1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements functions and classes used to support LTO.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/LTO/LTO.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
19 #include "llvm/Analysis/StackSafetyAnalysis.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Bitcode/BitcodeReader.h"
23 #include "llvm/Bitcode/BitcodeWriter.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/AutoUpgrade.h"
27 #include "llvm/IR/DiagnosticPrinter.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMRemarkStreamer.h"
30 #include "llvm/IR/LegacyPassManager.h"
31 #include "llvm/IR/Mangler.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/LTO/LTOBackend.h"
34 #include "llvm/LTO/SummaryBasedOptimizations.h"
35 #include "llvm/Linker/IRMover.h"
36 #include "llvm/MC/TargetRegistry.h"
37 #include "llvm/Object/IRObjectFile.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/FileSystem.h"
41 #include "llvm/Support/ManagedStatic.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/Path.h"
44 #include "llvm/Support/SHA1.h"
45 #include "llvm/Support/SourceMgr.h"
46 #include "llvm/Support/ThreadPool.h"
47 #include "llvm/Support/Threading.h"
48 #include "llvm/Support/TimeProfiler.h"
49 #include "llvm/Support/ToolOutputFile.h"
50 #include "llvm/Support/VCSRevision.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Transforms/IPO.h"
54 #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h"
55 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
56 #include "llvm/Transforms/Utils/FunctionImportUtils.h"
57 #include "llvm/Transforms/Utils/SplitModule.h"
64 using namespace object
;
66 #define DEBUG_TYPE "lto"
69 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden
,
70 cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
73 /// Enable global value internalization in LTO.
74 cl::opt
<bool> EnableLTOInternalization(
75 "enable-lto-internalization", cl::init(true), cl::Hidden
,
76 cl::desc("Enable global value internalization in LTO"));
78 /// Indicate we are linking with an allocator that supports hot/cold operator
80 extern cl::opt
<bool> SupportsHotColdNew
;
82 /// Enable MemProf context disambiguation for thin link.
83 extern cl::opt
<bool> EnableMemProfContextDisambiguation
;
86 // Computes a unique hash for the Module considering the current list of
87 // export/import and other global analysis results.
88 // The hash is produced in \p Key.
89 void llvm::computeLTOCacheKey(
90 SmallString
<40> &Key
, const Config
&Conf
, const ModuleSummaryIndex
&Index
,
91 StringRef ModuleID
, const FunctionImporter::ImportMapTy
&ImportList
,
92 const FunctionImporter::ExportSetTy
&ExportList
,
93 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
94 const GVSummaryMapTy
&DefinedGlobals
,
95 const std::set
<GlobalValue::GUID
> &CfiFunctionDefs
,
96 const std::set
<GlobalValue::GUID
> &CfiFunctionDecls
) {
97 // Compute the unique hash for this entry.
98 // This is based on the current compiler version, the module itself, the
99 // export list, the hash for every single module in the import list, the
100 // list of ResolvedODR for the module, and the list of preserved symbols.
103 // Start with the compiler revision
104 Hasher
.update(LLVM_VERSION_STRING
);
106 Hasher
.update(LLVM_REVISION
);
109 // Include the parts of the LTO configuration that affect code generation.
110 auto AddString
= [&](StringRef Str
) {
112 Hasher
.update(ArrayRef
<uint8_t>{0});
114 auto AddUnsigned
= [&](unsigned I
) {
116 support::endian::write32le(Data
, I
);
117 Hasher
.update(ArrayRef
<uint8_t>{Data
, 4});
119 auto AddUint64
= [&](uint64_t I
) {
121 support::endian::write64le(Data
, I
);
122 Hasher
.update(ArrayRef
<uint8_t>{Data
, 8});
125 // FIXME: Hash more of Options. For now all clients initialize Options from
126 // command-line flags (which is unsupported in production), but may set
127 // RelaxELFRelocations. The clang driver can also pass FunctionSections,
128 // DataSections and DebuggerTuning via command line flags.
129 AddUnsigned(Conf
.Options
.RelaxELFRelocations
);
130 AddUnsigned(Conf
.Options
.FunctionSections
);
131 AddUnsigned(Conf
.Options
.DataSections
);
132 AddUnsigned((unsigned)Conf
.Options
.DebuggerTuning
);
133 for (auto &A
: Conf
.MAttrs
)
136 AddUnsigned(*Conf
.RelocModel
);
140 AddUnsigned(*Conf
.CodeModel
);
143 for (const auto &S
: Conf
.MllvmArgs
)
145 AddUnsigned(static_cast<int>(Conf
.CGOptLevel
));
146 AddUnsigned(static_cast<int>(Conf
.CGFileType
));
147 AddUnsigned(Conf
.OptLevel
);
148 AddUnsigned(Conf
.Freestanding
);
149 AddString(Conf
.OptPipeline
);
150 AddString(Conf
.AAPipeline
);
151 AddString(Conf
.OverrideTriple
);
152 AddString(Conf
.DefaultTriple
);
153 AddString(Conf
.DwoDir
);
155 // Include the hash for the current module
156 auto ModHash
= Index
.getModuleHash(ModuleID
);
157 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&ModHash
[0], sizeof(ModHash
)));
159 std::vector
<uint64_t> ExportsGUID
;
160 ExportsGUID
.reserve(ExportList
.size());
161 for (const auto &VI
: ExportList
) {
162 auto GUID
= VI
.getGUID();
163 ExportsGUID
.push_back(GUID
);
166 // Sort the export list elements GUIDs.
167 llvm::sort(ExportsGUID
);
168 for (uint64_t GUID
: ExportsGUID
) {
169 // The export list can impact the internalization, be conservative here
170 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&GUID
, sizeof(GUID
)));
173 // Include the hash for every module we import functions from. The set of
174 // imported symbols for each module may affect code generation and is
175 // sensitive to link order, so include that as well.
176 using ImportMapIteratorTy
= FunctionImporter::ImportMapTy::const_iterator
;
177 struct ImportModule
{
178 ImportMapIteratorTy ModIt
;
179 const ModuleSummaryIndex::ModuleInfo
*ModInfo
;
181 StringRef
getIdentifier() const { return ModIt
->getFirst(); }
182 const FunctionImporter::FunctionsToImportTy
&getFunctions() const {
183 return ModIt
->second
;
186 const ModuleHash
&getHash() const { return ModInfo
->second
; }
189 std::vector
<ImportModule
> ImportModulesVector
;
190 ImportModulesVector
.reserve(ImportList
.size());
192 for (ImportMapIteratorTy It
= ImportList
.begin(); It
!= ImportList
.end();
194 ImportModulesVector
.push_back({It
, Index
.getModule(It
->getFirst())});
196 // Order using module hash, to be both independent of module name and
198 llvm::sort(ImportModulesVector
,
199 [](const ImportModule
&Lhs
, const ImportModule
&Rhs
) -> bool {
200 return Lhs
.getHash() < Rhs
.getHash();
202 for (const ImportModule
&Entry
: ImportModulesVector
) {
203 auto ModHash
= Entry
.getHash();
204 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&ModHash
[0], sizeof(ModHash
)));
206 AddUint64(Entry
.getFunctions().size());
207 for (auto &Fn
: Entry
.getFunctions())
211 // Include the hash for the resolved ODR.
212 for (auto &Entry
: ResolvedODR
) {
213 Hasher
.update(ArrayRef
<uint8_t>((const uint8_t *)&Entry
.first
,
214 sizeof(GlobalValue::GUID
)));
215 Hasher
.update(ArrayRef
<uint8_t>((const uint8_t *)&Entry
.second
,
216 sizeof(GlobalValue::LinkageTypes
)));
219 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
220 // defined in this module.
221 std::set
<GlobalValue::GUID
> UsedCfiDefs
;
222 std::set
<GlobalValue::GUID
> UsedCfiDecls
;
224 // Typeids used in this module.
225 std::set
<GlobalValue::GUID
> UsedTypeIds
;
227 auto AddUsedCfiGlobal
= [&](GlobalValue::GUID ValueGUID
) {
228 if (CfiFunctionDefs
.count(ValueGUID
))
229 UsedCfiDefs
.insert(ValueGUID
);
230 if (CfiFunctionDecls
.count(ValueGUID
))
231 UsedCfiDecls
.insert(ValueGUID
);
234 auto AddUsedThings
= [&](GlobalValueSummary
*GS
) {
236 AddUnsigned(GS
->getVisibility());
237 AddUnsigned(GS
->isLive());
238 AddUnsigned(GS
->canAutoHide());
239 for (const ValueInfo
&VI
: GS
->refs()) {
240 AddUnsigned(VI
.isDSOLocal(Index
.withDSOLocalPropagation()));
241 AddUsedCfiGlobal(VI
.getGUID());
243 if (auto *GVS
= dyn_cast
<GlobalVarSummary
>(GS
)) {
244 AddUnsigned(GVS
->maybeReadOnly());
245 AddUnsigned(GVS
->maybeWriteOnly());
247 if (auto *FS
= dyn_cast
<FunctionSummary
>(GS
)) {
248 for (auto &TT
: FS
->type_tests())
249 UsedTypeIds
.insert(TT
);
250 for (auto &TT
: FS
->type_test_assume_vcalls())
251 UsedTypeIds
.insert(TT
.GUID
);
252 for (auto &TT
: FS
->type_checked_load_vcalls())
253 UsedTypeIds
.insert(TT
.GUID
);
254 for (auto &TT
: FS
->type_test_assume_const_vcalls())
255 UsedTypeIds
.insert(TT
.VFunc
.GUID
);
256 for (auto &TT
: FS
->type_checked_load_const_vcalls())
257 UsedTypeIds
.insert(TT
.VFunc
.GUID
);
258 for (auto &ET
: FS
->calls()) {
259 AddUnsigned(ET
.first
.isDSOLocal(Index
.withDSOLocalPropagation()));
260 AddUsedCfiGlobal(ET
.first
.getGUID());
265 // Include the hash for the linkage type to reflect internalization and weak
266 // resolution, and collect any used type identifier resolutions.
267 for (auto &GS
: DefinedGlobals
) {
268 GlobalValue::LinkageTypes Linkage
= GS
.second
->linkage();
270 ArrayRef
<uint8_t>((const uint8_t *)&Linkage
, sizeof(Linkage
)));
271 AddUsedCfiGlobal(GS
.first
);
272 AddUsedThings(GS
.second
);
275 // Imported functions may introduce new uses of type identifier resolutions,
276 // so we need to collect their used resolutions as well.
277 for (const ImportModule
&ImpM
: ImportModulesVector
)
278 for (auto &ImpF
: ImpM
.getFunctions()) {
279 GlobalValueSummary
*S
=
280 Index
.findSummaryInModule(ImpF
, ImpM
.getIdentifier());
282 // If this is an alias, we also care about any types/etc. that the aliasee
284 if (auto *AS
= dyn_cast_or_null
<AliasSummary
>(S
))
285 AddUsedThings(AS
->getBaseObject());
288 auto AddTypeIdSummary
= [&](StringRef TId
, const TypeIdSummary
&S
) {
291 AddUnsigned(S
.TTRes
.TheKind
);
292 AddUnsigned(S
.TTRes
.SizeM1BitWidth
);
294 AddUint64(S
.TTRes
.AlignLog2
);
295 AddUint64(S
.TTRes
.SizeM1
);
296 AddUint64(S
.TTRes
.BitMask
);
297 AddUint64(S
.TTRes
.InlineBits
);
299 AddUint64(S
.WPDRes
.size());
300 for (auto &WPD
: S
.WPDRes
) {
301 AddUnsigned(WPD
.first
);
302 AddUnsigned(WPD
.second
.TheKind
);
303 AddString(WPD
.second
.SingleImplName
);
305 AddUint64(WPD
.second
.ResByArg
.size());
306 for (auto &ByArg
: WPD
.second
.ResByArg
) {
307 AddUint64(ByArg
.first
.size());
308 for (uint64_t Arg
: ByArg
.first
)
310 AddUnsigned(ByArg
.second
.TheKind
);
311 AddUint64(ByArg
.second
.Info
);
312 AddUnsigned(ByArg
.second
.Byte
);
313 AddUnsigned(ByArg
.second
.Bit
);
318 // Include the hash for all type identifiers used by this module.
319 for (GlobalValue::GUID TId
: UsedTypeIds
) {
320 auto TidIter
= Index
.typeIds().equal_range(TId
);
321 for (auto It
= TidIter
.first
; It
!= TidIter
.second
; ++It
)
322 AddTypeIdSummary(It
->second
.first
, It
->second
.second
);
325 AddUnsigned(UsedCfiDefs
.size());
326 for (auto &V
: UsedCfiDefs
)
329 AddUnsigned(UsedCfiDecls
.size());
330 for (auto &V
: UsedCfiDecls
)
333 if (!Conf
.SampleProfile
.empty()) {
334 auto FileOrErr
= MemoryBuffer::getFile(Conf
.SampleProfile
);
336 Hasher
.update(FileOrErr
.get()->getBuffer());
338 if (!Conf
.ProfileRemapping
.empty()) {
339 FileOrErr
= MemoryBuffer::getFile(Conf
.ProfileRemapping
);
341 Hasher
.update(FileOrErr
.get()->getBuffer());
346 Key
= toHex(Hasher
.result());
349 static void thinLTOResolvePrevailingGUID(
350 const Config
&C
, ValueInfo VI
,
351 DenseSet
<GlobalValueSummary
*> &GlobalInvolvedWithAlias
,
352 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
354 function_ref
<void(StringRef
, GlobalValue::GUID
, GlobalValue::LinkageTypes
)>
356 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
357 GlobalValue::VisibilityTypes Visibility
=
358 C
.VisibilityScheme
== Config::ELF
? VI
.getELFVisibility()
359 : GlobalValue::DefaultVisibility
;
360 for (auto &S
: VI
.getSummaryList()) {
361 GlobalValue::LinkageTypes OriginalLinkage
= S
->linkage();
362 // Ignore local and appending linkage values since the linker
363 // doesn't resolve them.
364 if (GlobalValue::isLocalLinkage(OriginalLinkage
) ||
365 GlobalValue::isAppendingLinkage(S
->linkage()))
367 // We need to emit only one of these. The prevailing module will keep it,
368 // but turned into a weak, while the others will drop it when possible.
369 // This is both a compile-time optimization and a correctness
370 // transformation. This is necessary for correctness when we have exported
371 // a reference - we need to convert the linkonce to weak to
372 // ensure a copy is kept to satisfy the exported reference.
373 // FIXME: We may want to split the compile time and correctness
374 // aspects into separate routines.
375 if (isPrevailing(VI
.getGUID(), S
.get())) {
376 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage
)) {
377 S
->setLinkage(GlobalValue::getWeakLinkage(
378 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage
)));
379 // The kept copy is eligible for auto-hiding (hidden visibility) if all
380 // copies were (i.e. they were all linkonce_odr global unnamed addr).
381 // If any copy is not (e.g. it was originally weak_odr), then the symbol
382 // must remain externally available (e.g. a weak_odr from an explicitly
383 // instantiated template). Additionally, if it is in the
384 // GUIDPreservedSymbols set, that means that it is visibile outside
385 // the summary (e.g. in a native object or a bitcode file without
386 // summary), and in that case we cannot hide it as it isn't possible to
388 S
->setCanAutoHide(VI
.canAutoHide() &&
389 !GUIDPreservedSymbols
.count(VI
.getGUID()));
391 if (C
.VisibilityScheme
== Config::FromPrevailing
)
392 Visibility
= S
->getVisibility();
394 // Alias and aliasee can't be turned into available_externally.
395 else if (!isa
<AliasSummary
>(S
.get()) &&
396 !GlobalInvolvedWithAlias
.count(S
.get()))
397 S
->setLinkage(GlobalValue::AvailableExternallyLinkage
);
399 // For ELF, set visibility to the computed visibility from summaries. We
400 // don't track visibility from declarations so this may be more relaxed than
401 // the most constraining one.
402 if (C
.VisibilityScheme
== Config::ELF
)
403 S
->setVisibility(Visibility
);
405 if (S
->linkage() != OriginalLinkage
)
406 recordNewLinkage(S
->modulePath(), VI
.getGUID(), S
->linkage());
409 if (C
.VisibilityScheme
== Config::FromPrevailing
) {
410 for (auto &S
: VI
.getSummaryList()) {
411 GlobalValue::LinkageTypes OriginalLinkage
= S
->linkage();
412 if (GlobalValue::isLocalLinkage(OriginalLinkage
) ||
413 GlobalValue::isAppendingLinkage(S
->linkage()))
415 S
->setVisibility(Visibility
);
420 /// Resolve linkage for prevailing symbols in the \p Index.
422 // We'd like to drop these functions if they are no longer referenced in the
423 // current module. However there is a chance that another module is still
424 // referencing them because of the import. We make sure we always emit at least
426 void llvm::thinLTOResolvePrevailingInIndex(
427 const Config
&C
, ModuleSummaryIndex
&Index
,
428 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
430 function_ref
<void(StringRef
, GlobalValue::GUID
, GlobalValue::LinkageTypes
)>
432 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
433 // We won't optimize the globals that are referenced by an alias for now
434 // Ideally we should turn the alias into a global and duplicate the definition
436 DenseSet
<GlobalValueSummary
*> GlobalInvolvedWithAlias
;
437 for (auto &I
: Index
)
438 for (auto &S
: I
.second
.SummaryList
)
439 if (auto AS
= dyn_cast
<AliasSummary
>(S
.get()))
440 GlobalInvolvedWithAlias
.insert(&AS
->getAliasee());
442 for (auto &I
: Index
)
443 thinLTOResolvePrevailingGUID(C
, Index
.getValueInfo(I
),
444 GlobalInvolvedWithAlias
, isPrevailing
,
445 recordNewLinkage
, GUIDPreservedSymbols
);
448 static void thinLTOInternalizeAndPromoteGUID(
449 ValueInfo VI
, function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
450 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
452 auto ExternallyVisibleCopies
=
453 llvm::count_if(VI
.getSummaryList(),
454 [](const std::unique_ptr
<GlobalValueSummary
> &Summary
) {
455 return !GlobalValue::isLocalLinkage(Summary
->linkage());
458 for (auto &S
: VI
.getSummaryList()) {
459 // First see if we need to promote an internal value because it is not
461 if (isExported(S
->modulePath(), VI
)) {
462 if (GlobalValue::isLocalLinkage(S
->linkage()))
463 S
->setLinkage(GlobalValue::ExternalLinkage
);
467 // Otherwise, see if we can internalize.
468 if (!EnableLTOInternalization
)
471 // Non-exported values with external linkage can be internalized.
472 if (GlobalValue::isExternalLinkage(S
->linkage())) {
473 S
->setLinkage(GlobalValue::InternalLinkage
);
477 // Non-exported function and variable definitions with a weak-for-linker
478 // linkage can be internalized in certain cases. The minimum legality
479 // requirements would be that they are not address taken to ensure that we
480 // don't break pointer equality checks, and that variables are either read-
481 // or write-only. For functions, this is the case if either all copies are
482 // [local_]unnamed_addr, or we can propagate reference edge attributes
483 // (which is how this is guaranteed for variables, when analyzing whether
484 // they are read or write-only).
486 // However, we only get to this code for weak-for-linkage values in one of
488 // 1) The prevailing copy is not in IR (it is in native code).
489 // 2) The prevailing copy in IR is not exported from its module.
490 // Additionally, at least for the new LTO API, case 2 will only happen if
491 // there is exactly one definition of the value (i.e. in exactly one
492 // module), as duplicate defs are result in the value being marked exported.
493 // Likely, users of the legacy LTO API are similar, however, currently there
494 // are llvm-lto based tests of the legacy LTO API that do not mark
495 // duplicate linkonce_odr copies as exported via the tool, so we need
496 // to handle that case below by checking the number of copies.
498 // Generally, we only want to internalize a weak-for-linker value in case
499 // 2, because in case 1 we cannot see how the value is used to know if it
500 // is read or write-only. We also don't want to bloat the binary with
501 // multiple internalized copies of non-prevailing linkonce/weak functions.
502 // Note if we don't internalize, we will convert non-prevailing copies to
503 // available_externally anyway, so that we drop them after inlining. The
504 // only reason to internalize such a function is if we indeed have a single
505 // copy, because internalizing it won't increase binary size, and enables
506 // use of inliner heuristics that are more aggressive in the face of a
507 // single call to a static (local). For variables, internalizing a read or
508 // write only variable can enable more aggressive optimization. However, we
509 // already perform this elsewhere in the ThinLTO backend handling for
510 // read or write-only variables (processGlobalForThinLTO).
512 // Therefore, only internalize linkonce/weak if there is a single copy, that
513 // is prevailing in this IR module. We can do so aggressively, without
514 // requiring the address to be insignificant, or that a variable be read or
516 if (!GlobalValue::isWeakForLinker(S
->linkage()) ||
517 GlobalValue::isExternalWeakLinkage(S
->linkage()))
520 if (isPrevailing(VI
.getGUID(), S
.get()) && ExternallyVisibleCopies
== 1)
521 S
->setLinkage(GlobalValue::InternalLinkage
);
525 // Update the linkages in the given \p Index to mark exported values
526 // as external and non-exported values as internal.
527 void llvm::thinLTOInternalizeAndPromoteInIndex(
528 ModuleSummaryIndex
&Index
,
529 function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
530 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
532 for (auto &I
: Index
)
533 thinLTOInternalizeAndPromoteGUID(Index
.getValueInfo(I
), isExported
,
537 // Requires a destructor for std::vector<InputModule>.
538 InputFile::~InputFile() = default;
540 Expected
<std::unique_ptr
<InputFile
>> InputFile::create(MemoryBufferRef Object
) {
541 std::unique_ptr
<InputFile
> File(new InputFile
);
543 Expected
<IRSymtabFile
> FOrErr
= readIRSymtab(Object
);
545 return FOrErr
.takeError();
547 File
->TargetTriple
= FOrErr
->TheReader
.getTargetTriple();
548 File
->SourceFileName
= FOrErr
->TheReader
.getSourceFileName();
549 File
->COFFLinkerOpts
= FOrErr
->TheReader
.getCOFFLinkerOpts();
550 File
->DependentLibraries
= FOrErr
->TheReader
.getDependentLibraries();
551 File
->ComdatTable
= FOrErr
->TheReader
.getComdatTable();
553 for (unsigned I
= 0; I
!= FOrErr
->Mods
.size(); ++I
) {
554 size_t Begin
= File
->Symbols
.size();
555 for (const irsymtab::Reader::SymbolRef
&Sym
:
556 FOrErr
->TheReader
.module_symbols(I
))
557 // Skip symbols that are irrelevant to LTO. Note that this condition needs
558 // to match the one in Skip() in LTO::addRegularLTO().
559 if (Sym
.isGlobal() && !Sym
.isFormatSpecific())
560 File
->Symbols
.push_back(Sym
);
561 File
->ModuleSymIndices
.push_back({Begin
, File
->Symbols
.size()});
564 File
->Mods
= FOrErr
->Mods
;
565 File
->Strtab
= std::move(FOrErr
->Strtab
);
566 return std::move(File
);
569 StringRef
InputFile::getName() const {
570 return Mods
[0].getModuleIdentifier();
573 BitcodeModule
&InputFile::getSingleBitcodeModule() {
574 assert(Mods
.size() == 1 && "Expect only one bitcode module");
578 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel
,
580 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel
),
581 Ctx(Conf
), CombinedModule(std::make_unique
<Module
>("ld-temp.o", Ctx
)),
582 Mover(std::make_unique
<IRMover
>(*CombinedModule
)) {}
584 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend
)
585 : Backend(Backend
), CombinedIndex(/*HaveGVs*/ false) {
588 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
591 LTO::LTO(Config Conf
, ThinBackend Backend
,
592 unsigned ParallelCodeGenParallelismLevel
, LTOKind LTOMode
)
593 : Conf(std::move(Conf
)),
594 RegularLTO(ParallelCodeGenParallelismLevel
, this->Conf
),
595 ThinLTO(std::move(Backend
)), LTOMode(LTOMode
) {}
597 // Requires a destructor for MapVector<BitcodeModule>.
598 LTO::~LTO() = default;
600 // Add the symbols in the given module to the GlobalResolutions map, and resolve
602 void LTO::addModuleToGlobalRes(ArrayRef
<InputFile::Symbol
> Syms
,
603 ArrayRef
<SymbolResolution
> Res
,
604 unsigned Partition
, bool InSummary
) {
605 auto *ResI
= Res
.begin();
606 auto *ResE
= Res
.end();
608 const Triple
TT(RegularLTO
.CombinedModule
->getTargetTriple());
609 for (const InputFile::Symbol
&Sym
: Syms
) {
610 assert(ResI
!= ResE
);
611 SymbolResolution Res
= *ResI
++;
613 StringRef Name
= Sym
.getName();
614 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the
615 // way they are handled by lld), otherwise we can end up with two
616 // global resolutions (one with and one for a copy of the symbol without).
617 if (TT
.isOSBinFormatCOFF() && Name
.startswith("__imp_"))
618 Name
= Name
.substr(strlen("__imp_"));
619 auto &GlobalRes
= GlobalResolutions
[Name
];
620 GlobalRes
.UnnamedAddr
&= Sym
.isUnnamedAddr();
621 if (Res
.Prevailing
) {
622 assert(!GlobalRes
.Prevailing
&&
623 "Multiple prevailing defs are not allowed");
624 GlobalRes
.Prevailing
= true;
625 GlobalRes
.IRName
= std::string(Sym
.getIRName());
626 } else if (!GlobalRes
.Prevailing
&& GlobalRes
.IRName
.empty()) {
627 // Sometimes it can be two copies of symbol in a module and prevailing
628 // symbol can have no IR name. That might happen if symbol is defined in
629 // module level inline asm block. In case we have multiple modules with
630 // the same symbol we want to use IR name of the prevailing symbol.
631 // Otherwise, if we haven't seen a prevailing symbol, set the name so that
632 // we can later use it to check if there is any prevailing copy in IR.
633 GlobalRes
.IRName
= std::string(Sym
.getIRName());
636 // In rare occasion, the symbol used to initialize GlobalRes has a different
637 // IRName from the inspected Symbol. This can happen on macOS + iOS, when a
638 // symbol is referenced through its mangled name, say @"\01_symbol" while
639 // the IRName is @symbol (the prefix underscore comes from MachO mangling).
640 // In that case, we have the same actual Symbol that can get two different
641 // GUID, leading to some invalid internalization. Workaround this by marking
642 // the GlobalRes external.
644 // FIXME: instead of this check, it would be desirable to compute GUIDs
645 // based on mangled name, but this requires an access to the Target Triple
646 // and would be relatively invasive on the codebase.
647 if (GlobalRes
.IRName
!= Sym
.getIRName()) {
648 GlobalRes
.Partition
= GlobalResolution::External
;
649 GlobalRes
.VisibleOutsideSummary
= true;
652 // Set the partition to external if we know it is re-defined by the linker
653 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
654 // regular object, is referenced from llvm.compiler.used/llvm.used, or was
655 // already recorded as being referenced from a different partition.
656 if (Res
.LinkerRedefined
|| Res
.VisibleToRegularObj
|| Sym
.isUsed() ||
657 (GlobalRes
.Partition
!= GlobalResolution::Unknown
&&
658 GlobalRes
.Partition
!= Partition
)) {
659 GlobalRes
.Partition
= GlobalResolution::External
;
661 // First recorded reference, save the current partition.
662 GlobalRes
.Partition
= Partition
;
664 // Flag as visible outside of summary if visible from a regular object or
665 // from a module that does not have a summary.
666 GlobalRes
.VisibleOutsideSummary
|=
667 (Res
.VisibleToRegularObj
|| Sym
.isUsed() || !InSummary
);
669 GlobalRes
.ExportDynamic
|= Res
.ExportDynamic
;
673 static void writeToResolutionFile(raw_ostream
&OS
, InputFile
*Input
,
674 ArrayRef
<SymbolResolution
> Res
) {
675 StringRef Path
= Input
->getName();
677 auto ResI
= Res
.begin();
678 for (const InputFile::Symbol
&Sym
: Input
->symbols()) {
679 assert(ResI
!= Res
.end());
680 SymbolResolution Res
= *ResI
++;
682 OS
<< "-r=" << Path
<< ',' << Sym
.getName() << ',';
685 if (Res
.FinalDefinitionInLinkageUnit
)
687 if (Res
.VisibleToRegularObj
)
689 if (Res
.LinkerRedefined
)
694 assert(ResI
== Res
.end());
697 Error
LTO::add(std::unique_ptr
<InputFile
> Input
,
698 ArrayRef
<SymbolResolution
> Res
) {
699 assert(!CalledGetMaxTasks
);
701 if (Conf
.ResolutionFile
)
702 writeToResolutionFile(*Conf
.ResolutionFile
, Input
.get(), Res
);
704 if (RegularLTO
.CombinedModule
->getTargetTriple().empty()) {
705 RegularLTO
.CombinedModule
->setTargetTriple(Input
->getTargetTriple());
706 if (Triple(Input
->getTargetTriple()).isOSBinFormatELF())
707 Conf
.VisibilityScheme
= Config::ELF
;
710 const SymbolResolution
*ResI
= Res
.begin();
711 for (unsigned I
= 0; I
!= Input
->Mods
.size(); ++I
)
712 if (Error Err
= addModule(*Input
, I
, ResI
, Res
.end()))
715 assert(ResI
== Res
.end());
716 return Error::success();
719 Error
LTO::addModule(InputFile
&Input
, unsigned ModI
,
720 const SymbolResolution
*&ResI
,
721 const SymbolResolution
*ResE
) {
722 Expected
<BitcodeLTOInfo
> LTOInfo
= Input
.Mods
[ModI
].getLTOInfo();
724 return LTOInfo
.takeError();
726 if (EnableSplitLTOUnit
) {
727 // If only some modules were split, flag this in the index so that
728 // we can skip or error on optimizations that need consistently split
729 // modules (whole program devirt and lower type tests).
730 if (*EnableSplitLTOUnit
!= LTOInfo
->EnableSplitLTOUnit
)
731 ThinLTO
.CombinedIndex
.setPartiallySplitLTOUnits();
733 EnableSplitLTOUnit
= LTOInfo
->EnableSplitLTOUnit
;
735 BitcodeModule BM
= Input
.Mods
[ModI
];
737 if ((LTOMode
== LTOK_UnifiedRegular
|| LTOMode
== LTOK_UnifiedThin
) &&
738 !LTOInfo
->UnifiedLTO
)
739 return make_error
<StringError
>(
740 "unified LTO compilation must use "
741 "compatible bitcode modules (use -funified-lto)",
742 inconvertibleErrorCode());
744 if (LTOInfo
->UnifiedLTO
&& LTOMode
== LTOK_Default
)
745 LTOMode
= LTOK_UnifiedThin
;
747 bool IsThinLTO
= LTOInfo
->IsThinLTO
&& (LTOMode
!= LTOK_UnifiedRegular
);
749 auto ModSyms
= Input
.module_symbols(ModI
);
750 addModuleToGlobalRes(ModSyms
, {ResI
, ResE
},
751 IsThinLTO
? ThinLTO
.ModuleMap
.size() + 1 : 0,
752 LTOInfo
->HasSummary
);
755 return addThinLTO(BM
, ModSyms
, ResI
, ResE
);
757 RegularLTO
.EmptyCombinedModule
= false;
758 Expected
<RegularLTOState::AddedModule
> ModOrErr
=
759 addRegularLTO(BM
, ModSyms
, ResI
, ResE
);
761 return ModOrErr
.takeError();
763 if (!LTOInfo
->HasSummary
)
764 return linkRegularLTO(std::move(*ModOrErr
), /*LivenessFromIndex=*/false);
766 // Regular LTO module summaries are added to a dummy module that represents
767 // the combined regular LTO module.
768 if (Error Err
= BM
.readSummary(ThinLTO
.CombinedIndex
, ""))
770 RegularLTO
.ModsWithSummaries
.push_back(std::move(*ModOrErr
));
771 return Error::success();
774 // Checks whether the given global value is in a non-prevailing comdat
775 // (comdat containing values the linker indicated were not prevailing,
776 // which we then dropped to available_externally), and if so, removes
777 // it from the comdat. This is called for all global values to ensure the
778 // comdat is empty rather than leaving an incomplete comdat. It is needed for
779 // regular LTO modules, in case we are in a mixed-LTO mode (both regular
780 // and thin LTO modules) compilation. Since the regular LTO module will be
781 // linked first in the final native link, we want to make sure the linker
782 // doesn't select any of these incomplete comdats that would be left
783 // in the regular LTO module without this cleanup.
785 handleNonPrevailingComdat(GlobalValue
&GV
,
786 std::set
<const Comdat
*> &NonPrevailingComdats
) {
787 Comdat
*C
= GV
.getComdat();
791 if (!NonPrevailingComdats
.count(C
))
794 // Additionally need to drop all global values from the comdat to
795 // available_externally, to satisfy the COMDAT requirement that all members
796 // are discarded as a unit. The non-local linkage global values avoid
797 // duplicate definition linker errors.
798 GV
.setLinkage(GlobalValue::AvailableExternallyLinkage
);
800 if (auto GO
= dyn_cast
<GlobalObject
>(&GV
))
801 GO
->setComdat(nullptr);
804 // Add a regular LTO object to the link.
805 // The resulting module needs to be linked into the combined LTO module with
807 Expected
<LTO::RegularLTOState::AddedModule
>
808 LTO::addRegularLTO(BitcodeModule BM
, ArrayRef
<InputFile::Symbol
> Syms
,
809 const SymbolResolution
*&ResI
,
810 const SymbolResolution
*ResE
) {
811 RegularLTOState::AddedModule Mod
;
812 Expected
<std::unique_ptr
<Module
>> MOrErr
=
813 BM
.getLazyModule(RegularLTO
.Ctx
, /*ShouldLazyLoadMetadata*/ true,
814 /*IsImporting*/ false);
816 return MOrErr
.takeError();
817 Module
&M
= **MOrErr
;
818 Mod
.M
= std::move(*MOrErr
);
820 if (Error Err
= M
.materializeMetadata())
821 return std::move(Err
);
823 // If cfi.functions is present and we are in regular LTO mode, LowerTypeTests
824 // will rename local functions in the merged module as "<function name>.1".
825 // This causes linking errors, since other parts of the module expect the
826 // original function name.
827 if (LTOMode
== LTOK_UnifiedRegular
)
828 if (NamedMDNode
*CfiFunctionsMD
= M
.getNamedMetadata("cfi.functions"))
829 M
.eraseNamedMetadata(CfiFunctionsMD
);
833 ModuleSymbolTable SymTab
;
834 SymTab
.addModule(&M
);
836 for (GlobalVariable
&GV
: M
.globals())
837 if (GV
.hasAppendingLinkage())
838 Mod
.Keep
.push_back(&GV
);
840 DenseSet
<GlobalObject
*> AliasedGlobals
;
841 for (auto &GA
: M
.aliases())
842 if (GlobalObject
*GO
= GA
.getAliaseeObject())
843 AliasedGlobals
.insert(GO
);
845 // In this function we need IR GlobalValues matching the symbols in Syms
846 // (which is not backed by a module), so we need to enumerate them in the same
847 // order. The symbol enumeration order of a ModuleSymbolTable intentionally
848 // matches the order of an irsymtab, but when we read the irsymtab in
849 // InputFile::create we omit some symbols that are irrelevant to LTO. The
850 // Skip() function skips the same symbols from the module as InputFile does
851 // from the symbol table.
852 auto MsymI
= SymTab
.symbols().begin(), MsymE
= SymTab
.symbols().end();
854 while (MsymI
!= MsymE
) {
855 auto Flags
= SymTab
.getSymbolFlags(*MsymI
);
856 if ((Flags
& object::BasicSymbolRef::SF_Global
) &&
857 !(Flags
& object::BasicSymbolRef::SF_FormatSpecific
))
864 std::set
<const Comdat
*> NonPrevailingComdats
;
865 SmallSet
<StringRef
, 2> NonPrevailingAsmSymbols
;
866 for (const InputFile::Symbol
&Sym
: Syms
) {
867 assert(ResI
!= ResE
);
868 SymbolResolution Res
= *ResI
++;
870 assert(MsymI
!= MsymE
);
871 ModuleSymbolTable::Symbol Msym
= *MsymI
++;
874 if (GlobalValue
*GV
= dyn_cast_if_present
<GlobalValue
*>(Msym
)) {
875 if (Res
.Prevailing
) {
876 if (Sym
.isUndefined())
878 Mod
.Keep
.push_back(GV
);
879 // For symbols re-defined with linker -wrap and -defsym options,
880 // set the linkage to weak to inhibit IPO. The linkage will be
881 // restored by the linker.
882 if (Res
.LinkerRedefined
)
883 GV
->setLinkage(GlobalValue::WeakAnyLinkage
);
885 GlobalValue::LinkageTypes OriginalLinkage
= GV
->getLinkage();
886 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage
))
887 GV
->setLinkage(GlobalValue::getWeakLinkage(
888 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage
)));
889 } else if (isa
<GlobalObject
>(GV
) &&
890 (GV
->hasLinkOnceODRLinkage() || GV
->hasWeakODRLinkage() ||
891 GV
->hasAvailableExternallyLinkage()) &&
892 !AliasedGlobals
.count(cast
<GlobalObject
>(GV
))) {
893 // Any of the above three types of linkage indicates that the
894 // chosen prevailing symbol will have the same semantics as this copy of
895 // the symbol, so we may be able to link it with available_externally
896 // linkage. We will decide later whether to do that when we link this
897 // module (in linkRegularLTO), based on whether it is undefined.
898 Mod
.Keep
.push_back(GV
);
899 GV
->setLinkage(GlobalValue::AvailableExternallyLinkage
);
901 NonPrevailingComdats
.insert(GV
->getComdat());
902 cast
<GlobalObject
>(GV
)->setComdat(nullptr);
905 // Set the 'local' flag based on the linker resolution for this symbol.
906 if (Res
.FinalDefinitionInLinkageUnit
) {
907 GV
->setDSOLocal(true);
908 if (GV
->hasDLLImportStorageClass())
909 GV
->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
910 DefaultStorageClass
);
912 } else if (auto *AS
=
913 dyn_cast_if_present
<ModuleSymbolTable::AsmSymbol
*>(Msym
)) {
914 // Collect non-prevailing symbols.
916 NonPrevailingAsmSymbols
.insert(AS
->first
);
918 llvm_unreachable("unknown symbol type");
921 // Common resolution: collect the maximum size/alignment over all commons.
922 // We also record if we see an instance of a common as prevailing, so that
923 // if none is prevailing we can ignore it later.
924 if (Sym
.isCommon()) {
925 // FIXME: We should figure out what to do about commons defined by asm.
926 // For now they aren't reported correctly by ModuleSymbolTable.
927 auto &CommonRes
= RegularLTO
.Commons
[std::string(Sym
.getIRName())];
928 CommonRes
.Size
= std::max(CommonRes
.Size
, Sym
.getCommonSize());
929 if (uint32_t SymAlignValue
= Sym
.getCommonAlignment()) {
930 CommonRes
.Alignment
=
931 std::max(Align(SymAlignValue
), CommonRes
.Alignment
);
933 CommonRes
.Prevailing
|= Res
.Prevailing
;
937 if (!M
.getComdatSymbolTable().empty())
938 for (GlobalValue
&GV
: M
.global_values())
939 handleNonPrevailingComdat(GV
, NonPrevailingComdats
);
941 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm
943 if (!M
.getModuleInlineAsm().empty()) {
944 std::string NewIA
= ".lto_discard";
945 if (!NonPrevailingAsmSymbols
.empty()) {
946 // Don't dicard a symbol if there is a live .symver for it.
947 ModuleSymbolTable::CollectAsmSymvers(
948 M
, [&](StringRef Name
, StringRef Alias
) {
949 if (!NonPrevailingAsmSymbols
.count(Alias
))
950 NonPrevailingAsmSymbols
.erase(Name
);
952 NewIA
+= " " + llvm::join(NonPrevailingAsmSymbols
, ", ");
955 M
.setModuleInlineAsm(NewIA
+ M
.getModuleInlineAsm());
958 assert(MsymI
== MsymE
);
959 return std::move(Mod
);
962 Error
LTO::linkRegularLTO(RegularLTOState::AddedModule Mod
,
963 bool LivenessFromIndex
) {
964 std::vector
<GlobalValue
*> Keep
;
965 for (GlobalValue
*GV
: Mod
.Keep
) {
966 if (LivenessFromIndex
&& !ThinLTO
.CombinedIndex
.isGUIDLive(GV
->getGUID())) {
967 if (Function
*F
= dyn_cast
<Function
>(GV
)) {
968 if (DiagnosticOutputFile
) {
969 if (Error Err
= F
->materialize())
971 OptimizationRemarkEmitter
ORE(F
, nullptr);
972 ORE
.emit(OptimizationRemark(DEBUG_TYPE
, "deadfunction", F
)
973 << ore::NV("Function", F
)
974 << " not added to the combined module ");
980 if (!GV
->hasAvailableExternallyLinkage()) {
985 // Only link available_externally definitions if we don't already have a
987 GlobalValue
*CombinedGV
=
988 RegularLTO
.CombinedModule
->getNamedValue(GV
->getName());
989 if (CombinedGV
&& !CombinedGV
->isDeclaration())
995 return RegularLTO
.Mover
->move(std::move(Mod
.M
), Keep
, nullptr,
996 /* IsPerformingImport */ false);
999 // Add a ThinLTO module to the link.
1000 Error
LTO::addThinLTO(BitcodeModule BM
, ArrayRef
<InputFile::Symbol
> Syms
,
1001 const SymbolResolution
*&ResI
,
1002 const SymbolResolution
*ResE
) {
1003 const SymbolResolution
*ResITmp
= ResI
;
1004 for (const InputFile::Symbol
&Sym
: Syms
) {
1005 assert(ResITmp
!= ResE
);
1006 SymbolResolution Res
= *ResITmp
++;
1008 if (!Sym
.getIRName().empty()) {
1009 auto GUID
= GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
1010 Sym
.getIRName(), GlobalValue::ExternalLinkage
, ""));
1012 ThinLTO
.PrevailingModuleForGUID
[GUID
] = BM
.getModuleIdentifier();
1017 BM
.readSummary(ThinLTO
.CombinedIndex
, BM
.getModuleIdentifier(),
1018 [&](GlobalValue::GUID GUID
) {
1019 return ThinLTO
.PrevailingModuleForGUID
[GUID
] ==
1020 BM
.getModuleIdentifier();
1023 LLVM_DEBUG(dbgs() << "Module " << BM
.getModuleIdentifier() << "\n");
1025 for (const InputFile::Symbol
&Sym
: Syms
) {
1026 assert(ResI
!= ResE
);
1027 SymbolResolution Res
= *ResI
++;
1029 if (!Sym
.getIRName().empty()) {
1030 auto GUID
= GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
1031 Sym
.getIRName(), GlobalValue::ExternalLinkage
, ""));
1032 if (Res
.Prevailing
) {
1033 assert(ThinLTO
.PrevailingModuleForGUID
[GUID
] ==
1034 BM
.getModuleIdentifier());
1036 // For linker redefined symbols (via --wrap or --defsym) we want to
1037 // switch the linkage to `weak` to prevent IPOs from happening.
1038 // Find the summary in the module for this very GV and record the new
1039 // linkage so that we can switch it when we import the GV.
1040 if (Res
.LinkerRedefined
)
1041 if (auto S
= ThinLTO
.CombinedIndex
.findSummaryInModule(
1042 GUID
, BM
.getModuleIdentifier()))
1043 S
->setLinkage(GlobalValue::WeakAnyLinkage
);
1046 // If the linker resolved the symbol to a local definition then mark it
1047 // as local in the summary for the module we are adding.
1048 if (Res
.FinalDefinitionInLinkageUnit
) {
1049 if (auto S
= ThinLTO
.CombinedIndex
.findSummaryInModule(
1050 GUID
, BM
.getModuleIdentifier())) {
1051 S
->setDSOLocal(true);
1057 if (!ThinLTO
.ModuleMap
.insert({BM
.getModuleIdentifier(), BM
}).second
)
1058 return make_error
<StringError
>(
1059 "Expected at most one ThinLTO module per bitcode file",
1060 inconvertibleErrorCode());
1062 if (!Conf
.ThinLTOModulesToCompile
.empty()) {
1063 if (!ThinLTO
.ModulesToCompile
)
1064 ThinLTO
.ModulesToCompile
= ModuleMapType();
1065 // This is a fuzzy name matching where only modules with name containing the
1066 // specified switch values are going to be compiled.
1067 for (const std::string
&Name
: Conf
.ThinLTOModulesToCompile
) {
1068 if (BM
.getModuleIdentifier().contains(Name
)) {
1069 ThinLTO
.ModulesToCompile
->insert({BM
.getModuleIdentifier(), BM
});
1070 llvm::errs() << "[ThinLTO] Selecting " << BM
.getModuleIdentifier()
1076 return Error::success();
1079 unsigned LTO::getMaxTasks() const {
1080 CalledGetMaxTasks
= true;
1081 auto ModuleCount
= ThinLTO
.ModulesToCompile
? ThinLTO
.ModulesToCompile
->size()
1082 : ThinLTO
.ModuleMap
.size();
1083 return RegularLTO
.ParallelCodeGenParallelismLevel
+ ModuleCount
;
1086 // If only some of the modules were split, we cannot correctly handle
1087 // code that contains type tests or type checked loads.
1088 Error
LTO::checkPartiallySplit() {
1089 if (!ThinLTO
.CombinedIndex
.partiallySplitLTOUnits())
1090 return Error::success();
1092 Function
*TypeTestFunc
= RegularLTO
.CombinedModule
->getFunction(
1093 Intrinsic::getName(Intrinsic::type_test
));
1094 Function
*TypeCheckedLoadFunc
= RegularLTO
.CombinedModule
->getFunction(
1095 Intrinsic::getName(Intrinsic::type_checked_load
));
1096 Function
*TypeCheckedLoadRelativeFunc
=
1097 RegularLTO
.CombinedModule
->getFunction(
1098 Intrinsic::getName(Intrinsic::type_checked_load_relative
));
1100 // First check if there are type tests / type checked loads in the
1101 // merged regular LTO module IR.
1102 if ((TypeTestFunc
&& !TypeTestFunc
->use_empty()) ||
1103 (TypeCheckedLoadFunc
&& !TypeCheckedLoadFunc
->use_empty()) ||
1104 (TypeCheckedLoadRelativeFunc
&&
1105 !TypeCheckedLoadRelativeFunc
->use_empty()))
1106 return make_error
<StringError
>(
1107 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
1108 inconvertibleErrorCode());
1110 // Otherwise check if there are any recorded in the combined summary from the
1112 for (auto &P
: ThinLTO
.CombinedIndex
) {
1113 for (auto &S
: P
.second
.SummaryList
) {
1114 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
1117 if (!FS
->type_test_assume_vcalls().empty() ||
1118 !FS
->type_checked_load_vcalls().empty() ||
1119 !FS
->type_test_assume_const_vcalls().empty() ||
1120 !FS
->type_checked_load_const_vcalls().empty() ||
1121 !FS
->type_tests().empty())
1122 return make_error
<StringError
>(
1123 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
1124 inconvertibleErrorCode());
1127 return Error::success();
1130 Error
LTO::run(AddStreamFn AddStream
, FileCache Cache
) {
1131 // Compute "dead" symbols, we don't want to import/export these!
1132 DenseSet
<GlobalValue::GUID
> GUIDPreservedSymbols
;
1133 DenseMap
<GlobalValue::GUID
, PrevailingType
> GUIDPrevailingResolutions
;
1134 for (auto &Res
: GlobalResolutions
) {
1135 // Normally resolution have IR name of symbol. We can do nothing here
1136 // otherwise. See comments in GlobalResolution struct for more details.
1137 if (Res
.second
.IRName
.empty())
1140 GlobalValue::GUID GUID
= GlobalValue::getGUID(
1141 GlobalValue::dropLLVMManglingEscape(Res
.second
.IRName
));
1143 if (Res
.second
.VisibleOutsideSummary
&& Res
.second
.Prevailing
)
1144 GUIDPreservedSymbols
.insert(GUID
);
1146 if (Res
.second
.ExportDynamic
)
1147 DynamicExportSymbols
.insert(GUID
);
1149 GUIDPrevailingResolutions
[GUID
] =
1150 Res
.second
.Prevailing
? PrevailingType::Yes
: PrevailingType::No
;
1153 auto isPrevailing
= [&](GlobalValue::GUID G
) {
1154 auto It
= GUIDPrevailingResolutions
.find(G
);
1155 if (It
== GUIDPrevailingResolutions
.end())
1156 return PrevailingType::Unknown
;
1159 computeDeadSymbolsWithConstProp(ThinLTO
.CombinedIndex
, GUIDPreservedSymbols
,
1160 isPrevailing
, Conf
.OptLevel
> 0);
1162 // Setup output file to emit statistics.
1163 auto StatsFileOrErr
= setupStatsFile(Conf
.StatsFile
);
1164 if (!StatsFileOrErr
)
1165 return StatsFileOrErr
.takeError();
1166 std::unique_ptr
<ToolOutputFile
> StatsFile
= std::move(StatsFileOrErr
.get());
1168 // TODO: Ideally this would be controlled automatically by detecting that we
1169 // are linking with an allocator that supports these interfaces, rather than
1170 // an internal option (which would still be needed for tests, however). For
1171 // example, if the library exported a symbol like __malloc_hot_cold the linker
1172 // could recognize that and set a flag in the lto::Config.
1173 if (SupportsHotColdNew
)
1174 ThinLTO
.CombinedIndex
.setWithSupportsHotColdNew();
1176 Error Result
= runRegularLTO(AddStream
);
1178 Result
= runThinLTO(AddStream
, Cache
, GUIDPreservedSymbols
);
1181 PrintStatisticsJSON(StatsFile
->os());
1186 void lto::updateMemProfAttributes(Module
&Mod
,
1187 const ModuleSummaryIndex
&Index
) {
1188 if (Index
.withSupportsHotColdNew())
1191 // The profile matcher applies hotness attributes directly for allocations,
1192 // and those will cause us to generate calls to the hot/cold interfaces
1193 // unconditionally. If supports-hot-cold-new was not enabled in the LTO
1194 // link then assume we don't want these calls (e.g. not linking with
1195 // the appropriate library, or otherwise trying to disable this behavior).
1196 for (auto &F
: Mod
) {
1197 for (auto &BB
: F
) {
1198 for (auto &I
: BB
) {
1199 auto *CI
= dyn_cast
<CallBase
>(&I
);
1202 if (CI
->hasFnAttr("memprof"))
1203 CI
->removeFnAttr("memprof");
1204 // Strip off all memprof metadata as it is no longer needed.
1205 // Importantly, this avoids the addition of new memprof attributes
1206 // after inlining propagation.
1207 // TODO: If we support additional types of MemProf metadata beyond hot
1208 // and cold, we will need to update the metadata based on the allocator
1209 // APIs supported instead of completely stripping all.
1210 CI
->setMetadata(LLVMContext::MD_memprof
, nullptr);
1211 CI
->setMetadata(LLVMContext::MD_callsite
, nullptr);
1217 Error
LTO::runRegularLTO(AddStreamFn AddStream
) {
1218 // Setup optimization remarks.
1219 auto DiagFileOrErr
= lto::setupLLVMOptimizationRemarks(
1220 RegularLTO
.CombinedModule
->getContext(), Conf
.RemarksFilename
,
1221 Conf
.RemarksPasses
, Conf
.RemarksFormat
, Conf
.RemarksWithHotness
,
1222 Conf
.RemarksHotnessThreshold
);
1223 LLVM_DEBUG(dbgs() << "Running regular LTO\n");
1225 return DiagFileOrErr
.takeError();
1226 DiagnosticOutputFile
= std::move(*DiagFileOrErr
);
1228 // Finalize linking of regular LTO modules containing summaries now that
1229 // we have computed liveness information.
1230 for (auto &M
: RegularLTO
.ModsWithSummaries
)
1231 if (Error Err
= linkRegularLTO(std::move(M
),
1232 /*LivenessFromIndex=*/true))
1235 // Ensure we don't have inconsistently split LTO units with type tests.
1236 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take
1237 // this path both cases but eventually this should be split into two and
1238 // do the ThinLTO checks in `runThinLTO`.
1239 if (Error Err
= checkPartiallySplit())
1242 // Make sure commons have the right size/alignment: we kept the largest from
1243 // all the prevailing when adding the inputs, and we apply it here.
1244 const DataLayout
&DL
= RegularLTO
.CombinedModule
->getDataLayout();
1245 for (auto &I
: RegularLTO
.Commons
) {
1246 if (!I
.second
.Prevailing
)
1247 // Don't do anything if no instance of this common was prevailing.
1249 GlobalVariable
*OldGV
= RegularLTO
.CombinedModule
->getNamedGlobal(I
.first
);
1250 if (OldGV
&& DL
.getTypeAllocSize(OldGV
->getValueType()) == I
.second
.Size
) {
1251 // Don't create a new global if the type is already correct, just make
1252 // sure the alignment is correct.
1253 OldGV
->setAlignment(I
.second
.Alignment
);
1257 ArrayType::get(Type::getInt8Ty(RegularLTO
.Ctx
), I
.second
.Size
);
1258 auto *GV
= new GlobalVariable(*RegularLTO
.CombinedModule
, Ty
, false,
1259 GlobalValue::CommonLinkage
,
1260 ConstantAggregateZero::get(Ty
), "");
1261 GV
->setAlignment(I
.second
.Alignment
);
1263 OldGV
->replaceAllUsesWith(ConstantExpr::getBitCast(GV
, OldGV
->getType()));
1264 GV
->takeName(OldGV
);
1265 OldGV
->eraseFromParent();
1267 GV
->setName(I
.first
);
1271 updateMemProfAttributes(*RegularLTO
.CombinedModule
, ThinLTO
.CombinedIndex
);
1273 bool WholeProgramVisibilityEnabledInLTO
=
1274 Conf
.HasWholeProgramVisibility
&&
1275 // If validation is enabled, upgrade visibility only when all vtables
1277 (!Conf
.ValidateAllVtablesHaveTypeInfos
|| Conf
.AllVtablesHaveTypeInfos
);
1279 // This returns true when the name is local or not defined. Locals are
1280 // expected to be handled separately.
1281 auto IsVisibleToRegularObj
= [&](StringRef name
) {
1282 auto It
= GlobalResolutions
.find(name
);
1283 return (It
== GlobalResolutions
.end() || It
->second
.VisibleOutsideSummary
);
1286 // If allowed, upgrade public vcall visibility metadata to linkage unit
1287 // visibility before whole program devirtualization in the optimizer.
1288 updateVCallVisibilityInModule(
1289 *RegularLTO
.CombinedModule
, WholeProgramVisibilityEnabledInLTO
,
1290 DynamicExportSymbols
, Conf
.ValidateAllVtablesHaveTypeInfos
,
1291 IsVisibleToRegularObj
);
1292 updatePublicTypeTestCalls(*RegularLTO
.CombinedModule
,
1293 WholeProgramVisibilityEnabledInLTO
);
1295 if (Conf
.PreOptModuleHook
&&
1296 !Conf
.PreOptModuleHook(0, *RegularLTO
.CombinedModule
))
1297 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1299 if (!Conf
.CodeGenOnly
) {
1300 for (const auto &R
: GlobalResolutions
) {
1302 RegularLTO
.CombinedModule
->getNamedValue(R
.second
.IRName
);
1303 if (!R
.second
.isPrevailingIRSymbol())
1305 if (R
.second
.Partition
!= 0 &&
1306 R
.second
.Partition
!= GlobalResolution::External
)
1309 // Ignore symbols defined in other partitions.
1310 // Also skip declarations, which are not allowed to have internal linkage.
1311 if (!GV
|| GV
->hasLocalLinkage() || GV
->isDeclaration())
1314 // Symbols that are marked DLLImport or DLLExport should not be
1315 // internalized, as they are either externally visible or referencing
1316 // external symbols. Symbols that have AvailableExternally or Appending
1317 // linkage might be used by future passes and should be kept as is.
1318 // These linkages are seen in Unified regular LTO, because the process
1319 // of creating split LTO units introduces symbols with that linkage into
1320 // one of the created modules. Normally, only the ThinLTO backend would
1321 // compile this module, but Unified Regular LTO processes both
1322 // modules created by the splitting process as regular LTO modules.
1323 if ((LTOMode
== LTOKind::LTOK_UnifiedRegular
) &&
1324 ((GV
->getDLLStorageClass() != GlobalValue::DefaultStorageClass
) ||
1325 GV
->hasAvailableExternallyLinkage() || GV
->hasAppendingLinkage()))
1328 GV
->setUnnamedAddr(R
.second
.UnnamedAddr
? GlobalValue::UnnamedAddr::Global
1329 : GlobalValue::UnnamedAddr::None
);
1330 if (EnableLTOInternalization
&& R
.second
.Partition
== 0)
1331 GV
->setLinkage(GlobalValue::InternalLinkage
);
1334 if (Conf
.PostInternalizeModuleHook
&&
1335 !Conf
.PostInternalizeModuleHook(0, *RegularLTO
.CombinedModule
))
1336 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1339 if (!RegularLTO
.EmptyCombinedModule
|| Conf
.AlwaysEmitRegularLTOObj
) {
1341 backend(Conf
, AddStream
, RegularLTO
.ParallelCodeGenParallelismLevel
,
1342 *RegularLTO
.CombinedModule
, ThinLTO
.CombinedIndex
))
1346 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1349 static const char *libcallRoutineNames
[] = {
1350 #define HANDLE_LIBCALL(code, name) name,
1351 #include "llvm/IR/RuntimeLibcalls.def"
1352 #undef HANDLE_LIBCALL
1355 ArrayRef
<const char*> LTO::getRuntimeLibcallSymbols() {
1356 return ArrayRef(libcallRoutineNames
);
1359 /// This class defines the interface to the ThinLTO backend.
1360 class lto::ThinBackendProc
{
1363 ModuleSummaryIndex
&CombinedIndex
;
1364 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
;
1365 lto::IndexWriteCallback OnWrite
;
1366 bool ShouldEmitImportsFiles
;
1370 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1371 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1372 lto::IndexWriteCallback OnWrite
, bool ShouldEmitImportsFiles
)
1373 : Conf(Conf
), CombinedIndex(CombinedIndex
),
1374 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries
),
1375 OnWrite(OnWrite
), ShouldEmitImportsFiles(ShouldEmitImportsFiles
) {}
1377 virtual ~ThinBackendProc() = default;
1378 virtual Error
start(
1379 unsigned Task
, BitcodeModule BM
,
1380 const FunctionImporter::ImportMapTy
&ImportList
,
1381 const FunctionImporter::ExportSetTy
&ExportList
,
1382 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1383 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) = 0;
1384 virtual Error
wait() = 0;
1385 virtual unsigned getThreadCount() = 0;
1387 // Write sharded indices and (optionally) imports to disk
1388 Error
emitFiles(const FunctionImporter::ImportMapTy
&ImportList
,
1389 llvm::StringRef ModulePath
,
1390 const std::string
&NewModulePath
) {
1391 std::map
<std::string
, GVSummaryMapTy
> ModuleToSummariesForIndex
;
1393 gatherImportedSummariesForModule(ModulePath
, ModuleToDefinedGVSummaries
,
1394 ImportList
, ModuleToSummariesForIndex
);
1396 raw_fd_ostream
OS(NewModulePath
+ ".thinlto.bc", EC
,
1397 sys::fs::OpenFlags::OF_None
);
1399 return errorCodeToError(EC
);
1400 writeIndexToFile(CombinedIndex
, OS
, &ModuleToSummariesForIndex
);
1402 if (ShouldEmitImportsFiles
) {
1403 EC
= EmitImportsFiles(ModulePath
, NewModulePath
+ ".imports",
1404 ModuleToSummariesForIndex
);
1406 return errorCodeToError(EC
);
1408 return Error::success();
1413 class InProcessThinBackend
: public ThinBackendProc
{
1414 ThreadPool BackendThreadPool
;
1415 AddStreamFn AddStream
;
1417 std::set
<GlobalValue::GUID
> CfiFunctionDefs
;
1418 std::set
<GlobalValue::GUID
> CfiFunctionDecls
;
1420 std::optional
<Error
> Err
;
1423 bool ShouldEmitIndexFiles
;
1426 InProcessThinBackend(
1427 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1428 ThreadPoolStrategy ThinLTOParallelism
,
1429 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1430 AddStreamFn AddStream
, FileCache Cache
, lto::IndexWriteCallback OnWrite
,
1431 bool ShouldEmitIndexFiles
, bool ShouldEmitImportsFiles
)
1432 : ThinBackendProc(Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
,
1433 OnWrite
, ShouldEmitImportsFiles
),
1434 BackendThreadPool(ThinLTOParallelism
), AddStream(std::move(AddStream
)),
1435 Cache(std::move(Cache
)), ShouldEmitIndexFiles(ShouldEmitIndexFiles
) {
1436 for (auto &Name
: CombinedIndex
.cfiFunctionDefs())
1437 CfiFunctionDefs
.insert(
1438 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name
)));
1439 for (auto &Name
: CombinedIndex
.cfiFunctionDecls())
1440 CfiFunctionDecls
.insert(
1441 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name
)));
1444 Error
runThinLTOBackendThread(
1445 AddStreamFn AddStream
, FileCache Cache
, unsigned Task
, BitcodeModule BM
,
1446 ModuleSummaryIndex
&CombinedIndex
,
1447 const FunctionImporter::ImportMapTy
&ImportList
,
1448 const FunctionImporter::ExportSetTy
&ExportList
,
1449 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1450 const GVSummaryMapTy
&DefinedGlobals
,
1451 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) {
1452 auto RunThinBackend
= [&](AddStreamFn AddStream
) {
1453 LTOLLVMContext
BackendContext(Conf
);
1454 Expected
<std::unique_ptr
<Module
>> MOrErr
= BM
.parseModule(BackendContext
);
1456 return MOrErr
.takeError();
1458 return thinBackend(Conf
, Task
, AddStream
, **MOrErr
, CombinedIndex
,
1459 ImportList
, DefinedGlobals
, &ModuleMap
);
1462 auto ModuleID
= BM
.getModuleIdentifier();
1464 if (ShouldEmitIndexFiles
) {
1465 if (auto E
= emitFiles(ImportList
, ModuleID
, ModuleID
.str()))
1469 if (!Cache
|| !CombinedIndex
.modulePaths().count(ModuleID
) ||
1470 all_of(CombinedIndex
.getModuleHash(ModuleID
),
1471 [](uint32_t V
) { return V
== 0; }))
1472 // Cache disabled or no entry for this module in the combined index or
1474 return RunThinBackend(AddStream
);
1476 SmallString
<40> Key
;
1477 // The module may be cached, this helps handling it.
1478 computeLTOCacheKey(Key
, Conf
, CombinedIndex
, ModuleID
, ImportList
,
1479 ExportList
, ResolvedODR
, DefinedGlobals
, CfiFunctionDefs
,
1481 Expected
<AddStreamFn
> CacheAddStreamOrErr
= Cache(Task
, Key
, ModuleID
);
1482 if (Error Err
= CacheAddStreamOrErr
.takeError())
1484 AddStreamFn
&CacheAddStream
= *CacheAddStreamOrErr
;
1486 return RunThinBackend(CacheAddStream
);
1488 return Error::success();
1492 unsigned Task
, BitcodeModule BM
,
1493 const FunctionImporter::ImportMapTy
&ImportList
,
1494 const FunctionImporter::ExportSetTy
&ExportList
,
1495 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1496 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) override
{
1497 StringRef ModulePath
= BM
.getModuleIdentifier();
1498 assert(ModuleToDefinedGVSummaries
.count(ModulePath
));
1499 const GVSummaryMapTy
&DefinedGlobals
=
1500 ModuleToDefinedGVSummaries
.find(ModulePath
)->second
;
1501 BackendThreadPool
.async(
1502 [=](BitcodeModule BM
, ModuleSummaryIndex
&CombinedIndex
,
1503 const FunctionImporter::ImportMapTy
&ImportList
,
1504 const FunctionImporter::ExportSetTy
&ExportList
,
1505 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
>
1507 const GVSummaryMapTy
&DefinedGlobals
,
1508 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) {
1509 if (LLVM_ENABLE_THREADS
&& Conf
.TimeTraceEnabled
)
1510 timeTraceProfilerInitialize(Conf
.TimeTraceGranularity
,
1512 Error E
= runThinLTOBackendThread(
1513 AddStream
, Cache
, Task
, BM
, CombinedIndex
, ImportList
, ExportList
,
1514 ResolvedODR
, DefinedGlobals
, ModuleMap
);
1516 std::unique_lock
<std::mutex
> L(ErrMu
);
1518 Err
= joinErrors(std::move(*Err
), std::move(E
));
1522 if (LLVM_ENABLE_THREADS
&& Conf
.TimeTraceEnabled
)
1523 timeTraceProfilerFinishThread();
1525 BM
, std::ref(CombinedIndex
), std::ref(ImportList
), std::ref(ExportList
),
1526 std::ref(ResolvedODR
), std::ref(DefinedGlobals
), std::ref(ModuleMap
));
1529 OnWrite(std::string(ModulePath
));
1530 return Error::success();
1533 Error
wait() override
{
1534 BackendThreadPool
.wait();
1536 return std::move(*Err
);
1538 return Error::success();
1541 unsigned getThreadCount() override
{
1542 return BackendThreadPool
.getThreadCount();
1545 } // end anonymous namespace
1547 ThinBackend
lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism
,
1548 lto::IndexWriteCallback OnWrite
,
1549 bool ShouldEmitIndexFiles
,
1550 bool ShouldEmitImportsFiles
) {
1552 [=](const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1553 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1554 AddStreamFn AddStream
, FileCache Cache
) {
1555 return std::make_unique
<InProcessThinBackend
>(
1556 Conf
, CombinedIndex
, Parallelism
, ModuleToDefinedGVSummaries
,
1557 AddStream
, Cache
, OnWrite
, ShouldEmitIndexFiles
,
1558 ShouldEmitImportsFiles
);
1562 // Given the original \p Path to an output file, replace any path
1563 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the
1564 // resulting directory if it does not yet exist.
1565 std::string
lto::getThinLTOOutputFile(StringRef Path
, StringRef OldPrefix
,
1566 StringRef NewPrefix
) {
1567 if (OldPrefix
.empty() && NewPrefix
.empty())
1568 return std::string(Path
);
1569 SmallString
<128> NewPath(Path
);
1570 llvm::sys::path::replace_path_prefix(NewPath
, OldPrefix
, NewPrefix
);
1571 StringRef ParentPath
= llvm::sys::path::parent_path(NewPath
.str());
1572 if (!ParentPath
.empty()) {
1573 // Make sure the new directory exists, creating it if necessary.
1574 if (std::error_code EC
= llvm::sys::fs::create_directories(ParentPath
))
1575 llvm::errs() << "warning: could not create directory '" << ParentPath
1576 << "': " << EC
.message() << '\n';
1578 return std::string(NewPath
.str());
1582 class WriteIndexesThinBackend
: public ThinBackendProc
{
1583 std::string OldPrefix
, NewPrefix
, NativeObjectPrefix
;
1584 raw_fd_ostream
*LinkedObjectsFile
;
1587 WriteIndexesThinBackend(
1588 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1589 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1590 std::string OldPrefix
, std::string NewPrefix
,
1591 std::string NativeObjectPrefix
, bool ShouldEmitImportsFiles
,
1592 raw_fd_ostream
*LinkedObjectsFile
, lto::IndexWriteCallback OnWrite
)
1593 : ThinBackendProc(Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
,
1594 OnWrite
, ShouldEmitImportsFiles
),
1595 OldPrefix(OldPrefix
), NewPrefix(NewPrefix
),
1596 NativeObjectPrefix(NativeObjectPrefix
),
1597 LinkedObjectsFile(LinkedObjectsFile
) {}
1600 unsigned Task
, BitcodeModule BM
,
1601 const FunctionImporter::ImportMapTy
&ImportList
,
1602 const FunctionImporter::ExportSetTy
&ExportList
,
1603 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1604 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) override
{
1605 StringRef ModulePath
= BM
.getModuleIdentifier();
1606 std::string NewModulePath
=
1607 getThinLTOOutputFile(ModulePath
, OldPrefix
, NewPrefix
);
1609 if (LinkedObjectsFile
) {
1610 std::string ObjectPrefix
=
1611 NativeObjectPrefix
.empty() ? NewPrefix
: NativeObjectPrefix
;
1612 std::string LinkedObjectsFilePath
=
1613 getThinLTOOutputFile(ModulePath
, OldPrefix
, ObjectPrefix
);
1614 *LinkedObjectsFile
<< LinkedObjectsFilePath
<< '\n';
1617 if (auto E
= emitFiles(ImportList
, ModulePath
, NewModulePath
))
1621 OnWrite(std::string(ModulePath
));
1622 return Error::success();
1625 Error
wait() override
{ return Error::success(); }
1627 // WriteIndexesThinBackend should always return 1 to prevent module
1628 // re-ordering and avoid non-determinism in the final link.
1629 unsigned getThreadCount() override
{ return 1; }
1631 } // end anonymous namespace
1633 ThinBackend
lto::createWriteIndexesThinBackend(
1634 std::string OldPrefix
, std::string NewPrefix
,
1635 std::string NativeObjectPrefix
, bool ShouldEmitImportsFiles
,
1636 raw_fd_ostream
*LinkedObjectsFile
, IndexWriteCallback OnWrite
) {
1638 [=](const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1639 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1640 AddStreamFn AddStream
, FileCache Cache
) {
1641 return std::make_unique
<WriteIndexesThinBackend
>(
1642 Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
, OldPrefix
,
1643 NewPrefix
, NativeObjectPrefix
, ShouldEmitImportsFiles
,
1644 LinkedObjectsFile
, OnWrite
);
1648 Error
LTO::runThinLTO(AddStreamFn AddStream
, FileCache Cache
,
1649 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
1650 LLVM_DEBUG(dbgs() << "Running ThinLTO\n");
1651 ThinLTO
.CombinedIndex
.releaseTemporaryMemory();
1652 timeTraceProfilerBegin("ThinLink", StringRef(""));
1653 auto TimeTraceScopeExit
= llvm::make_scope_exit([]() {
1654 if (llvm::timeTraceProfilerEnabled())
1655 llvm::timeTraceProfilerEnd();
1657 if (ThinLTO
.ModuleMap
.empty())
1658 return Error::success();
1660 if (ThinLTO
.ModulesToCompile
&& ThinLTO
.ModulesToCompile
->empty()) {
1661 llvm::errs() << "warning: [ThinLTO] No module compiled\n";
1662 return Error::success();
1665 if (Conf
.CombinedIndexHook
&&
1666 !Conf
.CombinedIndexHook(ThinLTO
.CombinedIndex
, GUIDPreservedSymbols
))
1667 return Error::success();
1669 // Collect for each module the list of function it defines (GUID ->
1671 DenseMap
<StringRef
, GVSummaryMapTy
> ModuleToDefinedGVSummaries(
1672 ThinLTO
.ModuleMap
.size());
1673 ThinLTO
.CombinedIndex
.collectDefinedGVSummariesPerModule(
1674 ModuleToDefinedGVSummaries
);
1675 // Create entries for any modules that didn't have any GV summaries
1676 // (either they didn't have any GVs to start with, or we suppressed
1677 // generation of the summaries because they e.g. had inline assembly
1678 // uses that couldn't be promoted/renamed on export). This is so
1679 // InProcessThinBackend::start can still launch a backend thread, which
1680 // is passed the map of summaries for the module, without any special
1681 // handling for this case.
1682 for (auto &Mod
: ThinLTO
.ModuleMap
)
1683 if (!ModuleToDefinedGVSummaries
.count(Mod
.first
))
1684 ModuleToDefinedGVSummaries
.try_emplace(Mod
.first
);
1686 // Synthesize entry counts for functions in the CombinedIndex.
1687 computeSyntheticCounts(ThinLTO
.CombinedIndex
);
1689 DenseMap
<StringRef
, FunctionImporter::ImportMapTy
> ImportLists(
1690 ThinLTO
.ModuleMap
.size());
1691 DenseMap
<StringRef
, FunctionImporter::ExportSetTy
> ExportLists(
1692 ThinLTO
.ModuleMap
.size());
1693 StringMap
<std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
>> ResolvedODR
;
1696 ThinLTO
.CombinedIndex
.dumpSCCs(outs());
1698 std::set
<GlobalValue::GUID
> ExportedGUIDs
;
1700 bool WholeProgramVisibilityEnabledInLTO
=
1701 Conf
.HasWholeProgramVisibility
&&
1702 // If validation is enabled, upgrade visibility only when all vtables
1704 (!Conf
.ValidateAllVtablesHaveTypeInfos
|| Conf
.AllVtablesHaveTypeInfos
);
1705 if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
))
1706 ThinLTO
.CombinedIndex
.setWithWholeProgramVisibility();
1708 // If we're validating, get the vtable symbols that should not be
1709 // upgraded because they correspond to typeIDs outside of index-based
1711 DenseSet
<GlobalValue::GUID
> VisibleToRegularObjSymbols
;
1712 if (WholeProgramVisibilityEnabledInLTO
&&
1713 Conf
.ValidateAllVtablesHaveTypeInfos
) {
1714 // This returns true when the name is local or not defined. Locals are
1715 // expected to be handled separately.
1716 auto IsVisibleToRegularObj
= [&](StringRef name
) {
1717 auto It
= GlobalResolutions
.find(name
);
1718 return (It
== GlobalResolutions
.end() ||
1719 It
->second
.VisibleOutsideSummary
);
1722 getVisibleToRegularObjVtableGUIDs(ThinLTO
.CombinedIndex
,
1723 VisibleToRegularObjSymbols
,
1724 IsVisibleToRegularObj
);
1727 // If allowed, upgrade public vcall visibility to linkage unit visibility in
1728 // the summaries before whole program devirtualization below.
1729 updateVCallVisibilityInIndex(
1730 ThinLTO
.CombinedIndex
, WholeProgramVisibilityEnabledInLTO
,
1731 DynamicExportSymbols
, VisibleToRegularObjSymbols
);
1733 // Perform index-based WPD. This will return immediately if there are
1734 // no index entries in the typeIdMetadata map (e.g. if we are instead
1735 // performing IR-based WPD in hybrid regular/thin LTO mode).
1736 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> LocalWPDTargetsMap
;
1737 runWholeProgramDevirtOnIndex(ThinLTO
.CombinedIndex
, ExportedGUIDs
,
1738 LocalWPDTargetsMap
);
1740 auto isPrevailing
= [&](GlobalValue::GUID GUID
, const GlobalValueSummary
*S
) {
1741 return ThinLTO
.PrevailingModuleForGUID
[GUID
] == S
->modulePath();
1743 if (EnableMemProfContextDisambiguation
) {
1744 MemProfContextDisambiguation ContextDisambiguation
;
1745 ContextDisambiguation
.run(ThinLTO
.CombinedIndex
, isPrevailing
);
1748 if (Conf
.OptLevel
> 0)
1749 ComputeCrossModuleImport(ThinLTO
.CombinedIndex
, ModuleToDefinedGVSummaries
,
1750 isPrevailing
, ImportLists
, ExportLists
);
1752 // Figure out which symbols need to be internalized. This also needs to happen
1753 // at -O0 because summary-based DCE is implemented using internalization, and
1754 // we must apply DCE consistently with the full LTO module in order to avoid
1755 // undefined references during the final link.
1756 for (auto &Res
: GlobalResolutions
) {
1757 // If the symbol does not have external references or it is not prevailing,
1758 // then not need to mark it as exported from a ThinLTO partition.
1759 if (Res
.second
.Partition
!= GlobalResolution::External
||
1760 !Res
.second
.isPrevailingIRSymbol())
1762 auto GUID
= GlobalValue::getGUID(
1763 GlobalValue::dropLLVMManglingEscape(Res
.second
.IRName
));
1764 // Mark exported unless index-based analysis determined it to be dead.
1765 if (ThinLTO
.CombinedIndex
.isGUIDLive(GUID
))
1766 ExportedGUIDs
.insert(GUID
);
1769 // Any functions referenced by the jump table in the regular LTO object must
1771 for (auto &Def
: ThinLTO
.CombinedIndex
.cfiFunctionDefs())
1772 ExportedGUIDs
.insert(
1773 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def
)));
1774 for (auto &Decl
: ThinLTO
.CombinedIndex
.cfiFunctionDecls())
1775 ExportedGUIDs
.insert(
1776 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl
)));
1778 auto isExported
= [&](StringRef ModuleIdentifier
, ValueInfo VI
) {
1779 const auto &ExportList
= ExportLists
.find(ModuleIdentifier
);
1780 return (ExportList
!= ExportLists
.end() && ExportList
->second
.count(VI
)) ||
1781 ExportedGUIDs
.count(VI
.getGUID());
1784 // Update local devirtualized targets that were exported by cross-module
1785 // importing or by other devirtualizations marked in the ExportedGUIDs set.
1786 updateIndexWPDForExports(ThinLTO
.CombinedIndex
, isExported
,
1787 LocalWPDTargetsMap
);
1789 thinLTOInternalizeAndPromoteInIndex(ThinLTO
.CombinedIndex
, isExported
,
1792 auto recordNewLinkage
= [&](StringRef ModuleIdentifier
,
1793 GlobalValue::GUID GUID
,
1794 GlobalValue::LinkageTypes NewLinkage
) {
1795 ResolvedODR
[ModuleIdentifier
][GUID
] = NewLinkage
;
1797 thinLTOResolvePrevailingInIndex(Conf
, ThinLTO
.CombinedIndex
, isPrevailing
,
1798 recordNewLinkage
, GUIDPreservedSymbols
);
1800 thinLTOPropagateFunctionAttrs(ThinLTO
.CombinedIndex
, isPrevailing
);
1802 generateParamAccessSummary(ThinLTO
.CombinedIndex
);
1804 if (llvm::timeTraceProfilerEnabled())
1805 llvm::timeTraceProfilerEnd();
1807 TimeTraceScopeExit
.release();
1809 std::unique_ptr
<ThinBackendProc
> BackendProc
=
1810 ThinLTO
.Backend(Conf
, ThinLTO
.CombinedIndex
, ModuleToDefinedGVSummaries
,
1814 ThinLTO
.ModulesToCompile
? *ThinLTO
.ModulesToCompile
: ThinLTO
.ModuleMap
;
1816 auto ProcessOneModule
= [&](int I
) -> Error
{
1817 auto &Mod
= *(ModuleMap
.begin() + I
);
1818 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for
1819 // combined module and parallel code generation partitions.
1820 return BackendProc
->start(RegularLTO
.ParallelCodeGenParallelismLevel
+ I
,
1821 Mod
.second
, ImportLists
[Mod
.first
],
1822 ExportLists
[Mod
.first
], ResolvedODR
[Mod
.first
],
1826 if (BackendProc
->getThreadCount() == 1) {
1827 // Process the modules in the order they were provided on the command-line.
1828 // It is important for this codepath to be used for WriteIndexesThinBackend,
1829 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same
1830 // order as the inputs, which otherwise would affect the final link order.
1831 for (int I
= 0, E
= ModuleMap
.size(); I
!= E
; ++I
)
1832 if (Error E
= ProcessOneModule(I
))
1835 // When executing in parallel, process largest bitsize modules first to
1836 // improve parallelism, and avoid starving the thread pool near the end.
1837 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out
1839 std::vector
<BitcodeModule
*> ModulesVec
;
1840 ModulesVec
.reserve(ModuleMap
.size());
1841 for (auto &Mod
: ModuleMap
)
1842 ModulesVec
.push_back(&Mod
.second
);
1843 for (int I
: generateModulesOrdering(ModulesVec
))
1844 if (Error E
= ProcessOneModule(I
))
1847 return BackendProc
->wait();
1850 Expected
<std::unique_ptr
<ToolOutputFile
>> lto::setupLLVMOptimizationRemarks(
1851 LLVMContext
&Context
, StringRef RemarksFilename
, StringRef RemarksPasses
,
1852 StringRef RemarksFormat
, bool RemarksWithHotness
,
1853 std::optional
<uint64_t> RemarksHotnessThreshold
, int Count
) {
1854 std::string Filename
= std::string(RemarksFilename
);
1855 // For ThinLTO, file.opt.<format> becomes
1856 // file.opt.<format>.thin.<num>.<format>.
1857 if (!Filename
.empty() && Count
!= -1)
1859 (Twine(Filename
) + ".thin." + llvm::utostr(Count
) + "." + RemarksFormat
)
1862 auto ResultOrErr
= llvm::setupLLVMOptimizationRemarks(
1863 Context
, Filename
, RemarksPasses
, RemarksFormat
, RemarksWithHotness
,
1864 RemarksHotnessThreshold
);
1865 if (Error E
= ResultOrErr
.takeError())
1866 return std::move(E
);
1869 (*ResultOrErr
)->keep();
1874 Expected
<std::unique_ptr
<ToolOutputFile
>>
1875 lto::setupStatsFile(StringRef StatsFilename
) {
1876 // Setup output file to emit statistics.
1877 if (StatsFilename
.empty())
1880 llvm::EnableStatistics(false);
1883 std::make_unique
<ToolOutputFile
>(StatsFilename
, EC
, sys::fs::OF_None
);
1885 return errorCodeToError(EC
);
1888 return std::move(StatsFile
);
1891 // Compute the ordering we will process the inputs: the rough heuristic here
1892 // is to sort them per size so that the largest module get schedule as soon as
1893 // possible. This is purely a compile-time optimization.
1894 std::vector
<int> lto::generateModulesOrdering(ArrayRef
<BitcodeModule
*> R
) {
1895 auto Seq
= llvm::seq
<int>(0, R
.size());
1896 std::vector
<int> ModulesOrdering(Seq
.begin(), Seq
.end());
1897 llvm::sort(ModulesOrdering
, [&](int LeftIndex
, int RightIndex
) {
1898 auto LSize
= R
[LeftIndex
]->getBuffer().size();
1899 auto RSize
= R
[RightIndex
]->getBuffer().size();
1900 return LSize
> RSize
;
1902 return ModulesOrdering
;