
1183 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1184 if (OpIdx == CurDefIdx)
1185 return CurUseIdx;
1186 if (OpIdx == CurUseIdx)
1187 return CurDefIdx;
1188 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1190 llvm_unreachable("Can't find tied use");
1193 // Now deal with inline asm by parsing the operand group descriptor flags.
1194 // Find the beginning of each operand group.
1195 SmallVector<unsigned, 8> GroupIdx;
1196 unsigned OpIdxGroup = ~0u;
1197 unsigned NumOps;
1198 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1199 i += NumOps) {
1200 const MachineOperand &FlagMO = getOperand(i);
1201 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1202 unsigned CurGroup = GroupIdx.size();
1203 GroupIdx.push_back(i);
1204 const InlineAsm::Flag F(FlagMO.getImm());
1205 NumOps = 1 + F.getNumOperandRegisters();
1206 // OpIdx belongs to this operand group.
1207 if (OpIdx > i && OpIdx < i + NumOps)
1208 OpIdxGroup = CurGroup;
1209 unsigned TiedGroup;
1210 if (!F.isUseOperandTiedToDef(TiedGroup))
1211 continue;
1212 // Operands in this group are tied to operands in TiedGroup which must be
1213 // earlier. Find the number of operands between the two groups.
1214 unsigned Delta = i - GroupIdx[TiedGroup];
1216 // OpIdx is a use tied to TiedGroup.
1217 if (OpIdxGroup == CurGroup)
1218 return OpIdx - Delta;
1220 // OpIdx is a def tied to this use group.
1221 if (OpIdxGroup == TiedGroup)
1222 return OpIdx + Delta;
1224 llvm_unreachable("Invalid tied operand on inline asm");
1227 /// clearKillInfo - Clears kill flags on all operands.
1229 void MachineInstr::clearKillInfo() {
1230 for (MachineOperand &MO : operands()) {
1231 if (MO.isReg() && MO.isUse())
1232 MO.setIsKill(false);
1236 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1237 unsigned SubIdx,
1238 const TargetRegisterInfo &RegInfo) {
1239 if (ToReg.isPhysical()) {
1240 if (SubIdx)
1241 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1242 for (MachineOperand &MO : operands()) {
1243 if (!MO.isReg() || MO.getReg() != FromReg)
1244 continue;
1245 MO.substPhysReg(ToReg, RegInfo);
1247 } else {
1248 for (MachineOperand &MO : operands()) {
1249 if (!MO.isReg() || MO.getReg() != FromReg)
1250 continue;
1251 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1256 /// isSafeToMove - Return true if it is safe to move this instruction. If
1257 /// SawStore is set to true, it means that there is a store (or call) between
1258 /// the instruction's location and its intended destination.
1259 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1260 // Ignore stuff that we obviously can't move.
1262 // Treat volatile loads as stores. This is not strictly necessary for
1263 // volatiles, but it is required for atomic loads. It is not allowed to move
1264 // a load across an atomic load with Ordering > Monotonic.
1265 if (mayStore() || isCall() || isPHI() ||
1266 (mayLoad() && hasOrderedMemoryRef())) {
1267 SawStore = true;
1268 return false;
1271 if (isPosition() || isDebugInstr() || isTerminator() ||
1272 mayRaiseFPException() || hasUnmodeledSideEffects() ||
1273 isJumpTableDebugInfo())
1274 return false;
1276 // See if this instruction does a load. If so, we have to guarantee that the
1277 // loaded value doesn't change between the load and the its intended
1278 // destination. The check for isInvariantLoad gives the target the chance to
1279 // classify the load as always returning a constant, e.g. a constant pool
1280 // load.
1281 if (mayLoad() && !isDereferenceableInvariantLoad())
1282 // Otherwise, this is a real load. If there is a store between the load and
1283 // end of block, we can't move it.
1284 return !SawStore;
1286 return true;
1289 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1290 bool UseTBAA, const MachineMemOperand *MMOa,
1291 const MachineMemOperand *MMOb) {
1292 // The following interface to AA is fashioned after DAGCombiner::isAlias and
1293 // operates with MachineMemOperand offset with some important assumptions:
1294 // - LLVM fundamentally assumes flat address spaces.
1295 // - MachineOperand offset can *only* result from legalization and cannot
1296 // affect queries other than the trivial case of overlap checking.
1297 // - These offsets never wrap and never step outside of allocated objects.
1298 // - There should never be any negative offsets here.
1300 // FIXME: Modify API to hide this math from "user"
1301 // Even before we go to AA we can reason locally about some memory objects. It
1302 // can save compile time, and possibly catch some corner cases not currently
1303 // covered.
1305 int64_t OffsetA = MMOa->getOffset();
1306 int64_t OffsetB = MMOb->getOffset();
1307 int64_t MinOffset = std::min(OffsetA, OffsetB);
1309 uint64_t WidthA = MMOa->getSize();
1310 uint64_t WidthB = MMOb->getSize();
1311 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1312 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1314 const Value *ValA = MMOa->getValue();
1315 const Value *ValB = MMOb->getValue();
1316 bool SameVal = (ValA && ValB && (ValA == ValB));
1317 if (!SameVal) {
1318 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1319 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1320 if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1321 return false;
1322 if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1323 return false;
1324 if (PSVa && PSVb && (PSVa == PSVb))
1325 SameVal = true;
1328 if (SameVal) {
1329 if (!KnownWidthA || !KnownWidthB)
1330 return true;
1331 int64_t MaxOffset = std::max(OffsetA, OffsetB);
1332 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1333 return (MinOffset + LowWidth > MaxOffset);
1336 if (!AA)
1337 return true;
1339 if (!ValA || !ValB)
1340 return true;
1342 assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1343 assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1345 int64_t OverlapA =
1346 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1347 int64_t OverlapB =
1348 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1350 return !AA->isNoAlias(
1351 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1352 MemoryLocation(ValB, OverlapB,
1353 UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1356 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1357 bool UseTBAA) const {
1358 const MachineFunction *MF = getMF();
1359 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1360 const MachineFrameInfo &MFI = MF->getFrameInfo();
1362 // Exclude call instruction which may alter the memory but can not be handled
1363 // by this function.
1364 if (isCall() || Other.isCall())
1365 return true;
1367 // If neither instruction stores to memory, they can't alias in any
1368 // meaningful way, even if they read from the same address.
1369 if (!mayStore() && !Other.mayStore())
1370 return false;
1372 // Both instructions must be memory operations to be able to alias.
1373 if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1374 return false;
1376 // Let the target decide if memory accesses cannot possibly overlap.
1377 if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1378 return false;
1380 // Memory operations without memory operands may access anything. Be
1381 // conservative and assume `MayAlias`.
1382 if (memoperands_empty() || Other.memoperands_empty())
1383 return true;
1385 // Skip if there are too many memory operands.
1386 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1387 if (NumChecks > TII->getMemOperandAACheckLimit())
1388 return true;
1390 // Check each pair of memory operands from both instructions, which can't
1391 // alias only if all pairs won't alias.
1392 for (auto *MMOa : memoperands())
1393 for (auto *MMOb : Other.memoperands())
1394 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1395 return true;
1397 return false;
1400 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1401 /// or volatile memory reference, or if the information describing the memory
1402 /// reference is not available. Return false if it is known to have no ordered
1403 /// memory references.
1404 bool MachineInstr::hasOrderedMemoryRef() const {
1405 // An instruction known never to access memory won't have a volatile access.
1406 if (!mayStore() &&
1407 !mayLoad() &&
1408 !isCall() &&
1409 !hasUnmodeledSideEffects())
1410 return false;
1412 // Otherwise, if the instruction has no memory reference information,
1413 // conservatively assume it wasn't preserved.
1414 if (memoperands_empty())
1415 return true;
1417 // Check if any of our memory operands are ordered.
1418 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1419 return !MMO->isUnordered();
1423 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1424 /// trap and is loading from a location whose value is invariant across a run of
1425 /// this function.
1426 bool MachineInstr::isDereferenceableInvariantLoad() const {
1427 // If the instruction doesn't load at all, it isn't an invariant load.
1428 if (!mayLoad())
1429 return false;
1431 // If the instruction has lost its memoperands, conservatively assume that
1432 // it may not be an invariant load.
1433 if (memoperands_empty())
1434 return false;
1436 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1438 for (MachineMemOperand *MMO : memoperands()) {
1439 if (!MMO->isUnordered())
1440 // If the memory operand has ordering side effects, we can't move the
1441 // instruction. Such an instruction is technically an invariant load,
1442 // but the caller code would need updated to expect that.
1443 return false;
1444 if (MMO->isStore()) return false;
1445 if (MMO->isInvariant() && MMO->isDereferenceable())
1446 continue;
1448 // A load from a constant PseudoSourceValue is invariant.
1449 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1450 if (PSV->isConstant(&MFI))
1451 continue;
1454 // Otherwise assume conservatively.
1455 return false;
1458 // Everything checks out.
1459 return true;
1462 /// isConstantValuePHI - If the specified instruction is a PHI that always
1463 /// merges together the same virtual register, return the register, otherwise
1464 /// return 0.
1465 unsigned MachineInstr::isConstantValuePHI() const {
1466 if (!isPHI())
1467 return 0;
1468 assert(getNumOperands() >= 3 &&
1469 "It's illegal to have a PHI without source operands");
1471 Register Reg = getOperand(1).getReg();
1472 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1473 if (getOperand(i).getReg() != Reg)
1474 return 0;
1475 return Reg;
1478 bool MachineInstr::hasUnmodeledSideEffects() const {
1479 if (hasProperty(MCID::UnmodeledSideEffects))
1480 return true;
1481 if (isInlineAsm()) {
1482 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1483 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1484 return true;
1487 return false;
1490 bool MachineInstr::isLoadFoldBarrier() const {
1491 return mayStore() || isCall() ||
1492 (hasUnmodeledSideEffects() && !isPseudoProbe());
1495 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1497 bool MachineInstr::allDefsAreDead() const {
1498 for (const MachineOperand &MO : operands()) {
1499 if (!MO.isReg() || MO.isUse())
1500 continue;
1501 if (!MO.isDead())
1502 return false;
1504 return true;
1507 bool MachineInstr::allImplicitDefsAreDead() const {
1508 for (const MachineOperand &MO : implicit_operands()) {
1509 if (!MO.isReg() || MO.isUse())
1510 continue;
1511 if (!MO.isDead())
1512 return false;
1514 return true;
1517 /// copyImplicitOps - Copy implicit register operands from specified
1518 /// instruction to this instruction.
1519 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1520 const MachineInstr &MI) {
1521 for (const MachineOperand &MO :
1522 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1523 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1524 addOperand(MF, MO);
1527 bool MachineInstr::hasComplexRegisterTies() const {
1528 const MCInstrDesc &MCID = getDesc();
1529 if (MCID.Opcode == TargetOpcode::STATEPOINT)
1530 return true;
1531 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1532 const auto &Operand = getOperand(I);
1533 if (!Operand.isReg() || Operand.isDef())
1534 // Ignore the defined registers as MCID marks only the uses as tied.
1535 continue;
1536 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1537 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1538 if (ExpectedTiedIdx != TiedIdx)
1539 return true;
1541 return false;
1544 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1545 const MachineRegisterInfo &MRI) const {
1546 const MachineOperand &Op = getOperand(OpIdx);
1547 if (!Op.isReg())
1548 return LLT{};
1550 if (isVariadic() || OpIdx >= getNumExplicitOperands())
1551 return MRI.getType(Op.getReg());
1553 auto &OpInfo = getDesc().operands()[OpIdx];
1554 if (!OpInfo.isGenericType())
1555 return MRI.getType(Op.getReg());
1557 if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1558 return LLT{};
1560 LLT TypeToPrint = MRI.getType(Op.getReg());
1561 // Don't mark the type index printed if it wasn't actually printed: maybe
1562 // another operand with the same type index has an actual type attached:
1563 if (TypeToPrint.isValid())
1564 PrintedTypes.set(OpInfo.getGenericTypeIndex());
1565 return TypeToPrint;
1568 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1569 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1570 dbgs() << " ";
1571 print(dbgs());
1574 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1575 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1576 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1577 if (Depth >= MaxDepth)
1578 return;
1579 if (!AlreadySeenInstrs.insert(this).second)
1580 return;
1581 // PadToColumn always inserts at least one space.
1582 // Don't mess up the alignment if we don't want any space.
1583 if (Depth)
1584 fdbgs().PadToColumn(Depth * 2);
1585 print(fdbgs());
1586 for (const MachineOperand &MO : operands()) {
1587 if (!MO.isReg() || MO.isDef())
1588 continue;
1589 Register Reg = MO.getReg();
1590 if (Reg.isPhysical())
1591 continue;
1592 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1593 if (NewMI == nullptr)
1594 continue;
1595 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1599 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1600 unsigned MaxDepth) const {
1601 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1602 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1604 #endif
1606 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1607 bool SkipDebugLoc, bool AddNewLine,
1608 const TargetInstrInfo *TII) const {
1609 const Module *M = nullptr;
1610 const Function *F = nullptr;
1611 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1612 F = &MF->getFunction();
1613 M = F->getParent();
1614 if (!TII)
1615 TII = MF->getSubtarget().getInstrInfo();
1618 ModuleSlotTracker MST(M);
1619 if (F)
1620 MST.incorporateFunction(*F);
1621 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1624 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1625 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1626 bool AddNewLine, const TargetInstrInfo *TII) const {
1627 // We can be a bit tidier if we know the MachineFunction.
1628 const TargetRegisterInfo *TRI = nullptr;
1629 const MachineRegisterInfo *MRI = nullptr;
1630 const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1631 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1633 if (isCFIInstruction())
1634 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1636 SmallBitVector PrintedTypes(8);
1637 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1638 auto getTiedOperandIdx = [&](unsigned OpIdx) {
1639 if (!ShouldPrintRegisterTies)
1640 return 0U;
1641 const MachineOperand &MO = getOperand(OpIdx);
1642 if (MO.isReg() && MO.isTied() && !MO.isDef())
1643 return findTiedOperandIdx(OpIdx);
1644 return 0U;
1646 unsigned StartOp = 0;
1647 unsigned e = getNumOperands();
1649 // Print explicitly defined operands on the left of an assignment syntax.
1650 while (StartOp < e) {
1651 const MachineOperand &MO = getOperand(StartOp);
1652 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1653 break;
1655 if (StartOp != 0)
1656 OS << ", ";
1658 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1659 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1660 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1661 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1662 ++StartOp;
1665 if (StartOp != 0)
1666 OS << " = ";
1668 if (getFlag(MachineInstr::FrameSetup))
1669 OS << "frame-setup ";
1670 if (getFlag(MachineInstr::FrameDestroy))
1671 OS << "frame-destroy ";
1672 if (getFlag(MachineInstr::FmNoNans))
1673 OS << "nnan ";
1674 if (getFlag(MachineInstr::FmNoInfs))
1675 OS << "ninf ";
1676 if (getFlag(MachineInstr::FmNsz))
1677 OS << "nsz ";
1678 if (getFlag(MachineInstr::FmArcp))
1679 OS << "arcp ";
1680 if (getFlag(MachineInstr::FmContract))
1681 OS << "contract ";
1682 if (getFlag(MachineInstr::FmAfn))
1683 OS << "afn ";
1684 if (getFlag(MachineInstr::FmReassoc))
1685 OS << "reassoc ";
1686 if (getFlag(MachineInstr::NoUWrap))
1687 OS << "nuw ";
1688 if (getFlag(MachineInstr::NoSWrap))
1689 OS << "nsw ";
1690 if (getFlag(MachineInstr::IsExact))
1691 OS << "exact ";
1692 if (getFlag(MachineInstr::NoFPExcept))
1693 OS << "nofpexcept ";
1694 if (getFlag(MachineInstr::NoMerge))
1695 OS << "nomerge ";
1697 // Print the opcode name.
1698 if (TII)
1699 OS << TII->getName(getOpcode());
1700 else
1701 OS << "UNKNOWN";
1703 if (SkipOpers)
1704 return;
1706 // Print the rest of the operands.
1707 bool FirstOp = true;
1708 unsigned AsmDescOp = ~0u;
1709 unsigned AsmOpCount = 0;
1711 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1712 // Print asm string.
1713 OS << " ";
1714 const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1715 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1716 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1717 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1718 ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1719 IntrinsicInfo);
1721 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1722 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1723 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1724 OS << " [sideeffect]";
1725 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1726 OS << " [mayload]";
1727 if (ExtraInfo & InlineAsm::Extra_MayStore)
1728 OS << " [maystore]";
1729 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1730 OS << " [isconvergent]";
1731 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1732 OS << " [alignstack]";
1733 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1734 OS << " [attdialect]";
1735 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1736 OS << " [inteldialect]";
1738 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1739 FirstOp = false;
1742 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1743 const MachineOperand &MO = getOperand(i);
1745 if (FirstOp) FirstOp = false; else OS << ",";
1746 OS << " ";
1748 if (isDebugValueLike() && MO.isMetadata()) {
1749 // Pretty print DBG_VALUE* instructions.
1750 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1751 if (DIV && !DIV->getName().empty())
1752 OS << "!\"" << DIV->getName() << '\"';
1753 else {
1754 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1755 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1756 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1757 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1759 } else if (isDebugLabel() && MO.isMetadata()) {
1760 // Pretty print DBG_LABEL instructions.
1761 auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1762 if (DIL && !DIL->getName().empty())
1763 OS << "\"" << DIL->getName() << '\"';
1764 else {
1765 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1766 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1767 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1768 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1770 } else if (i == AsmDescOp && MO.isImm()) {
1771 // Pretty print the inline asm operand descriptor.
1772 OS << '$' << AsmOpCount++;
1773 unsigned Flag = MO.getImm();
1774 const InlineAsm::Flag F(Flag);
1775 OS << ":[";
1776 OS << F.getKindName();
1778 unsigned RCID;
1779 if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) {
1780 if (TRI) {
1781 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1782 } else
1783 OS << ":RC" << RCID;
1786 if (F.isMemKind()) {
1787 const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID();
1788 OS << ":" << InlineAsm::getMemConstraintName(MCID);
1791 unsigned TiedTo;
1792 if (F.isUseOperandTiedToDef(TiedTo))
1793 OS << " tiedto:$" << TiedTo;
1795 OS << ']';
1797 // Compute the index of the next operand descriptor.
1798 AsmDescOp += 1 + F.getNumOperandRegisters();
1799 } else {
1800 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1801 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1802 if (MO.isImm() && isOperandSubregIdx(i))
1803 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1804 else
1805 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1806 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1810 // Print any optional symbols attached to this instruction as-if they were
1811 // operands.
1812 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1813 if (!FirstOp) {
1814 FirstOp = false;
1815 OS << ',';
1817 OS << " pre-instr-symbol ";
1818 MachineOperand::printSymbol(OS, *PreInstrSymbol);
1820 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1821 if (!FirstOp) {
1822 FirstOp = false;
1823 OS << ',';
1825 OS << " post-instr-symbol ";
1826 MachineOperand::printSymbol(OS, *PostInstrSymbol);
1828 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1829 if (!FirstOp) {
1830 FirstOp = false;
1831 OS << ',';
1833 OS << " heap-alloc-marker ";
1834 HeapAllocMarker->printAsOperand(OS, MST);
1836 if (MDNode *PCSections = getPCSections()) {
1837 if (!FirstOp) {
1838 FirstOp = false;
1839 OS << ',';
1841 OS << " pcsections ";
1842 PCSections->printAsOperand(OS, MST);
1844 if (uint32_t CFIType = getCFIType()) {
1845 if (!FirstOp)
1846 OS << ',';
1847 OS << " cfi-type " << CFIType;
1850 if (DebugInstrNum) {
1851 if (!FirstOp)
1852 OS << ",";
1853 OS << " debug-instr-number " << DebugInstrNum;
1856 if (!SkipDebugLoc) {
1857 if (const DebugLoc &DL = getDebugLoc()) {
1858 if (!FirstOp)
1859 OS << ',';
1860 OS << " debug-location ";
1861 DL->printAsOperand(OS, MST);
1865 if (!memoperands_empty()) {
1866 SmallVector<StringRef, 0> SSNs;
1867 const LLVMContext *Context = nullptr;
1868 std::unique_ptr<LLVMContext> CtxPtr;
1869 const MachineFrameInfo *MFI = nullptr;
1870 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1871 MFI = &MF->getFrameInfo();
1872 Context = &MF->getFunction().getContext();
1873 } else {
1874 CtxPtr = std::make_unique<LLVMContext>();
1875 Context = CtxPtr.get();
1878 OS << " :: ";
1879 bool NeedComma = false;
1880 for (const MachineMemOperand *Op : memoperands()) {
1881 if (NeedComma)
1882 OS << ", ";
1883 Op->print(OS, MST, SSNs, *Context, MFI, TII);
1884 NeedComma = true;
1888 if (SkipDebugLoc)
1889 return;
1891 bool HaveSemi = false;
1893 // Print debug location information.
1894 if (const DebugLoc &DL = getDebugLoc()) {
1895 if (!HaveSemi) {
1896 OS << ';';
1897 HaveSemi = true;
1899 OS << ' ';
1900 DL.print(OS);
1903 // Print extra comments for DEBUG_VALUE and friends if they are well-formed.
1904 if ((isNonListDebugValue() && getNumOperands() >= 4) ||
1905 (isDebugValueList() && getNumOperands() >= 2) ||
1906 (isDebugRef() && getNumOperands() >= 3)) {
1907 if (getDebugVariableOp().isMetadata()) {
1908 if (!HaveSemi) {
1909 OS << ";";
1910 HaveSemi = true;
1912 auto *DV = getDebugVariable();
1913 OS << " line no:" << DV->getLine();
1914 if (isIndirectDebugValue())
1915 OS << " indirect";
1918 // TODO: DBG_LABEL
1920 if (AddNewLine)
1921 OS << '\n';
1924 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1925 const TargetRegisterInfo *RegInfo,
1926 bool AddIfNotFound) {
1927 bool isPhysReg = IncomingReg.isPhysical();
1928 bool hasAliases = isPhysReg &&
1929 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1930 bool Found = false;
1931 SmallVector<unsigned,4> DeadOps;
1932 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1933 MachineOperand &MO = getOperand(i);
1934 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1935 continue;
1937 // DEBUG_VALUE nodes do not contribute to code generation and should
1938 // always be ignored. Failure to do so may result in trying to modify
1939 // KILL flags on DEBUG_VALUE nodes.
1940 if (MO.isDebug())
1941 continue;
1943 Register Reg = MO.getReg();
1944 if (!Reg)
1945 continue;
1947 if (Reg == IncomingReg) {
1948 if (!Found) {
1949 if (MO.isKill())
1950 // The register is already marked kill.
1951 return true;
1952 if (isPhysReg && isRegTiedToDefOperand(i))
1953 // Two-address uses of physregs must not be marked kill.
1954 return true;
1955 MO.setIsKill();
1956 Found = true;
1958 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) {
1959 // A super-register kill already exists.
1960 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1961 return true;
1962 if (RegInfo->isSubRegister(IncomingReg, Reg))
1963 DeadOps.push_back(i);
1967 // Trim unneeded kill operands.
1968 while (!DeadOps.empty()) {
1969 unsigned OpIdx = DeadOps.back();
1970 if (getOperand(OpIdx).isImplicit() &&
1971 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1972 removeOperand(OpIdx);
1973 else
1974 getOperand(OpIdx).setIsKill(false);
1975 DeadOps.pop_back();
1978 // If not found, this means an alias of one of the operands is killed. Add a
1979 // new implicit operand if required.
1980 if (!Found && AddIfNotFound) {
1981 addOperand(MachineOperand::CreateReg(IncomingReg,
1982 false /*IsDef*/,
1983 true /*IsImp*/,
1984 true /*IsKill*/));
1985 return true;
1987 return Found;
1990 void MachineInstr::clearRegisterKills(Register Reg,
1991 const TargetRegisterInfo *RegInfo) {
1992 if (!Reg.isPhysical())
1993 RegInfo = nullptr;
1994 for (MachineOperand &MO : operands()) {
1995 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1996 continue;
1997 Register OpReg = MO.getReg();
1998 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1999 MO.setIsKill(false);
2003 bool MachineInstr::addRegisterDead(Register Reg,
2004 const TargetRegisterInfo *RegInfo,
2005 bool AddIfNotFound) {
2006 bool isPhysReg = Reg.isPhysical();
2007 bool hasAliases = isPhysReg &&
2008 MCRegAliasIterator(Reg, RegInfo, false).isValid();
2009 bool Found = false;
2010 SmallVector<unsigned,4> DeadOps;
2011 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2012 MachineOperand &MO = getOperand(i);
2013 if (!MO.isReg() || !MO.isDef())
2014 continue;
2015 Register MOReg = MO.getReg();
2016 if (!MOReg)
2017 continue;
2019 if (MOReg == Reg) {
2020 MO.setIsDead();
2021 Found = true;
2022 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) {
2023 // There exists a super-register that's marked dead.
2024 if (RegInfo->isSuperRegister(Reg, MOReg))
2025 return true;
2026 if (RegInfo->isSubRegister(Reg, MOReg))
2027 DeadOps.push_back(i);
2031 // Trim unneeded dead operands.
2032 while (!DeadOps.empty()) {
2033 unsigned OpIdx = DeadOps.back();
2034 if (getOperand(OpIdx).isImplicit() &&
2035 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2036 removeOperand(OpIdx);
2037 else
2038 getOperand(OpIdx).setIsDead(false);
2039 DeadOps.pop_back();
2042 // If not found, this means an alias of one of the operands is dead. Add a
2043 // new implicit operand if required.
2044 if (Found || !AddIfNotFound)
2045 return Found;
2047 addOperand(MachineOperand::CreateReg(Reg,
2048 true /*IsDef*/,
2049 true /*IsImp*/,
2050 false /*IsKill*/,
2051 true /*IsDead*/));
2052 return true;
2055 void MachineInstr::clearRegisterDeads(Register Reg) {
2056 for (MachineOperand &MO : operands()) {
2057 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2058 continue;
2059 MO.setIsDead(false);
2063 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2064 for (MachineOperand &MO : operands()) {
2065 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2066 continue;
2067 MO.setIsUndef(IsUndef);
2071 void MachineInstr::addRegisterDefined(Register Reg,
2072 const TargetRegisterInfo *RegInfo) {
2073 if (Reg.isPhysical()) {
2074 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2075 if (MO)
2076 return;
2077 } else {
2078 for (const MachineOperand &MO : operands()) {
2079 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2080 MO.getSubReg() == 0)
2081 return;
2084 addOperand(MachineOperand::CreateReg(Reg,
2085 true /*IsDef*/,
2086 true /*IsImp*/));
2089 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2090 const TargetRegisterInfo &TRI) {
2091 bool HasRegMask = false;
2092 for (MachineOperand &MO : operands()) {
2093 if (MO.isRegMask()) {
2094 HasRegMask = true;
2095 continue;
2097 if (!MO.isReg() || !MO.isDef()) continue;
2098 Register Reg = MO.getReg();
2099 if (!Reg.isPhysical())
2100 continue;
2101 // If there are no uses, including partial uses, the def is dead.
2102 if (llvm::none_of(UsedRegs,
2103 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2104 MO.setIsDead();
2107 // This is a call with a register mask operand.
2108 // Mask clobbers are always dead, so add defs for the non-dead defines.
2109 if (HasRegMask)
2110 for (const Register &UsedReg : UsedRegs)
2111 addRegisterDefined(UsedReg, &TRI);
2114 unsigned
2115 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2116 // Build up a buffer of hash code components.
2117 SmallVector<size_t, 16> HashComponents;
2118 HashComponents.reserve(MI->getNumOperands() + 1);
2119 HashComponents.push_back(MI->getOpcode());
2120 for (const MachineOperand &MO : MI->operands()) {
2121 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual())
2122 continue; // Skip virtual register defs.
2124 HashComponents.push_back(hash_value(MO));
2126 return hash_combine_range(HashComponents.begin(), HashComponents.end());
2129 void MachineInstr::emitError(StringRef Msg) const {
2130 // Find the source location cookie.
2131 uint64_t LocCookie = 0;
2132 const MDNode *LocMD = nullptr;
2133 for (unsigned i = getNumOperands(); i != 0; --i) {
2134 if (getOperand(i-1).isMetadata() &&
2135 (LocMD = getOperand(i-1).getMetadata()) &&
2136 LocMD->getNumOperands() != 0) {
2137 if (const ConstantInt *CI =
2138 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2139 LocCookie = CI->getZExtValue();
2140 break;
2145 if (const MachineBasicBlock *MBB = getParent())
2146 if (const MachineFunction *MF = MBB->getParent())
2147 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2148 report_fatal_error(Msg);
2151 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2152 const MCInstrDesc &MCID, bool IsIndirect,
2153 Register Reg, const MDNode *Variable,
2154 const MDNode *Expr) {
2155 assert(isa<DILocalVariable>(Variable) && "not a variable");
2156 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2157 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2158 "Expected inlined-at fields to agree");
2159 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2160 if (IsIndirect)
2161 MIB.addImm(0U);
2162 else
2163 MIB.addReg(0U);
2164 return MIB.addMetadata(Variable).addMetadata(Expr);
2167 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2168 const MCInstrDesc &MCID, bool IsIndirect,
2169 ArrayRef<MachineOperand> DebugOps,
2170 const MDNode *Variable, const MDNode *Expr) {
2171 assert(isa<DILocalVariable>(Variable) && "not a variable");
2172 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2173 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2174 "Expected inlined-at fields to agree");
2175 if (MCID.Opcode == TargetOpcode::DBG_VALUE) {
2176 assert(DebugOps.size() == 1 &&
2177 "DBG_VALUE must contain exactly one debug operand");
2178 MachineOperand DebugOp = DebugOps[0];
2179 if (DebugOp.isReg())
2180 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable,
2181 Expr);
2183 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp);
2184 if (IsIndirect)
2185 MIB.addImm(0U);
2186 else
2187 MIB.addReg(0U);
2188 return MIB.addMetadata(Variable).addMetadata(Expr);
2191 auto MIB = BuildMI(MF, DL, MCID);
2192 MIB.addMetadata(Variable).addMetadata(Expr);
2193 for (const MachineOperand &DebugOp : DebugOps)
2194 if (DebugOp.isReg())
2195 MIB.addReg(DebugOp.getReg());
2196 else
2197 MIB.add(DebugOp);
2198 return MIB;
2201 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2202 MachineBasicBlock::iterator I,
2203 const DebugLoc &DL, const MCInstrDesc &MCID,
2204 bool IsIndirect, Register Reg,
2205 const MDNode *Variable, const MDNode *Expr) {
2206 MachineFunction &MF = *BB.getParent();
2207 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2208 BB.insert(I, MI);
2209 return MachineInstrBuilder(MF, MI);
2212 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2213 MachineBasicBlock::iterator I,
2214 const DebugLoc &DL, const MCInstrDesc &MCID,
2215 bool IsIndirect,
2216 ArrayRef<MachineOperand> DebugOps,
2217 const MDNode *Variable, const MDNode *Expr) {
2218 MachineFunction &MF = *BB.getParent();
2219 MachineInstr *MI =
2220 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr);
2221 BB.insert(I, MI);
2222 return MachineInstrBuilder(MF, *MI);
2225 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2226 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2227 static const DIExpression *
2228 computeExprForSpill(const MachineInstr &MI,
2229 SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2230 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2231 "Expected inlined-at fields to agree");
2233 const DIExpression *Expr = MI.getDebugExpression();
2234 if (MI.isIndirectDebugValue()) {
2235 assert(MI.getDebugOffset().getImm() == 0 &&
2236 "DBG_VALUE with nonzero offset");
2237 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2238 } else if (MI.isDebugValueList()) {
2239 // We will replace the spilled register with a frame index, so
2240 // immediately deref all references to the spilled register.
2241 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2242 for (const MachineOperand *Op : SpilledOperands) {
2243 unsigned OpIdx = MI.getDebugOperandIndex(Op);
2244 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2247 return Expr;
2249 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2250 Register SpillReg) {
2251 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2252 SmallVector<const MachineOperand *> SpillOperands;
2253 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2254 SpillOperands.push_back(&Op);
2255 return computeExprForSpill(MI, SpillOperands);
2258 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2259 MachineBasicBlock::iterator I,
2260 const MachineInstr &Orig,
2261 int FrameIndex, Register SpillReg) {
2262 assert(!Orig.isDebugRef() &&
2263 "DBG_INSTR_REF should not reference a virtual register.");
2264 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2265 MachineInstrBuilder NewMI =
2266 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2267 // Non-Variadic Operands: Location, Offset, Variable, Expression
2268 // Variadic Operands: Variable, Expression, Locations...
2269 if (Orig.isNonListDebugValue())
2270 NewMI.addFrameIndex(FrameIndex).addImm(0U);
2271 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2272 if (Orig.isDebugValueList()) {
2273 for (const MachineOperand &Op : Orig.debug_operands())
2274 if (Op.isReg() && Op.getReg() == SpillReg)
2275 NewMI.addFrameIndex(FrameIndex);
2276 else
2277 NewMI.add(MachineOperand(Op));
2279 return NewMI;
2281 MachineInstr *llvm::buildDbgValueForSpill(
2282 MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2283 const MachineInstr &Orig, int FrameIndex,
2284 SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2285 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2286 MachineInstrBuilder NewMI =
2287 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2288 // Non-Variadic Operands: Location, Offset, Variable, Expression
2289 // Variadic Operands: Variable, Expression, Locations...
2290 if (Orig.isNonListDebugValue())
2291 NewMI.addFrameIndex(FrameIndex).addImm(0U);
2292 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2293 if (Orig.isDebugValueList()) {
2294 for (const MachineOperand &Op : Orig.debug_operands())
2295 if (is_contained(SpilledOperands, &Op))
2296 NewMI.addFrameIndex(FrameIndex);
2297 else
2298 NewMI.add(MachineOperand(Op));
2300 return NewMI;
2303 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2304 Register Reg) {
2305 const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2306 if (Orig.isNonListDebugValue())
2307 Orig.getDebugOffset().ChangeToImmediate(0U);
2308 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2309 Op.ChangeToFrameIndex(FrameIndex);
2310 Orig.getDebugExpressionOp().setMetadata(Expr);
2313 void MachineInstr::collectDebugValues(
2314 SmallVectorImpl<MachineInstr *> &DbgValues) {
2315 MachineInstr &MI = *this;
2316 if (!MI.getOperand(0).isReg())
2317 return;
2319 MachineBasicBlock::iterator DI = MI; ++DI;
2320 for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2321 DI != DE; ++DI) {
2322 if (!DI->isDebugValue())
2323 return;
2324 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2325 DbgValues.push_back(&*DI);
2329 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2330 // Collect matching debug values.
2331 SmallVector<MachineInstr *, 2> DbgValues;
2333 if (!getOperand(0).isReg())
2334 return;
2336 Register DefReg = getOperand(0).getReg();
2337 auto *MRI = getRegInfo();
2338 for (auto &MO : MRI->use_operands(DefReg)) {
2339 auto *DI = MO.getParent();
2340 if (!DI->isDebugValue())
2341 continue;
2342 if (DI->hasDebugOperandForReg(DefReg)) {
2343 DbgValues.push_back(DI);
2347 // Propagate Reg to debug value instructions.
2348 for (auto *DBI : DbgValues)
2349 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2350 Op.setReg(Reg);
2353 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2355 static unsigned getSpillSlotSize(const MMOList &Accesses,
2356 const MachineFrameInfo &MFI) {
2357 unsigned Size = 0;
2358 for (const auto *A : Accesses)
2359 if (MFI.isSpillSlotObjectIndex(
2360 cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2361 ->getFrameIndex()))
2362 Size += A->getSize();
2363 return Size;
2366 std::optional<unsigned>
2367 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2368 int FI;
2369 if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2370 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2371 if (MFI.isSpillSlotObjectIndex(FI))
2372 return (*memoperands_begin())->getSize();
2374 return std::nullopt;
2377 std::optional<unsigned>
2378 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2379 MMOList Accesses;
2380 if (TII->hasStoreToStackSlot(*this, Accesses))
2381 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2382 return std::nullopt;
2385 std::optional<unsigned>
2386 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2387 int FI;
2388 if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2389 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2390 if (MFI.isSpillSlotObjectIndex(FI))
2391 return (*memoperands_begin())->getSize();
2393 return std::nullopt;
2396 std::optional<unsigned>
2397 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2398 MMOList Accesses;
2399 if (TII->hasLoadFromStackSlot(*this, Accesses))
2400 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2401 return std::nullopt;
2404 unsigned MachineInstr::getDebugInstrNum() {
2405 if (DebugInstrNum == 0)
2406 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2407 return DebugInstrNum;
2410 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2411 if (DebugInstrNum == 0)
2412 DebugInstrNum = MF.getNewDebugInstrNum();
2413 return DebugInstrNum;
2416 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const {
2417 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2418 getRegInfo()->getType(getOperand(1).getReg()));
2421 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const {
2422 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2423 getRegInfo()->getType(getOperand(1).getReg()),
2424 getRegInfo()->getType(getOperand(2).getReg()));
2427 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const {
2428 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2429 getRegInfo()->getType(getOperand(1).getReg()),
2430 getRegInfo()->getType(getOperand(2).getReg()),
2431 getRegInfo()->getType(getOperand(3).getReg()));
2434 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const {
2435 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2436 getRegInfo()->getType(getOperand(1).getReg()),
2437 getRegInfo()->getType(getOperand(2).getReg()),
2438 getRegInfo()->getType(getOperand(3).getReg()),
2439 getRegInfo()->getType(getOperand(4).getReg()));
2442 std::tuple<Register, LLT, Register, LLT>
2443 MachineInstr::getFirst2RegLLTs() const {
2444 Register Reg0 = getOperand(0).getReg();
2445 Register Reg1 = getOperand(1).getReg();
2446 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2447 getRegInfo()->getType(Reg1));
2450 std::tuple<Register, LLT, Register, LLT, Register, LLT>
2451 MachineInstr::getFirst3RegLLTs() const {
2452 Register Reg0 = getOperand(0).getReg();
2453 Register Reg1 = getOperand(1).getReg();
2454 Register Reg2 = getOperand(2).getReg();
2455 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2456 getRegInfo()->getType(Reg1), Reg2,
2457 getRegInfo()->getType(Reg2));
2460 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT>
2461 MachineInstr::getFirst4RegLLTs() const {
2462 Register Reg0 = getOperand(0).getReg();
2463 Register Reg1 = getOperand(1).getReg();
2464 Register Reg2 = getOperand(2).getReg();
2465 Register Reg3 = getOperand(3).getReg();
2466 return std::tuple(
2467 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2468 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3));
2471 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register,
2472 LLT>
2473 MachineInstr::getFirst5RegLLTs() const {
2474 Register Reg0 = getOperand(0).getReg();
2475 Register Reg1 = getOperand(1).getReg();
2476 Register Reg2 = getOperand(2).getReg();
2477 Register Reg3 = getOperand(3).getReg();
2478 Register Reg4 = getOperand(4).getReg();
2479 return std::tuple(
2480 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2481 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3),
2482 Reg4, getRegInfo()->getType(Reg4));
2485 void MachineInstr::insert(mop_iterator InsertBefore,
2486 ArrayRef<MachineOperand> Ops) {
2487 assert(InsertBefore != nullptr && "invalid iterator");
2488 assert(InsertBefore->getParent() == this &&
2489 "iterator points to operand of other inst");
2490 if (Ops.empty())
2491 return;
2493 // Do one pass to untie operands.
2494 SmallDenseMap<unsigned, unsigned> TiedOpIndices;
2495 for (const MachineOperand &MO : operands()) {
2496 if (MO.isReg() && MO.isTied()) {
2497 unsigned OpNo = getOperandNo(&MO);
2498 unsigned TiedTo = findTiedOperandIdx(OpNo);
2499 TiedOpIndices[OpNo] = TiedTo;
2500 untieRegOperand(OpNo);
2504 unsigned OpIdx = getOperandNo(InsertBefore);
2505 unsigned NumOperands = getNumOperands();
2506 unsigned OpsToMove = NumOperands - OpIdx;
2508 SmallVector<MachineOperand> MovingOps;
2509 MovingOps.reserve(OpsToMove);
2511 for (unsigned I = 0; I < OpsToMove; ++I) {
2512 MovingOps.emplace_back(getOperand(OpIdx));
2513 removeOperand(OpIdx);
2515 for (const MachineOperand &MO : Ops)
2516 addOperand(MO);
2517 for (const MachineOperand &OpMoved : MovingOps)
2518 addOperand(OpMoved);
2520 // Re-tie operands.
2521 for (auto [Tie1, Tie2] : TiedOpIndices) {
2522 if (Tie1 >= OpIdx)
2523 Tie1 += Ops.size();
2524 if (Tie2 >= OpIdx)
2525 Tie2 += Ops.size();
2526 tieOperands(Tie1, Tie2);