Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Target / RISCV / AsmParser / RISCVAsmParser.cpp
blobeb861cee674f3f99917a5efddc352b7a322c6d2d
1 //===-- RISCVAsmParser.cpp - Parse RISC-V assembly to MCInst instructions -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "MCTargetDesc/RISCVAsmBackend.h"
10 #include "MCTargetDesc/RISCVBaseInfo.h"
11 #include "MCTargetDesc/RISCVInstPrinter.h"
12 #include "MCTargetDesc/RISCVMCExpr.h"
13 #include "MCTargetDesc/RISCVMCTargetDesc.h"
14 #include "MCTargetDesc/RISCVMatInt.h"
15 #include "MCTargetDesc/RISCVTargetStreamer.h"
16 #include "TargetInfo/RISCVTargetInfo.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallBitVector.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/MC/MCAssembler.h"
24 #include "llvm/MC/MCContext.h"
25 #include "llvm/MC/MCExpr.h"
26 #include "llvm/MC/MCInst.h"
27 #include "llvm/MC/MCInstBuilder.h"
28 #include "llvm/MC/MCInstrInfo.h"
29 #include "llvm/MC/MCObjectFileInfo.h"
30 #include "llvm/MC/MCParser/MCAsmLexer.h"
31 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
32 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/MC/MCStreamer.h"
35 #include "llvm/MC/MCSubtargetInfo.h"
36 #include "llvm/MC/MCValue.h"
37 #include "llvm/MC/TargetRegistry.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/RISCVAttributes.h"
42 #include "llvm/Support/RISCVISAInfo.h"
44 #include <limits>
46 using namespace llvm;
48 #define DEBUG_TYPE "riscv-asm-parser"
50 STATISTIC(RISCVNumInstrsCompressed,
51 "Number of RISC-V Compressed instructions emitted");
53 static cl::opt<bool> AddBuildAttributes("riscv-add-build-attributes",
54 cl::init(false));
56 namespace llvm {
57 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
58 } // namespace llvm
60 namespace {
61 struct RISCVOperand;
63 struct ParserOptionsSet {
64 bool IsPicEnabled;
67 class RISCVAsmParser : public MCTargetAsmParser {
68 // This tracks the parsing of the 4 operands that make up the vtype portion
69 // of vset(i)vli instructions which are separated by commas. The state names
70 // represent the next expected operand with Done meaning no other operands are
71 // expected.
72 enum VTypeState {
73 VTypeState_SEW,
74 VTypeState_LMUL,
75 VTypeState_TailPolicy,
76 VTypeState_MaskPolicy,
77 VTypeState_Done,
80 SmallVector<FeatureBitset, 4> FeatureBitStack;
82 SmallVector<ParserOptionsSet, 4> ParserOptionsStack;
83 ParserOptionsSet ParserOptions;
85 SMLoc getLoc() const { return getParser().getTok().getLoc(); }
86 bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); }
87 bool isRVE() const { return getSTI().hasFeature(RISCV::FeatureRVE); }
89 RISCVTargetStreamer &getTargetStreamer() {
90 assert(getParser().getStreamer().getTargetStreamer() &&
91 "do not have a target streamer");
92 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
93 return static_cast<RISCVTargetStreamer &>(TS);
96 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
97 unsigned Kind) override;
98 unsigned checkTargetMatchPredicate(MCInst &Inst) override;
100 bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
101 int64_t Lower, int64_t Upper,
102 const Twine &Msg);
103 bool generateImmOutOfRangeError(SMLoc ErrorLoc, int64_t Lower, int64_t Upper,
104 const Twine &Msg);
106 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
107 OperandVector &Operands, MCStreamer &Out,
108 uint64_t &ErrorInfo,
109 bool MatchingInlineAsm) override;
111 bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override;
112 ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
113 SMLoc &EndLoc) override;
115 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
116 SMLoc NameLoc, OperandVector &Operands) override;
118 ParseStatus parseDirective(AsmToken DirectiveID) override;
120 bool parseVTypeToken(StringRef Identifier, VTypeState &State, unsigned &Sew,
121 unsigned &Lmul, bool &Fractional, bool &TailAgnostic,
122 bool &MaskAgnostic);
123 bool generateVTypeError(SMLoc ErrorLoc);
125 // Helper to actually emit an instruction to the MCStreamer. Also, when
126 // possible, compression of the instruction is performed.
127 void emitToStreamer(MCStreamer &S, const MCInst &Inst);
129 // Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that
130 // synthesize the desired immedate value into the destination register.
131 void emitLoadImm(MCRegister DestReg, int64_t Value, MCStreamer &Out);
133 // Helper to emit a combination of AUIPC and SecondOpcode. Used to implement
134 // helpers such as emitLoadLocalAddress and emitLoadAddress.
135 void emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
136 const MCExpr *Symbol, RISCVMCExpr::VariantKind VKHi,
137 unsigned SecondOpcode, SMLoc IDLoc, MCStreamer &Out);
139 // Helper to emit pseudo instruction "lla" used in PC-rel addressing.
140 void emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
142 // Helper to emit pseudo instruction "lga" used in GOT-rel addressing.
143 void emitLoadGlobalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
145 // Helper to emit pseudo instruction "la" used in GOT/PC-rel addressing.
146 void emitLoadAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
148 // Helper to emit pseudo instruction "la.tls.ie" used in initial-exec TLS
149 // addressing.
150 void emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
152 // Helper to emit pseudo instruction "la.tls.gd" used in global-dynamic TLS
153 // addressing.
154 void emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
156 // Helper to emit pseudo load/store instruction with a symbol.
157 void emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
158 MCStreamer &Out, bool HasTmpReg);
160 // Helper to emit pseudo sign/zero extend instruction.
161 void emitPseudoExtend(MCInst &Inst, bool SignExtend, int64_t Width,
162 SMLoc IDLoc, MCStreamer &Out);
164 // Helper to emit pseudo vmsge{u}.vx instruction.
165 void emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc, MCStreamer &Out);
167 // Checks that a PseudoAddTPRel is using x4/tp in its second input operand.
168 // Enforcing this using a restricted register class for the second input
169 // operand of PseudoAddTPRel results in a poor diagnostic due to the fact
170 // 'add' is an overloaded mnemonic.
171 bool checkPseudoAddTPRel(MCInst &Inst, OperandVector &Operands);
173 // Check instruction constraints.
174 bool validateInstruction(MCInst &Inst, OperandVector &Operands);
176 /// Helper for processing MC instructions that have been successfully matched
177 /// by MatchAndEmitInstruction. Modifications to the emitted instructions,
178 /// like the expansion of pseudo instructions (e.g., "li"), can be performed
179 /// in this method.
180 bool processInstruction(MCInst &Inst, SMLoc IDLoc, OperandVector &Operands,
181 MCStreamer &Out);
183 // Auto-generated instruction matching functions
184 #define GET_ASSEMBLER_HEADER
185 #include "RISCVGenAsmMatcher.inc"
187 ParseStatus parseCSRSystemRegister(OperandVector &Operands);
188 ParseStatus parseFPImm(OperandVector &Operands);
189 ParseStatus parseImmediate(OperandVector &Operands);
190 ParseStatus parseRegister(OperandVector &Operands, bool AllowParens = false);
191 ParseStatus parseMemOpBaseReg(OperandVector &Operands);
192 ParseStatus parseZeroOffsetMemOp(OperandVector &Operands);
193 ParseStatus parseOperandWithModifier(OperandVector &Operands);
194 ParseStatus parseBareSymbol(OperandVector &Operands);
195 ParseStatus parseCallSymbol(OperandVector &Operands);
196 ParseStatus parsePseudoJumpSymbol(OperandVector &Operands);
197 ParseStatus parseJALOffset(OperandVector &Operands);
198 ParseStatus parseVTypeI(OperandVector &Operands);
199 ParseStatus parseMaskReg(OperandVector &Operands);
200 ParseStatus parseInsnDirectiveOpcode(OperandVector &Operands);
201 ParseStatus parseInsnCDirectiveOpcode(OperandVector &Operands);
202 ParseStatus parseGPRAsFPR(OperandVector &Operands);
203 ParseStatus parseFRMArg(OperandVector &Operands);
204 ParseStatus parseFenceArg(OperandVector &Operands);
205 ParseStatus parseReglist(OperandVector &Operands);
206 ParseStatus parseRetval(OperandVector &Operands);
207 ParseStatus parseZcmpSpimm(OperandVector &Operands);
209 bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
211 bool parseDirectiveOption();
212 bool parseDirectiveAttribute();
213 bool parseDirectiveInsn(SMLoc L);
214 bool parseDirectiveVariantCC();
216 /// Helper to reset target features for a new arch string. It
217 /// also records the new arch string that is expanded by RISCVISAInfo
218 /// and reports error for invalid arch string.
219 bool resetToArch(StringRef Arch, SMLoc Loc, std::string &Result,
220 bool FromOptionDirective);
222 void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
223 if (!(getSTI().hasFeature(Feature))) {
224 MCSubtargetInfo &STI = copySTI();
225 setAvailableFeatures(
226 ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
230 void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
231 if (getSTI().hasFeature(Feature)) {
232 MCSubtargetInfo &STI = copySTI();
233 setAvailableFeatures(
234 ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
238 void pushFeatureBits() {
239 assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
240 "These two stacks must be kept synchronized");
241 FeatureBitStack.push_back(getSTI().getFeatureBits());
242 ParserOptionsStack.push_back(ParserOptions);
245 bool popFeatureBits() {
246 assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
247 "These two stacks must be kept synchronized");
248 if (FeatureBitStack.empty())
249 return true;
251 FeatureBitset FeatureBits = FeatureBitStack.pop_back_val();
252 copySTI().setFeatureBits(FeatureBits);
253 setAvailableFeatures(ComputeAvailableFeatures(FeatureBits));
255 ParserOptions = ParserOptionsStack.pop_back_val();
257 return false;
260 std::unique_ptr<RISCVOperand> defaultMaskRegOp() const;
261 std::unique_ptr<RISCVOperand> defaultFRMArgOp() const;
262 std::unique_ptr<RISCVOperand> defaultFRMArgLegacyOp() const;
264 public:
265 enum RISCVMatchResultTy {
266 Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
267 Match_RequiresEvenGPRs,
268 #define GET_OPERAND_DIAGNOSTIC_TYPES
269 #include "RISCVGenAsmMatcher.inc"
270 #undef GET_OPERAND_DIAGNOSTIC_TYPES
273 static bool classifySymbolRef(const MCExpr *Expr,
274 RISCVMCExpr::VariantKind &Kind);
275 static bool isSymbolDiff(const MCExpr *Expr);
277 RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
278 const MCInstrInfo &MII, const MCTargetOptions &Options)
279 : MCTargetAsmParser(Options, STI, MII) {
280 MCAsmParserExtension::Initialize(Parser);
282 Parser.addAliasForDirective(".half", ".2byte");
283 Parser.addAliasForDirective(".hword", ".2byte");
284 Parser.addAliasForDirective(".word", ".4byte");
285 Parser.addAliasForDirective(".dword", ".8byte");
286 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
288 auto ABIName = StringRef(Options.ABIName);
289 if (ABIName.endswith("f") && !getSTI().hasFeature(RISCV::FeatureStdExtF)) {
290 errs() << "Hard-float 'f' ABI can't be used for a target that "
291 "doesn't support the F instruction set extension (ignoring "
292 "target-abi)\n";
293 } else if (ABIName.endswith("d") &&
294 !getSTI().hasFeature(RISCV::FeatureStdExtD)) {
295 errs() << "Hard-float 'd' ABI can't be used for a target that "
296 "doesn't support the D instruction set extension (ignoring "
297 "target-abi)\n";
300 // Use computeTargetABI to check if ABIName is valid. If invalid, output
301 // error message.
302 RISCVABI::computeTargetABI(STI.getTargetTriple(), STI.getFeatureBits(),
303 ABIName);
305 const MCObjectFileInfo *MOFI = Parser.getContext().getObjectFileInfo();
306 ParserOptions.IsPicEnabled = MOFI->isPositionIndependent();
308 if (AddBuildAttributes)
309 getTargetStreamer().emitTargetAttributes(STI, /*EmitStackAlign*/ false);
313 /// RISCVOperand - Instances of this class represent a parsed machine
314 /// instruction
315 struct RISCVOperand final : public MCParsedAsmOperand {
317 enum class KindTy {
318 Token,
319 Register,
320 Immediate,
321 FPImmediate,
322 SystemRegister,
323 VType,
324 FRM,
325 Fence,
326 Rlist,
327 Spimm,
328 } Kind;
330 struct RegOp {
331 MCRegister RegNum;
332 bool IsGPRAsFPR;
335 struct ImmOp {
336 const MCExpr *Val;
337 bool IsRV64;
340 struct FPImmOp {
341 uint64_t Val;
344 struct SysRegOp {
345 const char *Data;
346 unsigned Length;
347 unsigned Encoding;
348 // FIXME: Add the Encoding parsed fields as needed for checks,
349 // e.g.: read/write or user/supervisor/machine privileges.
352 struct VTypeOp {
353 unsigned Val;
356 struct FRMOp {
357 RISCVFPRndMode::RoundingMode FRM;
360 struct FenceOp {
361 unsigned Val;
364 struct RlistOp {
365 unsigned Val;
368 struct SpimmOp {
369 unsigned Val;
372 SMLoc StartLoc, EndLoc;
373 union {
374 StringRef Tok;
375 RegOp Reg;
376 ImmOp Imm;
377 FPImmOp FPImm;
378 struct SysRegOp SysReg;
379 struct VTypeOp VType;
380 struct FRMOp FRM;
381 struct FenceOp Fence;
382 struct RlistOp Rlist;
383 struct SpimmOp Spimm;
386 RISCVOperand(KindTy K) : Kind(K) {}
388 public:
389 RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() {
390 Kind = o.Kind;
391 StartLoc = o.StartLoc;
392 EndLoc = o.EndLoc;
393 switch (Kind) {
394 case KindTy::Register:
395 Reg = o.Reg;
396 break;
397 case KindTy::Immediate:
398 Imm = o.Imm;
399 break;
400 case KindTy::FPImmediate:
401 FPImm = o.FPImm;
402 break;
403 case KindTy::Token:
404 Tok = o.Tok;
405 break;
406 case KindTy::SystemRegister:
407 SysReg = o.SysReg;
408 break;
409 case KindTy::VType:
410 VType = o.VType;
411 break;
412 case KindTy::FRM:
413 FRM = o.FRM;
414 break;
415 case KindTy::Fence:
416 Fence = o.Fence;
417 break;
418 case KindTy::Rlist:
419 Rlist = o.Rlist;
420 break;
421 case KindTy::Spimm:
422 Spimm = o.Spimm;
423 break;
427 bool isToken() const override { return Kind == KindTy::Token; }
428 bool isReg() const override { return Kind == KindTy::Register; }
429 bool isV0Reg() const {
430 return Kind == KindTy::Register && Reg.RegNum == RISCV::V0;
432 bool isAnyReg() const {
433 return Kind == KindTy::Register &&
434 (RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg.RegNum) ||
435 RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg.RegNum) ||
436 RISCVMCRegisterClasses[RISCV::VRRegClassID].contains(Reg.RegNum));
438 bool isAnyRegC() const {
439 return Kind == KindTy::Register &&
440 (RISCVMCRegisterClasses[RISCV::GPRCRegClassID].contains(
441 Reg.RegNum) ||
442 RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(
443 Reg.RegNum));
445 bool isImm() const override { return Kind == KindTy::Immediate; }
446 bool isMem() const override { return false; }
447 bool isSystemRegister() const { return Kind == KindTy::SystemRegister; }
448 bool isRlist() const { return Kind == KindTy::Rlist; }
449 bool isSpimm() const { return Kind == KindTy::Spimm; }
451 bool isGPR() const {
452 return Kind == KindTy::Register &&
453 RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg.RegNum);
456 bool isGPRAsFPR() const { return isGPR() && Reg.IsGPRAsFPR; }
458 bool isGPRF64AsFPR() const { return isGPR() && Reg.IsGPRAsFPR; }
460 bool isGPRPF64AsFPR() const { return isGPR() && Reg.IsGPRAsFPR; }
462 static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm,
463 RISCVMCExpr::VariantKind &VK) {
464 if (auto *RE = dyn_cast<RISCVMCExpr>(Expr)) {
465 VK = RE->getKind();
466 return RE->evaluateAsConstant(Imm);
469 if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
470 VK = RISCVMCExpr::VK_RISCV_None;
471 Imm = CE->getValue();
472 return true;
475 return false;
478 // True if operand is a symbol with no modifiers, or a constant with no
479 // modifiers and isShiftedInt<N-1, 1>(Op).
480 template <int N> bool isBareSimmNLsb0() const {
481 int64_t Imm;
482 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
483 if (!isImm())
484 return false;
485 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
486 bool IsValid;
487 if (!IsConstantImm)
488 IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
489 else
490 IsValid = isShiftedInt<N - 1, 1>(Imm);
491 return IsValid && VK == RISCVMCExpr::VK_RISCV_None;
494 // Predicate methods for AsmOperands defined in RISCVInstrInfo.td
496 bool isBareSymbol() const {
497 int64_t Imm;
498 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
499 // Must be of 'immediate' type but not a constant.
500 if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
501 return false;
502 return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
503 VK == RISCVMCExpr::VK_RISCV_None;
506 bool isCallSymbol() const {
507 int64_t Imm;
508 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
509 // Must be of 'immediate' type but not a constant.
510 if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
511 return false;
512 return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
513 (VK == RISCVMCExpr::VK_RISCV_CALL ||
514 VK == RISCVMCExpr::VK_RISCV_CALL_PLT);
517 bool isPseudoJumpSymbol() const {
518 int64_t Imm;
519 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
520 // Must be of 'immediate' type but not a constant.
521 if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
522 return false;
523 return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
524 VK == RISCVMCExpr::VK_RISCV_CALL;
527 bool isTPRelAddSymbol() const {
528 int64_t Imm;
529 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
530 // Must be of 'immediate' type but not a constant.
531 if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
532 return false;
533 return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
534 VK == RISCVMCExpr::VK_RISCV_TPREL_ADD;
537 bool isCSRSystemRegister() const { return isSystemRegister(); }
539 bool isVTypeImm(unsigned N) const {
540 int64_t Imm;
541 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
542 if (!isImm())
543 return false;
544 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
545 return IsConstantImm && isUIntN(N, Imm) && VK == RISCVMCExpr::VK_RISCV_None;
548 // If the last operand of the vsetvli/vsetvli instruction is a constant
549 // expression, KindTy is Immediate.
550 bool isVTypeI10() const {
551 if (Kind == KindTy::Immediate)
552 return isVTypeImm(10);
553 return Kind == KindTy::VType;
555 bool isVTypeI11() const {
556 if (Kind == KindTy::Immediate)
557 return isVTypeImm(11);
558 return Kind == KindTy::VType;
561 /// Return true if the operand is a valid for the fence instruction e.g.
562 /// ('iorw').
563 bool isFenceArg() const { return Kind == KindTy::Fence; }
565 /// Return true if the operand is a valid floating point rounding mode.
566 bool isFRMArg() const { return Kind == KindTy::FRM; }
567 bool isFRMArgLegacy() const { return Kind == KindTy::FRM; }
568 bool isRTZArg() const { return isFRMArg() && FRM.FRM == RISCVFPRndMode::RTZ; }
570 /// Return true if the operand is a valid fli.s floating-point immediate.
571 bool isLoadFPImm() const {
572 if (isImm())
573 return isUImm5();
574 if (Kind != KindTy::FPImmediate)
575 return false;
576 int Idx = RISCVLoadFPImm::getLoadFPImm(
577 APFloat(APFloat::IEEEdouble(), APInt(64, getFPConst())));
578 // Don't allow decimal version of the minimum value. It is a different value
579 // for each supported data type.
580 return Idx >= 0 && Idx != 1;
583 bool isImmXLenLI() const {
584 int64_t Imm;
585 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
586 if (!isImm())
587 return false;
588 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
589 if (VK == RISCVMCExpr::VK_RISCV_LO || VK == RISCVMCExpr::VK_RISCV_PCREL_LO)
590 return true;
591 // Given only Imm, ensuring that the actually specified constant is either
592 // a signed or unsigned 64-bit number is unfortunately impossible.
593 if (IsConstantImm) {
594 return VK == RISCVMCExpr::VK_RISCV_None &&
595 (isRV64Imm() || (isInt<32>(Imm) || isUInt<32>(Imm)));
598 return RISCVAsmParser::isSymbolDiff(getImm());
601 bool isImmXLenLI_Restricted() const {
602 int64_t Imm;
603 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
604 if (!isImm())
605 return false;
606 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
607 // 'la imm' supports constant immediates only.
608 return IsConstantImm && (VK == RISCVMCExpr::VK_RISCV_None) &&
609 (isRV64Imm() || (isInt<32>(Imm) || isUInt<32>(Imm)));
612 bool isUImmLog2XLen() const {
613 int64_t Imm;
614 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
615 if (!isImm())
616 return false;
617 if (!evaluateConstantImm(getImm(), Imm, VK) ||
618 VK != RISCVMCExpr::VK_RISCV_None)
619 return false;
620 return (isRV64Imm() && isUInt<6>(Imm)) || isUInt<5>(Imm);
623 bool isUImmLog2XLenNonZero() const {
624 int64_t Imm;
625 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
626 if (!isImm())
627 return false;
628 if (!evaluateConstantImm(getImm(), Imm, VK) ||
629 VK != RISCVMCExpr::VK_RISCV_None)
630 return false;
631 if (Imm == 0)
632 return false;
633 return (isRV64Imm() && isUInt<6>(Imm)) || isUInt<5>(Imm);
636 bool isUImmLog2XLenHalf() const {
637 int64_t Imm;
638 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
639 if (!isImm())
640 return false;
641 if (!evaluateConstantImm(getImm(), Imm, VK) ||
642 VK != RISCVMCExpr::VK_RISCV_None)
643 return false;
644 return (isRV64Imm() && isUInt<5>(Imm)) || isUInt<4>(Imm);
647 template <unsigned N> bool IsUImm() const {
648 int64_t Imm;
649 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
650 if (!isImm())
651 return false;
652 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
653 return IsConstantImm && isUInt<N>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
656 bool isUImm1() const { return IsUImm<1>(); }
657 bool isUImm2() const { return IsUImm<2>(); }
658 bool isUImm3() const { return IsUImm<3>(); }
659 bool isUImm4() const { return IsUImm<4>(); }
660 bool isUImm5() const { return IsUImm<5>(); }
661 bool isUImm6() const { return IsUImm<6>(); }
662 bool isUImm7() const { return IsUImm<7>(); }
663 bool isUImm8() const { return IsUImm<8>(); }
664 bool isUImm20() const { return IsUImm<20>(); }
666 bool isUImm8GE32() const {
667 int64_t Imm;
668 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
669 if (!isImm())
670 return false;
671 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
672 return IsConstantImm && isUInt<8>(Imm) && Imm >= 32 &&
673 VK == RISCVMCExpr::VK_RISCV_None;
676 bool isRnumArg() const {
677 int64_t Imm;
678 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
679 if (!isImm())
680 return false;
681 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
682 return IsConstantImm && Imm >= INT64_C(0) && Imm <= INT64_C(10) &&
683 VK == RISCVMCExpr::VK_RISCV_None;
686 bool isRnumArg_0_7() const {
687 int64_t Imm;
688 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
689 if (!isImm())
690 return false;
691 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
692 return IsConstantImm && Imm >= INT64_C(0) && Imm <= INT64_C(7) &&
693 VK == RISCVMCExpr::VK_RISCV_None;
696 bool isRnumArg_1_10() const {
697 int64_t Imm;
698 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
699 if (!isImm())
700 return false;
701 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
702 return IsConstantImm && Imm >= INT64_C(1) && Imm <= INT64_C(10) &&
703 VK == RISCVMCExpr::VK_RISCV_None;
706 bool isRnumArg_2_14() const {
707 int64_t Imm;
708 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
709 if (!isImm())
710 return false;
711 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
712 return IsConstantImm && Imm >= INT64_C(2) && Imm <= INT64_C(14) &&
713 VK == RISCVMCExpr::VK_RISCV_None;
716 bool isSImm5() const {
717 if (!isImm())
718 return false;
719 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
720 int64_t Imm;
721 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
722 return IsConstantImm && isInt<5>(fixImmediateForRV32(Imm, isRV64Imm())) &&
723 VK == RISCVMCExpr::VK_RISCV_None;
726 bool isSImm6() const {
727 if (!isImm())
728 return false;
729 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
730 int64_t Imm;
731 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
732 return IsConstantImm && isInt<6>(fixImmediateForRV32(Imm, isRV64Imm())) &&
733 VK == RISCVMCExpr::VK_RISCV_None;
736 bool isSImm6NonZero() const {
737 if (!isImm())
738 return false;
739 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
740 int64_t Imm;
741 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
742 return IsConstantImm && Imm != 0 &&
743 isInt<6>(fixImmediateForRV32(Imm, isRV64Imm())) &&
744 VK == RISCVMCExpr::VK_RISCV_None;
747 bool isCLUIImm() const {
748 if (!isImm())
749 return false;
750 int64_t Imm;
751 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
752 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
753 return IsConstantImm && (Imm != 0) &&
754 (isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)) &&
755 VK == RISCVMCExpr::VK_RISCV_None;
758 bool isUImm2Lsb0() const {
759 if (!isImm())
760 return false;
761 int64_t Imm;
762 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
763 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
764 return IsConstantImm && isShiftedUInt<1, 1>(Imm) &&
765 VK == RISCVMCExpr::VK_RISCV_None;
768 bool isUImm7Lsb00() const {
769 if (!isImm())
770 return false;
771 int64_t Imm;
772 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
773 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
774 return IsConstantImm && isShiftedUInt<5, 2>(Imm) &&
775 VK == RISCVMCExpr::VK_RISCV_None;
778 bool isUImm8Lsb00() const {
779 if (!isImm())
780 return false;
781 int64_t Imm;
782 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
783 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
784 return IsConstantImm && isShiftedUInt<6, 2>(Imm) &&
785 VK == RISCVMCExpr::VK_RISCV_None;
788 bool isUImm8Lsb000() const {
789 if (!isImm())
790 return false;
791 int64_t Imm;
792 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
793 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
794 return IsConstantImm && isShiftedUInt<5, 3>(Imm) &&
795 VK == RISCVMCExpr::VK_RISCV_None;
798 bool isSImm9Lsb0() const { return isBareSimmNLsb0<9>(); }
800 bool isUImm9Lsb000() const {
801 if (!isImm())
802 return false;
803 int64_t Imm;
804 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
805 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
806 return IsConstantImm && isShiftedUInt<6, 3>(Imm) &&
807 VK == RISCVMCExpr::VK_RISCV_None;
810 bool isUImm10Lsb00NonZero() const {
811 if (!isImm())
812 return false;
813 int64_t Imm;
814 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
815 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
816 return IsConstantImm && isShiftedUInt<8, 2>(Imm) && (Imm != 0) &&
817 VK == RISCVMCExpr::VK_RISCV_None;
820 // If this a RV32 and the immediate is a uimm32, sign extend it to 32 bits.
821 // This allows writing 'addi a0, a0, 0xffffffff'.
822 static int64_t fixImmediateForRV32(int64_t Imm, bool IsRV64Imm) {
823 if (IsRV64Imm || !isUInt<32>(Imm))
824 return Imm;
825 return SignExtend64<32>(Imm);
828 bool isSImm12() const {
829 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
830 int64_t Imm;
831 bool IsValid;
832 if (!isImm())
833 return false;
834 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
835 if (!IsConstantImm)
836 IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
837 else
838 IsValid = isInt<12>(fixImmediateForRV32(Imm, isRV64Imm()));
839 return IsValid && ((IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None) ||
840 VK == RISCVMCExpr::VK_RISCV_LO ||
841 VK == RISCVMCExpr::VK_RISCV_PCREL_LO ||
842 VK == RISCVMCExpr::VK_RISCV_TPREL_LO);
845 bool isSImm12Lsb0() const { return isBareSimmNLsb0<12>(); }
847 bool isSImm12Lsb00000() const {
848 if (!isImm())
849 return false;
850 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
851 int64_t Imm;
852 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
853 return IsConstantImm && isShiftedInt<7, 5>(Imm) &&
854 VK == RISCVMCExpr::VK_RISCV_None;
857 bool isSImm13Lsb0() const { return isBareSimmNLsb0<13>(); }
859 bool isSImm10Lsb0000NonZero() const {
860 if (!isImm())
861 return false;
862 int64_t Imm;
863 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
864 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
865 return IsConstantImm && (Imm != 0) && isShiftedInt<6, 4>(Imm) &&
866 VK == RISCVMCExpr::VK_RISCV_None;
869 bool isUImm20LUI() const {
870 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
871 int64_t Imm;
872 bool IsValid;
873 if (!isImm())
874 return false;
875 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
876 if (!IsConstantImm) {
877 IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
878 return IsValid && (VK == RISCVMCExpr::VK_RISCV_HI ||
879 VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
880 } else {
881 return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
882 VK == RISCVMCExpr::VK_RISCV_HI ||
883 VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
887 bool isUImm20AUIPC() const {
888 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
889 int64_t Imm;
890 bool IsValid;
891 if (!isImm())
892 return false;
893 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
894 if (!IsConstantImm) {
895 IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
896 return IsValid && (VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
897 VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
898 VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
899 VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
900 } else {
901 return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
902 VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
903 VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
904 VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
905 VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
909 bool isSImm21Lsb0JAL() const { return isBareSimmNLsb0<21>(); }
911 bool isImmZero() const {
912 if (!isImm())
913 return false;
914 int64_t Imm;
915 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
916 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
917 return IsConstantImm && (Imm == 0) && VK == RISCVMCExpr::VK_RISCV_None;
920 bool isSImm5Plus1() const {
921 if (!isImm())
922 return false;
923 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
924 int64_t Imm;
925 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
926 return IsConstantImm &&
927 isInt<5>(fixImmediateForRV32(Imm, isRV64Imm()) - 1) &&
928 VK == RISCVMCExpr::VK_RISCV_None;
931 /// getStartLoc - Gets location of the first token of this operand
932 SMLoc getStartLoc() const override { return StartLoc; }
933 /// getEndLoc - Gets location of the last token of this operand
934 SMLoc getEndLoc() const override { return EndLoc; }
935 /// True if this operand is for an RV64 instruction
936 bool isRV64Imm() const {
937 assert(Kind == KindTy::Immediate && "Invalid type access!");
938 return Imm.IsRV64;
941 unsigned getReg() const override {
942 assert(Kind == KindTy::Register && "Invalid type access!");
943 return Reg.RegNum.id();
946 StringRef getSysReg() const {
947 assert(Kind == KindTy::SystemRegister && "Invalid type access!");
948 return StringRef(SysReg.Data, SysReg.Length);
951 const MCExpr *getImm() const {
952 assert(Kind == KindTy::Immediate && "Invalid type access!");
953 return Imm.Val;
956 uint64_t getFPConst() const {
957 assert(Kind == KindTy::FPImmediate && "Invalid type access!");
958 return FPImm.Val;
961 StringRef getToken() const {
962 assert(Kind == KindTy::Token && "Invalid type access!");
963 return Tok;
966 unsigned getVType() const {
967 assert(Kind == KindTy::VType && "Invalid type access!");
968 return VType.Val;
971 RISCVFPRndMode::RoundingMode getFRM() const {
972 assert(Kind == KindTy::FRM && "Invalid type access!");
973 return FRM.FRM;
976 unsigned getFence() const {
977 assert(Kind == KindTy::Fence && "Invalid type access!");
978 return Fence.Val;
981 void print(raw_ostream &OS) const override {
982 auto RegName = [](MCRegister Reg) {
983 if (Reg)
984 return RISCVInstPrinter::getRegisterName(Reg);
985 else
986 return "noreg";
989 switch (Kind) {
990 case KindTy::Immediate:
991 OS << *getImm();
992 break;
993 case KindTy::FPImmediate:
994 break;
995 case KindTy::Register:
996 OS << "<register " << RegName(getReg()) << ">";
997 break;
998 case KindTy::Token:
999 OS << "'" << getToken() << "'";
1000 break;
1001 case KindTy::SystemRegister:
1002 OS << "<sysreg: " << getSysReg() << '>';
1003 break;
1004 case KindTy::VType:
1005 OS << "<vtype: ";
1006 RISCVVType::printVType(getVType(), OS);
1007 OS << '>';
1008 break;
1009 case KindTy::FRM:
1010 OS << "<frm: ";
1011 roundingModeToString(getFRM());
1012 OS << '>';
1013 break;
1014 case KindTy::Fence:
1015 OS << "<fence: ";
1016 OS << getFence();
1017 OS << '>';
1018 break;
1019 case KindTy::Rlist:
1020 OS << "<rlist: ";
1021 RISCVZC::printRlist(Rlist.Val, OS);
1022 OS << '>';
1023 break;
1024 case KindTy::Spimm:
1025 OS << "<Spimm: ";
1026 RISCVZC::printSpimm(Spimm.Val, OS);
1027 OS << '>';
1028 break;
1032 static std::unique_ptr<RISCVOperand> createToken(StringRef Str, SMLoc S) {
1033 auto Op = std::make_unique<RISCVOperand>(KindTy::Token);
1034 Op->Tok = Str;
1035 Op->StartLoc = S;
1036 Op->EndLoc = S;
1037 return Op;
1040 static std::unique_ptr<RISCVOperand>
1041 createReg(unsigned RegNo, SMLoc S, SMLoc E, bool IsGPRAsFPR = false) {
1042 auto Op = std::make_unique<RISCVOperand>(KindTy::Register);
1043 Op->Reg.RegNum = RegNo;
1044 Op->Reg.IsGPRAsFPR = IsGPRAsFPR;
1045 Op->StartLoc = S;
1046 Op->EndLoc = E;
1047 return Op;
1050 static std::unique_ptr<RISCVOperand> createImm(const MCExpr *Val, SMLoc S,
1051 SMLoc E, bool IsRV64) {
1052 auto Op = std::make_unique<RISCVOperand>(KindTy::Immediate);
1053 Op->Imm.Val = Val;
1054 Op->Imm.IsRV64 = IsRV64;
1055 Op->StartLoc = S;
1056 Op->EndLoc = E;
1057 return Op;
1060 static std::unique_ptr<RISCVOperand> createFPImm(uint64_t Val, SMLoc S) {
1061 auto Op = std::make_unique<RISCVOperand>(KindTy::FPImmediate);
1062 Op->FPImm.Val = Val;
1063 Op->StartLoc = S;
1064 Op->EndLoc = S;
1065 return Op;
1068 static std::unique_ptr<RISCVOperand> createSysReg(StringRef Str, SMLoc S,
1069 unsigned Encoding) {
1070 auto Op = std::make_unique<RISCVOperand>(KindTy::SystemRegister);
1071 Op->SysReg.Data = Str.data();
1072 Op->SysReg.Length = Str.size();
1073 Op->SysReg.Encoding = Encoding;
1074 Op->StartLoc = S;
1075 Op->EndLoc = S;
1076 return Op;
1079 static std::unique_ptr<RISCVOperand>
1080 createFRMArg(RISCVFPRndMode::RoundingMode FRM, SMLoc S) {
1081 auto Op = std::make_unique<RISCVOperand>(KindTy::FRM);
1082 Op->FRM.FRM = FRM;
1083 Op->StartLoc = S;
1084 Op->EndLoc = S;
1085 return Op;
1088 static std::unique_ptr<RISCVOperand> createFenceArg(unsigned Val, SMLoc S) {
1089 auto Op = std::make_unique<RISCVOperand>(KindTy::Fence);
1090 Op->Fence.Val = Val;
1091 Op->StartLoc = S;
1092 Op->EndLoc = S;
1093 return Op;
1096 static std::unique_ptr<RISCVOperand> createVType(unsigned VTypeI, SMLoc S) {
1097 auto Op = std::make_unique<RISCVOperand>(KindTy::VType);
1098 Op->VType.Val = VTypeI;
1099 Op->StartLoc = S;
1100 Op->EndLoc = S;
1101 return Op;
1104 static std::unique_ptr<RISCVOperand> createRlist(unsigned RlistEncode,
1105 SMLoc S) {
1106 auto Op = std::make_unique<RISCVOperand>(KindTy::Rlist);
1107 Op->Rlist.Val = RlistEncode;
1108 Op->StartLoc = S;
1109 return Op;
1112 static std::unique_ptr<RISCVOperand> createSpimm(unsigned Spimm, SMLoc S) {
1113 auto Op = std::make_unique<RISCVOperand>(KindTy::Spimm);
1114 Op->Spimm.Val = Spimm;
1115 Op->StartLoc = S;
1116 return Op;
1119 static void addExpr(MCInst &Inst, const MCExpr *Expr, bool IsRV64Imm) {
1120 assert(Expr && "Expr shouldn't be null!");
1121 int64_t Imm = 0;
1122 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
1123 bool IsConstant = evaluateConstantImm(Expr, Imm, VK);
1125 if (IsConstant)
1126 Inst.addOperand(
1127 MCOperand::createImm(fixImmediateForRV32(Imm, IsRV64Imm)));
1128 else
1129 Inst.addOperand(MCOperand::createExpr(Expr));
1132 // Used by the TableGen Code
1133 void addRegOperands(MCInst &Inst, unsigned N) const {
1134 assert(N == 1 && "Invalid number of operands!");
1135 Inst.addOperand(MCOperand::createReg(getReg()));
1138 void addImmOperands(MCInst &Inst, unsigned N) const {
1139 assert(N == 1 && "Invalid number of operands!");
1140 addExpr(Inst, getImm(), isRV64Imm());
1143 void addFPImmOperands(MCInst &Inst, unsigned N) const {
1144 assert(N == 1 && "Invalid number of operands!");
1145 if (isImm()) {
1146 addExpr(Inst, getImm(), isRV64Imm());
1147 return;
1150 int Imm = RISCVLoadFPImm::getLoadFPImm(
1151 APFloat(APFloat::IEEEdouble(), APInt(64, getFPConst())));
1152 Inst.addOperand(MCOperand::createImm(Imm));
1155 void addFenceArgOperands(MCInst &Inst, unsigned N) const {
1156 assert(N == 1 && "Invalid number of operands!");
1157 Inst.addOperand(MCOperand::createImm(Fence.Val));
1160 void addCSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
1161 assert(N == 1 && "Invalid number of operands!");
1162 Inst.addOperand(MCOperand::createImm(SysReg.Encoding));
1165 // Support non-canonical syntax:
1166 // "vsetivli rd, uimm, 0xabc" or "vsetvli rd, rs1, 0xabc"
1167 // "vsetivli rd, uimm, (0xc << N)" or "vsetvli rd, rs1, (0xc << N)"
1168 void addVTypeIOperands(MCInst &Inst, unsigned N) const {
1169 assert(N == 1 && "Invalid number of operands!");
1170 int64_t Imm = 0;
1171 if (Kind == KindTy::Immediate) {
1172 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
1173 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
1174 (void)IsConstantImm;
1175 assert(IsConstantImm && "Invalid VTypeI Operand!");
1176 } else {
1177 Imm = getVType();
1179 Inst.addOperand(MCOperand::createImm(Imm));
1182 void addRlistOperands(MCInst &Inst, unsigned N) const {
1183 assert(N == 1 && "Invalid number of operands!");
1184 Inst.addOperand(MCOperand::createImm(Rlist.Val));
1187 void addSpimmOperands(MCInst &Inst, unsigned N) const {
1188 assert(N == 1 && "Invalid number of operands!");
1189 Inst.addOperand(MCOperand::createImm(Spimm.Val));
1192 void addFRMArgOperands(MCInst &Inst, unsigned N) const {
1193 assert(N == 1 && "Invalid number of operands!");
1194 Inst.addOperand(MCOperand::createImm(getFRM()));
1197 } // end anonymous namespace.
1199 #define GET_REGISTER_MATCHER
1200 #define GET_SUBTARGET_FEATURE_NAME
1201 #define GET_MATCHER_IMPLEMENTATION
1202 #define GET_MNEMONIC_SPELL_CHECKER
1203 #include "RISCVGenAsmMatcher.inc"
1205 static MCRegister convertFPR64ToFPR16(MCRegister Reg) {
1206 assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
1207 return Reg - RISCV::F0_D + RISCV::F0_H;
1210 static MCRegister convertFPR64ToFPR32(MCRegister Reg) {
1211 assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
1212 return Reg - RISCV::F0_D + RISCV::F0_F;
1215 static MCRegister convertVRToVRMx(const MCRegisterInfo &RI, MCRegister Reg,
1216 unsigned Kind) {
1217 unsigned RegClassID;
1218 if (Kind == MCK_VRM2)
1219 RegClassID = RISCV::VRM2RegClassID;
1220 else if (Kind == MCK_VRM4)
1221 RegClassID = RISCV::VRM4RegClassID;
1222 else if (Kind == MCK_VRM8)
1223 RegClassID = RISCV::VRM8RegClassID;
1224 else
1225 return 0;
1226 return RI.getMatchingSuperReg(Reg, RISCV::sub_vrm1_0,
1227 &RISCVMCRegisterClasses[RegClassID]);
1230 unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
1231 unsigned Kind) {
1232 RISCVOperand &Op = static_cast<RISCVOperand &>(AsmOp);
1233 if (!Op.isReg())
1234 return Match_InvalidOperand;
1236 MCRegister Reg = Op.getReg();
1237 bool IsRegFPR64 =
1238 RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg);
1239 bool IsRegFPR64C =
1240 RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(Reg);
1241 bool IsRegVR = RISCVMCRegisterClasses[RISCV::VRRegClassID].contains(Reg);
1243 // As the parser couldn't differentiate an FPR32 from an FPR64, coerce the
1244 // register from FPR64 to FPR32 or FPR64C to FPR32C if necessary.
1245 if ((IsRegFPR64 && Kind == MCK_FPR32) ||
1246 (IsRegFPR64C && Kind == MCK_FPR32C)) {
1247 Op.Reg.RegNum = convertFPR64ToFPR32(Reg);
1248 return Match_Success;
1250 // As the parser couldn't differentiate an FPR16 from an FPR64, coerce the
1251 // register from FPR64 to FPR16 if necessary.
1252 if (IsRegFPR64 && Kind == MCK_FPR16) {
1253 Op.Reg.RegNum = convertFPR64ToFPR16(Reg);
1254 return Match_Success;
1256 // As the parser couldn't differentiate an VRM2/VRM4/VRM8 from an VR, coerce
1257 // the register from VR to VRM2/VRM4/VRM8 if necessary.
1258 if (IsRegVR && (Kind == MCK_VRM2 || Kind == MCK_VRM4 || Kind == MCK_VRM8)) {
1259 Op.Reg.RegNum = convertVRToVRMx(*getContext().getRegisterInfo(), Reg, Kind);
1260 if (Op.Reg.RegNum == 0)
1261 return Match_InvalidOperand;
1262 return Match_Success;
1264 return Match_InvalidOperand;
1267 unsigned RISCVAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
1268 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
1270 for (unsigned I = 0; I < MCID.NumOperands; ++I) {
1271 if (MCID.operands()[I].RegClass == RISCV::GPRPF64RegClassID) {
1272 const auto &Op = Inst.getOperand(I);
1273 assert(Op.isReg());
1275 MCRegister Reg = Op.getReg();
1276 if (((Reg.id() - RISCV::X0) & 1) != 0)
1277 return Match_RequiresEvenGPRs;
1281 return Match_Success;
1284 bool RISCVAsmParser::generateImmOutOfRangeError(
1285 SMLoc ErrorLoc, int64_t Lower, int64_t Upper,
1286 const Twine &Msg = "immediate must be an integer in the range") {
1287 return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
1290 bool RISCVAsmParser::generateImmOutOfRangeError(
1291 OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
1292 const Twine &Msg = "immediate must be an integer in the range") {
1293 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1294 return generateImmOutOfRangeError(ErrorLoc, Lower, Upper, Msg);
1297 bool RISCVAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1298 OperandVector &Operands,
1299 MCStreamer &Out,
1300 uint64_t &ErrorInfo,
1301 bool MatchingInlineAsm) {
1302 MCInst Inst;
1303 FeatureBitset MissingFeatures;
1305 auto Result = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
1306 MatchingInlineAsm);
1307 switch (Result) {
1308 default:
1309 break;
1310 case Match_Success:
1311 if (validateInstruction(Inst, Operands))
1312 return true;
1313 return processInstruction(Inst, IDLoc, Operands, Out);
1314 case Match_MissingFeature: {
1315 assert(MissingFeatures.any() && "Unknown missing features!");
1316 bool FirstFeature = true;
1317 std::string Msg = "instruction requires the following:";
1318 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
1319 if (MissingFeatures[i]) {
1320 Msg += FirstFeature ? " " : ", ";
1321 Msg += getSubtargetFeatureName(i);
1322 FirstFeature = false;
1325 return Error(IDLoc, Msg);
1327 case Match_MnemonicFail: {
1328 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1329 std::string Suggestion = RISCVMnemonicSpellCheck(
1330 ((RISCVOperand &)*Operands[0]).getToken(), FBS, 0);
1331 return Error(IDLoc, "unrecognized instruction mnemonic" + Suggestion);
1333 case Match_InvalidOperand: {
1334 SMLoc ErrorLoc = IDLoc;
1335 if (ErrorInfo != ~0ULL) {
1336 if (ErrorInfo >= Operands.size())
1337 return Error(ErrorLoc, "too few operands for instruction");
1339 ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1340 if (ErrorLoc == SMLoc())
1341 ErrorLoc = IDLoc;
1343 return Error(ErrorLoc, "invalid operand for instruction");
1347 // Handle the case when the error message is of specific type
1348 // other than the generic Match_InvalidOperand, and the
1349 // corresponding operand is missing.
1350 if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
1351 SMLoc ErrorLoc = IDLoc;
1352 if (ErrorInfo != ~0ULL && ErrorInfo >= Operands.size())
1353 return Error(ErrorLoc, "too few operands for instruction");
1356 switch (Result) {
1357 default:
1358 break;
1359 case Match_RequiresEvenGPRs:
1360 return Error(IDLoc,
1361 "double precision floating point operands must use even "
1362 "numbered X register");
1363 case Match_InvalidImmXLenLI:
1364 if (isRV64()) {
1365 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1366 return Error(ErrorLoc, "operand must be a constant 64-bit integer");
1368 return generateImmOutOfRangeError(Operands, ErrorInfo,
1369 std::numeric_limits<int32_t>::min(),
1370 std::numeric_limits<uint32_t>::max());
1371 case Match_InvalidImmXLenLI_Restricted:
1372 if (isRV64()) {
1373 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1374 return Error(ErrorLoc, "operand either must be a constant 64-bit integer "
1375 "or a bare symbol name");
1377 return generateImmOutOfRangeError(
1378 Operands, ErrorInfo, std::numeric_limits<int32_t>::min(),
1379 std::numeric_limits<uint32_t>::max(),
1380 "operand either must be a bare symbol name or an immediate integer in "
1381 "the range");
1382 case Match_InvalidImmZero: {
1383 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1384 return Error(ErrorLoc, "immediate must be zero");
1386 case Match_InvalidUImmLog2XLen:
1387 if (isRV64())
1388 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
1389 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1390 case Match_InvalidUImmLog2XLenNonZero:
1391 if (isRV64())
1392 return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1);
1393 return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
1394 case Match_InvalidUImmLog2XLenHalf:
1395 if (isRV64())
1396 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1397 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 4) - 1);
1398 case Match_InvalidUImm1:
1399 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 1) - 1);
1400 case Match_InvalidUImm2:
1401 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 2) - 1);
1402 case Match_InvalidUImm2Lsb0:
1403 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, 2,
1404 "immediate must be one of");
1405 case Match_InvalidUImm3:
1406 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 3) - 1);
1407 case Match_InvalidUImm4:
1408 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 4) - 1);
1409 case Match_InvalidUImm5:
1410 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1411 case Match_InvalidUImm6:
1412 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
1413 case Match_InvalidUImm7:
1414 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 7) - 1);
1415 case Match_InvalidUImm8:
1416 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 8) - 1);
1417 case Match_InvalidUImm8GE32:
1418 return generateImmOutOfRangeError(Operands, ErrorInfo, 32, (1 << 8) - 1);
1419 case Match_InvalidSImm5:
1420 return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4),
1421 (1 << 4) - 1);
1422 case Match_InvalidSImm6:
1423 return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
1424 (1 << 5) - 1);
1425 case Match_InvalidSImm6NonZero:
1426 return generateImmOutOfRangeError(
1427 Operands, ErrorInfo, -(1 << 5), (1 << 5) - 1,
1428 "immediate must be non-zero in the range");
1429 case Match_InvalidCLUIImm:
1430 return generateImmOutOfRangeError(
1431 Operands, ErrorInfo, 1, (1 << 5) - 1,
1432 "immediate must be in [0xfffe0, 0xfffff] or");
1433 case Match_InvalidUImm7Lsb00:
1434 return generateImmOutOfRangeError(
1435 Operands, ErrorInfo, 0, (1 << 7) - 4,
1436 "immediate must be a multiple of 4 bytes in the range");
1437 case Match_InvalidUImm8Lsb00:
1438 return generateImmOutOfRangeError(
1439 Operands, ErrorInfo, 0, (1 << 8) - 4,
1440 "immediate must be a multiple of 4 bytes in the range");
1441 case Match_InvalidUImm8Lsb000:
1442 return generateImmOutOfRangeError(
1443 Operands, ErrorInfo, 0, (1 << 8) - 8,
1444 "immediate must be a multiple of 8 bytes in the range");
1445 case Match_InvalidSImm9Lsb0:
1446 return generateImmOutOfRangeError(
1447 Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2,
1448 "immediate must be a multiple of 2 bytes in the range");
1449 case Match_InvalidUImm9Lsb000:
1450 return generateImmOutOfRangeError(
1451 Operands, ErrorInfo, 0, (1 << 9) - 8,
1452 "immediate must be a multiple of 8 bytes in the range");
1453 case Match_InvalidUImm10Lsb00NonZero:
1454 return generateImmOutOfRangeError(
1455 Operands, ErrorInfo, 4, (1 << 10) - 4,
1456 "immediate must be a multiple of 4 bytes in the range");
1457 case Match_InvalidSImm10Lsb0000NonZero:
1458 return generateImmOutOfRangeError(
1459 Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16,
1460 "immediate must be a multiple of 16 bytes and non-zero in the range");
1461 case Match_InvalidSImm12:
1462 return generateImmOutOfRangeError(
1463 Operands, ErrorInfo, -(1 << 11), (1 << 11) - 1,
1464 "operand must be a symbol with %lo/%pcrel_lo/%tprel_lo modifier or an "
1465 "integer in the range");
1466 case Match_InvalidSImm12Lsb0:
1467 return generateImmOutOfRangeError(
1468 Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2,
1469 "immediate must be a multiple of 2 bytes in the range");
1470 case Match_InvalidSImm12Lsb00000:
1471 return generateImmOutOfRangeError(
1472 Operands, ErrorInfo, -(1 << 11), (1 << 11) - 32,
1473 "immediate must be a multiple of 32 bytes in the range");
1474 case Match_InvalidSImm13Lsb0:
1475 return generateImmOutOfRangeError(
1476 Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2,
1477 "immediate must be a multiple of 2 bytes in the range");
1478 case Match_InvalidUImm20LUI:
1479 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1,
1480 "operand must be a symbol with "
1481 "%hi/%tprel_hi modifier or an integer in "
1482 "the range");
1483 case Match_InvalidUImm20:
1484 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1);
1485 case Match_InvalidUImm20AUIPC:
1486 return generateImmOutOfRangeError(
1487 Operands, ErrorInfo, 0, (1 << 20) - 1,
1488 "operand must be a symbol with a "
1489 "%pcrel_hi/%got_pcrel_hi/%tls_ie_pcrel_hi/%tls_gd_pcrel_hi modifier or "
1490 "an integer in the range");
1491 case Match_InvalidSImm21Lsb0JAL:
1492 return generateImmOutOfRangeError(
1493 Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2,
1494 "immediate must be a multiple of 2 bytes in the range");
1495 case Match_InvalidCSRSystemRegister: {
1496 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1,
1497 "operand must be a valid system register "
1498 "name or an integer in the range");
1500 case Match_InvalidLoadFPImm: {
1501 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1502 return Error(ErrorLoc, "operand must be a valid floating-point constant");
1504 case Match_InvalidBareSymbol: {
1505 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1506 return Error(ErrorLoc, "operand must be a bare symbol name");
1508 case Match_InvalidPseudoJumpSymbol: {
1509 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1510 return Error(ErrorLoc, "operand must be a valid jump target");
1512 case Match_InvalidCallSymbol: {
1513 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1514 return Error(ErrorLoc, "operand must be a bare symbol name");
1516 case Match_InvalidTPRelAddSymbol: {
1517 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1518 return Error(ErrorLoc, "operand must be a symbol with %tprel_add modifier");
1520 case Match_InvalidRTZArg: {
1521 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1522 return Error(ErrorLoc, "operand must be 'rtz' floating-point rounding mode");
1524 case Match_InvalidVTypeI: {
1525 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1526 return generateVTypeError(ErrorLoc);
1528 case Match_InvalidVMaskRegister: {
1529 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1530 return Error(ErrorLoc, "operand must be v0.t");
1532 case Match_InvalidSImm5Plus1: {
1533 return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4) + 1,
1534 (1 << 4),
1535 "immediate must be in the range");
1537 case Match_InvalidRlist: {
1538 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1539 return Error(
1540 ErrorLoc,
1541 "operand must be {ra [, s0[-sN]]} or {x1 [, x8[-x9][, x18[-xN]]]}");
1543 case Match_InvalidSpimm: {
1544 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1545 return Error(
1546 ErrorLoc,
1547 "stack adjustment is invalid for this instruction and register list; "
1548 "refer to Zc spec for a detailed range of stack adjustment");
1550 case Match_InvalidRnumArg: {
1551 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, 10);
1555 llvm_unreachable("Unknown match type detected!");
1558 // Attempts to match Name as a register (either using the default name or
1559 // alternative ABI names), setting RegNo to the matching register. Upon
1560 // failure, returns a non-valid MCRegister. If IsRVE, then registers x16-x31
1561 // will be rejected.
1562 static MCRegister matchRegisterNameHelper(bool IsRVE, StringRef Name) {
1563 MCRegister Reg = MatchRegisterName(Name);
1564 // The 16-/32- and 64-bit FPRs have the same asm name. Check that the initial
1565 // match always matches the 64-bit variant, and not the 16/32-bit one.
1566 assert(!(Reg >= RISCV::F0_H && Reg <= RISCV::F31_H));
1567 assert(!(Reg >= RISCV::F0_F && Reg <= RISCV::F31_F));
1568 // The default FPR register class is based on the tablegen enum ordering.
1569 static_assert(RISCV::F0_D < RISCV::F0_H, "FPR matching must be updated");
1570 static_assert(RISCV::F0_D < RISCV::F0_F, "FPR matching must be updated");
1571 if (!Reg)
1572 Reg = MatchRegisterAltName(Name);
1573 if (IsRVE && Reg >= RISCV::X16 && Reg <= RISCV::X31)
1574 Reg = RISCV::NoRegister;
1575 return Reg;
1578 bool RISCVAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc,
1579 SMLoc &EndLoc) {
1580 if (!tryParseRegister(Reg, StartLoc, EndLoc).isSuccess())
1581 return Error(StartLoc, "invalid register name");
1582 return false;
1585 ParseStatus RISCVAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
1586 SMLoc &EndLoc) {
1587 const AsmToken &Tok = getParser().getTok();
1588 StartLoc = Tok.getLoc();
1589 EndLoc = Tok.getEndLoc();
1590 StringRef Name = getLexer().getTok().getIdentifier();
1592 Reg = matchRegisterNameHelper(isRVE(), Name);
1593 if (!Reg)
1594 return ParseStatus::NoMatch;
1596 getParser().Lex(); // Eat identifier token.
1597 return ParseStatus::Success;
1600 ParseStatus RISCVAsmParser::parseRegister(OperandVector &Operands,
1601 bool AllowParens) {
1602 SMLoc FirstS = getLoc();
1603 bool HadParens = false;
1604 AsmToken LParen;
1606 // If this is an LParen and a parenthesised register name is allowed, parse it
1607 // atomically.
1608 if (AllowParens && getLexer().is(AsmToken::LParen)) {
1609 AsmToken Buf[2];
1610 size_t ReadCount = getLexer().peekTokens(Buf);
1611 if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
1612 HadParens = true;
1613 LParen = getParser().getTok();
1614 getParser().Lex(); // Eat '('
1618 switch (getLexer().getKind()) {
1619 default:
1620 if (HadParens)
1621 getLexer().UnLex(LParen);
1622 return ParseStatus::NoMatch;
1623 case AsmToken::Identifier:
1624 StringRef Name = getLexer().getTok().getIdentifier();
1625 MCRegister RegNo = matchRegisterNameHelper(isRVE(), Name);
1627 if (!RegNo) {
1628 if (HadParens)
1629 getLexer().UnLex(LParen);
1630 return ParseStatus::NoMatch;
1632 if (HadParens)
1633 Operands.push_back(RISCVOperand::createToken("(", FirstS));
1634 SMLoc S = getLoc();
1635 SMLoc E = SMLoc::getFromPointer(S.getPointer() + Name.size());
1636 getLexer().Lex();
1637 Operands.push_back(RISCVOperand::createReg(RegNo, S, E));
1640 if (HadParens) {
1641 getParser().Lex(); // Eat ')'
1642 Operands.push_back(RISCVOperand::createToken(")", getLoc()));
1645 return ParseStatus::Success;
1648 ParseStatus RISCVAsmParser::parseInsnDirectiveOpcode(OperandVector &Operands) {
1649 SMLoc S = getLoc();
1650 SMLoc E;
1651 const MCExpr *Res;
1653 switch (getLexer().getKind()) {
1654 default:
1655 return ParseStatus::NoMatch;
1656 case AsmToken::LParen:
1657 case AsmToken::Minus:
1658 case AsmToken::Plus:
1659 case AsmToken::Exclaim:
1660 case AsmToken::Tilde:
1661 case AsmToken::Integer:
1662 case AsmToken::String: {
1663 if (getParser().parseExpression(Res, E))
1664 return ParseStatus::Failure;
1666 auto *CE = dyn_cast<MCConstantExpr>(Res);
1667 if (CE) {
1668 int64_t Imm = CE->getValue();
1669 if (isUInt<7>(Imm)) {
1670 Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1671 return ParseStatus::Success;
1675 break;
1677 case AsmToken::Identifier: {
1678 StringRef Identifier;
1679 if (getParser().parseIdentifier(Identifier))
1680 return ParseStatus::Failure;
1682 auto Opcode = RISCVInsnOpcode::lookupRISCVOpcodeByName(Identifier);
1683 if (Opcode) {
1684 assert(isUInt<7>(Opcode->Value) && (Opcode->Value & 0x3) == 3 &&
1685 "Unexpected opcode");
1686 Res = MCConstantExpr::create(Opcode->Value, getContext());
1687 E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
1688 Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1689 return ParseStatus::Success;
1692 break;
1694 case AsmToken::Percent:
1695 break;
1698 return generateImmOutOfRangeError(
1699 S, 0, 127,
1700 "opcode must be a valid opcode name or an immediate in the range");
1703 ParseStatus RISCVAsmParser::parseInsnCDirectiveOpcode(OperandVector &Operands) {
1704 SMLoc S = getLoc();
1705 SMLoc E;
1706 const MCExpr *Res;
1708 switch (getLexer().getKind()) {
1709 default:
1710 return ParseStatus::NoMatch;
1711 case AsmToken::LParen:
1712 case AsmToken::Minus:
1713 case AsmToken::Plus:
1714 case AsmToken::Exclaim:
1715 case AsmToken::Tilde:
1716 case AsmToken::Integer:
1717 case AsmToken::String: {
1718 if (getParser().parseExpression(Res, E))
1719 return ParseStatus::Failure;
1721 auto *CE = dyn_cast<MCConstantExpr>(Res);
1722 if (CE) {
1723 int64_t Imm = CE->getValue();
1724 if (Imm >= 0 && Imm <= 2) {
1725 Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1726 return ParseStatus::Success;
1730 break;
1732 case AsmToken::Identifier: {
1733 StringRef Identifier;
1734 if (getParser().parseIdentifier(Identifier))
1735 return ParseStatus::Failure;
1737 unsigned Opcode;
1738 if (Identifier == "C0")
1739 Opcode = 0;
1740 else if (Identifier == "C1")
1741 Opcode = 1;
1742 else if (Identifier == "C2")
1743 Opcode = 2;
1744 else
1745 break;
1747 Res = MCConstantExpr::create(Opcode, getContext());
1748 E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
1749 Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1750 return ParseStatus::Success;
1752 case AsmToken::Percent: {
1753 // Discard operand with modifier.
1754 break;
1758 return generateImmOutOfRangeError(
1759 S, 0, 2,
1760 "opcode must be a valid opcode name or an immediate in the range");
1763 ParseStatus RISCVAsmParser::parseCSRSystemRegister(OperandVector &Operands) {
1764 SMLoc S = getLoc();
1765 const MCExpr *Res;
1767 switch (getLexer().getKind()) {
1768 default:
1769 return ParseStatus::NoMatch;
1770 case AsmToken::LParen:
1771 case AsmToken::Minus:
1772 case AsmToken::Plus:
1773 case AsmToken::Exclaim:
1774 case AsmToken::Tilde:
1775 case AsmToken::Integer:
1776 case AsmToken::String: {
1777 if (getParser().parseExpression(Res))
1778 return ParseStatus::Failure;
1780 auto *CE = dyn_cast<MCConstantExpr>(Res);
1781 if (CE) {
1782 int64_t Imm = CE->getValue();
1783 if (isUInt<12>(Imm)) {
1784 auto SysReg = RISCVSysReg::lookupSysRegByEncoding(Imm);
1785 // Accept an immediate representing a named or un-named Sys Reg
1786 // if the range is valid, regardless of the required features.
1787 Operands.push_back(
1788 RISCVOperand::createSysReg(SysReg ? SysReg->Name : "", S, Imm));
1789 return ParseStatus::Success;
1793 return generateImmOutOfRangeError(S, 0, (1 << 12) - 1);
1795 case AsmToken::Identifier: {
1796 StringRef Identifier;
1797 if (getParser().parseIdentifier(Identifier))
1798 return ParseStatus::Failure;
1800 // Check for CSR names conflicts.
1801 // Custom CSR names might conflict with CSR names in privileged spec.
1802 // E.g. - SiFive mnscratch(0x350) and privileged spec mnscratch(0x740).
1803 auto CheckCSRNameConflict = [&]() {
1804 if (!(RISCVSysReg::lookupSysRegByName(Identifier))) {
1805 Error(S, "system register use requires an option to be enabled");
1806 return true;
1808 return false;
1811 // First check for vendor specific CSRs.
1812 auto SiFiveReg = RISCVSysReg::lookupSiFiveRegByName(Identifier);
1813 if (SiFiveReg) {
1814 if (SiFiveReg->haveVendorRequiredFeatures(getSTI().getFeatureBits())) {
1815 Operands.push_back(
1816 RISCVOperand::createSysReg(Identifier, S, SiFiveReg->Encoding));
1817 return ParseStatus::Success;
1819 if (CheckCSRNameConflict())
1820 return ParseStatus::Failure;
1823 auto SysReg = RISCVSysReg::lookupSysRegByName(Identifier);
1824 if (!SysReg)
1825 if ((SysReg = RISCVSysReg::lookupSysRegByDeprecatedName(Identifier)))
1826 Warning(S, "'" + Identifier + "' is a deprecated alias for '" +
1827 SysReg->Name + "'");
1829 // Check for CSR encoding conflicts.
1830 // Custom CSR encoding might conflict with CSR encoding in privileged spec.
1831 // E.g. - SiFive mnscratch(0x350) and privileged spec miselect(0x350).
1832 auto CheckCSREncodingConflict = [&]() {
1833 auto Reg = RISCVSysReg::lookupSiFiveRegByEncoding(SysReg->Encoding);
1834 if (Reg && Reg->haveVendorRequiredFeatures(getSTI().getFeatureBits())) {
1835 Warning(S, "'" + Identifier + "' CSR is not available on the current " +
1836 "subtarget. Instead '" + Reg->Name +
1837 "' CSR will be used.");
1838 Operands.push_back(
1839 RISCVOperand::createSysReg(Reg->Name, S, Reg->Encoding));
1840 return true;
1842 return false;
1845 // Accept a named SysReg if the required features are present.
1846 if (SysReg) {
1847 if (!SysReg->haveRequiredFeatures(getSTI().getFeatureBits()))
1848 return Error(S, "system register use requires an option to be enabled");
1849 if (CheckCSREncodingConflict())
1850 return ParseStatus::Success;
1851 Operands.push_back(
1852 RISCVOperand::createSysReg(Identifier, S, SysReg->Encoding));
1853 return ParseStatus::Success;
1856 return generateImmOutOfRangeError(S, 0, (1 << 12) - 1,
1857 "operand must be a valid system register "
1858 "name or an integer in the range");
1860 case AsmToken::Percent: {
1861 // Discard operand with modifier.
1862 return generateImmOutOfRangeError(S, 0, (1 << 12) - 1);
1866 return ParseStatus::NoMatch;
1869 ParseStatus RISCVAsmParser::parseFPImm(OperandVector &Operands) {
1870 SMLoc S = getLoc();
1872 // Parse special floats (inf/nan/min) representation.
1873 if (getTok().is(AsmToken::Identifier)) {
1874 StringRef Identifier = getTok().getIdentifier();
1875 if (Identifier.compare_insensitive("inf") == 0) {
1876 Operands.push_back(
1877 RISCVOperand::createImm(MCConstantExpr::create(30, getContext()), S,
1878 getTok().getEndLoc(), isRV64()));
1879 } else if (Identifier.compare_insensitive("nan") == 0) {
1880 Operands.push_back(
1881 RISCVOperand::createImm(MCConstantExpr::create(31, getContext()), S,
1882 getTok().getEndLoc(), isRV64()));
1883 } else if (Identifier.compare_insensitive("min") == 0) {
1884 Operands.push_back(
1885 RISCVOperand::createImm(MCConstantExpr::create(1, getContext()), S,
1886 getTok().getEndLoc(), isRV64()));
1887 } else {
1888 return TokError("invalid floating point literal");
1891 Lex(); // Eat the token.
1893 return ParseStatus::Success;
1896 // Handle negation, as that still comes through as a separate token.
1897 bool IsNegative = parseOptionalToken(AsmToken::Minus);
1899 const AsmToken &Tok = getTok();
1900 if (!Tok.is(AsmToken::Real))
1901 return TokError("invalid floating point immediate");
1903 // Parse FP representation.
1904 APFloat RealVal(APFloat::IEEEdouble());
1905 auto StatusOrErr =
1906 RealVal.convertFromString(Tok.getString(), APFloat::rmTowardZero);
1907 if (errorToBool(StatusOrErr.takeError()))
1908 return TokError("invalid floating point representation");
1910 if (IsNegative)
1911 RealVal.changeSign();
1913 Operands.push_back(RISCVOperand::createFPImm(
1914 RealVal.bitcastToAPInt().getZExtValue(), S));
1916 Lex(); // Eat the token.
1918 return ParseStatus::Success;
1921 ParseStatus RISCVAsmParser::parseImmediate(OperandVector &Operands) {
1922 SMLoc S = getLoc();
1923 SMLoc E;
1924 const MCExpr *Res;
1926 switch (getLexer().getKind()) {
1927 default:
1928 return ParseStatus::NoMatch;
1929 case AsmToken::LParen:
1930 case AsmToken::Dot:
1931 case AsmToken::Minus:
1932 case AsmToken::Plus:
1933 case AsmToken::Exclaim:
1934 case AsmToken::Tilde:
1935 case AsmToken::Integer:
1936 case AsmToken::String:
1937 case AsmToken::Identifier:
1938 if (getParser().parseExpression(Res, E))
1939 return ParseStatus::Failure;
1940 break;
1941 case AsmToken::Percent:
1942 return parseOperandWithModifier(Operands);
1945 Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1946 return ParseStatus::Success;
1949 ParseStatus RISCVAsmParser::parseOperandWithModifier(OperandVector &Operands) {
1950 SMLoc S = getLoc();
1951 SMLoc E;
1953 if (parseToken(AsmToken::Percent, "expected '%' for operand modifier"))
1954 return ParseStatus::Failure;
1956 if (getLexer().getKind() != AsmToken::Identifier)
1957 return Error(getLoc(), "expected valid identifier for operand modifier");
1958 StringRef Identifier = getParser().getTok().getIdentifier();
1959 RISCVMCExpr::VariantKind VK = RISCVMCExpr::getVariantKindForName(Identifier);
1960 if (VK == RISCVMCExpr::VK_RISCV_Invalid)
1961 return Error(getLoc(), "unrecognized operand modifier");
1963 getParser().Lex(); // Eat the identifier
1964 if (parseToken(AsmToken::LParen, "expected '('"))
1965 return ParseStatus::Failure;
1967 const MCExpr *SubExpr;
1968 if (getParser().parseParenExpression(SubExpr, E))
1969 return ParseStatus::Failure;
1971 const MCExpr *ModExpr = RISCVMCExpr::create(SubExpr, VK, getContext());
1972 Operands.push_back(RISCVOperand::createImm(ModExpr, S, E, isRV64()));
1973 return ParseStatus::Success;
1976 ParseStatus RISCVAsmParser::parseBareSymbol(OperandVector &Operands) {
1977 SMLoc S = getLoc();
1978 const MCExpr *Res;
1980 if (getLexer().getKind() != AsmToken::Identifier)
1981 return ParseStatus::NoMatch;
1983 StringRef Identifier;
1984 AsmToken Tok = getLexer().getTok();
1986 if (getParser().parseIdentifier(Identifier))
1987 return ParseStatus::Failure;
1989 SMLoc E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
1991 if (Identifier.consume_back("@plt"))
1992 return Error(getLoc(), "'@plt' operand not valid for instruction");
1994 MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
1996 if (Sym->isVariable()) {
1997 const MCExpr *V = Sym->getVariableValue(/*SetUsed=*/false);
1998 if (!isa<MCSymbolRefExpr>(V)) {
1999 getLexer().UnLex(Tok); // Put back if it's not a bare symbol.
2000 return ParseStatus::NoMatch;
2002 Res = V;
2003 } else
2004 Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
2006 MCBinaryExpr::Opcode Opcode;
2007 switch (getLexer().getKind()) {
2008 default:
2009 Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
2010 return ParseStatus::Success;
2011 case AsmToken::Plus:
2012 Opcode = MCBinaryExpr::Add;
2013 getLexer().Lex();
2014 break;
2015 case AsmToken::Minus:
2016 Opcode = MCBinaryExpr::Sub;
2017 getLexer().Lex();
2018 break;
2021 const MCExpr *Expr;
2022 if (getParser().parseExpression(Expr, E))
2023 return ParseStatus::Failure;
2024 Res = MCBinaryExpr::create(Opcode, Res, Expr, getContext());
2025 Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
2026 return ParseStatus::Success;
2029 ParseStatus RISCVAsmParser::parseCallSymbol(OperandVector &Operands) {
2030 SMLoc S = getLoc();
2031 const MCExpr *Res;
2033 if (getLexer().getKind() != AsmToken::Identifier)
2034 return ParseStatus::NoMatch;
2036 // Avoid parsing the register in `call rd, foo` as a call symbol.
2037 if (getLexer().peekTok().getKind() != AsmToken::EndOfStatement)
2038 return ParseStatus::NoMatch;
2040 StringRef Identifier;
2041 if (getParser().parseIdentifier(Identifier))
2042 return ParseStatus::Failure;
2044 SMLoc E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
2046 RISCVMCExpr::VariantKind Kind = RISCVMCExpr::VK_RISCV_CALL;
2047 if (Identifier.consume_back("@plt"))
2048 Kind = RISCVMCExpr::VK_RISCV_CALL_PLT;
2050 MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
2051 Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
2052 Res = RISCVMCExpr::create(Res, Kind, getContext());
2053 Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
2054 return ParseStatus::Success;
2057 ParseStatus RISCVAsmParser::parsePseudoJumpSymbol(OperandVector &Operands) {
2058 SMLoc S = getLoc();
2059 SMLoc E;
2060 const MCExpr *Res;
2062 if (getParser().parseExpression(Res, E))
2063 return ParseStatus::Failure;
2065 if (Res->getKind() != MCExpr::ExprKind::SymbolRef ||
2066 cast<MCSymbolRefExpr>(Res)->getKind() ==
2067 MCSymbolRefExpr::VariantKind::VK_PLT)
2068 return Error(S, "operand must be a valid jump target");
2070 Res = RISCVMCExpr::create(Res, RISCVMCExpr::VK_RISCV_CALL, getContext());
2071 Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
2072 return ParseStatus::Success;
2075 ParseStatus RISCVAsmParser::parseJALOffset(OperandVector &Operands) {
2076 // Parsing jal operands is fiddly due to the `jal foo` and `jal ra, foo`
2077 // both being acceptable forms. When parsing `jal ra, foo` this function
2078 // will be called for the `ra` register operand in an attempt to match the
2079 // single-operand alias. parseJALOffset must fail for this case. It would
2080 // seem logical to try parse the operand using parseImmediate and return
2081 // NoMatch if the next token is a comma (meaning we must be parsing a jal in
2082 // the second form rather than the first). We can't do this as there's no
2083 // way of rewinding the lexer state. Instead, return NoMatch if this operand
2084 // is an identifier and is followed by a comma.
2085 if (getLexer().is(AsmToken::Identifier) &&
2086 getLexer().peekTok().is(AsmToken::Comma))
2087 return ParseStatus::NoMatch;
2089 return parseImmediate(Operands);
2092 bool RISCVAsmParser::parseVTypeToken(StringRef Identifier, VTypeState &State,
2093 unsigned &Sew, unsigned &Lmul,
2094 bool &Fractional, bool &TailAgnostic,
2095 bool &MaskAgnostic) {
2096 switch (State) {
2097 case VTypeState_SEW:
2098 if (!Identifier.consume_front("e"))
2099 break;
2100 if (Identifier.getAsInteger(10, Sew))
2101 break;
2102 if (!RISCVVType::isValidSEW(Sew))
2103 break;
2104 State = VTypeState_LMUL;
2105 return false;
2106 case VTypeState_LMUL: {
2107 if (!Identifier.consume_front("m"))
2108 break;
2109 Fractional = Identifier.consume_front("f");
2110 if (Identifier.getAsInteger(10, Lmul))
2111 break;
2112 if (!RISCVVType::isValidLMUL(Lmul, Fractional))
2113 break;
2114 State = VTypeState_TailPolicy;
2115 return false;
2117 case VTypeState_TailPolicy:
2118 if (Identifier == "ta")
2119 TailAgnostic = true;
2120 else if (Identifier == "tu")
2121 TailAgnostic = false;
2122 else
2123 break;
2124 State = VTypeState_MaskPolicy;
2125 return false;
2126 case VTypeState_MaskPolicy:
2127 if (Identifier == "ma")
2128 MaskAgnostic = true;
2129 else if (Identifier == "mu")
2130 MaskAgnostic = false;
2131 else
2132 break;
2133 State = VTypeState_Done;
2134 return false;
2135 case VTypeState_Done:
2136 // Extra token?
2137 break;
2140 return true;
2143 ParseStatus RISCVAsmParser::parseVTypeI(OperandVector &Operands) {
2144 SMLoc S = getLoc();
2146 unsigned Sew = 0;
2147 unsigned Lmul = 0;
2148 bool Fractional = false;
2149 bool TailAgnostic = false;
2150 bool MaskAgnostic = false;
2152 VTypeState State = VTypeState_SEW;
2154 if (getLexer().isNot(AsmToken::Identifier))
2155 return ParseStatus::NoMatch;
2157 StringRef Identifier = getTok().getIdentifier();
2159 if (parseVTypeToken(Identifier, State, Sew, Lmul, Fractional, TailAgnostic,
2160 MaskAgnostic))
2161 return ParseStatus::NoMatch;
2163 getLexer().Lex();
2165 while (parseOptionalToken(AsmToken::Comma)) {
2166 if (getLexer().isNot(AsmToken::Identifier))
2167 break;
2169 Identifier = getTok().getIdentifier();
2171 if (parseVTypeToken(Identifier, State, Sew, Lmul, Fractional, TailAgnostic,
2172 MaskAgnostic))
2173 break;
2175 getLexer().Lex();
2178 if (getLexer().is(AsmToken::EndOfStatement) && State == VTypeState_Done) {
2179 RISCVII::VLMUL VLMUL = RISCVVType::encodeLMUL(Lmul, Fractional);
2181 unsigned VTypeI =
2182 RISCVVType::encodeVTYPE(VLMUL, Sew, TailAgnostic, MaskAgnostic);
2183 Operands.push_back(RISCVOperand::createVType(VTypeI, S));
2184 return ParseStatus::Success;
2187 return generateVTypeError(S);
2190 bool RISCVAsmParser::generateVTypeError(SMLoc ErrorLoc) {
2191 return Error(
2192 ErrorLoc,
2193 "operand must be "
2194 "e[8|16|32|64|128|256|512|1024],m[1|2|4|8|f2|f4|f8],[ta|tu],[ma|mu]");
2197 ParseStatus RISCVAsmParser::parseMaskReg(OperandVector &Operands) {
2198 if (getLexer().isNot(AsmToken::Identifier))
2199 return ParseStatus::NoMatch;
2201 StringRef Name = getLexer().getTok().getIdentifier();
2202 if (!Name.consume_back(".t"))
2203 return Error(getLoc(), "expected '.t' suffix");
2204 MCRegister RegNo = matchRegisterNameHelper(isRVE(), Name);
2206 if (!RegNo)
2207 return ParseStatus::NoMatch;
2208 if (RegNo != RISCV::V0)
2209 return ParseStatus::NoMatch;
2210 SMLoc S = getLoc();
2211 SMLoc E = SMLoc::getFromPointer(S.getPointer() + Name.size());
2212 getLexer().Lex();
2213 Operands.push_back(RISCVOperand::createReg(RegNo, S, E));
2214 return ParseStatus::Success;
2217 ParseStatus RISCVAsmParser::parseGPRAsFPR(OperandVector &Operands) {
2218 if (getLexer().isNot(AsmToken::Identifier))
2219 return ParseStatus::NoMatch;
2221 StringRef Name = getLexer().getTok().getIdentifier();
2222 MCRegister RegNo = matchRegisterNameHelper(isRVE(), Name);
2224 if (!RegNo)
2225 return ParseStatus::NoMatch;
2226 SMLoc S = getLoc();
2227 SMLoc E = SMLoc::getFromPointer(S.getPointer() + Name.size());
2228 getLexer().Lex();
2229 Operands.push_back(RISCVOperand::createReg(
2230 RegNo, S, E, !getSTI().hasFeature(RISCV::FeatureStdExtF)));
2231 return ParseStatus::Success;
2234 ParseStatus RISCVAsmParser::parseFRMArg(OperandVector &Operands) {
2235 if (getLexer().isNot(AsmToken::Identifier))
2236 return TokError(
2237 "operand must be a valid floating point rounding mode mnemonic");
2239 StringRef Str = getLexer().getTok().getIdentifier();
2240 RISCVFPRndMode::RoundingMode FRM = RISCVFPRndMode::stringToRoundingMode(Str);
2242 if (FRM == RISCVFPRndMode::Invalid)
2243 return TokError(
2244 "operand must be a valid floating point rounding mode mnemonic");
2246 Operands.push_back(RISCVOperand::createFRMArg(FRM, getLoc()));
2247 Lex(); // Eat identifier token.
2248 return ParseStatus::Success;
2251 ParseStatus RISCVAsmParser::parseFenceArg(OperandVector &Operands) {
2252 const AsmToken &Tok = getLexer().getTok();
2254 if (Tok.is(AsmToken::Integer)) {
2255 if (Tok.getIntVal() != 0)
2256 goto ParseFail;
2258 Operands.push_back(RISCVOperand::createFenceArg(0, getLoc()));
2259 Lex();
2260 return ParseStatus::Success;
2263 if (Tok.is(AsmToken::Identifier)) {
2264 StringRef Str = Tok.getIdentifier();
2266 // Letters must be unique, taken from 'iorw', and in ascending order. This
2267 // holds as long as each individual character is one of 'iorw' and is
2268 // greater than the previous character.
2269 unsigned Imm = 0;
2270 bool Valid = true;
2271 char Prev = '\0';
2272 for (char c : Str) {
2273 switch (c) {
2274 default:
2275 Valid = false;
2276 break;
2277 case 'i':
2278 Imm |= RISCVFenceField::I;
2279 break;
2280 case 'o':
2281 Imm |= RISCVFenceField::O;
2282 break;
2283 case 'r':
2284 Imm |= RISCVFenceField::R;
2285 break;
2286 case 'w':
2287 Imm |= RISCVFenceField::W;
2288 break;
2291 if (c <= Prev) {
2292 Valid = false;
2293 break;
2295 Prev = c;
2298 if (!Valid)
2299 goto ParseFail;
2301 Operands.push_back(RISCVOperand::createFenceArg(Imm, getLoc()));
2302 Lex();
2303 return ParseStatus::Success;
2306 ParseFail:
2307 return TokError("operand must be formed of letters selected in-order from "
2308 "'iorw' or be 0");
2311 ParseStatus RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) {
2312 if (parseToken(AsmToken::LParen, "expected '('"))
2313 return ParseStatus::Failure;
2314 Operands.push_back(RISCVOperand::createToken("(", getLoc()));
2316 if (!parseRegister(Operands).isSuccess())
2317 return Error(getLoc(), "expected register");
2319 if (parseToken(AsmToken::RParen, "expected ')'"))
2320 return ParseStatus::Failure;
2321 Operands.push_back(RISCVOperand::createToken(")", getLoc()));
2323 return ParseStatus::Success;
2326 ParseStatus RISCVAsmParser::parseZeroOffsetMemOp(OperandVector &Operands) {
2327 // Atomic operations such as lr.w, sc.w, and amo*.w accept a "memory operand"
2328 // as one of their register operands, such as `(a0)`. This just denotes that
2329 // the register (in this case `a0`) contains a memory address.
2331 // Normally, we would be able to parse these by putting the parens into the
2332 // instruction string. However, GNU as also accepts a zero-offset memory
2333 // operand (such as `0(a0)`), and ignores the 0. Normally this would be parsed
2334 // with parseImmediate followed by parseMemOpBaseReg, but these instructions
2335 // do not accept an immediate operand, and we do not want to add a "dummy"
2336 // operand that is silently dropped.
2338 // Instead, we use this custom parser. This will: allow (and discard) an
2339 // offset if it is zero; require (and discard) parentheses; and add only the
2340 // parsed register operand to `Operands`.
2342 // These operands are printed with RISCVInstPrinter::printZeroOffsetMemOp,
2343 // which will only print the register surrounded by parentheses (which GNU as
2344 // also uses as its canonical representation for these operands).
2345 std::unique_ptr<RISCVOperand> OptionalImmOp;
2347 if (getLexer().isNot(AsmToken::LParen)) {
2348 // Parse an Integer token. We do not accept arbritrary constant expressions
2349 // in the offset field (because they may include parens, which complicates
2350 // parsing a lot).
2351 int64_t ImmVal;
2352 SMLoc ImmStart = getLoc();
2353 if (getParser().parseIntToken(ImmVal,
2354 "expected '(' or optional integer offset"))
2355 return ParseStatus::Failure;
2357 // Create a RISCVOperand for checking later (so the error messages are
2358 // nicer), but we don't add it to Operands.
2359 SMLoc ImmEnd = getLoc();
2360 OptionalImmOp =
2361 RISCVOperand::createImm(MCConstantExpr::create(ImmVal, getContext()),
2362 ImmStart, ImmEnd, isRV64());
2365 if (parseToken(AsmToken::LParen,
2366 OptionalImmOp ? "expected '(' after optional integer offset"
2367 : "expected '(' or optional integer offset"))
2368 return ParseStatus::Failure;
2370 if (!parseRegister(Operands).isSuccess())
2371 return Error(getLoc(), "expected register");
2373 if (parseToken(AsmToken::RParen, "expected ')'"))
2374 return ParseStatus::Failure;
2376 // Deferred Handling of non-zero offsets. This makes the error messages nicer.
2377 if (OptionalImmOp && !OptionalImmOp->isImmZero())
2378 return Error(
2379 OptionalImmOp->getStartLoc(), "optional integer offset must be 0",
2380 SMRange(OptionalImmOp->getStartLoc(), OptionalImmOp->getEndLoc()));
2382 return ParseStatus::Success;
2385 ParseStatus RISCVAsmParser::parseReglist(OperandVector &Operands) {
2386 // Rlist: {ra [, s0[-sN]]}
2387 // XRlist: {x1 [, x8[-x9][, x18[-xN]]]}
2388 SMLoc S = getLoc();
2390 if (parseToken(AsmToken::LCurly, "register list must start with '{'"))
2391 return ParseStatus::Failure;
2393 bool IsEABI = isRVE();
2395 if (getLexer().isNot(AsmToken::Identifier))
2396 return Error(getLoc(), "register list must start from 'ra' or 'x1'");
2398 StringRef RegName = getLexer().getTok().getIdentifier();
2399 MCRegister RegStart = matchRegisterNameHelper(IsEABI, RegName);
2400 MCRegister RegEnd;
2401 if (RegStart != RISCV::X1)
2402 return Error(getLoc(), "register list must start from 'ra' or 'x1'");
2403 getLexer().Lex();
2405 // parse case like ,s0
2406 if (parseOptionalToken(AsmToken::Comma)) {
2407 if (getLexer().isNot(AsmToken::Identifier))
2408 return Error(getLoc(), "invalid register");
2409 StringRef RegName = getLexer().getTok().getIdentifier();
2410 RegStart = matchRegisterNameHelper(IsEABI, RegName);
2411 if (!RegStart)
2412 return Error(getLoc(), "invalid register");
2413 if (RegStart != RISCV::X8)
2414 return Error(getLoc(),
2415 "continuous register list must start from 's0' or 'x8'");
2416 getLexer().Lex(); // eat reg
2419 // parse case like -s1
2420 if (parseOptionalToken(AsmToken::Minus)) {
2421 StringRef EndName = getLexer().getTok().getIdentifier();
2422 // FIXME: the register mapping and checks of EABI is wrong
2423 RegEnd = matchRegisterNameHelper(IsEABI, EndName);
2424 if (!RegEnd)
2425 return Error(getLoc(), "invalid register");
2426 if (IsEABI && RegEnd != RISCV::X9)
2427 return Error(getLoc(), "contiguous register list of EABI can only be "
2428 "'s0-s1' or 'x8-x9' pair");
2429 getLexer().Lex();
2432 if (!IsEABI) {
2433 // parse extra part like ', x18[-x20]' for XRegList
2434 if (parseOptionalToken(AsmToken::Comma)) {
2435 if (RegEnd != RISCV::X9)
2436 return Error(
2437 getLoc(),
2438 "first contiguous registers pair of register list must be 'x8-x9'");
2440 // parse ', x18' for extra part
2441 if (getLexer().isNot(AsmToken::Identifier))
2442 return Error(getLoc(), "invalid register");
2443 StringRef EndName = getLexer().getTok().getIdentifier();
2444 if (MatchRegisterName(EndName) != RISCV::X18)
2445 return Error(getLoc(),
2446 "second contiguous registers pair of register list "
2447 "must start from 'x18'");
2448 getLexer().Lex();
2450 // parse '-x20' for extra part
2451 if (parseOptionalToken(AsmToken::Minus)) {
2452 if (getLexer().isNot(AsmToken::Identifier))
2453 return Error(getLoc(), "invalid register");
2454 EndName = getLexer().getTok().getIdentifier();
2455 if (MatchRegisterName(EndName) == RISCV::NoRegister)
2456 return Error(getLoc(), "invalid register");
2457 getLexer().Lex();
2459 RegEnd = MatchRegisterName(EndName);
2463 if (RegEnd == RISCV::X26)
2464 return Error(getLoc(), "invalid register list, {ra, s0-s10} or {x1, x8-x9, "
2465 "x18-x26} is not supported");
2467 if (parseToken(AsmToken::RCurly, "register list must end with '}'"))
2468 return ParseStatus::Failure;
2470 if (RegEnd == RISCV::NoRegister)
2471 RegEnd = RegStart;
2473 auto Encode = RISCVZC::encodeRlist(RegEnd, IsEABI);
2474 if (Encode == 16)
2475 return Error(S, "invalid register list");
2476 Operands.push_back(RISCVOperand::createRlist(Encode, S));
2478 return ParseStatus::Success;
2481 ParseStatus RISCVAsmParser::parseZcmpSpimm(OperandVector &Operands) {
2482 (void)parseOptionalToken(AsmToken::Minus);
2484 SMLoc S = getLoc();
2485 int64_t StackAdjustment = getLexer().getTok().getIntVal();
2486 unsigned Spimm = 0;
2487 unsigned RlistVal = static_cast<RISCVOperand *>(Operands[1].get())->Rlist.Val;
2489 bool IsEABI = isRVE();
2490 if (!RISCVZC::getSpimm(RlistVal, Spimm, StackAdjustment, isRV64(), IsEABI))
2491 return ParseStatus::NoMatch;
2492 Operands.push_back(RISCVOperand::createSpimm(Spimm << 4, S));
2493 getLexer().Lex();
2494 return ParseStatus::Success;
2497 /// Looks at a token type and creates the relevant operand from this
2498 /// information, adding to Operands. If operand was parsed, returns false, else
2499 /// true.
2500 bool RISCVAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
2501 // Check if the current operand has a custom associated parser, if so, try to
2502 // custom parse the operand, or fallback to the general approach.
2503 ParseStatus Result =
2504 MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
2505 if (Result.isSuccess())
2506 return false;
2507 if (Result.isFailure())
2508 return true;
2510 // Attempt to parse token as a register.
2511 if (parseRegister(Operands, true).isSuccess())
2512 return false;
2514 // Attempt to parse token as an immediate
2515 if (parseImmediate(Operands).isSuccess()) {
2516 // Parse memory base register if present
2517 if (getLexer().is(AsmToken::LParen))
2518 return !parseMemOpBaseReg(Operands).isSuccess();
2519 return false;
2522 // Finally we have exhausted all options and must declare defeat.
2523 Error(getLoc(), "unknown operand");
2524 return true;
2527 bool RISCVAsmParser::ParseInstruction(ParseInstructionInfo &Info,
2528 StringRef Name, SMLoc NameLoc,
2529 OperandVector &Operands) {
2530 // Ensure that if the instruction occurs when relaxation is enabled,
2531 // relocations are forced for the file. Ideally this would be done when there
2532 // is enough information to reliably determine if the instruction itself may
2533 // cause relaxations. Unfortunately instruction processing stage occurs in the
2534 // same pass as relocation emission, so it's too late to set a 'sticky bit'
2535 // for the entire file.
2536 if (getSTI().hasFeature(RISCV::FeatureRelax)) {
2537 auto *Assembler = getTargetStreamer().getStreamer().getAssemblerPtr();
2538 if (Assembler != nullptr) {
2539 RISCVAsmBackend &MAB =
2540 static_cast<RISCVAsmBackend &>(Assembler->getBackend());
2541 MAB.setForceRelocs();
2545 // First operand is token for instruction
2546 Operands.push_back(RISCVOperand::createToken(Name, NameLoc));
2548 // If there are no more operands, then finish
2549 if (getLexer().is(AsmToken::EndOfStatement)) {
2550 getParser().Lex(); // Consume the EndOfStatement.
2551 return false;
2554 // Parse first operand
2555 if (parseOperand(Operands, Name))
2556 return true;
2558 // Parse until end of statement, consuming commas between operands
2559 while (parseOptionalToken(AsmToken::Comma)) {
2560 // Parse next operand
2561 if (parseOperand(Operands, Name))
2562 return true;
2565 if (getParser().parseEOL("unexpected token")) {
2566 getParser().eatToEndOfStatement();
2567 return true;
2569 return false;
2572 bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr,
2573 RISCVMCExpr::VariantKind &Kind) {
2574 Kind = RISCVMCExpr::VK_RISCV_None;
2576 if (const RISCVMCExpr *RE = dyn_cast<RISCVMCExpr>(Expr)) {
2577 Kind = RE->getKind();
2578 Expr = RE->getSubExpr();
2581 MCValue Res;
2582 MCFixup Fixup;
2583 if (Expr->evaluateAsRelocatable(Res, nullptr, &Fixup))
2584 return Res.getRefKind() == RISCVMCExpr::VK_RISCV_None;
2585 return false;
2588 bool RISCVAsmParser::isSymbolDiff(const MCExpr *Expr) {
2589 MCValue Res;
2590 MCFixup Fixup;
2591 if (Expr->evaluateAsRelocatable(Res, nullptr, &Fixup)) {
2592 return Res.getRefKind() == RISCVMCExpr::VK_RISCV_None && Res.getSymA() &&
2593 Res.getSymB();
2595 return false;
2598 ParseStatus RISCVAsmParser::parseDirective(AsmToken DirectiveID) {
2599 StringRef IDVal = DirectiveID.getString();
2601 if (IDVal == ".option")
2602 return parseDirectiveOption();
2603 if (IDVal == ".attribute")
2604 return parseDirectiveAttribute();
2605 if (IDVal == ".insn")
2606 return parseDirectiveInsn(DirectiveID.getLoc());
2607 if (IDVal == ".variant_cc")
2608 return parseDirectiveVariantCC();
2610 return ParseStatus::NoMatch;
2613 bool RISCVAsmParser::resetToArch(StringRef Arch, SMLoc Loc, std::string &Result,
2614 bool FromOptionDirective) {
2615 for (auto Feature : RISCVFeatureKV)
2616 if (llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
2617 clearFeatureBits(Feature.Value, Feature.Key);
2619 auto ParseResult = llvm::RISCVISAInfo::parseArchString(
2620 Arch, /*EnableExperimentalExtension=*/true,
2621 /*ExperimentalExtensionVersionCheck=*/true);
2622 if (!ParseResult) {
2623 std::string Buffer;
2624 raw_string_ostream OutputErrMsg(Buffer);
2625 handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
2626 OutputErrMsg << "invalid arch name '" << Arch << "', "
2627 << ErrMsg.getMessage();
2630 return Error(Loc, OutputErrMsg.str());
2632 auto &ISAInfo = *ParseResult;
2634 for (auto Feature : RISCVFeatureKV)
2635 if (ISAInfo->hasExtension(Feature.Key))
2636 setFeatureBits(Feature.Value, Feature.Key);
2638 if (FromOptionDirective) {
2639 if (ISAInfo->getXLen() == 32 && isRV64())
2640 return Error(Loc, "bad arch string switching from rv64 to rv32");
2641 else if (ISAInfo->getXLen() == 64 && !isRV64())
2642 return Error(Loc, "bad arch string switching from rv32 to rv64");
2645 if (ISAInfo->getXLen() == 32)
2646 clearFeatureBits(RISCV::Feature64Bit, "64bit");
2647 else if (ISAInfo->getXLen() == 64)
2648 setFeatureBits(RISCV::Feature64Bit, "64bit");
2649 else
2650 return Error(Loc, "bad arch string " + Arch);
2652 Result = ISAInfo->toString();
2653 return false;
2656 bool RISCVAsmParser::parseDirectiveOption() {
2657 MCAsmParser &Parser = getParser();
2658 // Get the option token.
2659 AsmToken Tok = Parser.getTok();
2661 // At the moment only identifiers are supported.
2662 if (parseToken(AsmToken::Identifier, "expected identifier"))
2663 return true;
2665 StringRef Option = Tok.getIdentifier();
2667 if (Option == "push") {
2668 if (Parser.parseEOL())
2669 return true;
2671 getTargetStreamer().emitDirectiveOptionPush();
2672 pushFeatureBits();
2673 return false;
2676 if (Option == "pop") {
2677 SMLoc StartLoc = Parser.getTok().getLoc();
2678 if (Parser.parseEOL())
2679 return true;
2681 getTargetStreamer().emitDirectiveOptionPop();
2682 if (popFeatureBits())
2683 return Error(StartLoc, ".option pop with no .option push");
2685 return false;
2688 if (Option == "arch") {
2689 SmallVector<RISCVOptionArchArg> Args;
2690 do {
2691 if (Parser.parseComma())
2692 return true;
2694 RISCVOptionArchArgType Type;
2695 if (parseOptionalToken(AsmToken::Plus))
2696 Type = RISCVOptionArchArgType::Plus;
2697 else if (parseOptionalToken(AsmToken::Minus))
2698 Type = RISCVOptionArchArgType::Minus;
2699 else if (!Args.empty())
2700 return Error(Parser.getTok().getLoc(),
2701 "unexpected token, expected + or -");
2702 else
2703 Type = RISCVOptionArchArgType::Full;
2705 if (Parser.getTok().isNot(AsmToken::Identifier))
2706 return Error(Parser.getTok().getLoc(),
2707 "unexpected token, expected identifier");
2709 StringRef Arch = Parser.getTok().getString();
2710 SMLoc Loc = Parser.getTok().getLoc();
2711 Parser.Lex();
2713 if (Type == RISCVOptionArchArgType::Full) {
2714 std::string Result;
2715 if (resetToArch(Arch, Loc, Result, true))
2716 return true;
2718 Args.emplace_back(Type, Result);
2719 break;
2722 ArrayRef<SubtargetFeatureKV> KVArray(RISCVFeatureKV);
2723 auto Ext = llvm::lower_bound(KVArray, Arch);
2724 if (Ext == KVArray.end() || StringRef(Ext->Key) != Arch ||
2725 !RISCVISAInfo::isSupportedExtension(Arch)) {
2726 if (isDigit(Arch.back()))
2727 return Error(
2728 Loc,
2729 "Extension version number parsing not currently implemented");
2730 return Error(Loc, "unknown extension feature");
2733 Args.emplace_back(Type, Ext->Key);
2735 if (Type == RISCVOptionArchArgType::Plus) {
2736 FeatureBitset OldFeatureBits = STI->getFeatureBits();
2738 setFeatureBits(Ext->Value, Ext->Key);
2739 auto ParseResult = RISCVFeatures::parseFeatureBits(isRV64(), STI->getFeatureBits());
2740 if (!ParseResult) {
2741 copySTI().setFeatureBits(OldFeatureBits);
2742 setAvailableFeatures(ComputeAvailableFeatures(OldFeatureBits));
2744 std::string Buffer;
2745 raw_string_ostream OutputErrMsg(Buffer);
2746 handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
2747 OutputErrMsg << ErrMsg.getMessage();
2750 return Error(Loc, OutputErrMsg.str());
2752 } else {
2753 assert(Type == RISCVOptionArchArgType::Minus);
2754 // It is invalid to disable an extension that there are other enabled
2755 // extensions depend on it.
2756 // TODO: Make use of RISCVISAInfo to handle this
2757 for (auto Feature : KVArray) {
2758 if (getSTI().hasFeature(Feature.Value) &&
2759 Feature.Implies.test(Ext->Value))
2760 return Error(Loc,
2761 Twine("Can't disable ") + Ext->Key + " extension, " +
2762 Feature.Key + " extension requires " + Ext->Key +
2763 " extension be enabled");
2766 clearFeatureBits(Ext->Value, Ext->Key);
2768 } while (Parser.getTok().isNot(AsmToken::EndOfStatement));
2770 if (Parser.parseEOL())
2771 return true;
2773 getTargetStreamer().emitDirectiveOptionArch(Args);
2774 return false;
2777 if (Option == "rvc") {
2778 if (Parser.parseEOL())
2779 return true;
2781 getTargetStreamer().emitDirectiveOptionRVC();
2782 setFeatureBits(RISCV::FeatureStdExtC, "c");
2783 return false;
2786 if (Option == "norvc") {
2787 if (Parser.parseEOL())
2788 return true;
2790 getTargetStreamer().emitDirectiveOptionNoRVC();
2791 clearFeatureBits(RISCV::FeatureStdExtC, "c");
2792 clearFeatureBits(RISCV::FeatureStdExtZca, "+zca");
2793 return false;
2796 if (Option == "pic") {
2797 if (Parser.parseEOL())
2798 return true;
2800 getTargetStreamer().emitDirectiveOptionPIC();
2801 ParserOptions.IsPicEnabled = true;
2802 return false;
2805 if (Option == "nopic") {
2806 if (Parser.parseEOL())
2807 return true;
2809 getTargetStreamer().emitDirectiveOptionNoPIC();
2810 ParserOptions.IsPicEnabled = false;
2811 return false;
2814 if (Option == "relax") {
2815 if (Parser.parseEOL())
2816 return true;
2818 getTargetStreamer().emitDirectiveOptionRelax();
2819 setFeatureBits(RISCV::FeatureRelax, "relax");
2820 return false;
2823 if (Option == "norelax") {
2824 if (Parser.parseEOL())
2825 return true;
2827 getTargetStreamer().emitDirectiveOptionNoRelax();
2828 clearFeatureBits(RISCV::FeatureRelax, "relax");
2829 return false;
2832 // Unknown option.
2833 Warning(Parser.getTok().getLoc(), "unknown option, expected 'push', 'pop', "
2834 "'rvc', 'norvc', 'arch', 'relax' or "
2835 "'norelax'");
2836 Parser.eatToEndOfStatement();
2837 return false;
2840 /// parseDirectiveAttribute
2841 /// ::= .attribute expression ',' ( expression | "string" )
2842 /// ::= .attribute identifier ',' ( expression | "string" )
2843 bool RISCVAsmParser::parseDirectiveAttribute() {
2844 MCAsmParser &Parser = getParser();
2845 int64_t Tag;
2846 SMLoc TagLoc;
2847 TagLoc = Parser.getTok().getLoc();
2848 if (Parser.getTok().is(AsmToken::Identifier)) {
2849 StringRef Name = Parser.getTok().getIdentifier();
2850 std::optional<unsigned> Ret =
2851 ELFAttrs::attrTypeFromString(Name, RISCVAttrs::getRISCVAttributeTags());
2852 if (!Ret)
2853 return Error(TagLoc, "attribute name not recognised: " + Name);
2854 Tag = *Ret;
2855 Parser.Lex();
2856 } else {
2857 const MCExpr *AttrExpr;
2859 TagLoc = Parser.getTok().getLoc();
2860 if (Parser.parseExpression(AttrExpr))
2861 return true;
2863 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
2864 if (check(!CE, TagLoc, "expected numeric constant"))
2865 return true;
2867 Tag = CE->getValue();
2870 if (Parser.parseComma())
2871 return true;
2873 StringRef StringValue;
2874 int64_t IntegerValue = 0;
2875 bool IsIntegerValue = true;
2877 // RISC-V attributes have a string value if the tag number is odd
2878 // and an integer value if the tag number is even.
2879 if (Tag % 2)
2880 IsIntegerValue = false;
2882 SMLoc ValueExprLoc = Parser.getTok().getLoc();
2883 if (IsIntegerValue) {
2884 const MCExpr *ValueExpr;
2885 if (Parser.parseExpression(ValueExpr))
2886 return true;
2888 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
2889 if (!CE)
2890 return Error(ValueExprLoc, "expected numeric constant");
2891 IntegerValue = CE->getValue();
2892 } else {
2893 if (Parser.getTok().isNot(AsmToken::String))
2894 return Error(Parser.getTok().getLoc(), "expected string constant");
2896 StringValue = Parser.getTok().getStringContents();
2897 Parser.Lex();
2900 if (Parser.parseEOL())
2901 return true;
2903 if (IsIntegerValue)
2904 getTargetStreamer().emitAttribute(Tag, IntegerValue);
2905 else if (Tag != RISCVAttrs::ARCH)
2906 getTargetStreamer().emitTextAttribute(Tag, StringValue);
2907 else {
2908 std::string Result;
2909 if (resetToArch(StringValue, ValueExprLoc, Result, false))
2910 return true;
2912 // Then emit the arch string.
2913 getTargetStreamer().emitTextAttribute(Tag, Result);
2916 return false;
2919 bool isValidInsnFormat(StringRef Format, bool AllowC) {
2920 return StringSwitch<bool>(Format)
2921 .Cases("r", "r4", "i", "b", "sb", "u", "j", "uj", "s", true)
2922 .Cases("cr", "ci", "ciw", "css", "cl", "cs", "ca", "cb", "cj", AllowC)
2923 .Default(false);
2926 /// parseDirectiveInsn
2927 /// ::= .insn [ format encoding, (operands (, operands)*) ]
2928 bool RISCVAsmParser::parseDirectiveInsn(SMLoc L) {
2929 MCAsmParser &Parser = getParser();
2931 // Expect instruction format as identifier.
2932 StringRef Format;
2933 SMLoc ErrorLoc = Parser.getTok().getLoc();
2934 if (Parser.parseIdentifier(Format))
2935 return Error(ErrorLoc, "expected instruction format");
2937 bool AllowC = getSTI().hasFeature(RISCV::FeatureStdExtC) ||
2938 getSTI().hasFeature(RISCV::FeatureStdExtZca);
2939 if (!isValidInsnFormat(Format, AllowC))
2940 return Error(ErrorLoc, "invalid instruction format");
2942 std::string FormatName = (".insn_" + Format).str();
2944 ParseInstructionInfo Info;
2945 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
2947 if (ParseInstruction(Info, FormatName, L, Operands))
2948 return true;
2950 unsigned Opcode;
2951 uint64_t ErrorInfo;
2952 return MatchAndEmitInstruction(L, Opcode, Operands, Parser.getStreamer(),
2953 ErrorInfo,
2954 /*MatchingInlineAsm=*/false);
2957 /// parseDirectiveVariantCC
2958 /// ::= .variant_cc symbol
2959 bool RISCVAsmParser::parseDirectiveVariantCC() {
2960 StringRef Name;
2961 if (getParser().parseIdentifier(Name))
2962 return TokError("expected symbol name");
2963 if (parseEOL())
2964 return true;
2965 getTargetStreamer().emitDirectiveVariantCC(
2966 *getContext().getOrCreateSymbol(Name));
2967 return false;
2970 void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
2971 MCInst CInst;
2972 bool Res = RISCVRVC::compress(CInst, Inst, getSTI());
2973 if (Res)
2974 ++RISCVNumInstrsCompressed;
2975 S.emitInstruction((Res ? CInst : Inst), getSTI());
2978 void RISCVAsmParser::emitLoadImm(MCRegister DestReg, int64_t Value,
2979 MCStreamer &Out) {
2980 RISCVMatInt::InstSeq Seq =
2981 RISCVMatInt::generateInstSeq(Value, getSTI().getFeatureBits());
2983 MCRegister SrcReg = RISCV::X0;
2984 for (const RISCVMatInt::Inst &Inst : Seq) {
2985 switch (Inst.getOpndKind()) {
2986 case RISCVMatInt::Imm:
2987 emitToStreamer(Out,
2988 MCInstBuilder(Inst.getOpcode()).addReg(DestReg).addImm(Inst.getImm()));
2989 break;
2990 case RISCVMatInt::RegX0:
2991 emitToStreamer(
2992 Out, MCInstBuilder(Inst.getOpcode()).addReg(DestReg).addReg(SrcReg).addReg(
2993 RISCV::X0));
2994 break;
2995 case RISCVMatInt::RegReg:
2996 emitToStreamer(
2997 Out, MCInstBuilder(Inst.getOpcode()).addReg(DestReg).addReg(SrcReg).addReg(
2998 SrcReg));
2999 break;
3000 case RISCVMatInt::RegImm:
3001 emitToStreamer(
3002 Out, MCInstBuilder(Inst.getOpcode()).addReg(DestReg).addReg(SrcReg).addImm(
3003 Inst.getImm()));
3004 break;
3007 // Only the first instruction has X0 as its source.
3008 SrcReg = DestReg;
3012 void RISCVAsmParser::emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
3013 const MCExpr *Symbol,
3014 RISCVMCExpr::VariantKind VKHi,
3015 unsigned SecondOpcode, SMLoc IDLoc,
3016 MCStreamer &Out) {
3017 // A pair of instructions for PC-relative addressing; expands to
3018 // TmpLabel: AUIPC TmpReg, VKHi(symbol)
3019 // OP DestReg, TmpReg, %pcrel_lo(TmpLabel)
3020 MCContext &Ctx = getContext();
3022 MCSymbol *TmpLabel = Ctx.createNamedTempSymbol("pcrel_hi");
3023 Out.emitLabel(TmpLabel);
3025 const RISCVMCExpr *SymbolHi = RISCVMCExpr::create(Symbol, VKHi, Ctx);
3026 emitToStreamer(
3027 Out, MCInstBuilder(RISCV::AUIPC).addOperand(TmpReg).addExpr(SymbolHi));
3029 const MCExpr *RefToLinkTmpLabel =
3030 RISCVMCExpr::create(MCSymbolRefExpr::create(TmpLabel, Ctx),
3031 RISCVMCExpr::VK_RISCV_PCREL_LO, Ctx);
3033 emitToStreamer(Out, MCInstBuilder(SecondOpcode)
3034 .addOperand(DestReg)
3035 .addOperand(TmpReg)
3036 .addExpr(RefToLinkTmpLabel));
3039 void RISCVAsmParser::emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc,
3040 MCStreamer &Out) {
3041 // The load local address pseudo-instruction "lla" is used in PC-relative
3042 // addressing of local symbols:
3043 // lla rdest, symbol
3044 // expands to
3045 // TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
3046 // ADDI rdest, rdest, %pcrel_lo(TmpLabel)
3047 MCOperand DestReg = Inst.getOperand(0);
3048 const MCExpr *Symbol = Inst.getOperand(1).getExpr();
3049 emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
3050 RISCV::ADDI, IDLoc, Out);
3053 void RISCVAsmParser::emitLoadGlobalAddress(MCInst &Inst, SMLoc IDLoc,
3054 MCStreamer &Out) {
3055 // The load global address pseudo-instruction "lga" is used in GOT-indirect
3056 // addressing of global symbols:
3057 // lga rdest, symbol
3058 // expands to
3059 // TmpLabel: AUIPC rdest, %got_pcrel_hi(symbol)
3060 // Lx rdest, %pcrel_lo(TmpLabel)(rdest)
3061 MCOperand DestReg = Inst.getOperand(0);
3062 const MCExpr *Symbol = Inst.getOperand(1).getExpr();
3063 unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
3064 emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_GOT_HI,
3065 SecondOpcode, IDLoc, Out);
3068 void RISCVAsmParser::emitLoadAddress(MCInst &Inst, SMLoc IDLoc,
3069 MCStreamer &Out) {
3070 // The load address pseudo-instruction "la" is used in PC-relative and
3071 // GOT-indirect addressing of global symbols:
3072 // la rdest, symbol
3073 // is an alias for either (for non-PIC)
3074 // lla rdest, symbol
3075 // or (for PIC)
3076 // lga rdest, symbol
3077 if (ParserOptions.IsPicEnabled)
3078 emitLoadGlobalAddress(Inst, IDLoc, Out);
3079 else
3080 emitLoadLocalAddress(Inst, IDLoc, Out);
3083 void RISCVAsmParser::emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc,
3084 MCStreamer &Out) {
3085 // The load TLS IE address pseudo-instruction "la.tls.ie" is used in
3086 // initial-exec TLS model addressing of global symbols:
3087 // la.tls.ie rdest, symbol
3088 // expands to
3089 // TmpLabel: AUIPC rdest, %tls_ie_pcrel_hi(symbol)
3090 // Lx rdest, %pcrel_lo(TmpLabel)(rdest)
3091 MCOperand DestReg = Inst.getOperand(0);
3092 const MCExpr *Symbol = Inst.getOperand(1).getExpr();
3093 unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
3094 emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GOT_HI,
3095 SecondOpcode, IDLoc, Out);
3098 void RISCVAsmParser::emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc,
3099 MCStreamer &Out) {
3100 // The load TLS GD address pseudo-instruction "la.tls.gd" is used in
3101 // global-dynamic TLS model addressing of global symbols:
3102 // la.tls.gd rdest, symbol
3103 // expands to
3104 // TmpLabel: AUIPC rdest, %tls_gd_pcrel_hi(symbol)
3105 // ADDI rdest, rdest, %pcrel_lo(TmpLabel)
3106 MCOperand DestReg = Inst.getOperand(0);
3107 const MCExpr *Symbol = Inst.getOperand(1).getExpr();
3108 emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GD_HI,
3109 RISCV::ADDI, IDLoc, Out);
3112 void RISCVAsmParser::emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode,
3113 SMLoc IDLoc, MCStreamer &Out,
3114 bool HasTmpReg) {
3115 // The load/store pseudo-instruction does a pc-relative load with
3116 // a symbol.
3118 // The expansion looks like this
3120 // TmpLabel: AUIPC tmp, %pcrel_hi(symbol)
3121 // [S|L]X rd, %pcrel_lo(TmpLabel)(tmp)
3122 unsigned DestRegOpIdx = HasTmpReg ? 1 : 0;
3123 MCOperand DestReg = Inst.getOperand(DestRegOpIdx);
3124 unsigned SymbolOpIdx = HasTmpReg ? 2 : 1;
3125 MCOperand TmpReg = Inst.getOperand(0);
3126 const MCExpr *Symbol = Inst.getOperand(SymbolOpIdx).getExpr();
3127 emitAuipcInstPair(DestReg, TmpReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
3128 Opcode, IDLoc, Out);
3131 void RISCVAsmParser::emitPseudoExtend(MCInst &Inst, bool SignExtend,
3132 int64_t Width, SMLoc IDLoc,
3133 MCStreamer &Out) {
3134 // The sign/zero extend pseudo-instruction does two shifts, with the shift
3135 // amounts dependent on the XLEN.
3137 // The expansion looks like this
3139 // SLLI rd, rs, XLEN - Width
3140 // SR[A|R]I rd, rd, XLEN - Width
3141 MCOperand DestReg = Inst.getOperand(0);
3142 MCOperand SourceReg = Inst.getOperand(1);
3144 unsigned SecondOpcode = SignExtend ? RISCV::SRAI : RISCV::SRLI;
3145 int64_t ShAmt = (isRV64() ? 64 : 32) - Width;
3147 assert(ShAmt > 0 && "Shift amount must be non-zero.");
3149 emitToStreamer(Out, MCInstBuilder(RISCV::SLLI)
3150 .addOperand(DestReg)
3151 .addOperand(SourceReg)
3152 .addImm(ShAmt));
3154 emitToStreamer(Out, MCInstBuilder(SecondOpcode)
3155 .addOperand(DestReg)
3156 .addOperand(DestReg)
3157 .addImm(ShAmt));
3160 void RISCVAsmParser::emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
3161 MCStreamer &Out) {
3162 if (Inst.getNumOperands() == 3) {
3163 // unmasked va >= x
3165 // pseudoinstruction: vmsge{u}.vx vd, va, x
3166 // expansion: vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd
3167 emitToStreamer(Out, MCInstBuilder(Opcode)
3168 .addOperand(Inst.getOperand(0))
3169 .addOperand(Inst.getOperand(1))
3170 .addOperand(Inst.getOperand(2))
3171 .addReg(RISCV::NoRegister));
3172 emitToStreamer(Out, MCInstBuilder(RISCV::VMNAND_MM)
3173 .addOperand(Inst.getOperand(0))
3174 .addOperand(Inst.getOperand(0))
3175 .addOperand(Inst.getOperand(0)));
3176 } else if (Inst.getNumOperands() == 4) {
3177 // masked va >= x, vd != v0
3179 // pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t
3180 // expansion: vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0
3181 assert(Inst.getOperand(0).getReg() != RISCV::V0 &&
3182 "The destination register should not be V0.");
3183 emitToStreamer(Out, MCInstBuilder(Opcode)
3184 .addOperand(Inst.getOperand(0))
3185 .addOperand(Inst.getOperand(1))
3186 .addOperand(Inst.getOperand(2))
3187 .addOperand(Inst.getOperand(3)));
3188 emitToStreamer(Out, MCInstBuilder(RISCV::VMXOR_MM)
3189 .addOperand(Inst.getOperand(0))
3190 .addOperand(Inst.getOperand(0))
3191 .addReg(RISCV::V0));
3192 } else if (Inst.getNumOperands() == 5 &&
3193 Inst.getOperand(0).getReg() == RISCV::V0) {
3194 // masked va >= x, vd == v0
3196 // pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
3197 // expansion: vmslt{u}.vx vt, va, x; vmandn.mm vd, vd, vt
3198 assert(Inst.getOperand(0).getReg() == RISCV::V0 &&
3199 "The destination register should be V0.");
3200 assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
3201 "The temporary vector register should not be V0.");
3202 emitToStreamer(Out, MCInstBuilder(Opcode)
3203 .addOperand(Inst.getOperand(1))
3204 .addOperand(Inst.getOperand(2))
3205 .addOperand(Inst.getOperand(3))
3206 .addReg(RISCV::NoRegister));
3207 emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
3208 .addOperand(Inst.getOperand(0))
3209 .addOperand(Inst.getOperand(0))
3210 .addOperand(Inst.getOperand(1)));
3211 } else if (Inst.getNumOperands() == 5) {
3212 // masked va >= x, any vd
3214 // pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
3215 // expansion: vmslt{u}.vx vt, va, x; vmandn.mm vt, v0, vt;
3216 // vmandn.mm vd, vd, v0; vmor.mm vd, vt, vd
3217 assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
3218 "The temporary vector register should not be V0.");
3219 emitToStreamer(Out, MCInstBuilder(Opcode)
3220 .addOperand(Inst.getOperand(1))
3221 .addOperand(Inst.getOperand(2))
3222 .addOperand(Inst.getOperand(3))
3223 .addReg(RISCV::NoRegister));
3224 emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
3225 .addOperand(Inst.getOperand(1))
3226 .addReg(RISCV::V0)
3227 .addOperand(Inst.getOperand(1)));
3228 emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
3229 .addOperand(Inst.getOperand(0))
3230 .addOperand(Inst.getOperand(0))
3231 .addReg(RISCV::V0));
3232 emitToStreamer(Out, MCInstBuilder(RISCV::VMOR_MM)
3233 .addOperand(Inst.getOperand(0))
3234 .addOperand(Inst.getOperand(1))
3235 .addOperand(Inst.getOperand(0)));
3239 bool RISCVAsmParser::checkPseudoAddTPRel(MCInst &Inst,
3240 OperandVector &Operands) {
3241 assert(Inst.getOpcode() == RISCV::PseudoAddTPRel && "Invalid instruction");
3242 assert(Inst.getOperand(2).isReg() && "Unexpected second operand kind");
3243 if (Inst.getOperand(2).getReg() != RISCV::X4) {
3244 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[3]).getStartLoc();
3245 return Error(ErrorLoc, "the second input operand must be tp/x4 when using "
3246 "%tprel_add modifier");
3249 return false;
3252 std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultMaskRegOp() const {
3253 return RISCVOperand::createReg(RISCV::NoRegister, llvm::SMLoc(),
3254 llvm::SMLoc());
3257 std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultFRMArgOp() const {
3258 return RISCVOperand::createFRMArg(RISCVFPRndMode::RoundingMode::DYN,
3259 llvm::SMLoc());
3262 std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultFRMArgLegacyOp() const {
3263 return RISCVOperand::createFRMArg(RISCVFPRndMode::RoundingMode::RNE,
3264 llvm::SMLoc());
3267 bool RISCVAsmParser::validateInstruction(MCInst &Inst,
3268 OperandVector &Operands) {
3269 unsigned Opcode = Inst.getOpcode();
3271 if (Opcode == RISCV::PseudoVMSGEU_VX_M_T ||
3272 Opcode == RISCV::PseudoVMSGE_VX_M_T) {
3273 unsigned DestReg = Inst.getOperand(0).getReg();
3274 unsigned TempReg = Inst.getOperand(1).getReg();
3275 if (DestReg == TempReg) {
3276 SMLoc Loc = Operands.back()->getStartLoc();
3277 return Error(Loc, "The temporary vector register cannot be the same as "
3278 "the destination register.");
3282 if (Opcode == RISCV::TH_LDD || Opcode == RISCV::TH_LWUD ||
3283 Opcode == RISCV::TH_LWD) {
3284 unsigned Rd1 = Inst.getOperand(0).getReg();
3285 unsigned Rd2 = Inst.getOperand(1).getReg();
3286 unsigned Rs1 = Inst.getOperand(2).getReg();
3287 // The encoding with rd1 == rd2 == rs1 is reserved for XTHead load pair.
3288 if (Rs1 == Rd1 && Rs1 == Rd2) {
3289 SMLoc Loc = Operands[1]->getStartLoc();
3290 return Error(Loc, "The source register and destination registers "
3291 "cannot be equal.");
3295 if (Opcode == RISCV::CM_MVSA01) {
3296 unsigned Rd1 = Inst.getOperand(0).getReg();
3297 unsigned Rd2 = Inst.getOperand(1).getReg();
3298 if (Rd1 == Rd2) {
3299 SMLoc Loc = Operands[1]->getStartLoc();
3300 return Error(Loc, "'rs1' and 'rs2' must be different.");
3304 bool IsTHeadMemPair32 = (Opcode == RISCV::TH_LWD ||
3305 Opcode == RISCV::TH_LWUD || Opcode == RISCV::TH_SWD);
3306 bool IsTHeadMemPair64 = (Opcode == RISCV::TH_LDD || Opcode == RISCV::TH_SDD);
3307 // The last operand of XTHeadMemPair instructions must be constant 3 or 4
3308 // depending on the data width.
3309 if (IsTHeadMemPair32 && Inst.getOperand(4).getImm() != 3) {
3310 SMLoc Loc = Operands.back()->getStartLoc();
3311 return Error(Loc, "Operand must be constant 3.");
3312 } else if (IsTHeadMemPair64 && Inst.getOperand(4).getImm() != 4) {
3313 SMLoc Loc = Operands.back()->getStartLoc();
3314 return Error(Loc, "Operand must be constant 4.");
3317 bool IsAMOCAS_D = Opcode == RISCV::AMOCAS_D || Opcode == RISCV::AMOCAS_D_AQ ||
3318 Opcode == RISCV::AMOCAS_D_RL ||
3319 Opcode == RISCV::AMOCAS_D_AQ_RL;
3320 bool IsAMOCAS_Q = Opcode == RISCV::AMOCAS_Q || Opcode == RISCV::AMOCAS_Q_AQ ||
3321 Opcode == RISCV::AMOCAS_Q_RL ||
3322 Opcode == RISCV::AMOCAS_Q_AQ_RL;
3323 if ((!isRV64() && IsAMOCAS_D) || IsAMOCAS_Q) {
3324 unsigned Rd = Inst.getOperand(0).getReg();
3325 unsigned Rs2 = Inst.getOperand(2).getReg();
3326 assert(Rd >= RISCV::X0 && Rd <= RISCV::X31);
3327 if ((Rd - RISCV::X0) % 2 != 0) {
3328 SMLoc Loc = Operands[1]->getStartLoc();
3329 return Error(Loc, "The destination register must be even.");
3331 assert(Rs2 >= RISCV::X0 && Rs2 <= RISCV::X31);
3332 if ((Rs2 - RISCV::X0) % 2 != 0) {
3333 SMLoc Loc = Operands[2]->getStartLoc();
3334 return Error(Loc, "The source register must be even.");
3338 const MCInstrDesc &MCID = MII.get(Opcode);
3339 if (!(MCID.TSFlags & RISCVII::ConstraintMask))
3340 return false;
3342 if (Opcode == RISCV::VC_V_XVW || Opcode == RISCV::VC_V_IVW ||
3343 Opcode == RISCV::VC_V_FVW || Opcode == RISCV::VC_V_VVW) {
3344 // Operands Opcode, Dst, uimm, Dst, Rs2, Rs1 for VC_V_XVW.
3345 unsigned VCIXDst = Inst.getOperand(0).getReg();
3346 SMLoc VCIXDstLoc = Operands[2]->getStartLoc();
3347 if (MCID.TSFlags & RISCVII::VS1Constraint) {
3348 unsigned VCIXRs1 = Inst.getOperand(Inst.getNumOperands() - 1).getReg();
3349 if (VCIXDst == VCIXRs1)
3350 return Error(VCIXDstLoc, "The destination vector register group cannot"
3351 " overlap the source vector register group.");
3353 if (MCID.TSFlags & RISCVII::VS2Constraint) {
3354 unsigned VCIXRs2 = Inst.getOperand(Inst.getNumOperands() - 2).getReg();
3355 if (VCIXDst == VCIXRs2)
3356 return Error(VCIXDstLoc, "The destination vector register group cannot"
3357 " overlap the source vector register group.");
3359 return false;
3362 unsigned DestReg = Inst.getOperand(0).getReg();
3363 unsigned Offset = 0;
3364 int TiedOp = MCID.getOperandConstraint(1, MCOI::TIED_TO);
3365 if (TiedOp == 0)
3366 Offset = 1;
3368 // Operands[1] will be the first operand, DestReg.
3369 SMLoc Loc = Operands[1]->getStartLoc();
3370 if (MCID.TSFlags & RISCVII::VS2Constraint) {
3371 unsigned CheckReg = Inst.getOperand(Offset + 1).getReg();
3372 if (DestReg == CheckReg)
3373 return Error(Loc, "The destination vector register group cannot overlap"
3374 " the source vector register group.");
3376 if ((MCID.TSFlags & RISCVII::VS1Constraint) && Inst.getOperand(Offset + 2).isReg()) {
3377 unsigned CheckReg = Inst.getOperand(Offset + 2).getReg();
3378 if (DestReg == CheckReg)
3379 return Error(Loc, "The destination vector register group cannot overlap"
3380 " the source vector register group.");
3382 if ((MCID.TSFlags & RISCVII::VMConstraint) && (DestReg == RISCV::V0)) {
3383 // vadc, vsbc are special cases. These instructions have no mask register.
3384 // The destination register could not be V0.
3385 if (Opcode == RISCV::VADC_VVM || Opcode == RISCV::VADC_VXM ||
3386 Opcode == RISCV::VADC_VIM || Opcode == RISCV::VSBC_VVM ||
3387 Opcode == RISCV::VSBC_VXM || Opcode == RISCV::VFMERGE_VFM ||
3388 Opcode == RISCV::VMERGE_VIM || Opcode == RISCV::VMERGE_VVM ||
3389 Opcode == RISCV::VMERGE_VXM)
3390 return Error(Loc, "The destination vector register group cannot be V0.");
3392 // Regardless masked or unmasked version, the number of operands is the
3393 // same. For example, "viota.m v0, v2" is "viota.m v0, v2, NoRegister"
3394 // actually. We need to check the last operand to ensure whether it is
3395 // masked or not.
3396 unsigned CheckReg = Inst.getOperand(Inst.getNumOperands() - 1).getReg();
3397 assert((CheckReg == RISCV::V0 || CheckReg == RISCV::NoRegister) &&
3398 "Unexpected register for mask operand");
3400 if (DestReg == CheckReg)
3401 return Error(Loc, "The destination vector register group cannot overlap"
3402 " the mask register.");
3404 return false;
3407 bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
3408 OperandVector &Operands,
3409 MCStreamer &Out) {
3410 Inst.setLoc(IDLoc);
3412 switch (Inst.getOpcode()) {
3413 default:
3414 break;
3415 case RISCV::PseudoLLAImm:
3416 case RISCV::PseudoLAImm:
3417 case RISCV::PseudoLI: {
3418 MCRegister Reg = Inst.getOperand(0).getReg();
3419 const MCOperand &Op1 = Inst.getOperand(1);
3420 if (Op1.isExpr()) {
3421 // We must have li reg, %lo(sym) or li reg, %pcrel_lo(sym) or similar.
3422 // Just convert to an addi. This allows compatibility with gas.
3423 emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
3424 .addReg(Reg)
3425 .addReg(RISCV::X0)
3426 .addExpr(Op1.getExpr()));
3427 return false;
3429 int64_t Imm = Inst.getOperand(1).getImm();
3430 // On RV32 the immediate here can either be a signed or an unsigned
3431 // 32-bit number. Sign extension has to be performed to ensure that Imm
3432 // represents the expected signed 64-bit number.
3433 if (!isRV64())
3434 Imm = SignExtend64<32>(Imm);
3435 emitLoadImm(Reg, Imm, Out);
3436 return false;
3438 case RISCV::PseudoLLA:
3439 emitLoadLocalAddress(Inst, IDLoc, Out);
3440 return false;
3441 case RISCV::PseudoLGA:
3442 emitLoadGlobalAddress(Inst, IDLoc, Out);
3443 return false;
3444 case RISCV::PseudoLA:
3445 emitLoadAddress(Inst, IDLoc, Out);
3446 return false;
3447 case RISCV::PseudoLA_TLS_IE:
3448 emitLoadTLSIEAddress(Inst, IDLoc, Out);
3449 return false;
3450 case RISCV::PseudoLA_TLS_GD:
3451 emitLoadTLSGDAddress(Inst, IDLoc, Out);
3452 return false;
3453 case RISCV::PseudoLB:
3454 emitLoadStoreSymbol(Inst, RISCV::LB, IDLoc, Out, /*HasTmpReg=*/false);
3455 return false;
3456 case RISCV::PseudoLBU:
3457 emitLoadStoreSymbol(Inst, RISCV::LBU, IDLoc, Out, /*HasTmpReg=*/false);
3458 return false;
3459 case RISCV::PseudoLH:
3460 emitLoadStoreSymbol(Inst, RISCV::LH, IDLoc, Out, /*HasTmpReg=*/false);
3461 return false;
3462 case RISCV::PseudoLHU:
3463 emitLoadStoreSymbol(Inst, RISCV::LHU, IDLoc, Out, /*HasTmpReg=*/false);
3464 return false;
3465 case RISCV::PseudoLW:
3466 emitLoadStoreSymbol(Inst, RISCV::LW, IDLoc, Out, /*HasTmpReg=*/false);
3467 return false;
3468 case RISCV::PseudoLWU:
3469 emitLoadStoreSymbol(Inst, RISCV::LWU, IDLoc, Out, /*HasTmpReg=*/false);
3470 return false;
3471 case RISCV::PseudoLD:
3472 emitLoadStoreSymbol(Inst, RISCV::LD, IDLoc, Out, /*HasTmpReg=*/false);
3473 return false;
3474 case RISCV::PseudoFLH:
3475 emitLoadStoreSymbol(Inst, RISCV::FLH, IDLoc, Out, /*HasTmpReg=*/true);
3476 return false;
3477 case RISCV::PseudoFLW:
3478 emitLoadStoreSymbol(Inst, RISCV::FLW, IDLoc, Out, /*HasTmpReg=*/true);
3479 return false;
3480 case RISCV::PseudoFLD:
3481 emitLoadStoreSymbol(Inst, RISCV::FLD, IDLoc, Out, /*HasTmpReg=*/true);
3482 return false;
3483 case RISCV::PseudoSB:
3484 emitLoadStoreSymbol(Inst, RISCV::SB, IDLoc, Out, /*HasTmpReg=*/true);
3485 return false;
3486 case RISCV::PseudoSH:
3487 emitLoadStoreSymbol(Inst, RISCV::SH, IDLoc, Out, /*HasTmpReg=*/true);
3488 return false;
3489 case RISCV::PseudoSW:
3490 emitLoadStoreSymbol(Inst, RISCV::SW, IDLoc, Out, /*HasTmpReg=*/true);
3491 return false;
3492 case RISCV::PseudoSD:
3493 emitLoadStoreSymbol(Inst, RISCV::SD, IDLoc, Out, /*HasTmpReg=*/true);
3494 return false;
3495 case RISCV::PseudoFSH:
3496 emitLoadStoreSymbol(Inst, RISCV::FSH, IDLoc, Out, /*HasTmpReg=*/true);
3497 return false;
3498 case RISCV::PseudoFSW:
3499 emitLoadStoreSymbol(Inst, RISCV::FSW, IDLoc, Out, /*HasTmpReg=*/true);
3500 return false;
3501 case RISCV::PseudoFSD:
3502 emitLoadStoreSymbol(Inst, RISCV::FSD, IDLoc, Out, /*HasTmpReg=*/true);
3503 return false;
3504 case RISCV::PseudoAddTPRel:
3505 if (checkPseudoAddTPRel(Inst, Operands))
3506 return true;
3507 break;
3508 case RISCV::PseudoSEXT_B:
3509 emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/8, IDLoc, Out);
3510 return false;
3511 case RISCV::PseudoSEXT_H:
3512 emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/16, IDLoc, Out);
3513 return false;
3514 case RISCV::PseudoZEXT_H:
3515 emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/16, IDLoc, Out);
3516 return false;
3517 case RISCV::PseudoZEXT_W:
3518 emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/32, IDLoc, Out);
3519 return false;
3520 case RISCV::PseudoVMSGEU_VX:
3521 case RISCV::PseudoVMSGEU_VX_M:
3522 case RISCV::PseudoVMSGEU_VX_M_T:
3523 emitVMSGE(Inst, RISCV::VMSLTU_VX, IDLoc, Out);
3524 return false;
3525 case RISCV::PseudoVMSGE_VX:
3526 case RISCV::PseudoVMSGE_VX_M:
3527 case RISCV::PseudoVMSGE_VX_M_T:
3528 emitVMSGE(Inst, RISCV::VMSLT_VX, IDLoc, Out);
3529 return false;
3530 case RISCV::PseudoVMSGE_VI:
3531 case RISCV::PseudoVMSLT_VI: {
3532 // These instructions are signed and so is immediate so we can subtract one
3533 // and change the opcode.
3534 int64_t Imm = Inst.getOperand(2).getImm();
3535 unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGE_VI ? RISCV::VMSGT_VI
3536 : RISCV::VMSLE_VI;
3537 emitToStreamer(Out, MCInstBuilder(Opc)
3538 .addOperand(Inst.getOperand(0))
3539 .addOperand(Inst.getOperand(1))
3540 .addImm(Imm - 1)
3541 .addOperand(Inst.getOperand(3)));
3542 return false;
3544 case RISCV::PseudoVMSGEU_VI:
3545 case RISCV::PseudoVMSLTU_VI: {
3546 int64_t Imm = Inst.getOperand(2).getImm();
3547 // Unsigned comparisons are tricky because the immediate is signed. If the
3548 // immediate is 0 we can't just subtract one. vmsltu.vi v0, v1, 0 is always
3549 // false, but vmsle.vi v0, v1, -1 is always true. Instead we use
3550 // vmsne v0, v1, v1 which is always false.
3551 if (Imm == 0) {
3552 unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
3553 ? RISCV::VMSEQ_VV
3554 : RISCV::VMSNE_VV;
3555 emitToStreamer(Out, MCInstBuilder(Opc)
3556 .addOperand(Inst.getOperand(0))
3557 .addOperand(Inst.getOperand(1))
3558 .addOperand(Inst.getOperand(1))
3559 .addOperand(Inst.getOperand(3)));
3560 } else {
3561 // Other immediate values can subtract one like signed.
3562 unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
3563 ? RISCV::VMSGTU_VI
3564 : RISCV::VMSLEU_VI;
3565 emitToStreamer(Out, MCInstBuilder(Opc)
3566 .addOperand(Inst.getOperand(0))
3567 .addOperand(Inst.getOperand(1))
3568 .addImm(Imm - 1)
3569 .addOperand(Inst.getOperand(3)));
3572 return false;
3576 emitToStreamer(Out, Inst);
3577 return false;
3580 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVAsmParser() {
3581 RegisterMCAsmParser<RISCVAsmParser> X(getTheRISCV32Target());
3582 RegisterMCAsmParser<RISCVAsmParser> Y(getTheRISCV64Target());