Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / IR / Verifier.cpp
blob7c80997313292fb86a3d34a35fcf0bd02eb73ce8
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * All basic blocks should only end with terminator insts, not contain them
27 // * The entry node to a function must not have predecessors
28 // * All Instructions must be embedded into a basic block
29 // * Functions cannot take a void-typed parameter
30 // * Verify that a function's argument list agrees with it's declared type.
31 // * It is illegal to specify a name for a void value.
32 // * It is illegal to have a internal global value with no initializer
33 // * It is illegal to have a ret instruction that returns a value that does not
34 // agree with the function return value type.
35 // * Function call argument types match the function prototype
36 // * A landing pad is defined by a landingpad instruction, and can be jumped to
37 // only by the unwind edge of an invoke instruction.
38 // * A landingpad instruction must be the first non-PHI instruction in the
39 // block.
40 // * Landingpad instructions must be in a function with a personality function.
41 // * Convergence control intrinsics are introduced in ConvergentOperations.rst.
42 // The applied restrictions are too numerous to list here.
43 // * The convergence entry intrinsic and the loop heart must be the first
44 // non-PHI instruction in their respective block. This does not conflict with
45 // the landing pads, since these two kinds cannot occur in the same block.
46 // * All other things that are tested by asserts spread about the code...
48 //===----------------------------------------------------------------------===//
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/ADT/APFloat.h"
52 #include "llvm/ADT/APInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/DenseMap.h"
55 #include "llvm/ADT/MapVector.h"
56 #include "llvm/ADT/PostOrderIterator.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallPtrSet.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/StringExtras.h"
62 #include "llvm/ADT/StringMap.h"
63 #include "llvm/ADT/StringRef.h"
64 #include "llvm/ADT/Twine.h"
65 #include "llvm/BinaryFormat/Dwarf.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/AttributeMask.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/BasicBlock.h"
70 #include "llvm/IR/CFG.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Comdat.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/ConstantRange.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/ConvergenceVerifier.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfo.h"
79 #include "llvm/IR/DebugInfoMetadata.h"
80 #include "llvm/IR/DebugLoc.h"
81 #include "llvm/IR/DerivedTypes.h"
82 #include "llvm/IR/Dominators.h"
83 #include "llvm/IR/EHPersonalities.h"
84 #include "llvm/IR/Function.h"
85 #include "llvm/IR/GCStrategy.h"
86 #include "llvm/IR/GlobalAlias.h"
87 #include "llvm/IR/GlobalValue.h"
88 #include "llvm/IR/GlobalVariable.h"
89 #include "llvm/IR/InlineAsm.h"
90 #include "llvm/IR/InstVisitor.h"
91 #include "llvm/IR/InstrTypes.h"
92 #include "llvm/IR/Instruction.h"
93 #include "llvm/IR/Instructions.h"
94 #include "llvm/IR/IntrinsicInst.h"
95 #include "llvm/IR/Intrinsics.h"
96 #include "llvm/IR/IntrinsicsAArch64.h"
97 #include "llvm/IR/IntrinsicsAMDGPU.h"
98 #include "llvm/IR/IntrinsicsARM.h"
99 #include "llvm/IR/IntrinsicsWebAssembly.h"
100 #include "llvm/IR/LLVMContext.h"
101 #include "llvm/IR/Metadata.h"
102 #include "llvm/IR/Module.h"
103 #include "llvm/IR/ModuleSlotTracker.h"
104 #include "llvm/IR/PassManager.h"
105 #include "llvm/IR/Statepoint.h"
106 #include "llvm/IR/Type.h"
107 #include "llvm/IR/Use.h"
108 #include "llvm/IR/User.h"
109 #include "llvm/IR/Value.h"
110 #include "llvm/InitializePasses.h"
111 #include "llvm/Pass.h"
112 #include "llvm/Support/AtomicOrdering.h"
113 #include "llvm/Support/Casting.h"
114 #include "llvm/Support/CommandLine.h"
115 #include "llvm/Support/ErrorHandling.h"
116 #include "llvm/Support/MathExtras.h"
117 #include "llvm/Support/raw_ostream.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <cstdint>
121 #include <memory>
122 #include <optional>
123 #include <string>
124 #include <utility>
126 using namespace llvm;
128 static cl::opt<bool> VerifyNoAliasScopeDomination(
129 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
130 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
131 "scopes are not dominating"));
133 namespace llvm {
135 struct VerifierSupport {
136 raw_ostream *OS;
137 const Module &M;
138 ModuleSlotTracker MST;
139 Triple TT;
140 const DataLayout &DL;
141 LLVMContext &Context;
143 /// Track the brokenness of the module while recursively visiting.
144 bool Broken = false;
145 /// Broken debug info can be "recovered" from by stripping the debug info.
146 bool BrokenDebugInfo = false;
147 /// Whether to treat broken debug info as an error.
148 bool TreatBrokenDebugInfoAsError = true;
150 explicit VerifierSupport(raw_ostream *OS, const Module &M)
151 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
152 Context(M.getContext()) {}
154 private:
155 void Write(const Module *M) {
156 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
159 void Write(const Value *V) {
160 if (V)
161 Write(*V);
164 void Write(const Value &V) {
165 if (isa<Instruction>(V)) {
166 V.print(*OS, MST);
167 *OS << '\n';
168 } else {
169 V.printAsOperand(*OS, true, MST);
170 *OS << '\n';
174 void Write(const Metadata *MD) {
175 if (!MD)
176 return;
177 MD->print(*OS, MST, &M);
178 *OS << '\n';
181 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
182 Write(MD.get());
185 void Write(const NamedMDNode *NMD) {
186 if (!NMD)
187 return;
188 NMD->print(*OS, MST);
189 *OS << '\n';
192 void Write(Type *T) {
193 if (!T)
194 return;
195 *OS << ' ' << *T;
198 void Write(const Comdat *C) {
199 if (!C)
200 return;
201 *OS << *C;
204 void Write(const APInt *AI) {
205 if (!AI)
206 return;
207 *OS << *AI << '\n';
210 void Write(const unsigned i) { *OS << i << '\n'; }
212 // NOLINTNEXTLINE(readability-identifier-naming)
213 void Write(const Attribute *A) {
214 if (!A)
215 return;
216 *OS << A->getAsString() << '\n';
219 // NOLINTNEXTLINE(readability-identifier-naming)
220 void Write(const AttributeSet *AS) {
221 if (!AS)
222 return;
223 *OS << AS->getAsString() << '\n';
226 // NOLINTNEXTLINE(readability-identifier-naming)
227 void Write(const AttributeList *AL) {
228 if (!AL)
229 return;
230 AL->print(*OS);
233 void Write(Printable P) { *OS << P << '\n'; }
235 template <typename T> void Write(ArrayRef<T> Vs) {
236 for (const T &V : Vs)
237 Write(V);
240 template <typename T1, typename... Ts>
241 void WriteTs(const T1 &V1, const Ts &... Vs) {
242 Write(V1);
243 WriteTs(Vs...);
246 template <typename... Ts> void WriteTs() {}
248 public:
249 /// A check failed, so printout out the condition and the message.
251 /// This provides a nice place to put a breakpoint if you want to see why
252 /// something is not correct.
253 void CheckFailed(const Twine &Message) {
254 if (OS)
255 *OS << Message << '\n';
256 Broken = true;
259 /// A check failed (with values to print).
261 /// This calls the Message-only version so that the above is easier to set a
262 /// breakpoint on.
263 template <typename T1, typename... Ts>
264 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
265 CheckFailed(Message);
266 if (OS)
267 WriteTs(V1, Vs...);
270 /// A debug info check failed.
271 void DebugInfoCheckFailed(const Twine &Message) {
272 if (OS)
273 *OS << Message << '\n';
274 Broken |= TreatBrokenDebugInfoAsError;
275 BrokenDebugInfo = true;
278 /// A debug info check failed (with values to print).
279 template <typename T1, typename... Ts>
280 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
281 const Ts &... Vs) {
282 DebugInfoCheckFailed(Message);
283 if (OS)
284 WriteTs(V1, Vs...);
288 } // namespace llvm
290 namespace {
292 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
293 friend class InstVisitor<Verifier>;
295 // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so
296 // the alignment size should not exceed 2^15. Since encode(Align)
297 // would plus the shift value by 1, the alignment size should
298 // not exceed 2^14, otherwise it can NOT be properly lowered
299 // in backend.
300 static constexpr unsigned ParamMaxAlignment = 1 << 14;
301 DominatorTree DT;
303 /// When verifying a basic block, keep track of all of the
304 /// instructions we have seen so far.
306 /// This allows us to do efficient dominance checks for the case when an
307 /// instruction has an operand that is an instruction in the same block.
308 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
310 /// Keep track of the metadata nodes that have been checked already.
311 SmallPtrSet<const Metadata *, 32> MDNodes;
313 /// Keep track which DISubprogram is attached to which function.
314 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
316 /// Track all DICompileUnits visited.
317 SmallPtrSet<const Metadata *, 2> CUVisited;
319 /// The result type for a landingpad.
320 Type *LandingPadResultTy;
322 /// Whether we've seen a call to @llvm.localescape in this function
323 /// already.
324 bool SawFrameEscape;
326 /// Whether the current function has a DISubprogram attached to it.
327 bool HasDebugInfo = false;
329 /// The current source language.
330 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
332 /// Whether source was present on the first DIFile encountered in each CU.
333 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
335 /// Stores the count of how many objects were passed to llvm.localescape for a
336 /// given function and the largest index passed to llvm.localrecover.
337 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
339 // Maps catchswitches and cleanuppads that unwind to siblings to the
340 // terminators that indicate the unwind, used to detect cycles therein.
341 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
343 /// Cache which blocks are in which funclet, if an EH funclet personality is
344 /// in use. Otherwise empty.
345 DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors;
347 /// Cache of constants visited in search of ConstantExprs.
348 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
350 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
351 SmallVector<const Function *, 4> DeoptimizeDeclarations;
353 /// Cache of attribute lists verified.
354 SmallPtrSet<const void *, 32> AttributeListsVisited;
356 // Verify that this GlobalValue is only used in this module.
357 // This map is used to avoid visiting uses twice. We can arrive at a user
358 // twice, if they have multiple operands. In particular for very large
359 // constant expressions, we can arrive at a particular user many times.
360 SmallPtrSet<const Value *, 32> GlobalValueVisited;
362 // Keeps track of duplicate function argument debug info.
363 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
365 TBAAVerifier TBAAVerifyHelper;
366 ConvergenceVerifier ConvergenceVerifyHelper;
368 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
370 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
372 public:
373 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
374 const Module &M)
375 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
376 SawFrameEscape(false), TBAAVerifyHelper(this) {
377 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
380 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
382 bool verify(const Function &F) {
383 assert(F.getParent() == &M &&
384 "An instance of this class only works with a specific module!");
386 // First ensure the function is well-enough formed to compute dominance
387 // information, and directly compute a dominance tree. We don't rely on the
388 // pass manager to provide this as it isolates us from a potentially
389 // out-of-date dominator tree and makes it significantly more complex to run
390 // this code outside of a pass manager.
391 // FIXME: It's really gross that we have to cast away constness here.
392 if (!F.empty())
393 DT.recalculate(const_cast<Function &>(F));
395 for (const BasicBlock &BB : F) {
396 if (!BB.empty() && BB.back().isTerminator())
397 continue;
399 if (OS) {
400 *OS << "Basic Block in function '" << F.getName()
401 << "' does not have terminator!\n";
402 BB.printAsOperand(*OS, true, MST);
403 *OS << "\n";
405 return false;
408 auto FailureCB = [this](const Twine &Message) {
409 this->CheckFailed(Message);
411 ConvergenceVerifyHelper.initialize(OS, FailureCB, F);
413 Broken = false;
414 // FIXME: We strip const here because the inst visitor strips const.
415 visit(const_cast<Function &>(F));
416 verifySiblingFuncletUnwinds();
418 if (ConvergenceVerifyHelper.sawTokens())
419 ConvergenceVerifyHelper.verify(DT);
421 InstsInThisBlock.clear();
422 DebugFnArgs.clear();
423 LandingPadResultTy = nullptr;
424 SawFrameEscape = false;
425 SiblingFuncletInfo.clear();
426 verifyNoAliasScopeDecl();
427 NoAliasScopeDecls.clear();
429 return !Broken;
432 /// Verify the module that this instance of \c Verifier was initialized with.
433 bool verify() {
434 Broken = false;
436 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
437 for (const Function &F : M)
438 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
439 DeoptimizeDeclarations.push_back(&F);
441 // Now that we've visited every function, verify that we never asked to
442 // recover a frame index that wasn't escaped.
443 verifyFrameRecoverIndices();
444 for (const GlobalVariable &GV : M.globals())
445 visitGlobalVariable(GV);
447 for (const GlobalAlias &GA : M.aliases())
448 visitGlobalAlias(GA);
450 for (const GlobalIFunc &GI : M.ifuncs())
451 visitGlobalIFunc(GI);
453 for (const NamedMDNode &NMD : M.named_metadata())
454 visitNamedMDNode(NMD);
456 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
457 visitComdat(SMEC.getValue());
459 visitModuleFlags();
460 visitModuleIdents();
461 visitModuleCommandLines();
463 verifyCompileUnits();
465 verifyDeoptimizeCallingConvs();
466 DISubprogramAttachments.clear();
467 return !Broken;
470 private:
471 /// Whether a metadata node is allowed to be, or contain, a DILocation.
472 enum class AreDebugLocsAllowed { No, Yes };
474 // Verification methods...
475 void visitGlobalValue(const GlobalValue &GV);
476 void visitGlobalVariable(const GlobalVariable &GV);
477 void visitGlobalAlias(const GlobalAlias &GA);
478 void visitGlobalIFunc(const GlobalIFunc &GI);
479 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
480 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
481 const GlobalAlias &A, const Constant &C);
482 void visitNamedMDNode(const NamedMDNode &NMD);
483 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
484 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
485 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
486 void visitComdat(const Comdat &C);
487 void visitModuleIdents();
488 void visitModuleCommandLines();
489 void visitModuleFlags();
490 void visitModuleFlag(const MDNode *Op,
491 DenseMap<const MDString *, const MDNode *> &SeenIDs,
492 SmallVectorImpl<const MDNode *> &Requirements);
493 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
494 void visitFunction(const Function &F);
495 void visitBasicBlock(BasicBlock &BB);
496 void verifyRangeMetadata(const Value &V, const MDNode *Range, Type *Ty,
497 bool IsAbsoluteSymbol);
498 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
499 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
500 void visitProfMetadata(Instruction &I, MDNode *MD);
501 void visitCallStackMetadata(MDNode *MD);
502 void visitMemProfMetadata(Instruction &I, MDNode *MD);
503 void visitCallsiteMetadata(Instruction &I, MDNode *MD);
504 void visitDIAssignIDMetadata(Instruction &I, MDNode *MD);
505 void visitAnnotationMetadata(MDNode *Annotation);
506 void visitAliasScopeMetadata(const MDNode *MD);
507 void visitAliasScopeListMetadata(const MDNode *MD);
508 void visitAccessGroupMetadata(const MDNode *MD);
510 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
511 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
512 #include "llvm/IR/Metadata.def"
513 void visitDIScope(const DIScope &N);
514 void visitDIVariable(const DIVariable &N);
515 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
516 void visitDITemplateParameter(const DITemplateParameter &N);
518 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
520 // InstVisitor overrides...
521 using InstVisitor<Verifier>::visit;
522 void visit(Instruction &I);
524 void visitTruncInst(TruncInst &I);
525 void visitZExtInst(ZExtInst &I);
526 void visitSExtInst(SExtInst &I);
527 void visitFPTruncInst(FPTruncInst &I);
528 void visitFPExtInst(FPExtInst &I);
529 void visitFPToUIInst(FPToUIInst &I);
530 void visitFPToSIInst(FPToSIInst &I);
531 void visitUIToFPInst(UIToFPInst &I);
532 void visitSIToFPInst(SIToFPInst &I);
533 void visitIntToPtrInst(IntToPtrInst &I);
534 void visitPtrToIntInst(PtrToIntInst &I);
535 void visitBitCastInst(BitCastInst &I);
536 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
537 void visitPHINode(PHINode &PN);
538 void visitCallBase(CallBase &Call);
539 void visitUnaryOperator(UnaryOperator &U);
540 void visitBinaryOperator(BinaryOperator &B);
541 void visitICmpInst(ICmpInst &IC);
542 void visitFCmpInst(FCmpInst &FC);
543 void visitExtractElementInst(ExtractElementInst &EI);
544 void visitInsertElementInst(InsertElementInst &EI);
545 void visitShuffleVectorInst(ShuffleVectorInst &EI);
546 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
547 void visitCallInst(CallInst &CI);
548 void visitInvokeInst(InvokeInst &II);
549 void visitGetElementPtrInst(GetElementPtrInst &GEP);
550 void visitLoadInst(LoadInst &LI);
551 void visitStoreInst(StoreInst &SI);
552 void verifyDominatesUse(Instruction &I, unsigned i);
553 void visitInstruction(Instruction &I);
554 void visitTerminator(Instruction &I);
555 void visitBranchInst(BranchInst &BI);
556 void visitReturnInst(ReturnInst &RI);
557 void visitSwitchInst(SwitchInst &SI);
558 void visitIndirectBrInst(IndirectBrInst &BI);
559 void visitCallBrInst(CallBrInst &CBI);
560 void visitSelectInst(SelectInst &SI);
561 void visitUserOp1(Instruction &I);
562 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
563 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
564 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
565 void visitVPIntrinsic(VPIntrinsic &VPI);
566 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
567 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
568 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
569 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
570 void visitFenceInst(FenceInst &FI);
571 void visitAllocaInst(AllocaInst &AI);
572 void visitExtractValueInst(ExtractValueInst &EVI);
573 void visitInsertValueInst(InsertValueInst &IVI);
574 void visitEHPadPredecessors(Instruction &I);
575 void visitLandingPadInst(LandingPadInst &LPI);
576 void visitResumeInst(ResumeInst &RI);
577 void visitCatchPadInst(CatchPadInst &CPI);
578 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
579 void visitCleanupPadInst(CleanupPadInst &CPI);
580 void visitFuncletPadInst(FuncletPadInst &FPI);
581 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
582 void visitCleanupReturnInst(CleanupReturnInst &CRI);
584 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
585 void verifySwiftErrorValue(const Value *SwiftErrorVal);
586 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
587 void verifyMustTailCall(CallInst &CI);
588 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
589 void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
590 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
591 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
592 const Value *V);
593 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
594 const Value *V, bool IsIntrinsic, bool IsInlineAsm);
595 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
597 void visitConstantExprsRecursively(const Constant *EntryC);
598 void visitConstantExpr(const ConstantExpr *CE);
599 void verifyInlineAsmCall(const CallBase &Call);
600 void verifyStatepoint(const CallBase &Call);
601 void verifyFrameRecoverIndices();
602 void verifySiblingFuncletUnwinds();
604 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
605 template <typename ValueOrMetadata>
606 void verifyFragmentExpression(const DIVariable &V,
607 DIExpression::FragmentInfo Fragment,
608 ValueOrMetadata *Desc);
609 void verifyFnArgs(const DbgVariableIntrinsic &I);
610 void verifyNotEntryValue(const DbgVariableIntrinsic &I);
612 /// Module-level debug info verification...
613 void verifyCompileUnits();
615 /// Module-level verification that all @llvm.experimental.deoptimize
616 /// declarations share the same calling convention.
617 void verifyDeoptimizeCallingConvs();
619 void verifyAttachedCallBundle(const CallBase &Call,
620 const OperandBundleUse &BU);
622 /// Verify all-or-nothing property of DIFile source attribute within a CU.
623 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
625 /// Verify the llvm.experimental.noalias.scope.decl declarations
626 void verifyNoAliasScopeDecl();
629 } // end anonymous namespace
631 /// We know that cond should be true, if not print an error message.
632 #define Check(C, ...) \
633 do { \
634 if (!(C)) { \
635 CheckFailed(__VA_ARGS__); \
636 return; \
638 } while (false)
640 /// We know that a debug info condition should be true, if not print
641 /// an error message.
642 #define CheckDI(C, ...) \
643 do { \
644 if (!(C)) { \
645 DebugInfoCheckFailed(__VA_ARGS__); \
646 return; \
648 } while (false)
650 void Verifier::visit(Instruction &I) {
651 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
652 Check(I.getOperand(i) != nullptr, "Operand is null", &I);
653 InstVisitor<Verifier>::visit(I);
656 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
657 static void forEachUser(const Value *User,
658 SmallPtrSet<const Value *, 32> &Visited,
659 llvm::function_ref<bool(const Value *)> Callback) {
660 if (!Visited.insert(User).second)
661 return;
663 SmallVector<const Value *> WorkList;
664 append_range(WorkList, User->materialized_users());
665 while (!WorkList.empty()) {
666 const Value *Cur = WorkList.pop_back_val();
667 if (!Visited.insert(Cur).second)
668 continue;
669 if (Callback(Cur))
670 append_range(WorkList, Cur->materialized_users());
674 void Verifier::visitGlobalValue(const GlobalValue &GV) {
675 Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
676 "Global is external, but doesn't have external or weak linkage!", &GV);
678 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
680 if (MaybeAlign A = GO->getAlign()) {
681 Check(A->value() <= Value::MaximumAlignment,
682 "huge alignment values are unsupported", GO);
685 if (const MDNode *Associated =
686 GO->getMetadata(LLVMContext::MD_associated)) {
687 Check(Associated->getNumOperands() == 1,
688 "associated metadata must have one operand", &GV, Associated);
689 const Metadata *Op = Associated->getOperand(0).get();
690 Check(Op, "associated metadata must have a global value", GO, Associated);
692 const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Op);
693 Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated);
694 if (VM) {
695 Check(isa<PointerType>(VM->getValue()->getType()),
696 "associated value must be pointer typed", GV, Associated);
698 const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
699 Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped),
700 "associated metadata must point to a GlobalObject", GO, Stripped);
701 Check(Stripped != GO,
702 "global values should not associate to themselves", GO,
703 Associated);
707 // FIXME: Why is getMetadata on GlobalValue protected?
708 if (const MDNode *AbsoluteSymbol =
709 GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
710 verifyRangeMetadata(*GO, AbsoluteSymbol, DL.getIntPtrType(GO->getType()),
711 true);
715 Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
716 "Only global variables can have appending linkage!", &GV);
718 if (GV.hasAppendingLinkage()) {
719 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
720 Check(GVar && GVar->getValueType()->isArrayTy(),
721 "Only global arrays can have appending linkage!", GVar);
724 if (GV.isDeclarationForLinker())
725 Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
727 if (GV.hasDLLExportStorageClass()) {
728 Check(!GV.hasHiddenVisibility(),
729 "dllexport GlobalValue must have default or protected visibility",
730 &GV);
732 if (GV.hasDLLImportStorageClass()) {
733 Check(GV.hasDefaultVisibility(),
734 "dllimport GlobalValue must have default visibility", &GV);
735 Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
736 &GV);
738 Check((GV.isDeclaration() &&
739 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
740 GV.hasAvailableExternallyLinkage(),
741 "Global is marked as dllimport, but not external", &GV);
744 if (GV.isImplicitDSOLocal())
745 Check(GV.isDSOLocal(),
746 "GlobalValue with local linkage or non-default "
747 "visibility must be dso_local!",
748 &GV);
750 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
751 if (const Instruction *I = dyn_cast<Instruction>(V)) {
752 if (!I->getParent() || !I->getParent()->getParent())
753 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
755 else if (I->getParent()->getParent()->getParent() != &M)
756 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
757 I->getParent()->getParent(),
758 I->getParent()->getParent()->getParent());
759 return false;
760 } else if (const Function *F = dyn_cast<Function>(V)) {
761 if (F->getParent() != &M)
762 CheckFailed("Global is used by function in a different module", &GV, &M,
763 F, F->getParent());
764 return false;
766 return true;
770 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
771 if (GV.hasInitializer()) {
772 Check(GV.getInitializer()->getType() == GV.getValueType(),
773 "Global variable initializer type does not match global "
774 "variable type!",
775 &GV);
776 // If the global has common linkage, it must have a zero initializer and
777 // cannot be constant.
778 if (GV.hasCommonLinkage()) {
779 Check(GV.getInitializer()->isNullValue(),
780 "'common' global must have a zero initializer!", &GV);
781 Check(!GV.isConstant(), "'common' global may not be marked constant!",
782 &GV);
783 Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
787 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
788 GV.getName() == "llvm.global_dtors")) {
789 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
790 "invalid linkage for intrinsic global variable", &GV);
791 Check(GV.materialized_use_empty(),
792 "invalid uses of intrinsic global variable", &GV);
794 // Don't worry about emitting an error for it not being an array,
795 // visitGlobalValue will complain on appending non-array.
796 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
797 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
798 PointerType *FuncPtrTy =
799 PointerType::get(Context, DL.getProgramAddressSpace());
800 Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
801 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
802 STy->getTypeAtIndex(1) == FuncPtrTy,
803 "wrong type for intrinsic global variable", &GV);
804 Check(STy->getNumElements() == 3,
805 "the third field of the element type is mandatory, "
806 "specify ptr null to migrate from the obsoleted 2-field form");
807 Type *ETy = STy->getTypeAtIndex(2);
808 Check(ETy->isPointerTy(), "wrong type for intrinsic global variable",
809 &GV);
813 if (GV.hasName() && (GV.getName() == "llvm.used" ||
814 GV.getName() == "llvm.compiler.used")) {
815 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
816 "invalid linkage for intrinsic global variable", &GV);
817 Check(GV.materialized_use_empty(),
818 "invalid uses of intrinsic global variable", &GV);
820 Type *GVType = GV.getValueType();
821 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
822 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
823 Check(PTy, "wrong type for intrinsic global variable", &GV);
824 if (GV.hasInitializer()) {
825 const Constant *Init = GV.getInitializer();
826 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
827 Check(InitArray, "wrong initalizer for intrinsic global variable",
828 Init);
829 for (Value *Op : InitArray->operands()) {
830 Value *V = Op->stripPointerCasts();
831 Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
832 isa<GlobalAlias>(V),
833 Twine("invalid ") + GV.getName() + " member", V);
834 Check(V->hasName(),
835 Twine("members of ") + GV.getName() + " must be named", V);
841 // Visit any debug info attachments.
842 SmallVector<MDNode *, 1> MDs;
843 GV.getMetadata(LLVMContext::MD_dbg, MDs);
844 for (auto *MD : MDs) {
845 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
846 visitDIGlobalVariableExpression(*GVE);
847 else
848 CheckDI(false, "!dbg attachment of global variable must be a "
849 "DIGlobalVariableExpression");
852 // Scalable vectors cannot be global variables, since we don't know
853 // the runtime size.
854 Check(!GV.getValueType()->isScalableTy(),
855 "Globals cannot contain scalable types", &GV);
857 // Check if it's a target extension type that disallows being used as a
858 // global.
859 if (auto *TTy = dyn_cast<TargetExtType>(GV.getValueType()))
860 Check(TTy->hasProperty(TargetExtType::CanBeGlobal),
861 "Global @" + GV.getName() + " has illegal target extension type",
862 TTy);
864 if (!GV.hasInitializer()) {
865 visitGlobalValue(GV);
866 return;
869 // Walk any aggregate initializers looking for bitcasts between address spaces
870 visitConstantExprsRecursively(GV.getInitializer());
872 visitGlobalValue(GV);
875 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
876 SmallPtrSet<const GlobalAlias*, 4> Visited;
877 Visited.insert(&GA);
878 visitAliaseeSubExpr(Visited, GA, C);
881 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
882 const GlobalAlias &GA, const Constant &C) {
883 if (GA.hasAvailableExternallyLinkage()) {
884 Check(isa<GlobalValue>(C) &&
885 cast<GlobalValue>(C).hasAvailableExternallyLinkage(),
886 "available_externally alias must point to available_externally "
887 "global value",
888 &GA);
890 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
891 if (!GA.hasAvailableExternallyLinkage()) {
892 Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
893 &GA);
896 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
897 Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
899 Check(!GA2->isInterposable(),
900 "Alias cannot point to an interposable alias", &GA);
901 } else {
902 // Only continue verifying subexpressions of GlobalAliases.
903 // Do not recurse into global initializers.
904 return;
908 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
909 visitConstantExprsRecursively(CE);
911 for (const Use &U : C.operands()) {
912 Value *V = &*U;
913 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
914 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
915 else if (const auto *C2 = dyn_cast<Constant>(V))
916 visitAliaseeSubExpr(Visited, GA, *C2);
920 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
921 Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
922 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
923 "weak_odr, external, or available_externally linkage!",
924 &GA);
925 const Constant *Aliasee = GA.getAliasee();
926 Check(Aliasee, "Aliasee cannot be NULL!", &GA);
927 Check(GA.getType() == Aliasee->getType(),
928 "Alias and aliasee types should match!", &GA);
930 Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
931 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
933 visitAliaseeSubExpr(GA, *Aliasee);
935 visitGlobalValue(GA);
938 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
939 Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
940 "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
941 "weak_odr, or external linkage!",
942 &GI);
943 // Pierce through ConstantExprs and GlobalAliases and check that the resolver
944 // is a Function definition.
945 const Function *Resolver = GI.getResolverFunction();
946 Check(Resolver, "IFunc must have a Function resolver", &GI);
947 Check(!Resolver->isDeclarationForLinker(),
948 "IFunc resolver must be a definition", &GI);
950 // Check that the immediate resolver operand (prior to any bitcasts) has the
951 // correct type.
952 const Type *ResolverTy = GI.getResolver()->getType();
954 Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()),
955 "IFunc resolver must return a pointer", &GI);
957 const Type *ResolverFuncTy =
958 GlobalIFunc::getResolverFunctionType(GI.getValueType());
959 Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()),
960 "IFunc resolver has incorrect type", &GI);
963 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
964 // There used to be various other llvm.dbg.* nodes, but we don't support
965 // upgrading them and we want to reserve the namespace for future uses.
966 if (NMD.getName().startswith("llvm.dbg."))
967 CheckDI(NMD.getName() == "llvm.dbg.cu",
968 "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
969 for (const MDNode *MD : NMD.operands()) {
970 if (NMD.getName() == "llvm.dbg.cu")
971 CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
973 if (!MD)
974 continue;
976 visitMDNode(*MD, AreDebugLocsAllowed::Yes);
980 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
981 // Only visit each node once. Metadata can be mutually recursive, so this
982 // avoids infinite recursion here, as well as being an optimization.
983 if (!MDNodes.insert(&MD).second)
984 return;
986 Check(&MD.getContext() == &Context,
987 "MDNode context does not match Module context!", &MD);
989 switch (MD.getMetadataID()) {
990 default:
991 llvm_unreachable("Invalid MDNode subclass");
992 case Metadata::MDTupleKind:
993 break;
994 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
995 case Metadata::CLASS##Kind: \
996 visit##CLASS(cast<CLASS>(MD)); \
997 break;
998 #include "llvm/IR/Metadata.def"
1001 for (const Metadata *Op : MD.operands()) {
1002 if (!Op)
1003 continue;
1004 Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
1005 &MD, Op);
1006 CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
1007 "DILocation not allowed within this metadata node", &MD, Op);
1008 if (auto *N = dyn_cast<MDNode>(Op)) {
1009 visitMDNode(*N, AllowLocs);
1010 continue;
1012 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
1013 visitValueAsMetadata(*V, nullptr);
1014 continue;
1018 // Check these last, so we diagnose problems in operands first.
1019 Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
1020 Check(MD.isResolved(), "All nodes should be resolved!", &MD);
1023 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
1024 Check(MD.getValue(), "Expected valid value", &MD);
1025 Check(!MD.getValue()->getType()->isMetadataTy(),
1026 "Unexpected metadata round-trip through values", &MD, MD.getValue());
1028 auto *L = dyn_cast<LocalAsMetadata>(&MD);
1029 if (!L)
1030 return;
1032 Check(F, "function-local metadata used outside a function", L);
1034 // If this was an instruction, bb, or argument, verify that it is in the
1035 // function that we expect.
1036 Function *ActualF = nullptr;
1037 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
1038 Check(I->getParent(), "function-local metadata not in basic block", L, I);
1039 ActualF = I->getParent()->getParent();
1040 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
1041 ActualF = BB->getParent();
1042 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
1043 ActualF = A->getParent();
1044 assert(ActualF && "Unimplemented function local metadata case!");
1046 Check(ActualF == F, "function-local metadata used in wrong function", L);
1049 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
1050 Metadata *MD = MDV.getMetadata();
1051 if (auto *N = dyn_cast<MDNode>(MD)) {
1052 visitMDNode(*N, AreDebugLocsAllowed::No);
1053 return;
1056 // Only visit each node once. Metadata can be mutually recursive, so this
1057 // avoids infinite recursion here, as well as being an optimization.
1058 if (!MDNodes.insert(MD).second)
1059 return;
1061 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
1062 visitValueAsMetadata(*V, F);
1065 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
1066 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
1067 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
1069 void Verifier::visitDILocation(const DILocation &N) {
1070 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1071 "location requires a valid scope", &N, N.getRawScope());
1072 if (auto *IA = N.getRawInlinedAt())
1073 CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
1074 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1075 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1078 void Verifier::visitGenericDINode(const GenericDINode &N) {
1079 CheckDI(N.getTag(), "invalid tag", &N);
1082 void Verifier::visitDIScope(const DIScope &N) {
1083 if (auto *F = N.getRawFile())
1084 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1087 void Verifier::visitDISubrange(const DISubrange &N) {
1088 CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1089 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
1090 CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
1091 N.getRawUpperBound(),
1092 "Subrange must contain count or upperBound", &N);
1093 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1094 "Subrange can have any one of count or upperBound", &N);
1095 auto *CBound = N.getRawCountNode();
1096 CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1097 isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1098 "Count must be signed constant or DIVariable or DIExpression", &N);
1099 auto Count = N.getCount();
1100 CheckDI(!Count || !isa<ConstantInt *>(Count) ||
1101 cast<ConstantInt *>(Count)->getSExtValue() >= -1,
1102 "invalid subrange count", &N);
1103 auto *LBound = N.getRawLowerBound();
1104 CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1105 isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1106 "LowerBound must be signed constant or DIVariable or DIExpression",
1107 &N);
1108 auto *UBound = N.getRawUpperBound();
1109 CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1110 isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1111 "UpperBound must be signed constant or DIVariable or DIExpression",
1112 &N);
1113 auto *Stride = N.getRawStride();
1114 CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1115 isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1116 "Stride must be signed constant or DIVariable or DIExpression", &N);
1119 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1120 CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1121 CheckDI(N.getRawCountNode() || N.getRawUpperBound(),
1122 "GenericSubrange must contain count or upperBound", &N);
1123 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1124 "GenericSubrange can have any one of count or upperBound", &N);
1125 auto *CBound = N.getRawCountNode();
1126 CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1127 "Count must be signed constant or DIVariable or DIExpression", &N);
1128 auto *LBound = N.getRawLowerBound();
1129 CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1130 CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1131 "LowerBound must be signed constant or DIVariable or DIExpression",
1132 &N);
1133 auto *UBound = N.getRawUpperBound();
1134 CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1135 "UpperBound must be signed constant or DIVariable or DIExpression",
1136 &N);
1137 auto *Stride = N.getRawStride();
1138 CheckDI(Stride, "GenericSubrange must contain stride", &N);
1139 CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1140 "Stride must be signed constant or DIVariable or DIExpression", &N);
1143 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1144 CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1147 void Verifier::visitDIBasicType(const DIBasicType &N) {
1148 CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1149 N.getTag() == dwarf::DW_TAG_unspecified_type ||
1150 N.getTag() == dwarf::DW_TAG_string_type,
1151 "invalid tag", &N);
1154 void Verifier::visitDIStringType(const DIStringType &N) {
1155 CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1156 CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1157 &N);
1160 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1161 // Common scope checks.
1162 visitDIScope(N);
1164 CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1165 N.getTag() == dwarf::DW_TAG_pointer_type ||
1166 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1167 N.getTag() == dwarf::DW_TAG_reference_type ||
1168 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1169 N.getTag() == dwarf::DW_TAG_const_type ||
1170 N.getTag() == dwarf::DW_TAG_immutable_type ||
1171 N.getTag() == dwarf::DW_TAG_volatile_type ||
1172 N.getTag() == dwarf::DW_TAG_restrict_type ||
1173 N.getTag() == dwarf::DW_TAG_atomic_type ||
1174 N.getTag() == dwarf::DW_TAG_member ||
1175 N.getTag() == dwarf::DW_TAG_inheritance ||
1176 N.getTag() == dwarf::DW_TAG_friend ||
1177 N.getTag() == dwarf::DW_TAG_set_type,
1178 "invalid tag", &N);
1179 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1180 CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1181 N.getRawExtraData());
1184 if (N.getTag() == dwarf::DW_TAG_set_type) {
1185 if (auto *T = N.getRawBaseType()) {
1186 auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1187 auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1188 CheckDI(
1189 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1190 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1191 Basic->getEncoding() == dwarf::DW_ATE_signed ||
1192 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1193 Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1194 Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1195 "invalid set base type", &N, T);
1199 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1200 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1201 N.getRawBaseType());
1203 if (N.getDWARFAddressSpace()) {
1204 CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1205 N.getTag() == dwarf::DW_TAG_reference_type ||
1206 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1207 "DWARF address space only applies to pointer or reference types",
1208 &N);
1212 /// Detect mutually exclusive flags.
1213 static bool hasConflictingReferenceFlags(unsigned Flags) {
1214 return ((Flags & DINode::FlagLValueReference) &&
1215 (Flags & DINode::FlagRValueReference)) ||
1216 ((Flags & DINode::FlagTypePassByValue) &&
1217 (Flags & DINode::FlagTypePassByReference));
1220 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1221 auto *Params = dyn_cast<MDTuple>(&RawParams);
1222 CheckDI(Params, "invalid template params", &N, &RawParams);
1223 for (Metadata *Op : Params->operands()) {
1224 CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1225 &N, Params, Op);
1229 void Verifier::visitDICompositeType(const DICompositeType &N) {
1230 // Common scope checks.
1231 visitDIScope(N);
1233 CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1234 N.getTag() == dwarf::DW_TAG_structure_type ||
1235 N.getTag() == dwarf::DW_TAG_union_type ||
1236 N.getTag() == dwarf::DW_TAG_enumeration_type ||
1237 N.getTag() == dwarf::DW_TAG_class_type ||
1238 N.getTag() == dwarf::DW_TAG_variant_part ||
1239 N.getTag() == dwarf::DW_TAG_namelist,
1240 "invalid tag", &N);
1242 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1243 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1244 N.getRawBaseType());
1246 CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1247 "invalid composite elements", &N, N.getRawElements());
1248 CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1249 N.getRawVTableHolder());
1250 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1251 "invalid reference flags", &N);
1252 unsigned DIBlockByRefStruct = 1 << 4;
1253 CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1254 "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1256 if (N.isVector()) {
1257 const DINodeArray Elements = N.getElements();
1258 CheckDI(Elements.size() == 1 &&
1259 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1260 "invalid vector, expected one element of type subrange", &N);
1263 if (auto *Params = N.getRawTemplateParams())
1264 visitTemplateParams(N, *Params);
1266 if (auto *D = N.getRawDiscriminator()) {
1267 CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1268 "discriminator can only appear on variant part");
1271 if (N.getRawDataLocation()) {
1272 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1273 "dataLocation can only appear in array type");
1276 if (N.getRawAssociated()) {
1277 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1278 "associated can only appear in array type");
1281 if (N.getRawAllocated()) {
1282 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1283 "allocated can only appear in array type");
1286 if (N.getRawRank()) {
1287 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1288 "rank can only appear in array type");
1292 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1293 CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1294 if (auto *Types = N.getRawTypeArray()) {
1295 CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1296 for (Metadata *Ty : N.getTypeArray()->operands()) {
1297 CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1300 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1301 "invalid reference flags", &N);
1304 void Verifier::visitDIFile(const DIFile &N) {
1305 CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1306 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1307 if (Checksum) {
1308 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1309 "invalid checksum kind", &N);
1310 size_t Size;
1311 switch (Checksum->Kind) {
1312 case DIFile::CSK_MD5:
1313 Size = 32;
1314 break;
1315 case DIFile::CSK_SHA1:
1316 Size = 40;
1317 break;
1318 case DIFile::CSK_SHA256:
1319 Size = 64;
1320 break;
1322 CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1323 CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1324 "invalid checksum", &N);
1328 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1329 CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1330 CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1332 // Don't bother verifying the compilation directory or producer string
1333 // as those could be empty.
1334 CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1335 N.getRawFile());
1336 CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1337 N.getFile());
1339 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1341 verifySourceDebugInfo(N, *N.getFile());
1343 CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1344 "invalid emission kind", &N);
1346 if (auto *Array = N.getRawEnumTypes()) {
1347 CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1348 for (Metadata *Op : N.getEnumTypes()->operands()) {
1349 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1350 CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1351 "invalid enum type", &N, N.getEnumTypes(), Op);
1354 if (auto *Array = N.getRawRetainedTypes()) {
1355 CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1356 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1357 CheckDI(
1358 Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1359 !cast<DISubprogram>(Op)->isDefinition())),
1360 "invalid retained type", &N, Op);
1363 if (auto *Array = N.getRawGlobalVariables()) {
1364 CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1365 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1366 CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1367 "invalid global variable ref", &N, Op);
1370 if (auto *Array = N.getRawImportedEntities()) {
1371 CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1372 for (Metadata *Op : N.getImportedEntities()->operands()) {
1373 CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1374 &N, Op);
1377 if (auto *Array = N.getRawMacros()) {
1378 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1379 for (Metadata *Op : N.getMacros()->operands()) {
1380 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1383 CUVisited.insert(&N);
1386 void Verifier::visitDISubprogram(const DISubprogram &N) {
1387 CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1388 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1389 if (auto *F = N.getRawFile())
1390 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1391 else
1392 CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1393 if (auto *T = N.getRawType())
1394 CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1395 CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1396 N.getRawContainingType());
1397 if (auto *Params = N.getRawTemplateParams())
1398 visitTemplateParams(N, *Params);
1399 if (auto *S = N.getRawDeclaration())
1400 CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1401 "invalid subprogram declaration", &N, S);
1402 if (auto *RawNode = N.getRawRetainedNodes()) {
1403 auto *Node = dyn_cast<MDTuple>(RawNode);
1404 CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1405 for (Metadata *Op : Node->operands()) {
1406 CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) ||
1407 isa<DIImportedEntity>(Op)),
1408 "invalid retained nodes, expected DILocalVariable, DILabel or "
1409 "DIImportedEntity",
1410 &N, Node, Op);
1413 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1414 "invalid reference flags", &N);
1416 auto *Unit = N.getRawUnit();
1417 if (N.isDefinition()) {
1418 // Subprogram definitions (not part of the type hierarchy).
1419 CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1420 CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1421 CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1422 // There's no good way to cross the CU boundary to insert a nested
1423 // DISubprogram definition in one CU into a type defined in another CU.
1424 auto *CT = dyn_cast_or_null<DICompositeType>(N.getRawScope());
1425 if (CT && CT->getRawIdentifier() &&
1426 M.getContext().isODRUniquingDebugTypes())
1427 CheckDI(N.getDeclaration(),
1428 "definition subprograms cannot be nested within DICompositeType "
1429 "when enabling ODR",
1430 &N);
1431 if (N.getFile())
1432 verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1433 } else {
1434 // Subprogram declarations (part of the type hierarchy).
1435 CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1436 CheckDI(!N.getRawDeclaration(),
1437 "subprogram declaration must not have a declaration field");
1440 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1441 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1442 CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1443 for (Metadata *Op : ThrownTypes->operands())
1444 CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1445 Op);
1448 if (N.areAllCallsDescribed())
1449 CheckDI(N.isDefinition(),
1450 "DIFlagAllCallsDescribed must be attached to a definition");
1453 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1454 CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1455 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1456 "invalid local scope", &N, N.getRawScope());
1457 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1458 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1461 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1462 visitDILexicalBlockBase(N);
1464 CheckDI(N.getLine() || !N.getColumn(),
1465 "cannot have column info without line info", &N);
1468 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1469 visitDILexicalBlockBase(N);
1472 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1473 CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1474 if (auto *S = N.getRawScope())
1475 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1476 if (auto *S = N.getRawDecl())
1477 CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1480 void Verifier::visitDINamespace(const DINamespace &N) {
1481 CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1482 if (auto *S = N.getRawScope())
1483 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1486 void Verifier::visitDIMacro(const DIMacro &N) {
1487 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1488 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1489 "invalid macinfo type", &N);
1490 CheckDI(!N.getName().empty(), "anonymous macro", &N);
1491 if (!N.getValue().empty()) {
1492 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1496 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1497 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1498 "invalid macinfo type", &N);
1499 if (auto *F = N.getRawFile())
1500 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1502 if (auto *Array = N.getRawElements()) {
1503 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1504 for (Metadata *Op : N.getElements()->operands()) {
1505 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1510 void Verifier::visitDIArgList(const DIArgList &N) {
1511 CheckDI(!N.getNumOperands(),
1512 "DIArgList should have no operands other than a list of "
1513 "ValueAsMetadata",
1514 &N);
1517 void Verifier::visitDIModule(const DIModule &N) {
1518 CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1519 CheckDI(!N.getName().empty(), "anonymous module", &N);
1522 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1523 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1526 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1527 visitDITemplateParameter(N);
1529 CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1530 &N);
1533 void Verifier::visitDITemplateValueParameter(
1534 const DITemplateValueParameter &N) {
1535 visitDITemplateParameter(N);
1537 CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1538 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1539 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1540 "invalid tag", &N);
1543 void Verifier::visitDIVariable(const DIVariable &N) {
1544 if (auto *S = N.getRawScope())
1545 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1546 if (auto *F = N.getRawFile())
1547 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1550 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1551 // Checks common to all variables.
1552 visitDIVariable(N);
1554 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1555 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1556 // Check only if the global variable is not an extern
1557 if (N.isDefinition())
1558 CheckDI(N.getType(), "missing global variable type", &N);
1559 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1560 CheckDI(isa<DIDerivedType>(Member),
1561 "invalid static data member declaration", &N, Member);
1565 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1566 // Checks common to all variables.
1567 visitDIVariable(N);
1569 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1570 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1571 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1572 "local variable requires a valid scope", &N, N.getRawScope());
1573 if (auto Ty = N.getType())
1574 CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1577 void Verifier::visitDIAssignID(const DIAssignID &N) {
1578 CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N);
1579 CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N);
1582 void Verifier::visitDILabel(const DILabel &N) {
1583 if (auto *S = N.getRawScope())
1584 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1585 if (auto *F = N.getRawFile())
1586 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1588 CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1589 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1590 "label requires a valid scope", &N, N.getRawScope());
1593 void Verifier::visitDIExpression(const DIExpression &N) {
1594 CheckDI(N.isValid(), "invalid expression", &N);
1597 void Verifier::visitDIGlobalVariableExpression(
1598 const DIGlobalVariableExpression &GVE) {
1599 CheckDI(GVE.getVariable(), "missing variable");
1600 if (auto *Var = GVE.getVariable())
1601 visitDIGlobalVariable(*Var);
1602 if (auto *Expr = GVE.getExpression()) {
1603 visitDIExpression(*Expr);
1604 if (auto Fragment = Expr->getFragmentInfo())
1605 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1609 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1610 CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1611 if (auto *T = N.getRawType())
1612 CheckDI(isType(T), "invalid type ref", &N, T);
1613 if (auto *F = N.getRawFile())
1614 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1617 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1618 CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1619 N.getTag() == dwarf::DW_TAG_imported_declaration,
1620 "invalid tag", &N);
1621 if (auto *S = N.getRawScope())
1622 CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1623 CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1624 N.getRawEntity());
1627 void Verifier::visitComdat(const Comdat &C) {
1628 // In COFF the Module is invalid if the GlobalValue has private linkage.
1629 // Entities with private linkage don't have entries in the symbol table.
1630 if (TT.isOSBinFormatCOFF())
1631 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1632 Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1633 GV);
1636 void Verifier::visitModuleIdents() {
1637 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1638 if (!Idents)
1639 return;
1641 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1642 // Scan each llvm.ident entry and make sure that this requirement is met.
1643 for (const MDNode *N : Idents->operands()) {
1644 Check(N->getNumOperands() == 1,
1645 "incorrect number of operands in llvm.ident metadata", N);
1646 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1647 ("invalid value for llvm.ident metadata entry operand"
1648 "(the operand should be a string)"),
1649 N->getOperand(0));
1653 void Verifier::visitModuleCommandLines() {
1654 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1655 if (!CommandLines)
1656 return;
1658 // llvm.commandline takes a list of metadata entry. Each entry has only one
1659 // string. Scan each llvm.commandline entry and make sure that this
1660 // requirement is met.
1661 for (const MDNode *N : CommandLines->operands()) {
1662 Check(N->getNumOperands() == 1,
1663 "incorrect number of operands in llvm.commandline metadata", N);
1664 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1665 ("invalid value for llvm.commandline metadata entry operand"
1666 "(the operand should be a string)"),
1667 N->getOperand(0));
1671 void Verifier::visitModuleFlags() {
1672 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1673 if (!Flags) return;
1675 // Scan each flag, and track the flags and requirements.
1676 DenseMap<const MDString*, const MDNode*> SeenIDs;
1677 SmallVector<const MDNode*, 16> Requirements;
1678 for (const MDNode *MDN : Flags->operands())
1679 visitModuleFlag(MDN, SeenIDs, Requirements);
1681 // Validate that the requirements in the module are valid.
1682 for (const MDNode *Requirement : Requirements) {
1683 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1684 const Metadata *ReqValue = Requirement->getOperand(1);
1686 const MDNode *Op = SeenIDs.lookup(Flag);
1687 if (!Op) {
1688 CheckFailed("invalid requirement on flag, flag is not present in module",
1689 Flag);
1690 continue;
1693 if (Op->getOperand(2) != ReqValue) {
1694 CheckFailed(("invalid requirement on flag, "
1695 "flag does not have the required value"),
1696 Flag);
1697 continue;
1702 void
1703 Verifier::visitModuleFlag(const MDNode *Op,
1704 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1705 SmallVectorImpl<const MDNode *> &Requirements) {
1706 // Each module flag should have three arguments, the merge behavior (a
1707 // constant int), the flag ID (an MDString), and the value.
1708 Check(Op->getNumOperands() == 3,
1709 "incorrect number of operands in module flag", Op);
1710 Module::ModFlagBehavior MFB;
1711 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1712 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1713 "invalid behavior operand in module flag (expected constant integer)",
1714 Op->getOperand(0));
1715 Check(false,
1716 "invalid behavior operand in module flag (unexpected constant)",
1717 Op->getOperand(0));
1719 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1720 Check(ID, "invalid ID operand in module flag (expected metadata string)",
1721 Op->getOperand(1));
1723 // Check the values for behaviors with additional requirements.
1724 switch (MFB) {
1725 case Module::Error:
1726 case Module::Warning:
1727 case Module::Override:
1728 // These behavior types accept any value.
1729 break;
1731 case Module::Min: {
1732 auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1733 Check(V && V->getValue().isNonNegative(),
1734 "invalid value for 'min' module flag (expected constant non-negative "
1735 "integer)",
1736 Op->getOperand(2));
1737 break;
1740 case Module::Max: {
1741 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1742 "invalid value for 'max' module flag (expected constant integer)",
1743 Op->getOperand(2));
1744 break;
1747 case Module::Require: {
1748 // The value should itself be an MDNode with two operands, a flag ID (an
1749 // MDString), and a value.
1750 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1751 Check(Value && Value->getNumOperands() == 2,
1752 "invalid value for 'require' module flag (expected metadata pair)",
1753 Op->getOperand(2));
1754 Check(isa<MDString>(Value->getOperand(0)),
1755 ("invalid value for 'require' module flag "
1756 "(first value operand should be a string)"),
1757 Value->getOperand(0));
1759 // Append it to the list of requirements, to check once all module flags are
1760 // scanned.
1761 Requirements.push_back(Value);
1762 break;
1765 case Module::Append:
1766 case Module::AppendUnique: {
1767 // These behavior types require the operand be an MDNode.
1768 Check(isa<MDNode>(Op->getOperand(2)),
1769 "invalid value for 'append'-type module flag "
1770 "(expected a metadata node)",
1771 Op->getOperand(2));
1772 break;
1776 // Unless this is a "requires" flag, check the ID is unique.
1777 if (MFB != Module::Require) {
1778 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1779 Check(Inserted,
1780 "module flag identifiers must be unique (or of 'require' type)", ID);
1783 if (ID->getString() == "wchar_size") {
1784 ConstantInt *Value
1785 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1786 Check(Value, "wchar_size metadata requires constant integer argument");
1789 if (ID->getString() == "Linker Options") {
1790 // If the llvm.linker.options named metadata exists, we assume that the
1791 // bitcode reader has upgraded the module flag. Otherwise the flag might
1792 // have been created by a client directly.
1793 Check(M.getNamedMetadata("llvm.linker.options"),
1794 "'Linker Options' named metadata no longer supported");
1797 if (ID->getString() == "SemanticInterposition") {
1798 ConstantInt *Value =
1799 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1800 Check(Value,
1801 "SemanticInterposition metadata requires constant integer argument");
1804 if (ID->getString() == "CG Profile") {
1805 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1806 visitModuleFlagCGProfileEntry(MDO);
1810 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1811 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1812 if (!FuncMDO)
1813 return;
1814 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1815 Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1816 "expected a Function or null", FuncMDO);
1818 auto Node = dyn_cast_or_null<MDNode>(MDO);
1819 Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1820 CheckFunction(Node->getOperand(0));
1821 CheckFunction(Node->getOperand(1));
1822 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1823 Check(Count && Count->getType()->isIntegerTy(),
1824 "expected an integer constant", Node->getOperand(2));
1827 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1828 for (Attribute A : Attrs) {
1830 if (A.isStringAttribute()) {
1831 #define GET_ATTR_NAMES
1832 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1833 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
1834 if (A.getKindAsString() == #DISPLAY_NAME) { \
1835 auto V = A.getValueAsString(); \
1836 if (!(V.empty() || V == "true" || V == "false")) \
1837 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
1838 ""); \
1841 #include "llvm/IR/Attributes.inc"
1842 continue;
1845 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1846 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1848 return;
1853 // VerifyParameterAttrs - Check the given attributes for an argument or return
1854 // value of the specified type. The value V is printed in error messages.
1855 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1856 const Value *V) {
1857 if (!Attrs.hasAttributes())
1858 return;
1860 verifyAttributeTypes(Attrs, V);
1862 for (Attribute Attr : Attrs)
1863 Check(Attr.isStringAttribute() ||
1864 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1865 "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1868 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1869 Check(Attrs.getNumAttributes() == 1,
1870 "Attribute 'immarg' is incompatible with other attributes", V);
1873 // Check for mutually incompatible attributes. Only inreg is compatible with
1874 // sret.
1875 unsigned AttrCount = 0;
1876 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1877 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1878 AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1879 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1880 Attrs.hasAttribute(Attribute::InReg);
1881 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1882 AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1883 Check(AttrCount <= 1,
1884 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1885 "'byref', and 'sret' are incompatible!",
1888 Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1889 Attrs.hasAttribute(Attribute::ReadOnly)),
1890 "Attributes "
1891 "'inalloca and readonly' are incompatible!",
1894 Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1895 Attrs.hasAttribute(Attribute::Returned)),
1896 "Attributes "
1897 "'sret and returned' are incompatible!",
1900 Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1901 Attrs.hasAttribute(Attribute::SExt)),
1902 "Attributes "
1903 "'zeroext and signext' are incompatible!",
1906 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1907 Attrs.hasAttribute(Attribute::ReadOnly)),
1908 "Attributes "
1909 "'readnone and readonly' are incompatible!",
1912 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1913 Attrs.hasAttribute(Attribute::WriteOnly)),
1914 "Attributes "
1915 "'readnone and writeonly' are incompatible!",
1918 Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1919 Attrs.hasAttribute(Attribute::WriteOnly)),
1920 "Attributes "
1921 "'readonly and writeonly' are incompatible!",
1924 Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
1925 Attrs.hasAttribute(Attribute::AlwaysInline)),
1926 "Attributes "
1927 "'noinline and alwaysinline' are incompatible!",
1930 Check(!(Attrs.hasAttribute(Attribute::Writable) &&
1931 Attrs.hasAttribute(Attribute::ReadNone)),
1932 "Attributes writable and readnone are incompatible!", V);
1934 Check(!(Attrs.hasAttribute(Attribute::Writable) &&
1935 Attrs.hasAttribute(Attribute::ReadOnly)),
1936 "Attributes writable and readonly are incompatible!", V);
1938 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1939 for (Attribute Attr : Attrs) {
1940 if (!Attr.isStringAttribute() &&
1941 IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1942 CheckFailed("Attribute '" + Attr.getAsString() +
1943 "' applied to incompatible type!", V);
1944 return;
1948 if (isa<PointerType>(Ty)) {
1949 if (Attrs.hasAttribute(Attribute::ByVal)) {
1950 if (Attrs.hasAttribute(Attribute::Alignment)) {
1951 Align AttrAlign = Attrs.getAlignment().valueOrOne();
1952 Align MaxAlign(ParamMaxAlignment);
1953 Check(AttrAlign <= MaxAlign,
1954 "Attribute 'align' exceed the max size 2^14", V);
1956 SmallPtrSet<Type *, 4> Visited;
1957 Check(Attrs.getByValType()->isSized(&Visited),
1958 "Attribute 'byval' does not support unsized types!", V);
1960 if (Attrs.hasAttribute(Attribute::ByRef)) {
1961 SmallPtrSet<Type *, 4> Visited;
1962 Check(Attrs.getByRefType()->isSized(&Visited),
1963 "Attribute 'byref' does not support unsized types!", V);
1965 if (Attrs.hasAttribute(Attribute::InAlloca)) {
1966 SmallPtrSet<Type *, 4> Visited;
1967 Check(Attrs.getInAllocaType()->isSized(&Visited),
1968 "Attribute 'inalloca' does not support unsized types!", V);
1970 if (Attrs.hasAttribute(Attribute::Preallocated)) {
1971 SmallPtrSet<Type *, 4> Visited;
1972 Check(Attrs.getPreallocatedType()->isSized(&Visited),
1973 "Attribute 'preallocated' does not support unsized types!", V);
1977 if (Attrs.hasAttribute(Attribute::NoFPClass)) {
1978 uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
1979 Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set",
1981 Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0,
1982 "Invalid value for 'nofpclass' test mask", V);
1986 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1987 const Value *V) {
1988 if (Attrs.hasFnAttr(Attr)) {
1989 StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1990 unsigned N;
1991 if (S.getAsInteger(10, N))
1992 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1996 // Check parameter attributes against a function type.
1997 // The value V is printed in error messages.
1998 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1999 const Value *V, bool IsIntrinsic,
2000 bool IsInlineAsm) {
2001 if (Attrs.isEmpty())
2002 return;
2004 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
2005 Check(Attrs.hasParentContext(Context),
2006 "Attribute list does not match Module context!", &Attrs, V);
2007 for (const auto &AttrSet : Attrs) {
2008 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
2009 "Attribute set does not match Module context!", &AttrSet, V);
2010 for (const auto &A : AttrSet) {
2011 Check(A.hasParentContext(Context),
2012 "Attribute does not match Module context!", &A, V);
2017 bool SawNest = false;
2018 bool SawReturned = false;
2019 bool SawSRet = false;
2020 bool SawSwiftSelf = false;
2021 bool SawSwiftAsync = false;
2022 bool SawSwiftError = false;
2024 // Verify return value attributes.
2025 AttributeSet RetAttrs = Attrs.getRetAttrs();
2026 for (Attribute RetAttr : RetAttrs)
2027 Check(RetAttr.isStringAttribute() ||
2028 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
2029 "Attribute '" + RetAttr.getAsString() +
2030 "' does not apply to function return values",
2033 unsigned MaxParameterWidth = 0;
2034 auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) {
2035 if (Ty->isVectorTy()) {
2036 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
2037 unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2038 if (Size > MaxParameterWidth)
2039 MaxParameterWidth = Size;
2043 GetMaxParameterWidth(FT->getReturnType());
2044 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
2046 // Verify parameter attributes.
2047 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2048 Type *Ty = FT->getParamType(i);
2049 AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
2051 if (!IsIntrinsic) {
2052 Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
2053 "immarg attribute only applies to intrinsics", V);
2054 if (!IsInlineAsm)
2055 Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
2056 "Attribute 'elementtype' can only be applied to intrinsics"
2057 " and inline asm.",
2061 verifyParameterAttrs(ArgAttrs, Ty, V);
2062 GetMaxParameterWidth(Ty);
2064 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2065 Check(!SawNest, "More than one parameter has attribute nest!", V);
2066 SawNest = true;
2069 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2070 Check(!SawReturned, "More than one parameter has attribute returned!", V);
2071 Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
2072 "Incompatible argument and return types for 'returned' attribute",
2074 SawReturned = true;
2077 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
2078 Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
2079 Check(i == 0 || i == 1,
2080 "Attribute 'sret' is not on first or second parameter!", V);
2081 SawSRet = true;
2084 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
2085 Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
2086 SawSwiftSelf = true;
2089 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
2090 Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
2091 SawSwiftAsync = true;
2094 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
2095 Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
2096 SawSwiftError = true;
2099 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
2100 Check(i == FT->getNumParams() - 1,
2101 "inalloca isn't on the last parameter!", V);
2105 if (!Attrs.hasFnAttrs())
2106 return;
2108 verifyAttributeTypes(Attrs.getFnAttrs(), V);
2109 for (Attribute FnAttr : Attrs.getFnAttrs())
2110 Check(FnAttr.isStringAttribute() ||
2111 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2112 "Attribute '" + FnAttr.getAsString() +
2113 "' does not apply to functions!",
2116 Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2117 Attrs.hasFnAttr(Attribute::AlwaysInline)),
2118 "Attributes 'noinline and alwaysinline' are incompatible!", V);
2120 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2121 Check(Attrs.hasFnAttr(Attribute::NoInline),
2122 "Attribute 'optnone' requires 'noinline'!", V);
2124 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2125 "Attributes 'optsize and optnone' are incompatible!", V);
2127 Check(!Attrs.hasFnAttr(Attribute::MinSize),
2128 "Attributes 'minsize and optnone' are incompatible!", V);
2130 Check(!Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
2131 "Attributes 'optdebug and optnone' are incompatible!", V);
2134 if (Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
2135 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2136 "Attributes 'optsize and optdebug' are incompatible!", V);
2138 Check(!Attrs.hasFnAttr(Attribute::MinSize),
2139 "Attributes 'minsize and optdebug' are incompatible!", V);
2142 Check(!Attrs.hasAttrSomewhere(Attribute::Writable) ||
2143 isModSet(Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)),
2144 "Attribute writable and memory without argmem: write are incompatible!",
2147 if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) {
2148 Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"),
2149 "Attributes 'aarch64_pstate_sm_enabled and "
2150 "aarch64_pstate_sm_compatible' are incompatible!",
2154 if (Attrs.hasFnAttr("aarch64_pstate_za_new")) {
2155 Check(!Attrs.hasFnAttr("aarch64_pstate_za_preserved"),
2156 "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_preserved' "
2157 "are incompatible!",
2160 Check(!Attrs.hasFnAttr("aarch64_pstate_za_shared"),
2161 "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_shared' "
2162 "are incompatible!",
2166 if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2167 const GlobalValue *GV = cast<GlobalValue>(V);
2168 Check(GV->hasGlobalUnnamedAddr(),
2169 "Attribute 'jumptable' requires 'unnamed_addr'", V);
2172 if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) {
2173 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2174 if (ParamNo >= FT->getNumParams()) {
2175 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2176 return false;
2179 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2180 CheckFailed("'allocsize' " + Name +
2181 " argument must refer to an integer parameter",
2183 return false;
2186 return true;
2189 if (!CheckParam("element size", Args->first))
2190 return;
2192 if (Args->second && !CheckParam("number of elements", *Args->second))
2193 return;
2196 if (Attrs.hasFnAttr(Attribute::AllocKind)) {
2197 AllocFnKind K = Attrs.getAllocKind();
2198 AllocFnKind Type =
2199 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2200 if (!is_contained(
2201 {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2202 Type))
2203 CheckFailed(
2204 "'allockind()' requires exactly one of alloc, realloc, and free");
2205 if ((Type == AllocFnKind::Free) &&
2206 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2207 AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2208 CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2209 "or aligned modifiers.");
2210 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2211 if ((K & ZeroedUninit) == ZeroedUninit)
2212 CheckFailed("'allockind()' can't be both zeroed and uninitialized");
2215 if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2216 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2217 if (VScaleMin == 0)
2218 CheckFailed("'vscale_range' minimum must be greater than 0", V);
2219 else if (!isPowerOf2_32(VScaleMin))
2220 CheckFailed("'vscale_range' minimum must be power-of-two value", V);
2221 std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2222 if (VScaleMax && VScaleMin > VScaleMax)
2223 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2224 else if (VScaleMax && !isPowerOf2_32(*VScaleMax))
2225 CheckFailed("'vscale_range' maximum must be power-of-two value", V);
2228 if (Attrs.hasFnAttr("frame-pointer")) {
2229 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2230 if (FP != "all" && FP != "non-leaf" && FP != "none")
2231 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2234 // Check EVEX512 feature.
2235 if (MaxParameterWidth >= 512 && Attrs.hasFnAttr("target-features")) {
2236 Triple T(M.getTargetTriple());
2237 if (T.isX86()) {
2238 StringRef TF = Attrs.getFnAttr("target-features").getValueAsString();
2239 Check(!TF.contains("+avx512f") || !TF.contains("-evex512"),
2240 "512-bit vector arguments require 'evex512' for AVX512", V);
2244 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2245 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2246 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2249 void Verifier::verifyFunctionMetadata(
2250 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2251 for (const auto &Pair : MDs) {
2252 if (Pair.first == LLVMContext::MD_prof) {
2253 MDNode *MD = Pair.second;
2254 Check(MD->getNumOperands() >= 2,
2255 "!prof annotations should have no less than 2 operands", MD);
2257 // Check first operand.
2258 Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2259 MD);
2260 Check(isa<MDString>(MD->getOperand(0)),
2261 "expected string with name of the !prof annotation", MD);
2262 MDString *MDS = cast<MDString>(MD->getOperand(0));
2263 StringRef ProfName = MDS->getString();
2264 Check(ProfName.equals("function_entry_count") ||
2265 ProfName.equals("synthetic_function_entry_count"),
2266 "first operand should be 'function_entry_count'"
2267 " or 'synthetic_function_entry_count'",
2268 MD);
2270 // Check second operand.
2271 Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2272 MD);
2273 Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2274 "expected integer argument to function_entry_count", MD);
2275 } else if (Pair.first == LLVMContext::MD_kcfi_type) {
2276 MDNode *MD = Pair.second;
2277 Check(MD->getNumOperands() == 1,
2278 "!kcfi_type must have exactly one operand", MD);
2279 Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
2280 MD);
2281 Check(isa<ConstantAsMetadata>(MD->getOperand(0)),
2282 "expected a constant operand for !kcfi_type", MD);
2283 Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue();
2284 Check(isa<ConstantInt>(C),
2285 "expected a constant integer operand for !kcfi_type", MD);
2286 IntegerType *Type = cast<ConstantInt>(C)->getType();
2287 Check(Type->getBitWidth() == 32,
2288 "expected a 32-bit integer constant operand for !kcfi_type", MD);
2293 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2294 if (!ConstantExprVisited.insert(EntryC).second)
2295 return;
2297 SmallVector<const Constant *, 16> Stack;
2298 Stack.push_back(EntryC);
2300 while (!Stack.empty()) {
2301 const Constant *C = Stack.pop_back_val();
2303 // Check this constant expression.
2304 if (const auto *CE = dyn_cast<ConstantExpr>(C))
2305 visitConstantExpr(CE);
2307 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2308 // Global Values get visited separately, but we do need to make sure
2309 // that the global value is in the correct module
2310 Check(GV->getParent() == &M, "Referencing global in another module!",
2311 EntryC, &M, GV, GV->getParent());
2312 continue;
2315 // Visit all sub-expressions.
2316 for (const Use &U : C->operands()) {
2317 const auto *OpC = dyn_cast<Constant>(U);
2318 if (!OpC)
2319 continue;
2320 if (!ConstantExprVisited.insert(OpC).second)
2321 continue;
2322 Stack.push_back(OpC);
2327 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2328 if (CE->getOpcode() == Instruction::BitCast)
2329 Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2330 CE->getType()),
2331 "Invalid bitcast", CE);
2334 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2335 // There shouldn't be more attribute sets than there are parameters plus the
2336 // function and return value.
2337 return Attrs.getNumAttrSets() <= Params + 2;
2340 void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2341 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2342 unsigned ArgNo = 0;
2343 unsigned LabelNo = 0;
2344 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2345 if (CI.Type == InlineAsm::isLabel) {
2346 ++LabelNo;
2347 continue;
2350 // Only deal with constraints that correspond to call arguments.
2351 if (!CI.hasArg())
2352 continue;
2354 if (CI.isIndirect) {
2355 const Value *Arg = Call.getArgOperand(ArgNo);
2356 Check(Arg->getType()->isPointerTy(),
2357 "Operand for indirect constraint must have pointer type", &Call);
2359 Check(Call.getParamElementType(ArgNo),
2360 "Operand for indirect constraint must have elementtype attribute",
2361 &Call);
2362 } else {
2363 Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2364 "Elementtype attribute can only be applied for indirect "
2365 "constraints",
2366 &Call);
2369 ArgNo++;
2372 if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
2373 Check(LabelNo == CallBr->getNumIndirectDests(),
2374 "Number of label constraints does not match number of callbr dests",
2375 &Call);
2376 } else {
2377 Check(LabelNo == 0, "Label constraints can only be used with callbr",
2378 &Call);
2382 /// Verify that statepoint intrinsic is well formed.
2383 void Verifier::verifyStatepoint(const CallBase &Call) {
2384 assert(Call.getCalledFunction() &&
2385 Call.getCalledFunction()->getIntrinsicID() ==
2386 Intrinsic::experimental_gc_statepoint);
2388 Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2389 !Call.onlyAccessesArgMemory(),
2390 "gc.statepoint must read and write all memory to preserve "
2391 "reordering restrictions required by safepoint semantics",
2392 Call);
2394 const int64_t NumPatchBytes =
2395 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2396 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2397 Check(NumPatchBytes >= 0,
2398 "gc.statepoint number of patchable bytes must be "
2399 "positive",
2400 Call);
2402 Type *TargetElemType = Call.getParamElementType(2);
2403 Check(TargetElemType,
2404 "gc.statepoint callee argument must have elementtype attribute", Call);
2405 FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2406 Check(TargetFuncType,
2407 "gc.statepoint callee elementtype must be function type", Call);
2409 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2410 Check(NumCallArgs >= 0,
2411 "gc.statepoint number of arguments to underlying call "
2412 "must be positive",
2413 Call);
2414 const int NumParams = (int)TargetFuncType->getNumParams();
2415 if (TargetFuncType->isVarArg()) {
2416 Check(NumCallArgs >= NumParams,
2417 "gc.statepoint mismatch in number of vararg call args", Call);
2419 // TODO: Remove this limitation
2420 Check(TargetFuncType->getReturnType()->isVoidTy(),
2421 "gc.statepoint doesn't support wrapping non-void "
2422 "vararg functions yet",
2423 Call);
2424 } else
2425 Check(NumCallArgs == NumParams,
2426 "gc.statepoint mismatch in number of call args", Call);
2428 const uint64_t Flags
2429 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2430 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2431 "unknown flag used in gc.statepoint flags argument", Call);
2433 // Verify that the types of the call parameter arguments match
2434 // the type of the wrapped callee.
2435 AttributeList Attrs = Call.getAttributes();
2436 for (int i = 0; i < NumParams; i++) {
2437 Type *ParamType = TargetFuncType->getParamType(i);
2438 Type *ArgType = Call.getArgOperand(5 + i)->getType();
2439 Check(ArgType == ParamType,
2440 "gc.statepoint call argument does not match wrapped "
2441 "function type",
2442 Call);
2444 if (TargetFuncType->isVarArg()) {
2445 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2446 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2447 "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2451 const int EndCallArgsInx = 4 + NumCallArgs;
2453 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2454 Check(isa<ConstantInt>(NumTransitionArgsV),
2455 "gc.statepoint number of transition arguments "
2456 "must be constant integer",
2457 Call);
2458 const int NumTransitionArgs =
2459 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2460 Check(NumTransitionArgs == 0,
2461 "gc.statepoint w/inline transition bundle is deprecated", Call);
2462 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2464 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2465 Check(isa<ConstantInt>(NumDeoptArgsV),
2466 "gc.statepoint number of deoptimization arguments "
2467 "must be constant integer",
2468 Call);
2469 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2470 Check(NumDeoptArgs == 0,
2471 "gc.statepoint w/inline deopt operands is deprecated", Call);
2473 const int ExpectedNumArgs = 7 + NumCallArgs;
2474 Check(ExpectedNumArgs == (int)Call.arg_size(),
2475 "gc.statepoint too many arguments", Call);
2477 // Check that the only uses of this gc.statepoint are gc.result or
2478 // gc.relocate calls which are tied to this statepoint and thus part
2479 // of the same statepoint sequence
2480 for (const User *U : Call.users()) {
2481 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2482 Check(UserCall, "illegal use of statepoint token", Call, U);
2483 if (!UserCall)
2484 continue;
2485 Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2486 "gc.result or gc.relocate are the only value uses "
2487 "of a gc.statepoint",
2488 Call, U);
2489 if (isa<GCResultInst>(UserCall)) {
2490 Check(UserCall->getArgOperand(0) == &Call,
2491 "gc.result connected to wrong gc.statepoint", Call, UserCall);
2492 } else if (isa<GCRelocateInst>(Call)) {
2493 Check(UserCall->getArgOperand(0) == &Call,
2494 "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2498 // Note: It is legal for a single derived pointer to be listed multiple
2499 // times. It's non-optimal, but it is legal. It can also happen after
2500 // insertion if we strip a bitcast away.
2501 // Note: It is really tempting to check that each base is relocated and
2502 // that a derived pointer is never reused as a base pointer. This turns
2503 // out to be problematic since optimizations run after safepoint insertion
2504 // can recognize equality properties that the insertion logic doesn't know
2505 // about. See example statepoint.ll in the verifier subdirectory
2508 void Verifier::verifyFrameRecoverIndices() {
2509 for (auto &Counts : FrameEscapeInfo) {
2510 Function *F = Counts.first;
2511 unsigned EscapedObjectCount = Counts.second.first;
2512 unsigned MaxRecoveredIndex = Counts.second.second;
2513 Check(MaxRecoveredIndex <= EscapedObjectCount,
2514 "all indices passed to llvm.localrecover must be less than the "
2515 "number of arguments passed to llvm.localescape in the parent "
2516 "function",
2521 static Instruction *getSuccPad(Instruction *Terminator) {
2522 BasicBlock *UnwindDest;
2523 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2524 UnwindDest = II->getUnwindDest();
2525 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2526 UnwindDest = CSI->getUnwindDest();
2527 else
2528 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2529 return UnwindDest->getFirstNonPHI();
2532 void Verifier::verifySiblingFuncletUnwinds() {
2533 SmallPtrSet<Instruction *, 8> Visited;
2534 SmallPtrSet<Instruction *, 8> Active;
2535 for (const auto &Pair : SiblingFuncletInfo) {
2536 Instruction *PredPad = Pair.first;
2537 if (Visited.count(PredPad))
2538 continue;
2539 Active.insert(PredPad);
2540 Instruction *Terminator = Pair.second;
2541 do {
2542 Instruction *SuccPad = getSuccPad(Terminator);
2543 if (Active.count(SuccPad)) {
2544 // Found a cycle; report error
2545 Instruction *CyclePad = SuccPad;
2546 SmallVector<Instruction *, 8> CycleNodes;
2547 do {
2548 CycleNodes.push_back(CyclePad);
2549 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2550 if (CycleTerminator != CyclePad)
2551 CycleNodes.push_back(CycleTerminator);
2552 CyclePad = getSuccPad(CycleTerminator);
2553 } while (CyclePad != SuccPad);
2554 Check(false, "EH pads can't handle each other's exceptions",
2555 ArrayRef<Instruction *>(CycleNodes));
2557 // Don't re-walk a node we've already checked
2558 if (!Visited.insert(SuccPad).second)
2559 break;
2560 // Walk to this successor if it has a map entry.
2561 PredPad = SuccPad;
2562 auto TermI = SiblingFuncletInfo.find(PredPad);
2563 if (TermI == SiblingFuncletInfo.end())
2564 break;
2565 Terminator = TermI->second;
2566 Active.insert(PredPad);
2567 } while (true);
2568 // Each node only has one successor, so we've walked all the active
2569 // nodes' successors.
2570 Active.clear();
2574 // visitFunction - Verify that a function is ok.
2576 void Verifier::visitFunction(const Function &F) {
2577 visitGlobalValue(F);
2579 // Check function arguments.
2580 FunctionType *FT = F.getFunctionType();
2581 unsigned NumArgs = F.arg_size();
2583 Check(&Context == &F.getContext(),
2584 "Function context does not match Module context!", &F);
2586 Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2587 Check(FT->getNumParams() == NumArgs,
2588 "# formal arguments must match # of arguments for function type!", &F,
2589 FT);
2590 Check(F.getReturnType()->isFirstClassType() ||
2591 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2592 "Functions cannot return aggregate values!", &F);
2594 Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2595 "Invalid struct return type!", &F);
2597 AttributeList Attrs = F.getAttributes();
2599 Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2600 "Attribute after last parameter!", &F);
2602 bool IsIntrinsic = F.isIntrinsic();
2604 // Check function attributes.
2605 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2607 // On function declarations/definitions, we do not support the builtin
2608 // attribute. We do not check this in VerifyFunctionAttrs since that is
2609 // checking for Attributes that can/can not ever be on functions.
2610 Check(!Attrs.hasFnAttr(Attribute::Builtin),
2611 "Attribute 'builtin' can only be applied to a callsite.", &F);
2613 Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2614 "Attribute 'elementtype' can only be applied to a callsite.", &F);
2616 // Check that this function meets the restrictions on this calling convention.
2617 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2618 // restrictions can be lifted.
2619 switch (F.getCallingConv()) {
2620 default:
2621 case CallingConv::C:
2622 break;
2623 case CallingConv::X86_INTR: {
2624 Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2625 "Calling convention parameter requires byval", &F);
2626 break;
2628 case CallingConv::AMDGPU_KERNEL:
2629 case CallingConv::SPIR_KERNEL:
2630 case CallingConv::AMDGPU_CS_Chain:
2631 case CallingConv::AMDGPU_CS_ChainPreserve:
2632 Check(F.getReturnType()->isVoidTy(),
2633 "Calling convention requires void return type", &F);
2634 [[fallthrough]];
2635 case CallingConv::AMDGPU_VS:
2636 case CallingConv::AMDGPU_HS:
2637 case CallingConv::AMDGPU_GS:
2638 case CallingConv::AMDGPU_PS:
2639 case CallingConv::AMDGPU_CS:
2640 Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2641 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2642 const unsigned StackAS = DL.getAllocaAddrSpace();
2643 unsigned i = 0;
2644 for (const Argument &Arg : F.args()) {
2645 Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2646 "Calling convention disallows byval", &F);
2647 Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2648 "Calling convention disallows preallocated", &F);
2649 Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2650 "Calling convention disallows inalloca", &F);
2652 if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2653 // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2654 // value here.
2655 Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2656 "Calling convention disallows stack byref", &F);
2659 ++i;
2663 [[fallthrough]];
2664 case CallingConv::Fast:
2665 case CallingConv::Cold:
2666 case CallingConv::Intel_OCL_BI:
2667 case CallingConv::PTX_Kernel:
2668 case CallingConv::PTX_Device:
2669 Check(!F.isVarArg(),
2670 "Calling convention does not support varargs or "
2671 "perfect forwarding!",
2672 &F);
2673 break;
2676 // Check that the argument values match the function type for this function...
2677 unsigned i = 0;
2678 for (const Argument &Arg : F.args()) {
2679 Check(Arg.getType() == FT->getParamType(i),
2680 "Argument value does not match function argument type!", &Arg,
2681 FT->getParamType(i));
2682 Check(Arg.getType()->isFirstClassType(),
2683 "Function arguments must have first-class types!", &Arg);
2684 if (!IsIntrinsic) {
2685 Check(!Arg.getType()->isMetadataTy(),
2686 "Function takes metadata but isn't an intrinsic", &Arg, &F);
2687 Check(!Arg.getType()->isTokenTy(),
2688 "Function takes token but isn't an intrinsic", &Arg, &F);
2689 Check(!Arg.getType()->isX86_AMXTy(),
2690 "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2693 // Check that swifterror argument is only used by loads and stores.
2694 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2695 verifySwiftErrorValue(&Arg);
2697 ++i;
2700 if (!IsIntrinsic) {
2701 Check(!F.getReturnType()->isTokenTy(),
2702 "Function returns a token but isn't an intrinsic", &F);
2703 Check(!F.getReturnType()->isX86_AMXTy(),
2704 "Function returns a x86_amx but isn't an intrinsic", &F);
2707 // Get the function metadata attachments.
2708 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2709 F.getAllMetadata(MDs);
2710 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2711 verifyFunctionMetadata(MDs);
2713 // Check validity of the personality function
2714 if (F.hasPersonalityFn()) {
2715 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2716 if (Per)
2717 Check(Per->getParent() == F.getParent(),
2718 "Referencing personality function in another module!", &F,
2719 F.getParent(), Per, Per->getParent());
2722 // EH funclet coloring can be expensive, recompute on-demand
2723 BlockEHFuncletColors.clear();
2725 if (F.isMaterializable()) {
2726 // Function has a body somewhere we can't see.
2727 Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2728 MDs.empty() ? nullptr : MDs.front().second);
2729 } else if (F.isDeclaration()) {
2730 for (const auto &I : MDs) {
2731 // This is used for call site debug information.
2732 CheckDI(I.first != LLVMContext::MD_dbg ||
2733 !cast<DISubprogram>(I.second)->isDistinct(),
2734 "function declaration may only have a unique !dbg attachment",
2735 &F);
2736 Check(I.first != LLVMContext::MD_prof,
2737 "function declaration may not have a !prof attachment", &F);
2739 // Verify the metadata itself.
2740 visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2742 Check(!F.hasPersonalityFn(),
2743 "Function declaration shouldn't have a personality routine", &F);
2744 } else {
2745 // Verify that this function (which has a body) is not named "llvm.*". It
2746 // is not legal to define intrinsics.
2747 Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2749 // Check the entry node
2750 const BasicBlock *Entry = &F.getEntryBlock();
2751 Check(pred_empty(Entry),
2752 "Entry block to function must not have predecessors!", Entry);
2754 // The address of the entry block cannot be taken, unless it is dead.
2755 if (Entry->hasAddressTaken()) {
2756 Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2757 "blockaddress may not be used with the entry block!", Entry);
2760 unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
2761 NumKCFIAttachments = 0;
2762 // Visit metadata attachments.
2763 for (const auto &I : MDs) {
2764 // Verify that the attachment is legal.
2765 auto AllowLocs = AreDebugLocsAllowed::No;
2766 switch (I.first) {
2767 default:
2768 break;
2769 case LLVMContext::MD_dbg: {
2770 ++NumDebugAttachments;
2771 CheckDI(NumDebugAttachments == 1,
2772 "function must have a single !dbg attachment", &F, I.second);
2773 CheckDI(isa<DISubprogram>(I.second),
2774 "function !dbg attachment must be a subprogram", &F, I.second);
2775 CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2776 "function definition may only have a distinct !dbg attachment",
2777 &F);
2779 auto *SP = cast<DISubprogram>(I.second);
2780 const Function *&AttachedTo = DISubprogramAttachments[SP];
2781 CheckDI(!AttachedTo || AttachedTo == &F,
2782 "DISubprogram attached to more than one function", SP, &F);
2783 AttachedTo = &F;
2784 AllowLocs = AreDebugLocsAllowed::Yes;
2785 break;
2787 case LLVMContext::MD_prof:
2788 ++NumProfAttachments;
2789 Check(NumProfAttachments == 1,
2790 "function must have a single !prof attachment", &F, I.second);
2791 break;
2792 case LLVMContext::MD_kcfi_type:
2793 ++NumKCFIAttachments;
2794 Check(NumKCFIAttachments == 1,
2795 "function must have a single !kcfi_type attachment", &F,
2796 I.second);
2797 break;
2800 // Verify the metadata itself.
2801 visitMDNode(*I.second, AllowLocs);
2805 // If this function is actually an intrinsic, verify that it is only used in
2806 // direct call/invokes, never having its "address taken".
2807 // Only do this if the module is materialized, otherwise we don't have all the
2808 // uses.
2809 if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2810 const User *U;
2811 if (F.hasAddressTaken(&U, false, true, false,
2812 /*IgnoreARCAttachedCall=*/true))
2813 Check(false, "Invalid user of intrinsic instruction!", U);
2816 // Check intrinsics' signatures.
2817 switch (F.getIntrinsicID()) {
2818 case Intrinsic::experimental_gc_get_pointer_base: {
2819 FunctionType *FT = F.getFunctionType();
2820 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2821 Check(isa<PointerType>(F.getReturnType()),
2822 "gc.get.pointer.base must return a pointer", F);
2823 Check(FT->getParamType(0) == F.getReturnType(),
2824 "gc.get.pointer.base operand and result must be of the same type", F);
2825 break;
2827 case Intrinsic::experimental_gc_get_pointer_offset: {
2828 FunctionType *FT = F.getFunctionType();
2829 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2830 Check(isa<PointerType>(FT->getParamType(0)),
2831 "gc.get.pointer.offset operand must be a pointer", F);
2832 Check(F.getReturnType()->isIntegerTy(),
2833 "gc.get.pointer.offset must return integer", F);
2834 break;
2838 auto *N = F.getSubprogram();
2839 HasDebugInfo = (N != nullptr);
2840 if (!HasDebugInfo)
2841 return;
2843 // Check that all !dbg attachments lead to back to N.
2845 // FIXME: Check this incrementally while visiting !dbg attachments.
2846 // FIXME: Only check when N is the canonical subprogram for F.
2847 SmallPtrSet<const MDNode *, 32> Seen;
2848 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2849 // Be careful about using DILocation here since we might be dealing with
2850 // broken code (this is the Verifier after all).
2851 const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2852 if (!DL)
2853 return;
2854 if (!Seen.insert(DL).second)
2855 return;
2857 Metadata *Parent = DL->getRawScope();
2858 CheckDI(Parent && isa<DILocalScope>(Parent),
2859 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
2861 DILocalScope *Scope = DL->getInlinedAtScope();
2862 Check(Scope, "Failed to find DILocalScope", DL);
2864 if (!Seen.insert(Scope).second)
2865 return;
2867 DISubprogram *SP = Scope->getSubprogram();
2869 // Scope and SP could be the same MDNode and we don't want to skip
2870 // validation in that case
2871 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2872 return;
2874 CheckDI(SP->describes(&F),
2875 "!dbg attachment points at wrong subprogram for function", N, &F,
2876 &I, DL, Scope, SP);
2878 for (auto &BB : F)
2879 for (auto &I : BB) {
2880 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2881 // The llvm.loop annotations also contain two DILocations.
2882 if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2883 for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2884 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2885 if (BrokenDebugInfo)
2886 return;
2890 // verifyBasicBlock - Verify that a basic block is well formed...
2892 void Verifier::visitBasicBlock(BasicBlock &BB) {
2893 InstsInThisBlock.clear();
2894 ConvergenceVerifyHelper.visit(BB);
2896 // Ensure that basic blocks have terminators!
2897 Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2899 // Check constraints that this basic block imposes on all of the PHI nodes in
2900 // it.
2901 if (isa<PHINode>(BB.front())) {
2902 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2903 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2904 llvm::sort(Preds);
2905 for (const PHINode &PN : BB.phis()) {
2906 Check(PN.getNumIncomingValues() == Preds.size(),
2907 "PHINode should have one entry for each predecessor of its "
2908 "parent basic block!",
2909 &PN);
2911 // Get and sort all incoming values in the PHI node...
2912 Values.clear();
2913 Values.reserve(PN.getNumIncomingValues());
2914 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2915 Values.push_back(
2916 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2917 llvm::sort(Values);
2919 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2920 // Check to make sure that if there is more than one entry for a
2921 // particular basic block in this PHI node, that the incoming values are
2922 // all identical.
2924 Check(i == 0 || Values[i].first != Values[i - 1].first ||
2925 Values[i].second == Values[i - 1].second,
2926 "PHI node has multiple entries for the same basic block with "
2927 "different incoming values!",
2928 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2930 // Check to make sure that the predecessors and PHI node entries are
2931 // matched up.
2932 Check(Values[i].first == Preds[i],
2933 "PHI node entries do not match predecessors!", &PN,
2934 Values[i].first, Preds[i]);
2939 // Check that all instructions have their parent pointers set up correctly.
2940 for (auto &I : BB)
2942 Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2946 void Verifier::visitTerminator(Instruction &I) {
2947 // Ensure that terminators only exist at the end of the basic block.
2948 Check(&I == I.getParent()->getTerminator(),
2949 "Terminator found in the middle of a basic block!", I.getParent());
2950 visitInstruction(I);
2953 void Verifier::visitBranchInst(BranchInst &BI) {
2954 if (BI.isConditional()) {
2955 Check(BI.getCondition()->getType()->isIntegerTy(1),
2956 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2958 visitTerminator(BI);
2961 void Verifier::visitReturnInst(ReturnInst &RI) {
2962 Function *F = RI.getParent()->getParent();
2963 unsigned N = RI.getNumOperands();
2964 if (F->getReturnType()->isVoidTy())
2965 Check(N == 0,
2966 "Found return instr that returns non-void in Function of void "
2967 "return type!",
2968 &RI, F->getReturnType());
2969 else
2970 Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2971 "Function return type does not match operand "
2972 "type of return inst!",
2973 &RI, F->getReturnType());
2975 // Check to make sure that the return value has necessary properties for
2976 // terminators...
2977 visitTerminator(RI);
2980 void Verifier::visitSwitchInst(SwitchInst &SI) {
2981 Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
2982 // Check to make sure that all of the constants in the switch instruction
2983 // have the same type as the switched-on value.
2984 Type *SwitchTy = SI.getCondition()->getType();
2985 SmallPtrSet<ConstantInt*, 32> Constants;
2986 for (auto &Case : SI.cases()) {
2987 Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)),
2988 "Case value is not a constant integer.", &SI);
2989 Check(Case.getCaseValue()->getType() == SwitchTy,
2990 "Switch constants must all be same type as switch value!", &SI);
2991 Check(Constants.insert(Case.getCaseValue()).second,
2992 "Duplicate integer as switch case", &SI, Case.getCaseValue());
2995 visitTerminator(SI);
2998 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2999 Check(BI.getAddress()->getType()->isPointerTy(),
3000 "Indirectbr operand must have pointer type!", &BI);
3001 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
3002 Check(BI.getDestination(i)->getType()->isLabelTy(),
3003 "Indirectbr destinations must all have pointer type!", &BI);
3005 visitTerminator(BI);
3008 void Verifier::visitCallBrInst(CallBrInst &CBI) {
3009 Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
3010 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
3011 Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
3013 verifyInlineAsmCall(CBI);
3014 visitTerminator(CBI);
3017 void Verifier::visitSelectInst(SelectInst &SI) {
3018 Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
3019 SI.getOperand(2)),
3020 "Invalid operands for select instruction!", &SI);
3022 Check(SI.getTrueValue()->getType() == SI.getType(),
3023 "Select values must have same type as select instruction!", &SI);
3024 visitInstruction(SI);
3027 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
3028 /// a pass, if any exist, it's an error.
3030 void Verifier::visitUserOp1(Instruction &I) {
3031 Check(false, "User-defined operators should not live outside of a pass!", &I);
3034 void Verifier::visitTruncInst(TruncInst &I) {
3035 // Get the source and destination types
3036 Type *SrcTy = I.getOperand(0)->getType();
3037 Type *DestTy = I.getType();
3039 // Get the size of the types in bits, we'll need this later
3040 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3041 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3043 Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
3044 Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
3045 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3046 "trunc source and destination must both be a vector or neither", &I);
3047 Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
3049 visitInstruction(I);
3052 void Verifier::visitZExtInst(ZExtInst &I) {
3053 // Get the source and destination types
3054 Type *SrcTy = I.getOperand(0)->getType();
3055 Type *DestTy = I.getType();
3057 // Get the size of the types in bits, we'll need this later
3058 Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
3059 Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
3060 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3061 "zext source and destination must both be a vector or neither", &I);
3062 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3063 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3065 Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
3067 visitInstruction(I);
3070 void Verifier::visitSExtInst(SExtInst &I) {
3071 // Get the source and destination types
3072 Type *SrcTy = I.getOperand(0)->getType();
3073 Type *DestTy = I.getType();
3075 // Get the size of the types in bits, we'll need this later
3076 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3077 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3079 Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
3080 Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
3081 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3082 "sext source and destination must both be a vector or neither", &I);
3083 Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
3085 visitInstruction(I);
3088 void Verifier::visitFPTruncInst(FPTruncInst &I) {
3089 // Get the source and destination types
3090 Type *SrcTy = I.getOperand(0)->getType();
3091 Type *DestTy = I.getType();
3092 // Get the size of the types in bits, we'll need this later
3093 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3094 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3096 Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
3097 Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
3098 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3099 "fptrunc source and destination must both be a vector or neither", &I);
3100 Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
3102 visitInstruction(I);
3105 void Verifier::visitFPExtInst(FPExtInst &I) {
3106 // Get the source and destination types
3107 Type *SrcTy = I.getOperand(0)->getType();
3108 Type *DestTy = I.getType();
3110 // Get the size of the types in bits, we'll need this later
3111 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3112 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3114 Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
3115 Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
3116 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3117 "fpext source and destination must both be a vector or neither", &I);
3118 Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
3120 visitInstruction(I);
3123 void Verifier::visitUIToFPInst(UIToFPInst &I) {
3124 // Get the source and destination types
3125 Type *SrcTy = I.getOperand(0)->getType();
3126 Type *DestTy = I.getType();
3128 bool SrcVec = SrcTy->isVectorTy();
3129 bool DstVec = DestTy->isVectorTy();
3131 Check(SrcVec == DstVec,
3132 "UIToFP source and dest must both be vector or scalar", &I);
3133 Check(SrcTy->isIntOrIntVectorTy(),
3134 "UIToFP source must be integer or integer vector", &I);
3135 Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
3136 &I);
3138 if (SrcVec && DstVec)
3139 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3140 cast<VectorType>(DestTy)->getElementCount(),
3141 "UIToFP source and dest vector length mismatch", &I);
3143 visitInstruction(I);
3146 void Verifier::visitSIToFPInst(SIToFPInst &I) {
3147 // Get the source and destination types
3148 Type *SrcTy = I.getOperand(0)->getType();
3149 Type *DestTy = I.getType();
3151 bool SrcVec = SrcTy->isVectorTy();
3152 bool DstVec = DestTy->isVectorTy();
3154 Check(SrcVec == DstVec,
3155 "SIToFP source and dest must both be vector or scalar", &I);
3156 Check(SrcTy->isIntOrIntVectorTy(),
3157 "SIToFP source must be integer or integer vector", &I);
3158 Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3159 &I);
3161 if (SrcVec && DstVec)
3162 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3163 cast<VectorType>(DestTy)->getElementCount(),
3164 "SIToFP source and dest vector length mismatch", &I);
3166 visitInstruction(I);
3169 void Verifier::visitFPToUIInst(FPToUIInst &I) {
3170 // Get the source and destination types
3171 Type *SrcTy = I.getOperand(0)->getType();
3172 Type *DestTy = I.getType();
3174 bool SrcVec = SrcTy->isVectorTy();
3175 bool DstVec = DestTy->isVectorTy();
3177 Check(SrcVec == DstVec,
3178 "FPToUI source and dest must both be vector or scalar", &I);
3179 Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3180 Check(DestTy->isIntOrIntVectorTy(),
3181 "FPToUI result must be integer or integer vector", &I);
3183 if (SrcVec && DstVec)
3184 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3185 cast<VectorType>(DestTy)->getElementCount(),
3186 "FPToUI source and dest vector length mismatch", &I);
3188 visitInstruction(I);
3191 void Verifier::visitFPToSIInst(FPToSIInst &I) {
3192 // Get the source and destination types
3193 Type *SrcTy = I.getOperand(0)->getType();
3194 Type *DestTy = I.getType();
3196 bool SrcVec = SrcTy->isVectorTy();
3197 bool DstVec = DestTy->isVectorTy();
3199 Check(SrcVec == DstVec,
3200 "FPToSI source and dest must both be vector or scalar", &I);
3201 Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3202 Check(DestTy->isIntOrIntVectorTy(),
3203 "FPToSI result must be integer or integer vector", &I);
3205 if (SrcVec && DstVec)
3206 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3207 cast<VectorType>(DestTy)->getElementCount(),
3208 "FPToSI source and dest vector length mismatch", &I);
3210 visitInstruction(I);
3213 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3214 // Get the source and destination types
3215 Type *SrcTy = I.getOperand(0)->getType();
3216 Type *DestTy = I.getType();
3218 Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3220 Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3221 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3222 &I);
3224 if (SrcTy->isVectorTy()) {
3225 auto *VSrc = cast<VectorType>(SrcTy);
3226 auto *VDest = cast<VectorType>(DestTy);
3227 Check(VSrc->getElementCount() == VDest->getElementCount(),
3228 "PtrToInt Vector width mismatch", &I);
3231 visitInstruction(I);
3234 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3235 // Get the source and destination types
3236 Type *SrcTy = I.getOperand(0)->getType();
3237 Type *DestTy = I.getType();
3239 Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3240 Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3242 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3243 &I);
3244 if (SrcTy->isVectorTy()) {
3245 auto *VSrc = cast<VectorType>(SrcTy);
3246 auto *VDest = cast<VectorType>(DestTy);
3247 Check(VSrc->getElementCount() == VDest->getElementCount(),
3248 "IntToPtr Vector width mismatch", &I);
3250 visitInstruction(I);
3253 void Verifier::visitBitCastInst(BitCastInst &I) {
3254 Check(
3255 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3256 "Invalid bitcast", &I);
3257 visitInstruction(I);
3260 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3261 Type *SrcTy = I.getOperand(0)->getType();
3262 Type *DestTy = I.getType();
3264 Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3265 &I);
3266 Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3267 &I);
3268 Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3269 "AddrSpaceCast must be between different address spaces", &I);
3270 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3271 Check(SrcVTy->getElementCount() ==
3272 cast<VectorType>(DestTy)->getElementCount(),
3273 "AddrSpaceCast vector pointer number of elements mismatch", &I);
3274 visitInstruction(I);
3277 /// visitPHINode - Ensure that a PHI node is well formed.
3279 void Verifier::visitPHINode(PHINode &PN) {
3280 // Ensure that the PHI nodes are all grouped together at the top of the block.
3281 // This can be tested by checking whether the instruction before this is
3282 // either nonexistent (because this is begin()) or is a PHI node. If not,
3283 // then there is some other instruction before a PHI.
3284 Check(&PN == &PN.getParent()->front() ||
3285 isa<PHINode>(--BasicBlock::iterator(&PN)),
3286 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3288 // Check that a PHI doesn't yield a Token.
3289 Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3291 // Check that all of the values of the PHI node have the same type as the
3292 // result, and that the incoming blocks are really basic blocks.
3293 for (Value *IncValue : PN.incoming_values()) {
3294 Check(PN.getType() == IncValue->getType(),
3295 "PHI node operands are not the same type as the result!", &PN);
3298 // All other PHI node constraints are checked in the visitBasicBlock method.
3300 visitInstruction(PN);
3303 void Verifier::visitCallBase(CallBase &Call) {
3304 Check(Call.getCalledOperand()->getType()->isPointerTy(),
3305 "Called function must be a pointer!", Call);
3306 FunctionType *FTy = Call.getFunctionType();
3308 // Verify that the correct number of arguments are being passed
3309 if (FTy->isVarArg())
3310 Check(Call.arg_size() >= FTy->getNumParams(),
3311 "Called function requires more parameters than were provided!", Call);
3312 else
3313 Check(Call.arg_size() == FTy->getNumParams(),
3314 "Incorrect number of arguments passed to called function!", Call);
3316 // Verify that all arguments to the call match the function type.
3317 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3318 Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3319 "Call parameter type does not match function signature!",
3320 Call.getArgOperand(i), FTy->getParamType(i), Call);
3322 AttributeList Attrs = Call.getAttributes();
3324 Check(verifyAttributeCount(Attrs, Call.arg_size()),
3325 "Attribute after last parameter!", Call);
3327 Function *Callee =
3328 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3329 bool IsIntrinsic = Callee && Callee->isIntrinsic();
3330 if (IsIntrinsic)
3331 Check(Callee->getValueType() == FTy,
3332 "Intrinsic called with incompatible signature", Call);
3334 // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling
3335 // convention.
3336 auto CC = Call.getCallingConv();
3337 Check(CC != CallingConv::AMDGPU_CS_Chain &&
3338 CC != CallingConv::AMDGPU_CS_ChainPreserve,
3339 "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions "
3340 "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.",
3341 Call);
3343 auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3344 if (!Ty->isSized())
3345 return;
3346 Align ABIAlign = DL.getABITypeAlign(Ty);
3347 Align MaxAlign(ParamMaxAlignment);
3348 Check(ABIAlign <= MaxAlign,
3349 "Incorrect alignment of " + Message + " to called function!", Call);
3352 if (!IsIntrinsic) {
3353 VerifyTypeAlign(FTy->getReturnType(), "return type");
3354 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3355 Type *Ty = FTy->getParamType(i);
3356 VerifyTypeAlign(Ty, "argument passed");
3360 if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3361 // Don't allow speculatable on call sites, unless the underlying function
3362 // declaration is also speculatable.
3363 Check(Callee && Callee->isSpeculatable(),
3364 "speculatable attribute may not apply to call sites", Call);
3367 if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3368 Check(Call.getCalledFunction()->getIntrinsicID() ==
3369 Intrinsic::call_preallocated_arg,
3370 "preallocated as a call site attribute can only be on "
3371 "llvm.call.preallocated.arg");
3374 // Verify call attributes.
3375 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3377 // Conservatively check the inalloca argument.
3378 // We have a bug if we can find that there is an underlying alloca without
3379 // inalloca.
3380 if (Call.hasInAllocaArgument()) {
3381 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3382 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3383 Check(AI->isUsedWithInAlloca(),
3384 "inalloca argument for call has mismatched alloca", AI, Call);
3387 // For each argument of the callsite, if it has the swifterror argument,
3388 // make sure the underlying alloca/parameter it comes from has a swifterror as
3389 // well.
3390 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3391 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3392 Value *SwiftErrorArg = Call.getArgOperand(i);
3393 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3394 Check(AI->isSwiftError(),
3395 "swifterror argument for call has mismatched alloca", AI, Call);
3396 continue;
3398 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3399 Check(ArgI, "swifterror argument should come from an alloca or parameter",
3400 SwiftErrorArg, Call);
3401 Check(ArgI->hasSwiftErrorAttr(),
3402 "swifterror argument for call has mismatched parameter", ArgI,
3403 Call);
3406 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3407 // Don't allow immarg on call sites, unless the underlying declaration
3408 // also has the matching immarg.
3409 Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3410 "immarg may not apply only to call sites", Call.getArgOperand(i),
3411 Call);
3414 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3415 Value *ArgVal = Call.getArgOperand(i);
3416 Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3417 "immarg operand has non-immediate parameter", ArgVal, Call);
3420 if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3421 Value *ArgVal = Call.getArgOperand(i);
3422 bool hasOB =
3423 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3424 bool isMustTail = Call.isMustTailCall();
3425 Check(hasOB != isMustTail,
3426 "preallocated operand either requires a preallocated bundle or "
3427 "the call to be musttail (but not both)",
3428 ArgVal, Call);
3432 if (FTy->isVarArg()) {
3433 // FIXME? is 'nest' even legal here?
3434 bool SawNest = false;
3435 bool SawReturned = false;
3437 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3438 if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3439 SawNest = true;
3440 if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3441 SawReturned = true;
3444 // Check attributes on the varargs part.
3445 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3446 Type *Ty = Call.getArgOperand(Idx)->getType();
3447 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3448 verifyParameterAttrs(ArgAttrs, Ty, &Call);
3450 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3451 Check(!SawNest, "More than one parameter has attribute nest!", Call);
3452 SawNest = true;
3455 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3456 Check(!SawReturned, "More than one parameter has attribute returned!",
3457 Call);
3458 Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3459 "Incompatible argument and return types for 'returned' "
3460 "attribute",
3461 Call);
3462 SawReturned = true;
3465 // Statepoint intrinsic is vararg but the wrapped function may be not.
3466 // Allow sret here and check the wrapped function in verifyStatepoint.
3467 if (!Call.getCalledFunction() ||
3468 Call.getCalledFunction()->getIntrinsicID() !=
3469 Intrinsic::experimental_gc_statepoint)
3470 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3471 "Attribute 'sret' cannot be used for vararg call arguments!",
3472 Call);
3474 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3475 Check(Idx == Call.arg_size() - 1,
3476 "inalloca isn't on the last argument!", Call);
3480 // Verify that there's no metadata unless it's a direct call to an intrinsic.
3481 if (!IsIntrinsic) {
3482 for (Type *ParamTy : FTy->params()) {
3483 Check(!ParamTy->isMetadataTy(),
3484 "Function has metadata parameter but isn't an intrinsic", Call);
3485 Check(!ParamTy->isTokenTy(),
3486 "Function has token parameter but isn't an intrinsic", Call);
3490 // Verify that indirect calls don't return tokens.
3491 if (!Call.getCalledFunction()) {
3492 Check(!FTy->getReturnType()->isTokenTy(),
3493 "Return type cannot be token for indirect call!");
3494 Check(!FTy->getReturnType()->isX86_AMXTy(),
3495 "Return type cannot be x86_amx for indirect call!");
3498 if (Function *F = Call.getCalledFunction())
3499 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3500 visitIntrinsicCall(ID, Call);
3502 // Verify that a callsite has at most one "deopt", at most one "funclet", at
3503 // most one "gc-transition", at most one "cfguardtarget", at most one
3504 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3505 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3506 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3507 FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3508 FoundPtrauthBundle = false, FoundKCFIBundle = false,
3509 FoundAttachedCallBundle = false;
3510 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3511 OperandBundleUse BU = Call.getOperandBundleAt(i);
3512 uint32_t Tag = BU.getTagID();
3513 if (Tag == LLVMContext::OB_deopt) {
3514 Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3515 FoundDeoptBundle = true;
3516 } else if (Tag == LLVMContext::OB_gc_transition) {
3517 Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3518 Call);
3519 FoundGCTransitionBundle = true;
3520 } else if (Tag == LLVMContext::OB_funclet) {
3521 Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3522 FoundFuncletBundle = true;
3523 Check(BU.Inputs.size() == 1,
3524 "Expected exactly one funclet bundle operand", Call);
3525 Check(isa<FuncletPadInst>(BU.Inputs.front()),
3526 "Funclet bundle operands should correspond to a FuncletPadInst",
3527 Call);
3528 } else if (Tag == LLVMContext::OB_cfguardtarget) {
3529 Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3530 Call);
3531 FoundCFGuardTargetBundle = true;
3532 Check(BU.Inputs.size() == 1,
3533 "Expected exactly one cfguardtarget bundle operand", Call);
3534 } else if (Tag == LLVMContext::OB_ptrauth) {
3535 Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3536 FoundPtrauthBundle = true;
3537 Check(BU.Inputs.size() == 2,
3538 "Expected exactly two ptrauth bundle operands", Call);
3539 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3540 BU.Inputs[0]->getType()->isIntegerTy(32),
3541 "Ptrauth bundle key operand must be an i32 constant", Call);
3542 Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3543 "Ptrauth bundle discriminator operand must be an i64", Call);
3544 } else if (Tag == LLVMContext::OB_kcfi) {
3545 Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call);
3546 FoundKCFIBundle = true;
3547 Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand",
3548 Call);
3549 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3550 BU.Inputs[0]->getType()->isIntegerTy(32),
3551 "Kcfi bundle operand must be an i32 constant", Call);
3552 } else if (Tag == LLVMContext::OB_preallocated) {
3553 Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3554 Call);
3555 FoundPreallocatedBundle = true;
3556 Check(BU.Inputs.size() == 1,
3557 "Expected exactly one preallocated bundle operand", Call);
3558 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3559 Check(Input &&
3560 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3561 "\"preallocated\" argument must be a token from "
3562 "llvm.call.preallocated.setup",
3563 Call);
3564 } else if (Tag == LLVMContext::OB_gc_live) {
3565 Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3566 FoundGCLiveBundle = true;
3567 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3568 Check(!FoundAttachedCallBundle,
3569 "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3570 FoundAttachedCallBundle = true;
3571 verifyAttachedCallBundle(Call, BU);
3575 // Verify that callee and callsite agree on whether to use pointer auth.
3576 Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3577 "Direct call cannot have a ptrauth bundle", Call);
3579 // Verify that each inlinable callsite of a debug-info-bearing function in a
3580 // debug-info-bearing function has a debug location attached to it. Failure to
3581 // do so causes assertion failures when the inliner sets up inline scope info
3582 // (Interposable functions are not inlinable, neither are functions without
3583 // definitions.)
3584 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3585 !Call.getCalledFunction()->isInterposable() &&
3586 !Call.getCalledFunction()->isDeclaration() &&
3587 Call.getCalledFunction()->getSubprogram())
3588 CheckDI(Call.getDebugLoc(),
3589 "inlinable function call in a function with "
3590 "debug info must have a !dbg location",
3591 Call);
3593 if (Call.isInlineAsm())
3594 verifyInlineAsmCall(Call);
3596 ConvergenceVerifyHelper.visit(Call);
3598 visitInstruction(Call);
3601 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3602 StringRef Context) {
3603 Check(!Attrs.contains(Attribute::InAlloca),
3604 Twine("inalloca attribute not allowed in ") + Context);
3605 Check(!Attrs.contains(Attribute::InReg),
3606 Twine("inreg attribute not allowed in ") + Context);
3607 Check(!Attrs.contains(Attribute::SwiftError),
3608 Twine("swifterror attribute not allowed in ") + Context);
3609 Check(!Attrs.contains(Attribute::Preallocated),
3610 Twine("preallocated attribute not allowed in ") + Context);
3611 Check(!Attrs.contains(Attribute::ByRef),
3612 Twine("byref attribute not allowed in ") + Context);
3615 /// Two types are "congruent" if they are identical, or if they are both pointer
3616 /// types with different pointee types and the same address space.
3617 static bool isTypeCongruent(Type *L, Type *R) {
3618 if (L == R)
3619 return true;
3620 PointerType *PL = dyn_cast<PointerType>(L);
3621 PointerType *PR = dyn_cast<PointerType>(R);
3622 if (!PL || !PR)
3623 return false;
3624 return PL->getAddressSpace() == PR->getAddressSpace();
3627 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3628 static const Attribute::AttrKind ABIAttrs[] = {
3629 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3630 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
3631 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
3632 Attribute::ByRef};
3633 AttrBuilder Copy(C);
3634 for (auto AK : ABIAttrs) {
3635 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3636 if (Attr.isValid())
3637 Copy.addAttribute(Attr);
3640 // `align` is ABI-affecting only in combination with `byval` or `byref`.
3641 if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3642 (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3643 Attrs.hasParamAttr(I, Attribute::ByRef)))
3644 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3645 return Copy;
3648 void Verifier::verifyMustTailCall(CallInst &CI) {
3649 Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3651 Function *F = CI.getParent()->getParent();
3652 FunctionType *CallerTy = F->getFunctionType();
3653 FunctionType *CalleeTy = CI.getFunctionType();
3654 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3655 "cannot guarantee tail call due to mismatched varargs", &CI);
3656 Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3657 "cannot guarantee tail call due to mismatched return types", &CI);
3659 // - The calling conventions of the caller and callee must match.
3660 Check(F->getCallingConv() == CI.getCallingConv(),
3661 "cannot guarantee tail call due to mismatched calling conv", &CI);
3663 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3664 // or a pointer bitcast followed by a ret instruction.
3665 // - The ret instruction must return the (possibly bitcasted) value
3666 // produced by the call or void.
3667 Value *RetVal = &CI;
3668 Instruction *Next = CI.getNextNode();
3670 // Handle the optional bitcast.
3671 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3672 Check(BI->getOperand(0) == RetVal,
3673 "bitcast following musttail call must use the call", BI);
3674 RetVal = BI;
3675 Next = BI->getNextNode();
3678 // Check the return.
3679 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3680 Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3681 Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3682 isa<UndefValue>(Ret->getReturnValue()),
3683 "musttail call result must be returned", Ret);
3685 AttributeList CallerAttrs = F->getAttributes();
3686 AttributeList CalleeAttrs = CI.getAttributes();
3687 if (CI.getCallingConv() == CallingConv::SwiftTail ||
3688 CI.getCallingConv() == CallingConv::Tail) {
3689 StringRef CCName =
3690 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3692 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3693 // are allowed in swifttailcc call
3694 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3695 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3696 SmallString<32> Context{CCName, StringRef(" musttail caller")};
3697 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3699 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3700 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3701 SmallString<32> Context{CCName, StringRef(" musttail callee")};
3702 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3704 // - Varargs functions are not allowed
3705 Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3706 " tail call for varargs function");
3707 return;
3710 // - The caller and callee prototypes must match. Pointer types of
3711 // parameters or return types may differ in pointee type, but not
3712 // address space.
3713 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3714 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3715 "cannot guarantee tail call due to mismatched parameter counts", &CI);
3716 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3717 Check(
3718 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3719 "cannot guarantee tail call due to mismatched parameter types", &CI);
3723 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3724 // returned, preallocated, and inalloca, must match.
3725 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3726 AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3727 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3728 Check(CallerABIAttrs == CalleeABIAttrs,
3729 "cannot guarantee tail call due to mismatched ABI impacting "
3730 "function attributes",
3731 &CI, CI.getOperand(I));
3735 void Verifier::visitCallInst(CallInst &CI) {
3736 visitCallBase(CI);
3738 if (CI.isMustTailCall())
3739 verifyMustTailCall(CI);
3742 void Verifier::visitInvokeInst(InvokeInst &II) {
3743 visitCallBase(II);
3745 // Verify that the first non-PHI instruction of the unwind destination is an
3746 // exception handling instruction.
3747 Check(
3748 II.getUnwindDest()->isEHPad(),
3749 "The unwind destination does not have an exception handling instruction!",
3750 &II);
3752 visitTerminator(II);
3755 /// visitUnaryOperator - Check the argument to the unary operator.
3757 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3758 Check(U.getType() == U.getOperand(0)->getType(),
3759 "Unary operators must have same type for"
3760 "operands and result!",
3761 &U);
3763 switch (U.getOpcode()) {
3764 // Check that floating-point arithmetic operators are only used with
3765 // floating-point operands.
3766 case Instruction::FNeg:
3767 Check(U.getType()->isFPOrFPVectorTy(),
3768 "FNeg operator only works with float types!", &U);
3769 break;
3770 default:
3771 llvm_unreachable("Unknown UnaryOperator opcode!");
3774 visitInstruction(U);
3777 /// visitBinaryOperator - Check that both arguments to the binary operator are
3778 /// of the same type!
3780 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3781 Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3782 "Both operands to a binary operator are not of the same type!", &B);
3784 switch (B.getOpcode()) {
3785 // Check that integer arithmetic operators are only used with
3786 // integral operands.
3787 case Instruction::Add:
3788 case Instruction::Sub:
3789 case Instruction::Mul:
3790 case Instruction::SDiv:
3791 case Instruction::UDiv:
3792 case Instruction::SRem:
3793 case Instruction::URem:
3794 Check(B.getType()->isIntOrIntVectorTy(),
3795 "Integer arithmetic operators only work with integral types!", &B);
3796 Check(B.getType() == B.getOperand(0)->getType(),
3797 "Integer arithmetic operators must have same type "
3798 "for operands and result!",
3799 &B);
3800 break;
3801 // Check that floating-point arithmetic operators are only used with
3802 // floating-point operands.
3803 case Instruction::FAdd:
3804 case Instruction::FSub:
3805 case Instruction::FMul:
3806 case Instruction::FDiv:
3807 case Instruction::FRem:
3808 Check(B.getType()->isFPOrFPVectorTy(),
3809 "Floating-point arithmetic operators only work with "
3810 "floating-point types!",
3811 &B);
3812 Check(B.getType() == B.getOperand(0)->getType(),
3813 "Floating-point arithmetic operators must have same type "
3814 "for operands and result!",
3815 &B);
3816 break;
3817 // Check that logical operators are only used with integral operands.
3818 case Instruction::And:
3819 case Instruction::Or:
3820 case Instruction::Xor:
3821 Check(B.getType()->isIntOrIntVectorTy(),
3822 "Logical operators only work with integral types!", &B);
3823 Check(B.getType() == B.getOperand(0)->getType(),
3824 "Logical operators must have same type for operands and result!", &B);
3825 break;
3826 case Instruction::Shl:
3827 case Instruction::LShr:
3828 case Instruction::AShr:
3829 Check(B.getType()->isIntOrIntVectorTy(),
3830 "Shifts only work with integral types!", &B);
3831 Check(B.getType() == B.getOperand(0)->getType(),
3832 "Shift return type must be same as operands!", &B);
3833 break;
3834 default:
3835 llvm_unreachable("Unknown BinaryOperator opcode!");
3838 visitInstruction(B);
3841 void Verifier::visitICmpInst(ICmpInst &IC) {
3842 // Check that the operands are the same type
3843 Type *Op0Ty = IC.getOperand(0)->getType();
3844 Type *Op1Ty = IC.getOperand(1)->getType();
3845 Check(Op0Ty == Op1Ty,
3846 "Both operands to ICmp instruction are not of the same type!", &IC);
3847 // Check that the operands are the right type
3848 Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3849 "Invalid operand types for ICmp instruction", &IC);
3850 // Check that the predicate is valid.
3851 Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
3853 visitInstruction(IC);
3856 void Verifier::visitFCmpInst(FCmpInst &FC) {
3857 // Check that the operands are the same type
3858 Type *Op0Ty = FC.getOperand(0)->getType();
3859 Type *Op1Ty = FC.getOperand(1)->getType();
3860 Check(Op0Ty == Op1Ty,
3861 "Both operands to FCmp instruction are not of the same type!", &FC);
3862 // Check that the operands are the right type
3863 Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
3864 &FC);
3865 // Check that the predicate is valid.
3866 Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
3868 visitInstruction(FC);
3871 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3872 Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3873 "Invalid extractelement operands!", &EI);
3874 visitInstruction(EI);
3877 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3878 Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3879 IE.getOperand(2)),
3880 "Invalid insertelement operands!", &IE);
3881 visitInstruction(IE);
3884 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3885 Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3886 SV.getShuffleMask()),
3887 "Invalid shufflevector operands!", &SV);
3888 visitInstruction(SV);
3891 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3892 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3894 Check(isa<PointerType>(TargetTy),
3895 "GEP base pointer is not a vector or a vector of pointers", &GEP);
3896 Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3898 if (auto *STy = dyn_cast<StructType>(GEP.getSourceElementType())) {
3899 SmallPtrSet<Type *, 4> Visited;
3900 Check(!STy->containsScalableVectorType(&Visited),
3901 "getelementptr cannot target structure that contains scalable vector"
3902 "type",
3903 &GEP);
3906 SmallVector<Value *, 16> Idxs(GEP.indices());
3907 Check(
3908 all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
3909 "GEP indexes must be integers", &GEP);
3910 Type *ElTy =
3911 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3912 Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3914 Check(GEP.getType()->isPtrOrPtrVectorTy() &&
3915 GEP.getResultElementType() == ElTy,
3916 "GEP is not of right type for indices!", &GEP, ElTy);
3918 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3919 // Additional checks for vector GEPs.
3920 ElementCount GEPWidth = GEPVTy->getElementCount();
3921 if (GEP.getPointerOperandType()->isVectorTy())
3922 Check(
3923 GEPWidth ==
3924 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3925 "Vector GEP result width doesn't match operand's", &GEP);
3926 for (Value *Idx : Idxs) {
3927 Type *IndexTy = Idx->getType();
3928 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3929 ElementCount IndexWidth = IndexVTy->getElementCount();
3930 Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3932 Check(IndexTy->isIntOrIntVectorTy(),
3933 "All GEP indices should be of integer type");
3937 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3938 Check(GEP.getAddressSpace() == PTy->getAddressSpace(),
3939 "GEP address space doesn't match type", &GEP);
3942 visitInstruction(GEP);
3945 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3946 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3949 /// Verify !range and !absolute_symbol metadata. These have the same
3950 /// restrictions, except !absolute_symbol allows the full set.
3951 void Verifier::verifyRangeMetadata(const Value &I, const MDNode *Range,
3952 Type *Ty, bool IsAbsoluteSymbol) {
3953 unsigned NumOperands = Range->getNumOperands();
3954 Check(NumOperands % 2 == 0, "Unfinished range!", Range);
3955 unsigned NumRanges = NumOperands / 2;
3956 Check(NumRanges >= 1, "It should have at least one range!", Range);
3958 ConstantRange LastRange(1, true); // Dummy initial value
3959 for (unsigned i = 0; i < NumRanges; ++i) {
3960 ConstantInt *Low =
3961 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3962 Check(Low, "The lower limit must be an integer!", Low);
3963 ConstantInt *High =
3964 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3965 Check(High, "The upper limit must be an integer!", High);
3966 Check(High->getType() == Low->getType() &&
3967 High->getType() == Ty->getScalarType(),
3968 "Range types must match instruction type!", &I);
3970 APInt HighV = High->getValue();
3971 APInt LowV = Low->getValue();
3973 // ConstantRange asserts if the ranges are the same except for the min/max
3974 // value. Leave the cases it tolerates for the empty range error below.
3975 Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(),
3976 "The upper and lower limits cannot be the same value", &I);
3978 ConstantRange CurRange(LowV, HighV);
3979 Check(!CurRange.isEmptySet() && (IsAbsoluteSymbol || !CurRange.isFullSet()),
3980 "Range must not be empty!", Range);
3981 if (i != 0) {
3982 Check(CurRange.intersectWith(LastRange).isEmptySet(),
3983 "Intervals are overlapping", Range);
3984 Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3985 Range);
3986 Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3987 Range);
3989 LastRange = ConstantRange(LowV, HighV);
3991 if (NumRanges > 2) {
3992 APInt FirstLow =
3993 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3994 APInt FirstHigh =
3995 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3996 ConstantRange FirstRange(FirstLow, FirstHigh);
3997 Check(FirstRange.intersectWith(LastRange).isEmptySet(),
3998 "Intervals are overlapping", Range);
3999 Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
4000 Range);
4004 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
4005 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
4006 "precondition violation");
4007 verifyRangeMetadata(I, Range, Ty, false);
4010 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
4011 unsigned Size = DL.getTypeSizeInBits(Ty);
4012 Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
4013 Check(!(Size & (Size - 1)),
4014 "atomic memory access' operand must have a power-of-two size", Ty, I);
4017 void Verifier::visitLoadInst(LoadInst &LI) {
4018 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
4019 Check(PTy, "Load operand must be a pointer.", &LI);
4020 Type *ElTy = LI.getType();
4021 if (MaybeAlign A = LI.getAlign()) {
4022 Check(A->value() <= Value::MaximumAlignment,
4023 "huge alignment values are unsupported", &LI);
4025 Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
4026 if (LI.isAtomic()) {
4027 Check(LI.getOrdering() != AtomicOrdering::Release &&
4028 LI.getOrdering() != AtomicOrdering::AcquireRelease,
4029 "Load cannot have Release ordering", &LI);
4030 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4031 "atomic load operand must have integer, pointer, or floating point "
4032 "type!",
4033 ElTy, &LI);
4034 checkAtomicMemAccessSize(ElTy, &LI);
4035 } else {
4036 Check(LI.getSyncScopeID() == SyncScope::System,
4037 "Non-atomic load cannot have SynchronizationScope specified", &LI);
4040 visitInstruction(LI);
4043 void Verifier::visitStoreInst(StoreInst &SI) {
4044 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
4045 Check(PTy, "Store operand must be a pointer.", &SI);
4046 Type *ElTy = SI.getOperand(0)->getType();
4047 if (MaybeAlign A = SI.getAlign()) {
4048 Check(A->value() <= Value::MaximumAlignment,
4049 "huge alignment values are unsupported", &SI);
4051 Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
4052 if (SI.isAtomic()) {
4053 Check(SI.getOrdering() != AtomicOrdering::Acquire &&
4054 SI.getOrdering() != AtomicOrdering::AcquireRelease,
4055 "Store cannot have Acquire ordering", &SI);
4056 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4057 "atomic store operand must have integer, pointer, or floating point "
4058 "type!",
4059 ElTy, &SI);
4060 checkAtomicMemAccessSize(ElTy, &SI);
4061 } else {
4062 Check(SI.getSyncScopeID() == SyncScope::System,
4063 "Non-atomic store cannot have SynchronizationScope specified", &SI);
4065 visitInstruction(SI);
4068 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
4069 void Verifier::verifySwiftErrorCall(CallBase &Call,
4070 const Value *SwiftErrorVal) {
4071 for (const auto &I : llvm::enumerate(Call.args())) {
4072 if (I.value() == SwiftErrorVal) {
4073 Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
4074 "swifterror value when used in a callsite should be marked "
4075 "with swifterror attribute",
4076 SwiftErrorVal, Call);
4081 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
4082 // Check that swifterror value is only used by loads, stores, or as
4083 // a swifterror argument.
4084 for (const User *U : SwiftErrorVal->users()) {
4085 Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
4086 isa<InvokeInst>(U),
4087 "swifterror value can only be loaded and stored from, or "
4088 "as a swifterror argument!",
4089 SwiftErrorVal, U);
4090 // If it is used by a store, check it is the second operand.
4091 if (auto StoreI = dyn_cast<StoreInst>(U))
4092 Check(StoreI->getOperand(1) == SwiftErrorVal,
4093 "swifterror value should be the second operand when used "
4094 "by stores",
4095 SwiftErrorVal, U);
4096 if (auto *Call = dyn_cast<CallBase>(U))
4097 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
4101 void Verifier::visitAllocaInst(AllocaInst &AI) {
4102 SmallPtrSet<Type*, 4> Visited;
4103 Check(AI.getAllocatedType()->isSized(&Visited),
4104 "Cannot allocate unsized type", &AI);
4105 Check(AI.getArraySize()->getType()->isIntegerTy(),
4106 "Alloca array size must have integer type", &AI);
4107 if (MaybeAlign A = AI.getAlign()) {
4108 Check(A->value() <= Value::MaximumAlignment,
4109 "huge alignment values are unsupported", &AI);
4112 if (AI.isSwiftError()) {
4113 Check(AI.getAllocatedType()->isPointerTy(),
4114 "swifterror alloca must have pointer type", &AI);
4115 Check(!AI.isArrayAllocation(),
4116 "swifterror alloca must not be array allocation", &AI);
4117 verifySwiftErrorValue(&AI);
4120 visitInstruction(AI);
4123 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4124 Type *ElTy = CXI.getOperand(1)->getType();
4125 Check(ElTy->isIntOrPtrTy(),
4126 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4127 checkAtomicMemAccessSize(ElTy, &CXI);
4128 visitInstruction(CXI);
4131 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4132 Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
4133 "atomicrmw instructions cannot be unordered.", &RMWI);
4134 auto Op = RMWI.getOperation();
4135 Type *ElTy = RMWI.getOperand(1)->getType();
4136 if (Op == AtomicRMWInst::Xchg) {
4137 Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
4138 ElTy->isPointerTy(),
4139 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4140 " operand must have integer or floating point type!",
4141 &RMWI, ElTy);
4142 } else if (AtomicRMWInst::isFPOperation(Op)) {
4143 Check(ElTy->isFloatingPointTy(),
4144 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4145 " operand must have floating point type!",
4146 &RMWI, ElTy);
4147 } else {
4148 Check(ElTy->isIntegerTy(),
4149 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4150 " operand must have integer type!",
4151 &RMWI, ElTy);
4153 checkAtomicMemAccessSize(ElTy, &RMWI);
4154 Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
4155 "Invalid binary operation!", &RMWI);
4156 visitInstruction(RMWI);
4159 void Verifier::visitFenceInst(FenceInst &FI) {
4160 const AtomicOrdering Ordering = FI.getOrdering();
4161 Check(Ordering == AtomicOrdering::Acquire ||
4162 Ordering == AtomicOrdering::Release ||
4163 Ordering == AtomicOrdering::AcquireRelease ||
4164 Ordering == AtomicOrdering::SequentiallyConsistent,
4165 "fence instructions may only have acquire, release, acq_rel, or "
4166 "seq_cst ordering.",
4167 &FI);
4168 visitInstruction(FI);
4171 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4172 Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
4173 EVI.getIndices()) == EVI.getType(),
4174 "Invalid ExtractValueInst operands!", &EVI);
4176 visitInstruction(EVI);
4179 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4180 Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
4181 IVI.getIndices()) ==
4182 IVI.getOperand(1)->getType(),
4183 "Invalid InsertValueInst operands!", &IVI);
4185 visitInstruction(IVI);
4188 static Value *getParentPad(Value *EHPad) {
4189 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
4190 return FPI->getParentPad();
4192 return cast<CatchSwitchInst>(EHPad)->getParentPad();
4195 void Verifier::visitEHPadPredecessors(Instruction &I) {
4196 assert(I.isEHPad());
4198 BasicBlock *BB = I.getParent();
4199 Function *F = BB->getParent();
4201 Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
4203 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
4204 // The landingpad instruction defines its parent as a landing pad block. The
4205 // landing pad block may be branched to only by the unwind edge of an
4206 // invoke.
4207 for (BasicBlock *PredBB : predecessors(BB)) {
4208 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
4209 Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
4210 "Block containing LandingPadInst must be jumped to "
4211 "only by the unwind edge of an invoke.",
4212 LPI);
4214 return;
4216 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
4217 if (!pred_empty(BB))
4218 Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4219 "Block containg CatchPadInst must be jumped to "
4220 "only by its catchswitch.",
4221 CPI);
4222 Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4223 "Catchswitch cannot unwind to one of its catchpads",
4224 CPI->getCatchSwitch(), CPI);
4225 return;
4228 // Verify that each pred has a legal terminator with a legal to/from EH
4229 // pad relationship.
4230 Instruction *ToPad = &I;
4231 Value *ToPadParent = getParentPad(ToPad);
4232 for (BasicBlock *PredBB : predecessors(BB)) {
4233 Instruction *TI = PredBB->getTerminator();
4234 Value *FromPad;
4235 if (auto *II = dyn_cast<InvokeInst>(TI)) {
4236 Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4237 "EH pad must be jumped to via an unwind edge", ToPad, II);
4238 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4239 FromPad = Bundle->Inputs[0];
4240 else
4241 FromPad = ConstantTokenNone::get(II->getContext());
4242 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4243 FromPad = CRI->getOperand(0);
4244 Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4245 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4246 FromPad = CSI;
4247 } else {
4248 Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4251 // The edge may exit from zero or more nested pads.
4252 SmallSet<Value *, 8> Seen;
4253 for (;; FromPad = getParentPad(FromPad)) {
4254 Check(FromPad != ToPad,
4255 "EH pad cannot handle exceptions raised within it", FromPad, TI);
4256 if (FromPad == ToPadParent) {
4257 // This is a legal unwind edge.
4258 break;
4260 Check(!isa<ConstantTokenNone>(FromPad),
4261 "A single unwind edge may only enter one EH pad", TI);
4262 Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4263 FromPad);
4265 // This will be diagnosed on the corresponding instruction already. We
4266 // need the extra check here to make sure getParentPad() works.
4267 Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4268 "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4273 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4274 // The landingpad instruction is ill-formed if it doesn't have any clauses and
4275 // isn't a cleanup.
4276 Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4277 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4279 visitEHPadPredecessors(LPI);
4281 if (!LandingPadResultTy)
4282 LandingPadResultTy = LPI.getType();
4283 else
4284 Check(LandingPadResultTy == LPI.getType(),
4285 "The landingpad instruction should have a consistent result type "
4286 "inside a function.",
4287 &LPI);
4289 Function *F = LPI.getParent()->getParent();
4290 Check(F->hasPersonalityFn(),
4291 "LandingPadInst needs to be in a function with a personality.", &LPI);
4293 // The landingpad instruction must be the first non-PHI instruction in the
4294 // block.
4295 Check(LPI.getParent()->getLandingPadInst() == &LPI,
4296 "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4298 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4299 Constant *Clause = LPI.getClause(i);
4300 if (LPI.isCatch(i)) {
4301 Check(isa<PointerType>(Clause->getType()),
4302 "Catch operand does not have pointer type!", &LPI);
4303 } else {
4304 Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4305 Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4306 "Filter operand is not an array of constants!", &LPI);
4310 visitInstruction(LPI);
4313 void Verifier::visitResumeInst(ResumeInst &RI) {
4314 Check(RI.getFunction()->hasPersonalityFn(),
4315 "ResumeInst needs to be in a function with a personality.", &RI);
4317 if (!LandingPadResultTy)
4318 LandingPadResultTy = RI.getValue()->getType();
4319 else
4320 Check(LandingPadResultTy == RI.getValue()->getType(),
4321 "The resume instruction should have a consistent result type "
4322 "inside a function.",
4323 &RI);
4325 visitTerminator(RI);
4328 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4329 BasicBlock *BB = CPI.getParent();
4331 Function *F = BB->getParent();
4332 Check(F->hasPersonalityFn(),
4333 "CatchPadInst needs to be in a function with a personality.", &CPI);
4335 Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4336 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4337 CPI.getParentPad());
4339 // The catchpad instruction must be the first non-PHI instruction in the
4340 // block.
4341 Check(BB->getFirstNonPHI() == &CPI,
4342 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4344 visitEHPadPredecessors(CPI);
4345 visitFuncletPadInst(CPI);
4348 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4349 Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4350 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4351 CatchReturn.getOperand(0));
4353 visitTerminator(CatchReturn);
4356 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4357 BasicBlock *BB = CPI.getParent();
4359 Function *F = BB->getParent();
4360 Check(F->hasPersonalityFn(),
4361 "CleanupPadInst needs to be in a function with a personality.", &CPI);
4363 // The cleanuppad instruction must be the first non-PHI instruction in the
4364 // block.
4365 Check(BB->getFirstNonPHI() == &CPI,
4366 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4368 auto *ParentPad = CPI.getParentPad();
4369 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4370 "CleanupPadInst has an invalid parent.", &CPI);
4372 visitEHPadPredecessors(CPI);
4373 visitFuncletPadInst(CPI);
4376 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4377 User *FirstUser = nullptr;
4378 Value *FirstUnwindPad = nullptr;
4379 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4380 SmallSet<FuncletPadInst *, 8> Seen;
4382 while (!Worklist.empty()) {
4383 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4384 Check(Seen.insert(CurrentPad).second,
4385 "FuncletPadInst must not be nested within itself", CurrentPad);
4386 Value *UnresolvedAncestorPad = nullptr;
4387 for (User *U : CurrentPad->users()) {
4388 BasicBlock *UnwindDest;
4389 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4390 UnwindDest = CRI->getUnwindDest();
4391 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4392 // We allow catchswitch unwind to caller to nest
4393 // within an outer pad that unwinds somewhere else,
4394 // because catchswitch doesn't have a nounwind variant.
4395 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4396 if (CSI->unwindsToCaller())
4397 continue;
4398 UnwindDest = CSI->getUnwindDest();
4399 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4400 UnwindDest = II->getUnwindDest();
4401 } else if (isa<CallInst>(U)) {
4402 // Calls which don't unwind may be found inside funclet
4403 // pads that unwind somewhere else. We don't *require*
4404 // such calls to be annotated nounwind.
4405 continue;
4406 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4407 // The unwind dest for a cleanup can only be found by
4408 // recursive search. Add it to the worklist, and we'll
4409 // search for its first use that determines where it unwinds.
4410 Worklist.push_back(CPI);
4411 continue;
4412 } else {
4413 Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4414 continue;
4417 Value *UnwindPad;
4418 bool ExitsFPI;
4419 if (UnwindDest) {
4420 UnwindPad = UnwindDest->getFirstNonPHI();
4421 if (!cast<Instruction>(UnwindPad)->isEHPad())
4422 continue;
4423 Value *UnwindParent = getParentPad(UnwindPad);
4424 // Ignore unwind edges that don't exit CurrentPad.
4425 if (UnwindParent == CurrentPad)
4426 continue;
4427 // Determine whether the original funclet pad is exited,
4428 // and if we are scanning nested pads determine how many
4429 // of them are exited so we can stop searching their
4430 // children.
4431 Value *ExitedPad = CurrentPad;
4432 ExitsFPI = false;
4433 do {
4434 if (ExitedPad == &FPI) {
4435 ExitsFPI = true;
4436 // Now we can resolve any ancestors of CurrentPad up to
4437 // FPI, but not including FPI since we need to make sure
4438 // to check all direct users of FPI for consistency.
4439 UnresolvedAncestorPad = &FPI;
4440 break;
4442 Value *ExitedParent = getParentPad(ExitedPad);
4443 if (ExitedParent == UnwindParent) {
4444 // ExitedPad is the ancestor-most pad which this unwind
4445 // edge exits, so we can resolve up to it, meaning that
4446 // ExitedParent is the first ancestor still unresolved.
4447 UnresolvedAncestorPad = ExitedParent;
4448 break;
4450 ExitedPad = ExitedParent;
4451 } while (!isa<ConstantTokenNone>(ExitedPad));
4452 } else {
4453 // Unwinding to caller exits all pads.
4454 UnwindPad = ConstantTokenNone::get(FPI.getContext());
4455 ExitsFPI = true;
4456 UnresolvedAncestorPad = &FPI;
4459 if (ExitsFPI) {
4460 // This unwind edge exits FPI. Make sure it agrees with other
4461 // such edges.
4462 if (FirstUser) {
4463 Check(UnwindPad == FirstUnwindPad,
4464 "Unwind edges out of a funclet "
4465 "pad must have the same unwind "
4466 "dest",
4467 &FPI, U, FirstUser);
4468 } else {
4469 FirstUser = U;
4470 FirstUnwindPad = UnwindPad;
4471 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4472 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4473 getParentPad(UnwindPad) == getParentPad(&FPI))
4474 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4477 // Make sure we visit all uses of FPI, but for nested pads stop as
4478 // soon as we know where they unwind to.
4479 if (CurrentPad != &FPI)
4480 break;
4482 if (UnresolvedAncestorPad) {
4483 if (CurrentPad == UnresolvedAncestorPad) {
4484 // When CurrentPad is FPI itself, we don't mark it as resolved even if
4485 // we've found an unwind edge that exits it, because we need to verify
4486 // all direct uses of FPI.
4487 assert(CurrentPad == &FPI);
4488 continue;
4490 // Pop off the worklist any nested pads that we've found an unwind
4491 // destination for. The pads on the worklist are the uncles,
4492 // great-uncles, etc. of CurrentPad. We've found an unwind destination
4493 // for all ancestors of CurrentPad up to but not including
4494 // UnresolvedAncestorPad.
4495 Value *ResolvedPad = CurrentPad;
4496 while (!Worklist.empty()) {
4497 Value *UnclePad = Worklist.back();
4498 Value *AncestorPad = getParentPad(UnclePad);
4499 // Walk ResolvedPad up the ancestor list until we either find the
4500 // uncle's parent or the last resolved ancestor.
4501 while (ResolvedPad != AncestorPad) {
4502 Value *ResolvedParent = getParentPad(ResolvedPad);
4503 if (ResolvedParent == UnresolvedAncestorPad) {
4504 break;
4506 ResolvedPad = ResolvedParent;
4508 // If the resolved ancestor search didn't find the uncle's parent,
4509 // then the uncle is not yet resolved.
4510 if (ResolvedPad != AncestorPad)
4511 break;
4512 // This uncle is resolved, so pop it from the worklist.
4513 Worklist.pop_back();
4518 if (FirstUnwindPad) {
4519 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4520 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4521 Value *SwitchUnwindPad;
4522 if (SwitchUnwindDest)
4523 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4524 else
4525 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4526 Check(SwitchUnwindPad == FirstUnwindPad,
4527 "Unwind edges out of a catch must have the same unwind dest as "
4528 "the parent catchswitch",
4529 &FPI, FirstUser, CatchSwitch);
4533 visitInstruction(FPI);
4536 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4537 BasicBlock *BB = CatchSwitch.getParent();
4539 Function *F = BB->getParent();
4540 Check(F->hasPersonalityFn(),
4541 "CatchSwitchInst needs to be in a function with a personality.",
4542 &CatchSwitch);
4544 // The catchswitch instruction must be the first non-PHI instruction in the
4545 // block.
4546 Check(BB->getFirstNonPHI() == &CatchSwitch,
4547 "CatchSwitchInst not the first non-PHI instruction in the block.",
4548 &CatchSwitch);
4550 auto *ParentPad = CatchSwitch.getParentPad();
4551 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4552 "CatchSwitchInst has an invalid parent.", ParentPad);
4554 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4555 Instruction *I = UnwindDest->getFirstNonPHI();
4556 Check(I->isEHPad() && !isa<LandingPadInst>(I),
4557 "CatchSwitchInst must unwind to an EH block which is not a "
4558 "landingpad.",
4559 &CatchSwitch);
4561 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4562 if (getParentPad(I) == ParentPad)
4563 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4566 Check(CatchSwitch.getNumHandlers() != 0,
4567 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4569 for (BasicBlock *Handler : CatchSwitch.handlers()) {
4570 Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4571 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4574 visitEHPadPredecessors(CatchSwitch);
4575 visitTerminator(CatchSwitch);
4578 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4579 Check(isa<CleanupPadInst>(CRI.getOperand(0)),
4580 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4581 CRI.getOperand(0));
4583 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4584 Instruction *I = UnwindDest->getFirstNonPHI();
4585 Check(I->isEHPad() && !isa<LandingPadInst>(I),
4586 "CleanupReturnInst must unwind to an EH block which is not a "
4587 "landingpad.",
4588 &CRI);
4591 visitTerminator(CRI);
4594 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4595 Instruction *Op = cast<Instruction>(I.getOperand(i));
4596 // If the we have an invalid invoke, don't try to compute the dominance.
4597 // We already reject it in the invoke specific checks and the dominance
4598 // computation doesn't handle multiple edges.
4599 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4600 if (II->getNormalDest() == II->getUnwindDest())
4601 return;
4604 // Quick check whether the def has already been encountered in the same block.
4605 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4606 // uses are defined to happen on the incoming edge, not at the instruction.
4608 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4609 // wrapping an SSA value, assert that we've already encountered it. See
4610 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4611 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4612 return;
4614 const Use &U = I.getOperandUse(i);
4615 Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
4618 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4619 Check(I.getType()->isPointerTy(),
4620 "dereferenceable, dereferenceable_or_null "
4621 "apply only to pointer types",
4622 &I);
4623 Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4624 "dereferenceable, dereferenceable_or_null apply only to load"
4625 " and inttoptr instructions, use attributes for calls or invokes",
4626 &I);
4627 Check(MD->getNumOperands() == 1,
4628 "dereferenceable, dereferenceable_or_null "
4629 "take one operand!",
4630 &I);
4631 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4632 Check(CI && CI->getType()->isIntegerTy(64),
4633 "dereferenceable, "
4634 "dereferenceable_or_null metadata value must be an i64!",
4635 &I);
4638 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4639 Check(MD->getNumOperands() >= 2,
4640 "!prof annotations should have no less than 2 operands", MD);
4642 // Check first operand.
4643 Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4644 Check(isa<MDString>(MD->getOperand(0)),
4645 "expected string with name of the !prof annotation", MD);
4646 MDString *MDS = cast<MDString>(MD->getOperand(0));
4647 StringRef ProfName = MDS->getString();
4649 // Check consistency of !prof branch_weights metadata.
4650 if (ProfName.equals("branch_weights")) {
4651 if (isa<InvokeInst>(&I)) {
4652 Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4653 "Wrong number of InvokeInst branch_weights operands", MD);
4654 } else {
4655 unsigned ExpectedNumOperands = 0;
4656 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4657 ExpectedNumOperands = BI->getNumSuccessors();
4658 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4659 ExpectedNumOperands = SI->getNumSuccessors();
4660 else if (isa<CallInst>(&I))
4661 ExpectedNumOperands = 1;
4662 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4663 ExpectedNumOperands = IBI->getNumDestinations();
4664 else if (isa<SelectInst>(&I))
4665 ExpectedNumOperands = 2;
4666 else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I))
4667 ExpectedNumOperands = CI->getNumSuccessors();
4668 else
4669 CheckFailed("!prof branch_weights are not allowed for this instruction",
4670 MD);
4672 Check(MD->getNumOperands() == 1 + ExpectedNumOperands,
4673 "Wrong number of operands", MD);
4675 for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4676 auto &MDO = MD->getOperand(i);
4677 Check(MDO, "second operand should not be null", MD);
4678 Check(mdconst::dyn_extract<ConstantInt>(MDO),
4679 "!prof brunch_weights operand is not a const int");
4684 void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) {
4685 assert(I.hasMetadata(LLVMContext::MD_DIAssignID));
4686 bool ExpectedInstTy =
4687 isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I);
4688 CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind",
4689 I, MD);
4690 // Iterate over the MetadataAsValue uses of the DIAssignID - these should
4691 // only be found as DbgAssignIntrinsic operands.
4692 if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) {
4693 for (auto *User : AsValue->users()) {
4694 CheckDI(isa<DbgAssignIntrinsic>(User),
4695 "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
4696 MD, User);
4697 // All of the dbg.assign intrinsics should be in the same function as I.
4698 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User))
4699 CheckDI(DAI->getFunction() == I.getFunction(),
4700 "dbg.assign not in same function as inst", DAI, &I);
4705 void Verifier::visitCallStackMetadata(MDNode *MD) {
4706 // Call stack metadata should consist of a list of at least 1 constant int
4707 // (representing a hash of the location).
4708 Check(MD->getNumOperands() >= 1,
4709 "call stack metadata should have at least 1 operand", MD);
4711 for (const auto &Op : MD->operands())
4712 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op),
4713 "call stack metadata operand should be constant integer", Op);
4716 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) {
4717 Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I);
4718 Check(MD->getNumOperands() >= 1,
4719 "!memprof annotations should have at least 1 metadata operand "
4720 "(MemInfoBlock)",
4721 MD);
4723 // Check each MIB
4724 for (auto &MIBOp : MD->operands()) {
4725 MDNode *MIB = dyn_cast<MDNode>(MIBOp);
4726 // The first operand of an MIB should be the call stack metadata.
4727 // There rest of the operands should be MDString tags, and there should be
4728 // at least one.
4729 Check(MIB->getNumOperands() >= 2,
4730 "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
4732 // Check call stack metadata (first operand).
4733 Check(MIB->getOperand(0) != nullptr,
4734 "!memprof MemInfoBlock first operand should not be null", MIB);
4735 Check(isa<MDNode>(MIB->getOperand(0)),
4736 "!memprof MemInfoBlock first operand should be an MDNode", MIB);
4737 MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0));
4738 visitCallStackMetadata(StackMD);
4740 // Check that remaining operands are MDString.
4741 Check(llvm::all_of(llvm::drop_begin(MIB->operands()),
4742 [](const MDOperand &Op) { return isa<MDString>(Op); }),
4743 "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB);
4747 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) {
4748 Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I);
4749 // Verify the partial callstack annotated from memprof profiles. This callsite
4750 // is a part of a profiled allocation callstack.
4751 visitCallStackMetadata(MD);
4754 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4755 Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
4756 Check(Annotation->getNumOperands() >= 1,
4757 "annotation must have at least one operand");
4758 for (const MDOperand &Op : Annotation->operands()) {
4759 bool TupleOfStrings =
4760 isa<MDTuple>(Op.get()) &&
4761 all_of(cast<MDTuple>(Op)->operands(), [](auto &Annotation) {
4762 return isa<MDString>(Annotation.get());
4764 Check(isa<MDString>(Op.get()) || TupleOfStrings,
4765 "operands must be a string or a tuple of strings");
4769 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4770 unsigned NumOps = MD->getNumOperands();
4771 Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4772 MD);
4773 Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4774 "first scope operand must be self-referential or string", MD);
4775 if (NumOps == 3)
4776 Check(isa<MDString>(MD->getOperand(2)),
4777 "third scope operand must be string (if used)", MD);
4779 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4780 Check(Domain != nullptr, "second scope operand must be MDNode", MD);
4782 unsigned NumDomainOps = Domain->getNumOperands();
4783 Check(NumDomainOps >= 1 && NumDomainOps <= 2,
4784 "domain must have one or two operands", Domain);
4785 Check(Domain->getOperand(0).get() == Domain ||
4786 isa<MDString>(Domain->getOperand(0)),
4787 "first domain operand must be self-referential or string", Domain);
4788 if (NumDomainOps == 2)
4789 Check(isa<MDString>(Domain->getOperand(1)),
4790 "second domain operand must be string (if used)", Domain);
4793 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4794 for (const MDOperand &Op : MD->operands()) {
4795 const MDNode *OpMD = dyn_cast<MDNode>(Op);
4796 Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4797 visitAliasScopeMetadata(OpMD);
4801 void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
4802 auto IsValidAccessScope = [](const MDNode *MD) {
4803 return MD->getNumOperands() == 0 && MD->isDistinct();
4806 // It must be either an access scope itself...
4807 if (IsValidAccessScope(MD))
4808 return;
4810 // ...or a list of access scopes.
4811 for (const MDOperand &Op : MD->operands()) {
4812 const MDNode *OpMD = dyn_cast<MDNode>(Op);
4813 Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
4814 Check(IsValidAccessScope(OpMD),
4815 "Access scope list contains invalid access scope", MD);
4819 /// verifyInstruction - Verify that an instruction is well formed.
4821 void Verifier::visitInstruction(Instruction &I) {
4822 BasicBlock *BB = I.getParent();
4823 Check(BB, "Instruction not embedded in basic block!", &I);
4825 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
4826 for (User *U : I.users()) {
4827 Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
4828 "Only PHI nodes may reference their own value!", &I);
4832 // Check that void typed values don't have names
4833 Check(!I.getType()->isVoidTy() || !I.hasName(),
4834 "Instruction has a name, but provides a void value!", &I);
4836 // Check that the return value of the instruction is either void or a legal
4837 // value type.
4838 Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4839 "Instruction returns a non-scalar type!", &I);
4841 // Check that the instruction doesn't produce metadata. Calls are already
4842 // checked against the callee type.
4843 Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4844 "Invalid use of metadata!", &I);
4846 // Check that all uses of the instruction, if they are instructions
4847 // themselves, actually have parent basic blocks. If the use is not an
4848 // instruction, it is an error!
4849 for (Use &U : I.uses()) {
4850 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4851 Check(Used->getParent() != nullptr,
4852 "Instruction referencing"
4853 " instruction not embedded in a basic block!",
4854 &I, Used);
4855 else {
4856 CheckFailed("Use of instruction is not an instruction!", U);
4857 return;
4861 // Get a pointer to the call base of the instruction if it is some form of
4862 // call.
4863 const CallBase *CBI = dyn_cast<CallBase>(&I);
4865 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4866 Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4868 // Check to make sure that only first-class-values are operands to
4869 // instructions.
4870 if (!I.getOperand(i)->getType()->isFirstClassType()) {
4871 Check(false, "Instruction operands must be first-class values!", &I);
4874 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4875 // This code checks whether the function is used as the operand of a
4876 // clang_arc_attachedcall operand bundle.
4877 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4878 int Idx) {
4879 return CBI && CBI->isOperandBundleOfType(
4880 LLVMContext::OB_clang_arc_attachedcall, Idx);
4883 // Check to make sure that the "address of" an intrinsic function is never
4884 // taken. Ignore cases where the address of the intrinsic function is used
4885 // as the argument of operand bundle "clang.arc.attachedcall" as those
4886 // cases are handled in verifyAttachedCallBundle.
4887 Check((!F->isIntrinsic() ||
4888 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4889 IsAttachedCallOperand(F, CBI, i)),
4890 "Cannot take the address of an intrinsic!", &I);
4891 Check(!F->isIntrinsic() || isa<CallInst>(I) ||
4892 F->getIntrinsicID() == Intrinsic::donothing ||
4893 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4894 F->getIntrinsicID() == Intrinsic::seh_try_end ||
4895 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4896 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4897 F->getIntrinsicID() == Intrinsic::coro_resume ||
4898 F->getIntrinsicID() == Intrinsic::coro_destroy ||
4899 F->getIntrinsicID() ==
4900 Intrinsic::experimental_patchpoint_void ||
4901 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4902 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4903 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4904 IsAttachedCallOperand(F, CBI, i),
4905 "Cannot invoke an intrinsic other than donothing, patchpoint, "
4906 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
4907 &I);
4908 Check(F->getParent() == &M, "Referencing function in another module!", &I,
4909 &M, F, F->getParent());
4910 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4911 Check(OpBB->getParent() == BB->getParent(),
4912 "Referring to a basic block in another function!", &I);
4913 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4914 Check(OpArg->getParent() == BB->getParent(),
4915 "Referring to an argument in another function!", &I);
4916 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4917 Check(GV->getParent() == &M, "Referencing global in another module!", &I,
4918 &M, GV, GV->getParent());
4919 } else if (isa<Instruction>(I.getOperand(i))) {
4920 verifyDominatesUse(I, i);
4921 } else if (isa<InlineAsm>(I.getOperand(i))) {
4922 Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4923 "Cannot take the address of an inline asm!", &I);
4924 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4925 if (CE->getType()->isPtrOrPtrVectorTy()) {
4926 // If we have a ConstantExpr pointer, we need to see if it came from an
4927 // illegal bitcast.
4928 visitConstantExprsRecursively(CE);
4933 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4934 Check(I.getType()->isFPOrFPVectorTy(),
4935 "fpmath requires a floating point result!", &I);
4936 Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4937 if (ConstantFP *CFP0 =
4938 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4939 const APFloat &Accuracy = CFP0->getValueAPF();
4940 Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4941 "fpmath accuracy must have float type", &I);
4942 Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4943 "fpmath accuracy not a positive number!", &I);
4944 } else {
4945 Check(false, "invalid fpmath accuracy!", &I);
4949 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4950 Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4951 "Ranges are only for loads, calls and invokes!", &I);
4952 visitRangeMetadata(I, Range, I.getType());
4955 if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
4956 Check(isa<LoadInst>(I) || isa<StoreInst>(I),
4957 "invariant.group metadata is only for loads and stores", &I);
4960 if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) {
4961 Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4962 &I);
4963 Check(isa<LoadInst>(I),
4964 "nonnull applies only to load instructions, use attributes"
4965 " for calls or invokes",
4966 &I);
4967 Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I);
4970 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4971 visitDereferenceableMetadata(I, MD);
4973 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4974 visitDereferenceableMetadata(I, MD);
4976 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4977 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4979 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
4980 visitAliasScopeListMetadata(MD);
4981 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
4982 visitAliasScopeListMetadata(MD);
4984 if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
4985 visitAccessGroupMetadata(MD);
4987 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4988 Check(I.getType()->isPointerTy(), "align applies only to pointer types",
4989 &I);
4990 Check(isa<LoadInst>(I),
4991 "align applies only to load instructions, "
4992 "use attributes for calls or invokes",
4993 &I);
4994 Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4995 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4996 Check(CI && CI->getType()->isIntegerTy(64),
4997 "align metadata value must be an i64!", &I);
4998 uint64_t Align = CI->getZExtValue();
4999 Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
5000 &I);
5001 Check(Align <= Value::MaximumAlignment,
5002 "alignment is larger that implementation defined limit", &I);
5005 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
5006 visitProfMetadata(I, MD);
5008 if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof))
5009 visitMemProfMetadata(I, MD);
5011 if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite))
5012 visitCallsiteMetadata(I, MD);
5014 if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID))
5015 visitDIAssignIDMetadata(I, MD);
5017 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
5018 visitAnnotationMetadata(Annotation);
5020 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
5021 CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
5022 visitMDNode(*N, AreDebugLocsAllowed::Yes);
5025 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
5026 verifyFragmentExpression(*DII);
5027 verifyNotEntryValue(*DII);
5030 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
5031 I.getAllMetadata(MDs);
5032 for (auto Attachment : MDs) {
5033 unsigned Kind = Attachment.first;
5034 auto AllowLocs =
5035 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
5036 ? AreDebugLocsAllowed::Yes
5037 : AreDebugLocsAllowed::No;
5038 visitMDNode(*Attachment.second, AllowLocs);
5041 InstsInThisBlock.insert(&I);
5044 /// Allow intrinsics to be verified in different ways.
5045 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
5046 Function *IF = Call.getCalledFunction();
5047 Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
5048 IF);
5050 // Verify that the intrinsic prototype lines up with what the .td files
5051 // describe.
5052 FunctionType *IFTy = IF->getFunctionType();
5053 bool IsVarArg = IFTy->isVarArg();
5055 SmallVector<Intrinsic::IITDescriptor, 8> Table;
5056 getIntrinsicInfoTableEntries(ID, Table);
5057 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
5059 // Walk the descriptors to extract overloaded types.
5060 SmallVector<Type *, 4> ArgTys;
5061 Intrinsic::MatchIntrinsicTypesResult Res =
5062 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
5063 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
5064 "Intrinsic has incorrect return type!", IF);
5065 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
5066 "Intrinsic has incorrect argument type!", IF);
5068 // Verify if the intrinsic call matches the vararg property.
5069 if (IsVarArg)
5070 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5071 "Intrinsic was not defined with variable arguments!", IF);
5072 else
5073 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5074 "Callsite was not defined with variable arguments!", IF);
5076 // All descriptors should be absorbed by now.
5077 Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);
5079 // Now that we have the intrinsic ID and the actual argument types (and we
5080 // know they are legal for the intrinsic!) get the intrinsic name through the
5081 // usual means. This allows us to verify the mangling of argument types into
5082 // the name.
5083 const std::string ExpectedName =
5084 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
5085 Check(ExpectedName == IF->getName(),
5086 "Intrinsic name not mangled correctly for type arguments! "
5087 "Should be: " +
5088 ExpectedName,
5089 IF);
5091 // If the intrinsic takes MDNode arguments, verify that they are either global
5092 // or are local to *this* function.
5093 for (Value *V : Call.args()) {
5094 if (auto *MD = dyn_cast<MetadataAsValue>(V))
5095 visitMetadataAsValue(*MD, Call.getCaller());
5096 if (auto *Const = dyn_cast<Constant>(V))
5097 Check(!Const->getType()->isX86_AMXTy(),
5098 "const x86_amx is not allowed in argument!");
5101 switch (ID) {
5102 default:
5103 break;
5104 case Intrinsic::assume: {
5105 for (auto &Elem : Call.bundle_op_infos()) {
5106 unsigned ArgCount = Elem.End - Elem.Begin;
5107 // Separate storage assumptions are special insofar as they're the only
5108 // operand bundles allowed on assumes that aren't parameter attributes.
5109 if (Elem.Tag->getKey() == "separate_storage") {
5110 Check(ArgCount == 2,
5111 "separate_storage assumptions should have 2 arguments", Call);
5112 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() &&
5113 Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(),
5114 "arguments to separate_storage assumptions should be pointers",
5115 Call);
5116 return;
5118 Check(Elem.Tag->getKey() == "ignore" ||
5119 Attribute::isExistingAttribute(Elem.Tag->getKey()),
5120 "tags must be valid attribute names", Call);
5121 Attribute::AttrKind Kind =
5122 Attribute::getAttrKindFromName(Elem.Tag->getKey());
5123 if (Kind == Attribute::Alignment) {
5124 Check(ArgCount <= 3 && ArgCount >= 2,
5125 "alignment assumptions should have 2 or 3 arguments", Call);
5126 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
5127 "first argument should be a pointer", Call);
5128 Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
5129 "second argument should be an integer", Call);
5130 if (ArgCount == 3)
5131 Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
5132 "third argument should be an integer if present", Call);
5133 return;
5135 Check(ArgCount <= 2, "too many arguments", Call);
5136 if (Kind == Attribute::None)
5137 break;
5138 if (Attribute::isIntAttrKind(Kind)) {
5139 Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
5140 Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
5141 "the second argument should be a constant integral value", Call);
5142 } else if (Attribute::canUseAsParamAttr(Kind)) {
5143 Check((ArgCount) == 1, "this attribute should have one argument", Call);
5144 } else if (Attribute::canUseAsFnAttr(Kind)) {
5145 Check((ArgCount) == 0, "this attribute has no argument", Call);
5148 break;
5150 case Intrinsic::coro_id: {
5151 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
5152 if (isa<ConstantPointerNull>(InfoArg))
5153 break;
5154 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
5155 Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
5156 "info argument of llvm.coro.id must refer to an initialized "
5157 "constant");
5158 Constant *Init = GV->getInitializer();
5159 Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
5160 "info argument of llvm.coro.id must refer to either a struct or "
5161 "an array");
5162 break;
5164 case Intrinsic::is_fpclass: {
5165 const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1));
5166 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
5167 "unsupported bits for llvm.is.fpclass test mask");
5168 break;
5170 case Intrinsic::fptrunc_round: {
5171 // Check the rounding mode
5172 Metadata *MD = nullptr;
5173 auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
5174 if (MAV)
5175 MD = MAV->getMetadata();
5177 Check(MD != nullptr, "missing rounding mode argument", Call);
5179 Check(isa<MDString>(MD),
5180 ("invalid value for llvm.fptrunc.round metadata operand"
5181 " (the operand should be a string)"),
5182 MD);
5184 std::optional<RoundingMode> RoundMode =
5185 convertStrToRoundingMode(cast<MDString>(MD)->getString());
5186 Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5187 "unsupported rounding mode argument", Call);
5188 break;
5190 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5191 #include "llvm/IR/VPIntrinsics.def"
5192 visitVPIntrinsic(cast<VPIntrinsic>(Call));
5193 break;
5194 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
5195 case Intrinsic::INTRINSIC:
5196 #include "llvm/IR/ConstrainedOps.def"
5197 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
5198 break;
5199 case Intrinsic::dbg_declare: // llvm.dbg.declare
5200 Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
5201 "invalid llvm.dbg.declare intrinsic call 1", Call);
5202 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
5203 break;
5204 case Intrinsic::dbg_value: // llvm.dbg.value
5205 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
5206 break;
5207 case Intrinsic::dbg_assign: // llvm.dbg.assign
5208 visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call));
5209 break;
5210 case Intrinsic::dbg_label: // llvm.dbg.label
5211 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
5212 break;
5213 case Intrinsic::memcpy:
5214 case Intrinsic::memcpy_inline:
5215 case Intrinsic::memmove:
5216 case Intrinsic::memset:
5217 case Intrinsic::memset_inline: {
5218 break;
5220 case Intrinsic::memcpy_element_unordered_atomic:
5221 case Intrinsic::memmove_element_unordered_atomic:
5222 case Intrinsic::memset_element_unordered_atomic: {
5223 const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
5225 ConstantInt *ElementSizeCI =
5226 cast<ConstantInt>(AMI->getRawElementSizeInBytes());
5227 const APInt &ElementSizeVal = ElementSizeCI->getValue();
5228 Check(ElementSizeVal.isPowerOf2(),
5229 "element size of the element-wise atomic memory intrinsic "
5230 "must be a power of 2",
5231 Call);
5233 auto IsValidAlignment = [&](MaybeAlign Alignment) {
5234 return Alignment && ElementSizeVal.ule(Alignment->value());
5236 Check(IsValidAlignment(AMI->getDestAlign()),
5237 "incorrect alignment of the destination argument", Call);
5238 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
5239 Check(IsValidAlignment(AMT->getSourceAlign()),
5240 "incorrect alignment of the source argument", Call);
5242 break;
5244 case Intrinsic::call_preallocated_setup: {
5245 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5246 Check(NumArgs != nullptr,
5247 "llvm.call.preallocated.setup argument must be a constant");
5248 bool FoundCall = false;
5249 for (User *U : Call.users()) {
5250 auto *UseCall = dyn_cast<CallBase>(U);
5251 Check(UseCall != nullptr,
5252 "Uses of llvm.call.preallocated.setup must be calls");
5253 const Function *Fn = UseCall->getCalledFunction();
5254 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
5255 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
5256 Check(AllocArgIndex != nullptr,
5257 "llvm.call.preallocated.alloc arg index must be a constant");
5258 auto AllocArgIndexInt = AllocArgIndex->getValue();
5259 Check(AllocArgIndexInt.sge(0) &&
5260 AllocArgIndexInt.slt(NumArgs->getValue()),
5261 "llvm.call.preallocated.alloc arg index must be between 0 and "
5262 "corresponding "
5263 "llvm.call.preallocated.setup's argument count");
5264 } else if (Fn && Fn->getIntrinsicID() ==
5265 Intrinsic::call_preallocated_teardown) {
5266 // nothing to do
5267 } else {
5268 Check(!FoundCall, "Can have at most one call corresponding to a "
5269 "llvm.call.preallocated.setup");
5270 FoundCall = true;
5271 size_t NumPreallocatedArgs = 0;
5272 for (unsigned i = 0; i < UseCall->arg_size(); i++) {
5273 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5274 ++NumPreallocatedArgs;
5277 Check(NumPreallocatedArgs != 0,
5278 "cannot use preallocated intrinsics on a call without "
5279 "preallocated arguments");
5280 Check(NumArgs->equalsInt(NumPreallocatedArgs),
5281 "llvm.call.preallocated.setup arg size must be equal to number "
5282 "of preallocated arguments "
5283 "at call site",
5284 Call, *UseCall);
5285 // getOperandBundle() cannot be called if more than one of the operand
5286 // bundle exists. There is already a check elsewhere for this, so skip
5287 // here if we see more than one.
5288 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
5289 1) {
5290 return;
5292 auto PreallocatedBundle =
5293 UseCall->getOperandBundle(LLVMContext::OB_preallocated);
5294 Check(PreallocatedBundle,
5295 "Use of llvm.call.preallocated.setup outside intrinsics "
5296 "must be in \"preallocated\" operand bundle");
5297 Check(PreallocatedBundle->Inputs.front().get() == &Call,
5298 "preallocated bundle must have token from corresponding "
5299 "llvm.call.preallocated.setup");
5302 break;
5304 case Intrinsic::call_preallocated_arg: {
5305 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5306 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5307 Intrinsic::call_preallocated_setup,
5308 "llvm.call.preallocated.arg token argument must be a "
5309 "llvm.call.preallocated.setup");
5310 Check(Call.hasFnAttr(Attribute::Preallocated),
5311 "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5312 "call site attribute");
5313 break;
5315 case Intrinsic::call_preallocated_teardown: {
5316 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5317 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5318 Intrinsic::call_preallocated_setup,
5319 "llvm.call.preallocated.teardown token argument must be a "
5320 "llvm.call.preallocated.setup");
5321 break;
5323 case Intrinsic::gcroot:
5324 case Intrinsic::gcwrite:
5325 case Intrinsic::gcread:
5326 if (ID == Intrinsic::gcroot) {
5327 AllocaInst *AI =
5328 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
5329 Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
5330 Check(isa<Constant>(Call.getArgOperand(1)),
5331 "llvm.gcroot parameter #2 must be a constant.", Call);
5332 if (!AI->getAllocatedType()->isPointerTy()) {
5333 Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5334 "llvm.gcroot parameter #1 must either be a pointer alloca, "
5335 "or argument #2 must be a non-null constant.",
5336 Call);
5340 Check(Call.getParent()->getParent()->hasGC(),
5341 "Enclosing function does not use GC.", Call);
5342 break;
5343 case Intrinsic::init_trampoline:
5344 Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5345 "llvm.init_trampoline parameter #2 must resolve to a function.",
5346 Call);
5347 break;
5348 case Intrinsic::prefetch:
5349 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5350 "rw argument to llvm.prefetch must be 0-1", Call);
5351 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5352 "locality argument to llvm.prefetch must be 0-4", Call);
5353 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5354 "cache type argument to llvm.prefetch must be 0-1", Call);
5355 break;
5356 case Intrinsic::stackprotector:
5357 Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5358 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5359 break;
5360 case Intrinsic::localescape: {
5361 BasicBlock *BB = Call.getParent();
5362 Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block",
5363 Call);
5364 Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
5365 Call);
5366 for (Value *Arg : Call.args()) {
5367 if (isa<ConstantPointerNull>(Arg))
5368 continue; // Null values are allowed as placeholders.
5369 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5370 Check(AI && AI->isStaticAlloca(),
5371 "llvm.localescape only accepts static allocas", Call);
5373 FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5374 SawFrameEscape = true;
5375 break;
5377 case Intrinsic::localrecover: {
5378 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
5379 Function *Fn = dyn_cast<Function>(FnArg);
5380 Check(Fn && !Fn->isDeclaration(),
5381 "llvm.localrecover first "
5382 "argument must be function defined in this module",
5383 Call);
5384 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
5385 auto &Entry = FrameEscapeInfo[Fn];
5386 Entry.second = unsigned(
5387 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5388 break;
5391 case Intrinsic::experimental_gc_statepoint:
5392 if (auto *CI = dyn_cast<CallInst>(&Call))
5393 Check(!CI->isInlineAsm(),
5394 "gc.statepoint support for inline assembly unimplemented", CI);
5395 Check(Call.getParent()->getParent()->hasGC(),
5396 "Enclosing function does not use GC.", Call);
5398 verifyStatepoint(Call);
5399 break;
5400 case Intrinsic::experimental_gc_result: {
5401 Check(Call.getParent()->getParent()->hasGC(),
5402 "Enclosing function does not use GC.", Call);
5404 auto *Statepoint = Call.getArgOperand(0);
5405 if (isa<UndefValue>(Statepoint))
5406 break;
5408 // Are we tied to a statepoint properly?
5409 const auto *StatepointCall = dyn_cast<CallBase>(Statepoint);
5410 const Function *StatepointFn =
5411 StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5412 Check(StatepointFn && StatepointFn->isDeclaration() &&
5413 StatepointFn->getIntrinsicID() ==
5414 Intrinsic::experimental_gc_statepoint,
5415 "gc.result operand #1 must be from a statepoint", Call,
5416 Call.getArgOperand(0));
5418 // Check that result type matches wrapped callee.
5419 auto *TargetFuncType =
5420 cast<FunctionType>(StatepointCall->getParamElementType(2));
5421 Check(Call.getType() == TargetFuncType->getReturnType(),
5422 "gc.result result type does not match wrapped callee", Call);
5423 break;
5425 case Intrinsic::experimental_gc_relocate: {
5426 Check(Call.arg_size() == 3, "wrong number of arguments", Call);
5428 Check(isa<PointerType>(Call.getType()->getScalarType()),
5429 "gc.relocate must return a pointer or a vector of pointers", Call);
5431 // Check that this relocate is correctly tied to the statepoint
5433 // This is case for relocate on the unwinding path of an invoke statepoint
5434 if (LandingPadInst *LandingPad =
5435 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5437 const BasicBlock *InvokeBB =
5438 LandingPad->getParent()->getUniquePredecessor();
5440 // Landingpad relocates should have only one predecessor with invoke
5441 // statepoint terminator
5442 Check(InvokeBB, "safepoints should have unique landingpads",
5443 LandingPad->getParent());
5444 Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
5445 InvokeBB);
5446 Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5447 "gc relocate should be linked to a statepoint", InvokeBB);
5448 } else {
5449 // In all other cases relocate should be tied to the statepoint directly.
5450 // This covers relocates on a normal return path of invoke statepoint and
5451 // relocates of a call statepoint.
5452 auto *Token = Call.getArgOperand(0);
5453 Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
5454 "gc relocate is incorrectly tied to the statepoint", Call, Token);
5457 // Verify rest of the relocate arguments.
5458 const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint();
5460 // Both the base and derived must be piped through the safepoint.
5461 Value *Base = Call.getArgOperand(1);
5462 Check(isa<ConstantInt>(Base),
5463 "gc.relocate operand #2 must be integer offset", Call);
5465 Value *Derived = Call.getArgOperand(2);
5466 Check(isa<ConstantInt>(Derived),
5467 "gc.relocate operand #3 must be integer offset", Call);
5469 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5470 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5472 // Check the bounds
5473 if (isa<UndefValue>(StatepointCall))
5474 break;
5475 if (auto Opt = cast<GCStatepointInst>(StatepointCall)
5476 .getOperandBundle(LLVMContext::OB_gc_live)) {
5477 Check(BaseIndex < Opt->Inputs.size(),
5478 "gc.relocate: statepoint base index out of bounds", Call);
5479 Check(DerivedIndex < Opt->Inputs.size(),
5480 "gc.relocate: statepoint derived index out of bounds", Call);
5483 // Relocated value must be either a pointer type or vector-of-pointer type,
5484 // but gc_relocate does not need to return the same pointer type as the
5485 // relocated pointer. It can be casted to the correct type later if it's
5486 // desired. However, they must have the same address space and 'vectorness'
5487 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5488 auto *ResultType = Call.getType();
5489 auto *DerivedType = Relocate.getDerivedPtr()->getType();
5490 auto *BaseType = Relocate.getBasePtr()->getType();
5492 Check(BaseType->isPtrOrPtrVectorTy(),
5493 "gc.relocate: relocated value must be a pointer", Call);
5494 Check(DerivedType->isPtrOrPtrVectorTy(),
5495 "gc.relocate: relocated value must be a pointer", Call);
5497 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5498 "gc.relocate: vector relocates to vector and pointer to pointer",
5499 Call);
5500 Check(
5501 ResultType->getPointerAddressSpace() ==
5502 DerivedType->getPointerAddressSpace(),
5503 "gc.relocate: relocating a pointer shouldn't change its address space",
5504 Call);
5506 auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC());
5507 Check(GC, "gc.relocate: calling function must have GCStrategy",
5508 Call.getFunction());
5509 if (GC) {
5510 auto isGCPtr = [&GC](Type *PTy) {
5511 return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true);
5513 Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call);
5514 Check(isGCPtr(BaseType),
5515 "gc.relocate: relocated value must be a gc pointer", Call);
5516 Check(isGCPtr(DerivedType),
5517 "gc.relocate: relocated value must be a gc pointer", Call);
5519 break;
5521 case Intrinsic::eh_exceptioncode:
5522 case Intrinsic::eh_exceptionpointer: {
5523 Check(isa<CatchPadInst>(Call.getArgOperand(0)),
5524 "eh.exceptionpointer argument must be a catchpad", Call);
5525 break;
5527 case Intrinsic::get_active_lane_mask: {
5528 Check(Call.getType()->isVectorTy(),
5529 "get_active_lane_mask: must return a "
5530 "vector",
5531 Call);
5532 auto *ElemTy = Call.getType()->getScalarType();
5533 Check(ElemTy->isIntegerTy(1),
5534 "get_active_lane_mask: element type is not "
5535 "i1",
5536 Call);
5537 break;
5539 case Intrinsic::experimental_get_vector_length: {
5540 ConstantInt *VF = cast<ConstantInt>(Call.getArgOperand(1));
5541 Check(!VF->isNegative() && !VF->isZero(),
5542 "get_vector_length: VF must be positive", Call);
5543 break;
5545 case Intrinsic::masked_load: {
5546 Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5547 Call);
5549 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5550 Value *Mask = Call.getArgOperand(2);
5551 Value *PassThru = Call.getArgOperand(3);
5552 Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5553 Call);
5554 Check(Alignment->getValue().isPowerOf2(),
5555 "masked_load: alignment must be a power of 2", Call);
5556 Check(PassThru->getType() == Call.getType(),
5557 "masked_load: pass through and return type must match", Call);
5558 Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5559 cast<VectorType>(Call.getType())->getElementCount(),
5560 "masked_load: vector mask must be same length as return", Call);
5561 break;
5563 case Intrinsic::masked_store: {
5564 Value *Val = Call.getArgOperand(0);
5565 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5566 Value *Mask = Call.getArgOperand(3);
5567 Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5568 Call);
5569 Check(Alignment->getValue().isPowerOf2(),
5570 "masked_store: alignment must be a power of 2", Call);
5571 Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5572 cast<VectorType>(Val->getType())->getElementCount(),
5573 "masked_store: vector mask must be same length as value", Call);
5574 break;
5577 case Intrinsic::masked_gather: {
5578 const APInt &Alignment =
5579 cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5580 Check(Alignment.isZero() || Alignment.isPowerOf2(),
5581 "masked_gather: alignment must be 0 or a power of 2", Call);
5582 break;
5584 case Intrinsic::masked_scatter: {
5585 const APInt &Alignment =
5586 cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5587 Check(Alignment.isZero() || Alignment.isPowerOf2(),
5588 "masked_scatter: alignment must be 0 or a power of 2", Call);
5589 break;
5592 case Intrinsic::experimental_guard: {
5593 Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5594 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5595 "experimental_guard must have exactly one "
5596 "\"deopt\" operand bundle");
5597 break;
5600 case Intrinsic::experimental_deoptimize: {
5601 Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5602 Call);
5603 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5604 "experimental_deoptimize must have exactly one "
5605 "\"deopt\" operand bundle");
5606 Check(Call.getType() == Call.getFunction()->getReturnType(),
5607 "experimental_deoptimize return type must match caller return type");
5609 if (isa<CallInst>(Call)) {
5610 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5611 Check(RI,
5612 "calls to experimental_deoptimize must be followed by a return");
5614 if (!Call.getType()->isVoidTy() && RI)
5615 Check(RI->getReturnValue() == &Call,
5616 "calls to experimental_deoptimize must be followed by a return "
5617 "of the value computed by experimental_deoptimize");
5620 break;
5622 case Intrinsic::vector_reduce_and:
5623 case Intrinsic::vector_reduce_or:
5624 case Intrinsic::vector_reduce_xor:
5625 case Intrinsic::vector_reduce_add:
5626 case Intrinsic::vector_reduce_mul:
5627 case Intrinsic::vector_reduce_smax:
5628 case Intrinsic::vector_reduce_smin:
5629 case Intrinsic::vector_reduce_umax:
5630 case Intrinsic::vector_reduce_umin: {
5631 Type *ArgTy = Call.getArgOperand(0)->getType();
5632 Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5633 "Intrinsic has incorrect argument type!");
5634 break;
5636 case Intrinsic::vector_reduce_fmax:
5637 case Intrinsic::vector_reduce_fmin: {
5638 Type *ArgTy = Call.getArgOperand(0)->getType();
5639 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5640 "Intrinsic has incorrect argument type!");
5641 break;
5643 case Intrinsic::vector_reduce_fadd:
5644 case Intrinsic::vector_reduce_fmul: {
5645 // Unlike the other reductions, the first argument is a start value. The
5646 // second argument is the vector to be reduced.
5647 Type *ArgTy = Call.getArgOperand(1)->getType();
5648 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5649 "Intrinsic has incorrect argument type!");
5650 break;
5652 case Intrinsic::smul_fix:
5653 case Intrinsic::smul_fix_sat:
5654 case Intrinsic::umul_fix:
5655 case Intrinsic::umul_fix_sat:
5656 case Intrinsic::sdiv_fix:
5657 case Intrinsic::sdiv_fix_sat:
5658 case Intrinsic::udiv_fix:
5659 case Intrinsic::udiv_fix_sat: {
5660 Value *Op1 = Call.getArgOperand(0);
5661 Value *Op2 = Call.getArgOperand(1);
5662 Check(Op1->getType()->isIntOrIntVectorTy(),
5663 "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5664 "vector of ints");
5665 Check(Op2->getType()->isIntOrIntVectorTy(),
5666 "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5667 "vector of ints");
5669 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5670 Check(Op3->getType()->getBitWidth() <= 32,
5671 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
5673 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5674 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5675 Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5676 "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5677 "the operands");
5678 } else {
5679 Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5680 "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5681 "to the width of the operands");
5683 break;
5685 case Intrinsic::lrint:
5686 case Intrinsic::llrint: {
5687 Type *ValTy = Call.getArgOperand(0)->getType();
5688 Type *ResultTy = Call.getType();
5689 Check(
5690 ValTy->isFPOrFPVectorTy() && ResultTy->isIntOrIntVectorTy(),
5691 "llvm.lrint, llvm.llrint: argument must be floating-point or vector "
5692 "of floating-points, and result must be integer or vector of integers",
5693 &Call);
5694 Check(ValTy->isVectorTy() == ResultTy->isVectorTy(),
5695 "llvm.lrint, llvm.llrint: argument and result disagree on vector use",
5696 &Call);
5697 if (ValTy->isVectorTy()) {
5698 Check(cast<VectorType>(ValTy)->getElementCount() ==
5699 cast<VectorType>(ResultTy)->getElementCount(),
5700 "llvm.lrint, llvm.llrint: argument must be same length as result",
5701 &Call);
5703 break;
5705 case Intrinsic::lround:
5706 case Intrinsic::llround: {
5707 Type *ValTy = Call.getArgOperand(0)->getType();
5708 Type *ResultTy = Call.getType();
5709 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5710 "Intrinsic does not support vectors", &Call);
5711 break;
5713 case Intrinsic::bswap: {
5714 Type *Ty = Call.getType();
5715 unsigned Size = Ty->getScalarSizeInBits();
5716 Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5717 break;
5719 case Intrinsic::invariant_start: {
5720 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5721 Check(InvariantSize &&
5722 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5723 "invariant_start parameter must be -1, 0 or a positive number",
5724 &Call);
5725 break;
5727 case Intrinsic::matrix_multiply:
5728 case Intrinsic::matrix_transpose:
5729 case Intrinsic::matrix_column_major_load:
5730 case Intrinsic::matrix_column_major_store: {
5731 Function *IF = Call.getCalledFunction();
5732 ConstantInt *Stride = nullptr;
5733 ConstantInt *NumRows;
5734 ConstantInt *NumColumns;
5735 VectorType *ResultTy;
5736 Type *Op0ElemTy = nullptr;
5737 Type *Op1ElemTy = nullptr;
5738 switch (ID) {
5739 case Intrinsic::matrix_multiply: {
5740 NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5741 ConstantInt *N = cast<ConstantInt>(Call.getArgOperand(3));
5742 NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5743 Check(cast<FixedVectorType>(Call.getArgOperand(0)->getType())
5744 ->getNumElements() ==
5745 NumRows->getZExtValue() * N->getZExtValue(),
5746 "First argument of a matrix operation does not match specified "
5747 "shape!");
5748 Check(cast<FixedVectorType>(Call.getArgOperand(1)->getType())
5749 ->getNumElements() ==
5750 N->getZExtValue() * NumColumns->getZExtValue(),
5751 "Second argument of a matrix operation does not match specified "
5752 "shape!");
5754 ResultTy = cast<VectorType>(Call.getType());
5755 Op0ElemTy =
5756 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5757 Op1ElemTy =
5758 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5759 break;
5761 case Intrinsic::matrix_transpose:
5762 NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5763 NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5764 ResultTy = cast<VectorType>(Call.getType());
5765 Op0ElemTy =
5766 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5767 break;
5768 case Intrinsic::matrix_column_major_load: {
5769 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5770 NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5771 NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5772 ResultTy = cast<VectorType>(Call.getType());
5773 break;
5775 case Intrinsic::matrix_column_major_store: {
5776 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5777 NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5778 NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5779 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5780 Op0ElemTy =
5781 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5782 break;
5784 default:
5785 llvm_unreachable("unexpected intrinsic");
5788 Check(ResultTy->getElementType()->isIntegerTy() ||
5789 ResultTy->getElementType()->isFloatingPointTy(),
5790 "Result type must be an integer or floating-point type!", IF);
5792 if (Op0ElemTy)
5793 Check(ResultTy->getElementType() == Op0ElemTy,
5794 "Vector element type mismatch of the result and first operand "
5795 "vector!",
5796 IF);
5798 if (Op1ElemTy)
5799 Check(ResultTy->getElementType() == Op1ElemTy,
5800 "Vector element type mismatch of the result and second operand "
5801 "vector!",
5802 IF);
5804 Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5805 NumRows->getZExtValue() * NumColumns->getZExtValue(),
5806 "Result of a matrix operation does not fit in the returned vector!");
5808 if (Stride)
5809 Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
5810 "Stride must be greater or equal than the number of rows!", IF);
5812 break;
5814 case Intrinsic::experimental_vector_splice: {
5815 VectorType *VecTy = cast<VectorType>(Call.getType());
5816 int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
5817 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
5818 if (Call.getParent() && Call.getParent()->getParent()) {
5819 AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
5820 if (Attrs.hasFnAttr(Attribute::VScaleRange))
5821 KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
5823 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
5824 (Idx >= 0 && Idx < KnownMinNumElements),
5825 "The splice index exceeds the range [-VL, VL-1] where VL is the "
5826 "known minimum number of elements in the vector. For scalable "
5827 "vectors the minimum number of elements is determined from "
5828 "vscale_range.",
5829 &Call);
5830 break;
5832 case Intrinsic::experimental_stepvector: {
5833 VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5834 Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5835 VecTy->getScalarSizeInBits() >= 8,
5836 "experimental_stepvector only supported for vectors of integers "
5837 "with a bitwidth of at least 8.",
5838 &Call);
5839 break;
5841 case Intrinsic::vector_insert: {
5842 Value *Vec = Call.getArgOperand(0);
5843 Value *SubVec = Call.getArgOperand(1);
5844 Value *Idx = Call.getArgOperand(2);
5845 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5847 VectorType *VecTy = cast<VectorType>(Vec->getType());
5848 VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5850 ElementCount VecEC = VecTy->getElementCount();
5851 ElementCount SubVecEC = SubVecTy->getElementCount();
5852 Check(VecTy->getElementType() == SubVecTy->getElementType(),
5853 "vector_insert parameters must have the same element "
5854 "type.",
5855 &Call);
5856 Check(IdxN % SubVecEC.getKnownMinValue() == 0,
5857 "vector_insert index must be a constant multiple of "
5858 "the subvector's known minimum vector length.");
5860 // If this insertion is not the 'mixed' case where a fixed vector is
5861 // inserted into a scalable vector, ensure that the insertion of the
5862 // subvector does not overrun the parent vector.
5863 if (VecEC.isScalable() == SubVecEC.isScalable()) {
5864 Check(IdxN < VecEC.getKnownMinValue() &&
5865 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5866 "subvector operand of vector_insert would overrun the "
5867 "vector being inserted into.");
5869 break;
5871 case Intrinsic::vector_extract: {
5872 Value *Vec = Call.getArgOperand(0);
5873 Value *Idx = Call.getArgOperand(1);
5874 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5876 VectorType *ResultTy = cast<VectorType>(Call.getType());
5877 VectorType *VecTy = cast<VectorType>(Vec->getType());
5879 ElementCount VecEC = VecTy->getElementCount();
5880 ElementCount ResultEC = ResultTy->getElementCount();
5882 Check(ResultTy->getElementType() == VecTy->getElementType(),
5883 "vector_extract result must have the same element "
5884 "type as the input vector.",
5885 &Call);
5886 Check(IdxN % ResultEC.getKnownMinValue() == 0,
5887 "vector_extract index must be a constant multiple of "
5888 "the result type's known minimum vector length.");
5890 // If this extraction is not the 'mixed' case where a fixed vector is
5891 // extracted from a scalable vector, ensure that the extraction does not
5892 // overrun the parent vector.
5893 if (VecEC.isScalable() == ResultEC.isScalable()) {
5894 Check(IdxN < VecEC.getKnownMinValue() &&
5895 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5896 "vector_extract would overrun.");
5898 break;
5900 case Intrinsic::experimental_noalias_scope_decl: {
5901 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5902 break;
5904 case Intrinsic::preserve_array_access_index:
5905 case Intrinsic::preserve_struct_access_index:
5906 case Intrinsic::aarch64_ldaxr:
5907 case Intrinsic::aarch64_ldxr:
5908 case Intrinsic::arm_ldaex:
5909 case Intrinsic::arm_ldrex: {
5910 Type *ElemTy = Call.getParamElementType(0);
5911 Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
5912 &Call);
5913 break;
5915 case Intrinsic::aarch64_stlxr:
5916 case Intrinsic::aarch64_stxr:
5917 case Intrinsic::arm_stlex:
5918 case Intrinsic::arm_strex: {
5919 Type *ElemTy = Call.getAttributes().getParamElementType(1);
5920 Check(ElemTy,
5921 "Intrinsic requires elementtype attribute on second argument.",
5922 &Call);
5923 break;
5925 case Intrinsic::aarch64_prefetch: {
5926 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5927 "write argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5928 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5929 "target argument to llvm.aarch64.prefetch must be 0-3", Call);
5930 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5931 "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5932 Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2,
5933 "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5934 break;
5936 case Intrinsic::callbr_landingpad: {
5937 const auto *CBR = dyn_cast<CallBrInst>(Call.getOperand(0));
5938 Check(CBR, "intrinstic requires callbr operand", &Call);
5939 if (!CBR)
5940 break;
5942 const BasicBlock *LandingPadBB = Call.getParent();
5943 const BasicBlock *PredBB = LandingPadBB->getUniquePredecessor();
5944 if (!PredBB) {
5945 CheckFailed("Intrinsic in block must have 1 unique predecessor", &Call);
5946 break;
5948 if (!isa<CallBrInst>(PredBB->getTerminator())) {
5949 CheckFailed("Intrinsic must have corresponding callbr in predecessor",
5950 &Call);
5951 break;
5953 Check(llvm::any_of(CBR->getIndirectDests(),
5954 [LandingPadBB](const BasicBlock *IndDest) {
5955 return IndDest == LandingPadBB;
5957 "Intrinsic's corresponding callbr must have intrinsic's parent basic "
5958 "block in indirect destination list",
5959 &Call);
5960 const Instruction &First = *LandingPadBB->begin();
5961 Check(&First == &Call, "No other instructions may proceed intrinsic",
5962 &Call);
5963 break;
5965 case Intrinsic::amdgcn_cs_chain: {
5966 auto CallerCC = Call.getCaller()->getCallingConv();
5967 switch (CallerCC) {
5968 case CallingConv::AMDGPU_CS:
5969 case CallingConv::AMDGPU_CS_Chain:
5970 case CallingConv::AMDGPU_CS_ChainPreserve:
5971 break;
5972 default:
5973 CheckFailed("Intrinsic can only be used from functions with the "
5974 "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
5975 "calling conventions",
5976 &Call);
5977 break;
5980 Check(Call.paramHasAttr(2, Attribute::InReg),
5981 "SGPR arguments must have the `inreg` attribute", &Call);
5982 Check(!Call.paramHasAttr(3, Attribute::InReg),
5983 "VGPR arguments must not have the `inreg` attribute", &Call);
5984 break;
5986 case Intrinsic::experimental_convergence_entry:
5987 LLVM_FALLTHROUGH;
5988 case Intrinsic::experimental_convergence_anchor:
5989 break;
5990 case Intrinsic::experimental_convergence_loop:
5991 break;
5992 case Intrinsic::ptrmask: {
5993 Type *Ty0 = Call.getArgOperand(0)->getType();
5994 Type *Ty1 = Call.getArgOperand(1)->getType();
5995 Check(Ty0->isPtrOrPtrVectorTy(),
5996 "llvm.ptrmask intrinsic first argument must be pointer or vector "
5997 "of pointers",
5998 &Call);
5999 Check(
6000 Ty0->isVectorTy() == Ty1->isVectorTy(),
6001 "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
6002 &Call);
6003 if (Ty0->isVectorTy())
6004 Check(cast<VectorType>(Ty0)->getElementCount() ==
6005 cast<VectorType>(Ty1)->getElementCount(),
6006 "llvm.ptrmask intrinsic arguments must have the same number of "
6007 "elements",
6008 &Call);
6009 Check(DL.getIndexTypeSizeInBits(Ty0) == Ty1->getScalarSizeInBits(),
6010 "llvm.ptrmask intrinsic second argument bitwidth must match "
6011 "pointer index type size of first argument",
6012 &Call);
6013 break;
6017 // Verify that there aren't any unmediated control transfers between funclets.
6018 if (IntrinsicInst::mayLowerToFunctionCall(ID)) {
6019 Function *F = Call.getParent()->getParent();
6020 if (F->hasPersonalityFn() &&
6021 isScopedEHPersonality(classifyEHPersonality(F->getPersonalityFn()))) {
6022 // Run EH funclet coloring on-demand and cache results for other intrinsic
6023 // calls in this function
6024 if (BlockEHFuncletColors.empty())
6025 BlockEHFuncletColors = colorEHFunclets(*F);
6027 // Check for catch-/cleanup-pad in first funclet block
6028 bool InEHFunclet = false;
6029 BasicBlock *CallBB = Call.getParent();
6030 const ColorVector &CV = BlockEHFuncletColors.find(CallBB)->second;
6031 assert(CV.size() > 0 && "Uncolored block");
6032 for (BasicBlock *ColorFirstBB : CV)
6033 if (dyn_cast_or_null<FuncletPadInst>(ColorFirstBB->getFirstNonPHI()))
6034 InEHFunclet = true;
6036 // Check for funclet operand bundle
6037 bool HasToken = false;
6038 for (unsigned I = 0, E = Call.getNumOperandBundles(); I != E; ++I)
6039 if (Call.getOperandBundleAt(I).getTagID() == LLVMContext::OB_funclet)
6040 HasToken = true;
6042 // This would cause silent code truncation in WinEHPrepare
6043 if (InEHFunclet)
6044 Check(HasToken, "Missing funclet token on intrinsic call", &Call);
6049 /// Carefully grab the subprogram from a local scope.
6051 /// This carefully grabs the subprogram from a local scope, avoiding the
6052 /// built-in assertions that would typically fire.
6053 static DISubprogram *getSubprogram(Metadata *LocalScope) {
6054 if (!LocalScope)
6055 return nullptr;
6057 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
6058 return SP;
6060 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
6061 return getSubprogram(LB->getRawScope());
6063 // Just return null; broken scope chains are checked elsewhere.
6064 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
6065 return nullptr;
6068 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
6069 if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
6070 auto *RetTy = cast<VectorType>(VPCast->getType());
6071 auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
6072 Check(RetTy->getElementCount() == ValTy->getElementCount(),
6073 "VP cast intrinsic first argument and result vector lengths must be "
6074 "equal",
6075 *VPCast);
6077 switch (VPCast->getIntrinsicID()) {
6078 default:
6079 llvm_unreachable("Unknown VP cast intrinsic");
6080 case Intrinsic::vp_trunc:
6081 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6082 "llvm.vp.trunc intrinsic first argument and result element type "
6083 "must be integer",
6084 *VPCast);
6085 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6086 "llvm.vp.trunc intrinsic the bit size of first argument must be "
6087 "larger than the bit size of the return type",
6088 *VPCast);
6089 break;
6090 case Intrinsic::vp_zext:
6091 case Intrinsic::vp_sext:
6092 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6093 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
6094 "element type must be integer",
6095 *VPCast);
6096 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6097 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
6098 "argument must be smaller than the bit size of the return type",
6099 *VPCast);
6100 break;
6101 case Intrinsic::vp_fptoui:
6102 case Intrinsic::vp_fptosi:
6103 Check(
6104 RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
6105 "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element "
6106 "type must be floating-point and result element type must be integer",
6107 *VPCast);
6108 break;
6109 case Intrinsic::vp_uitofp:
6110 case Intrinsic::vp_sitofp:
6111 Check(
6112 RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
6113 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
6114 "type must be integer and result element type must be floating-point",
6115 *VPCast);
6116 break;
6117 case Intrinsic::vp_fptrunc:
6118 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6119 "llvm.vp.fptrunc intrinsic first argument and result element type "
6120 "must be floating-point",
6121 *VPCast);
6122 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6123 "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
6124 "larger than the bit size of the return type",
6125 *VPCast);
6126 break;
6127 case Intrinsic::vp_fpext:
6128 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6129 "llvm.vp.fpext intrinsic first argument and result element type "
6130 "must be floating-point",
6131 *VPCast);
6132 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6133 "llvm.vp.fpext intrinsic the bit size of first argument must be "
6134 "smaller than the bit size of the return type",
6135 *VPCast);
6136 break;
6137 case Intrinsic::vp_ptrtoint:
6138 Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
6139 "llvm.vp.ptrtoint intrinsic first argument element type must be "
6140 "pointer and result element type must be integer",
6141 *VPCast);
6142 break;
6143 case Intrinsic::vp_inttoptr:
6144 Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
6145 "llvm.vp.inttoptr intrinsic first argument element type must be "
6146 "integer and result element type must be pointer",
6147 *VPCast);
6148 break;
6151 if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
6152 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6153 Check(CmpInst::isFPPredicate(Pred),
6154 "invalid predicate for VP FP comparison intrinsic", &VPI);
6156 if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
6157 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6158 Check(CmpInst::isIntPredicate(Pred),
6159 "invalid predicate for VP integer comparison intrinsic", &VPI);
6161 if (VPI.getIntrinsicID() == Intrinsic::vp_is_fpclass) {
6162 auto TestMask = cast<ConstantInt>(VPI.getOperand(1));
6163 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
6164 "unsupported bits for llvm.vp.is.fpclass test mask");
6168 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
6169 unsigned NumOperands;
6170 bool HasRoundingMD;
6171 switch (FPI.getIntrinsicID()) {
6172 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
6173 case Intrinsic::INTRINSIC: \
6174 NumOperands = NARG; \
6175 HasRoundingMD = ROUND_MODE; \
6176 break;
6177 #include "llvm/IR/ConstrainedOps.def"
6178 default:
6179 llvm_unreachable("Invalid constrained FP intrinsic!");
6181 NumOperands += (1 + HasRoundingMD);
6182 // Compare intrinsics carry an extra predicate metadata operand.
6183 if (isa<ConstrainedFPCmpIntrinsic>(FPI))
6184 NumOperands += 1;
6185 Check((FPI.arg_size() == NumOperands),
6186 "invalid arguments for constrained FP intrinsic", &FPI);
6188 switch (FPI.getIntrinsicID()) {
6189 case Intrinsic::experimental_constrained_lrint:
6190 case Intrinsic::experimental_constrained_llrint: {
6191 Type *ValTy = FPI.getArgOperand(0)->getType();
6192 Type *ResultTy = FPI.getType();
6193 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6194 "Intrinsic does not support vectors", &FPI);
6196 break;
6198 case Intrinsic::experimental_constrained_lround:
6199 case Intrinsic::experimental_constrained_llround: {
6200 Type *ValTy = FPI.getArgOperand(0)->getType();
6201 Type *ResultTy = FPI.getType();
6202 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6203 "Intrinsic does not support vectors", &FPI);
6204 break;
6207 case Intrinsic::experimental_constrained_fcmp:
6208 case Intrinsic::experimental_constrained_fcmps: {
6209 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
6210 Check(CmpInst::isFPPredicate(Pred),
6211 "invalid predicate for constrained FP comparison intrinsic", &FPI);
6212 break;
6215 case Intrinsic::experimental_constrained_fptosi:
6216 case Intrinsic::experimental_constrained_fptoui: {
6217 Value *Operand = FPI.getArgOperand(0);
6218 ElementCount SrcEC;
6219 Check(Operand->getType()->isFPOrFPVectorTy(),
6220 "Intrinsic first argument must be floating point", &FPI);
6221 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6222 SrcEC = cast<VectorType>(OperandT)->getElementCount();
6225 Operand = &FPI;
6226 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6227 "Intrinsic first argument and result disagree on vector use", &FPI);
6228 Check(Operand->getType()->isIntOrIntVectorTy(),
6229 "Intrinsic result must be an integer", &FPI);
6230 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6231 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6232 "Intrinsic first argument and result vector lengths must be equal",
6233 &FPI);
6236 break;
6238 case Intrinsic::experimental_constrained_sitofp:
6239 case Intrinsic::experimental_constrained_uitofp: {
6240 Value *Operand = FPI.getArgOperand(0);
6241 ElementCount SrcEC;
6242 Check(Operand->getType()->isIntOrIntVectorTy(),
6243 "Intrinsic first argument must be integer", &FPI);
6244 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6245 SrcEC = cast<VectorType>(OperandT)->getElementCount();
6248 Operand = &FPI;
6249 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6250 "Intrinsic first argument and result disagree on vector use", &FPI);
6251 Check(Operand->getType()->isFPOrFPVectorTy(),
6252 "Intrinsic result must be a floating point", &FPI);
6253 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6254 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6255 "Intrinsic first argument and result vector lengths must be equal",
6256 &FPI);
6258 } break;
6260 case Intrinsic::experimental_constrained_fptrunc:
6261 case Intrinsic::experimental_constrained_fpext: {
6262 Value *Operand = FPI.getArgOperand(0);
6263 Type *OperandTy = Operand->getType();
6264 Value *Result = &FPI;
6265 Type *ResultTy = Result->getType();
6266 Check(OperandTy->isFPOrFPVectorTy(),
6267 "Intrinsic first argument must be FP or FP vector", &FPI);
6268 Check(ResultTy->isFPOrFPVectorTy(),
6269 "Intrinsic result must be FP or FP vector", &FPI);
6270 Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
6271 "Intrinsic first argument and result disagree on vector use", &FPI);
6272 if (OperandTy->isVectorTy()) {
6273 Check(cast<VectorType>(OperandTy)->getElementCount() ==
6274 cast<VectorType>(ResultTy)->getElementCount(),
6275 "Intrinsic first argument and result vector lengths must be equal",
6276 &FPI);
6278 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
6279 Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
6280 "Intrinsic first argument's type must be larger than result type",
6281 &FPI);
6282 } else {
6283 Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
6284 "Intrinsic first argument's type must be smaller than result type",
6285 &FPI);
6288 break;
6290 default:
6291 break;
6294 // If a non-metadata argument is passed in a metadata slot then the
6295 // error will be caught earlier when the incorrect argument doesn't
6296 // match the specification in the intrinsic call table. Thus, no
6297 // argument type check is needed here.
6299 Check(FPI.getExceptionBehavior().has_value(),
6300 "invalid exception behavior argument", &FPI);
6301 if (HasRoundingMD) {
6302 Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument",
6303 &FPI);
6307 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
6308 auto *MD = DII.getRawLocation();
6309 CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6310 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
6311 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
6312 CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
6313 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
6314 DII.getRawVariable());
6315 CheckDI(isa<DIExpression>(DII.getRawExpression()),
6316 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
6317 DII.getRawExpression());
6319 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) {
6320 CheckDI(isa<DIAssignID>(DAI->getRawAssignID()),
6321 "invalid llvm.dbg.assign intrinsic DIAssignID", &DII,
6322 DAI->getRawAssignID());
6323 const auto *RawAddr = DAI->getRawAddress();
6324 CheckDI(
6325 isa<ValueAsMetadata>(RawAddr) ||
6326 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6327 "invalid llvm.dbg.assign intrinsic address", &DII,
6328 DAI->getRawAddress());
6329 CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()),
6330 "invalid llvm.dbg.assign intrinsic address expression", &DII,
6331 DAI->getRawAddressExpression());
6332 // All of the linked instructions should be in the same function as DII.
6333 for (Instruction *I : at::getAssignmentInsts(DAI))
6334 CheckDI(DAI->getFunction() == I->getFunction(),
6335 "inst not in same function as dbg.assign", I, DAI);
6338 // Ignore broken !dbg attachments; they're checked elsewhere.
6339 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
6340 if (!isa<DILocation>(N))
6341 return;
6343 BasicBlock *BB = DII.getParent();
6344 Function *F = BB ? BB->getParent() : nullptr;
6346 // The scopes for variables and !dbg attachments must agree.
6347 DILocalVariable *Var = DII.getVariable();
6348 DILocation *Loc = DII.getDebugLoc();
6349 CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
6350 &DII, BB, F);
6352 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
6353 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6354 if (!VarSP || !LocSP)
6355 return; // Broken scope chains are checked elsewhere.
6357 CheckDI(VarSP == LocSP,
6358 "mismatched subprogram between llvm.dbg." + Kind +
6359 " variable and !dbg attachment",
6360 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6361 Loc->getScope()->getSubprogram());
6363 // This check is redundant with one in visitLocalVariable().
6364 CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6365 Var->getRawType());
6366 verifyFnArgs(DII);
6369 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
6370 CheckDI(isa<DILabel>(DLI.getRawLabel()),
6371 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
6372 DLI.getRawLabel());
6374 // Ignore broken !dbg attachments; they're checked elsewhere.
6375 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
6376 if (!isa<DILocation>(N))
6377 return;
6379 BasicBlock *BB = DLI.getParent();
6380 Function *F = BB ? BB->getParent() : nullptr;
6382 // The scopes for variables and !dbg attachments must agree.
6383 DILabel *Label = DLI.getLabel();
6384 DILocation *Loc = DLI.getDebugLoc();
6385 Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
6386 BB, F);
6388 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
6389 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6390 if (!LabelSP || !LocSP)
6391 return;
6393 CheckDI(LabelSP == LocSP,
6394 "mismatched subprogram between llvm.dbg." + Kind +
6395 " label and !dbg attachment",
6396 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6397 Loc->getScope()->getSubprogram());
6400 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
6401 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
6402 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6404 // We don't know whether this intrinsic verified correctly.
6405 if (!V || !E || !E->isValid())
6406 return;
6408 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
6409 auto Fragment = E->getFragmentInfo();
6410 if (!Fragment)
6411 return;
6413 // The frontend helps out GDB by emitting the members of local anonymous
6414 // unions as artificial local variables with shared storage. When SROA splits
6415 // the storage for artificial local variables that are smaller than the entire
6416 // union, the overhang piece will be outside of the allotted space for the
6417 // variable and this check fails.
6418 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
6419 if (V->isArtificial())
6420 return;
6422 verifyFragmentExpression(*V, *Fragment, &I);
6425 template <typename ValueOrMetadata>
6426 void Verifier::verifyFragmentExpression(const DIVariable &V,
6427 DIExpression::FragmentInfo Fragment,
6428 ValueOrMetadata *Desc) {
6429 // If there's no size, the type is broken, but that should be checked
6430 // elsewhere.
6431 auto VarSize = V.getSizeInBits();
6432 if (!VarSize)
6433 return;
6435 unsigned FragSize = Fragment.SizeInBits;
6436 unsigned FragOffset = Fragment.OffsetInBits;
6437 CheckDI(FragSize + FragOffset <= *VarSize,
6438 "fragment is larger than or outside of variable", Desc, &V);
6439 CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
6442 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
6443 // This function does not take the scope of noninlined function arguments into
6444 // account. Don't run it if current function is nodebug, because it may
6445 // contain inlined debug intrinsics.
6446 if (!HasDebugInfo)
6447 return;
6449 // For performance reasons only check non-inlined ones.
6450 if (I.getDebugLoc()->getInlinedAt())
6451 return;
6453 DILocalVariable *Var = I.getVariable();
6454 CheckDI(Var, "dbg intrinsic without variable");
6456 unsigned ArgNo = Var->getArg();
6457 if (!ArgNo)
6458 return;
6460 // Verify there are no duplicate function argument debug info entries.
6461 // These will cause hard-to-debug assertions in the DWARF backend.
6462 if (DebugFnArgs.size() < ArgNo)
6463 DebugFnArgs.resize(ArgNo, nullptr);
6465 auto *Prev = DebugFnArgs[ArgNo - 1];
6466 DebugFnArgs[ArgNo - 1] = Var;
6467 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
6468 Prev, Var);
6471 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
6472 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6474 // We don't know whether this intrinsic verified correctly.
6475 if (!E || !E->isValid())
6476 return;
6478 if (isa<ValueAsMetadata>(I.getRawLocation())) {
6479 Value *VarValue = I.getVariableLocationOp(0);
6480 if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
6481 return;
6482 // We allow EntryValues for swift async arguments, as they have an
6483 // ABI-guarantee to be turned into a specific register.
6484 if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
6485 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
6486 return;
6489 CheckDI(!E->isEntryValue(),
6490 "Entry values are only allowed in MIR unless they target a "
6491 "swiftasync Argument",
6492 &I);
6495 void Verifier::verifyCompileUnits() {
6496 // When more than one Module is imported into the same context, such as during
6497 // an LTO build before linking the modules, ODR type uniquing may cause types
6498 // to point to a different CU. This check does not make sense in this case.
6499 if (M.getContext().isODRUniquingDebugTypes())
6500 return;
6501 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
6502 SmallPtrSet<const Metadata *, 2> Listed;
6503 if (CUs)
6504 Listed.insert(CUs->op_begin(), CUs->op_end());
6505 for (const auto *CU : CUVisited)
6506 CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
6507 CUVisited.clear();
6510 void Verifier::verifyDeoptimizeCallingConvs() {
6511 if (DeoptimizeDeclarations.empty())
6512 return;
6514 const Function *First = DeoptimizeDeclarations[0];
6515 for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) {
6516 Check(First->getCallingConv() == F->getCallingConv(),
6517 "All llvm.experimental.deoptimize declarations must have the same "
6518 "calling convention",
6519 First, F);
6523 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
6524 const OperandBundleUse &BU) {
6525 FunctionType *FTy = Call.getFunctionType();
6527 Check((FTy->getReturnType()->isPointerTy() ||
6528 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
6529 "a call with operand bundle \"clang.arc.attachedcall\" must call a "
6530 "function returning a pointer or a non-returning function that has a "
6531 "void return type",
6532 Call);
6534 Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
6535 "operand bundle \"clang.arc.attachedcall\" requires one function as "
6536 "an argument",
6537 Call);
6539 auto *Fn = cast<Function>(BU.Inputs.front());
6540 Intrinsic::ID IID = Fn->getIntrinsicID();
6542 if (IID) {
6543 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
6544 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
6545 "invalid function argument", Call);
6546 } else {
6547 StringRef FnName = Fn->getName();
6548 Check((FnName == "objc_retainAutoreleasedReturnValue" ||
6549 FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
6550 "invalid function argument", Call);
6554 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
6555 bool HasSource = F.getSource().has_value();
6556 if (!HasSourceDebugInfo.count(&U))
6557 HasSourceDebugInfo[&U] = HasSource;
6558 CheckDI(HasSource == HasSourceDebugInfo[&U],
6559 "inconsistent use of embedded source");
6562 void Verifier::verifyNoAliasScopeDecl() {
6563 if (NoAliasScopeDecls.empty())
6564 return;
6566 // only a single scope must be declared at a time.
6567 for (auto *II : NoAliasScopeDecls) {
6568 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
6569 "Not a llvm.experimental.noalias.scope.decl ?");
6570 const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
6571 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6572 Check(ScopeListMV != nullptr,
6573 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
6574 "argument",
6575 II);
6577 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
6578 Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
6579 Check(ScopeListMD->getNumOperands() == 1,
6580 "!id.scope.list must point to a list with a single scope", II);
6581 visitAliasScopeListMetadata(ScopeListMD);
6584 // Only check the domination rule when requested. Once all passes have been
6585 // adapted this option can go away.
6586 if (!VerifyNoAliasScopeDomination)
6587 return;
6589 // Now sort the intrinsics based on the scope MDNode so that declarations of
6590 // the same scopes are next to each other.
6591 auto GetScope = [](IntrinsicInst *II) {
6592 const auto *ScopeListMV = cast<MetadataAsValue>(
6593 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6594 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
6597 // We are sorting on MDNode pointers here. For valid input IR this is ok.
6598 // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
6599 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
6600 return GetScope(Lhs) < GetScope(Rhs);
6603 llvm::sort(NoAliasScopeDecls, Compare);
6605 // Go over the intrinsics and check that for the same scope, they are not
6606 // dominating each other.
6607 auto ItCurrent = NoAliasScopeDecls.begin();
6608 while (ItCurrent != NoAliasScopeDecls.end()) {
6609 auto CurScope = GetScope(*ItCurrent);
6610 auto ItNext = ItCurrent;
6611 do {
6612 ++ItNext;
6613 } while (ItNext != NoAliasScopeDecls.end() &&
6614 GetScope(*ItNext) == CurScope);
6616 // [ItCurrent, ItNext) represents the declarations for the same scope.
6617 // Ensure they are not dominating each other.. but only if it is not too
6618 // expensive.
6619 if (ItNext - ItCurrent < 32)
6620 for (auto *I : llvm::make_range(ItCurrent, ItNext))
6621 for (auto *J : llvm::make_range(ItCurrent, ItNext))
6622 if (I != J)
6623 Check(!DT.dominates(I, J),
6624 "llvm.experimental.noalias.scope.decl dominates another one "
6625 "with the same scope",
6627 ItCurrent = ItNext;
6631 //===----------------------------------------------------------------------===//
6632 // Implement the public interfaces to this file...
6633 //===----------------------------------------------------------------------===//
6635 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
6636 Function &F = const_cast<Function &>(f);
6638 // Don't use a raw_null_ostream. Printing IR is expensive.
6639 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
6641 // Note that this function's return value is inverted from what you would
6642 // expect of a function called "verify".
6643 return !V.verify(F);
6646 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
6647 bool *BrokenDebugInfo) {
6648 // Don't use a raw_null_ostream. Printing IR is expensive.
6649 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
6651 bool Broken = false;
6652 for (const Function &F : M)
6653 Broken |= !V.verify(F);
6655 Broken |= !V.verify();
6656 if (BrokenDebugInfo)
6657 *BrokenDebugInfo = V.hasBrokenDebugInfo();
6658 // Note that this function's return value is inverted from what you would
6659 // expect of a function called "verify".
6660 return Broken;
6663 namespace {
6665 struct VerifierLegacyPass : public FunctionPass {
6666 static char ID;
6668 std::unique_ptr<Verifier> V;
6669 bool FatalErrors = true;
6671 VerifierLegacyPass() : FunctionPass(ID) {
6672 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6674 explicit VerifierLegacyPass(bool FatalErrors)
6675 : FunctionPass(ID),
6676 FatalErrors(FatalErrors) {
6677 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6680 bool doInitialization(Module &M) override {
6681 V = std::make_unique<Verifier>(
6682 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
6683 return false;
6686 bool runOnFunction(Function &F) override {
6687 if (!V->verify(F) && FatalErrors) {
6688 errs() << "in function " << F.getName() << '\n';
6689 report_fatal_error("Broken function found, compilation aborted!");
6691 return false;
6694 bool doFinalization(Module &M) override {
6695 bool HasErrors = false;
6696 for (Function &F : M)
6697 if (F.isDeclaration())
6698 HasErrors |= !V->verify(F);
6700 HasErrors |= !V->verify();
6701 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
6702 report_fatal_error("Broken module found, compilation aborted!");
6703 return false;
6706 void getAnalysisUsage(AnalysisUsage &AU) const override {
6707 AU.setPreservesAll();
6711 } // end anonymous namespace
6713 /// Helper to issue failure from the TBAA verification
6714 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
6715 if (Diagnostic)
6716 return Diagnostic->CheckFailed(Args...);
6719 #define CheckTBAA(C, ...) \
6720 do { \
6721 if (!(C)) { \
6722 CheckFailed(__VA_ARGS__); \
6723 return false; \
6725 } while (false)
6727 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
6728 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
6729 /// struct-type node describing an aggregate data structure (like a struct).
6730 TBAAVerifier::TBAABaseNodeSummary
6731 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
6732 bool IsNewFormat) {
6733 if (BaseNode->getNumOperands() < 2) {
6734 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
6735 return {true, ~0u};
6738 auto Itr = TBAABaseNodes.find(BaseNode);
6739 if (Itr != TBAABaseNodes.end())
6740 return Itr->second;
6742 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
6743 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
6744 (void)InsertResult;
6745 assert(InsertResult.second && "We just checked!");
6746 return Result;
6749 TBAAVerifier::TBAABaseNodeSummary
6750 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
6751 bool IsNewFormat) {
6752 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
6754 if (BaseNode->getNumOperands() == 2) {
6755 // Scalar nodes can only be accessed at offset 0.
6756 return isValidScalarTBAANode(BaseNode)
6757 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
6758 : InvalidNode;
6761 if (IsNewFormat) {
6762 if (BaseNode->getNumOperands() % 3 != 0) {
6763 CheckFailed("Access tag nodes must have the number of operands that is a "
6764 "multiple of 3!", BaseNode);
6765 return InvalidNode;
6767 } else {
6768 if (BaseNode->getNumOperands() % 2 != 1) {
6769 CheckFailed("Struct tag nodes must have an odd number of operands!",
6770 BaseNode);
6771 return InvalidNode;
6775 // Check the type size field.
6776 if (IsNewFormat) {
6777 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6778 BaseNode->getOperand(1));
6779 if (!TypeSizeNode) {
6780 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
6781 return InvalidNode;
6785 // Check the type name field. In the new format it can be anything.
6786 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
6787 CheckFailed("Struct tag nodes have a string as their first operand",
6788 BaseNode);
6789 return InvalidNode;
6792 bool Failed = false;
6794 std::optional<APInt> PrevOffset;
6795 unsigned BitWidth = ~0u;
6797 // We've already checked that BaseNode is not a degenerate root node with one
6798 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
6799 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6800 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6801 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6802 Idx += NumOpsPerField) {
6803 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
6804 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
6805 if (!isa<MDNode>(FieldTy)) {
6806 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
6807 Failed = true;
6808 continue;
6811 auto *OffsetEntryCI =
6812 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
6813 if (!OffsetEntryCI) {
6814 CheckFailed("Offset entries must be constants!", &I, BaseNode);
6815 Failed = true;
6816 continue;
6819 if (BitWidth == ~0u)
6820 BitWidth = OffsetEntryCI->getBitWidth();
6822 if (OffsetEntryCI->getBitWidth() != BitWidth) {
6823 CheckFailed(
6824 "Bitwidth between the offsets and struct type entries must match", &I,
6825 BaseNode);
6826 Failed = true;
6827 continue;
6830 // NB! As far as I can tell, we generate a non-strictly increasing offset
6831 // sequence only from structs that have zero size bit fields. When
6832 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
6833 // pick the field lexically the latest in struct type metadata node. This
6834 // mirrors the actual behavior of the alias analysis implementation.
6835 bool IsAscending =
6836 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
6838 if (!IsAscending) {
6839 CheckFailed("Offsets must be increasing!", &I, BaseNode);
6840 Failed = true;
6843 PrevOffset = OffsetEntryCI->getValue();
6845 if (IsNewFormat) {
6846 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6847 BaseNode->getOperand(Idx + 2));
6848 if (!MemberSizeNode) {
6849 CheckFailed("Member size entries must be constants!", &I, BaseNode);
6850 Failed = true;
6851 continue;
6856 return Failed ? InvalidNode
6857 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
6860 static bool IsRootTBAANode(const MDNode *MD) {
6861 return MD->getNumOperands() < 2;
6864 static bool IsScalarTBAANodeImpl(const MDNode *MD,
6865 SmallPtrSetImpl<const MDNode *> &Visited) {
6866 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
6867 return false;
6869 if (!isa<MDString>(MD->getOperand(0)))
6870 return false;
6872 if (MD->getNumOperands() == 3) {
6873 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
6874 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
6875 return false;
6878 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6879 return Parent && Visited.insert(Parent).second &&
6880 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
6883 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
6884 auto ResultIt = TBAAScalarNodes.find(MD);
6885 if (ResultIt != TBAAScalarNodes.end())
6886 return ResultIt->second;
6888 SmallPtrSet<const MDNode *, 4> Visited;
6889 bool Result = IsScalarTBAANodeImpl(MD, Visited);
6890 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
6891 (void)InsertResult;
6892 assert(InsertResult.second && "Just checked!");
6894 return Result;
6897 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
6898 /// Offset in place to be the offset within the field node returned.
6900 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
6901 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
6902 const MDNode *BaseNode,
6903 APInt &Offset,
6904 bool IsNewFormat) {
6905 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
6907 // Scalar nodes have only one possible "field" -- their parent in the access
6908 // hierarchy. Offset must be zero at this point, but our caller is supposed
6909 // to check that.
6910 if (BaseNode->getNumOperands() == 2)
6911 return cast<MDNode>(BaseNode->getOperand(1));
6913 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6914 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6915 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6916 Idx += NumOpsPerField) {
6917 auto *OffsetEntryCI =
6918 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6919 if (OffsetEntryCI->getValue().ugt(Offset)) {
6920 if (Idx == FirstFieldOpNo) {
6921 CheckFailed("Could not find TBAA parent in struct type node", &I,
6922 BaseNode, &Offset);
6923 return nullptr;
6926 unsigned PrevIdx = Idx - NumOpsPerField;
6927 auto *PrevOffsetEntryCI =
6928 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6929 Offset -= PrevOffsetEntryCI->getValue();
6930 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6934 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6935 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6936 BaseNode->getOperand(LastIdx + 1));
6937 Offset -= LastOffsetEntryCI->getValue();
6938 return cast<MDNode>(BaseNode->getOperand(LastIdx));
6941 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6942 if (!Type || Type->getNumOperands() < 3)
6943 return false;
6945 // In the new format type nodes shall have a reference to the parent type as
6946 // its first operand.
6947 return isa_and_nonnull<MDNode>(Type->getOperand(0));
6950 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
6951 CheckTBAA(MD->getNumOperands() > 0, "TBAA metadata cannot have 0 operands",
6952 &I, MD);
6954 CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
6955 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
6956 isa<AtomicCmpXchgInst>(I),
6957 "This instruction shall not have a TBAA access tag!", &I);
6959 bool IsStructPathTBAA =
6960 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
6962 CheckTBAA(IsStructPathTBAA,
6963 "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
6964 &I);
6966 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
6967 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6969 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
6971 if (IsNewFormat) {
6972 CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
6973 "Access tag metadata must have either 4 or 5 operands", &I, MD);
6974 } else {
6975 CheckTBAA(MD->getNumOperands() < 5,
6976 "Struct tag metadata must have either 3 or 4 operands", &I, MD);
6979 // Check the access size field.
6980 if (IsNewFormat) {
6981 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6982 MD->getOperand(3));
6983 CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
6986 // Check the immutability flag.
6987 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
6988 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
6989 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
6990 MD->getOperand(ImmutabilityFlagOpNo));
6991 CheckTBAA(IsImmutableCI,
6992 "Immutability tag on struct tag metadata must be a constant", &I,
6993 MD);
6994 CheckTBAA(
6995 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
6996 "Immutability part of the struct tag metadata must be either 0 or 1",
6997 &I, MD);
7000 CheckTBAA(BaseNode && AccessType,
7001 "Malformed struct tag metadata: base and access-type "
7002 "should be non-null and point to Metadata nodes",
7003 &I, MD, BaseNode, AccessType);
7005 if (!IsNewFormat) {
7006 CheckTBAA(isValidScalarTBAANode(AccessType),
7007 "Access type node must be a valid scalar type", &I, MD,
7008 AccessType);
7011 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
7012 CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
7014 APInt Offset = OffsetCI->getValue();
7015 bool SeenAccessTypeInPath = false;
7017 SmallPtrSet<MDNode *, 4> StructPath;
7019 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
7020 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
7021 IsNewFormat)) {
7022 if (!StructPath.insert(BaseNode).second) {
7023 CheckFailed("Cycle detected in struct path", &I, MD);
7024 return false;
7027 bool Invalid;
7028 unsigned BaseNodeBitWidth;
7029 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
7030 IsNewFormat);
7032 // If the base node is invalid in itself, then we've already printed all the
7033 // errors we wanted to print.
7034 if (Invalid)
7035 return false;
7037 SeenAccessTypeInPath |= BaseNode == AccessType;
7039 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
7040 CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
7041 &I, MD, &Offset);
7043 CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
7044 (BaseNodeBitWidth == 0 && Offset == 0) ||
7045 (IsNewFormat && BaseNodeBitWidth == ~0u),
7046 "Access bit-width not the same as description bit-width", &I, MD,
7047 BaseNodeBitWidth, Offset.getBitWidth());
7049 if (IsNewFormat && SeenAccessTypeInPath)
7050 break;
7053 CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
7054 MD);
7055 return true;
7058 char VerifierLegacyPass::ID = 0;
7059 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
7061 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
7062 return new VerifierLegacyPass(FatalErrors);
7065 AnalysisKey VerifierAnalysis::Key;
7066 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
7067 ModuleAnalysisManager &) {
7068 Result Res;
7069 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
7070 return Res;
7073 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
7074 FunctionAnalysisManager &) {
7075 return { llvm::verifyFunction(F, &dbgs()), false };
7078 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
7079 auto Res = AM.getResult<VerifierAnalysis>(M);
7080 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
7081 report_fatal_error("Broken module found, compilation aborted!");
7083 return PreservedAnalyses::all();
7086 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
7087 auto res = AM.getResult<VerifierAnalysis>(F);
7088 if (res.IRBroken && FatalErrors)
7089 report_fatal_error("Broken function found, compilation aborted!");
7091 return PreservedAnalyses::all();