Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Support / APInt.cpp
blob05b1526da95ff7dfde76779ff2d09e16831e0f08
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/bit.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/Support/Alignment.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <cmath>
28 #include <optional>
30 using namespace llvm;
32 #define DEBUG_TYPE "apint"
34 /// A utility function for allocating memory, checking for allocation failures,
35 /// and ensuring the contents are zeroed.
36 inline static uint64_t* getClearedMemory(unsigned numWords) {
37 uint64_t *result = new uint64_t[numWords];
38 memset(result, 0, numWords * sizeof(uint64_t));
39 return result;
42 /// A utility function for allocating memory and checking for allocation
43 /// failure. The content is not zeroed.
44 inline static uint64_t* getMemory(unsigned numWords) {
45 return new uint64_t[numWords];
48 /// A utility function that converts a character to a digit.
49 inline static unsigned getDigit(char cdigit, uint8_t radix) {
50 unsigned r;
52 if (radix == 16 || radix == 36) {
53 r = cdigit - '0';
54 if (r <= 9)
55 return r;
57 r = cdigit - 'A';
58 if (r <= radix - 11U)
59 return r + 10;
61 r = cdigit - 'a';
62 if (r <= radix - 11U)
63 return r + 10;
65 radix = 10;
68 r = cdigit - '0';
69 if (r < radix)
70 return r;
72 return UINT_MAX;
76 void APInt::initSlowCase(uint64_t val, bool isSigned) {
77 U.pVal = getClearedMemory(getNumWords());
78 U.pVal[0] = val;
79 if (isSigned && int64_t(val) < 0)
80 for (unsigned i = 1; i < getNumWords(); ++i)
81 U.pVal[i] = WORDTYPE_MAX;
82 clearUnusedBits();
85 void APInt::initSlowCase(const APInt& that) {
86 U.pVal = getMemory(getNumWords());
87 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
90 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
91 assert(bigVal.data() && "Null pointer detected!");
92 if (isSingleWord())
93 U.VAL = bigVal[0];
94 else {
95 // Get memory, cleared to 0
96 U.pVal = getClearedMemory(getNumWords());
97 // Calculate the number of words to copy
98 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
99 // Copy the words from bigVal to pVal
100 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
102 // Make sure unused high bits are cleared
103 clearUnusedBits();
106 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
107 initFromArray(bigVal);
110 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
111 : BitWidth(numBits) {
112 initFromArray(ArrayRef(bigVal, numWords));
115 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
116 : BitWidth(numbits) {
117 fromString(numbits, Str, radix);
120 void APInt::reallocate(unsigned NewBitWidth) {
121 // If the number of words is the same we can just change the width and stop.
122 if (getNumWords() == getNumWords(NewBitWidth)) {
123 BitWidth = NewBitWidth;
124 return;
127 // If we have an allocation, delete it.
128 if (!isSingleWord())
129 delete [] U.pVal;
131 // Update BitWidth.
132 BitWidth = NewBitWidth;
134 // If we are supposed to have an allocation, create it.
135 if (!isSingleWord())
136 U.pVal = getMemory(getNumWords());
139 void APInt::assignSlowCase(const APInt &RHS) {
140 // Don't do anything for X = X
141 if (this == &RHS)
142 return;
144 // Adjust the bit width and handle allocations as necessary.
145 reallocate(RHS.getBitWidth());
147 // Copy the data.
148 if (isSingleWord())
149 U.VAL = RHS.U.VAL;
150 else
151 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
154 /// This method 'profiles' an APInt for use with FoldingSet.
155 void APInt::Profile(FoldingSetNodeID& ID) const {
156 ID.AddInteger(BitWidth);
158 if (isSingleWord()) {
159 ID.AddInteger(U.VAL);
160 return;
163 unsigned NumWords = getNumWords();
164 for (unsigned i = 0; i < NumWords; ++i)
165 ID.AddInteger(U.pVal[i]);
168 bool APInt::isAligned(Align A) const {
169 if (isZero())
170 return true;
171 const unsigned TrailingZeroes = countr_zero();
172 const unsigned MinimumTrailingZeroes = Log2(A);
173 return TrailingZeroes >= MinimumTrailingZeroes;
176 /// Prefix increment operator. Increments the APInt by one.
177 APInt& APInt::operator++() {
178 if (isSingleWord())
179 ++U.VAL;
180 else
181 tcIncrement(U.pVal, getNumWords());
182 return clearUnusedBits();
185 /// Prefix decrement operator. Decrements the APInt by one.
186 APInt& APInt::operator--() {
187 if (isSingleWord())
188 --U.VAL;
189 else
190 tcDecrement(U.pVal, getNumWords());
191 return clearUnusedBits();
194 /// Adds the RHS APInt to this APInt.
195 /// @returns this, after addition of RHS.
196 /// Addition assignment operator.
197 APInt& APInt::operator+=(const APInt& RHS) {
198 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
199 if (isSingleWord())
200 U.VAL += RHS.U.VAL;
201 else
202 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
203 return clearUnusedBits();
206 APInt& APInt::operator+=(uint64_t RHS) {
207 if (isSingleWord())
208 U.VAL += RHS;
209 else
210 tcAddPart(U.pVal, RHS, getNumWords());
211 return clearUnusedBits();
214 /// Subtracts the RHS APInt from this APInt
215 /// @returns this, after subtraction
216 /// Subtraction assignment operator.
217 APInt& APInt::operator-=(const APInt& RHS) {
218 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
219 if (isSingleWord())
220 U.VAL -= RHS.U.VAL;
221 else
222 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
223 return clearUnusedBits();
226 APInt& APInt::operator-=(uint64_t RHS) {
227 if (isSingleWord())
228 U.VAL -= RHS;
229 else
230 tcSubtractPart(U.pVal, RHS, getNumWords());
231 return clearUnusedBits();
234 APInt APInt::operator*(const APInt& RHS) const {
235 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
236 if (isSingleWord())
237 return APInt(BitWidth, U.VAL * RHS.U.VAL);
239 APInt Result(getMemory(getNumWords()), getBitWidth());
240 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
241 Result.clearUnusedBits();
242 return Result;
245 void APInt::andAssignSlowCase(const APInt &RHS) {
246 WordType *dst = U.pVal, *rhs = RHS.U.pVal;
247 for (size_t i = 0, e = getNumWords(); i != e; ++i)
248 dst[i] &= rhs[i];
251 void APInt::orAssignSlowCase(const APInt &RHS) {
252 WordType *dst = U.pVal, *rhs = RHS.U.pVal;
253 for (size_t i = 0, e = getNumWords(); i != e; ++i)
254 dst[i] |= rhs[i];
257 void APInt::xorAssignSlowCase(const APInt &RHS) {
258 WordType *dst = U.pVal, *rhs = RHS.U.pVal;
259 for (size_t i = 0, e = getNumWords(); i != e; ++i)
260 dst[i] ^= rhs[i];
263 APInt &APInt::operator*=(const APInt &RHS) {
264 *this = *this * RHS;
265 return *this;
268 APInt& APInt::operator*=(uint64_t RHS) {
269 if (isSingleWord()) {
270 U.VAL *= RHS;
271 } else {
272 unsigned NumWords = getNumWords();
273 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
275 return clearUnusedBits();
278 bool APInt::equalSlowCase(const APInt &RHS) const {
279 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
282 int APInt::compare(const APInt& RHS) const {
283 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
284 if (isSingleWord())
285 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
287 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
290 int APInt::compareSigned(const APInt& RHS) const {
291 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
292 if (isSingleWord()) {
293 int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
294 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
295 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
298 bool lhsNeg = isNegative();
299 bool rhsNeg = RHS.isNegative();
301 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
302 if (lhsNeg != rhsNeg)
303 return lhsNeg ? -1 : 1;
305 // Otherwise we can just use an unsigned comparison, because even negative
306 // numbers compare correctly this way if both have the same signed-ness.
307 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
310 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
311 unsigned loWord = whichWord(loBit);
312 unsigned hiWord = whichWord(hiBit);
314 // Create an initial mask for the low word with zeros below loBit.
315 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
317 // If hiBit is not aligned, we need a high mask.
318 unsigned hiShiftAmt = whichBit(hiBit);
319 if (hiShiftAmt != 0) {
320 // Create a high mask with zeros above hiBit.
321 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
322 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
323 // set the bits in hiWord.
324 if (hiWord == loWord)
325 loMask &= hiMask;
326 else
327 U.pVal[hiWord] |= hiMask;
329 // Apply the mask to the low word.
330 U.pVal[loWord] |= loMask;
332 // Fill any words between loWord and hiWord with all ones.
333 for (unsigned word = loWord + 1; word < hiWord; ++word)
334 U.pVal[word] = WORDTYPE_MAX;
337 // Complement a bignum in-place.
338 static void tcComplement(APInt::WordType *dst, unsigned parts) {
339 for (unsigned i = 0; i < parts; i++)
340 dst[i] = ~dst[i];
343 /// Toggle every bit to its opposite value.
344 void APInt::flipAllBitsSlowCase() {
345 tcComplement(U.pVal, getNumWords());
346 clearUnusedBits();
349 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is
350 /// equivalent to:
351 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
352 /// In the slow case, we know the result is large.
353 APInt APInt::concatSlowCase(const APInt &NewLSB) const {
354 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
355 APInt Result = NewLSB.zext(NewWidth);
356 Result.insertBits(*this, NewLSB.getBitWidth());
357 return Result;
360 /// Toggle a given bit to its opposite value whose position is given
361 /// as "bitPosition".
362 /// Toggles a given bit to its opposite value.
363 void APInt::flipBit(unsigned bitPosition) {
364 assert(bitPosition < BitWidth && "Out of the bit-width range!");
365 setBitVal(bitPosition, !(*this)[bitPosition]);
368 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
369 unsigned subBitWidth = subBits.getBitWidth();
370 assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
372 // inserting no bits is a noop.
373 if (subBitWidth == 0)
374 return;
376 // Insertion is a direct copy.
377 if (subBitWidth == BitWidth) {
378 *this = subBits;
379 return;
382 // Single word result can be done as a direct bitmask.
383 if (isSingleWord()) {
384 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
385 U.VAL &= ~(mask << bitPosition);
386 U.VAL |= (subBits.U.VAL << bitPosition);
387 return;
390 unsigned loBit = whichBit(bitPosition);
391 unsigned loWord = whichWord(bitPosition);
392 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
394 // Insertion within a single word can be done as a direct bitmask.
395 if (loWord == hi1Word) {
396 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
397 U.pVal[loWord] &= ~(mask << loBit);
398 U.pVal[loWord] |= (subBits.U.VAL << loBit);
399 return;
402 // Insert on word boundaries.
403 if (loBit == 0) {
404 // Direct copy whole words.
405 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
406 memcpy(U.pVal + loWord, subBits.getRawData(),
407 numWholeSubWords * APINT_WORD_SIZE);
409 // Mask+insert remaining bits.
410 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
411 if (remainingBits != 0) {
412 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
413 U.pVal[hi1Word] &= ~mask;
414 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
416 return;
419 // General case - set/clear individual bits in dst based on src.
420 // TODO - there is scope for optimization here, but at the moment this code
421 // path is barely used so prefer readability over performance.
422 for (unsigned i = 0; i != subBitWidth; ++i)
423 setBitVal(bitPosition + i, subBits[i]);
426 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
427 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
428 subBits &= maskBits;
429 if (isSingleWord()) {
430 U.VAL &= ~(maskBits << bitPosition);
431 U.VAL |= subBits << bitPosition;
432 return;
435 unsigned loBit = whichBit(bitPosition);
436 unsigned loWord = whichWord(bitPosition);
437 unsigned hiWord = whichWord(bitPosition + numBits - 1);
438 if (loWord == hiWord) {
439 U.pVal[loWord] &= ~(maskBits << loBit);
440 U.pVal[loWord] |= subBits << loBit;
441 return;
444 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
445 unsigned wordBits = 8 * sizeof(WordType);
446 U.pVal[loWord] &= ~(maskBits << loBit);
447 U.pVal[loWord] |= subBits << loBit;
449 U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
450 U.pVal[hiWord] |= subBits >> (wordBits - loBit);
453 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
454 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
455 "Illegal bit extraction");
457 if (isSingleWord())
458 return APInt(numBits, U.VAL >> bitPosition);
460 unsigned loBit = whichBit(bitPosition);
461 unsigned loWord = whichWord(bitPosition);
462 unsigned hiWord = whichWord(bitPosition + numBits - 1);
464 // Single word result extracting bits from a single word source.
465 if (loWord == hiWord)
466 return APInt(numBits, U.pVal[loWord] >> loBit);
468 // Extracting bits that start on a source word boundary can be done
469 // as a fast memory copy.
470 if (loBit == 0)
471 return APInt(numBits, ArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
473 // General case - shift + copy source words directly into place.
474 APInt Result(numBits, 0);
475 unsigned NumSrcWords = getNumWords();
476 unsigned NumDstWords = Result.getNumWords();
478 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
479 for (unsigned word = 0; word < NumDstWords; ++word) {
480 uint64_t w0 = U.pVal[loWord + word];
481 uint64_t w1 =
482 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
483 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
486 return Result.clearUnusedBits();
489 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
490 unsigned bitPosition) const {
491 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
492 "Illegal bit extraction");
493 assert(numBits <= 64 && "Illegal bit extraction");
495 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
496 if (isSingleWord())
497 return (U.VAL >> bitPosition) & maskBits;
499 unsigned loBit = whichBit(bitPosition);
500 unsigned loWord = whichWord(bitPosition);
501 unsigned hiWord = whichWord(bitPosition + numBits - 1);
502 if (loWord == hiWord)
503 return (U.pVal[loWord] >> loBit) & maskBits;
505 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
506 unsigned wordBits = 8 * sizeof(WordType);
507 uint64_t retBits = U.pVal[loWord] >> loBit;
508 retBits |= U.pVal[hiWord] << (wordBits - loBit);
509 retBits &= maskBits;
510 return retBits;
513 unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) {
514 assert(!Str.empty() && "Invalid string length");
515 size_t StrLen = Str.size();
517 // Each computation below needs to know if it's negative.
518 unsigned IsNegative = false;
519 if (Str[0] == '-' || Str[0] == '+') {
520 IsNegative = Str[0] == '-';
521 StrLen--;
522 assert(StrLen && "String is only a sign, needs a value.");
525 // For radixes of power-of-two values, the bits required is accurately and
526 // easily computed.
527 if (Radix == 2)
528 return StrLen + IsNegative;
529 if (Radix == 8)
530 return StrLen * 3 + IsNegative;
531 if (Radix == 16)
532 return StrLen * 4 + IsNegative;
534 // Compute a sufficient number of bits that is always large enough but might
535 // be too large. This avoids the assertion in the constructor. This
536 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
537 // bits in that case.
538 if (Radix == 10)
539 return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative;
541 assert(Radix == 36);
542 return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative;
545 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
546 // Compute a sufficient number of bits that is always large enough but might
547 // be too large.
548 unsigned sufficient = getSufficientBitsNeeded(str, radix);
550 // For bases 2, 8, and 16, the sufficient number of bits is exact and we can
551 // return the value directly. For bases 10 and 36, we need to do extra work.
552 if (radix == 2 || radix == 8 || radix == 16)
553 return sufficient;
555 // This is grossly inefficient but accurate. We could probably do something
556 // with a computation of roughly slen*64/20 and then adjust by the value of
557 // the first few digits. But, I'm not sure how accurate that could be.
558 size_t slen = str.size();
560 // Each computation below needs to know if it's negative.
561 StringRef::iterator p = str.begin();
562 unsigned isNegative = *p == '-';
563 if (*p == '-' || *p == '+') {
564 p++;
565 slen--;
566 assert(slen && "String is only a sign, needs a value.");
570 // Convert to the actual binary value.
571 APInt tmp(sufficient, StringRef(p, slen), radix);
573 // Compute how many bits are required. If the log is infinite, assume we need
574 // just bit. If the log is exact and value is negative, then the value is
575 // MinSignedValue with (log + 1) bits.
576 unsigned log = tmp.logBase2();
577 if (log == (unsigned)-1) {
578 return isNegative + 1;
579 } else if (isNegative && tmp.isPowerOf2()) {
580 return isNegative + log;
581 } else {
582 return isNegative + log + 1;
586 hash_code llvm::hash_value(const APInt &Arg) {
587 if (Arg.isSingleWord())
588 return hash_combine(Arg.BitWidth, Arg.U.VAL);
590 return hash_combine(
591 Arg.BitWidth,
592 hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
595 unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
596 return static_cast<unsigned>(hash_value(Key));
599 bool APInt::isSplat(unsigned SplatSizeInBits) const {
600 assert(getBitWidth() % SplatSizeInBits == 0 &&
601 "SplatSizeInBits must divide width!");
602 // We can check that all parts of an integer are equal by making use of a
603 // little trick: rotate and check if it's still the same value.
604 return *this == rotl(SplatSizeInBits);
607 /// This function returns the high "numBits" bits of this APInt.
608 APInt APInt::getHiBits(unsigned numBits) const {
609 return this->lshr(BitWidth - numBits);
612 /// This function returns the low "numBits" bits of this APInt.
613 APInt APInt::getLoBits(unsigned numBits) const {
614 APInt Result(getLowBitsSet(BitWidth, numBits));
615 Result &= *this;
616 return Result;
619 /// Return a value containing V broadcasted over NewLen bits.
620 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
621 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
623 APInt Val = V.zext(NewLen);
624 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
625 Val |= Val << I;
627 return Val;
630 unsigned APInt::countLeadingZerosSlowCase() const {
631 unsigned Count = 0;
632 for (int i = getNumWords()-1; i >= 0; --i) {
633 uint64_t V = U.pVal[i];
634 if (V == 0)
635 Count += APINT_BITS_PER_WORD;
636 else {
637 Count += llvm::countl_zero(V);
638 break;
641 // Adjust for unused bits in the most significant word (they are zero).
642 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
643 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
644 return Count;
647 unsigned APInt::countLeadingOnesSlowCase() const {
648 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
649 unsigned shift;
650 if (!highWordBits) {
651 highWordBits = APINT_BITS_PER_WORD;
652 shift = 0;
653 } else {
654 shift = APINT_BITS_PER_WORD - highWordBits;
656 int i = getNumWords() - 1;
657 unsigned Count = llvm::countl_one(U.pVal[i] << shift);
658 if (Count == highWordBits) {
659 for (i--; i >= 0; --i) {
660 if (U.pVal[i] == WORDTYPE_MAX)
661 Count += APINT_BITS_PER_WORD;
662 else {
663 Count += llvm::countl_one(U.pVal[i]);
664 break;
668 return Count;
671 unsigned APInt::countTrailingZerosSlowCase() const {
672 unsigned Count = 0;
673 unsigned i = 0;
674 for (; i < getNumWords() && U.pVal[i] == 0; ++i)
675 Count += APINT_BITS_PER_WORD;
676 if (i < getNumWords())
677 Count += llvm::countr_zero(U.pVal[i]);
678 return std::min(Count, BitWidth);
681 unsigned APInt::countTrailingOnesSlowCase() const {
682 unsigned Count = 0;
683 unsigned i = 0;
684 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
685 Count += APINT_BITS_PER_WORD;
686 if (i < getNumWords())
687 Count += llvm::countr_one(U.pVal[i]);
688 assert(Count <= BitWidth);
689 return Count;
692 unsigned APInt::countPopulationSlowCase() const {
693 unsigned Count = 0;
694 for (unsigned i = 0; i < getNumWords(); ++i)
695 Count += llvm::popcount(U.pVal[i]);
696 return Count;
699 bool APInt::intersectsSlowCase(const APInt &RHS) const {
700 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
701 if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
702 return true;
704 return false;
707 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
708 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
709 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
710 return false;
712 return true;
715 APInt APInt::byteSwap() const {
716 assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
717 if (BitWidth == 16)
718 return APInt(BitWidth, llvm::byteswap<uint16_t>(U.VAL));
719 if (BitWidth == 32)
720 return APInt(BitWidth, llvm::byteswap<uint32_t>(U.VAL));
721 if (BitWidth <= 64) {
722 uint64_t Tmp1 = llvm::byteswap<uint64_t>(U.VAL);
723 Tmp1 >>= (64 - BitWidth);
724 return APInt(BitWidth, Tmp1);
727 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
728 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
729 Result.U.pVal[I] = llvm::byteswap<uint64_t>(U.pVal[N - I - 1]);
730 if (Result.BitWidth != BitWidth) {
731 Result.lshrInPlace(Result.BitWidth - BitWidth);
732 Result.BitWidth = BitWidth;
734 return Result;
737 APInt APInt::reverseBits() const {
738 switch (BitWidth) {
739 case 64:
740 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
741 case 32:
742 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
743 case 16:
744 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
745 case 8:
746 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
747 case 0:
748 return *this;
749 default:
750 break;
753 APInt Val(*this);
754 APInt Reversed(BitWidth, 0);
755 unsigned S = BitWidth;
757 for (; Val != 0; Val.lshrInPlace(1)) {
758 Reversed <<= 1;
759 Reversed |= Val[0];
760 --S;
763 Reversed <<= S;
764 return Reversed;
767 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
768 // Fast-path a common case.
769 if (A == B) return A;
771 // Corner cases: if either operand is zero, the other is the gcd.
772 if (!A) return B;
773 if (!B) return A;
775 // Count common powers of 2 and remove all other powers of 2.
776 unsigned Pow2;
778 unsigned Pow2_A = A.countr_zero();
779 unsigned Pow2_B = B.countr_zero();
780 if (Pow2_A > Pow2_B) {
781 A.lshrInPlace(Pow2_A - Pow2_B);
782 Pow2 = Pow2_B;
783 } else if (Pow2_B > Pow2_A) {
784 B.lshrInPlace(Pow2_B - Pow2_A);
785 Pow2 = Pow2_A;
786 } else {
787 Pow2 = Pow2_A;
791 // Both operands are odd multiples of 2^Pow_2:
793 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
795 // This is a modified version of Stein's algorithm, taking advantage of
796 // efficient countTrailingZeros().
797 while (A != B) {
798 if (A.ugt(B)) {
799 A -= B;
800 A.lshrInPlace(A.countr_zero() - Pow2);
801 } else {
802 B -= A;
803 B.lshrInPlace(B.countr_zero() - Pow2);
807 return A;
810 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
811 uint64_t I = bit_cast<uint64_t>(Double);
813 // Get the sign bit from the highest order bit
814 bool isNeg = I >> 63;
816 // Get the 11-bit exponent and adjust for the 1023 bit bias
817 int64_t exp = ((I >> 52) & 0x7ff) - 1023;
819 // If the exponent is negative, the value is < 0 so just return 0.
820 if (exp < 0)
821 return APInt(width, 0u);
823 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
824 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
826 // If the exponent doesn't shift all bits out of the mantissa
827 if (exp < 52)
828 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
829 APInt(width, mantissa >> (52 - exp));
831 // If the client didn't provide enough bits for us to shift the mantissa into
832 // then the result is undefined, just return 0
833 if (width <= exp - 52)
834 return APInt(width, 0);
836 // Otherwise, we have to shift the mantissa bits up to the right location
837 APInt Tmp(width, mantissa);
838 Tmp <<= (unsigned)exp - 52;
839 return isNeg ? -Tmp : Tmp;
842 /// This function converts this APInt to a double.
843 /// The layout for double is as following (IEEE Standard 754):
844 /// --------------------------------------
845 /// | Sign Exponent Fraction Bias |
846 /// |-------------------------------------- |
847 /// | 1[63] 11[62-52] 52[51-00] 1023 |
848 /// --------------------------------------
849 double APInt::roundToDouble(bool isSigned) const {
851 // Handle the simple case where the value is contained in one uint64_t.
852 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
853 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
854 if (isSigned) {
855 int64_t sext = SignExtend64(getWord(0), BitWidth);
856 return double(sext);
857 } else
858 return double(getWord(0));
861 // Determine if the value is negative.
862 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
864 // Construct the absolute value if we're negative.
865 APInt Tmp(isNeg ? -(*this) : (*this));
867 // Figure out how many bits we're using.
868 unsigned n = Tmp.getActiveBits();
870 // The exponent (without bias normalization) is just the number of bits
871 // we are using. Note that the sign bit is gone since we constructed the
872 // absolute value.
873 uint64_t exp = n;
875 // Return infinity for exponent overflow
876 if (exp > 1023) {
877 if (!isSigned || !isNeg)
878 return std::numeric_limits<double>::infinity();
879 else
880 return -std::numeric_limits<double>::infinity();
882 exp += 1023; // Increment for 1023 bias
884 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
885 // extract the high 52 bits from the correct words in pVal.
886 uint64_t mantissa;
887 unsigned hiWord = whichWord(n-1);
888 if (hiWord == 0) {
889 mantissa = Tmp.U.pVal[0];
890 if (n > 52)
891 mantissa >>= n - 52; // shift down, we want the top 52 bits.
892 } else {
893 assert(hiWord > 0 && "huh?");
894 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
895 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
896 mantissa = hibits | lobits;
899 // The leading bit of mantissa is implicit, so get rid of it.
900 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
901 uint64_t I = sign | (exp << 52) | mantissa;
902 return bit_cast<double>(I);
905 // Truncate to new width.
906 APInt APInt::trunc(unsigned width) const {
907 assert(width <= BitWidth && "Invalid APInt Truncate request");
909 if (width <= APINT_BITS_PER_WORD)
910 return APInt(width, getRawData()[0]);
912 if (width == BitWidth)
913 return *this;
915 APInt Result(getMemory(getNumWords(width)), width);
917 // Copy full words.
918 unsigned i;
919 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
920 Result.U.pVal[i] = U.pVal[i];
922 // Truncate and copy any partial word.
923 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
924 if (bits != 0)
925 Result.U.pVal[i] = U.pVal[i] << bits >> bits;
927 return Result;
930 // Truncate to new width with unsigned saturation.
931 APInt APInt::truncUSat(unsigned width) const {
932 assert(width <= BitWidth && "Invalid APInt Truncate request");
934 // Can we just losslessly truncate it?
935 if (isIntN(width))
936 return trunc(width);
937 // If not, then just return the new limit.
938 return APInt::getMaxValue(width);
941 // Truncate to new width with signed saturation.
942 APInt APInt::truncSSat(unsigned width) const {
943 assert(width <= BitWidth && "Invalid APInt Truncate request");
945 // Can we just losslessly truncate it?
946 if (isSignedIntN(width))
947 return trunc(width);
948 // If not, then just return the new limits.
949 return isNegative() ? APInt::getSignedMinValue(width)
950 : APInt::getSignedMaxValue(width);
953 // Sign extend to a new width.
954 APInt APInt::sext(unsigned Width) const {
955 assert(Width >= BitWidth && "Invalid APInt SignExtend request");
957 if (Width <= APINT_BITS_PER_WORD)
958 return APInt(Width, SignExtend64(U.VAL, BitWidth));
960 if (Width == BitWidth)
961 return *this;
963 APInt Result(getMemory(getNumWords(Width)), Width);
965 // Copy words.
966 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
968 // Sign extend the last word since there may be unused bits in the input.
969 Result.U.pVal[getNumWords() - 1] =
970 SignExtend64(Result.U.pVal[getNumWords() - 1],
971 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
973 // Fill with sign bits.
974 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
975 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
976 Result.clearUnusedBits();
977 return Result;
980 // Zero extend to a new width.
981 APInt APInt::zext(unsigned width) const {
982 assert(width >= BitWidth && "Invalid APInt ZeroExtend request");
984 if (width <= APINT_BITS_PER_WORD)
985 return APInt(width, U.VAL);
987 if (width == BitWidth)
988 return *this;
990 APInt Result(getMemory(getNumWords(width)), width);
992 // Copy words.
993 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
995 // Zero remaining words.
996 std::memset(Result.U.pVal + getNumWords(), 0,
997 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
999 return Result;
1002 APInt APInt::zextOrTrunc(unsigned width) const {
1003 if (BitWidth < width)
1004 return zext(width);
1005 if (BitWidth > width)
1006 return trunc(width);
1007 return *this;
1010 APInt APInt::sextOrTrunc(unsigned width) const {
1011 if (BitWidth < width)
1012 return sext(width);
1013 if (BitWidth > width)
1014 return trunc(width);
1015 return *this;
1018 /// Arithmetic right-shift this APInt by shiftAmt.
1019 /// Arithmetic right-shift function.
1020 void APInt::ashrInPlace(const APInt &shiftAmt) {
1021 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1024 /// Arithmetic right-shift this APInt by shiftAmt.
1025 /// Arithmetic right-shift function.
1026 void APInt::ashrSlowCase(unsigned ShiftAmt) {
1027 // Don't bother performing a no-op shift.
1028 if (!ShiftAmt)
1029 return;
1031 // Save the original sign bit for later.
1032 bool Negative = isNegative();
1034 // WordShift is the inter-part shift; BitShift is intra-part shift.
1035 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1036 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1038 unsigned WordsToMove = getNumWords() - WordShift;
1039 if (WordsToMove != 0) {
1040 // Sign extend the last word to fill in the unused bits.
1041 U.pVal[getNumWords() - 1] = SignExtend64(
1042 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1044 // Fastpath for moving by whole words.
1045 if (BitShift == 0) {
1046 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1047 } else {
1048 // Move the words containing significant bits.
1049 for (unsigned i = 0; i != WordsToMove - 1; ++i)
1050 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1051 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1053 // Handle the last word which has no high bits to copy.
1054 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1055 // Sign extend one more time.
1056 U.pVal[WordsToMove - 1] =
1057 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1061 // Fill in the remainder based on the original sign.
1062 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1063 WordShift * APINT_WORD_SIZE);
1064 clearUnusedBits();
1067 /// Logical right-shift this APInt by shiftAmt.
1068 /// Logical right-shift function.
1069 void APInt::lshrInPlace(const APInt &shiftAmt) {
1070 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1073 /// Logical right-shift this APInt by shiftAmt.
1074 /// Logical right-shift function.
1075 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1076 tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1079 /// Left-shift this APInt by shiftAmt.
1080 /// Left-shift function.
1081 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1082 // It's undefined behavior in C to shift by BitWidth or greater.
1083 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1084 return *this;
1087 void APInt::shlSlowCase(unsigned ShiftAmt) {
1088 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1089 clearUnusedBits();
1092 // Calculate the rotate amount modulo the bit width.
1093 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1094 if (LLVM_UNLIKELY(BitWidth == 0))
1095 return 0;
1096 unsigned rotBitWidth = rotateAmt.getBitWidth();
1097 APInt rot = rotateAmt;
1098 if (rotBitWidth < BitWidth) {
1099 // Extend the rotate APInt, so that the urem doesn't divide by 0.
1100 // e.g. APInt(1, 32) would give APInt(1, 0).
1101 rot = rotateAmt.zext(BitWidth);
1103 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1104 return rot.getLimitedValue(BitWidth);
1107 APInt APInt::rotl(const APInt &rotateAmt) const {
1108 return rotl(rotateModulo(BitWidth, rotateAmt));
1111 APInt APInt::rotl(unsigned rotateAmt) const {
1112 if (LLVM_UNLIKELY(BitWidth == 0))
1113 return *this;
1114 rotateAmt %= BitWidth;
1115 if (rotateAmt == 0)
1116 return *this;
1117 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1120 APInt APInt::rotr(const APInt &rotateAmt) const {
1121 return rotr(rotateModulo(BitWidth, rotateAmt));
1124 APInt APInt::rotr(unsigned rotateAmt) const {
1125 if (BitWidth == 0)
1126 return *this;
1127 rotateAmt %= BitWidth;
1128 if (rotateAmt == 0)
1129 return *this;
1130 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1133 /// \returns the nearest log base 2 of this APInt. Ties round up.
1135 /// NOTE: When we have a BitWidth of 1, we define:
1137 /// log2(0) = UINT32_MAX
1138 /// log2(1) = 0
1140 /// to get around any mathematical concerns resulting from
1141 /// referencing 2 in a space where 2 does no exist.
1142 unsigned APInt::nearestLogBase2() const {
1143 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1144 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1145 // UINT32_MAX.
1146 if (BitWidth == 1)
1147 return U.VAL - 1;
1149 // Handle the zero case.
1150 if (isZero())
1151 return UINT32_MAX;
1153 // The non-zero case is handled by computing:
1155 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1157 // where x[i] is referring to the value of the ith bit of x.
1158 unsigned lg = logBase2();
1159 return lg + unsigned((*this)[lg - 1]);
1162 // Square Root - this method computes and returns the square root of "this".
1163 // Three mechanisms are used for computation. For small values (<= 5 bits),
1164 // a table lookup is done. This gets some performance for common cases. For
1165 // values using less than 52 bits, the value is converted to double and then
1166 // the libc sqrt function is called. The result is rounded and then converted
1167 // back to a uint64_t which is then used to construct the result. Finally,
1168 // the Babylonian method for computing square roots is used.
1169 APInt APInt::sqrt() const {
1171 // Determine the magnitude of the value.
1172 unsigned magnitude = getActiveBits();
1174 // Use a fast table for some small values. This also gets rid of some
1175 // rounding errors in libc sqrt for small values.
1176 if (magnitude <= 5) {
1177 static const uint8_t results[32] = {
1178 /* 0 */ 0,
1179 /* 1- 2 */ 1, 1,
1180 /* 3- 6 */ 2, 2, 2, 2,
1181 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1182 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1183 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1184 /* 31 */ 6
1186 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1189 // If the magnitude of the value fits in less than 52 bits (the precision of
1190 // an IEEE double precision floating point value), then we can use the
1191 // libc sqrt function which will probably use a hardware sqrt computation.
1192 // This should be faster than the algorithm below.
1193 if (magnitude < 52) {
1194 return APInt(BitWidth,
1195 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1196 : U.pVal[0])))));
1199 // Okay, all the short cuts are exhausted. We must compute it. The following
1200 // is a classical Babylonian method for computing the square root. This code
1201 // was adapted to APInt from a wikipedia article on such computations.
1202 // See http://www.wikipedia.org/ and go to the page named
1203 // Calculate_an_integer_square_root.
1204 unsigned nbits = BitWidth, i = 4;
1205 APInt testy(BitWidth, 16);
1206 APInt x_old(BitWidth, 1);
1207 APInt x_new(BitWidth, 0);
1208 APInt two(BitWidth, 2);
1210 // Select a good starting value using binary logarithms.
1211 for (;; i += 2, testy = testy.shl(2))
1212 if (i >= nbits || this->ule(testy)) {
1213 x_old = x_old.shl(i / 2);
1214 break;
1217 // Use the Babylonian method to arrive at the integer square root:
1218 for (;;) {
1219 x_new = (this->udiv(x_old) + x_old).udiv(two);
1220 if (x_old.ule(x_new))
1221 break;
1222 x_old = x_new;
1225 // Make sure we return the closest approximation
1226 // NOTE: The rounding calculation below is correct. It will produce an
1227 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1228 // determined to be a rounding issue with pari/gp as it begins to use a
1229 // floating point representation after 192 bits. There are no discrepancies
1230 // between this algorithm and pari/gp for bit widths < 192 bits.
1231 APInt square(x_old * x_old);
1232 APInt nextSquare((x_old + 1) * (x_old +1));
1233 if (this->ult(square))
1234 return x_old;
1235 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1236 APInt midpoint((nextSquare - square).udiv(two));
1237 APInt offset(*this - square);
1238 if (offset.ult(midpoint))
1239 return x_old;
1240 return x_old + 1;
1243 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1244 /// iterative extended Euclidean algorithm is used to solve for this value,
1245 /// however we simplify it to speed up calculating only the inverse, and take
1246 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1247 /// (potentially large) APInts around.
1248 /// WARNING: a value of '0' may be returned,
1249 /// signifying that no multiplicative inverse exists!
1250 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1251 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1253 // Using the properties listed at the following web page (accessed 06/21/08):
1254 // http://www.numbertheory.org/php/euclid.html
1255 // (especially the properties numbered 3, 4 and 9) it can be proved that
1256 // BitWidth bits suffice for all the computations in the algorithm implemented
1257 // below. More precisely, this number of bits suffice if the multiplicative
1258 // inverse exists, but may not suffice for the general extended Euclidean
1259 // algorithm.
1261 APInt r[2] = { modulo, *this };
1262 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1263 APInt q(BitWidth, 0);
1265 unsigned i;
1266 for (i = 0; r[i^1] != 0; i ^= 1) {
1267 // An overview of the math without the confusing bit-flipping:
1268 // q = r[i-2] / r[i-1]
1269 // r[i] = r[i-2] % r[i-1]
1270 // t[i] = t[i-2] - t[i-1] * q
1271 udivrem(r[i], r[i^1], q, r[i]);
1272 t[i] -= t[i^1] * q;
1275 // If this APInt and the modulo are not coprime, there is no multiplicative
1276 // inverse, so return 0. We check this by looking at the next-to-last
1277 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1278 // algorithm.
1279 if (r[i] != 1)
1280 return APInt(BitWidth, 0);
1282 // The next-to-last t is the multiplicative inverse. However, we are
1283 // interested in a positive inverse. Calculate a positive one from a negative
1284 // one if necessary. A simple addition of the modulo suffices because
1285 // abs(t[i]) is known to be less than *this/2 (see the link above).
1286 if (t[i].isNegative())
1287 t[i] += modulo;
1289 return std::move(t[i]);
1292 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1293 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1294 /// variables here have the same names as in the algorithm. Comments explain
1295 /// the algorithm and any deviation from it.
1296 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1297 unsigned m, unsigned n) {
1298 assert(u && "Must provide dividend");
1299 assert(v && "Must provide divisor");
1300 assert(q && "Must provide quotient");
1301 assert(u != v && u != q && v != q && "Must use different memory");
1302 assert(n>1 && "n must be > 1");
1304 // b denotes the base of the number system. In our case b is 2^32.
1305 const uint64_t b = uint64_t(1) << 32;
1307 // The DEBUG macros here tend to be spam in the debug output if you're not
1308 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1309 #ifdef KNUTH_DEBUG
1310 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1311 #else
1312 #define DEBUG_KNUTH(X) do {} while(false)
1313 #endif
1315 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1316 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1317 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1318 DEBUG_KNUTH(dbgs() << " by");
1319 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1320 DEBUG_KNUTH(dbgs() << '\n');
1321 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1322 // u and v by d. Note that we have taken Knuth's advice here to use a power
1323 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1324 // 2 allows us to shift instead of multiply and it is easy to determine the
1325 // shift amount from the leading zeros. We are basically normalizing the u
1326 // and v so that its high bits are shifted to the top of v's range without
1327 // overflow. Note that this can require an extra word in u so that u must
1328 // be of length m+n+1.
1329 unsigned shift = llvm::countl_zero(v[n - 1]);
1330 uint32_t v_carry = 0;
1331 uint32_t u_carry = 0;
1332 if (shift) {
1333 for (unsigned i = 0; i < m+n; ++i) {
1334 uint32_t u_tmp = u[i] >> (32 - shift);
1335 u[i] = (u[i] << shift) | u_carry;
1336 u_carry = u_tmp;
1338 for (unsigned i = 0; i < n; ++i) {
1339 uint32_t v_tmp = v[i] >> (32 - shift);
1340 v[i] = (v[i] << shift) | v_carry;
1341 v_carry = v_tmp;
1344 u[m+n] = u_carry;
1346 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:");
1347 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1348 DEBUG_KNUTH(dbgs() << " by");
1349 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1350 DEBUG_KNUTH(dbgs() << '\n');
1352 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1353 int j = m;
1354 do {
1355 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1356 // D3. [Calculate q'.].
1357 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1358 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1359 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1360 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1361 // on v[n-2] determines at high speed most of the cases in which the trial
1362 // value qp is one too large, and it eliminates all cases where qp is two
1363 // too large.
1364 uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1365 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1366 uint64_t qp = dividend / v[n-1];
1367 uint64_t rp = dividend % v[n-1];
1368 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1369 qp--;
1370 rp += v[n-1];
1371 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1372 qp--;
1374 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1376 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1377 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1378 // consists of a simple multiplication by a one-place number, combined with
1379 // a subtraction.
1380 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1381 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1382 // true value plus b**(n+1), namely as the b's complement of
1383 // the true value, and a "borrow" to the left should be remembered.
1384 int64_t borrow = 0;
1385 for (unsigned i = 0; i < n; ++i) {
1386 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1387 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1388 u[j+i] = Lo_32(subres);
1389 borrow = Hi_32(p) - Hi_32(subres);
1390 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1391 << ", borrow = " << borrow << '\n');
1393 bool isNeg = u[j+n] < borrow;
1394 u[j+n] -= Lo_32(borrow);
1396 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1397 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1398 DEBUG_KNUTH(dbgs() << '\n');
1400 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1401 // negative, go to step D6; otherwise go on to step D7.
1402 q[j] = Lo_32(qp);
1403 if (isNeg) {
1404 // D6. [Add back]. The probability that this step is necessary is very
1405 // small, on the order of only 2/b. Make sure that test data accounts for
1406 // this possibility. Decrease q[j] by 1
1407 q[j]--;
1408 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1409 // A carry will occur to the left of u[j+n], and it should be ignored
1410 // since it cancels with the borrow that occurred in D4.
1411 bool carry = false;
1412 for (unsigned i = 0; i < n; i++) {
1413 uint32_t limit = std::min(u[j+i],v[i]);
1414 u[j+i] += v[i] + carry;
1415 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1417 u[j+n] += carry;
1419 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1420 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1421 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1423 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1424 } while (--j >= 0);
1426 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1427 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1428 DEBUG_KNUTH(dbgs() << '\n');
1430 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1431 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1432 // compute the remainder (urem uses this).
1433 if (r) {
1434 // The value d is expressed by the "shift" value above since we avoided
1435 // multiplication by d by using a shift left. So, all we have to do is
1436 // shift right here.
1437 if (shift) {
1438 uint32_t carry = 0;
1439 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1440 for (int i = n-1; i >= 0; i--) {
1441 r[i] = (u[i] >> shift) | carry;
1442 carry = u[i] << (32 - shift);
1443 DEBUG_KNUTH(dbgs() << " " << r[i]);
1445 } else {
1446 for (int i = n-1; i >= 0; i--) {
1447 r[i] = u[i];
1448 DEBUG_KNUTH(dbgs() << " " << r[i]);
1451 DEBUG_KNUTH(dbgs() << '\n');
1453 DEBUG_KNUTH(dbgs() << '\n');
1456 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1457 unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1458 assert(lhsWords >= rhsWords && "Fractional result");
1460 // First, compose the values into an array of 32-bit words instead of
1461 // 64-bit words. This is a necessity of both the "short division" algorithm
1462 // and the Knuth "classical algorithm" which requires there to be native
1463 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1464 // can't use 64-bit operands here because we don't have native results of
1465 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1466 // work on large-endian machines.
1467 unsigned n = rhsWords * 2;
1468 unsigned m = (lhsWords * 2) - n;
1470 // Allocate space for the temporary values we need either on the stack, if
1471 // it will fit, or on the heap if it won't.
1472 uint32_t SPACE[128];
1473 uint32_t *U = nullptr;
1474 uint32_t *V = nullptr;
1475 uint32_t *Q = nullptr;
1476 uint32_t *R = nullptr;
1477 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1478 U = &SPACE[0];
1479 V = &SPACE[m+n+1];
1480 Q = &SPACE[(m+n+1) + n];
1481 if (Remainder)
1482 R = &SPACE[(m+n+1) + n + (m+n)];
1483 } else {
1484 U = new uint32_t[m + n + 1];
1485 V = new uint32_t[n];
1486 Q = new uint32_t[m+n];
1487 if (Remainder)
1488 R = new uint32_t[n];
1491 // Initialize the dividend
1492 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1493 for (unsigned i = 0; i < lhsWords; ++i) {
1494 uint64_t tmp = LHS[i];
1495 U[i * 2] = Lo_32(tmp);
1496 U[i * 2 + 1] = Hi_32(tmp);
1498 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1500 // Initialize the divisor
1501 memset(V, 0, (n)*sizeof(uint32_t));
1502 for (unsigned i = 0; i < rhsWords; ++i) {
1503 uint64_t tmp = RHS[i];
1504 V[i * 2] = Lo_32(tmp);
1505 V[i * 2 + 1] = Hi_32(tmp);
1508 // initialize the quotient and remainder
1509 memset(Q, 0, (m+n) * sizeof(uint32_t));
1510 if (Remainder)
1511 memset(R, 0, n * sizeof(uint32_t));
1513 // Now, adjust m and n for the Knuth division. n is the number of words in
1514 // the divisor. m is the number of words by which the dividend exceeds the
1515 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1516 // contain any zero words or the Knuth algorithm fails.
1517 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1518 n--;
1519 m++;
1521 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1522 m--;
1524 // If we're left with only a single word for the divisor, Knuth doesn't work
1525 // so we implement the short division algorithm here. This is much simpler
1526 // and faster because we are certain that we can divide a 64-bit quantity
1527 // by a 32-bit quantity at hardware speed and short division is simply a
1528 // series of such operations. This is just like doing short division but we
1529 // are using base 2^32 instead of base 10.
1530 assert(n != 0 && "Divide by zero?");
1531 if (n == 1) {
1532 uint32_t divisor = V[0];
1533 uint32_t remainder = 0;
1534 for (int i = m; i >= 0; i--) {
1535 uint64_t partial_dividend = Make_64(remainder, U[i]);
1536 if (partial_dividend == 0) {
1537 Q[i] = 0;
1538 remainder = 0;
1539 } else if (partial_dividend < divisor) {
1540 Q[i] = 0;
1541 remainder = Lo_32(partial_dividend);
1542 } else if (partial_dividend == divisor) {
1543 Q[i] = 1;
1544 remainder = 0;
1545 } else {
1546 Q[i] = Lo_32(partial_dividend / divisor);
1547 remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1550 if (R)
1551 R[0] = remainder;
1552 } else {
1553 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1554 // case n > 1.
1555 KnuthDiv(U, V, Q, R, m, n);
1558 // If the caller wants the quotient
1559 if (Quotient) {
1560 for (unsigned i = 0; i < lhsWords; ++i)
1561 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1564 // If the caller wants the remainder
1565 if (Remainder) {
1566 for (unsigned i = 0; i < rhsWords; ++i)
1567 Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1570 // Clean up the memory we allocated.
1571 if (U != &SPACE[0]) {
1572 delete [] U;
1573 delete [] V;
1574 delete [] Q;
1575 delete [] R;
1579 APInt APInt::udiv(const APInt &RHS) const {
1580 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1582 // First, deal with the easy case
1583 if (isSingleWord()) {
1584 assert(RHS.U.VAL != 0 && "Divide by zero?");
1585 return APInt(BitWidth, U.VAL / RHS.U.VAL);
1588 // Get some facts about the LHS and RHS number of bits and words
1589 unsigned lhsWords = getNumWords(getActiveBits());
1590 unsigned rhsBits = RHS.getActiveBits();
1591 unsigned rhsWords = getNumWords(rhsBits);
1592 assert(rhsWords && "Divided by zero???");
1594 // Deal with some degenerate cases
1595 if (!lhsWords)
1596 // 0 / X ===> 0
1597 return APInt(BitWidth, 0);
1598 if (rhsBits == 1)
1599 // X / 1 ===> X
1600 return *this;
1601 if (lhsWords < rhsWords || this->ult(RHS))
1602 // X / Y ===> 0, iff X < Y
1603 return APInt(BitWidth, 0);
1604 if (*this == RHS)
1605 // X / X ===> 1
1606 return APInt(BitWidth, 1);
1607 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1608 // All high words are zero, just use native divide
1609 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1611 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1612 APInt Quotient(BitWidth, 0); // to hold result.
1613 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1614 return Quotient;
1617 APInt APInt::udiv(uint64_t RHS) const {
1618 assert(RHS != 0 && "Divide by zero?");
1620 // First, deal with the easy case
1621 if (isSingleWord())
1622 return APInt(BitWidth, U.VAL / RHS);
1624 // Get some facts about the LHS words.
1625 unsigned lhsWords = getNumWords(getActiveBits());
1627 // Deal with some degenerate cases
1628 if (!lhsWords)
1629 // 0 / X ===> 0
1630 return APInt(BitWidth, 0);
1631 if (RHS == 1)
1632 // X / 1 ===> X
1633 return *this;
1634 if (this->ult(RHS))
1635 // X / Y ===> 0, iff X < Y
1636 return APInt(BitWidth, 0);
1637 if (*this == RHS)
1638 // X / X ===> 1
1639 return APInt(BitWidth, 1);
1640 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1641 // All high words are zero, just use native divide
1642 return APInt(BitWidth, this->U.pVal[0] / RHS);
1644 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1645 APInt Quotient(BitWidth, 0); // to hold result.
1646 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1647 return Quotient;
1650 APInt APInt::sdiv(const APInt &RHS) const {
1651 if (isNegative()) {
1652 if (RHS.isNegative())
1653 return (-(*this)).udiv(-RHS);
1654 return -((-(*this)).udiv(RHS));
1656 if (RHS.isNegative())
1657 return -(this->udiv(-RHS));
1658 return this->udiv(RHS);
1661 APInt APInt::sdiv(int64_t RHS) const {
1662 if (isNegative()) {
1663 if (RHS < 0)
1664 return (-(*this)).udiv(-RHS);
1665 return -((-(*this)).udiv(RHS));
1667 if (RHS < 0)
1668 return -(this->udiv(-RHS));
1669 return this->udiv(RHS);
1672 APInt APInt::urem(const APInt &RHS) const {
1673 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1674 if (isSingleWord()) {
1675 assert(RHS.U.VAL != 0 && "Remainder by zero?");
1676 return APInt(BitWidth, U.VAL % RHS.U.VAL);
1679 // Get some facts about the LHS
1680 unsigned lhsWords = getNumWords(getActiveBits());
1682 // Get some facts about the RHS
1683 unsigned rhsBits = RHS.getActiveBits();
1684 unsigned rhsWords = getNumWords(rhsBits);
1685 assert(rhsWords && "Performing remainder operation by zero ???");
1687 // Check the degenerate cases
1688 if (lhsWords == 0)
1689 // 0 % Y ===> 0
1690 return APInt(BitWidth, 0);
1691 if (rhsBits == 1)
1692 // X % 1 ===> 0
1693 return APInt(BitWidth, 0);
1694 if (lhsWords < rhsWords || this->ult(RHS))
1695 // X % Y ===> X, iff X < Y
1696 return *this;
1697 if (*this == RHS)
1698 // X % X == 0;
1699 return APInt(BitWidth, 0);
1700 if (lhsWords == 1)
1701 // All high words are zero, just use native remainder
1702 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1704 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1705 APInt Remainder(BitWidth, 0);
1706 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1707 return Remainder;
1710 uint64_t APInt::urem(uint64_t RHS) const {
1711 assert(RHS != 0 && "Remainder by zero?");
1713 if (isSingleWord())
1714 return U.VAL % RHS;
1716 // Get some facts about the LHS
1717 unsigned lhsWords = getNumWords(getActiveBits());
1719 // Check the degenerate cases
1720 if (lhsWords == 0)
1721 // 0 % Y ===> 0
1722 return 0;
1723 if (RHS == 1)
1724 // X % 1 ===> 0
1725 return 0;
1726 if (this->ult(RHS))
1727 // X % Y ===> X, iff X < Y
1728 return getZExtValue();
1729 if (*this == RHS)
1730 // X % X == 0;
1731 return 0;
1732 if (lhsWords == 1)
1733 // All high words are zero, just use native remainder
1734 return U.pVal[0] % RHS;
1736 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1737 uint64_t Remainder;
1738 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1739 return Remainder;
1742 APInt APInt::srem(const APInt &RHS) const {
1743 if (isNegative()) {
1744 if (RHS.isNegative())
1745 return -((-(*this)).urem(-RHS));
1746 return -((-(*this)).urem(RHS));
1748 if (RHS.isNegative())
1749 return this->urem(-RHS);
1750 return this->urem(RHS);
1753 int64_t APInt::srem(int64_t RHS) const {
1754 if (isNegative()) {
1755 if (RHS < 0)
1756 return -((-(*this)).urem(-RHS));
1757 return -((-(*this)).urem(RHS));
1759 if (RHS < 0)
1760 return this->urem(-RHS);
1761 return this->urem(RHS);
1764 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1765 APInt &Quotient, APInt &Remainder) {
1766 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1767 unsigned BitWidth = LHS.BitWidth;
1769 // First, deal with the easy case
1770 if (LHS.isSingleWord()) {
1771 assert(RHS.U.VAL != 0 && "Divide by zero?");
1772 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1773 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1774 Quotient = APInt(BitWidth, QuotVal);
1775 Remainder = APInt(BitWidth, RemVal);
1776 return;
1779 // Get some size facts about the dividend and divisor
1780 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1781 unsigned rhsBits = RHS.getActiveBits();
1782 unsigned rhsWords = getNumWords(rhsBits);
1783 assert(rhsWords && "Performing divrem operation by zero ???");
1785 // Check the degenerate cases
1786 if (lhsWords == 0) {
1787 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1788 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0
1789 return;
1792 if (rhsBits == 1) {
1793 Quotient = LHS; // X / 1 ===> X
1794 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0
1797 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1798 Remainder = LHS; // X % Y ===> X, iff X < Y
1799 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1800 return;
1803 if (LHS == RHS) {
1804 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1805 Remainder = APInt(BitWidth, 0); // X % X ===> 0;
1806 return;
1809 // Make sure there is enough space to hold the results.
1810 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1811 // change the size. This is necessary if Quotient or Remainder is aliased
1812 // with LHS or RHS.
1813 Quotient.reallocate(BitWidth);
1814 Remainder.reallocate(BitWidth);
1816 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1817 // There is only one word to consider so use the native versions.
1818 uint64_t lhsValue = LHS.U.pVal[0];
1819 uint64_t rhsValue = RHS.U.pVal[0];
1820 Quotient = lhsValue / rhsValue;
1821 Remainder = lhsValue % rhsValue;
1822 return;
1825 // Okay, lets do it the long way
1826 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1827 Remainder.U.pVal);
1828 // Clear the rest of the Quotient and Remainder.
1829 std::memset(Quotient.U.pVal + lhsWords, 0,
1830 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1831 std::memset(Remainder.U.pVal + rhsWords, 0,
1832 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1835 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1836 uint64_t &Remainder) {
1837 assert(RHS != 0 && "Divide by zero?");
1838 unsigned BitWidth = LHS.BitWidth;
1840 // First, deal with the easy case
1841 if (LHS.isSingleWord()) {
1842 uint64_t QuotVal = LHS.U.VAL / RHS;
1843 Remainder = LHS.U.VAL % RHS;
1844 Quotient = APInt(BitWidth, QuotVal);
1845 return;
1848 // Get some size facts about the dividend and divisor
1849 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1851 // Check the degenerate cases
1852 if (lhsWords == 0) {
1853 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1854 Remainder = 0; // 0 % Y ===> 0
1855 return;
1858 if (RHS == 1) {
1859 Quotient = LHS; // X / 1 ===> X
1860 Remainder = 0; // X % 1 ===> 0
1861 return;
1864 if (LHS.ult(RHS)) {
1865 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y
1866 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1867 return;
1870 if (LHS == RHS) {
1871 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1872 Remainder = 0; // X % X ===> 0;
1873 return;
1876 // Make sure there is enough space to hold the results.
1877 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1878 // change the size. This is necessary if Quotient is aliased with LHS.
1879 Quotient.reallocate(BitWidth);
1881 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1882 // There is only one word to consider so use the native versions.
1883 uint64_t lhsValue = LHS.U.pVal[0];
1884 Quotient = lhsValue / RHS;
1885 Remainder = lhsValue % RHS;
1886 return;
1889 // Okay, lets do it the long way
1890 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1891 // Clear the rest of the Quotient.
1892 std::memset(Quotient.U.pVal + lhsWords, 0,
1893 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1896 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1897 APInt &Quotient, APInt &Remainder) {
1898 if (LHS.isNegative()) {
1899 if (RHS.isNegative())
1900 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1901 else {
1902 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1903 Quotient.negate();
1905 Remainder.negate();
1906 } else if (RHS.isNegative()) {
1907 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1908 Quotient.negate();
1909 } else {
1910 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1914 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1915 APInt &Quotient, int64_t &Remainder) {
1916 uint64_t R = Remainder;
1917 if (LHS.isNegative()) {
1918 if (RHS < 0)
1919 APInt::udivrem(-LHS, -RHS, Quotient, R);
1920 else {
1921 APInt::udivrem(-LHS, RHS, Quotient, R);
1922 Quotient.negate();
1924 R = -R;
1925 } else if (RHS < 0) {
1926 APInt::udivrem(LHS, -RHS, Quotient, R);
1927 Quotient.negate();
1928 } else {
1929 APInt::udivrem(LHS, RHS, Quotient, R);
1931 Remainder = R;
1934 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1935 APInt Res = *this+RHS;
1936 Overflow = isNonNegative() == RHS.isNonNegative() &&
1937 Res.isNonNegative() != isNonNegative();
1938 return Res;
1941 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1942 APInt Res = *this+RHS;
1943 Overflow = Res.ult(RHS);
1944 return Res;
1947 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1948 APInt Res = *this - RHS;
1949 Overflow = isNonNegative() != RHS.isNonNegative() &&
1950 Res.isNonNegative() != isNonNegative();
1951 return Res;
1954 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1955 APInt Res = *this-RHS;
1956 Overflow = Res.ugt(*this);
1957 return Res;
1960 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1961 // MININT/-1 --> overflow.
1962 Overflow = isMinSignedValue() && RHS.isAllOnes();
1963 return sdiv(RHS);
1966 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1967 APInt Res = *this * RHS;
1969 if (RHS != 0)
1970 Overflow = Res.sdiv(RHS) != *this ||
1971 (isMinSignedValue() && RHS.isAllOnes());
1972 else
1973 Overflow = false;
1974 return Res;
1977 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1978 if (countl_zero() + RHS.countl_zero() + 2 <= BitWidth) {
1979 Overflow = true;
1980 return *this * RHS;
1983 APInt Res = lshr(1) * RHS;
1984 Overflow = Res.isNegative();
1985 Res <<= 1;
1986 if ((*this)[0]) {
1987 Res += RHS;
1988 if (Res.ult(RHS))
1989 Overflow = true;
1991 return Res;
1994 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1995 return sshl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
1998 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
1999 Overflow = ShAmt >= getBitWidth();
2000 if (Overflow)
2001 return APInt(BitWidth, 0);
2003 if (isNonNegative()) // Don't allow sign change.
2004 Overflow = ShAmt >= countl_zero();
2005 else
2006 Overflow = ShAmt >= countl_one();
2008 return *this << ShAmt;
2011 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2012 return ushl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
2015 APInt APInt::ushl_ov(unsigned ShAmt, bool &Overflow) const {
2016 Overflow = ShAmt >= getBitWidth();
2017 if (Overflow)
2018 return APInt(BitWidth, 0);
2020 Overflow = ShAmt > countl_zero();
2022 return *this << ShAmt;
2025 APInt APInt::sadd_sat(const APInt &RHS) const {
2026 bool Overflow;
2027 APInt Res = sadd_ov(RHS, Overflow);
2028 if (!Overflow)
2029 return Res;
2031 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2032 : APInt::getSignedMaxValue(BitWidth);
2035 APInt APInt::uadd_sat(const APInt &RHS) const {
2036 bool Overflow;
2037 APInt Res = uadd_ov(RHS, Overflow);
2038 if (!Overflow)
2039 return Res;
2041 return APInt::getMaxValue(BitWidth);
2044 APInt APInt::ssub_sat(const APInt &RHS) const {
2045 bool Overflow;
2046 APInt Res = ssub_ov(RHS, Overflow);
2047 if (!Overflow)
2048 return Res;
2050 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2051 : APInt::getSignedMaxValue(BitWidth);
2054 APInt APInt::usub_sat(const APInt &RHS) const {
2055 bool Overflow;
2056 APInt Res = usub_ov(RHS, Overflow);
2057 if (!Overflow)
2058 return Res;
2060 return APInt(BitWidth, 0);
2063 APInt APInt::smul_sat(const APInt &RHS) const {
2064 bool Overflow;
2065 APInt Res = smul_ov(RHS, Overflow);
2066 if (!Overflow)
2067 return Res;
2069 // The result is negative if one and only one of inputs is negative.
2070 bool ResIsNegative = isNegative() ^ RHS.isNegative();
2072 return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2073 : APInt::getSignedMaxValue(BitWidth);
2076 APInt APInt::umul_sat(const APInt &RHS) const {
2077 bool Overflow;
2078 APInt Res = umul_ov(RHS, Overflow);
2079 if (!Overflow)
2080 return Res;
2082 return APInt::getMaxValue(BitWidth);
2085 APInt APInt::sshl_sat(const APInt &RHS) const {
2086 return sshl_sat(RHS.getLimitedValue(getBitWidth()));
2089 APInt APInt::sshl_sat(unsigned RHS) const {
2090 bool Overflow;
2091 APInt Res = sshl_ov(RHS, Overflow);
2092 if (!Overflow)
2093 return Res;
2095 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2096 : APInt::getSignedMaxValue(BitWidth);
2099 APInt APInt::ushl_sat(const APInt &RHS) const {
2100 return ushl_sat(RHS.getLimitedValue(getBitWidth()));
2103 APInt APInt::ushl_sat(unsigned RHS) const {
2104 bool Overflow;
2105 APInt Res = ushl_ov(RHS, Overflow);
2106 if (!Overflow)
2107 return Res;
2109 return APInt::getMaxValue(BitWidth);
2112 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2113 // Check our assumptions here
2114 assert(!str.empty() && "Invalid string length");
2115 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2116 radix == 36) &&
2117 "Radix should be 2, 8, 10, 16, or 36!");
2119 StringRef::iterator p = str.begin();
2120 size_t slen = str.size();
2121 bool isNeg = *p == '-';
2122 if (*p == '-' || *p == '+') {
2123 p++;
2124 slen--;
2125 assert(slen && "String is only a sign, needs a value.");
2127 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2128 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2129 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2130 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2131 "Insufficient bit width");
2133 // Allocate memory if needed
2134 if (isSingleWord())
2135 U.VAL = 0;
2136 else
2137 U.pVal = getClearedMemory(getNumWords());
2139 // Figure out if we can shift instead of multiply
2140 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2142 // Enter digit traversal loop
2143 for (StringRef::iterator e = str.end(); p != e; ++p) {
2144 unsigned digit = getDigit(*p, radix);
2145 assert(digit < radix && "Invalid character in digit string");
2147 // Shift or multiply the value by the radix
2148 if (slen > 1) {
2149 if (shift)
2150 *this <<= shift;
2151 else
2152 *this *= radix;
2155 // Add in the digit we just interpreted
2156 *this += digit;
2158 // If its negative, put it in two's complement form
2159 if (isNeg)
2160 this->negate();
2163 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
2164 bool formatAsCLiteral, bool UpperCase) const {
2165 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2166 Radix == 36) &&
2167 "Radix should be 2, 8, 10, 16, or 36!");
2169 const char *Prefix = "";
2170 if (formatAsCLiteral) {
2171 switch (Radix) {
2172 case 2:
2173 // Binary literals are a non-standard extension added in gcc 4.3:
2174 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2175 Prefix = "0b";
2176 break;
2177 case 8:
2178 Prefix = "0";
2179 break;
2180 case 10:
2181 break; // No prefix
2182 case 16:
2183 Prefix = "0x";
2184 break;
2185 default:
2186 llvm_unreachable("Invalid radix!");
2190 // First, check for a zero value and just short circuit the logic below.
2191 if (isZero()) {
2192 while (*Prefix) {
2193 Str.push_back(*Prefix);
2194 ++Prefix;
2196 Str.push_back('0');
2197 return;
2200 static const char BothDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz"
2201 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2202 const char *Digits = BothDigits + (UpperCase ? 36 : 0);
2204 if (isSingleWord()) {
2205 char Buffer[65];
2206 char *BufPtr = std::end(Buffer);
2208 uint64_t N;
2209 if (!Signed) {
2210 N = getZExtValue();
2211 } else {
2212 int64_t I = getSExtValue();
2213 if (I >= 0) {
2214 N = I;
2215 } else {
2216 Str.push_back('-');
2217 N = -(uint64_t)I;
2221 while (*Prefix) {
2222 Str.push_back(*Prefix);
2223 ++Prefix;
2226 while (N) {
2227 *--BufPtr = Digits[N % Radix];
2228 N /= Radix;
2230 Str.append(BufPtr, std::end(Buffer));
2231 return;
2234 APInt Tmp(*this);
2236 if (Signed && isNegative()) {
2237 // They want to print the signed version and it is a negative value
2238 // Flip the bits and add one to turn it into the equivalent positive
2239 // value and put a '-' in the result.
2240 Tmp.negate();
2241 Str.push_back('-');
2244 while (*Prefix) {
2245 Str.push_back(*Prefix);
2246 ++Prefix;
2249 // We insert the digits backward, then reverse them to get the right order.
2250 unsigned StartDig = Str.size();
2252 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2253 // because the number of bits per digit (1, 3 and 4 respectively) divides
2254 // equally. We just shift until the value is zero.
2255 if (Radix == 2 || Radix == 8 || Radix == 16) {
2256 // Just shift tmp right for each digit width until it becomes zero
2257 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2258 unsigned MaskAmt = Radix - 1;
2260 while (Tmp.getBoolValue()) {
2261 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2262 Str.push_back(Digits[Digit]);
2263 Tmp.lshrInPlace(ShiftAmt);
2265 } else {
2266 while (Tmp.getBoolValue()) {
2267 uint64_t Digit;
2268 udivrem(Tmp, Radix, Tmp, Digit);
2269 assert(Digit < Radix && "divide failed");
2270 Str.push_back(Digits[Digit]);
2274 // Reverse the digits before returning.
2275 std::reverse(Str.begin()+StartDig, Str.end());
2278 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2279 LLVM_DUMP_METHOD void APInt::dump() const {
2280 SmallString<40> S, U;
2281 this->toStringUnsigned(U);
2282 this->toStringSigned(S);
2283 dbgs() << "APInt(" << BitWidth << "b, "
2284 << U << "u " << S << "s)\n";
2286 #endif
2288 void APInt::print(raw_ostream &OS, bool isSigned) const {
2289 SmallString<40> S;
2290 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2291 OS << S;
2294 // This implements a variety of operations on a representation of
2295 // arbitrary precision, two's-complement, bignum integer values.
2297 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2298 // and unrestricting assumption.
2299 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2300 "Part width must be divisible by 2!");
2302 // Returns the integer part with the least significant BITS set.
2303 // BITS cannot be zero.
2304 static inline APInt::WordType lowBitMask(unsigned bits) {
2305 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2306 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2309 /// Returns the value of the lower half of PART.
2310 static inline APInt::WordType lowHalf(APInt::WordType part) {
2311 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2314 /// Returns the value of the upper half of PART.
2315 static inline APInt::WordType highHalf(APInt::WordType part) {
2316 return part >> (APInt::APINT_BITS_PER_WORD / 2);
2319 /// Sets the least significant part of a bignum to the input value, and zeroes
2320 /// out higher parts.
2321 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2322 assert(parts > 0);
2323 dst[0] = part;
2324 for (unsigned i = 1; i < parts; i++)
2325 dst[i] = 0;
2328 /// Assign one bignum to another.
2329 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2330 for (unsigned i = 0; i < parts; i++)
2331 dst[i] = src[i];
2334 /// Returns true if a bignum is zero, false otherwise.
2335 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2336 for (unsigned i = 0; i < parts; i++)
2337 if (src[i])
2338 return false;
2340 return true;
2343 /// Extract the given bit of a bignum; returns 0 or 1.
2344 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2345 return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2348 /// Set the given bit of a bignum.
2349 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2350 parts[whichWord(bit)] |= maskBit(bit);
2353 /// Clears the given bit of a bignum.
2354 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2355 parts[whichWord(bit)] &= ~maskBit(bit);
2358 /// Returns the bit number of the least significant set bit of a number. If the
2359 /// input number has no bits set UINT_MAX is returned.
2360 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2361 for (unsigned i = 0; i < n; i++) {
2362 if (parts[i] != 0) {
2363 unsigned lsb = llvm::countr_zero(parts[i]);
2364 return lsb + i * APINT_BITS_PER_WORD;
2368 return UINT_MAX;
2371 /// Returns the bit number of the most significant set bit of a number.
2372 /// If the input number has no bits set UINT_MAX is returned.
2373 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2374 do {
2375 --n;
2377 if (parts[n] != 0) {
2378 static_assert(sizeof(parts[n]) <= sizeof(uint64_t));
2379 unsigned msb = llvm::Log2_64(parts[n]);
2381 return msb + n * APINT_BITS_PER_WORD;
2383 } while (n);
2385 return UINT_MAX;
2388 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2389 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2390 /// significant bit of DST. All high bits above srcBITS in DST are zero-filled.
2391 /// */
2392 void
2393 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2394 unsigned srcBits, unsigned srcLSB) {
2395 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2396 assert(dstParts <= dstCount);
2398 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2399 tcAssign(dst, src + firstSrcPart, dstParts);
2401 unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2402 tcShiftRight(dst, dstParts, shift);
2404 // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2405 // in DST. If this is less that srcBits, append the rest, else
2406 // clear the high bits.
2407 unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2408 if (n < srcBits) {
2409 WordType mask = lowBitMask (srcBits - n);
2410 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2411 << n % APINT_BITS_PER_WORD);
2412 } else if (n > srcBits) {
2413 if (srcBits % APINT_BITS_PER_WORD)
2414 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2417 // Clear high parts.
2418 while (dstParts < dstCount)
2419 dst[dstParts++] = 0;
2422 //// DST += RHS + C where C is zero or one. Returns the carry flag.
2423 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2424 WordType c, unsigned parts) {
2425 assert(c <= 1);
2427 for (unsigned i = 0; i < parts; i++) {
2428 WordType l = dst[i];
2429 if (c) {
2430 dst[i] += rhs[i] + 1;
2431 c = (dst[i] <= l);
2432 } else {
2433 dst[i] += rhs[i];
2434 c = (dst[i] < l);
2438 return c;
2441 /// This function adds a single "word" integer, src, to the multiple
2442 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2443 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2444 /// @returns the carry of the addition.
2445 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2446 unsigned parts) {
2447 for (unsigned i = 0; i < parts; ++i) {
2448 dst[i] += src;
2449 if (dst[i] >= src)
2450 return 0; // No need to carry so exit early.
2451 src = 1; // Carry one to next digit.
2454 return 1;
2457 /// DST -= RHS + C where C is zero or one. Returns the carry flag.
2458 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2459 WordType c, unsigned parts) {
2460 assert(c <= 1);
2462 for (unsigned i = 0; i < parts; i++) {
2463 WordType l = dst[i];
2464 if (c) {
2465 dst[i] -= rhs[i] + 1;
2466 c = (dst[i] >= l);
2467 } else {
2468 dst[i] -= rhs[i];
2469 c = (dst[i] > l);
2473 return c;
2476 /// This function subtracts a single "word" (64-bit word), src, from
2477 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2478 /// no further borrowing is needed or it runs out of "words" in dst. The result
2479 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2480 /// exhausted. In other words, if src > dst then this function returns 1,
2481 /// otherwise 0.
2482 /// @returns the borrow out of the subtraction
2483 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2484 unsigned parts) {
2485 for (unsigned i = 0; i < parts; ++i) {
2486 WordType Dst = dst[i];
2487 dst[i] -= src;
2488 if (src <= Dst)
2489 return 0; // No need to borrow so exit early.
2490 src = 1; // We have to "borrow 1" from next "word"
2493 return 1;
2496 /// Negate a bignum in-place.
2497 void APInt::tcNegate(WordType *dst, unsigned parts) {
2498 tcComplement(dst, parts);
2499 tcIncrement(dst, parts);
2502 /// DST += SRC * MULTIPLIER + CARRY if add is true
2503 /// DST = SRC * MULTIPLIER + CARRY if add is false
2504 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2505 /// they must start at the same point, i.e. DST == SRC.
2506 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2507 /// returned. Otherwise DST is filled with the least significant
2508 /// DSTPARTS parts of the result, and if all of the omitted higher
2509 /// parts were zero return zero, otherwise overflow occurred and
2510 /// return one.
2511 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2512 WordType multiplier, WordType carry,
2513 unsigned srcParts, unsigned dstParts,
2514 bool add) {
2515 // Otherwise our writes of DST kill our later reads of SRC.
2516 assert(dst <= src || dst >= src + srcParts);
2517 assert(dstParts <= srcParts + 1);
2519 // N loops; minimum of dstParts and srcParts.
2520 unsigned n = std::min(dstParts, srcParts);
2522 for (unsigned i = 0; i < n; i++) {
2523 // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2524 // This cannot overflow, because:
2525 // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2526 // which is less than n^2.
2527 WordType srcPart = src[i];
2528 WordType low, mid, high;
2529 if (multiplier == 0 || srcPart == 0) {
2530 low = carry;
2531 high = 0;
2532 } else {
2533 low = lowHalf(srcPart) * lowHalf(multiplier);
2534 high = highHalf(srcPart) * highHalf(multiplier);
2536 mid = lowHalf(srcPart) * highHalf(multiplier);
2537 high += highHalf(mid);
2538 mid <<= APINT_BITS_PER_WORD / 2;
2539 if (low + mid < low)
2540 high++;
2541 low += mid;
2543 mid = highHalf(srcPart) * lowHalf(multiplier);
2544 high += highHalf(mid);
2545 mid <<= APINT_BITS_PER_WORD / 2;
2546 if (low + mid < low)
2547 high++;
2548 low += mid;
2550 // Now add carry.
2551 if (low + carry < low)
2552 high++;
2553 low += carry;
2556 if (add) {
2557 // And now DST[i], and store the new low part there.
2558 if (low + dst[i] < low)
2559 high++;
2560 dst[i] += low;
2561 } else
2562 dst[i] = low;
2564 carry = high;
2567 if (srcParts < dstParts) {
2568 // Full multiplication, there is no overflow.
2569 assert(srcParts + 1 == dstParts);
2570 dst[srcParts] = carry;
2571 return 0;
2574 // We overflowed if there is carry.
2575 if (carry)
2576 return 1;
2578 // We would overflow if any significant unwritten parts would be
2579 // non-zero. This is true if any remaining src parts are non-zero
2580 // and the multiplier is non-zero.
2581 if (multiplier)
2582 for (unsigned i = dstParts; i < srcParts; i++)
2583 if (src[i])
2584 return 1;
2586 // We fitted in the narrow destination.
2587 return 0;
2590 /// DST = LHS * RHS, where DST has the same width as the operands and
2591 /// is filled with the least significant parts of the result. Returns
2592 /// one if overflow occurred, otherwise zero. DST must be disjoint
2593 /// from both operands.
2594 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2595 const WordType *rhs, unsigned parts) {
2596 assert(dst != lhs && dst != rhs);
2598 int overflow = 0;
2599 tcSet(dst, 0, parts);
2601 for (unsigned i = 0; i < parts; i++)
2602 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2603 parts - i, true);
2605 return overflow;
2608 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2609 /// operands. No overflow occurs. DST must be disjoint from both operands.
2610 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2611 const WordType *rhs, unsigned lhsParts,
2612 unsigned rhsParts) {
2613 // Put the narrower number on the LHS for less loops below.
2614 if (lhsParts > rhsParts)
2615 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2617 assert(dst != lhs && dst != rhs);
2619 tcSet(dst, 0, rhsParts);
2621 for (unsigned i = 0; i < lhsParts; i++)
2622 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2625 // If RHS is zero LHS and REMAINDER are left unchanged, return one.
2626 // Otherwise set LHS to LHS / RHS with the fractional part discarded,
2627 // set REMAINDER to the remainder, return zero. i.e.
2629 // OLD_LHS = RHS * LHS + REMAINDER
2631 // SCRATCH is a bignum of the same size as the operands and result for
2632 // use by the routine; its contents need not be initialized and are
2633 // destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2634 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2635 WordType *remainder, WordType *srhs,
2636 unsigned parts) {
2637 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2639 unsigned shiftCount = tcMSB(rhs, parts) + 1;
2640 if (shiftCount == 0)
2641 return true;
2643 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2644 unsigned n = shiftCount / APINT_BITS_PER_WORD;
2645 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2647 tcAssign(srhs, rhs, parts);
2648 tcShiftLeft(srhs, parts, shiftCount);
2649 tcAssign(remainder, lhs, parts);
2650 tcSet(lhs, 0, parts);
2652 // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2653 // total.
2654 for (;;) {
2655 int compare = tcCompare(remainder, srhs, parts);
2656 if (compare >= 0) {
2657 tcSubtract(remainder, srhs, 0, parts);
2658 lhs[n] |= mask;
2661 if (shiftCount == 0)
2662 break;
2663 shiftCount--;
2664 tcShiftRight(srhs, parts, 1);
2665 if ((mask >>= 1) == 0) {
2666 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2667 n--;
2671 return false;
2674 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2675 /// no restrictions on Count.
2676 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2677 // Don't bother performing a no-op shift.
2678 if (!Count)
2679 return;
2681 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2682 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2683 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2685 // Fastpath for moving by whole words.
2686 if (BitShift == 0) {
2687 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2688 } else {
2689 while (Words-- > WordShift) {
2690 Dst[Words] = Dst[Words - WordShift] << BitShift;
2691 if (Words > WordShift)
2692 Dst[Words] |=
2693 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2697 // Fill in the remainder with 0s.
2698 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2701 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2702 /// are no restrictions on Count.
2703 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2704 // Don't bother performing a no-op shift.
2705 if (!Count)
2706 return;
2708 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2709 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2710 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2712 unsigned WordsToMove = Words - WordShift;
2713 // Fastpath for moving by whole words.
2714 if (BitShift == 0) {
2715 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2716 } else {
2717 for (unsigned i = 0; i != WordsToMove; ++i) {
2718 Dst[i] = Dst[i + WordShift] >> BitShift;
2719 if (i + 1 != WordsToMove)
2720 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2724 // Fill in the remainder with 0s.
2725 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2728 // Comparison (unsigned) of two bignums.
2729 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2730 unsigned parts) {
2731 while (parts) {
2732 parts--;
2733 if (lhs[parts] != rhs[parts])
2734 return (lhs[parts] > rhs[parts]) ? 1 : -1;
2737 return 0;
2740 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2741 APInt::Rounding RM) {
2742 // Currently udivrem always rounds down.
2743 switch (RM) {
2744 case APInt::Rounding::DOWN:
2745 case APInt::Rounding::TOWARD_ZERO:
2746 return A.udiv(B);
2747 case APInt::Rounding::UP: {
2748 APInt Quo, Rem;
2749 APInt::udivrem(A, B, Quo, Rem);
2750 if (Rem.isZero())
2751 return Quo;
2752 return Quo + 1;
2755 llvm_unreachable("Unknown APInt::Rounding enum");
2758 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2759 APInt::Rounding RM) {
2760 switch (RM) {
2761 case APInt::Rounding::DOWN:
2762 case APInt::Rounding::UP: {
2763 APInt Quo, Rem;
2764 APInt::sdivrem(A, B, Quo, Rem);
2765 if (Rem.isZero())
2766 return Quo;
2767 // This algorithm deals with arbitrary rounding mode used by sdivrem.
2768 // We want to check whether the non-integer part of the mathematical value
2769 // is negative or not. If the non-integer part is negative, we need to round
2770 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2771 // already rounded down.
2772 if (RM == APInt::Rounding::DOWN) {
2773 if (Rem.isNegative() != B.isNegative())
2774 return Quo - 1;
2775 return Quo;
2777 if (Rem.isNegative() != B.isNegative())
2778 return Quo;
2779 return Quo + 1;
2781 // Currently sdiv rounds towards zero.
2782 case APInt::Rounding::TOWARD_ZERO:
2783 return A.sdiv(B);
2785 llvm_unreachable("Unknown APInt::Rounding enum");
2788 std::optional<APInt>
2789 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2790 unsigned RangeWidth) {
2791 unsigned CoeffWidth = A.getBitWidth();
2792 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2793 assert(RangeWidth <= CoeffWidth &&
2794 "Value range width should be less than coefficient width");
2795 assert(RangeWidth > 1 && "Value range bit width should be > 1");
2797 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2798 << "x + " << C << ", rw:" << RangeWidth << '\n');
2800 // Identify 0 as a (non)solution immediately.
2801 if (C.sextOrTrunc(RangeWidth).isZero()) {
2802 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2803 return APInt(CoeffWidth, 0);
2806 // The result of APInt arithmetic has the same bit width as the operands,
2807 // so it can actually lose high bits. A product of two n-bit integers needs
2808 // 2n-1 bits to represent the full value.
2809 // The operation done below (on quadratic coefficients) that can produce
2810 // the largest value is the evaluation of the equation during bisection,
2811 // which needs 3 times the bitwidth of the coefficient, so the total number
2812 // of required bits is 3n.
2814 // The purpose of this extension is to simulate the set Z of all integers,
2815 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2816 // and negative numbers (not so much in a modulo arithmetic). The method
2817 // used to solve the equation is based on the standard formula for real
2818 // numbers, and uses the concepts of "positive" and "negative" with their
2819 // usual meanings.
2820 CoeffWidth *= 3;
2821 A = A.sext(CoeffWidth);
2822 B = B.sext(CoeffWidth);
2823 C = C.sext(CoeffWidth);
2825 // Make A > 0 for simplicity. Negate cannot overflow at this point because
2826 // the bit width has increased.
2827 if (A.isNegative()) {
2828 A.negate();
2829 B.negate();
2830 C.negate();
2833 // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2834 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2835 // and R = 2^BitWidth.
2836 // Since we're trying not only to find exact solutions, but also values
2837 // that "wrap around", such a set will always have a solution, i.e. an x
2838 // that satisfies at least one of the equations, or such that |q(x)|
2839 // exceeds kR, while |q(x-1)| for the same k does not.
2841 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2842 // positive solution n (in the above sense), and also such that the n
2843 // will be the least among all solutions corresponding to k = 0, 1, ...
2844 // (more precisely, the least element in the set
2845 // { n(k) | k is such that a solution n(k) exists }).
2847 // Consider the parabola (over real numbers) that corresponds to the
2848 // quadratic equation. Since A > 0, the arms of the parabola will point
2849 // up. Picking different values of k will shift it up and down by R.
2851 // We want to shift the parabola in such a way as to reduce the problem
2852 // of solving q(x) = kR to solving shifted_q(x) = 0.
2853 // (The interesting solutions are the ceilings of the real number
2854 // solutions.)
2855 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2856 APInt TwoA = 2 * A;
2857 APInt SqrB = B * B;
2858 bool PickLow;
2860 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2861 assert(A.isStrictlyPositive());
2862 APInt T = V.abs().urem(A);
2863 if (T.isZero())
2864 return V;
2865 return V.isNegative() ? V+T : V+(A-T);
2868 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2869 // iff B is positive.
2870 if (B.isNonNegative()) {
2871 // If B >= 0, the vertex it at a negative location (or at 0), so in
2872 // order to have a non-negative solution we need to pick k that makes
2873 // C-kR negative. To satisfy all the requirements for the solution
2874 // that we are looking for, it needs to be closest to 0 of all k.
2875 C = C.srem(R);
2876 if (C.isStrictlyPositive())
2877 C -= R;
2878 // Pick the greater solution.
2879 PickLow = false;
2880 } else {
2881 // If B < 0, the vertex is at a positive location. For any solution
2882 // to exist, the discriminant must be non-negative. This means that
2883 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2884 // lower bound on values of k: kR >= C - B^2/4A.
2885 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2886 // Round LowkR up (towards +inf) to the nearest kR.
2887 LowkR = RoundUp(LowkR, R);
2889 // If there exists k meeting the condition above, and such that
2890 // C-kR > 0, there will be two positive real number solutions of
2891 // q(x) = kR. Out of all such values of k, pick the one that makes
2892 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2893 // In other words, find maximum k such that LowkR <= kR < C.
2894 if (C.sgt(LowkR)) {
2895 // If LowkR < C, then such a k is guaranteed to exist because
2896 // LowkR itself is a multiple of R.
2897 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R)
2898 // Pick the smaller solution.
2899 PickLow = true;
2900 } else {
2901 // If C-kR < 0 for all potential k's, it means that one solution
2902 // will be negative, while the other will be positive. The positive
2903 // solution will shift towards 0 if the parabola is moved up.
2904 // Pick the kR closest to the lower bound (i.e. make C-kR closest
2905 // to 0, or in other words, out of all parabolas that have solutions,
2906 // pick the one that is the farthest "up").
2907 // Since LowkR is itself a multiple of R, simply take C-LowkR.
2908 C -= LowkR;
2909 // Pick the greater solution.
2910 PickLow = false;
2914 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2915 << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2917 APInt D = SqrB - 4*A*C;
2918 assert(D.isNonNegative() && "Negative discriminant");
2919 APInt SQ = D.sqrt();
2921 APInt Q = SQ * SQ;
2922 bool InexactSQ = Q != D;
2923 // The calculated SQ may actually be greater than the exact (non-integer)
2924 // value. If that's the case, decrement SQ to get a value that is lower.
2925 if (Q.sgt(D))
2926 SQ -= 1;
2928 APInt X;
2929 APInt Rem;
2931 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2932 // When using the quadratic formula directly, the calculated low root
2933 // may be greater than the exact one, since we would be subtracting SQ.
2934 // To make sure that the calculated root is not greater than the exact
2935 // one, subtract SQ+1 when calculating the low root (for inexact value
2936 // of SQ).
2937 if (PickLow)
2938 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2939 else
2940 APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2942 // The updated coefficients should be such that the (exact) solution is
2943 // positive. Since APInt division rounds towards 0, the calculated one
2944 // can be 0, but cannot be negative.
2945 assert(X.isNonNegative() && "Solution should be non-negative");
2947 if (!InexactSQ && Rem.isZero()) {
2948 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2949 return X;
2952 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2953 // The exact value of the square root of D should be between SQ and SQ+1.
2954 // This implies that the solution should be between that corresponding to
2955 // SQ (i.e. X) and that corresponding to SQ+1.
2957 // The calculated X cannot be greater than the exact (real) solution.
2958 // Actually it must be strictly less than the exact solution, while
2959 // X+1 will be greater than or equal to it.
2961 APInt VX = (A*X + B)*X + C;
2962 APInt VY = VX + TwoA*X + A + B;
2963 bool SignChange =
2964 VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
2965 // If the sign did not change between X and X+1, X is not a valid solution.
2966 // This could happen when the actual (exact) roots don't have an integer
2967 // between them, so they would both be contained between X and X+1.
2968 if (!SignChange) {
2969 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2970 return std::nullopt;
2973 X += 1;
2974 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2975 return X;
2978 std::optional<unsigned>
2979 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
2980 assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
2981 if (A == B)
2982 return std::nullopt;
2983 return A.getBitWidth() - ((A ^ B).countl_zero() + 1);
2986 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2987 bool MatchAllBits) {
2988 unsigned OldBitWidth = A.getBitWidth();
2989 assert((((OldBitWidth % NewBitWidth) == 0) ||
2990 ((NewBitWidth % OldBitWidth) == 0)) &&
2991 "One size should be a multiple of the other one. "
2992 "Can't do fractional scaling.");
2994 // Check for matching bitwidths.
2995 if (OldBitWidth == NewBitWidth)
2996 return A;
2998 APInt NewA = APInt::getZero(NewBitWidth);
3000 // Check for null input.
3001 if (A.isZero())
3002 return NewA;
3004 if (NewBitWidth > OldBitWidth) {
3005 // Repeat bits.
3006 unsigned Scale = NewBitWidth / OldBitWidth;
3007 for (unsigned i = 0; i != OldBitWidth; ++i)
3008 if (A[i])
3009 NewA.setBits(i * Scale, (i + 1) * Scale);
3010 } else {
3011 unsigned Scale = OldBitWidth / NewBitWidth;
3012 for (unsigned i = 0; i != NewBitWidth; ++i) {
3013 if (MatchAllBits) {
3014 if (A.extractBits(Scale, i * Scale).isAllOnes())
3015 NewA.setBit(i);
3016 } else {
3017 if (!A.extractBits(Scale, i * Scale).isZero())
3018 NewA.setBit(i);
3023 return NewA;
3026 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3027 /// with the integer held in IntVal.
3028 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3029 unsigned StoreBytes) {
3030 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3031 const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3033 if (sys::IsLittleEndianHost) {
3034 // Little-endian host - the source is ordered from LSB to MSB. Order the
3035 // destination from LSB to MSB: Do a straight copy.
3036 memcpy(Dst, Src, StoreBytes);
3037 } else {
3038 // Big-endian host - the source is an array of 64 bit words ordered from
3039 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
3040 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3041 while (StoreBytes > sizeof(uint64_t)) {
3042 StoreBytes -= sizeof(uint64_t);
3043 // May not be aligned so use memcpy.
3044 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3045 Src += sizeof(uint64_t);
3048 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3052 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3053 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3054 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3055 unsigned LoadBytes) {
3056 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3057 uint8_t *Dst = reinterpret_cast<uint8_t *>(
3058 const_cast<uint64_t *>(IntVal.getRawData()));
3060 if (sys::IsLittleEndianHost)
3061 // Little-endian host - the destination must be ordered from LSB to MSB.
3062 // The source is ordered from LSB to MSB: Do a straight copy.
3063 memcpy(Dst, Src, LoadBytes);
3064 else {
3065 // Big-endian - the destination is an array of 64 bit words ordered from
3066 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
3067 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3068 // a word.
3069 while (LoadBytes > sizeof(uint64_t)) {
3070 LoadBytes -= sizeof(uint64_t);
3071 // May not be aligned so use memcpy.
3072 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3073 Dst += sizeof(uint64_t);
3076 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);