1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/iterator_range.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/AssemblyAnnotationWriter.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Comdat.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalIFunc.h"
46 #include "llvm/IR/GlobalObject.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/IRPrintingPasses.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSlotTracker.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/TypeFinder.h"
63 #include "llvm/IR/TypedPointerType.h"
64 #include "llvm/IR/Use.h"
65 #include "llvm/IR/User.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Support/AtomicOrdering.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/Compiler.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/Format.h"
73 #include "llvm/Support/FormattedStream.h"
74 #include "llvm/Support/SaveAndRestore.h"
75 #include "llvm/Support/raw_ostream.h"
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
94 //===----------------------------------------------------------------------===//
96 //===----------------------------------------------------------------------===//
98 using OrderMap
= MapVector
<const Value
*, unsigned>;
100 using UseListOrderMap
=
101 DenseMap
<const Function
*, MapVector
<const Value
*, std::vector
<unsigned>>>;
103 /// Look for a value that might be wrapped as metadata, e.g. a value in a
104 /// metadata operand. Returns the input value as-is if it is not wrapped.
105 static const Value
*skipMetadataWrapper(const Value
*V
) {
106 if (const auto *MAV
= dyn_cast
<MetadataAsValue
>(V
))
107 if (const auto *VAM
= dyn_cast
<ValueAsMetadata
>(MAV
->getMetadata()))
108 return VAM
->getValue();
112 static void orderValue(const Value
*V
, OrderMap
&OM
) {
116 if (const Constant
*C
= dyn_cast
<Constant
>(V
))
117 if (C
->getNumOperands() && !isa
<GlobalValue
>(C
))
118 for (const Value
*Op
: C
->operands())
119 if (!isa
<BasicBlock
>(Op
) && !isa
<GlobalValue
>(Op
))
122 // Note: we cannot cache this lookup above, since inserting into the map
123 // changes the map's size, and thus affects the other IDs.
124 unsigned ID
= OM
.size() + 1;
128 static OrderMap
orderModule(const Module
*M
) {
131 for (const GlobalVariable
&G
: M
->globals()) {
132 if (G
.hasInitializer())
133 if (!isa
<GlobalValue
>(G
.getInitializer()))
134 orderValue(G
.getInitializer(), OM
);
137 for (const GlobalAlias
&A
: M
->aliases()) {
138 if (!isa
<GlobalValue
>(A
.getAliasee()))
139 orderValue(A
.getAliasee(), OM
);
142 for (const GlobalIFunc
&I
: M
->ifuncs()) {
143 if (!isa
<GlobalValue
>(I
.getResolver()))
144 orderValue(I
.getResolver(), OM
);
147 for (const Function
&F
: *M
) {
148 for (const Use
&U
: F
.operands())
149 if (!isa
<GlobalValue
>(U
.get()))
150 orderValue(U
.get(), OM
);
154 if (F
.isDeclaration())
157 for (const Argument
&A
: F
.args())
159 for (const BasicBlock
&BB
: F
) {
161 for (const Instruction
&I
: BB
) {
162 for (const Value
*Op
: I
.operands()) {
163 Op
= skipMetadataWrapper(Op
);
164 if ((isa
<Constant
>(*Op
) && !isa
<GlobalValue
>(*Op
)) ||
175 static std::vector
<unsigned>
176 predictValueUseListOrder(const Value
*V
, unsigned ID
, const OrderMap
&OM
) {
177 // Predict use-list order for this one.
178 using Entry
= std::pair
<const Use
*, unsigned>;
179 SmallVector
<Entry
, 64> List
;
180 for (const Use
&U
: V
->uses())
181 // Check if this user will be serialized.
182 if (OM
.lookup(U
.getUser()))
183 List
.push_back(std::make_pair(&U
, List
.size()));
186 // We may have lost some users.
189 // When referencing a value before its declaration, a temporary value is
190 // created, which will later be RAUWed with the actual value. This reverses
191 // the use list. This happens for all values apart from basic blocks.
192 bool GetsReversed
= !isa
<BasicBlock
>(V
);
193 if (auto *BA
= dyn_cast
<BlockAddress
>(V
))
194 ID
= OM
.lookup(BA
->getBasicBlock());
195 llvm::sort(List
, [&](const Entry
&L
, const Entry
&R
) {
196 const Use
*LU
= L
.first
;
197 const Use
*RU
= R
.first
;
201 auto LID
= OM
.lookup(LU
->getUser());
202 auto RID
= OM
.lookup(RU
->getUser());
204 // If ID is 4, then expect: 7 6 5 1 2 3.
218 // LID and RID are equal, so we have different operands of the same user.
219 // Assume operands are added in order for all instructions.
222 return LU
->getOperandNo() < RU
->getOperandNo();
223 return LU
->getOperandNo() > RU
->getOperandNo();
226 if (llvm::is_sorted(List
, llvm::less_second()))
227 // Order is already correct.
230 // Store the shuffle.
231 std::vector
<unsigned> Shuffle(List
.size());
232 for (size_t I
= 0, E
= List
.size(); I
!= E
; ++I
)
233 Shuffle
[I
] = List
[I
].second
;
237 static UseListOrderMap
predictUseListOrder(const Module
*M
) {
238 OrderMap OM
= orderModule(M
);
239 UseListOrderMap ULOM
;
240 for (const auto &Pair
: OM
) {
241 const Value
*V
= Pair
.first
;
242 if (V
->use_empty() || std::next(V
->use_begin()) == V
->use_end())
245 std::vector
<unsigned> Shuffle
=
246 predictValueUseListOrder(V
, Pair
.second
, OM
);
250 const Function
*F
= nullptr;
251 if (auto *I
= dyn_cast
<Instruction
>(V
))
252 F
= I
->getFunction();
253 if (auto *A
= dyn_cast
<Argument
>(V
))
255 if (auto *BB
= dyn_cast
<BasicBlock
>(V
))
257 ULOM
[F
][V
] = std::move(Shuffle
);
262 static const Module
*getModuleFromVal(const Value
*V
) {
263 if (const Argument
*MA
= dyn_cast
<Argument
>(V
))
264 return MA
->getParent() ? MA
->getParent()->getParent() : nullptr;
266 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
267 return BB
->getParent() ? BB
->getParent()->getParent() : nullptr;
269 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
270 const Function
*M
= I
->getParent() ? I
->getParent()->getParent() : nullptr;
271 return M
? M
->getParent() : nullptr;
274 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
))
275 return GV
->getParent();
277 if (const auto *MAV
= dyn_cast
<MetadataAsValue
>(V
)) {
278 for (const User
*U
: MAV
->users())
279 if (isa
<Instruction
>(U
))
280 if (const Module
*M
= getModuleFromVal(U
))
288 static void PrintCallingConv(unsigned cc
, raw_ostream
&Out
) {
290 default: Out
<< "cc" << cc
; break;
291 case CallingConv::Fast
: Out
<< "fastcc"; break;
292 case CallingConv::Cold
: Out
<< "coldcc"; break;
293 case CallingConv::WebKit_JS
: Out
<< "webkit_jscc"; break;
294 case CallingConv::AnyReg
: Out
<< "anyregcc"; break;
295 case CallingConv::PreserveMost
: Out
<< "preserve_mostcc"; break;
296 case CallingConv::PreserveAll
: Out
<< "preserve_allcc"; break;
297 case CallingConv::CXX_FAST_TLS
: Out
<< "cxx_fast_tlscc"; break;
298 case CallingConv::GHC
: Out
<< "ghccc"; break;
299 case CallingConv::Tail
: Out
<< "tailcc"; break;
300 case CallingConv::CFGuard_Check
: Out
<< "cfguard_checkcc"; break;
301 case CallingConv::X86_StdCall
: Out
<< "x86_stdcallcc"; break;
302 case CallingConv::X86_FastCall
: Out
<< "x86_fastcallcc"; break;
303 case CallingConv::X86_ThisCall
: Out
<< "x86_thiscallcc"; break;
304 case CallingConv::X86_RegCall
: Out
<< "x86_regcallcc"; break;
305 case CallingConv::X86_VectorCall
:Out
<< "x86_vectorcallcc"; break;
306 case CallingConv::Intel_OCL_BI
: Out
<< "intel_ocl_bicc"; break;
307 case CallingConv::ARM_APCS
: Out
<< "arm_apcscc"; break;
308 case CallingConv::ARM_AAPCS
: Out
<< "arm_aapcscc"; break;
309 case CallingConv::ARM_AAPCS_VFP
: Out
<< "arm_aapcs_vfpcc"; break;
310 case CallingConv::AArch64_VectorCall
: Out
<< "aarch64_vector_pcs"; break;
311 case CallingConv::AArch64_SVE_VectorCall
:
312 Out
<< "aarch64_sve_vector_pcs";
314 case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0
:
315 Out
<< "aarch64_sme_preservemost_from_x0";
317 case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
:
318 Out
<< "aarch64_sme_preservemost_from_x2";
320 case CallingConv::MSP430_INTR
: Out
<< "msp430_intrcc"; break;
321 case CallingConv::AVR_INTR
: Out
<< "avr_intrcc "; break;
322 case CallingConv::AVR_SIGNAL
: Out
<< "avr_signalcc "; break;
323 case CallingConv::PTX_Kernel
: Out
<< "ptx_kernel"; break;
324 case CallingConv::PTX_Device
: Out
<< "ptx_device"; break;
325 case CallingConv::X86_64_SysV
: Out
<< "x86_64_sysvcc"; break;
326 case CallingConv::Win64
: Out
<< "win64cc"; break;
327 case CallingConv::SPIR_FUNC
: Out
<< "spir_func"; break;
328 case CallingConv::SPIR_KERNEL
: Out
<< "spir_kernel"; break;
329 case CallingConv::Swift
: Out
<< "swiftcc"; break;
330 case CallingConv::SwiftTail
: Out
<< "swifttailcc"; break;
331 case CallingConv::X86_INTR
: Out
<< "x86_intrcc"; break;
332 case CallingConv::DUMMY_HHVM
:
335 case CallingConv::DUMMY_HHVM_C
:
338 case CallingConv::AMDGPU_VS
: Out
<< "amdgpu_vs"; break;
339 case CallingConv::AMDGPU_LS
: Out
<< "amdgpu_ls"; break;
340 case CallingConv::AMDGPU_HS
: Out
<< "amdgpu_hs"; break;
341 case CallingConv::AMDGPU_ES
: Out
<< "amdgpu_es"; break;
342 case CallingConv::AMDGPU_GS
: Out
<< "amdgpu_gs"; break;
343 case CallingConv::AMDGPU_PS
: Out
<< "amdgpu_ps"; break;
344 case CallingConv::AMDGPU_CS
: Out
<< "amdgpu_cs"; break;
345 case CallingConv::AMDGPU_CS_Chain
:
346 Out
<< "amdgpu_cs_chain";
348 case CallingConv::AMDGPU_CS_ChainPreserve
:
349 Out
<< "amdgpu_cs_chain_preserve";
351 case CallingConv::AMDGPU_KERNEL
: Out
<< "amdgpu_kernel"; break;
352 case CallingConv::AMDGPU_Gfx
: Out
<< "amdgpu_gfx"; break;
353 case CallingConv::M68k_RTD
: Out
<< "m68k_rtdcc"; break;
365 void llvm::printLLVMNameWithoutPrefix(raw_ostream
&OS
, StringRef Name
) {
366 assert(!Name
.empty() && "Cannot get empty name!");
368 // Scan the name to see if it needs quotes first.
369 bool NeedsQuotes
= isdigit(static_cast<unsigned char>(Name
[0]));
371 for (unsigned char C
: Name
) {
372 // By making this unsigned, the value passed in to isalnum will always be
373 // in the range 0-255. This is important when building with MSVC because
374 // its implementation will assert. This situation can arise when dealing
375 // with UTF-8 multibyte characters.
376 if (!isalnum(static_cast<unsigned char>(C
)) && C
!= '-' && C
!= '.' &&
384 // If we didn't need any quotes, just write out the name in one blast.
390 // Okay, we need quotes. Output the quotes and escape any scary characters as
393 printEscapedString(Name
, OS
);
397 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
398 /// (if the string only contains simple characters) or is surrounded with ""'s
399 /// (if it has special chars in it). Print it out.
400 static void PrintLLVMName(raw_ostream
&OS
, StringRef Name
, PrefixType Prefix
) {
416 printLLVMNameWithoutPrefix(OS
, Name
);
419 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
420 /// (if the string only contains simple characters) or is surrounded with ""'s
421 /// (if it has special chars in it). Print it out.
422 static void PrintLLVMName(raw_ostream
&OS
, const Value
*V
) {
423 PrintLLVMName(OS
, V
->getName(),
424 isa
<GlobalValue
>(V
) ? GlobalPrefix
: LocalPrefix
);
427 static void PrintShuffleMask(raw_ostream
&Out
, Type
*Ty
, ArrayRef
<int> Mask
) {
429 if (isa
<ScalableVectorType
>(Ty
))
431 Out
<< Mask
.size() << " x i32> ";
432 bool FirstElt
= true;
433 if (all_of(Mask
, [](int Elt
) { return Elt
== 0; })) {
434 Out
<< "zeroinitializer";
435 } else if (all_of(Mask
, [](int Elt
) { return Elt
== PoisonMaskElem
; })) {
439 for (int Elt
: Mask
) {
445 if (Elt
== PoisonMaskElem
)
458 TypePrinting(const Module
*M
= nullptr) : DeferredM(M
) {}
460 TypePrinting(const TypePrinting
&) = delete;
461 TypePrinting
&operator=(const TypePrinting
&) = delete;
463 /// The named types that are used by the current module.
464 TypeFinder
&getNamedTypes();
466 /// The numbered types, number to type mapping.
467 std::vector
<StructType
*> &getNumberedTypes();
471 void print(Type
*Ty
, raw_ostream
&OS
);
473 void printStructBody(StructType
*Ty
, raw_ostream
&OS
);
476 void incorporateTypes();
478 /// A module to process lazily when needed. Set to nullptr as soon as used.
479 const Module
*DeferredM
;
481 TypeFinder NamedTypes
;
483 // The numbered types, along with their value.
484 DenseMap
<StructType
*, unsigned> Type2Number
;
486 std::vector
<StructType
*> NumberedTypes
;
489 } // end anonymous namespace
491 TypeFinder
&TypePrinting::getNamedTypes() {
496 std::vector
<StructType
*> &TypePrinting::getNumberedTypes() {
499 // We know all the numbers that each type is used and we know that it is a
500 // dense assignment. Convert the map to an index table, if it's not done
501 // already (judging from the sizes):
502 if (NumberedTypes
.size() == Type2Number
.size())
503 return NumberedTypes
;
505 NumberedTypes
.resize(Type2Number
.size());
506 for (const auto &P
: Type2Number
) {
507 assert(P
.second
< NumberedTypes
.size() && "Didn't get a dense numbering?");
508 assert(!NumberedTypes
[P
.second
] && "Didn't get a unique numbering?");
509 NumberedTypes
[P
.second
] = P
.first
;
511 return NumberedTypes
;
514 bool TypePrinting::empty() {
516 return NamedTypes
.empty() && Type2Number
.empty();
519 void TypePrinting::incorporateTypes() {
523 NamedTypes
.run(*DeferredM
, false);
526 // The list of struct types we got back includes all the struct types, split
527 // the unnamed ones out to a numbering and remove the anonymous structs.
528 unsigned NextNumber
= 0;
530 std::vector
<StructType
*>::iterator NextToUse
= NamedTypes
.begin();
531 for (StructType
*STy
: NamedTypes
) {
532 // Ignore anonymous types.
533 if (STy
->isLiteral())
536 if (STy
->getName().empty())
537 Type2Number
[STy
] = NextNumber
++;
542 NamedTypes
.erase(NextToUse
, NamedTypes
.end());
545 /// Write the specified type to the specified raw_ostream, making use of type
546 /// names or up references to shorten the type name where possible.
547 void TypePrinting::print(Type
*Ty
, raw_ostream
&OS
) {
548 switch (Ty
->getTypeID()) {
549 case Type::VoidTyID
: OS
<< "void"; return;
550 case Type::HalfTyID
: OS
<< "half"; return;
551 case Type::BFloatTyID
: OS
<< "bfloat"; return;
552 case Type::FloatTyID
: OS
<< "float"; return;
553 case Type::DoubleTyID
: OS
<< "double"; return;
554 case Type::X86_FP80TyID
: OS
<< "x86_fp80"; return;
555 case Type::FP128TyID
: OS
<< "fp128"; return;
556 case Type::PPC_FP128TyID
: OS
<< "ppc_fp128"; return;
557 case Type::LabelTyID
: OS
<< "label"; return;
558 case Type::MetadataTyID
: OS
<< "metadata"; return;
559 case Type::X86_MMXTyID
: OS
<< "x86_mmx"; return;
560 case Type::X86_AMXTyID
: OS
<< "x86_amx"; return;
561 case Type::TokenTyID
: OS
<< "token"; return;
562 case Type::IntegerTyID
:
563 OS
<< 'i' << cast
<IntegerType
>(Ty
)->getBitWidth();
566 case Type::FunctionTyID
: {
567 FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
568 print(FTy
->getReturnType(), OS
);
571 for (Type
*Ty
: FTy
->params()) {
580 case Type::StructTyID
: {
581 StructType
*STy
= cast
<StructType
>(Ty
);
583 if (STy
->isLiteral())
584 return printStructBody(STy
, OS
);
586 if (!STy
->getName().empty())
587 return PrintLLVMName(OS
, STy
->getName(), LocalPrefix
);
590 const auto I
= Type2Number
.find(STy
);
591 if (I
!= Type2Number
.end())
592 OS
<< '%' << I
->second
;
593 else // Not enumerated, print the hex address.
594 OS
<< "%\"type " << STy
<< '\"';
597 case Type::PointerTyID
: {
598 PointerType
*PTy
= cast
<PointerType
>(Ty
);
600 if (unsigned AddressSpace
= PTy
->getAddressSpace())
601 OS
<< " addrspace(" << AddressSpace
<< ')';
604 case Type::ArrayTyID
: {
605 ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
606 OS
<< '[' << ATy
->getNumElements() << " x ";
607 print(ATy
->getElementType(), OS
);
611 case Type::FixedVectorTyID
:
612 case Type::ScalableVectorTyID
: {
613 VectorType
*PTy
= cast
<VectorType
>(Ty
);
614 ElementCount EC
= PTy
->getElementCount();
618 OS
<< EC
.getKnownMinValue() << " x ";
619 print(PTy
->getElementType(), OS
);
623 case Type::TypedPointerTyID
: {
624 TypedPointerType
*TPTy
= cast
<TypedPointerType
>(Ty
);
625 OS
<< "typedptr(" << *TPTy
->getElementType() << ", "
626 << TPTy
->getAddressSpace() << ")";
629 case Type::TargetExtTyID
:
630 TargetExtType
*TETy
= cast
<TargetExtType
>(Ty
);
632 printEscapedString(Ty
->getTargetExtName(), OS
);
634 for (Type
*Inner
: TETy
->type_params())
635 OS
<< ", " << *Inner
;
636 for (unsigned IntParam
: TETy
->int_params())
637 OS
<< ", " << IntParam
;
641 llvm_unreachable("Invalid TypeID");
644 void TypePrinting::printStructBody(StructType
*STy
, raw_ostream
&OS
) {
645 if (STy
->isOpaque()) {
653 if (STy
->getNumElements() == 0) {
658 for (Type
*Ty
: STy
->elements()) {
669 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() = default;
673 //===----------------------------------------------------------------------===//
674 // SlotTracker Class: Enumerate slot numbers for unnamed values
675 //===----------------------------------------------------------------------===//
676 /// This class provides computation of slot numbers for LLVM Assembly writing.
678 class SlotTracker
: public AbstractSlotTrackerStorage
{
680 /// ValueMap - A mapping of Values to slot numbers.
681 using ValueMap
= DenseMap
<const Value
*, unsigned>;
684 /// TheModule - The module for which we are holding slot numbers.
685 const Module
* TheModule
;
687 /// TheFunction - The function for which we are holding slot numbers.
688 const Function
* TheFunction
= nullptr;
689 bool FunctionProcessed
= false;
690 bool ShouldInitializeAllMetadata
;
692 std::function
<void(AbstractSlotTrackerStorage
*, const Module
*, bool)>
694 std::function
<void(AbstractSlotTrackerStorage
*, const Function
*, bool)>
695 ProcessFunctionHookFn
;
697 /// The summary index for which we are holding slot numbers.
698 const ModuleSummaryIndex
*TheIndex
= nullptr;
700 /// mMap - The slot map for the module level data.
704 /// fMap - The slot map for the function level data.
708 /// mdnMap - Map for MDNodes.
709 DenseMap
<const MDNode
*, unsigned> mdnMap
;
710 unsigned mdnNext
= 0;
712 /// asMap - The slot map for attribute sets.
713 DenseMap
<AttributeSet
, unsigned> asMap
;
716 /// ModulePathMap - The slot map for Module paths used in the summary index.
717 StringMap
<unsigned> ModulePathMap
;
718 unsigned ModulePathNext
= 0;
720 /// GUIDMap - The slot map for GUIDs used in the summary index.
721 DenseMap
<GlobalValue::GUID
, unsigned> GUIDMap
;
722 unsigned GUIDNext
= 0;
724 /// TypeIdMap - The slot map for type ids used in the summary index.
725 StringMap
<unsigned> TypeIdMap
;
726 unsigned TypeIdNext
= 0;
729 /// Construct from a module.
731 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
732 /// functions, giving correct numbering for metadata referenced only from
733 /// within a function (even if no functions have been initialized).
734 explicit SlotTracker(const Module
*M
,
735 bool ShouldInitializeAllMetadata
= false);
737 /// Construct from a function, starting out in incorp state.
739 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
740 /// functions, giving correct numbering for metadata referenced only from
741 /// within a function (even if no functions have been initialized).
742 explicit SlotTracker(const Function
*F
,
743 bool ShouldInitializeAllMetadata
= false);
745 /// Construct from a module summary index.
746 explicit SlotTracker(const ModuleSummaryIndex
*Index
);
748 SlotTracker(const SlotTracker
&) = delete;
749 SlotTracker
&operator=(const SlotTracker
&) = delete;
751 ~SlotTracker() = default;
754 std::function
<void(AbstractSlotTrackerStorage
*, const Module
*, bool)>);
755 void setProcessHook(std::function
<void(AbstractSlotTrackerStorage
*,
756 const Function
*, bool)>);
758 unsigned getNextMetadataSlot() override
{ return mdnNext
; }
760 void createMetadataSlot(const MDNode
*N
) override
;
762 /// Return the slot number of the specified value in it's type
763 /// plane. If something is not in the SlotTracker, return -1.
764 int getLocalSlot(const Value
*V
);
765 int getGlobalSlot(const GlobalValue
*V
);
766 int getMetadataSlot(const MDNode
*N
) override
;
767 int getAttributeGroupSlot(AttributeSet AS
);
768 int getModulePathSlot(StringRef Path
);
769 int getGUIDSlot(GlobalValue::GUID GUID
);
770 int getTypeIdSlot(StringRef Id
);
772 /// If you'd like to deal with a function instead of just a module, use
773 /// this method to get its data into the SlotTracker.
774 void incorporateFunction(const Function
*F
) {
776 FunctionProcessed
= false;
779 const Function
*getFunction() const { return TheFunction
; }
781 /// After calling incorporateFunction, use this method to remove the
782 /// most recently incorporated function from the SlotTracker. This
783 /// will reset the state of the machine back to just the module contents.
784 void purgeFunction();
786 /// MDNode map iterators.
787 using mdn_iterator
= DenseMap
<const MDNode
*, unsigned>::iterator
;
789 mdn_iterator
mdn_begin() { return mdnMap
.begin(); }
790 mdn_iterator
mdn_end() { return mdnMap
.end(); }
791 unsigned mdn_size() const { return mdnMap
.size(); }
792 bool mdn_empty() const { return mdnMap
.empty(); }
794 /// AttributeSet map iterators.
795 using as_iterator
= DenseMap
<AttributeSet
, unsigned>::iterator
;
797 as_iterator
as_begin() { return asMap
.begin(); }
798 as_iterator
as_end() { return asMap
.end(); }
799 unsigned as_size() const { return asMap
.size(); }
800 bool as_empty() const { return asMap
.empty(); }
802 /// GUID map iterators.
803 using guid_iterator
= DenseMap
<GlobalValue::GUID
, unsigned>::iterator
;
805 /// These functions do the actual initialization.
806 inline void initializeIfNeeded();
807 int initializeIndexIfNeeded();
809 // Implementation Details
811 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
812 void CreateModuleSlot(const GlobalValue
*V
);
814 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
815 void CreateMetadataSlot(const MDNode
*N
);
817 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
818 void CreateFunctionSlot(const Value
*V
);
820 /// Insert the specified AttributeSet into the slot table.
821 void CreateAttributeSetSlot(AttributeSet AS
);
823 inline void CreateModulePathSlot(StringRef Path
);
824 void CreateGUIDSlot(GlobalValue::GUID GUID
);
825 void CreateTypeIdSlot(StringRef Id
);
827 /// Add all of the module level global variables (and their initializers)
828 /// and function declarations, but not the contents of those functions.
829 void processModule();
830 // Returns number of allocated slots
833 /// Add all of the functions arguments, basic blocks, and instructions.
834 void processFunction();
836 /// Add the metadata directly attached to a GlobalObject.
837 void processGlobalObjectMetadata(const GlobalObject
&GO
);
839 /// Add all of the metadata from a function.
840 void processFunctionMetadata(const Function
&F
);
842 /// Add all of the metadata from an instruction.
843 void processInstructionMetadata(const Instruction
&I
);
846 } // end namespace llvm
848 ModuleSlotTracker::ModuleSlotTracker(SlotTracker
&Machine
, const Module
*M
,
850 : M(M
), F(F
), Machine(&Machine
) {}
852 ModuleSlotTracker::ModuleSlotTracker(const Module
*M
,
853 bool ShouldInitializeAllMetadata
)
854 : ShouldCreateStorage(M
),
855 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata
), M(M
) {}
857 ModuleSlotTracker::~ModuleSlotTracker() = default;
859 SlotTracker
*ModuleSlotTracker::getMachine() {
860 if (!ShouldCreateStorage
)
863 ShouldCreateStorage
= false;
865 std::make_unique
<SlotTracker
>(M
, ShouldInitializeAllMetadata
);
866 Machine
= MachineStorage
.get();
867 if (ProcessModuleHookFn
)
868 Machine
->setProcessHook(ProcessModuleHookFn
);
869 if (ProcessFunctionHookFn
)
870 Machine
->setProcessHook(ProcessFunctionHookFn
);
874 void ModuleSlotTracker::incorporateFunction(const Function
&F
) {
875 // Using getMachine() may lazily create the slot tracker.
879 // Nothing to do if this is the right function already.
883 Machine
->purgeFunction();
884 Machine
->incorporateFunction(&F
);
888 int ModuleSlotTracker::getLocalSlot(const Value
*V
) {
889 assert(F
&& "No function incorporated");
890 return Machine
->getLocalSlot(V
);
893 void ModuleSlotTracker::setProcessHook(
894 std::function
<void(AbstractSlotTrackerStorage
*, const Module
*, bool)>
896 ProcessModuleHookFn
= Fn
;
899 void ModuleSlotTracker::setProcessHook(
900 std::function
<void(AbstractSlotTrackerStorage
*, const Function
*, bool)>
902 ProcessFunctionHookFn
= Fn
;
905 static SlotTracker
*createSlotTracker(const Value
*V
) {
906 if (const Argument
*FA
= dyn_cast
<Argument
>(V
))
907 return new SlotTracker(FA
->getParent());
909 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
911 return new SlotTracker(I
->getParent()->getParent());
913 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
914 return new SlotTracker(BB
->getParent());
916 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
917 return new SlotTracker(GV
->getParent());
919 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
920 return new SlotTracker(GA
->getParent());
922 if (const GlobalIFunc
*GIF
= dyn_cast
<GlobalIFunc
>(V
))
923 return new SlotTracker(GIF
->getParent());
925 if (const Function
*Func
= dyn_cast
<Function
>(V
))
926 return new SlotTracker(Func
);
932 #define ST_DEBUG(X) dbgs() << X
937 // Module level constructor. Causes the contents of the Module (sans functions)
938 // to be added to the slot table.
939 SlotTracker::SlotTracker(const Module
*M
, bool ShouldInitializeAllMetadata
)
940 : TheModule(M
), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata
) {}
942 // Function level constructor. Causes the contents of the Module and the one
943 // function provided to be added to the slot table.
944 SlotTracker::SlotTracker(const Function
*F
, bool ShouldInitializeAllMetadata
)
945 : TheModule(F
? F
->getParent() : nullptr), TheFunction(F
),
946 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata
) {}
948 SlotTracker::SlotTracker(const ModuleSummaryIndex
*Index
)
949 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index
) {}
951 inline void SlotTracker::initializeIfNeeded() {
954 TheModule
= nullptr; ///< Prevent re-processing next time we're called.
957 if (TheFunction
&& !FunctionProcessed
)
961 int SlotTracker::initializeIndexIfNeeded() {
964 int NumSlots
= processIndex();
965 TheIndex
= nullptr; ///< Prevent re-processing next time we're called.
969 // Iterate through all the global variables, functions, and global
970 // variable initializers and create slots for them.
971 void SlotTracker::processModule() {
972 ST_DEBUG("begin processModule!\n");
974 // Add all of the unnamed global variables to the value table.
975 for (const GlobalVariable
&Var
: TheModule
->globals()) {
977 CreateModuleSlot(&Var
);
978 processGlobalObjectMetadata(Var
);
979 auto Attrs
= Var
.getAttributes();
980 if (Attrs
.hasAttributes())
981 CreateAttributeSetSlot(Attrs
);
984 for (const GlobalAlias
&A
: TheModule
->aliases()) {
986 CreateModuleSlot(&A
);
989 for (const GlobalIFunc
&I
: TheModule
->ifuncs()) {
991 CreateModuleSlot(&I
);
994 // Add metadata used by named metadata.
995 for (const NamedMDNode
&NMD
: TheModule
->named_metadata()) {
996 for (unsigned i
= 0, e
= NMD
.getNumOperands(); i
!= e
; ++i
)
997 CreateMetadataSlot(NMD
.getOperand(i
));
1000 for (const Function
&F
: *TheModule
) {
1002 // Add all the unnamed functions to the table.
1003 CreateModuleSlot(&F
);
1005 if (ShouldInitializeAllMetadata
)
1006 processFunctionMetadata(F
);
1008 // Add all the function attributes to the table.
1009 // FIXME: Add attributes of other objects?
1010 AttributeSet FnAttrs
= F
.getAttributes().getFnAttrs();
1011 if (FnAttrs
.hasAttributes())
1012 CreateAttributeSetSlot(FnAttrs
);
1015 if (ProcessModuleHookFn
)
1016 ProcessModuleHookFn(this, TheModule
, ShouldInitializeAllMetadata
);
1018 ST_DEBUG("end processModule!\n");
1021 // Process the arguments, basic blocks, and instructions of a function.
1022 void SlotTracker::processFunction() {
1023 ST_DEBUG("begin processFunction!\n");
1026 // Process function metadata if it wasn't hit at the module-level.
1027 if (!ShouldInitializeAllMetadata
)
1028 processFunctionMetadata(*TheFunction
);
1030 // Add all the function arguments with no names.
1031 for(Function::const_arg_iterator AI
= TheFunction
->arg_begin(),
1032 AE
= TheFunction
->arg_end(); AI
!= AE
; ++AI
)
1034 CreateFunctionSlot(&*AI
);
1036 ST_DEBUG("Inserting Instructions:\n");
1038 // Add all of the basic blocks and instructions with no names.
1039 for (auto &BB
: *TheFunction
) {
1041 CreateFunctionSlot(&BB
);
1043 for (auto &I
: BB
) {
1044 if (!I
.getType()->isVoidTy() && !I
.hasName())
1045 CreateFunctionSlot(&I
);
1047 // We allow direct calls to any llvm.foo function here, because the
1048 // target may not be linked into the optimizer.
1049 if (const auto *Call
= dyn_cast
<CallBase
>(&I
)) {
1050 // Add all the call attributes to the table.
1051 AttributeSet Attrs
= Call
->getAttributes().getFnAttrs();
1052 if (Attrs
.hasAttributes())
1053 CreateAttributeSetSlot(Attrs
);
1058 if (ProcessFunctionHookFn
)
1059 ProcessFunctionHookFn(this, TheFunction
, ShouldInitializeAllMetadata
);
1061 FunctionProcessed
= true;
1063 ST_DEBUG("end processFunction!\n");
1066 // Iterate through all the GUID in the index and create slots for them.
1067 int SlotTracker::processIndex() {
1068 ST_DEBUG("begin processIndex!\n");
1071 // The first block of slots are just the module ids, which start at 0 and are
1072 // assigned consecutively. Since the StringMap iteration order isn't
1073 // guaranteed, order by path string before assigning slots.
1074 std::vector
<StringRef
> ModulePaths
;
1075 for (auto &[ModPath
, _
] : TheIndex
->modulePaths())
1076 ModulePaths
.push_back(ModPath
);
1077 llvm::sort(ModulePaths
.begin(), ModulePaths
.end());
1078 for (auto &ModPath
: ModulePaths
)
1079 CreateModulePathSlot(ModPath
);
1081 // Start numbering the GUIDs after the module ids.
1082 GUIDNext
= ModulePathNext
;
1084 for (auto &GlobalList
: *TheIndex
)
1085 CreateGUIDSlot(GlobalList
.first
);
1087 for (auto &TId
: TheIndex
->typeIdCompatibleVtableMap())
1088 CreateGUIDSlot(GlobalValue::getGUID(TId
.first
));
1090 // Start numbering the TypeIds after the GUIDs.
1091 TypeIdNext
= GUIDNext
;
1092 for (const auto &TID
: TheIndex
->typeIds())
1093 CreateTypeIdSlot(TID
.second
.first
);
1095 ST_DEBUG("end processIndex!\n");
1099 void SlotTracker::processGlobalObjectMetadata(const GlobalObject
&GO
) {
1100 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
1101 GO
.getAllMetadata(MDs
);
1102 for (auto &MD
: MDs
)
1103 CreateMetadataSlot(MD
.second
);
1106 void SlotTracker::processFunctionMetadata(const Function
&F
) {
1107 processGlobalObjectMetadata(F
);
1108 for (auto &BB
: F
) {
1110 processInstructionMetadata(I
);
1114 void SlotTracker::processInstructionMetadata(const Instruction
&I
) {
1115 // Process metadata used directly by intrinsics.
1116 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
1117 if (Function
*F
= CI
->getCalledFunction())
1118 if (F
->isIntrinsic())
1119 for (auto &Op
: I
.operands())
1120 if (auto *V
= dyn_cast_or_null
<MetadataAsValue
>(Op
))
1121 if (MDNode
*N
= dyn_cast
<MDNode
>(V
->getMetadata()))
1122 CreateMetadataSlot(N
);
1124 // Process metadata attached to this instruction.
1125 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
1126 I
.getAllMetadata(MDs
);
1127 for (auto &MD
: MDs
)
1128 CreateMetadataSlot(MD
.second
);
1131 /// Clean up after incorporating a function. This is the only way to get out of
1132 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1133 /// incorporation state is indicated by TheFunction != 0.
1134 void SlotTracker::purgeFunction() {
1135 ST_DEBUG("begin purgeFunction!\n");
1136 fMap
.clear(); // Simply discard the function level map
1137 TheFunction
= nullptr;
1138 FunctionProcessed
= false;
1139 ST_DEBUG("end purgeFunction!\n");
1142 /// getGlobalSlot - Get the slot number of a global value.
1143 int SlotTracker::getGlobalSlot(const GlobalValue
*V
) {
1144 // Check for uninitialized state and do lazy initialization.
1145 initializeIfNeeded();
1147 // Find the value in the module map
1148 ValueMap::iterator MI
= mMap
.find(V
);
1149 return MI
== mMap
.end() ? -1 : (int)MI
->second
;
1152 void SlotTracker::setProcessHook(
1153 std::function
<void(AbstractSlotTrackerStorage
*, const Module
*, bool)>
1155 ProcessModuleHookFn
= Fn
;
1158 void SlotTracker::setProcessHook(
1159 std::function
<void(AbstractSlotTrackerStorage
*, const Function
*, bool)>
1161 ProcessFunctionHookFn
= Fn
;
1164 /// getMetadataSlot - Get the slot number of a MDNode.
1165 void SlotTracker::createMetadataSlot(const MDNode
*N
) { CreateMetadataSlot(N
); }
1167 /// getMetadataSlot - Get the slot number of a MDNode.
1168 int SlotTracker::getMetadataSlot(const MDNode
*N
) {
1169 // Check for uninitialized state and do lazy initialization.
1170 initializeIfNeeded();
1172 // Find the MDNode in the module map
1173 mdn_iterator MI
= mdnMap
.find(N
);
1174 return MI
== mdnMap
.end() ? -1 : (int)MI
->second
;
1177 /// getLocalSlot - Get the slot number for a value that is local to a function.
1178 int SlotTracker::getLocalSlot(const Value
*V
) {
1179 assert(!isa
<Constant
>(V
) && "Can't get a constant or global slot with this!");
1181 // Check for uninitialized state and do lazy initialization.
1182 initializeIfNeeded();
1184 ValueMap::iterator FI
= fMap
.find(V
);
1185 return FI
== fMap
.end() ? -1 : (int)FI
->second
;
1188 int SlotTracker::getAttributeGroupSlot(AttributeSet AS
) {
1189 // Check for uninitialized state and do lazy initialization.
1190 initializeIfNeeded();
1192 // Find the AttributeSet in the module map.
1193 as_iterator AI
= asMap
.find(AS
);
1194 return AI
== asMap
.end() ? -1 : (int)AI
->second
;
1197 int SlotTracker::getModulePathSlot(StringRef Path
) {
1198 // Check for uninitialized state and do lazy initialization.
1199 initializeIndexIfNeeded();
1201 // Find the Module path in the map
1202 auto I
= ModulePathMap
.find(Path
);
1203 return I
== ModulePathMap
.end() ? -1 : (int)I
->second
;
1206 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID
) {
1207 // Check for uninitialized state and do lazy initialization.
1208 initializeIndexIfNeeded();
1210 // Find the GUID in the map
1211 guid_iterator I
= GUIDMap
.find(GUID
);
1212 return I
== GUIDMap
.end() ? -1 : (int)I
->second
;
1215 int SlotTracker::getTypeIdSlot(StringRef Id
) {
1216 // Check for uninitialized state and do lazy initialization.
1217 initializeIndexIfNeeded();
1219 // Find the TypeId string in the map
1220 auto I
= TypeIdMap
.find(Id
);
1221 return I
== TypeIdMap
.end() ? -1 : (int)I
->second
;
1224 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1225 void SlotTracker::CreateModuleSlot(const GlobalValue
*V
) {
1226 assert(V
&& "Can't insert a null Value into SlotTracker!");
1227 assert(!V
->getType()->isVoidTy() && "Doesn't need a slot!");
1228 assert(!V
->hasName() && "Doesn't need a slot!");
1230 unsigned DestSlot
= mNext
++;
1233 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
1235 // G = Global, F = Function, A = Alias, I = IFunc, o = other
1236 ST_DEBUG((isa
<GlobalVariable
>(V
) ? 'G' :
1237 (isa
<Function
>(V
) ? 'F' :
1238 (isa
<GlobalAlias
>(V
) ? 'A' :
1239 (isa
<GlobalIFunc
>(V
) ? 'I' : 'o')))) << "]\n");
1242 /// CreateSlot - Create a new slot for the specified value if it has no name.
1243 void SlotTracker::CreateFunctionSlot(const Value
*V
) {
1244 assert(!V
->getType()->isVoidTy() && !V
->hasName() && "Doesn't need a slot!");
1246 unsigned DestSlot
= fNext
++;
1249 // G = Global, F = Function, o = other
1250 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
1251 DestSlot
<< " [o]\n");
1254 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1255 void SlotTracker::CreateMetadataSlot(const MDNode
*N
) {
1256 assert(N
&& "Can't insert a null Value into SlotTracker!");
1258 // Don't make slots for DIExpressions or DIArgLists. We just print them inline
1260 if (isa
<DIExpression
>(N
) || isa
<DIArgList
>(N
))
1263 unsigned DestSlot
= mdnNext
;
1264 if (!mdnMap
.insert(std::make_pair(N
, DestSlot
)).second
)
1268 // Recursively add any MDNodes referenced by operands.
1269 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
1270 if (const MDNode
*Op
= dyn_cast_or_null
<MDNode
>(N
->getOperand(i
)))
1271 CreateMetadataSlot(Op
);
1274 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS
) {
1275 assert(AS
.hasAttributes() && "Doesn't need a slot!");
1277 as_iterator I
= asMap
.find(AS
);
1278 if (I
!= asMap
.end())
1281 unsigned DestSlot
= asNext
++;
1282 asMap
[AS
] = DestSlot
;
1285 /// Create a new slot for the specified Module
1286 void SlotTracker::CreateModulePathSlot(StringRef Path
) {
1287 ModulePathMap
[Path
] = ModulePathNext
++;
1290 /// Create a new slot for the specified GUID
1291 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID
) {
1292 GUIDMap
[GUID
] = GUIDNext
++;
1295 /// Create a new slot for the specified Id
1296 void SlotTracker::CreateTypeIdSlot(StringRef Id
) {
1297 TypeIdMap
[Id
] = TypeIdNext
++;
1301 /// Common instances used by most of the printer functions.
1302 struct AsmWriterContext
{
1303 TypePrinting
*TypePrinter
= nullptr;
1304 SlotTracker
*Machine
= nullptr;
1305 const Module
*Context
= nullptr;
1307 AsmWriterContext(TypePrinting
*TP
, SlotTracker
*ST
, const Module
*M
= nullptr)
1308 : TypePrinter(TP
), Machine(ST
), Context(M
) {}
1310 static AsmWriterContext
&getEmpty() {
1311 static AsmWriterContext
EmptyCtx(nullptr, nullptr);
1315 /// A callback that will be triggered when the underlying printer
1316 /// prints a Metadata as operand.
1317 virtual void onWriteMetadataAsOperand(const Metadata
*) {}
1319 virtual ~AsmWriterContext() = default;
1321 } // end anonymous namespace
1323 //===----------------------------------------------------------------------===//
1324 // AsmWriter Implementation
1325 //===----------------------------------------------------------------------===//
1327 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
1328 AsmWriterContext
&WriterCtx
);
1330 static void WriteAsOperandInternal(raw_ostream
&Out
, const Metadata
*MD
,
1331 AsmWriterContext
&WriterCtx
,
1332 bool FromValue
= false);
1334 static void WriteOptimizationInfo(raw_ostream
&Out
, const User
*U
) {
1335 if (const FPMathOperator
*FPO
= dyn_cast
<const FPMathOperator
>(U
))
1336 Out
<< FPO
->getFastMathFlags();
1338 if (const OverflowingBinaryOperator
*OBO
=
1339 dyn_cast
<OverflowingBinaryOperator
>(U
)) {
1340 if (OBO
->hasNoUnsignedWrap())
1342 if (OBO
->hasNoSignedWrap())
1344 } else if (const PossiblyExactOperator
*Div
=
1345 dyn_cast
<PossiblyExactOperator
>(U
)) {
1348 } else if (const GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(U
)) {
1349 if (GEP
->isInBounds())
1351 } else if (const auto *NNI
= dyn_cast
<PossiblyNonNegInst
>(U
)) {
1352 if (NNI
->hasNonNeg())
1357 static void WriteConstantInternal(raw_ostream
&Out
, const Constant
*CV
,
1358 AsmWriterContext
&WriterCtx
) {
1359 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
1360 if (CI
->getType()->isIntegerTy(1)) {
1361 Out
<< (CI
->getZExtValue() ? "true" : "false");
1364 Out
<< CI
->getValue();
1368 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
1369 const APFloat
&APF
= CFP
->getValueAPF();
1370 if (&APF
.getSemantics() == &APFloat::IEEEsingle() ||
1371 &APF
.getSemantics() == &APFloat::IEEEdouble()) {
1372 // We would like to output the FP constant value in exponential notation,
1373 // but we cannot do this if doing so will lose precision. Check here to
1374 // make sure that we only output it in exponential format if we can parse
1375 // the value back and get the same value.
1378 bool isDouble
= &APF
.getSemantics() == &APFloat::IEEEdouble();
1379 bool isInf
= APF
.isInfinity();
1380 bool isNaN
= APF
.isNaN();
1381 if (!isInf
&& !isNaN
) {
1382 double Val
= APF
.convertToDouble();
1383 SmallString
<128> StrVal
;
1384 APF
.toString(StrVal
, 6, 0, false);
1385 // Check to make sure that the stringized number is not some string like
1386 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1387 // that the string matches the "[-+]?[0-9]" regex.
1389 assert((isDigit(StrVal
[0]) || ((StrVal
[0] == '-' || StrVal
[0] == '+') &&
1390 isDigit(StrVal
[1]))) &&
1391 "[-+]?[0-9] regex does not match!");
1392 // Reparse stringized version!
1393 if (APFloat(APFloat::IEEEdouble(), StrVal
).convertToDouble() == Val
) {
1398 // Otherwise we could not reparse it to exactly the same value, so we must
1399 // output the string in hexadecimal format! Note that loading and storing
1400 // floating point types changes the bits of NaNs on some hosts, notably
1401 // x86, so we must not use these types.
1402 static_assert(sizeof(double) == sizeof(uint64_t),
1403 "assuming that double is 64 bits!");
1405 // Floats are represented in ASCII IR as double, convert.
1406 // FIXME: We should allow 32-bit hex float and remove this.
1408 // A signaling NaN is quieted on conversion, so we need to recreate the
1409 // expected value after convert (quiet bit of the payload is clear).
1410 bool IsSNAN
= apf
.isSignaling();
1411 apf
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
,
1414 APInt Payload
= apf
.bitcastToAPInt();
1415 apf
= APFloat::getSNaN(APFloat::IEEEdouble(), apf
.isNegative(),
1419 Out
<< format_hex(apf
.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1423 // Either half, bfloat or some form of long double.
1424 // These appear as a magic letter identifying the type, then a
1425 // fixed number of hex digits.
1427 APInt API
= APF
.bitcastToAPInt();
1428 if (&APF
.getSemantics() == &APFloat::x87DoubleExtended()) {
1430 Out
<< format_hex_no_prefix(API
.getHiBits(16).getZExtValue(), 4,
1432 Out
<< format_hex_no_prefix(API
.getLoBits(64).getZExtValue(), 16,
1435 } else if (&APF
.getSemantics() == &APFloat::IEEEquad()) {
1437 Out
<< format_hex_no_prefix(API
.getLoBits(64).getZExtValue(), 16,
1439 Out
<< format_hex_no_prefix(API
.getHiBits(64).getZExtValue(), 16,
1441 } else if (&APF
.getSemantics() == &APFloat::PPCDoubleDouble()) {
1443 Out
<< format_hex_no_prefix(API
.getLoBits(64).getZExtValue(), 16,
1445 Out
<< format_hex_no_prefix(API
.getHiBits(64).getZExtValue(), 16,
1447 } else if (&APF
.getSemantics() == &APFloat::IEEEhalf()) {
1449 Out
<< format_hex_no_prefix(API
.getZExtValue(), 4,
1451 } else if (&APF
.getSemantics() == &APFloat::BFloat()) {
1453 Out
<< format_hex_no_prefix(API
.getZExtValue(), 4,
1456 llvm_unreachable("Unsupported floating point type");
1460 if (isa
<ConstantAggregateZero
>(CV
) || isa
<ConstantTargetNone
>(CV
)) {
1461 Out
<< "zeroinitializer";
1465 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(CV
)) {
1466 Out
<< "blockaddress(";
1467 WriteAsOperandInternal(Out
, BA
->getFunction(), WriterCtx
);
1469 WriteAsOperandInternal(Out
, BA
->getBasicBlock(), WriterCtx
);
1474 if (const auto *Equiv
= dyn_cast
<DSOLocalEquivalent
>(CV
)) {
1475 Out
<< "dso_local_equivalent ";
1476 WriteAsOperandInternal(Out
, Equiv
->getGlobalValue(), WriterCtx
);
1480 if (const auto *NC
= dyn_cast
<NoCFIValue
>(CV
)) {
1482 WriteAsOperandInternal(Out
, NC
->getGlobalValue(), WriterCtx
);
1486 if (const ConstantArray
*CA
= dyn_cast
<ConstantArray
>(CV
)) {
1487 Type
*ETy
= CA
->getType()->getElementType();
1489 WriterCtx
.TypePrinter
->print(ETy
, Out
);
1491 WriteAsOperandInternal(Out
, CA
->getOperand(0), WriterCtx
);
1492 for (unsigned i
= 1, e
= CA
->getNumOperands(); i
!= e
; ++i
) {
1494 WriterCtx
.TypePrinter
->print(ETy
, Out
);
1496 WriteAsOperandInternal(Out
, CA
->getOperand(i
), WriterCtx
);
1502 if (const ConstantDataArray
*CA
= dyn_cast
<ConstantDataArray
>(CV
)) {
1503 // As a special case, print the array as a string if it is an array of
1504 // i8 with ConstantInt values.
1505 if (CA
->isString()) {
1507 printEscapedString(CA
->getAsString(), Out
);
1512 Type
*ETy
= CA
->getType()->getElementType();
1514 WriterCtx
.TypePrinter
->print(ETy
, Out
);
1516 WriteAsOperandInternal(Out
, CA
->getElementAsConstant(0), WriterCtx
);
1517 for (unsigned i
= 1, e
= CA
->getNumElements(); i
!= e
; ++i
) {
1519 WriterCtx
.TypePrinter
->print(ETy
, Out
);
1521 WriteAsOperandInternal(Out
, CA
->getElementAsConstant(i
), WriterCtx
);
1527 if (const ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(CV
)) {
1528 if (CS
->getType()->isPacked())
1531 unsigned N
= CS
->getNumOperands();
1534 WriterCtx
.TypePrinter
->print(CS
->getOperand(0)->getType(), Out
);
1537 WriteAsOperandInternal(Out
, CS
->getOperand(0), WriterCtx
);
1539 for (unsigned i
= 1; i
< N
; i
++) {
1541 WriterCtx
.TypePrinter
->print(CS
->getOperand(i
)->getType(), Out
);
1544 WriteAsOperandInternal(Out
, CS
->getOperand(i
), WriterCtx
);
1550 if (CS
->getType()->isPacked())
1555 if (isa
<ConstantVector
>(CV
) || isa
<ConstantDataVector
>(CV
)) {
1556 auto *CVVTy
= cast
<FixedVectorType
>(CV
->getType());
1557 Type
*ETy
= CVVTy
->getElementType();
1559 WriterCtx
.TypePrinter
->print(ETy
, Out
);
1561 WriteAsOperandInternal(Out
, CV
->getAggregateElement(0U), WriterCtx
);
1562 for (unsigned i
= 1, e
= CVVTy
->getNumElements(); i
!= e
; ++i
) {
1564 WriterCtx
.TypePrinter
->print(ETy
, Out
);
1566 WriteAsOperandInternal(Out
, CV
->getAggregateElement(i
), WriterCtx
);
1572 if (isa
<ConstantPointerNull
>(CV
)) {
1577 if (isa
<ConstantTokenNone
>(CV
)) {
1582 if (isa
<PoisonValue
>(CV
)) {
1587 if (isa
<UndefValue
>(CV
)) {
1592 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
1593 Out
<< CE
->getOpcodeName();
1594 WriteOptimizationInfo(Out
, CE
);
1595 if (CE
->isCompare())
1596 Out
<< ' ' << static_cast<CmpInst::Predicate
>(CE
->getPredicate());
1599 std::optional
<unsigned> InRangeOp
;
1600 if (const GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(CE
)) {
1601 WriterCtx
.TypePrinter
->print(GEP
->getSourceElementType(), Out
);
1603 InRangeOp
= GEP
->getInRangeIndex();
1608 for (User::const_op_iterator OI
=CE
->op_begin(); OI
!= CE
->op_end(); ++OI
) {
1609 if (InRangeOp
&& unsigned(OI
- CE
->op_begin()) == *InRangeOp
)
1611 WriterCtx
.TypePrinter
->print((*OI
)->getType(), Out
);
1613 WriteAsOperandInternal(Out
, *OI
, WriterCtx
);
1614 if (OI
+1 != CE
->op_end())
1620 WriterCtx
.TypePrinter
->print(CE
->getType(), Out
);
1623 if (CE
->getOpcode() == Instruction::ShuffleVector
)
1624 PrintShuffleMask(Out
, CE
->getType(), CE
->getShuffleMask());
1630 Out
<< "<placeholder or erroneous Constant>";
1633 static void writeMDTuple(raw_ostream
&Out
, const MDTuple
*Node
,
1634 AsmWriterContext
&WriterCtx
) {
1636 for (unsigned mi
= 0, me
= Node
->getNumOperands(); mi
!= me
; ++mi
) {
1637 const Metadata
*MD
= Node
->getOperand(mi
);
1640 else if (auto *MDV
= dyn_cast
<ValueAsMetadata
>(MD
)) {
1641 Value
*V
= MDV
->getValue();
1642 WriterCtx
.TypePrinter
->print(V
->getType(), Out
);
1644 WriteAsOperandInternal(Out
, V
, WriterCtx
);
1646 WriteAsOperandInternal(Out
, MD
, WriterCtx
);
1647 WriterCtx
.onWriteMetadataAsOperand(MD
);
1658 struct FieldSeparator
{
1662 FieldSeparator(const char *Sep
= ", ") : Sep(Sep
) {}
1665 raw_ostream
&operator<<(raw_ostream
&OS
, FieldSeparator
&FS
) {
1670 return OS
<< FS
.Sep
;
1673 struct MDFieldPrinter
{
1676 AsmWriterContext
&WriterCtx
;
1678 explicit MDFieldPrinter(raw_ostream
&Out
)
1679 : Out(Out
), WriterCtx(AsmWriterContext::getEmpty()) {}
1680 MDFieldPrinter(raw_ostream
&Out
, AsmWriterContext
&Ctx
)
1681 : Out(Out
), WriterCtx(Ctx
) {}
1683 void printTag(const DINode
*N
);
1684 void printMacinfoType(const DIMacroNode
*N
);
1685 void printChecksum(const DIFile::ChecksumInfo
<StringRef
> &N
);
1686 void printString(StringRef Name
, StringRef Value
,
1687 bool ShouldSkipEmpty
= true);
1688 void printMetadata(StringRef Name
, const Metadata
*MD
,
1689 bool ShouldSkipNull
= true);
1690 template <class IntTy
>
1691 void printInt(StringRef Name
, IntTy Int
, bool ShouldSkipZero
= true);
1692 void printAPInt(StringRef Name
, const APInt
&Int
, bool IsUnsigned
,
1693 bool ShouldSkipZero
);
1694 void printBool(StringRef Name
, bool Value
,
1695 std::optional
<bool> Default
= std::nullopt
);
1696 void printDIFlags(StringRef Name
, DINode::DIFlags Flags
);
1697 void printDISPFlags(StringRef Name
, DISubprogram::DISPFlags Flags
);
1698 template <class IntTy
, class Stringifier
>
1699 void printDwarfEnum(StringRef Name
, IntTy Value
, Stringifier toString
,
1700 bool ShouldSkipZero
= true);
1701 void printEmissionKind(StringRef Name
, DICompileUnit::DebugEmissionKind EK
);
1702 void printNameTableKind(StringRef Name
,
1703 DICompileUnit::DebugNameTableKind NTK
);
1706 } // end anonymous namespace
1708 void MDFieldPrinter::printTag(const DINode
*N
) {
1709 Out
<< FS
<< "tag: ";
1710 auto Tag
= dwarf::TagString(N
->getTag());
1717 void MDFieldPrinter::printMacinfoType(const DIMacroNode
*N
) {
1718 Out
<< FS
<< "type: ";
1719 auto Type
= dwarf::MacinfoString(N
->getMacinfoType());
1723 Out
<< N
->getMacinfoType();
1726 void MDFieldPrinter::printChecksum(
1727 const DIFile::ChecksumInfo
<StringRef
> &Checksum
) {
1728 Out
<< FS
<< "checksumkind: " << Checksum
.getKindAsString();
1729 printString("checksum", Checksum
.Value
, /* ShouldSkipEmpty */ false);
1732 void MDFieldPrinter::printString(StringRef Name
, StringRef Value
,
1733 bool ShouldSkipEmpty
) {
1734 if (ShouldSkipEmpty
&& Value
.empty())
1737 Out
<< FS
<< Name
<< ": \"";
1738 printEscapedString(Value
, Out
);
1742 static void writeMetadataAsOperand(raw_ostream
&Out
, const Metadata
*MD
,
1743 AsmWriterContext
&WriterCtx
) {
1748 WriteAsOperandInternal(Out
, MD
, WriterCtx
);
1749 WriterCtx
.onWriteMetadataAsOperand(MD
);
1752 void MDFieldPrinter::printMetadata(StringRef Name
, const Metadata
*MD
,
1753 bool ShouldSkipNull
) {
1754 if (ShouldSkipNull
&& !MD
)
1757 Out
<< FS
<< Name
<< ": ";
1758 writeMetadataAsOperand(Out
, MD
, WriterCtx
);
1761 template <class IntTy
>
1762 void MDFieldPrinter::printInt(StringRef Name
, IntTy Int
, bool ShouldSkipZero
) {
1763 if (ShouldSkipZero
&& !Int
)
1766 Out
<< FS
<< Name
<< ": " << Int
;
1769 void MDFieldPrinter::printAPInt(StringRef Name
, const APInt
&Int
,
1770 bool IsUnsigned
, bool ShouldSkipZero
) {
1771 if (ShouldSkipZero
&& Int
.isZero())
1774 Out
<< FS
<< Name
<< ": ";
1775 Int
.print(Out
, !IsUnsigned
);
1778 void MDFieldPrinter::printBool(StringRef Name
, bool Value
,
1779 std::optional
<bool> Default
) {
1780 if (Default
&& Value
== *Default
)
1782 Out
<< FS
<< Name
<< ": " << (Value
? "true" : "false");
1785 void MDFieldPrinter::printDIFlags(StringRef Name
, DINode::DIFlags Flags
) {
1789 Out
<< FS
<< Name
<< ": ";
1791 SmallVector
<DINode::DIFlags
, 8> SplitFlags
;
1792 auto Extra
= DINode::splitFlags(Flags
, SplitFlags
);
1794 FieldSeparator
FlagsFS(" | ");
1795 for (auto F
: SplitFlags
) {
1796 auto StringF
= DINode::getFlagString(F
);
1797 assert(!StringF
.empty() && "Expected valid flag");
1798 Out
<< FlagsFS
<< StringF
;
1800 if (Extra
|| SplitFlags
.empty())
1801 Out
<< FlagsFS
<< Extra
;
1804 void MDFieldPrinter::printDISPFlags(StringRef Name
,
1805 DISubprogram::DISPFlags Flags
) {
1806 // Always print this field, because no flags in the IR at all will be
1807 // interpreted as old-style isDefinition: true.
1808 Out
<< FS
<< Name
<< ": ";
1815 SmallVector
<DISubprogram::DISPFlags
, 8> SplitFlags
;
1816 auto Extra
= DISubprogram::splitFlags(Flags
, SplitFlags
);
1818 FieldSeparator
FlagsFS(" | ");
1819 for (auto F
: SplitFlags
) {
1820 auto StringF
= DISubprogram::getFlagString(F
);
1821 assert(!StringF
.empty() && "Expected valid flag");
1822 Out
<< FlagsFS
<< StringF
;
1824 if (Extra
|| SplitFlags
.empty())
1825 Out
<< FlagsFS
<< Extra
;
1828 void MDFieldPrinter::printEmissionKind(StringRef Name
,
1829 DICompileUnit::DebugEmissionKind EK
) {
1830 Out
<< FS
<< Name
<< ": " << DICompileUnit::emissionKindString(EK
);
1833 void MDFieldPrinter::printNameTableKind(StringRef Name
,
1834 DICompileUnit::DebugNameTableKind NTK
) {
1835 if (NTK
== DICompileUnit::DebugNameTableKind::Default
)
1837 Out
<< FS
<< Name
<< ": " << DICompileUnit::nameTableKindString(NTK
);
1840 template <class IntTy
, class Stringifier
>
1841 void MDFieldPrinter::printDwarfEnum(StringRef Name
, IntTy Value
,
1842 Stringifier toString
, bool ShouldSkipZero
) {
1846 Out
<< FS
<< Name
<< ": ";
1847 auto S
= toString(Value
);
1854 static void writeGenericDINode(raw_ostream
&Out
, const GenericDINode
*N
,
1855 AsmWriterContext
&WriterCtx
) {
1856 Out
<< "!GenericDINode(";
1857 MDFieldPrinter
Printer(Out
, WriterCtx
);
1858 Printer
.printTag(N
);
1859 Printer
.printString("header", N
->getHeader());
1860 if (N
->getNumDwarfOperands()) {
1861 Out
<< Printer
.FS
<< "operands: {";
1863 for (auto &I
: N
->dwarf_operands()) {
1865 writeMetadataAsOperand(Out
, I
, WriterCtx
);
1872 static void writeDILocation(raw_ostream
&Out
, const DILocation
*DL
,
1873 AsmWriterContext
&WriterCtx
) {
1874 Out
<< "!DILocation(";
1875 MDFieldPrinter
Printer(Out
, WriterCtx
);
1876 // Always output the line, since 0 is a relevant and important value for it.
1877 Printer
.printInt("line", DL
->getLine(), /* ShouldSkipZero */ false);
1878 Printer
.printInt("column", DL
->getColumn());
1879 Printer
.printMetadata("scope", DL
->getRawScope(), /* ShouldSkipNull */ false);
1880 Printer
.printMetadata("inlinedAt", DL
->getRawInlinedAt());
1881 Printer
.printBool("isImplicitCode", DL
->isImplicitCode(),
1882 /* Default */ false);
1886 static void writeDIAssignID(raw_ostream
&Out
, const DIAssignID
*DL
,
1887 AsmWriterContext
&WriterCtx
) {
1888 Out
<< "!DIAssignID()";
1889 MDFieldPrinter
Printer(Out
, WriterCtx
);
1892 static void writeDISubrange(raw_ostream
&Out
, const DISubrange
*N
,
1893 AsmWriterContext
&WriterCtx
) {
1894 Out
<< "!DISubrange(";
1895 MDFieldPrinter
Printer(Out
, WriterCtx
);
1897 auto *Count
= N
->getRawCountNode();
1898 if (auto *CE
= dyn_cast_or_null
<ConstantAsMetadata
>(Count
)) {
1899 auto *CV
= cast
<ConstantInt
>(CE
->getValue());
1900 Printer
.printInt("count", CV
->getSExtValue(),
1901 /* ShouldSkipZero */ false);
1903 Printer
.printMetadata("count", Count
, /*ShouldSkipNull */ true);
1905 // A lowerBound of constant 0 should not be skipped, since it is different
1906 // from an unspecified lower bound (= nullptr).
1907 auto *LBound
= N
->getRawLowerBound();
1908 if (auto *LE
= dyn_cast_or_null
<ConstantAsMetadata
>(LBound
)) {
1909 auto *LV
= cast
<ConstantInt
>(LE
->getValue());
1910 Printer
.printInt("lowerBound", LV
->getSExtValue(),
1911 /* ShouldSkipZero */ false);
1913 Printer
.printMetadata("lowerBound", LBound
, /*ShouldSkipNull */ true);
1915 auto *UBound
= N
->getRawUpperBound();
1916 if (auto *UE
= dyn_cast_or_null
<ConstantAsMetadata
>(UBound
)) {
1917 auto *UV
= cast
<ConstantInt
>(UE
->getValue());
1918 Printer
.printInt("upperBound", UV
->getSExtValue(),
1919 /* ShouldSkipZero */ false);
1921 Printer
.printMetadata("upperBound", UBound
, /*ShouldSkipNull */ true);
1923 auto *Stride
= N
->getRawStride();
1924 if (auto *SE
= dyn_cast_or_null
<ConstantAsMetadata
>(Stride
)) {
1925 auto *SV
= cast
<ConstantInt
>(SE
->getValue());
1926 Printer
.printInt("stride", SV
->getSExtValue(), /* ShouldSkipZero */ false);
1928 Printer
.printMetadata("stride", Stride
, /*ShouldSkipNull */ true);
1933 static void writeDIGenericSubrange(raw_ostream
&Out
, const DIGenericSubrange
*N
,
1934 AsmWriterContext
&WriterCtx
) {
1935 Out
<< "!DIGenericSubrange(";
1936 MDFieldPrinter
Printer(Out
, WriterCtx
);
1938 auto IsConstant
= [&](Metadata
*Bound
) -> bool {
1939 if (auto *BE
= dyn_cast_or_null
<DIExpression
>(Bound
)) {
1940 return BE
->isConstant() &&
1941 DIExpression::SignedOrUnsignedConstant::SignedConstant
==
1947 auto GetConstant
= [&](Metadata
*Bound
) -> int64_t {
1948 assert(IsConstant(Bound
) && "Expected constant");
1949 auto *BE
= dyn_cast_or_null
<DIExpression
>(Bound
);
1950 return static_cast<int64_t>(BE
->getElement(1));
1953 auto *Count
= N
->getRawCountNode();
1954 if (IsConstant(Count
))
1955 Printer
.printInt("count", GetConstant(Count
),
1956 /* ShouldSkipZero */ false);
1958 Printer
.printMetadata("count", Count
, /*ShouldSkipNull */ true);
1960 auto *LBound
= N
->getRawLowerBound();
1961 if (IsConstant(LBound
))
1962 Printer
.printInt("lowerBound", GetConstant(LBound
),
1963 /* ShouldSkipZero */ false);
1965 Printer
.printMetadata("lowerBound", LBound
, /*ShouldSkipNull */ true);
1967 auto *UBound
= N
->getRawUpperBound();
1968 if (IsConstant(UBound
))
1969 Printer
.printInt("upperBound", GetConstant(UBound
),
1970 /* ShouldSkipZero */ false);
1972 Printer
.printMetadata("upperBound", UBound
, /*ShouldSkipNull */ true);
1974 auto *Stride
= N
->getRawStride();
1975 if (IsConstant(Stride
))
1976 Printer
.printInt("stride", GetConstant(Stride
),
1977 /* ShouldSkipZero */ false);
1979 Printer
.printMetadata("stride", Stride
, /*ShouldSkipNull */ true);
1984 static void writeDIEnumerator(raw_ostream
&Out
, const DIEnumerator
*N
,
1985 AsmWriterContext
&) {
1986 Out
<< "!DIEnumerator(";
1987 MDFieldPrinter
Printer(Out
);
1988 Printer
.printString("name", N
->getName(), /* ShouldSkipEmpty */ false);
1989 Printer
.printAPInt("value", N
->getValue(), N
->isUnsigned(),
1990 /*ShouldSkipZero=*/false);
1991 if (N
->isUnsigned())
1992 Printer
.printBool("isUnsigned", true);
1996 static void writeDIBasicType(raw_ostream
&Out
, const DIBasicType
*N
,
1997 AsmWriterContext
&) {
1998 Out
<< "!DIBasicType(";
1999 MDFieldPrinter
Printer(Out
);
2000 if (N
->getTag() != dwarf::DW_TAG_base_type
)
2001 Printer
.printTag(N
);
2002 Printer
.printString("name", N
->getName());
2003 Printer
.printInt("size", N
->getSizeInBits());
2004 Printer
.printInt("align", N
->getAlignInBits());
2005 Printer
.printDwarfEnum("encoding", N
->getEncoding(),
2006 dwarf::AttributeEncodingString
);
2007 Printer
.printDIFlags("flags", N
->getFlags());
2011 static void writeDIStringType(raw_ostream
&Out
, const DIStringType
*N
,
2012 AsmWriterContext
&WriterCtx
) {
2013 Out
<< "!DIStringType(";
2014 MDFieldPrinter
Printer(Out
, WriterCtx
);
2015 if (N
->getTag() != dwarf::DW_TAG_string_type
)
2016 Printer
.printTag(N
);
2017 Printer
.printString("name", N
->getName());
2018 Printer
.printMetadata("stringLength", N
->getRawStringLength());
2019 Printer
.printMetadata("stringLengthExpression", N
->getRawStringLengthExp());
2020 Printer
.printMetadata("stringLocationExpression",
2021 N
->getRawStringLocationExp());
2022 Printer
.printInt("size", N
->getSizeInBits());
2023 Printer
.printInt("align", N
->getAlignInBits());
2024 Printer
.printDwarfEnum("encoding", N
->getEncoding(),
2025 dwarf::AttributeEncodingString
);
2029 static void writeDIDerivedType(raw_ostream
&Out
, const DIDerivedType
*N
,
2030 AsmWriterContext
&WriterCtx
) {
2031 Out
<< "!DIDerivedType(";
2032 MDFieldPrinter
Printer(Out
, WriterCtx
);
2033 Printer
.printTag(N
);
2034 Printer
.printString("name", N
->getName());
2035 Printer
.printMetadata("scope", N
->getRawScope());
2036 Printer
.printMetadata("file", N
->getRawFile());
2037 Printer
.printInt("line", N
->getLine());
2038 Printer
.printMetadata("baseType", N
->getRawBaseType(),
2039 /* ShouldSkipNull */ false);
2040 Printer
.printInt("size", N
->getSizeInBits());
2041 Printer
.printInt("align", N
->getAlignInBits());
2042 Printer
.printInt("offset", N
->getOffsetInBits());
2043 Printer
.printDIFlags("flags", N
->getFlags());
2044 Printer
.printMetadata("extraData", N
->getRawExtraData());
2045 if (const auto &DWARFAddressSpace
= N
->getDWARFAddressSpace())
2046 Printer
.printInt("dwarfAddressSpace", *DWARFAddressSpace
,
2047 /* ShouldSkipZero */ false);
2048 Printer
.printMetadata("annotations", N
->getRawAnnotations());
2052 static void writeDICompositeType(raw_ostream
&Out
, const DICompositeType
*N
,
2053 AsmWriterContext
&WriterCtx
) {
2054 Out
<< "!DICompositeType(";
2055 MDFieldPrinter
Printer(Out
, WriterCtx
);
2056 Printer
.printTag(N
);
2057 Printer
.printString("name", N
->getName());
2058 Printer
.printMetadata("scope", N
->getRawScope());
2059 Printer
.printMetadata("file", N
->getRawFile());
2060 Printer
.printInt("line", N
->getLine());
2061 Printer
.printMetadata("baseType", N
->getRawBaseType());
2062 Printer
.printInt("size", N
->getSizeInBits());
2063 Printer
.printInt("align", N
->getAlignInBits());
2064 Printer
.printInt("offset", N
->getOffsetInBits());
2065 Printer
.printDIFlags("flags", N
->getFlags());
2066 Printer
.printMetadata("elements", N
->getRawElements());
2067 Printer
.printDwarfEnum("runtimeLang", N
->getRuntimeLang(),
2068 dwarf::LanguageString
);
2069 Printer
.printMetadata("vtableHolder", N
->getRawVTableHolder());
2070 Printer
.printMetadata("templateParams", N
->getRawTemplateParams());
2071 Printer
.printString("identifier", N
->getIdentifier());
2072 Printer
.printMetadata("discriminator", N
->getRawDiscriminator());
2073 Printer
.printMetadata("dataLocation", N
->getRawDataLocation());
2074 Printer
.printMetadata("associated", N
->getRawAssociated());
2075 Printer
.printMetadata("allocated", N
->getRawAllocated());
2076 if (auto *RankConst
= N
->getRankConst())
2077 Printer
.printInt("rank", RankConst
->getSExtValue(),
2078 /* ShouldSkipZero */ false);
2080 Printer
.printMetadata("rank", N
->getRawRank(), /*ShouldSkipNull */ true);
2081 Printer
.printMetadata("annotations", N
->getRawAnnotations());
2085 static void writeDISubroutineType(raw_ostream
&Out
, const DISubroutineType
*N
,
2086 AsmWriterContext
&WriterCtx
) {
2087 Out
<< "!DISubroutineType(";
2088 MDFieldPrinter
Printer(Out
, WriterCtx
);
2089 Printer
.printDIFlags("flags", N
->getFlags());
2090 Printer
.printDwarfEnum("cc", N
->getCC(), dwarf::ConventionString
);
2091 Printer
.printMetadata("types", N
->getRawTypeArray(),
2092 /* ShouldSkipNull */ false);
2096 static void writeDIFile(raw_ostream
&Out
, const DIFile
*N
, AsmWriterContext
&) {
2098 MDFieldPrinter
Printer(Out
);
2099 Printer
.printString("filename", N
->getFilename(),
2100 /* ShouldSkipEmpty */ false);
2101 Printer
.printString("directory", N
->getDirectory(),
2102 /* ShouldSkipEmpty */ false);
2103 // Print all values for checksum together, or not at all.
2104 if (N
->getChecksum())
2105 Printer
.printChecksum(*N
->getChecksum());
2106 Printer
.printString("source", N
->getSource().value_or(StringRef()),
2107 /* ShouldSkipEmpty */ true);
2111 static void writeDICompileUnit(raw_ostream
&Out
, const DICompileUnit
*N
,
2112 AsmWriterContext
&WriterCtx
) {
2113 Out
<< "!DICompileUnit(";
2114 MDFieldPrinter
Printer(Out
, WriterCtx
);
2115 Printer
.printDwarfEnum("language", N
->getSourceLanguage(),
2116 dwarf::LanguageString
, /* ShouldSkipZero */ false);
2117 Printer
.printMetadata("file", N
->getRawFile(), /* ShouldSkipNull */ false);
2118 Printer
.printString("producer", N
->getProducer());
2119 Printer
.printBool("isOptimized", N
->isOptimized());
2120 Printer
.printString("flags", N
->getFlags());
2121 Printer
.printInt("runtimeVersion", N
->getRuntimeVersion(),
2122 /* ShouldSkipZero */ false);
2123 Printer
.printString("splitDebugFilename", N
->getSplitDebugFilename());
2124 Printer
.printEmissionKind("emissionKind", N
->getEmissionKind());
2125 Printer
.printMetadata("enums", N
->getRawEnumTypes());
2126 Printer
.printMetadata("retainedTypes", N
->getRawRetainedTypes());
2127 Printer
.printMetadata("globals", N
->getRawGlobalVariables());
2128 Printer
.printMetadata("imports", N
->getRawImportedEntities());
2129 Printer
.printMetadata("macros", N
->getRawMacros());
2130 Printer
.printInt("dwoId", N
->getDWOId());
2131 Printer
.printBool("splitDebugInlining", N
->getSplitDebugInlining(), true);
2132 Printer
.printBool("debugInfoForProfiling", N
->getDebugInfoForProfiling(),
2134 Printer
.printNameTableKind("nameTableKind", N
->getNameTableKind());
2135 Printer
.printBool("rangesBaseAddress", N
->getRangesBaseAddress(), false);
2136 Printer
.printString("sysroot", N
->getSysRoot());
2137 Printer
.printString("sdk", N
->getSDK());
2141 static void writeDISubprogram(raw_ostream
&Out
, const DISubprogram
*N
,
2142 AsmWriterContext
&WriterCtx
) {
2143 Out
<< "!DISubprogram(";
2144 MDFieldPrinter
Printer(Out
, WriterCtx
);
2145 Printer
.printString("name", N
->getName());
2146 Printer
.printString("linkageName", N
->getLinkageName());
2147 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2148 Printer
.printMetadata("file", N
->getRawFile());
2149 Printer
.printInt("line", N
->getLine());
2150 Printer
.printMetadata("type", N
->getRawType());
2151 Printer
.printInt("scopeLine", N
->getScopeLine());
2152 Printer
.printMetadata("containingType", N
->getRawContainingType());
2153 if (N
->getVirtuality() != dwarf::DW_VIRTUALITY_none
||
2154 N
->getVirtualIndex() != 0)
2155 Printer
.printInt("virtualIndex", N
->getVirtualIndex(), false);
2156 Printer
.printInt("thisAdjustment", N
->getThisAdjustment());
2157 Printer
.printDIFlags("flags", N
->getFlags());
2158 Printer
.printDISPFlags("spFlags", N
->getSPFlags());
2159 Printer
.printMetadata("unit", N
->getRawUnit());
2160 Printer
.printMetadata("templateParams", N
->getRawTemplateParams());
2161 Printer
.printMetadata("declaration", N
->getRawDeclaration());
2162 Printer
.printMetadata("retainedNodes", N
->getRawRetainedNodes());
2163 Printer
.printMetadata("thrownTypes", N
->getRawThrownTypes());
2164 Printer
.printMetadata("annotations", N
->getRawAnnotations());
2165 Printer
.printString("targetFuncName", N
->getTargetFuncName());
2169 static void writeDILexicalBlock(raw_ostream
&Out
, const DILexicalBlock
*N
,
2170 AsmWriterContext
&WriterCtx
) {
2171 Out
<< "!DILexicalBlock(";
2172 MDFieldPrinter
Printer(Out
, WriterCtx
);
2173 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2174 Printer
.printMetadata("file", N
->getRawFile());
2175 Printer
.printInt("line", N
->getLine());
2176 Printer
.printInt("column", N
->getColumn());
2180 static void writeDILexicalBlockFile(raw_ostream
&Out
,
2181 const DILexicalBlockFile
*N
,
2182 AsmWriterContext
&WriterCtx
) {
2183 Out
<< "!DILexicalBlockFile(";
2184 MDFieldPrinter
Printer(Out
, WriterCtx
);
2185 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2186 Printer
.printMetadata("file", N
->getRawFile());
2187 Printer
.printInt("discriminator", N
->getDiscriminator(),
2188 /* ShouldSkipZero */ false);
2192 static void writeDINamespace(raw_ostream
&Out
, const DINamespace
*N
,
2193 AsmWriterContext
&WriterCtx
) {
2194 Out
<< "!DINamespace(";
2195 MDFieldPrinter
Printer(Out
, WriterCtx
);
2196 Printer
.printString("name", N
->getName());
2197 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2198 Printer
.printBool("exportSymbols", N
->getExportSymbols(), false);
2202 static void writeDICommonBlock(raw_ostream
&Out
, const DICommonBlock
*N
,
2203 AsmWriterContext
&WriterCtx
) {
2204 Out
<< "!DICommonBlock(";
2205 MDFieldPrinter
Printer(Out
, WriterCtx
);
2206 Printer
.printMetadata("scope", N
->getRawScope(), false);
2207 Printer
.printMetadata("declaration", N
->getRawDecl(), false);
2208 Printer
.printString("name", N
->getName());
2209 Printer
.printMetadata("file", N
->getRawFile());
2210 Printer
.printInt("line", N
->getLineNo());
2214 static void writeDIMacro(raw_ostream
&Out
, const DIMacro
*N
,
2215 AsmWriterContext
&WriterCtx
) {
2217 MDFieldPrinter
Printer(Out
, WriterCtx
);
2218 Printer
.printMacinfoType(N
);
2219 Printer
.printInt("line", N
->getLine());
2220 Printer
.printString("name", N
->getName());
2221 Printer
.printString("value", N
->getValue());
2225 static void writeDIMacroFile(raw_ostream
&Out
, const DIMacroFile
*N
,
2226 AsmWriterContext
&WriterCtx
) {
2227 Out
<< "!DIMacroFile(";
2228 MDFieldPrinter
Printer(Out
, WriterCtx
);
2229 Printer
.printInt("line", N
->getLine());
2230 Printer
.printMetadata("file", N
->getRawFile(), /* ShouldSkipNull */ false);
2231 Printer
.printMetadata("nodes", N
->getRawElements());
2235 static void writeDIModule(raw_ostream
&Out
, const DIModule
*N
,
2236 AsmWriterContext
&WriterCtx
) {
2237 Out
<< "!DIModule(";
2238 MDFieldPrinter
Printer(Out
, WriterCtx
);
2239 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2240 Printer
.printString("name", N
->getName());
2241 Printer
.printString("configMacros", N
->getConfigurationMacros());
2242 Printer
.printString("includePath", N
->getIncludePath());
2243 Printer
.printString("apinotes", N
->getAPINotesFile());
2244 Printer
.printMetadata("file", N
->getRawFile());
2245 Printer
.printInt("line", N
->getLineNo());
2246 Printer
.printBool("isDecl", N
->getIsDecl(), /* Default */ false);
2250 static void writeDITemplateTypeParameter(raw_ostream
&Out
,
2251 const DITemplateTypeParameter
*N
,
2252 AsmWriterContext
&WriterCtx
) {
2253 Out
<< "!DITemplateTypeParameter(";
2254 MDFieldPrinter
Printer(Out
, WriterCtx
);
2255 Printer
.printString("name", N
->getName());
2256 Printer
.printMetadata("type", N
->getRawType(), /* ShouldSkipNull */ false);
2257 Printer
.printBool("defaulted", N
->isDefault(), /* Default= */ false);
2261 static void writeDITemplateValueParameter(raw_ostream
&Out
,
2262 const DITemplateValueParameter
*N
,
2263 AsmWriterContext
&WriterCtx
) {
2264 Out
<< "!DITemplateValueParameter(";
2265 MDFieldPrinter
Printer(Out
, WriterCtx
);
2266 if (N
->getTag() != dwarf::DW_TAG_template_value_parameter
)
2267 Printer
.printTag(N
);
2268 Printer
.printString("name", N
->getName());
2269 Printer
.printMetadata("type", N
->getRawType());
2270 Printer
.printBool("defaulted", N
->isDefault(), /* Default= */ false);
2271 Printer
.printMetadata("value", N
->getValue(), /* ShouldSkipNull */ false);
2275 static void writeDIGlobalVariable(raw_ostream
&Out
, const DIGlobalVariable
*N
,
2276 AsmWriterContext
&WriterCtx
) {
2277 Out
<< "!DIGlobalVariable(";
2278 MDFieldPrinter
Printer(Out
, WriterCtx
);
2279 Printer
.printString("name", N
->getName());
2280 Printer
.printString("linkageName", N
->getLinkageName());
2281 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2282 Printer
.printMetadata("file", N
->getRawFile());
2283 Printer
.printInt("line", N
->getLine());
2284 Printer
.printMetadata("type", N
->getRawType());
2285 Printer
.printBool("isLocal", N
->isLocalToUnit());
2286 Printer
.printBool("isDefinition", N
->isDefinition());
2287 Printer
.printMetadata("declaration", N
->getRawStaticDataMemberDeclaration());
2288 Printer
.printMetadata("templateParams", N
->getRawTemplateParams());
2289 Printer
.printInt("align", N
->getAlignInBits());
2290 Printer
.printMetadata("annotations", N
->getRawAnnotations());
2294 static void writeDILocalVariable(raw_ostream
&Out
, const DILocalVariable
*N
,
2295 AsmWriterContext
&WriterCtx
) {
2296 Out
<< "!DILocalVariable(";
2297 MDFieldPrinter
Printer(Out
, WriterCtx
);
2298 Printer
.printString("name", N
->getName());
2299 Printer
.printInt("arg", N
->getArg());
2300 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2301 Printer
.printMetadata("file", N
->getRawFile());
2302 Printer
.printInt("line", N
->getLine());
2303 Printer
.printMetadata("type", N
->getRawType());
2304 Printer
.printDIFlags("flags", N
->getFlags());
2305 Printer
.printInt("align", N
->getAlignInBits());
2306 Printer
.printMetadata("annotations", N
->getRawAnnotations());
2310 static void writeDILabel(raw_ostream
&Out
, const DILabel
*N
,
2311 AsmWriterContext
&WriterCtx
) {
2313 MDFieldPrinter
Printer(Out
, WriterCtx
);
2314 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2315 Printer
.printString("name", N
->getName());
2316 Printer
.printMetadata("file", N
->getRawFile());
2317 Printer
.printInt("line", N
->getLine());
2321 static void writeDIExpression(raw_ostream
&Out
, const DIExpression
*N
,
2322 AsmWriterContext
&WriterCtx
) {
2323 Out
<< "!DIExpression(";
2326 for (const DIExpression::ExprOperand
&Op
: N
->expr_ops()) {
2327 auto OpStr
= dwarf::OperationEncodingString(Op
.getOp());
2328 assert(!OpStr
.empty() && "Expected valid opcode");
2331 if (Op
.getOp() == dwarf::DW_OP_LLVM_convert
) {
2332 Out
<< FS
<< Op
.getArg(0);
2333 Out
<< FS
<< dwarf::AttributeEncodingString(Op
.getArg(1));
2335 for (unsigned A
= 0, AE
= Op
.getNumArgs(); A
!= AE
; ++A
)
2336 Out
<< FS
<< Op
.getArg(A
);
2340 for (const auto &I
: N
->getElements())
2346 static void writeDIArgList(raw_ostream
&Out
, const DIArgList
*N
,
2347 AsmWriterContext
&WriterCtx
,
2348 bool FromValue
= false) {
2350 "Unexpected DIArgList metadata outside of value argument");
2351 Out
<< "!DIArgList(";
2353 MDFieldPrinter
Printer(Out
, WriterCtx
);
2354 for (Metadata
*Arg
: N
->getArgs()) {
2356 WriteAsOperandInternal(Out
, Arg
, WriterCtx
, true);
2361 static void writeDIGlobalVariableExpression(raw_ostream
&Out
,
2362 const DIGlobalVariableExpression
*N
,
2363 AsmWriterContext
&WriterCtx
) {
2364 Out
<< "!DIGlobalVariableExpression(";
2365 MDFieldPrinter
Printer(Out
, WriterCtx
);
2366 Printer
.printMetadata("var", N
->getVariable());
2367 Printer
.printMetadata("expr", N
->getExpression());
2371 static void writeDIObjCProperty(raw_ostream
&Out
, const DIObjCProperty
*N
,
2372 AsmWriterContext
&WriterCtx
) {
2373 Out
<< "!DIObjCProperty(";
2374 MDFieldPrinter
Printer(Out
, WriterCtx
);
2375 Printer
.printString("name", N
->getName());
2376 Printer
.printMetadata("file", N
->getRawFile());
2377 Printer
.printInt("line", N
->getLine());
2378 Printer
.printString("setter", N
->getSetterName());
2379 Printer
.printString("getter", N
->getGetterName());
2380 Printer
.printInt("attributes", N
->getAttributes());
2381 Printer
.printMetadata("type", N
->getRawType());
2385 static void writeDIImportedEntity(raw_ostream
&Out
, const DIImportedEntity
*N
,
2386 AsmWriterContext
&WriterCtx
) {
2387 Out
<< "!DIImportedEntity(";
2388 MDFieldPrinter
Printer(Out
, WriterCtx
);
2389 Printer
.printTag(N
);
2390 Printer
.printString("name", N
->getName());
2391 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2392 Printer
.printMetadata("entity", N
->getRawEntity());
2393 Printer
.printMetadata("file", N
->getRawFile());
2394 Printer
.printInt("line", N
->getLine());
2395 Printer
.printMetadata("elements", N
->getRawElements());
2399 static void WriteMDNodeBodyInternal(raw_ostream
&Out
, const MDNode
*Node
,
2400 AsmWriterContext
&Ctx
) {
2401 if (Node
->isDistinct())
2403 else if (Node
->isTemporary())
2404 Out
<< "<temporary!> "; // Handle broken code.
2406 switch (Node
->getMetadataID()) {
2408 llvm_unreachable("Expected uniquable MDNode");
2409 #define HANDLE_MDNODE_LEAF(CLASS) \
2410 case Metadata::CLASS##Kind: \
2411 write##CLASS(Out, cast<CLASS>(Node), Ctx); \
2413 #include "llvm/IR/Metadata.def"
2417 // Full implementation of printing a Value as an operand with support for
2418 // TypePrinting, etc.
2419 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
2420 AsmWriterContext
&WriterCtx
) {
2422 PrintLLVMName(Out
, V
);
2426 const Constant
*CV
= dyn_cast
<Constant
>(V
);
2427 if (CV
&& !isa
<GlobalValue
>(CV
)) {
2428 assert(WriterCtx
.TypePrinter
&& "Constants require TypePrinting!");
2429 WriteConstantInternal(Out
, CV
, WriterCtx
);
2433 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
2435 if (IA
->hasSideEffects())
2436 Out
<< "sideeffect ";
2437 if (IA
->isAlignStack())
2438 Out
<< "alignstack ";
2439 // We don't emit the AD_ATT dialect as it's the assumed default.
2440 if (IA
->getDialect() == InlineAsm::AD_Intel
)
2441 Out
<< "inteldialect ";
2445 printEscapedString(IA
->getAsmString(), Out
);
2447 printEscapedString(IA
->getConstraintString(), Out
);
2452 if (auto *MD
= dyn_cast
<MetadataAsValue
>(V
)) {
2453 WriteAsOperandInternal(Out
, MD
->getMetadata(), WriterCtx
,
2454 /* FromValue */ true);
2460 auto *Machine
= WriterCtx
.Machine
;
2461 // If we have a SlotTracker, use it.
2463 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
2464 Slot
= Machine
->getGlobalSlot(GV
);
2467 Slot
= Machine
->getLocalSlot(V
);
2469 // If the local value didn't succeed, then we may be referring to a value
2470 // from a different function. Translate it, as this can happen when using
2471 // address of blocks.
2473 if ((Machine
= createSlotTracker(V
))) {
2474 Slot
= Machine
->getLocalSlot(V
);
2478 } else if ((Machine
= createSlotTracker(V
))) {
2479 // Otherwise, create one to get the # and then destroy it.
2480 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
2481 Slot
= Machine
->getGlobalSlot(GV
);
2484 Slot
= Machine
->getLocalSlot(V
);
2493 Out
<< Prefix
<< Slot
;
2498 static void WriteAsOperandInternal(raw_ostream
&Out
, const Metadata
*MD
,
2499 AsmWriterContext
&WriterCtx
,
2501 // Write DIExpressions and DIArgLists inline when used as a value. Improves
2502 // readability of debug info intrinsics.
2503 if (const DIExpression
*Expr
= dyn_cast
<DIExpression
>(MD
)) {
2504 writeDIExpression(Out
, Expr
, WriterCtx
);
2507 if (const DIArgList
*ArgList
= dyn_cast
<DIArgList
>(MD
)) {
2508 writeDIArgList(Out
, ArgList
, WriterCtx
, FromValue
);
2512 if (const MDNode
*N
= dyn_cast
<MDNode
>(MD
)) {
2513 std::unique_ptr
<SlotTracker
> MachineStorage
;
2514 SaveAndRestore
SARMachine(WriterCtx
.Machine
);
2515 if (!WriterCtx
.Machine
) {
2516 MachineStorage
= std::make_unique
<SlotTracker
>(WriterCtx
.Context
);
2517 WriterCtx
.Machine
= MachineStorage
.get();
2519 int Slot
= WriterCtx
.Machine
->getMetadataSlot(N
);
2521 if (const DILocation
*Loc
= dyn_cast
<DILocation
>(N
)) {
2522 writeDILocation(Out
, Loc
, WriterCtx
);
2525 // Give the pointer value instead of "badref", since this comes up all
2526 // the time when debugging.
2527 Out
<< "<" << N
<< ">";
2533 if (const MDString
*MDS
= dyn_cast
<MDString
>(MD
)) {
2535 printEscapedString(MDS
->getString(), Out
);
2540 auto *V
= cast
<ValueAsMetadata
>(MD
);
2541 assert(WriterCtx
.TypePrinter
&& "TypePrinter required for metadata values");
2542 assert((FromValue
|| !isa
<LocalAsMetadata
>(V
)) &&
2543 "Unexpected function-local metadata outside of value argument");
2545 WriterCtx
.TypePrinter
->print(V
->getValue()->getType(), Out
);
2547 WriteAsOperandInternal(Out
, V
->getValue(), WriterCtx
);
2552 class AssemblyWriter
{
2553 formatted_raw_ostream
&Out
;
2554 const Module
*TheModule
= nullptr;
2555 const ModuleSummaryIndex
*TheIndex
= nullptr;
2556 std::unique_ptr
<SlotTracker
> SlotTrackerStorage
;
2557 SlotTracker
&Machine
;
2558 TypePrinting TypePrinter
;
2559 AssemblyAnnotationWriter
*AnnotationWriter
= nullptr;
2560 SetVector
<const Comdat
*> Comdats
;
2562 bool ShouldPreserveUseListOrder
;
2563 UseListOrderMap UseListOrders
;
2564 SmallVector
<StringRef
, 8> MDNames
;
2565 /// Synchronization scope names registered with LLVMContext.
2566 SmallVector
<StringRef
, 8> SSNs
;
2567 DenseMap
<const GlobalValueSummary
*, GlobalValue::GUID
> SummaryToGUIDMap
;
2570 /// Construct an AssemblyWriter with an external SlotTracker
2571 AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
, const Module
*M
,
2572 AssemblyAnnotationWriter
*AAW
, bool IsForDebug
,
2573 bool ShouldPreserveUseListOrder
= false);
2575 AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
,
2576 const ModuleSummaryIndex
*Index
, bool IsForDebug
);
2578 AsmWriterContext
getContext() {
2579 return AsmWriterContext(&TypePrinter
, &Machine
, TheModule
);
2582 void printMDNodeBody(const MDNode
*MD
);
2583 void printNamedMDNode(const NamedMDNode
*NMD
);
2585 void printModule(const Module
*M
);
2587 void writeOperand(const Value
*Op
, bool PrintType
);
2588 void writeParamOperand(const Value
*Operand
, AttributeSet Attrs
);
2589 void writeOperandBundles(const CallBase
*Call
);
2590 void writeSyncScope(const LLVMContext
&Context
,
2591 SyncScope::ID SSID
);
2592 void writeAtomic(const LLVMContext
&Context
,
2593 AtomicOrdering Ordering
,
2594 SyncScope::ID SSID
);
2595 void writeAtomicCmpXchg(const LLVMContext
&Context
,
2596 AtomicOrdering SuccessOrdering
,
2597 AtomicOrdering FailureOrdering
,
2598 SyncScope::ID SSID
);
2600 void writeAllMDNodes();
2601 void writeMDNode(unsigned Slot
, const MDNode
*Node
);
2602 void writeAttribute(const Attribute
&Attr
, bool InAttrGroup
= false);
2603 void writeAttributeSet(const AttributeSet
&AttrSet
, bool InAttrGroup
= false);
2604 void writeAllAttributeGroups();
2606 void printTypeIdentities();
2607 void printGlobal(const GlobalVariable
*GV
);
2608 void printAlias(const GlobalAlias
*GA
);
2609 void printIFunc(const GlobalIFunc
*GI
);
2610 void printComdat(const Comdat
*C
);
2611 void printFunction(const Function
*F
);
2612 void printArgument(const Argument
*FA
, AttributeSet Attrs
);
2613 void printBasicBlock(const BasicBlock
*BB
);
2614 void printInstructionLine(const Instruction
&I
);
2615 void printInstruction(const Instruction
&I
);
2617 void printUseListOrder(const Value
*V
, const std::vector
<unsigned> &Shuffle
);
2618 void printUseLists(const Function
*F
);
2620 void printModuleSummaryIndex();
2621 void printSummaryInfo(unsigned Slot
, const ValueInfo
&VI
);
2622 void printSummary(const GlobalValueSummary
&Summary
);
2623 void printAliasSummary(const AliasSummary
*AS
);
2624 void printGlobalVarSummary(const GlobalVarSummary
*GS
);
2625 void printFunctionSummary(const FunctionSummary
*FS
);
2626 void printTypeIdSummary(const TypeIdSummary
&TIS
);
2627 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo
&TI
);
2628 void printTypeTestResolution(const TypeTestResolution
&TTRes
);
2629 void printArgs(const std::vector
<uint64_t> &Args
);
2630 void printWPDRes(const WholeProgramDevirtResolution
&WPDRes
);
2631 void printTypeIdInfo(const FunctionSummary::TypeIdInfo
&TIDInfo
);
2632 void printVFuncId(const FunctionSummary::VFuncId VFId
);
2634 printNonConstVCalls(const std::vector
<FunctionSummary::VFuncId
> &VCallList
,
2637 printConstVCalls(const std::vector
<FunctionSummary::ConstVCall
> &VCallList
,
2641 /// Print out metadata attachments.
2642 void printMetadataAttachments(
2643 const SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &MDs
,
2644 StringRef Separator
);
2646 // printInfoComment - Print a little comment after the instruction indicating
2647 // which slot it occupies.
2648 void printInfoComment(const Value
&V
);
2650 // printGCRelocateComment - print comment after call to the gc.relocate
2651 // intrinsic indicating base and derived pointer names.
2652 void printGCRelocateComment(const GCRelocateInst
&Relocate
);
2655 } // end anonymous namespace
2657 AssemblyWriter::AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
,
2658 const Module
*M
, AssemblyAnnotationWriter
*AAW
,
2659 bool IsForDebug
, bool ShouldPreserveUseListOrder
)
2660 : Out(o
), TheModule(M
), Machine(Mac
), TypePrinter(M
), AnnotationWriter(AAW
),
2661 IsForDebug(IsForDebug
),
2662 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder
) {
2665 for (const GlobalObject
&GO
: TheModule
->global_objects())
2666 if (const Comdat
*C
= GO
.getComdat())
2670 AssemblyWriter::AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
,
2671 const ModuleSummaryIndex
*Index
, bool IsForDebug
)
2672 : Out(o
), TheIndex(Index
), Machine(Mac
), TypePrinter(/*Module=*/nullptr),
2673 IsForDebug(IsForDebug
), ShouldPreserveUseListOrder(false) {}
2675 void AssemblyWriter::writeOperand(const Value
*Operand
, bool PrintType
) {
2677 Out
<< "<null operand!>";
2681 TypePrinter
.print(Operand
->getType(), Out
);
2684 auto WriterCtx
= getContext();
2685 WriteAsOperandInternal(Out
, Operand
, WriterCtx
);
2688 void AssemblyWriter::writeSyncScope(const LLVMContext
&Context
,
2689 SyncScope::ID SSID
) {
2691 case SyncScope::System
: {
2696 Context
.getSyncScopeNames(SSNs
);
2698 Out
<< " syncscope(\"";
2699 printEscapedString(SSNs
[SSID
], Out
);
2706 void AssemblyWriter::writeAtomic(const LLVMContext
&Context
,
2707 AtomicOrdering Ordering
,
2708 SyncScope::ID SSID
) {
2709 if (Ordering
== AtomicOrdering::NotAtomic
)
2712 writeSyncScope(Context
, SSID
);
2713 Out
<< " " << toIRString(Ordering
);
2716 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext
&Context
,
2717 AtomicOrdering SuccessOrdering
,
2718 AtomicOrdering FailureOrdering
,
2719 SyncScope::ID SSID
) {
2720 assert(SuccessOrdering
!= AtomicOrdering::NotAtomic
&&
2721 FailureOrdering
!= AtomicOrdering::NotAtomic
);
2723 writeSyncScope(Context
, SSID
);
2724 Out
<< " " << toIRString(SuccessOrdering
);
2725 Out
<< " " << toIRString(FailureOrdering
);
2728 void AssemblyWriter::writeParamOperand(const Value
*Operand
,
2729 AttributeSet Attrs
) {
2731 Out
<< "<null operand!>";
2736 TypePrinter
.print(Operand
->getType(), Out
);
2737 // Print parameter attributes list
2738 if (Attrs
.hasAttributes()) {
2740 writeAttributeSet(Attrs
);
2743 // Print the operand
2744 auto WriterCtx
= getContext();
2745 WriteAsOperandInternal(Out
, Operand
, WriterCtx
);
2748 void AssemblyWriter::writeOperandBundles(const CallBase
*Call
) {
2749 if (!Call
->hasOperandBundles())
2754 bool FirstBundle
= true;
2755 for (unsigned i
= 0, e
= Call
->getNumOperandBundles(); i
!= e
; ++i
) {
2756 OperandBundleUse BU
= Call
->getOperandBundleAt(i
);
2760 FirstBundle
= false;
2763 printEscapedString(BU
.getTagName(), Out
);
2768 bool FirstInput
= true;
2769 auto WriterCtx
= getContext();
2770 for (const auto &Input
: BU
.Inputs
) {
2775 if (Input
== nullptr)
2776 Out
<< "<null operand bundle!>";
2778 TypePrinter
.print(Input
->getType(), Out
);
2780 WriteAsOperandInternal(Out
, Input
, WriterCtx
);
2790 void AssemblyWriter::printModule(const Module
*M
) {
2791 Machine
.initializeIfNeeded();
2793 if (ShouldPreserveUseListOrder
)
2794 UseListOrders
= predictUseListOrder(M
);
2796 if (!M
->getModuleIdentifier().empty() &&
2797 // Don't print the ID if it will start a new line (which would
2798 // require a comment char before it).
2799 M
->getModuleIdentifier().find('\n') == std::string::npos
)
2800 Out
<< "; ModuleID = '" << M
->getModuleIdentifier() << "'\n";
2802 if (!M
->getSourceFileName().empty()) {
2803 Out
<< "source_filename = \"";
2804 printEscapedString(M
->getSourceFileName(), Out
);
2808 const std::string
&DL
= M
->getDataLayoutStr();
2810 Out
<< "target datalayout = \"" << DL
<< "\"\n";
2811 if (!M
->getTargetTriple().empty())
2812 Out
<< "target triple = \"" << M
->getTargetTriple() << "\"\n";
2814 if (!M
->getModuleInlineAsm().empty()) {
2817 // Split the string into lines, to make it easier to read the .ll file.
2818 StringRef Asm
= M
->getModuleInlineAsm();
2821 std::tie(Front
, Asm
) = Asm
.split('\n');
2823 // We found a newline, print the portion of the asm string from the
2824 // last newline up to this newline.
2825 Out
<< "module asm \"";
2826 printEscapedString(Front
, Out
);
2828 } while (!Asm
.empty());
2831 printTypeIdentities();
2833 // Output all comdats.
2834 if (!Comdats
.empty())
2836 for (const Comdat
*C
: Comdats
) {
2838 if (C
!= Comdats
.back())
2842 // Output all globals.
2843 if (!M
->global_empty()) Out
<< '\n';
2844 for (const GlobalVariable
&GV
: M
->globals()) {
2845 printGlobal(&GV
); Out
<< '\n';
2848 // Output all aliases.
2849 if (!M
->alias_empty()) Out
<< "\n";
2850 for (const GlobalAlias
&GA
: M
->aliases())
2853 // Output all ifuncs.
2854 if (!M
->ifunc_empty()) Out
<< "\n";
2855 for (const GlobalIFunc
&GI
: M
->ifuncs())
2858 // Output all of the functions.
2859 for (const Function
&F
: *M
) {
2864 // Output global use-lists.
2865 printUseLists(nullptr);
2867 // Output all attribute groups.
2868 if (!Machine
.as_empty()) {
2870 writeAllAttributeGroups();
2873 // Output named metadata.
2874 if (!M
->named_metadata_empty()) Out
<< '\n';
2876 for (const NamedMDNode
&Node
: M
->named_metadata())
2877 printNamedMDNode(&Node
);
2880 if (!Machine
.mdn_empty()) {
2886 void AssemblyWriter::printModuleSummaryIndex() {
2888 int NumSlots
= Machine
.initializeIndexIfNeeded();
2892 // Print module path entries. To print in order, add paths to a vector
2893 // indexed by module slot.
2894 std::vector
<std::pair
<std::string
, ModuleHash
>> moduleVec
;
2895 std::string RegularLTOModuleName
=
2896 ModuleSummaryIndex::getRegularLTOModuleName();
2897 moduleVec
.resize(TheIndex
->modulePaths().size());
2898 for (auto &[ModPath
, ModHash
] : TheIndex
->modulePaths())
2899 moduleVec
[Machine
.getModulePathSlot(ModPath
)] = std::make_pair(
2900 // An empty module path is a special entry for a regular LTO module
2901 // created during the thin link.
2902 ModPath
.empty() ? RegularLTOModuleName
: std::string(ModPath
), ModHash
);
2905 for (auto &ModPair
: moduleVec
) {
2906 Out
<< "^" << i
++ << " = module: (";
2908 printEscapedString(ModPair
.first
, Out
);
2909 Out
<< "\", hash: (";
2911 for (auto Hash
: ModPair
.second
)
2916 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2917 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2918 for (auto &GlobalList
: *TheIndex
) {
2919 auto GUID
= GlobalList
.first
;
2920 for (auto &Summary
: GlobalList
.second
.SummaryList
)
2921 SummaryToGUIDMap
[Summary
.get()] = GUID
;
2924 // Print the global value summary entries.
2925 for (auto &GlobalList
: *TheIndex
) {
2926 auto GUID
= GlobalList
.first
;
2927 auto VI
= TheIndex
->getValueInfo(GlobalList
);
2928 printSummaryInfo(Machine
.getGUIDSlot(GUID
), VI
);
2931 // Print the TypeIdMap entries.
2932 for (const auto &TID
: TheIndex
->typeIds()) {
2933 Out
<< "^" << Machine
.getTypeIdSlot(TID
.second
.first
)
2934 << " = typeid: (name: \"" << TID
.second
.first
<< "\"";
2935 printTypeIdSummary(TID
.second
.second
);
2936 Out
<< ") ; guid = " << TID
.first
<< "\n";
2939 // Print the TypeIdCompatibleVtableMap entries.
2940 for (auto &TId
: TheIndex
->typeIdCompatibleVtableMap()) {
2941 auto GUID
= GlobalValue::getGUID(TId
.first
);
2942 Out
<< "^" << Machine
.getGUIDSlot(GUID
)
2943 << " = typeidCompatibleVTable: (name: \"" << TId
.first
<< "\"";
2944 printTypeIdCompatibleVtableSummary(TId
.second
);
2945 Out
<< ") ; guid = " << GUID
<< "\n";
2948 // Don't emit flags when it's not really needed (value is zero by default).
2949 if (TheIndex
->getFlags()) {
2950 Out
<< "^" << NumSlots
<< " = flags: " << TheIndex
->getFlags() << "\n";
2954 Out
<< "^" << NumSlots
<< " = blockcount: " << TheIndex
->getBlockCount()
2959 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K
) {
2961 case WholeProgramDevirtResolution::Indir
:
2963 case WholeProgramDevirtResolution::SingleImpl
:
2964 return "singleImpl";
2965 case WholeProgramDevirtResolution::BranchFunnel
:
2966 return "branchFunnel";
2968 llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2971 static const char *getWholeProgDevirtResByArgKindName(
2972 WholeProgramDevirtResolution::ByArg::Kind K
) {
2974 case WholeProgramDevirtResolution::ByArg::Indir
:
2976 case WholeProgramDevirtResolution::ByArg::UniformRetVal
:
2977 return "uniformRetVal";
2978 case WholeProgramDevirtResolution::ByArg::UniqueRetVal
:
2979 return "uniqueRetVal";
2980 case WholeProgramDevirtResolution::ByArg::VirtualConstProp
:
2981 return "virtualConstProp";
2983 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2986 static const char *getTTResKindName(TypeTestResolution::Kind K
) {
2988 case TypeTestResolution::Unknown
:
2990 case TypeTestResolution::Unsat
:
2992 case TypeTestResolution::ByteArray
:
2994 case TypeTestResolution::Inline
:
2996 case TypeTestResolution::Single
:
2998 case TypeTestResolution::AllOnes
:
3001 llvm_unreachable("invalid TypeTestResolution kind");
3004 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution
&TTRes
) {
3005 Out
<< "typeTestRes: (kind: " << getTTResKindName(TTRes
.TheKind
)
3006 << ", sizeM1BitWidth: " << TTRes
.SizeM1BitWidth
;
3008 // The following fields are only used if the target does not support the use
3009 // of absolute symbols to store constants. Print only if non-zero.
3010 if (TTRes
.AlignLog2
)
3011 Out
<< ", alignLog2: " << TTRes
.AlignLog2
;
3013 Out
<< ", sizeM1: " << TTRes
.SizeM1
;
3015 // BitMask is uint8_t which causes it to print the corresponding char.
3016 Out
<< ", bitMask: " << (unsigned)TTRes
.BitMask
;
3017 if (TTRes
.InlineBits
)
3018 Out
<< ", inlineBits: " << TTRes
.InlineBits
;
3023 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary
&TIS
) {
3024 Out
<< ", summary: (";
3025 printTypeTestResolution(TIS
.TTRes
);
3026 if (!TIS
.WPDRes
.empty()) {
3027 Out
<< ", wpdResolutions: (";
3029 for (auto &WPDRes
: TIS
.WPDRes
) {
3031 Out
<< "(offset: " << WPDRes
.first
<< ", ";
3032 printWPDRes(WPDRes
.second
);
3040 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3041 const TypeIdCompatibleVtableInfo
&TI
) {
3042 Out
<< ", summary: (";
3044 for (auto &P
: TI
) {
3046 Out
<< "(offset: " << P
.AddressPointOffset
<< ", ";
3047 Out
<< "^" << Machine
.getGUIDSlot(P
.VTableVI
.getGUID());
3053 void AssemblyWriter::printArgs(const std::vector
<uint64_t> &Args
) {
3056 for (auto arg
: Args
) {
3063 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution
&WPDRes
) {
3064 Out
<< "wpdRes: (kind: ";
3065 Out
<< getWholeProgDevirtResKindName(WPDRes
.TheKind
);
3067 if (WPDRes
.TheKind
== WholeProgramDevirtResolution::SingleImpl
)
3068 Out
<< ", singleImplName: \"" << WPDRes
.SingleImplName
<< "\"";
3070 if (!WPDRes
.ResByArg
.empty()) {
3071 Out
<< ", resByArg: (";
3073 for (auto &ResByArg
: WPDRes
.ResByArg
) {
3075 printArgs(ResByArg
.first
);
3076 Out
<< ", byArg: (kind: ";
3077 Out
<< getWholeProgDevirtResByArgKindName(ResByArg
.second
.TheKind
);
3078 if (ResByArg
.second
.TheKind
==
3079 WholeProgramDevirtResolution::ByArg::UniformRetVal
||
3080 ResByArg
.second
.TheKind
==
3081 WholeProgramDevirtResolution::ByArg::UniqueRetVal
)
3082 Out
<< ", info: " << ResByArg
.second
.Info
;
3084 // The following fields are only used if the target does not support the
3085 // use of absolute symbols to store constants. Print only if non-zero.
3086 if (ResByArg
.second
.Byte
|| ResByArg
.second
.Bit
)
3087 Out
<< ", byte: " << ResByArg
.second
.Byte
3088 << ", bit: " << ResByArg
.second
.Bit
;
3097 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK
) {
3099 case GlobalValueSummary::AliasKind
:
3101 case GlobalValueSummary::FunctionKind
:
3103 case GlobalValueSummary::GlobalVarKind
:
3106 llvm_unreachable("invalid summary kind");
3109 void AssemblyWriter::printAliasSummary(const AliasSummary
*AS
) {
3110 Out
<< ", aliasee: ";
3111 // The indexes emitted for distributed backends may not include the
3112 // aliasee summary (only if it is being imported directly). Handle
3113 // that case by just emitting "null" as the aliasee.
3114 if (AS
->hasAliasee())
3115 Out
<< "^" << Machine
.getGUIDSlot(SummaryToGUIDMap
[&AS
->getAliasee()]);
3120 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary
*GS
) {
3121 auto VTableFuncs
= GS
->vTableFuncs();
3122 Out
<< ", varFlags: (readonly: " << GS
->VarFlags
.MaybeReadOnly
<< ", "
3123 << "writeonly: " << GS
->VarFlags
.MaybeWriteOnly
<< ", "
3124 << "constant: " << GS
->VarFlags
.Constant
;
3125 if (!VTableFuncs
.empty())
3127 << "vcall_visibility: " << GS
->VarFlags
.VCallVisibility
;
3130 if (!VTableFuncs
.empty()) {
3131 Out
<< ", vTableFuncs: (";
3133 for (auto &P
: VTableFuncs
) {
3135 Out
<< "(virtFunc: ^" << Machine
.getGUIDSlot(P
.FuncVI
.getGUID())
3136 << ", offset: " << P
.VTableOffset
;
3143 static std::string
getLinkageName(GlobalValue::LinkageTypes LT
) {
3145 case GlobalValue::ExternalLinkage
:
3147 case GlobalValue::PrivateLinkage
:
3149 case GlobalValue::InternalLinkage
:
3151 case GlobalValue::LinkOnceAnyLinkage
:
3153 case GlobalValue::LinkOnceODRLinkage
:
3154 return "linkonce_odr";
3155 case GlobalValue::WeakAnyLinkage
:
3157 case GlobalValue::WeakODRLinkage
:
3159 case GlobalValue::CommonLinkage
:
3161 case GlobalValue::AppendingLinkage
:
3163 case GlobalValue::ExternalWeakLinkage
:
3164 return "extern_weak";
3165 case GlobalValue::AvailableExternallyLinkage
:
3166 return "available_externally";
3168 llvm_unreachable("invalid linkage");
3171 // When printing the linkage types in IR where the ExternalLinkage is
3172 // not printed, and other linkage types are expected to be printed with
3173 // a space after the name.
3174 static std::string
getLinkageNameWithSpace(GlobalValue::LinkageTypes LT
) {
3175 if (LT
== GlobalValue::ExternalLinkage
)
3177 return getLinkageName(LT
) + " ";
3180 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis
) {
3182 case GlobalValue::DefaultVisibility
:
3184 case GlobalValue::HiddenVisibility
:
3186 case GlobalValue::ProtectedVisibility
:
3189 llvm_unreachable("invalid visibility");
3192 void AssemblyWriter::printFunctionSummary(const FunctionSummary
*FS
) {
3193 Out
<< ", insts: " << FS
->instCount();
3194 if (FS
->fflags().anyFlagSet())
3195 Out
<< ", " << FS
->fflags();
3197 if (!FS
->calls().empty()) {
3198 Out
<< ", calls: (";
3200 for (auto &Call
: FS
->calls()) {
3202 Out
<< "(callee: ^" << Machine
.getGUIDSlot(Call
.first
.getGUID());
3203 if (Call
.second
.getHotness() != CalleeInfo::HotnessType::Unknown
)
3204 Out
<< ", hotness: " << getHotnessName(Call
.second
.getHotness());
3205 else if (Call
.second
.RelBlockFreq
)
3206 Out
<< ", relbf: " << Call
.second
.RelBlockFreq
;
3212 if (const auto *TIdInfo
= FS
->getTypeIdInfo())
3213 printTypeIdInfo(*TIdInfo
);
3215 // The AllocationType identifiers capture the profiled context behavior
3216 // reaching a specific static allocation site (possibly cloned).
3217 auto AllocTypeName
= [](uint8_t Type
) -> const char * {
3219 case (uint8_t)AllocationType::None
:
3221 case (uint8_t)AllocationType::NotCold
:
3223 case (uint8_t)AllocationType::Cold
:
3225 case (uint8_t)AllocationType::Hot
:
3228 llvm_unreachable("Unexpected alloc type");
3231 if (!FS
->allocs().empty()) {
3232 Out
<< ", allocs: (";
3234 for (auto &AI
: FS
->allocs()) {
3236 Out
<< "(versions: (";
3238 for (auto V
: AI
.Versions
) {
3240 Out
<< AllocTypeName(V
);
3242 Out
<< "), memProf: (";
3243 FieldSeparator MIBFS
;
3244 for (auto &MIB
: AI
.MIBs
) {
3246 Out
<< "(type: " << AllocTypeName((uint8_t)MIB
.AllocType
);
3247 Out
<< ", stackIds: (";
3248 FieldSeparator SIDFS
;
3249 for (auto Id
: MIB
.StackIdIndices
) {
3251 Out
<< TheIndex
->getStackIdAtIndex(Id
);
3260 if (!FS
->callsites().empty()) {
3261 Out
<< ", callsites: (";
3262 FieldSeparator SNFS
;
3263 for (auto &CI
: FS
->callsites()) {
3266 Out
<< "(callee: ^" << Machine
.getGUIDSlot(CI
.Callee
.getGUID());
3268 Out
<< "(callee: null";
3269 Out
<< ", clones: (";
3271 for (auto V
: CI
.Clones
) {
3275 Out
<< "), stackIds: (";
3276 FieldSeparator SIDFS
;
3277 for (auto Id
: CI
.StackIdIndices
) {
3279 Out
<< TheIndex
->getStackIdAtIndex(Id
);
3286 auto PrintRange
= [&](const ConstantRange
&Range
) {
3287 Out
<< "[" << Range
.getSignedMin() << ", " << Range
.getSignedMax() << "]";
3290 if (!FS
->paramAccesses().empty()) {
3291 Out
<< ", params: (";
3293 for (auto &PS
: FS
->paramAccesses()) {
3295 Out
<< "(param: " << PS
.ParamNo
;
3296 Out
<< ", offset: ";
3298 if (!PS
.Calls
.empty()) {
3299 Out
<< ", calls: (";
3301 for (auto &Call
: PS
.Calls
) {
3303 Out
<< "(callee: ^" << Machine
.getGUIDSlot(Call
.Callee
.getGUID());
3304 Out
<< ", param: " << Call
.ParamNo
;
3305 Out
<< ", offset: ";
3306 PrintRange(Call
.Offsets
);
3317 void AssemblyWriter::printTypeIdInfo(
3318 const FunctionSummary::TypeIdInfo
&TIDInfo
) {
3319 Out
<< ", typeIdInfo: (";
3320 FieldSeparator TIDFS
;
3321 if (!TIDInfo
.TypeTests
.empty()) {
3323 Out
<< "typeTests: (";
3325 for (auto &GUID
: TIDInfo
.TypeTests
) {
3326 auto TidIter
= TheIndex
->typeIds().equal_range(GUID
);
3327 if (TidIter
.first
== TidIter
.second
) {
3332 // Print all type id that correspond to this GUID.
3333 for (auto It
= TidIter
.first
; It
!= TidIter
.second
; ++It
) {
3335 auto Slot
= Machine
.getTypeIdSlot(It
->second
.first
);
3342 if (!TIDInfo
.TypeTestAssumeVCalls
.empty()) {
3344 printNonConstVCalls(TIDInfo
.TypeTestAssumeVCalls
, "typeTestAssumeVCalls");
3346 if (!TIDInfo
.TypeCheckedLoadVCalls
.empty()) {
3348 printNonConstVCalls(TIDInfo
.TypeCheckedLoadVCalls
, "typeCheckedLoadVCalls");
3350 if (!TIDInfo
.TypeTestAssumeConstVCalls
.empty()) {
3352 printConstVCalls(TIDInfo
.TypeTestAssumeConstVCalls
,
3353 "typeTestAssumeConstVCalls");
3355 if (!TIDInfo
.TypeCheckedLoadConstVCalls
.empty()) {
3357 printConstVCalls(TIDInfo
.TypeCheckedLoadConstVCalls
,
3358 "typeCheckedLoadConstVCalls");
3363 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId
) {
3364 auto TidIter
= TheIndex
->typeIds().equal_range(VFId
.GUID
);
3365 if (TidIter
.first
== TidIter
.second
) {
3366 Out
<< "vFuncId: (";
3367 Out
<< "guid: " << VFId
.GUID
;
3368 Out
<< ", offset: " << VFId
.Offset
;
3372 // Print all type id that correspond to this GUID.
3374 for (auto It
= TidIter
.first
; It
!= TidIter
.second
; ++It
) {
3376 Out
<< "vFuncId: (";
3377 auto Slot
= Machine
.getTypeIdSlot(It
->second
.first
);
3380 Out
<< ", offset: " << VFId
.Offset
;
3385 void AssemblyWriter::printNonConstVCalls(
3386 const std::vector
<FunctionSummary::VFuncId
> &VCallList
, const char *Tag
) {
3387 Out
<< Tag
<< ": (";
3389 for (auto &VFuncId
: VCallList
) {
3391 printVFuncId(VFuncId
);
3396 void AssemblyWriter::printConstVCalls(
3397 const std::vector
<FunctionSummary::ConstVCall
> &VCallList
,
3399 Out
<< Tag
<< ": (";
3401 for (auto &ConstVCall
: VCallList
) {
3404 printVFuncId(ConstVCall
.VFunc
);
3405 if (!ConstVCall
.Args
.empty()) {
3407 printArgs(ConstVCall
.Args
);
3414 void AssemblyWriter::printSummary(const GlobalValueSummary
&Summary
) {
3415 GlobalValueSummary::GVFlags GVFlags
= Summary
.flags();
3416 GlobalValue::LinkageTypes LT
= (GlobalValue::LinkageTypes
)GVFlags
.Linkage
;
3417 Out
<< getSummaryKindName(Summary
.getSummaryKind()) << ": ";
3418 Out
<< "(module: ^" << Machine
.getModulePathSlot(Summary
.modulePath())
3420 Out
<< "linkage: " << getLinkageName(LT
);
3421 Out
<< ", visibility: "
3422 << getVisibilityName((GlobalValue::VisibilityTypes
)GVFlags
.Visibility
);
3423 Out
<< ", notEligibleToImport: " << GVFlags
.NotEligibleToImport
;
3424 Out
<< ", live: " << GVFlags
.Live
;
3425 Out
<< ", dsoLocal: " << GVFlags
.DSOLocal
;
3426 Out
<< ", canAutoHide: " << GVFlags
.CanAutoHide
;
3429 if (Summary
.getSummaryKind() == GlobalValueSummary::AliasKind
)
3430 printAliasSummary(cast
<AliasSummary
>(&Summary
));
3431 else if (Summary
.getSummaryKind() == GlobalValueSummary::FunctionKind
)
3432 printFunctionSummary(cast
<FunctionSummary
>(&Summary
));
3434 printGlobalVarSummary(cast
<GlobalVarSummary
>(&Summary
));
3436 auto RefList
= Summary
.refs();
3437 if (!RefList
.empty()) {
3440 for (auto &Ref
: RefList
) {
3442 if (Ref
.isReadOnly())
3444 else if (Ref
.isWriteOnly())
3445 Out
<< "writeonly ";
3446 Out
<< "^" << Machine
.getGUIDSlot(Ref
.getGUID());
3454 void AssemblyWriter::printSummaryInfo(unsigned Slot
, const ValueInfo
&VI
) {
3455 Out
<< "^" << Slot
<< " = gv: (";
3456 if (!VI
.name().empty())
3457 Out
<< "name: \"" << VI
.name() << "\"";
3459 Out
<< "guid: " << VI
.getGUID();
3460 if (!VI
.getSummaryList().empty()) {
3461 Out
<< ", summaries: (";
3463 for (auto &Summary
: VI
.getSummaryList()) {
3465 printSummary(*Summary
);
3470 if (!VI
.name().empty())
3471 Out
<< " ; guid = " << VI
.getGUID();
3475 static void printMetadataIdentifier(StringRef Name
,
3476 formatted_raw_ostream
&Out
) {
3478 Out
<< "<empty name> ";
3480 if (isalpha(static_cast<unsigned char>(Name
[0])) || Name
[0] == '-' ||
3481 Name
[0] == '$' || Name
[0] == '.' || Name
[0] == '_')
3484 Out
<< '\\' << hexdigit(Name
[0] >> 4) << hexdigit(Name
[0] & 0x0F);
3485 for (unsigned i
= 1, e
= Name
.size(); i
!= e
; ++i
) {
3486 unsigned char C
= Name
[i
];
3487 if (isalnum(static_cast<unsigned char>(C
)) || C
== '-' || C
== '$' ||
3488 C
== '.' || C
== '_')
3491 Out
<< '\\' << hexdigit(C
>> 4) << hexdigit(C
& 0x0F);
3496 void AssemblyWriter::printNamedMDNode(const NamedMDNode
*NMD
) {
3498 printMetadataIdentifier(NMD
->getName(), Out
);
3500 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
) {
3504 // Write DIExpressions inline.
3505 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3506 MDNode
*Op
= NMD
->getOperand(i
);
3507 assert(!isa
<DIArgList
>(Op
) &&
3508 "DIArgLists should not appear in NamedMDNodes");
3509 if (auto *Expr
= dyn_cast
<DIExpression
>(Op
)) {
3510 writeDIExpression(Out
, Expr
, AsmWriterContext::getEmpty());
3514 int Slot
= Machine
.getMetadataSlot(Op
);
3523 static void PrintVisibility(GlobalValue::VisibilityTypes Vis
,
3524 formatted_raw_ostream
&Out
) {
3526 case GlobalValue::DefaultVisibility
: break;
3527 case GlobalValue::HiddenVisibility
: Out
<< "hidden "; break;
3528 case GlobalValue::ProtectedVisibility
: Out
<< "protected "; break;
3532 static void PrintDSOLocation(const GlobalValue
&GV
,
3533 formatted_raw_ostream
&Out
) {
3534 if (GV
.isDSOLocal() && !GV
.isImplicitDSOLocal())
3535 Out
<< "dso_local ";
3538 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT
,
3539 formatted_raw_ostream
&Out
) {
3541 case GlobalValue::DefaultStorageClass
: break;
3542 case GlobalValue::DLLImportStorageClass
: Out
<< "dllimport "; break;
3543 case GlobalValue::DLLExportStorageClass
: Out
<< "dllexport "; break;
3547 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM
,
3548 formatted_raw_ostream
&Out
) {
3550 case GlobalVariable::NotThreadLocal
:
3552 case GlobalVariable::GeneralDynamicTLSModel
:
3553 Out
<< "thread_local ";
3555 case GlobalVariable::LocalDynamicTLSModel
:
3556 Out
<< "thread_local(localdynamic) ";
3558 case GlobalVariable::InitialExecTLSModel
:
3559 Out
<< "thread_local(initialexec) ";
3561 case GlobalVariable::LocalExecTLSModel
:
3562 Out
<< "thread_local(localexec) ";
3567 static StringRef
getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA
) {
3569 case GlobalVariable::UnnamedAddr::None
:
3571 case GlobalVariable::UnnamedAddr::Local
:
3572 return "local_unnamed_addr";
3573 case GlobalVariable::UnnamedAddr::Global
:
3574 return "unnamed_addr";
3576 llvm_unreachable("Unknown UnnamedAddr");
3579 static void maybePrintComdat(formatted_raw_ostream
&Out
,
3580 const GlobalObject
&GO
) {
3581 const Comdat
*C
= GO
.getComdat();
3585 if (isa
<GlobalVariable
>(GO
))
3589 if (GO
.getName() == C
->getName())
3593 PrintLLVMName(Out
, C
->getName(), ComdatPrefix
);
3597 void AssemblyWriter::printGlobal(const GlobalVariable
*GV
) {
3598 if (GV
->isMaterializable())
3599 Out
<< "; Materializable\n";
3601 AsmWriterContext
WriterCtx(&TypePrinter
, &Machine
, GV
->getParent());
3602 WriteAsOperandInternal(Out
, GV
, WriterCtx
);
3605 if (!GV
->hasInitializer() && GV
->hasExternalLinkage())
3608 Out
<< getLinkageNameWithSpace(GV
->getLinkage());
3609 PrintDSOLocation(*GV
, Out
);
3610 PrintVisibility(GV
->getVisibility(), Out
);
3611 PrintDLLStorageClass(GV
->getDLLStorageClass(), Out
);
3612 PrintThreadLocalModel(GV
->getThreadLocalMode(), Out
);
3613 StringRef UA
= getUnnamedAddrEncoding(GV
->getUnnamedAddr());
3617 if (unsigned AddressSpace
= GV
->getType()->getAddressSpace())
3618 Out
<< "addrspace(" << AddressSpace
<< ") ";
3619 if (GV
->isExternallyInitialized()) Out
<< "externally_initialized ";
3620 Out
<< (GV
->isConstant() ? "constant " : "global ");
3621 TypePrinter
.print(GV
->getValueType(), Out
);
3623 if (GV
->hasInitializer()) {
3625 writeOperand(GV
->getInitializer(), false);
3628 if (GV
->hasSection()) {
3629 Out
<< ", section \"";
3630 printEscapedString(GV
->getSection(), Out
);
3633 if (GV
->hasPartition()) {
3634 Out
<< ", partition \"";
3635 printEscapedString(GV
->getPartition(), Out
);
3639 using SanitizerMetadata
= llvm::GlobalValue::SanitizerMetadata
;
3640 if (GV
->hasSanitizerMetadata()) {
3641 SanitizerMetadata MD
= GV
->getSanitizerMetadata();
3643 Out
<< ", no_sanitize_address";
3645 Out
<< ", no_sanitize_hwaddress";
3647 Out
<< ", sanitize_memtag";
3649 Out
<< ", sanitize_address_dyninit";
3652 maybePrintComdat(Out
, *GV
);
3653 if (MaybeAlign A
= GV
->getAlign())
3654 Out
<< ", align " << A
->value();
3656 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
3657 GV
->getAllMetadata(MDs
);
3658 printMetadataAttachments(MDs
, ", ");
3660 auto Attrs
= GV
->getAttributes();
3661 if (Attrs
.hasAttributes())
3662 Out
<< " #" << Machine
.getAttributeGroupSlot(Attrs
);
3664 printInfoComment(*GV
);
3667 void AssemblyWriter::printAlias(const GlobalAlias
*GA
) {
3668 if (GA
->isMaterializable())
3669 Out
<< "; Materializable\n";
3671 AsmWriterContext
WriterCtx(&TypePrinter
, &Machine
, GA
->getParent());
3672 WriteAsOperandInternal(Out
, GA
, WriterCtx
);
3675 Out
<< getLinkageNameWithSpace(GA
->getLinkage());
3676 PrintDSOLocation(*GA
, Out
);
3677 PrintVisibility(GA
->getVisibility(), Out
);
3678 PrintDLLStorageClass(GA
->getDLLStorageClass(), Out
);
3679 PrintThreadLocalModel(GA
->getThreadLocalMode(), Out
);
3680 StringRef UA
= getUnnamedAddrEncoding(GA
->getUnnamedAddr());
3686 TypePrinter
.print(GA
->getValueType(), Out
);
3689 if (const Constant
*Aliasee
= GA
->getAliasee()) {
3690 writeOperand(Aliasee
, !isa
<ConstantExpr
>(Aliasee
));
3692 TypePrinter
.print(GA
->getType(), Out
);
3693 Out
<< " <<NULL ALIASEE>>";
3696 if (GA
->hasPartition()) {
3697 Out
<< ", partition \"";
3698 printEscapedString(GA
->getPartition(), Out
);
3702 printInfoComment(*GA
);
3706 void AssemblyWriter::printIFunc(const GlobalIFunc
*GI
) {
3707 if (GI
->isMaterializable())
3708 Out
<< "; Materializable\n";
3710 AsmWriterContext
WriterCtx(&TypePrinter
, &Machine
, GI
->getParent());
3711 WriteAsOperandInternal(Out
, GI
, WriterCtx
);
3714 Out
<< getLinkageNameWithSpace(GI
->getLinkage());
3715 PrintDSOLocation(*GI
, Out
);
3716 PrintVisibility(GI
->getVisibility(), Out
);
3720 TypePrinter
.print(GI
->getValueType(), Out
);
3723 if (const Constant
*Resolver
= GI
->getResolver()) {
3724 writeOperand(Resolver
, !isa
<ConstantExpr
>(Resolver
));
3726 TypePrinter
.print(GI
->getType(), Out
);
3727 Out
<< " <<NULL RESOLVER>>";
3730 if (GI
->hasPartition()) {
3731 Out
<< ", partition \"";
3732 printEscapedString(GI
->getPartition(), Out
);
3736 printInfoComment(*GI
);
3740 void AssemblyWriter::printComdat(const Comdat
*C
) {
3744 void AssemblyWriter::printTypeIdentities() {
3745 if (TypePrinter
.empty())
3750 // Emit all numbered types.
3751 auto &NumberedTypes
= TypePrinter
.getNumberedTypes();
3752 for (unsigned I
= 0, E
= NumberedTypes
.size(); I
!= E
; ++I
) {
3753 Out
<< '%' << I
<< " = type ";
3755 // Make sure we print out at least one level of the type structure, so
3756 // that we do not get %2 = type %2
3757 TypePrinter
.printStructBody(NumberedTypes
[I
], Out
);
3761 auto &NamedTypes
= TypePrinter
.getNamedTypes();
3762 for (StructType
*NamedType
: NamedTypes
) {
3763 PrintLLVMName(Out
, NamedType
->getName(), LocalPrefix
);
3766 // Make sure we print out at least one level of the type structure, so
3767 // that we do not get %FILE = type %FILE
3768 TypePrinter
.printStructBody(NamedType
, Out
);
3773 /// printFunction - Print all aspects of a function.
3774 void AssemblyWriter::printFunction(const Function
*F
) {
3775 if (AnnotationWriter
) AnnotationWriter
->emitFunctionAnnot(F
, Out
);
3777 if (F
->isMaterializable())
3778 Out
<< "; Materializable\n";
3780 const AttributeList
&Attrs
= F
->getAttributes();
3781 if (Attrs
.hasFnAttrs()) {
3782 AttributeSet AS
= Attrs
.getFnAttrs();
3783 std::string AttrStr
;
3785 for (const Attribute
&Attr
: AS
) {
3786 if (!Attr
.isStringAttribute()) {
3787 if (!AttrStr
.empty()) AttrStr
+= ' ';
3788 AttrStr
+= Attr
.getAsString();
3792 if (!AttrStr
.empty())
3793 Out
<< "; Function Attrs: " << AttrStr
<< '\n';
3796 Machine
.incorporateFunction(F
);
3798 if (F
->isDeclaration()) {
3800 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
3801 F
->getAllMetadata(MDs
);
3802 printMetadataAttachments(MDs
, " ");
3807 Out
<< getLinkageNameWithSpace(F
->getLinkage());
3808 PrintDSOLocation(*F
, Out
);
3809 PrintVisibility(F
->getVisibility(), Out
);
3810 PrintDLLStorageClass(F
->getDLLStorageClass(), Out
);
3812 // Print the calling convention.
3813 if (F
->getCallingConv() != CallingConv::C
) {
3814 PrintCallingConv(F
->getCallingConv(), Out
);
3818 FunctionType
*FT
= F
->getFunctionType();
3819 if (Attrs
.hasRetAttrs())
3820 Out
<< Attrs
.getAsString(AttributeList::ReturnIndex
) << ' ';
3821 TypePrinter
.print(F
->getReturnType(), Out
);
3822 AsmWriterContext
WriterCtx(&TypePrinter
, &Machine
, F
->getParent());
3824 WriteAsOperandInternal(Out
, F
, WriterCtx
);
3827 // Loop over the arguments, printing them...
3828 if (F
->isDeclaration() && !IsForDebug
) {
3829 // We're only interested in the type here - don't print argument names.
3830 for (unsigned I
= 0, E
= FT
->getNumParams(); I
!= E
; ++I
) {
3831 // Insert commas as we go... the first arg doesn't get a comma
3835 TypePrinter
.print(FT
->getParamType(I
), Out
);
3837 AttributeSet ArgAttrs
= Attrs
.getParamAttrs(I
);
3838 if (ArgAttrs
.hasAttributes()) {
3840 writeAttributeSet(ArgAttrs
);
3844 // The arguments are meaningful here, print them in detail.
3845 for (const Argument
&Arg
: F
->args()) {
3846 // Insert commas as we go... the first arg doesn't get a comma
3847 if (Arg
.getArgNo() != 0)
3849 printArgument(&Arg
, Attrs
.getParamAttrs(Arg
.getArgNo()));
3853 // Finish printing arguments...
3854 if (FT
->isVarArg()) {
3855 if (FT
->getNumParams()) Out
<< ", ";
3856 Out
<< "..."; // Output varargs portion of signature!
3859 StringRef UA
= getUnnamedAddrEncoding(F
->getUnnamedAddr());
3862 // We print the function address space if it is non-zero or if we are writing
3863 // a module with a non-zero program address space or if there is no valid
3864 // Module* so that the file can be parsed without the datalayout string.
3865 const Module
*Mod
= F
->getParent();
3866 if (F
->getAddressSpace() != 0 || !Mod
||
3867 Mod
->getDataLayout().getProgramAddressSpace() != 0)
3868 Out
<< " addrspace(" << F
->getAddressSpace() << ")";
3869 if (Attrs
.hasFnAttrs())
3870 Out
<< " #" << Machine
.getAttributeGroupSlot(Attrs
.getFnAttrs());
3871 if (F
->hasSection()) {
3872 Out
<< " section \"";
3873 printEscapedString(F
->getSection(), Out
);
3876 if (F
->hasPartition()) {
3877 Out
<< " partition \"";
3878 printEscapedString(F
->getPartition(), Out
);
3881 maybePrintComdat(Out
, *F
);
3882 if (MaybeAlign A
= F
->getAlign())
3883 Out
<< " align " << A
->value();
3885 Out
<< " gc \"" << F
->getGC() << '"';
3886 if (F
->hasPrefixData()) {
3888 writeOperand(F
->getPrefixData(), true);
3890 if (F
->hasPrologueData()) {
3891 Out
<< " prologue ";
3892 writeOperand(F
->getPrologueData(), true);
3894 if (F
->hasPersonalityFn()) {
3895 Out
<< " personality ";
3896 writeOperand(F
->getPersonalityFn(), /*PrintType=*/true);
3899 if (F
->isDeclaration()) {
3902 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
3903 F
->getAllMetadata(MDs
);
3904 printMetadataAttachments(MDs
, " ");
3907 // Output all of the function's basic blocks.
3908 for (const BasicBlock
&BB
: *F
)
3909 printBasicBlock(&BB
);
3911 // Output the function's use-lists.
3917 Machine
.purgeFunction();
3920 /// printArgument - This member is called for every argument that is passed into
3921 /// the function. Simply print it out
3922 void AssemblyWriter::printArgument(const Argument
*Arg
, AttributeSet Attrs
) {
3924 TypePrinter
.print(Arg
->getType(), Out
);
3926 // Output parameter attributes list
3927 if (Attrs
.hasAttributes()) {
3929 writeAttributeSet(Attrs
);
3932 // Output name, if available...
3933 if (Arg
->hasName()) {
3935 PrintLLVMName(Out
, Arg
);
3937 int Slot
= Machine
.getLocalSlot(Arg
);
3938 assert(Slot
!= -1 && "expect argument in function here");
3939 Out
<< " %" << Slot
;
3943 /// printBasicBlock - This member is called for each basic block in a method.
3944 void AssemblyWriter::printBasicBlock(const BasicBlock
*BB
) {
3945 bool IsEntryBlock
= BB
->getParent() && BB
->isEntryBlock();
3946 if (BB
->hasName()) { // Print out the label if it exists...
3948 PrintLLVMName(Out
, BB
->getName(), LabelPrefix
);
3950 } else if (!IsEntryBlock
) {
3952 int Slot
= Machine
.getLocalSlot(BB
);
3959 if (!IsEntryBlock
) {
3960 // Output predecessors for the block.
3961 Out
.PadToColumn(50);
3963 const_pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
3966 Out
<< " No predecessors!";
3969 writeOperand(*PI
, false);
3970 for (++PI
; PI
!= PE
; ++PI
) {
3972 writeOperand(*PI
, false);
3979 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockStartAnnot(BB
, Out
);
3981 // Output all of the instructions in the basic block...
3982 for (const Instruction
&I
: *BB
) {
3983 printInstructionLine(I
);
3986 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockEndAnnot(BB
, Out
);
3989 /// printInstructionLine - Print an instruction and a newline character.
3990 void AssemblyWriter::printInstructionLine(const Instruction
&I
) {
3991 printInstruction(I
);
3995 /// printGCRelocateComment - print comment after call to the gc.relocate
3996 /// intrinsic indicating base and derived pointer names.
3997 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst
&Relocate
) {
3999 writeOperand(Relocate
.getBasePtr(), false);
4001 writeOperand(Relocate
.getDerivedPtr(), false);
4005 /// printInfoComment - Print a little comment after the instruction indicating
4006 /// which slot it occupies.
4007 void AssemblyWriter::printInfoComment(const Value
&V
) {
4008 if (const auto *Relocate
= dyn_cast
<GCRelocateInst
>(&V
))
4009 printGCRelocateComment(*Relocate
);
4011 if (AnnotationWriter
)
4012 AnnotationWriter
->printInfoComment(V
, Out
);
4015 static void maybePrintCallAddrSpace(const Value
*Operand
, const Instruction
*I
,
4017 // We print the address space of the call if it is non-zero.
4018 if (Operand
== nullptr) {
4019 Out
<< " <cannot get addrspace!>";
4022 unsigned CallAddrSpace
= Operand
->getType()->getPointerAddressSpace();
4023 bool PrintAddrSpace
= CallAddrSpace
!= 0;
4024 if (!PrintAddrSpace
) {
4025 const Module
*Mod
= getModuleFromVal(I
);
4026 // We also print it if it is zero but not equal to the program address space
4027 // or if we can't find a valid Module* to make it possible to parse
4028 // the resulting file even without a datalayout string.
4029 if (!Mod
|| Mod
->getDataLayout().getProgramAddressSpace() != 0)
4030 PrintAddrSpace
= true;
4033 Out
<< " addrspace(" << CallAddrSpace
<< ")";
4036 // This member is called for each Instruction in a function..
4037 void AssemblyWriter::printInstruction(const Instruction
&I
) {
4038 if (AnnotationWriter
) AnnotationWriter
->emitInstructionAnnot(&I
, Out
);
4040 // Print out indentation for an instruction.
4043 // Print out name if it exists...
4045 PrintLLVMName(Out
, &I
);
4047 } else if (!I
.getType()->isVoidTy()) {
4048 // Print out the def slot taken.
4049 int SlotNum
= Machine
.getLocalSlot(&I
);
4051 Out
<< "<badref> = ";
4053 Out
<< '%' << SlotNum
<< " = ";
4056 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
4057 if (CI
->isMustTailCall())
4059 else if (CI
->isTailCall())
4061 else if (CI
->isNoTailCall())
4065 // Print out the opcode...
4066 Out
<< I
.getOpcodeName();
4068 // If this is an atomic load or store, print out the atomic marker.
4069 if ((isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).isAtomic()) ||
4070 (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).isAtomic()))
4073 if (isa
<AtomicCmpXchgInst
>(I
) && cast
<AtomicCmpXchgInst
>(I
).isWeak())
4076 // If this is a volatile operation, print out the volatile marker.
4077 if ((isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).isVolatile()) ||
4078 (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).isVolatile()) ||
4079 (isa
<AtomicCmpXchgInst
>(I
) && cast
<AtomicCmpXchgInst
>(I
).isVolatile()) ||
4080 (isa
<AtomicRMWInst
>(I
) && cast
<AtomicRMWInst
>(I
).isVolatile()))
4083 // Print out optimization information.
4084 WriteOptimizationInfo(Out
, &I
);
4086 // Print out the compare instruction predicates
4087 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
))
4088 Out
<< ' ' << CI
->getPredicate();
4090 // Print out the atomicrmw operation
4091 if (const AtomicRMWInst
*RMWI
= dyn_cast
<AtomicRMWInst
>(&I
))
4092 Out
<< ' ' << AtomicRMWInst::getOperationName(RMWI
->getOperation());
4094 // Print out the type of the operands...
4095 const Value
*Operand
= I
.getNumOperands() ? I
.getOperand(0) : nullptr;
4097 // Special case conditional branches to swizzle the condition out to the front
4098 if (isa
<BranchInst
>(I
) && cast
<BranchInst
>(I
).isConditional()) {
4099 const BranchInst
&BI(cast
<BranchInst
>(I
));
4101 writeOperand(BI
.getCondition(), true);
4103 writeOperand(BI
.getSuccessor(0), true);
4105 writeOperand(BI
.getSuccessor(1), true);
4107 } else if (isa
<SwitchInst
>(I
)) {
4108 const SwitchInst
& SI(cast
<SwitchInst
>(I
));
4109 // Special case switch instruction to get formatting nice and correct.
4111 writeOperand(SI
.getCondition(), true);
4113 writeOperand(SI
.getDefaultDest(), true);
4115 for (auto Case
: SI
.cases()) {
4117 writeOperand(Case
.getCaseValue(), true);
4119 writeOperand(Case
.getCaseSuccessor(), true);
4122 } else if (isa
<IndirectBrInst
>(I
)) {
4123 // Special case indirectbr instruction to get formatting nice and correct.
4125 writeOperand(Operand
, true);
4128 for (unsigned i
= 1, e
= I
.getNumOperands(); i
!= e
; ++i
) {
4131 writeOperand(I
.getOperand(i
), true);
4134 } else if (const PHINode
*PN
= dyn_cast
<PHINode
>(&I
)) {
4136 TypePrinter
.print(I
.getType(), Out
);
4139 for (unsigned op
= 0, Eop
= PN
->getNumIncomingValues(); op
< Eop
; ++op
) {
4140 if (op
) Out
<< ", ";
4142 writeOperand(PN
->getIncomingValue(op
), false); Out
<< ", ";
4143 writeOperand(PN
->getIncomingBlock(op
), false); Out
<< " ]";
4145 } else if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(&I
)) {
4147 writeOperand(I
.getOperand(0), true);
4148 for (unsigned i
: EVI
->indices())
4150 } else if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(&I
)) {
4152 writeOperand(I
.getOperand(0), true); Out
<< ", ";
4153 writeOperand(I
.getOperand(1), true);
4154 for (unsigned i
: IVI
->indices())
4156 } else if (const LandingPadInst
*LPI
= dyn_cast
<LandingPadInst
>(&I
)) {
4158 TypePrinter
.print(I
.getType(), Out
);
4159 if (LPI
->isCleanup() || LPI
->getNumClauses() != 0)
4162 if (LPI
->isCleanup())
4165 for (unsigned i
= 0, e
= LPI
->getNumClauses(); i
!= e
; ++i
) {
4166 if (i
!= 0 || LPI
->isCleanup()) Out
<< "\n";
4167 if (LPI
->isCatch(i
))
4172 writeOperand(LPI
->getClause(i
), true);
4174 } else if (const auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(&I
)) {
4176 writeOperand(CatchSwitch
->getParentPad(), /*PrintType=*/false);
4179 for (const BasicBlock
*PadBB
: CatchSwitch
->handlers()) {
4182 writeOperand(PadBB
, /*PrintType=*/true);
4186 if (const BasicBlock
*UnwindDest
= CatchSwitch
->getUnwindDest())
4187 writeOperand(UnwindDest
, /*PrintType=*/true);
4190 } else if (const auto *FPI
= dyn_cast
<FuncletPadInst
>(&I
)) {
4192 writeOperand(FPI
->getParentPad(), /*PrintType=*/false);
4194 for (unsigned Op
= 0, NumOps
= FPI
->arg_size(); Op
< NumOps
; ++Op
) {
4197 writeOperand(FPI
->getArgOperand(Op
), /*PrintType=*/true);
4200 } else if (isa
<ReturnInst
>(I
) && !Operand
) {
4202 } else if (const auto *CRI
= dyn_cast
<CatchReturnInst
>(&I
)) {
4204 writeOperand(CRI
->getOperand(0), /*PrintType=*/false);
4207 writeOperand(CRI
->getOperand(1), /*PrintType=*/true);
4208 } else if (const auto *CRI
= dyn_cast
<CleanupReturnInst
>(&I
)) {
4210 writeOperand(CRI
->getOperand(0), /*PrintType=*/false);
4213 if (CRI
->hasUnwindDest())
4214 writeOperand(CRI
->getOperand(1), /*PrintType=*/true);
4217 } else if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
4218 // Print the calling convention being used.
4219 if (CI
->getCallingConv() != CallingConv::C
) {
4221 PrintCallingConv(CI
->getCallingConv(), Out
);
4224 Operand
= CI
->getCalledOperand();
4225 FunctionType
*FTy
= CI
->getFunctionType();
4226 Type
*RetTy
= FTy
->getReturnType();
4227 const AttributeList
&PAL
= CI
->getAttributes();
4229 if (PAL
.hasRetAttrs())
4230 Out
<< ' ' << PAL
.getAsString(AttributeList::ReturnIndex
);
4232 // Only print addrspace(N) if necessary:
4233 maybePrintCallAddrSpace(Operand
, &I
, Out
);
4235 // If possible, print out the short form of the call instruction. We can
4236 // only do this if the first argument is a pointer to a nonvararg function,
4237 // and if the return type is not a pointer to a function.
4239 TypePrinter
.print(FTy
->isVarArg() ? FTy
: RetTy
, Out
);
4241 writeOperand(Operand
, false);
4243 for (unsigned op
= 0, Eop
= CI
->arg_size(); op
< Eop
; ++op
) {
4246 writeParamOperand(CI
->getArgOperand(op
), PAL
.getParamAttrs(op
));
4249 // Emit an ellipsis if this is a musttail call in a vararg function. This
4250 // is only to aid readability, musttail calls forward varargs by default.
4251 if (CI
->isMustTailCall() && CI
->getParent() &&
4252 CI
->getParent()->getParent() &&
4253 CI
->getParent()->getParent()->isVarArg()) {
4254 if (CI
->arg_size() > 0)
4260 if (PAL
.hasFnAttrs())
4261 Out
<< " #" << Machine
.getAttributeGroupSlot(PAL
.getFnAttrs());
4263 writeOperandBundles(CI
);
4264 } else if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(&I
)) {
4265 Operand
= II
->getCalledOperand();
4266 FunctionType
*FTy
= II
->getFunctionType();
4267 Type
*RetTy
= FTy
->getReturnType();
4268 const AttributeList
&PAL
= II
->getAttributes();
4270 // Print the calling convention being used.
4271 if (II
->getCallingConv() != CallingConv::C
) {
4273 PrintCallingConv(II
->getCallingConv(), Out
);
4276 if (PAL
.hasRetAttrs())
4277 Out
<< ' ' << PAL
.getAsString(AttributeList::ReturnIndex
);
4279 // Only print addrspace(N) if necessary:
4280 maybePrintCallAddrSpace(Operand
, &I
, Out
);
4282 // If possible, print out the short form of the invoke instruction. We can
4283 // only do this if the first argument is a pointer to a nonvararg function,
4284 // and if the return type is not a pointer to a function.
4287 TypePrinter
.print(FTy
->isVarArg() ? FTy
: RetTy
, Out
);
4289 writeOperand(Operand
, false);
4291 for (unsigned op
= 0, Eop
= II
->arg_size(); op
< Eop
; ++op
) {
4294 writeParamOperand(II
->getArgOperand(op
), PAL
.getParamAttrs(op
));
4298 if (PAL
.hasFnAttrs())
4299 Out
<< " #" << Machine
.getAttributeGroupSlot(PAL
.getFnAttrs());
4301 writeOperandBundles(II
);
4304 writeOperand(II
->getNormalDest(), true);
4306 writeOperand(II
->getUnwindDest(), true);
4307 } else if (const CallBrInst
*CBI
= dyn_cast
<CallBrInst
>(&I
)) {
4308 Operand
= CBI
->getCalledOperand();
4309 FunctionType
*FTy
= CBI
->getFunctionType();
4310 Type
*RetTy
= FTy
->getReturnType();
4311 const AttributeList
&PAL
= CBI
->getAttributes();
4313 // Print the calling convention being used.
4314 if (CBI
->getCallingConv() != CallingConv::C
) {
4316 PrintCallingConv(CBI
->getCallingConv(), Out
);
4319 if (PAL
.hasRetAttrs())
4320 Out
<< ' ' << PAL
.getAsString(AttributeList::ReturnIndex
);
4322 // If possible, print out the short form of the callbr instruction. We can
4323 // only do this if the first argument is a pointer to a nonvararg function,
4324 // and if the return type is not a pointer to a function.
4327 TypePrinter
.print(FTy
->isVarArg() ? FTy
: RetTy
, Out
);
4329 writeOperand(Operand
, false);
4331 for (unsigned op
= 0, Eop
= CBI
->arg_size(); op
< Eop
; ++op
) {
4334 writeParamOperand(CBI
->getArgOperand(op
), PAL
.getParamAttrs(op
));
4338 if (PAL
.hasFnAttrs())
4339 Out
<< " #" << Machine
.getAttributeGroupSlot(PAL
.getFnAttrs());
4341 writeOperandBundles(CBI
);
4344 writeOperand(CBI
->getDefaultDest(), true);
4346 for (unsigned i
= 0, e
= CBI
->getNumIndirectDests(); i
!= e
; ++i
) {
4349 writeOperand(CBI
->getIndirectDest(i
), true);
4352 } else if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(&I
)) {
4354 if (AI
->isUsedWithInAlloca())
4356 if (AI
->isSwiftError())
4357 Out
<< "swifterror ";
4358 TypePrinter
.print(AI
->getAllocatedType(), Out
);
4360 // Explicitly write the array size if the code is broken, if it's an array
4361 // allocation, or if the type is not canonical for scalar allocations. The
4362 // latter case prevents the type from mutating when round-tripping through
4364 if (!AI
->getArraySize() || AI
->isArrayAllocation() ||
4365 !AI
->getArraySize()->getType()->isIntegerTy(32)) {
4367 writeOperand(AI
->getArraySize(), true);
4369 if (MaybeAlign A
= AI
->getAlign()) {
4370 Out
<< ", align " << A
->value();
4373 unsigned AddrSpace
= AI
->getAddressSpace();
4374 if (AddrSpace
!= 0) {
4375 Out
<< ", addrspace(" << AddrSpace
<< ')';
4377 } else if (isa
<CastInst
>(I
)) {
4380 writeOperand(Operand
, true); // Work with broken code
4383 TypePrinter
.print(I
.getType(), Out
);
4384 } else if (isa
<VAArgInst
>(I
)) {
4387 writeOperand(Operand
, true); // Work with broken code
4390 TypePrinter
.print(I
.getType(), Out
);
4391 } else if (Operand
) { // Print the normal way.
4392 if (const auto *GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
4394 TypePrinter
.print(GEP
->getSourceElementType(), Out
);
4396 } else if (const auto *LI
= dyn_cast
<LoadInst
>(&I
)) {
4398 TypePrinter
.print(LI
->getType(), Out
);
4402 // PrintAllTypes - Instructions who have operands of all the same type
4403 // omit the type from all but the first operand. If the instruction has
4404 // different type operands (for example br), then they are all printed.
4405 bool PrintAllTypes
= false;
4406 Type
*TheType
= Operand
->getType();
4408 // Select, Store, ShuffleVector, CmpXchg and AtomicRMW always print all
4410 if (isa
<SelectInst
>(I
) || isa
<StoreInst
>(I
) || isa
<ShuffleVectorInst
>(I
) ||
4411 isa
<ReturnInst
>(I
) || isa
<AtomicCmpXchgInst
>(I
) ||
4412 isa
<AtomicRMWInst
>(I
)) {
4413 PrintAllTypes
= true;
4415 for (unsigned i
= 1, E
= I
.getNumOperands(); i
!= E
; ++i
) {
4416 Operand
= I
.getOperand(i
);
4417 // note that Operand shouldn't be null, but the test helps make dump()
4418 // more tolerant of malformed IR
4419 if (Operand
&& Operand
->getType() != TheType
) {
4420 PrintAllTypes
= true; // We have differing types! Print them all!
4426 if (!PrintAllTypes
) {
4428 TypePrinter
.print(TheType
, Out
);
4432 for (unsigned i
= 0, E
= I
.getNumOperands(); i
!= E
; ++i
) {
4434 writeOperand(I
.getOperand(i
), PrintAllTypes
);
4438 // Print atomic ordering/alignment for memory operations
4439 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
)) {
4441 writeAtomic(LI
->getContext(), LI
->getOrdering(), LI
->getSyncScopeID());
4442 if (MaybeAlign A
= LI
->getAlign())
4443 Out
<< ", align " << A
->value();
4444 } else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
)) {
4446 writeAtomic(SI
->getContext(), SI
->getOrdering(), SI
->getSyncScopeID());
4447 if (MaybeAlign A
= SI
->getAlign())
4448 Out
<< ", align " << A
->value();
4449 } else if (const AtomicCmpXchgInst
*CXI
= dyn_cast
<AtomicCmpXchgInst
>(&I
)) {
4450 writeAtomicCmpXchg(CXI
->getContext(), CXI
->getSuccessOrdering(),
4451 CXI
->getFailureOrdering(), CXI
->getSyncScopeID());
4452 Out
<< ", align " << CXI
->getAlign().value();
4453 } else if (const AtomicRMWInst
*RMWI
= dyn_cast
<AtomicRMWInst
>(&I
)) {
4454 writeAtomic(RMWI
->getContext(), RMWI
->getOrdering(),
4455 RMWI
->getSyncScopeID());
4456 Out
<< ", align " << RMWI
->getAlign().value();
4457 } else if (const FenceInst
*FI
= dyn_cast
<FenceInst
>(&I
)) {
4458 writeAtomic(FI
->getContext(), FI
->getOrdering(), FI
->getSyncScopeID());
4459 } else if (const ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(&I
)) {
4460 PrintShuffleMask(Out
, SVI
->getType(), SVI
->getShuffleMask());
4463 // Print Metadata info.
4464 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> InstMD
;
4465 I
.getAllMetadata(InstMD
);
4466 printMetadataAttachments(InstMD
, ", ");
4468 // Print a nice comment.
4469 printInfoComment(I
);
4472 void AssemblyWriter::printMetadataAttachments(
4473 const SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &MDs
,
4474 StringRef Separator
) {
4478 if (MDNames
.empty())
4479 MDs
[0].second
->getContext().getMDKindNames(MDNames
);
4481 auto WriterCtx
= getContext();
4482 for (const auto &I
: MDs
) {
4483 unsigned Kind
= I
.first
;
4485 if (Kind
< MDNames
.size()) {
4487 printMetadataIdentifier(MDNames
[Kind
], Out
);
4489 Out
<< "!<unknown kind #" << Kind
<< ">";
4491 WriteAsOperandInternal(Out
, I
.second
, WriterCtx
);
4495 void AssemblyWriter::writeMDNode(unsigned Slot
, const MDNode
*Node
) {
4496 Out
<< '!' << Slot
<< " = ";
4497 printMDNodeBody(Node
);
4501 void AssemblyWriter::writeAllMDNodes() {
4502 SmallVector
<const MDNode
*, 16> Nodes
;
4503 Nodes
.resize(Machine
.mdn_size());
4504 for (auto &I
: llvm::make_range(Machine
.mdn_begin(), Machine
.mdn_end()))
4505 Nodes
[I
.second
] = cast
<MDNode
>(I
.first
);
4507 for (unsigned i
= 0, e
= Nodes
.size(); i
!= e
; ++i
) {
4508 writeMDNode(i
, Nodes
[i
]);
4512 void AssemblyWriter::printMDNodeBody(const MDNode
*Node
) {
4513 auto WriterCtx
= getContext();
4514 WriteMDNodeBodyInternal(Out
, Node
, WriterCtx
);
4517 void AssemblyWriter::writeAttribute(const Attribute
&Attr
, bool InAttrGroup
) {
4518 if (!Attr
.isTypeAttribute()) {
4519 Out
<< Attr
.getAsString(InAttrGroup
);
4523 Out
<< Attribute::getNameFromAttrKind(Attr
.getKindAsEnum());
4524 if (Type
*Ty
= Attr
.getValueAsType()) {
4526 TypePrinter
.print(Ty
, Out
);
4531 void AssemblyWriter::writeAttributeSet(const AttributeSet
&AttrSet
,
4533 bool FirstAttr
= true;
4534 for (const auto &Attr
: AttrSet
) {
4537 writeAttribute(Attr
, InAttrGroup
);
4542 void AssemblyWriter::writeAllAttributeGroups() {
4543 std::vector
<std::pair
<AttributeSet
, unsigned>> asVec
;
4544 asVec
.resize(Machine
.as_size());
4546 for (auto &I
: llvm::make_range(Machine
.as_begin(), Machine
.as_end()))
4547 asVec
[I
.second
] = I
;
4549 for (const auto &I
: asVec
)
4550 Out
<< "attributes #" << I
.second
<< " = { "
4551 << I
.first
.getAsString(true) << " }\n";
4554 void AssemblyWriter::printUseListOrder(const Value
*V
,
4555 const std::vector
<unsigned> &Shuffle
) {
4556 bool IsInFunction
= Machine
.getFunction();
4560 Out
<< "uselistorder";
4561 if (const BasicBlock
*BB
= IsInFunction
? nullptr : dyn_cast
<BasicBlock
>(V
)) {
4563 writeOperand(BB
->getParent(), false);
4565 writeOperand(BB
, false);
4568 writeOperand(V
, true);
4572 assert(Shuffle
.size() >= 2 && "Shuffle too small");
4574 for (unsigned I
= 1, E
= Shuffle
.size(); I
!= E
; ++I
)
4575 Out
<< ", " << Shuffle
[I
];
4579 void AssemblyWriter::printUseLists(const Function
*F
) {
4580 auto It
= UseListOrders
.find(F
);
4581 if (It
== UseListOrders
.end())
4584 Out
<< "\n; uselistorder directives\n";
4585 for (const auto &Pair
: It
->second
)
4586 printUseListOrder(Pair
.first
, Pair
.second
);
4589 //===----------------------------------------------------------------------===//
4590 // External Interface declarations
4591 //===----------------------------------------------------------------------===//
4593 void Function::print(raw_ostream
&ROS
, AssemblyAnnotationWriter
*AAW
,
4594 bool ShouldPreserveUseListOrder
,
4595 bool IsForDebug
) const {
4596 SlotTracker
SlotTable(this->getParent());
4597 formatted_raw_ostream
OS(ROS
);
4598 AssemblyWriter
W(OS
, SlotTable
, this->getParent(), AAW
,
4600 ShouldPreserveUseListOrder
);
4601 W
.printFunction(this);
4604 void BasicBlock::print(raw_ostream
&ROS
, AssemblyAnnotationWriter
*AAW
,
4605 bool ShouldPreserveUseListOrder
,
4606 bool IsForDebug
) const {
4607 SlotTracker
SlotTable(this->getParent());
4608 formatted_raw_ostream
OS(ROS
);
4609 AssemblyWriter
W(OS
, SlotTable
, this->getModule(), AAW
,
4611 ShouldPreserveUseListOrder
);
4612 W
.printBasicBlock(this);
4615 void Module::print(raw_ostream
&ROS
, AssemblyAnnotationWriter
*AAW
,
4616 bool ShouldPreserveUseListOrder
, bool IsForDebug
) const {
4617 SlotTracker
SlotTable(this);
4618 formatted_raw_ostream
OS(ROS
);
4619 AssemblyWriter
W(OS
, SlotTable
, this, AAW
, IsForDebug
,
4620 ShouldPreserveUseListOrder
);
4621 W
.printModule(this);
4624 void NamedMDNode::print(raw_ostream
&ROS
, bool IsForDebug
) const {
4625 SlotTracker
SlotTable(getParent());
4626 formatted_raw_ostream
OS(ROS
);
4627 AssemblyWriter
W(OS
, SlotTable
, getParent(), nullptr, IsForDebug
);
4628 W
.printNamedMDNode(this);
4631 void NamedMDNode::print(raw_ostream
&ROS
, ModuleSlotTracker
&MST
,
4632 bool IsForDebug
) const {
4633 std::optional
<SlotTracker
> LocalST
;
4634 SlotTracker
*SlotTable
;
4635 if (auto *ST
= MST
.getMachine())
4638 LocalST
.emplace(getParent());
4639 SlotTable
= &*LocalST
;
4642 formatted_raw_ostream
OS(ROS
);
4643 AssemblyWriter
W(OS
, *SlotTable
, getParent(), nullptr, IsForDebug
);
4644 W
.printNamedMDNode(this);
4647 void Comdat::print(raw_ostream
&ROS
, bool /*IsForDebug*/) const {
4648 PrintLLVMName(ROS
, getName(), ComdatPrefix
);
4649 ROS
<< " = comdat ";
4651 switch (getSelectionKind()) {
4655 case Comdat::ExactMatch
:
4656 ROS
<< "exactmatch";
4658 case Comdat::Largest
:
4661 case Comdat::NoDeduplicate
:
4662 ROS
<< "nodeduplicate";
4664 case Comdat::SameSize
:
4672 void Type::print(raw_ostream
&OS
, bool /*IsForDebug*/, bool NoDetails
) const {
4674 TP
.print(const_cast<Type
*>(this), OS
);
4679 // If the type is a named struct type, print the body as well.
4680 if (StructType
*STy
= dyn_cast
<StructType
>(const_cast<Type
*>(this)))
4681 if (!STy
->isLiteral()) {
4683 TP
.printStructBody(STy
, OS
);
4687 static bool isReferencingMDNode(const Instruction
&I
) {
4688 if (const auto *CI
= dyn_cast
<CallInst
>(&I
))
4689 if (Function
*F
= CI
->getCalledFunction())
4690 if (F
->isIntrinsic())
4691 for (auto &Op
: I
.operands())
4692 if (auto *V
= dyn_cast_or_null
<MetadataAsValue
>(Op
))
4693 if (isa
<MDNode
>(V
->getMetadata()))
4698 void Value::print(raw_ostream
&ROS
, bool IsForDebug
) const {
4699 bool ShouldInitializeAllMetadata
= false;
4700 if (auto *I
= dyn_cast
<Instruction
>(this))
4701 ShouldInitializeAllMetadata
= isReferencingMDNode(*I
);
4702 else if (isa
<Function
>(this) || isa
<MetadataAsValue
>(this))
4703 ShouldInitializeAllMetadata
= true;
4705 ModuleSlotTracker
MST(getModuleFromVal(this), ShouldInitializeAllMetadata
);
4706 print(ROS
, MST
, IsForDebug
);
4709 void Value::print(raw_ostream
&ROS
, ModuleSlotTracker
&MST
,
4710 bool IsForDebug
) const {
4711 formatted_raw_ostream
OS(ROS
);
4712 SlotTracker
EmptySlotTable(static_cast<const Module
*>(nullptr));
4713 SlotTracker
&SlotTable
=
4714 MST
.getMachine() ? *MST
.getMachine() : EmptySlotTable
;
4715 auto incorporateFunction
= [&](const Function
*F
) {
4717 MST
.incorporateFunction(*F
);
4720 if (const Instruction
*I
= dyn_cast
<Instruction
>(this)) {
4721 incorporateFunction(I
->getParent() ? I
->getParent()->getParent() : nullptr);
4722 AssemblyWriter
W(OS
, SlotTable
, getModuleFromVal(I
), nullptr, IsForDebug
);
4723 W
.printInstruction(*I
);
4724 } else if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(this)) {
4725 incorporateFunction(BB
->getParent());
4726 AssemblyWriter
W(OS
, SlotTable
, getModuleFromVal(BB
), nullptr, IsForDebug
);
4727 W
.printBasicBlock(BB
);
4728 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(this)) {
4729 AssemblyWriter
W(OS
, SlotTable
, GV
->getParent(), nullptr, IsForDebug
);
4730 if (const GlobalVariable
*V
= dyn_cast
<GlobalVariable
>(GV
))
4732 else if (const Function
*F
= dyn_cast
<Function
>(GV
))
4734 else if (const GlobalAlias
*A
= dyn_cast
<GlobalAlias
>(GV
))
4736 else if (const GlobalIFunc
*I
= dyn_cast
<GlobalIFunc
>(GV
))
4739 llvm_unreachable("Unknown GlobalValue to print out!");
4740 } else if (const MetadataAsValue
*V
= dyn_cast
<MetadataAsValue
>(this)) {
4741 V
->getMetadata()->print(ROS
, MST
, getModuleFromVal(V
));
4742 } else if (const Constant
*C
= dyn_cast
<Constant
>(this)) {
4743 TypePrinting TypePrinter
;
4744 TypePrinter
.print(C
->getType(), OS
);
4746 AsmWriterContext
WriterCtx(&TypePrinter
, MST
.getMachine());
4747 WriteConstantInternal(OS
, C
, WriterCtx
);
4748 } else if (isa
<InlineAsm
>(this) || isa
<Argument
>(this)) {
4749 this->printAsOperand(OS
, /* PrintType */ true, MST
);
4751 llvm_unreachable("Unknown value to print out!");
4755 /// Print without a type, skipping the TypePrinting object.
4757 /// \return \c true iff printing was successful.
4758 static bool printWithoutType(const Value
&V
, raw_ostream
&O
,
4759 SlotTracker
*Machine
, const Module
*M
) {
4760 if (V
.hasName() || isa
<GlobalValue
>(V
) ||
4761 (!isa
<Constant
>(V
) && !isa
<MetadataAsValue
>(V
))) {
4762 AsmWriterContext
WriterCtx(nullptr, Machine
, M
);
4763 WriteAsOperandInternal(O
, &V
, WriterCtx
);
4769 static void printAsOperandImpl(const Value
&V
, raw_ostream
&O
, bool PrintType
,
4770 ModuleSlotTracker
&MST
) {
4771 TypePrinting
TypePrinter(MST
.getModule());
4773 TypePrinter
.print(V
.getType(), O
);
4777 AsmWriterContext
WriterCtx(&TypePrinter
, MST
.getMachine(), MST
.getModule());
4778 WriteAsOperandInternal(O
, &V
, WriterCtx
);
4781 void Value::printAsOperand(raw_ostream
&O
, bool PrintType
,
4782 const Module
*M
) const {
4784 M
= getModuleFromVal(this);
4787 if (printWithoutType(*this, O
, nullptr, M
))
4790 SlotTracker
Machine(
4791 M
, /* ShouldInitializeAllMetadata */ isa
<MetadataAsValue
>(this));
4792 ModuleSlotTracker
MST(Machine
, M
);
4793 printAsOperandImpl(*this, O
, PrintType
, MST
);
4796 void Value::printAsOperand(raw_ostream
&O
, bool PrintType
,
4797 ModuleSlotTracker
&MST
) const {
4799 if (printWithoutType(*this, O
, MST
.getMachine(), MST
.getModule()))
4802 printAsOperandImpl(*this, O
, PrintType
, MST
);
4805 /// Recursive version of printMetadataImpl.
4806 static void printMetadataImplRec(raw_ostream
&ROS
, const Metadata
&MD
,
4807 AsmWriterContext
&WriterCtx
) {
4808 formatted_raw_ostream
OS(ROS
);
4809 WriteAsOperandInternal(OS
, &MD
, WriterCtx
, /* FromValue */ true);
4811 auto *N
= dyn_cast
<MDNode
>(&MD
);
4812 if (!N
|| isa
<DIExpression
>(MD
) || isa
<DIArgList
>(MD
))
4816 WriteMDNodeBodyInternal(OS
, N
, WriterCtx
);
4820 struct MDTreeAsmWriterContext
: public AsmWriterContext
{
4822 // {Level, Printed string}
4823 using EntryTy
= std::pair
<unsigned, std::string
>;
4824 SmallVector
<EntryTy
, 4> Buffer
;
4826 // Used to break the cycle in case there is any.
4827 SmallPtrSet
<const Metadata
*, 4> Visited
;
4829 raw_ostream
&MainOS
;
4831 MDTreeAsmWriterContext(TypePrinting
*TP
, SlotTracker
*ST
, const Module
*M
,
4832 raw_ostream
&OS
, const Metadata
*InitMD
)
4833 : AsmWriterContext(TP
, ST
, M
), Level(0U), Visited({InitMD
}), MainOS(OS
) {}
4835 void onWriteMetadataAsOperand(const Metadata
*MD
) override
{
4836 if (!Visited
.insert(MD
).second
)
4840 raw_string_ostream
SS(Str
);
4842 // A placeholder entry to memorize the correct
4843 // position in buffer.
4844 Buffer
.emplace_back(std::make_pair(Level
, ""));
4845 unsigned InsertIdx
= Buffer
.size() - 1;
4847 printMetadataImplRec(SS
, *MD
, *this);
4848 Buffer
[InsertIdx
].second
= std::move(SS
.str());
4852 ~MDTreeAsmWriterContext() {
4853 for (const auto &Entry
: Buffer
) {
4855 unsigned NumIndent
= Entry
.first
* 2U;
4856 MainOS
.indent(NumIndent
) << Entry
.second
;
4860 } // end anonymous namespace
4862 static void printMetadataImpl(raw_ostream
&ROS
, const Metadata
&MD
,
4863 ModuleSlotTracker
&MST
, const Module
*M
,
4864 bool OnlyAsOperand
, bool PrintAsTree
= false) {
4865 formatted_raw_ostream
OS(ROS
);
4867 TypePrinting
TypePrinter(M
);
4869 std::unique_ptr
<AsmWriterContext
> WriterCtx
;
4870 if (PrintAsTree
&& !OnlyAsOperand
)
4871 WriterCtx
= std::make_unique
<MDTreeAsmWriterContext
>(
4872 &TypePrinter
, MST
.getMachine(), M
, OS
, &MD
);
4875 std::make_unique
<AsmWriterContext
>(&TypePrinter
, MST
.getMachine(), M
);
4877 WriteAsOperandInternal(OS
, &MD
, *WriterCtx
, /* FromValue */ true);
4879 auto *N
= dyn_cast
<MDNode
>(&MD
);
4880 if (OnlyAsOperand
|| !N
|| isa
<DIExpression
>(MD
) || isa
<DIArgList
>(MD
))
4884 WriteMDNodeBodyInternal(OS
, N
, *WriterCtx
);
4887 void Metadata::printAsOperand(raw_ostream
&OS
, const Module
*M
) const {
4888 ModuleSlotTracker
MST(M
, isa
<MDNode
>(this));
4889 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ true);
4892 void Metadata::printAsOperand(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
4893 const Module
*M
) const {
4894 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ true);
4897 void Metadata::print(raw_ostream
&OS
, const Module
*M
,
4898 bool /*IsForDebug*/) const {
4899 ModuleSlotTracker
MST(M
, isa
<MDNode
>(this));
4900 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ false);
4903 void Metadata::print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
4904 const Module
*M
, bool /*IsForDebug*/) const {
4905 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ false);
4908 void MDNode::printTree(raw_ostream
&OS
, const Module
*M
) const {
4909 ModuleSlotTracker
MST(M
, true);
4910 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ false,
4911 /*PrintAsTree=*/true);
4914 void MDNode::printTree(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
4915 const Module
*M
) const {
4916 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ false,
4917 /*PrintAsTree=*/true);
4920 void ModuleSummaryIndex::print(raw_ostream
&ROS
, bool IsForDebug
) const {
4921 SlotTracker
SlotTable(this);
4922 formatted_raw_ostream
OS(ROS
);
4923 AssemblyWriter
W(OS
, SlotTable
, this, IsForDebug
);
4924 W
.printModuleSummaryIndex();
4927 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType
&L
, unsigned LB
,
4928 unsigned UB
) const {
4929 SlotTracker
*ST
= MachineStorage
.get();
4933 for (auto &I
: llvm::make_range(ST
->mdn_begin(), ST
->mdn_end()))
4934 if (I
.second
>= LB
&& I
.second
< UB
)
4935 L
.push_back(std::make_pair(I
.second
, I
.first
));
4938 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4939 // Value::dump - allow easy printing of Values from the debugger.
4941 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4943 // Type::dump - allow easy printing of Types from the debugger.
4945 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4947 // Module::dump() - Allow printing of Modules from the debugger.
4949 void Module::dump() const {
4950 print(dbgs(), nullptr,
4951 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4954 // Allow printing of Comdats from the debugger.
4956 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4958 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4960 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4963 void Metadata::dump() const { dump(nullptr); }
4966 void Metadata::dump(const Module
*M
) const {
4967 print(dbgs(), M
, /*IsForDebug=*/true);
4972 void MDNode::dumpTree() const { dumpTree(nullptr); }
4975 void MDNode::dumpTree(const Module
*M
) const {
4976 printTree(dbgs(), M
);
4980 // Allow printing of ModuleSummaryIndex from the debugger.
4982 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }