Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Transforms / Vectorize / LoopVectorizationLegality.cpp
blob35d69df56dc7220a5bda14ed8600a2a7e605d14b
1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Analysis/VectorUtils.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Transforms/Utils/SizeOpts.h"
28 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
30 using namespace llvm;
31 using namespace PatternMatch;
33 #define LV_NAME "loop-vectorize"
34 #define DEBUG_TYPE LV_NAME
36 static cl::opt<bool>
37 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
38 cl::desc("Enable if-conversion during vectorization."));
40 static cl::opt<bool>
41 AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden,
42 cl::desc("Enable recognition of non-constant strided "
43 "pointer induction variables."));
45 namespace llvm {
46 cl::opt<bool>
47 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
48 cl::desc("Allow enabling loop hints to reorder "
49 "FP operations during vectorization."));
52 // TODO: Move size-based thresholds out of legality checking, make cost based
53 // decisions instead of hard thresholds.
54 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
55 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
56 cl::desc("The maximum number of SCEV checks allowed."));
58 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
59 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
60 cl::desc("The maximum number of SCEV checks allowed with a "
61 "vectorize(enable) pragma"));
63 static cl::opt<LoopVectorizeHints::ScalableForceKind>
64 ForceScalableVectorization(
65 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
66 cl::Hidden,
67 cl::desc("Control whether the compiler can use scalable vectors to "
68 "vectorize a loop"),
69 cl::values(
70 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
71 "Scalable vectorization is disabled."),
72 clEnumValN(
73 LoopVectorizeHints::SK_PreferScalable, "preferred",
74 "Scalable vectorization is available and favored when the "
75 "cost is inconclusive."),
76 clEnumValN(
77 LoopVectorizeHints::SK_PreferScalable, "on",
78 "Scalable vectorization is available and favored when the "
79 "cost is inconclusive.")));
81 /// Maximum vectorization interleave count.
82 static const unsigned MaxInterleaveFactor = 16;
84 namespace llvm {
86 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
87 switch (Kind) {
88 case HK_WIDTH:
89 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
90 case HK_INTERLEAVE:
91 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
92 case HK_FORCE:
93 return (Val <= 1);
94 case HK_ISVECTORIZED:
95 case HK_PREDICATE:
96 case HK_SCALABLE:
97 return (Val == 0 || Val == 1);
99 return false;
102 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
103 bool InterleaveOnlyWhenForced,
104 OptimizationRemarkEmitter &ORE,
105 const TargetTransformInfo *TTI)
106 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
107 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
108 Force("vectorize.enable", FK_Undefined, HK_FORCE),
109 IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
110 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
111 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
112 TheLoop(L), ORE(ORE) {
113 // Populate values with existing loop metadata.
114 getHintsFromMetadata();
116 // force-vector-interleave overrides DisableInterleaving.
117 if (VectorizerParams::isInterleaveForced())
118 Interleave.Value = VectorizerParams::VectorizationInterleave;
120 // If the metadata doesn't explicitly specify whether to enable scalable
121 // vectorization, then decide based on the following criteria (increasing
122 // level of priority):
123 // - Target default
124 // - Metadata width
125 // - Force option (always overrides)
126 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
127 if (TTI)
128 Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
129 : SK_FixedWidthOnly;
131 if (Width.Value)
132 // If the width is set, but the metadata says nothing about the scalable
133 // property, then assume it concerns only a fixed-width UserVF.
134 // If width is not set, the flag takes precedence.
135 Scalable.Value = SK_FixedWidthOnly;
138 // If the flag is set to force any use of scalable vectors, override the loop
139 // hints.
140 if (ForceScalableVectorization.getValue() !=
141 LoopVectorizeHints::SK_Unspecified)
142 Scalable.Value = ForceScalableVectorization.getValue();
144 // Scalable vectorization is disabled if no preference is specified.
145 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
146 Scalable.Value = SK_FixedWidthOnly;
148 if (IsVectorized.Value != 1)
149 // If the vectorization width and interleaving count are both 1 then
150 // consider the loop to have been already vectorized because there's
151 // nothing more that we can do.
152 IsVectorized.Value =
153 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
154 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
155 << "LV: Interleaving disabled by the pass manager\n");
158 void LoopVectorizeHints::setAlreadyVectorized() {
159 LLVMContext &Context = TheLoop->getHeader()->getContext();
161 MDNode *IsVectorizedMD = MDNode::get(
162 Context,
163 {MDString::get(Context, "llvm.loop.isvectorized"),
164 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
165 MDNode *LoopID = TheLoop->getLoopID();
166 MDNode *NewLoopID =
167 makePostTransformationMetadata(Context, LoopID,
168 {Twine(Prefix(), "vectorize.").str(),
169 Twine(Prefix(), "interleave.").str()},
170 {IsVectorizedMD});
171 TheLoop->setLoopID(NewLoopID);
173 // Update internal cache.
174 IsVectorized.Value = 1;
177 bool LoopVectorizeHints::allowVectorization(
178 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
179 if (getForce() == LoopVectorizeHints::FK_Disabled) {
180 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
181 emitRemarkWithHints();
182 return false;
185 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
186 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
187 emitRemarkWithHints();
188 return false;
191 if (getIsVectorized() == 1) {
192 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
193 // FIXME: Add interleave.disable metadata. This will allow
194 // vectorize.disable to be used without disabling the pass and errors
195 // to differentiate between disabled vectorization and a width of 1.
196 ORE.emit([&]() {
197 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
198 "AllDisabled", L->getStartLoc(),
199 L->getHeader())
200 << "loop not vectorized: vectorization and interleaving are "
201 "explicitly disabled, or the loop has already been "
202 "vectorized";
204 return false;
207 return true;
210 void LoopVectorizeHints::emitRemarkWithHints() const {
211 using namespace ore;
213 ORE.emit([&]() {
214 if (Force.Value == LoopVectorizeHints::FK_Disabled)
215 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
216 TheLoop->getStartLoc(),
217 TheLoop->getHeader())
218 << "loop not vectorized: vectorization is explicitly disabled";
219 else {
220 OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
221 TheLoop->getStartLoc(), TheLoop->getHeader());
222 R << "loop not vectorized";
223 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
224 R << " (Force=" << NV("Force", true);
225 if (Width.Value != 0)
226 R << ", Vector Width=" << NV("VectorWidth", getWidth());
227 if (getInterleave() != 0)
228 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
229 R << ")";
231 return R;
236 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
237 if (getWidth() == ElementCount::getFixed(1))
238 return LV_NAME;
239 if (getForce() == LoopVectorizeHints::FK_Disabled)
240 return LV_NAME;
241 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
242 return LV_NAME;
243 return OptimizationRemarkAnalysis::AlwaysPrint;
246 bool LoopVectorizeHints::allowReordering() const {
247 // Allow the vectorizer to change the order of operations if enabling
248 // loop hints are provided
249 ElementCount EC = getWidth();
250 return HintsAllowReordering &&
251 (getForce() == LoopVectorizeHints::FK_Enabled ||
252 EC.getKnownMinValue() > 1);
255 void LoopVectorizeHints::getHintsFromMetadata() {
256 MDNode *LoopID = TheLoop->getLoopID();
257 if (!LoopID)
258 return;
260 // First operand should refer to the loop id itself.
261 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
262 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
264 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
265 const MDString *S = nullptr;
266 SmallVector<Metadata *, 4> Args;
268 // The expected hint is either a MDString or a MDNode with the first
269 // operand a MDString.
270 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
271 if (!MD || MD->getNumOperands() == 0)
272 continue;
273 S = dyn_cast<MDString>(MD->getOperand(0));
274 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
275 Args.push_back(MD->getOperand(i));
276 } else {
277 S = dyn_cast<MDString>(LoopID->getOperand(i));
278 assert(Args.size() == 0 && "too many arguments for MDString");
281 if (!S)
282 continue;
284 // Check if the hint starts with the loop metadata prefix.
285 StringRef Name = S->getString();
286 if (Args.size() == 1)
287 setHint(Name, Args[0]);
291 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
292 if (!Name.startswith(Prefix()))
293 return;
294 Name = Name.substr(Prefix().size(), StringRef::npos);
296 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
297 if (!C)
298 return;
299 unsigned Val = C->getZExtValue();
301 Hint *Hints[] = {&Width, &Interleave, &Force,
302 &IsVectorized, &Predicate, &Scalable};
303 for (auto *H : Hints) {
304 if (Name == H->Name) {
305 if (H->validate(Val))
306 H->Value = Val;
307 else
308 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
309 break;
314 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
315 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
316 // executing the inner loop will execute the same iterations). This check is
317 // very constrained for now but it will be relaxed in the future. \p Lp is
318 // considered uniform if it meets all the following conditions:
319 // 1) it has a canonical IV (starting from 0 and with stride 1),
320 // 2) its latch terminator is a conditional branch and,
321 // 3) its latch condition is a compare instruction whose operands are the
322 // canonical IV and an OuterLp invariant.
323 // This check doesn't take into account the uniformity of other conditions not
324 // related to the loop latch because they don't affect the loop uniformity.
326 // NOTE: We decided to keep all these checks and its associated documentation
327 // together so that we can easily have a picture of the current supported loop
328 // nests. However, some of the current checks don't depend on \p OuterLp and
329 // would be redundantly executed for each \p Lp if we invoked this function for
330 // different candidate outer loops. This is not the case for now because we
331 // don't currently have the infrastructure to evaluate multiple candidate outer
332 // loops and \p OuterLp will be a fixed parameter while we only support explicit
333 // outer loop vectorization. It's also very likely that these checks go away
334 // before introducing the aforementioned infrastructure. However, if this is not
335 // the case, we should move the \p OuterLp independent checks to a separate
336 // function that is only executed once for each \p Lp.
337 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
338 assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
340 // If Lp is the outer loop, it's uniform by definition.
341 if (Lp == OuterLp)
342 return true;
343 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
345 // 1.
346 PHINode *IV = Lp->getCanonicalInductionVariable();
347 if (!IV) {
348 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
349 return false;
352 // 2.
353 BasicBlock *Latch = Lp->getLoopLatch();
354 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
355 if (!LatchBr || LatchBr->isUnconditional()) {
356 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
357 return false;
360 // 3.
361 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
362 if (!LatchCmp) {
363 LLVM_DEBUG(
364 dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
365 return false;
368 Value *CondOp0 = LatchCmp->getOperand(0);
369 Value *CondOp1 = LatchCmp->getOperand(1);
370 Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
371 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
372 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
373 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
374 return false;
377 return true;
380 // Return true if \p Lp and all its nested loops are uniform with regard to \p
381 // OuterLp.
382 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
383 if (!isUniformLoop(Lp, OuterLp))
384 return false;
386 // Check if nested loops are uniform.
387 for (Loop *SubLp : *Lp)
388 if (!isUniformLoopNest(SubLp, OuterLp))
389 return false;
391 return true;
394 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
395 if (Ty->isPointerTy())
396 return DL.getIntPtrType(Ty);
398 // It is possible that char's or short's overflow when we ask for the loop's
399 // trip count, work around this by changing the type size.
400 if (Ty->getScalarSizeInBits() < 32)
401 return Type::getInt32Ty(Ty->getContext());
403 return Ty;
406 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
407 Ty0 = convertPointerToIntegerType(DL, Ty0);
408 Ty1 = convertPointerToIntegerType(DL, Ty1);
409 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
410 return Ty0;
411 return Ty1;
414 /// Check that the instruction has outside loop users and is not an
415 /// identified reduction variable.
416 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
417 SmallPtrSetImpl<Value *> &AllowedExit) {
418 // Reductions, Inductions and non-header phis are allowed to have exit users. All
419 // other instructions must not have external users.
420 if (!AllowedExit.count(Inst))
421 // Check that all of the users of the loop are inside the BB.
422 for (User *U : Inst->users()) {
423 Instruction *UI = cast<Instruction>(U);
424 // This user may be a reduction exit value.
425 if (!TheLoop->contains(UI)) {
426 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
427 return true;
430 return false;
433 /// Returns true if A and B have same pointer operands or same SCEVs addresses
434 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
435 StoreInst *B) {
436 // Compare store
437 if (A == B)
438 return true;
440 // Otherwise Compare pointers
441 Value *APtr = A->getPointerOperand();
442 Value *BPtr = B->getPointerOperand();
443 if (APtr == BPtr)
444 return true;
446 // Otherwise compare address SCEVs
447 if (SE->getSCEV(APtr) == SE->getSCEV(BPtr))
448 return true;
450 return false;
453 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
454 Value *Ptr) const {
455 // FIXME: Currently, the set of symbolic strides is sometimes queried before
456 // it's collected. This happens from canVectorizeWithIfConvert, when the
457 // pointer is checked to reference consecutive elements suitable for a
458 // masked access.
459 const auto &Strides =
460 LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>();
462 Function *F = TheLoop->getHeader()->getParent();
463 bool OptForSize = F->hasOptSize() ||
464 llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
465 PGSOQueryType::IRPass);
466 bool CanAddPredicate = !OptForSize;
467 int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
468 CanAddPredicate, false).value_or(0);
469 if (Stride == 1 || Stride == -1)
470 return Stride;
471 return 0;
474 bool LoopVectorizationLegality::isInvariant(Value *V) const {
475 return LAI->isInvariant(V);
478 namespace {
479 /// A rewriter to build the SCEVs for each of the VF lanes in the expected
480 /// vectorized loop, which can then be compared to detect their uniformity. This
481 /// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop)
482 /// with new AddRecs where the step is multiplied by StepMultiplier and Offset *
483 /// Step is added. Also checks if all sub-expressions are analyzable w.r.t.
484 /// uniformity.
485 class SCEVAddRecForUniformityRewriter
486 : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> {
487 /// Multiplier to be applied to the step of AddRecs in TheLoop.
488 unsigned StepMultiplier;
490 /// Offset to be added to the AddRecs in TheLoop.
491 unsigned Offset;
493 /// Loop for which to rewrite AddRecsFor.
494 Loop *TheLoop;
496 /// Is any sub-expressions not analyzable w.r.t. uniformity?
497 bool CannotAnalyze = false;
499 bool canAnalyze() const { return !CannotAnalyze; }
501 public:
502 SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier,
503 unsigned Offset, Loop *TheLoop)
504 : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset),
505 TheLoop(TheLoop) {}
507 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
508 assert(Expr->getLoop() == TheLoop &&
509 "addrec outside of TheLoop must be invariant and should have been "
510 "handled earlier");
511 // Build a new AddRec by multiplying the step by StepMultiplier and
512 // incrementing the start by Offset * step.
513 Type *Ty = Expr->getType();
514 auto *Step = Expr->getStepRecurrence(SE);
515 if (!SE.isLoopInvariant(Step, TheLoop)) {
516 CannotAnalyze = true;
517 return Expr;
519 auto *NewStep = SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier));
520 auto *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset));
521 auto *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset);
522 return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap);
525 const SCEV *visit(const SCEV *S) {
526 if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop))
527 return S;
528 return SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter>::visit(S);
531 const SCEV *visitUnknown(const SCEVUnknown *S) {
532 if (SE.isLoopInvariant(S, TheLoop))
533 return S;
534 // The value could vary across iterations.
535 CannotAnalyze = true;
536 return S;
539 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) {
540 // Could not analyze the expression.
541 CannotAnalyze = true;
542 return S;
545 static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE,
546 unsigned StepMultiplier, unsigned Offset,
547 Loop *TheLoop) {
548 /// Bail out if the expression does not contain an UDiv expression.
549 /// Uniform values which are not loop invariant require operations to strip
550 /// out the lowest bits. For now just look for UDivs and use it to avoid
551 /// re-writing UDIV-free expressions for other lanes to limit compile time.
552 if (!SCEVExprContains(S,
553 [](const SCEV *S) { return isa<SCEVUDivExpr>(S); }))
554 return SE.getCouldNotCompute();
556 SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset,
557 TheLoop);
558 const SCEV *Result = Rewriter.visit(S);
560 if (Rewriter.canAnalyze())
561 return Result;
562 return SE.getCouldNotCompute();
566 } // namespace
568 bool LoopVectorizationLegality::isUniform(Value *V, ElementCount VF) const {
569 if (isInvariant(V))
570 return true;
571 if (VF.isScalable())
572 return false;
573 if (VF.isScalar())
574 return true;
576 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
577 // never considered uniform.
578 auto *SE = PSE.getSE();
579 if (!SE->isSCEVable(V->getType()))
580 return false;
581 const SCEV *S = SE->getSCEV(V);
583 // Rewrite AddRecs in TheLoop to step by VF and check if the expression for
584 // lane 0 matches the expressions for all other lanes.
585 unsigned FixedVF = VF.getKnownMinValue();
586 const SCEV *FirstLaneExpr =
587 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop);
588 if (isa<SCEVCouldNotCompute>(FirstLaneExpr))
589 return false;
591 // Make sure the expressions for lanes FixedVF-1..1 match the expression for
592 // lane 0. We check lanes in reverse order for compile-time, as frequently
593 // checking the last lane is sufficient to rule out uniformity.
594 return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) {
595 const SCEV *IthLaneExpr =
596 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop);
597 return FirstLaneExpr == IthLaneExpr;
601 bool LoopVectorizationLegality::isUniformMemOp(Instruction &I,
602 ElementCount VF) const {
603 Value *Ptr = getLoadStorePointerOperand(&I);
604 if (!Ptr)
605 return false;
606 // Note: There's nothing inherent which prevents predicated loads and
607 // stores from being uniform. The current lowering simply doesn't handle
608 // it; in particular, the cost model distinguishes scatter/gather from
609 // scalar w/predication, and we currently rely on the scalar path.
610 return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent());
613 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
614 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
615 // Store the result and return it at the end instead of exiting early, in case
616 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
617 bool Result = true;
618 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
620 for (BasicBlock *BB : TheLoop->blocks()) {
621 // Check whether the BB terminator is a BranchInst. Any other terminator is
622 // not supported yet.
623 auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
624 if (!Br) {
625 reportVectorizationFailure("Unsupported basic block terminator",
626 "loop control flow is not understood by vectorizer",
627 "CFGNotUnderstood", ORE, TheLoop);
628 if (DoExtraAnalysis)
629 Result = false;
630 else
631 return false;
634 // Check whether the BranchInst is a supported one. Only unconditional
635 // branches, conditional branches with an outer loop invariant condition or
636 // backedges are supported.
637 // FIXME: We skip these checks when VPlan predication is enabled as we
638 // want to allow divergent branches. This whole check will be removed
639 // once VPlan predication is on by default.
640 if (Br && Br->isConditional() &&
641 !TheLoop->isLoopInvariant(Br->getCondition()) &&
642 !LI->isLoopHeader(Br->getSuccessor(0)) &&
643 !LI->isLoopHeader(Br->getSuccessor(1))) {
644 reportVectorizationFailure("Unsupported conditional branch",
645 "loop control flow is not understood by vectorizer",
646 "CFGNotUnderstood", ORE, TheLoop);
647 if (DoExtraAnalysis)
648 Result = false;
649 else
650 return false;
654 // Check whether inner loops are uniform. At this point, we only support
655 // simple outer loops scenarios with uniform nested loops.
656 if (!isUniformLoopNest(TheLoop /*loop nest*/,
657 TheLoop /*context outer loop*/)) {
658 reportVectorizationFailure("Outer loop contains divergent loops",
659 "loop control flow is not understood by vectorizer",
660 "CFGNotUnderstood", ORE, TheLoop);
661 if (DoExtraAnalysis)
662 Result = false;
663 else
664 return false;
667 // Check whether we are able to set up outer loop induction.
668 if (!setupOuterLoopInductions()) {
669 reportVectorizationFailure("Unsupported outer loop Phi(s)",
670 "Unsupported outer loop Phi(s)",
671 "UnsupportedPhi", ORE, TheLoop);
672 if (DoExtraAnalysis)
673 Result = false;
674 else
675 return false;
678 return Result;
681 void LoopVectorizationLegality::addInductionPhi(
682 PHINode *Phi, const InductionDescriptor &ID,
683 SmallPtrSetImpl<Value *> &AllowedExit) {
684 Inductions[Phi] = ID;
686 // In case this induction also comes with casts that we know we can ignore
687 // in the vectorized loop body, record them here. All casts could be recorded
688 // here for ignoring, but suffices to record only the first (as it is the
689 // only one that may bw used outside the cast sequence).
690 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
691 if (!Casts.empty())
692 InductionCastsToIgnore.insert(*Casts.begin());
694 Type *PhiTy = Phi->getType();
695 const DataLayout &DL = Phi->getModule()->getDataLayout();
697 // Get the widest type.
698 if (!PhiTy->isFloatingPointTy()) {
699 if (!WidestIndTy)
700 WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
701 else
702 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
705 // Int inductions are special because we only allow one IV.
706 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
707 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
708 isa<Constant>(ID.getStartValue()) &&
709 cast<Constant>(ID.getStartValue())->isNullValue()) {
711 // Use the phi node with the widest type as induction. Use the last
712 // one if there are multiple (no good reason for doing this other
713 // than it is expedient). We've checked that it begins at zero and
714 // steps by one, so this is a canonical induction variable.
715 if (!PrimaryInduction || PhiTy == WidestIndTy)
716 PrimaryInduction = Phi;
719 // Both the PHI node itself, and the "post-increment" value feeding
720 // back into the PHI node may have external users.
721 // We can allow those uses, except if the SCEVs we have for them rely
722 // on predicates that only hold within the loop, since allowing the exit
723 // currently means re-using this SCEV outside the loop (see PR33706 for more
724 // details).
725 if (PSE.getPredicate().isAlwaysTrue()) {
726 AllowedExit.insert(Phi);
727 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
730 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
733 bool LoopVectorizationLegality::setupOuterLoopInductions() {
734 BasicBlock *Header = TheLoop->getHeader();
736 // Returns true if a given Phi is a supported induction.
737 auto isSupportedPhi = [&](PHINode &Phi) -> bool {
738 InductionDescriptor ID;
739 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
740 ID.getKind() == InductionDescriptor::IK_IntInduction) {
741 addInductionPhi(&Phi, ID, AllowedExit);
742 return true;
743 } else {
744 // Bail out for any Phi in the outer loop header that is not a supported
745 // induction.
746 LLVM_DEBUG(
747 dbgs()
748 << "LV: Found unsupported PHI for outer loop vectorization.\n");
749 return false;
753 if (llvm::all_of(Header->phis(), isSupportedPhi))
754 return true;
755 else
756 return false;
759 /// Checks if a function is scalarizable according to the TLI, in
760 /// the sense that it should be vectorized and then expanded in
761 /// multiple scalar calls. This is represented in the
762 /// TLI via mappings that do not specify a vector name, as in the
763 /// following example:
765 /// const VecDesc VecIntrinsics[] = {
766 /// {"llvm.phx.abs.i32", "", 4}
767 /// };
768 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
769 const StringRef ScalarName = CI.getCalledFunction()->getName();
770 bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
771 // Check that all known VFs are not associated to a vector
772 // function, i.e. the vector name is emty.
773 if (Scalarize) {
774 ElementCount WidestFixedVF, WidestScalableVF;
775 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
776 for (ElementCount VF = ElementCount::getFixed(2);
777 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
778 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
779 for (ElementCount VF = ElementCount::getScalable(1);
780 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
781 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
782 assert((WidestScalableVF.isZero() || !Scalarize) &&
783 "Caller may decide to scalarize a variant using a scalable VF");
785 return Scalarize;
788 bool LoopVectorizationLegality::canVectorizeInstrs() {
789 BasicBlock *Header = TheLoop->getHeader();
791 // For each block in the loop.
792 for (BasicBlock *BB : TheLoop->blocks()) {
793 // Scan the instructions in the block and look for hazards.
794 for (Instruction &I : *BB) {
795 if (auto *Phi = dyn_cast<PHINode>(&I)) {
796 Type *PhiTy = Phi->getType();
797 // Check that this PHI type is allowed.
798 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
799 !PhiTy->isPointerTy()) {
800 reportVectorizationFailure("Found a non-int non-pointer PHI",
801 "loop control flow is not understood by vectorizer",
802 "CFGNotUnderstood", ORE, TheLoop);
803 return false;
806 // If this PHINode is not in the header block, then we know that we
807 // can convert it to select during if-conversion. No need to check if
808 // the PHIs in this block are induction or reduction variables.
809 if (BB != Header) {
810 // Non-header phi nodes that have outside uses can be vectorized. Add
811 // them to the list of allowed exits.
812 // Unsafe cyclic dependencies with header phis are identified during
813 // legalization for reduction, induction and fixed order
814 // recurrences.
815 AllowedExit.insert(&I);
816 continue;
819 // We only allow if-converted PHIs with exactly two incoming values.
820 if (Phi->getNumIncomingValues() != 2) {
821 reportVectorizationFailure("Found an invalid PHI",
822 "loop control flow is not understood by vectorizer",
823 "CFGNotUnderstood", ORE, TheLoop, Phi);
824 return false;
827 RecurrenceDescriptor RedDes;
828 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
829 DT, PSE.getSE())) {
830 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
831 AllowedExit.insert(RedDes.getLoopExitInstr());
832 Reductions[Phi] = RedDes;
833 continue;
836 // We prevent matching non-constant strided pointer IVS to preserve
837 // historical vectorizer behavior after a generalization of the
838 // IVDescriptor code. The intent is to remove this check, but we
839 // have to fix issues around code quality for such loops first.
840 auto isDisallowedStridedPointerInduction =
841 [](const InductionDescriptor &ID) {
842 if (AllowStridedPointerIVs)
843 return false;
844 return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
845 ID.getConstIntStepValue() == nullptr;
848 // TODO: Instead of recording the AllowedExit, it would be good to
849 // record the complementary set: NotAllowedExit. These include (but may
850 // not be limited to):
851 // 1. Reduction phis as they represent the one-before-last value, which
852 // is not available when vectorized
853 // 2. Induction phis and increment when SCEV predicates cannot be used
854 // outside the loop - see addInductionPhi
855 // 3. Non-Phis with outside uses when SCEV predicates cannot be used
856 // outside the loop - see call to hasOutsideLoopUser in the non-phi
857 // handling below
858 // 4. FixedOrderRecurrence phis that can possibly be handled by
859 // extraction.
860 // By recording these, we can then reason about ways to vectorize each
861 // of these NotAllowedExit.
862 InductionDescriptor ID;
863 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) &&
864 !isDisallowedStridedPointerInduction(ID)) {
865 addInductionPhi(Phi, ID, AllowedExit);
866 Requirements->addExactFPMathInst(ID.getExactFPMathInst());
867 continue;
870 if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) {
871 AllowedExit.insert(Phi);
872 FixedOrderRecurrences.insert(Phi);
873 continue;
876 // As a last resort, coerce the PHI to a AddRec expression
877 // and re-try classifying it a an induction PHI.
878 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) &&
879 !isDisallowedStridedPointerInduction(ID)) {
880 addInductionPhi(Phi, ID, AllowedExit);
881 continue;
884 reportVectorizationFailure("Found an unidentified PHI",
885 "value that could not be identified as "
886 "reduction is used outside the loop",
887 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
888 return false;
889 } // end of PHI handling
891 // We handle calls that:
892 // * Are debug info intrinsics.
893 // * Have a mapping to an IR intrinsic.
894 // * Have a vector version available.
895 auto *CI = dyn_cast<CallInst>(&I);
897 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
898 !isa<DbgInfoIntrinsic>(CI) &&
899 !(CI->getCalledFunction() && TLI &&
900 (!VFDatabase::getMappings(*CI).empty() ||
901 isTLIScalarize(*TLI, *CI)))) {
902 // If the call is a recognized math libary call, it is likely that
903 // we can vectorize it given loosened floating-point constraints.
904 LibFunc Func;
905 bool IsMathLibCall =
906 TLI && CI->getCalledFunction() &&
907 CI->getType()->isFloatingPointTy() &&
908 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
909 TLI->hasOptimizedCodeGen(Func);
911 if (IsMathLibCall) {
912 // TODO: Ideally, we should not use clang-specific language here,
913 // but it's hard to provide meaningful yet generic advice.
914 // Also, should this be guarded by allowExtraAnalysis() and/or be part
915 // of the returned info from isFunctionVectorizable()?
916 reportVectorizationFailure(
917 "Found a non-intrinsic callsite",
918 "library call cannot be vectorized. "
919 "Try compiling with -fno-math-errno, -ffast-math, "
920 "or similar flags",
921 "CantVectorizeLibcall", ORE, TheLoop, CI);
922 } else {
923 reportVectorizationFailure("Found a non-intrinsic callsite",
924 "call instruction cannot be vectorized",
925 "CantVectorizeLibcall", ORE, TheLoop, CI);
927 return false;
930 // Some intrinsics have scalar arguments and should be same in order for
931 // them to be vectorized (i.e. loop invariant).
932 if (CI) {
933 auto *SE = PSE.getSE();
934 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
935 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i)
936 if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) {
937 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
938 reportVectorizationFailure("Found unvectorizable intrinsic",
939 "intrinsic instruction cannot be vectorized",
940 "CantVectorizeIntrinsic", ORE, TheLoop, CI);
941 return false;
946 // Check that the instruction return type is vectorizable.
947 // Also, we can't vectorize extractelement instructions.
948 if ((!VectorType::isValidElementType(I.getType()) &&
949 !I.getType()->isVoidTy()) ||
950 isa<ExtractElementInst>(I)) {
951 reportVectorizationFailure("Found unvectorizable type",
952 "instruction return type cannot be vectorized",
953 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
954 return false;
957 // Check that the stored type is vectorizable.
958 if (auto *ST = dyn_cast<StoreInst>(&I)) {
959 Type *T = ST->getValueOperand()->getType();
960 if (!VectorType::isValidElementType(T)) {
961 reportVectorizationFailure("Store instruction cannot be vectorized",
962 "store instruction cannot be vectorized",
963 "CantVectorizeStore", ORE, TheLoop, ST);
964 return false;
967 // For nontemporal stores, check that a nontemporal vector version is
968 // supported on the target.
969 if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
970 // Arbitrarily try a vector of 2 elements.
971 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
972 assert(VecTy && "did not find vectorized version of stored type");
973 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
974 reportVectorizationFailure(
975 "nontemporal store instruction cannot be vectorized",
976 "nontemporal store instruction cannot be vectorized",
977 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
978 return false;
982 } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
983 if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
984 // For nontemporal loads, check that a nontemporal vector version is
985 // supported on the target (arbitrarily try a vector of 2 elements).
986 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
987 assert(VecTy && "did not find vectorized version of load type");
988 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
989 reportVectorizationFailure(
990 "nontemporal load instruction cannot be vectorized",
991 "nontemporal load instruction cannot be vectorized",
992 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
993 return false;
997 // FP instructions can allow unsafe algebra, thus vectorizable by
998 // non-IEEE-754 compliant SIMD units.
999 // This applies to floating-point math operations and calls, not memory
1000 // operations, shuffles, or casts, as they don't change precision or
1001 // semantics.
1002 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
1003 !I.isFast()) {
1004 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
1005 Hints->setPotentiallyUnsafe();
1008 // Reduction instructions are allowed to have exit users.
1009 // All other instructions must not have external users.
1010 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
1011 // We can safely vectorize loops where instructions within the loop are
1012 // used outside the loop only if the SCEV predicates within the loop is
1013 // same as outside the loop. Allowing the exit means reusing the SCEV
1014 // outside the loop.
1015 if (PSE.getPredicate().isAlwaysTrue()) {
1016 AllowedExit.insert(&I);
1017 continue;
1019 reportVectorizationFailure("Value cannot be used outside the loop",
1020 "value cannot be used outside the loop",
1021 "ValueUsedOutsideLoop", ORE, TheLoop, &I);
1022 return false;
1024 } // next instr.
1027 if (!PrimaryInduction) {
1028 if (Inductions.empty()) {
1029 reportVectorizationFailure("Did not find one integer induction var",
1030 "loop induction variable could not be identified",
1031 "NoInductionVariable", ORE, TheLoop);
1032 return false;
1033 } else if (!WidestIndTy) {
1034 reportVectorizationFailure("Did not find one integer induction var",
1035 "integer loop induction variable could not be identified",
1036 "NoIntegerInductionVariable", ORE, TheLoop);
1037 return false;
1038 } else {
1039 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
1043 // Now we know the widest induction type, check if our found induction
1044 // is the same size. If it's not, unset it here and InnerLoopVectorizer
1045 // will create another.
1046 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
1047 PrimaryInduction = nullptr;
1049 return true;
1052 bool LoopVectorizationLegality::canVectorizeMemory() {
1053 LAI = &LAIs.getInfo(*TheLoop);
1054 const OptimizationRemarkAnalysis *LAR = LAI->getReport();
1055 if (LAR) {
1056 ORE->emit([&]() {
1057 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
1058 "loop not vectorized: ", *LAR);
1062 if (!LAI->canVectorizeMemory())
1063 return false;
1065 // We can vectorize stores to invariant address when final reduction value is
1066 // guaranteed to be stored at the end of the loop. Also, if decision to
1067 // vectorize loop is made, runtime checks are added so as to make sure that
1068 // invariant address won't alias with any other objects.
1069 if (!LAI->getStoresToInvariantAddresses().empty()) {
1070 // For each invariant address, check if last stored value is unconditional
1071 // and the address is not calculated inside the loop.
1072 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1073 if (!isInvariantStoreOfReduction(SI))
1074 continue;
1076 if (blockNeedsPredication(SI->getParent())) {
1077 reportVectorizationFailure(
1078 "We don't allow storing to uniform addresses",
1079 "write of conditional recurring variant value to a loop "
1080 "invariant address could not be vectorized",
1081 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1082 return false;
1085 // Invariant address should be defined outside of loop. LICM pass usually
1086 // makes sure it happens, but in rare cases it does not, we do not want
1087 // to overcomplicate vectorization to support this case.
1088 if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
1089 if (TheLoop->contains(Ptr)) {
1090 reportVectorizationFailure(
1091 "Invariant address is calculated inside the loop",
1092 "write to a loop invariant address could not "
1093 "be vectorized",
1094 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1095 return false;
1100 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
1101 // For each invariant address, check its last stored value is the result
1102 // of one of our reductions.
1104 // We do not check if dependence with loads exists because they are
1105 // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this
1106 // behaviour changes we have to modify this code.
1107 ScalarEvolution *SE = PSE.getSE();
1108 SmallVector<StoreInst *, 4> UnhandledStores;
1109 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1110 if (isInvariantStoreOfReduction(SI)) {
1111 // Earlier stores to this address are effectively deadcode.
1112 // With opaque pointers it is possible for one pointer to be used with
1113 // different sizes of stored values:
1114 // store i32 0, ptr %x
1115 // store i8 0, ptr %x
1116 // The latest store doesn't complitely overwrite the first one in the
1117 // example. That is why we have to make sure that types of stored
1118 // values are same.
1119 // TODO: Check that bitwidth of unhandled store is smaller then the
1120 // one that overwrites it and add a test.
1121 erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
1122 return storeToSameAddress(SE, SI, I) &&
1123 I->getValueOperand()->getType() ==
1124 SI->getValueOperand()->getType();
1126 continue;
1128 UnhandledStores.push_back(SI);
1131 bool IsOK = UnhandledStores.empty();
1132 // TODO: we should also validate against InvariantMemSets.
1133 if (!IsOK) {
1134 reportVectorizationFailure(
1135 "We don't allow storing to uniform addresses",
1136 "write to a loop invariant address could not "
1137 "be vectorized",
1138 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1139 return false;
1144 PSE.addPredicate(LAI->getPSE().getPredicate());
1145 return true;
1148 bool LoopVectorizationLegality::canVectorizeFPMath(
1149 bool EnableStrictReductions) {
1151 // First check if there is any ExactFP math or if we allow reassociations
1152 if (!Requirements->getExactFPInst() || Hints->allowReordering())
1153 return true;
1155 // If the above is false, we have ExactFPMath & do not allow reordering.
1156 // If the EnableStrictReductions flag is set, first check if we have any
1157 // Exact FP induction vars, which we cannot vectorize.
1158 if (!EnableStrictReductions ||
1159 any_of(getInductionVars(), [&](auto &Induction) -> bool {
1160 InductionDescriptor IndDesc = Induction.second;
1161 return IndDesc.getExactFPMathInst();
1163 return false;
1165 // We can now only vectorize if all reductions with Exact FP math also
1166 // have the isOrdered flag set, which indicates that we can move the
1167 // reduction operations in-loop.
1168 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
1169 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1170 return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
1171 }));
1174 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
1175 return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1176 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1177 return RdxDesc.IntermediateStore == SI;
1181 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
1182 return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1183 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1184 if (!RdxDesc.IntermediateStore)
1185 return false;
1187 ScalarEvolution *SE = PSE.getSE();
1188 Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1189 return V == InvariantAddress ||
1190 SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
1194 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
1195 Value *In0 = const_cast<Value *>(V);
1196 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
1197 if (!PN)
1198 return false;
1200 return Inductions.count(PN);
1203 const InductionDescriptor *
1204 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
1205 if (!isInductionPhi(Phi))
1206 return nullptr;
1207 auto &ID = getInductionVars().find(Phi)->second;
1208 if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1209 ID.getKind() == InductionDescriptor::IK_FpInduction)
1210 return &ID;
1211 return nullptr;
1214 const InductionDescriptor *
1215 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
1216 if (!isInductionPhi(Phi))
1217 return nullptr;
1218 auto &ID = getInductionVars().find(Phi)->second;
1219 if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
1220 return &ID;
1221 return nullptr;
1224 bool LoopVectorizationLegality::isCastedInductionVariable(
1225 const Value *V) const {
1226 auto *Inst = dyn_cast<Instruction>(V);
1227 return (Inst && InductionCastsToIgnore.count(Inst));
1230 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
1231 return isInductionPhi(V) || isCastedInductionVariable(V);
1234 bool LoopVectorizationLegality::isFixedOrderRecurrence(
1235 const PHINode *Phi) const {
1236 return FixedOrderRecurrences.count(Phi);
1239 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
1240 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1243 bool LoopVectorizationLegality::blockCanBePredicated(
1244 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1245 SmallPtrSetImpl<const Instruction *> &MaskedOp) const {
1246 for (Instruction &I : *BB) {
1247 // We can predicate blocks with calls to assume, as long as we drop them in
1248 // case we flatten the CFG via predication.
1249 if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
1250 MaskedOp.insert(&I);
1251 continue;
1254 // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1255 // TODO: there might be cases that it should block the vectorization. Let's
1256 // ignore those for now.
1257 if (isa<NoAliasScopeDeclInst>(&I))
1258 continue;
1260 // We can allow masked calls if there's at least one vector variant, even
1261 // if we end up scalarizing due to the cost model calculations.
1262 // TODO: Allow other calls if they have appropriate attributes... readonly
1263 // and argmemonly?
1264 if (CallInst *CI = dyn_cast<CallInst>(&I))
1265 if (VFDatabase::hasMaskedVariant(*CI)) {
1266 MaskedOp.insert(CI);
1267 continue;
1270 // Loads are handled via masking (or speculated if safe to do so.)
1271 if (auto *LI = dyn_cast<LoadInst>(&I)) {
1272 if (!SafePtrs.count(LI->getPointerOperand()))
1273 MaskedOp.insert(LI);
1274 continue;
1277 // Predicated store requires some form of masking:
1278 // 1) masked store HW instruction,
1279 // 2) emulation via load-blend-store (only if safe and legal to do so,
1280 // be aware on the race conditions), or
1281 // 3) element-by-element predicate check and scalar store.
1282 if (auto *SI = dyn_cast<StoreInst>(&I)) {
1283 MaskedOp.insert(SI);
1284 continue;
1287 if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
1288 return false;
1291 return true;
1294 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1295 if (!EnableIfConversion) {
1296 reportVectorizationFailure("If-conversion is disabled",
1297 "if-conversion is disabled",
1298 "IfConversionDisabled",
1299 ORE, TheLoop);
1300 return false;
1303 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1305 // A list of pointers which are known to be dereferenceable within scope of
1306 // the loop body for each iteration of the loop which executes. That is,
1307 // the memory pointed to can be dereferenced (with the access size implied by
1308 // the value's type) unconditionally within the loop header without
1309 // introducing a new fault.
1310 SmallPtrSet<Value *, 8> SafePointers;
1312 // Collect safe addresses.
1313 for (BasicBlock *BB : TheLoop->blocks()) {
1314 if (!blockNeedsPredication(BB)) {
1315 for (Instruction &I : *BB)
1316 if (auto *Ptr = getLoadStorePointerOperand(&I))
1317 SafePointers.insert(Ptr);
1318 continue;
1321 // For a block which requires predication, a address may be safe to access
1322 // in the loop w/o predication if we can prove dereferenceability facts
1323 // sufficient to ensure it'll never fault within the loop. For the moment,
1324 // we restrict this to loads; stores are more complicated due to
1325 // concurrency restrictions.
1326 ScalarEvolution &SE = *PSE.getSE();
1327 for (Instruction &I : *BB) {
1328 LoadInst *LI = dyn_cast<LoadInst>(&I);
1329 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1330 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC))
1331 SafePointers.insert(LI->getPointerOperand());
1335 // Collect the blocks that need predication.
1336 for (BasicBlock *BB : TheLoop->blocks()) {
1337 // We don't support switch statements inside loops.
1338 if (!isa<BranchInst>(BB->getTerminator())) {
1339 reportVectorizationFailure("Loop contains a switch statement",
1340 "loop contains a switch statement",
1341 "LoopContainsSwitch", ORE, TheLoop,
1342 BB->getTerminator());
1343 return false;
1346 // We must be able to predicate all blocks that need to be predicated.
1347 if (blockNeedsPredication(BB) &&
1348 !blockCanBePredicated(BB, SafePointers, MaskedOp)) {
1349 reportVectorizationFailure(
1350 "Control flow cannot be substituted for a select",
1351 "control flow cannot be substituted for a select", "NoCFGForSelect",
1352 ORE, TheLoop, BB->getTerminator());
1353 return false;
1357 // We can if-convert this loop.
1358 return true;
1361 // Helper function to canVectorizeLoopNestCFG.
1362 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1363 bool UseVPlanNativePath) {
1364 assert((UseVPlanNativePath || Lp->isInnermost()) &&
1365 "VPlan-native path is not enabled.");
1367 // TODO: ORE should be improved to show more accurate information when an
1368 // outer loop can't be vectorized because a nested loop is not understood or
1369 // legal. Something like: "outer_loop_location: loop not vectorized:
1370 // (inner_loop_location) loop control flow is not understood by vectorizer".
1372 // Store the result and return it at the end instead of exiting early, in case
1373 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1374 bool Result = true;
1375 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1377 // We must have a loop in canonical form. Loops with indirectbr in them cannot
1378 // be canonicalized.
1379 if (!Lp->getLoopPreheader()) {
1380 reportVectorizationFailure("Loop doesn't have a legal pre-header",
1381 "loop control flow is not understood by vectorizer",
1382 "CFGNotUnderstood", ORE, TheLoop);
1383 if (DoExtraAnalysis)
1384 Result = false;
1385 else
1386 return false;
1389 // We must have a single backedge.
1390 if (Lp->getNumBackEdges() != 1) {
1391 reportVectorizationFailure("The loop must have a single backedge",
1392 "loop control flow is not understood by vectorizer",
1393 "CFGNotUnderstood", ORE, TheLoop);
1394 if (DoExtraAnalysis)
1395 Result = false;
1396 else
1397 return false;
1400 return Result;
1403 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1404 Loop *Lp, bool UseVPlanNativePath) {
1405 // Store the result and return it at the end instead of exiting early, in case
1406 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1407 bool Result = true;
1408 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1409 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1410 if (DoExtraAnalysis)
1411 Result = false;
1412 else
1413 return false;
1416 // Recursively check whether the loop control flow of nested loops is
1417 // understood.
1418 for (Loop *SubLp : *Lp)
1419 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1420 if (DoExtraAnalysis)
1421 Result = false;
1422 else
1423 return false;
1426 return Result;
1429 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1430 // Store the result and return it at the end instead of exiting early, in case
1431 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1432 bool Result = true;
1434 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1435 // Check whether the loop-related control flow in the loop nest is expected by
1436 // vectorizer.
1437 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1438 if (DoExtraAnalysis)
1439 Result = false;
1440 else
1441 return false;
1444 // We need to have a loop header.
1445 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1446 << '\n');
1448 // Specific checks for outer loops. We skip the remaining legal checks at this
1449 // point because they don't support outer loops.
1450 if (!TheLoop->isInnermost()) {
1451 assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1453 if (!canVectorizeOuterLoop()) {
1454 reportVectorizationFailure("Unsupported outer loop",
1455 "unsupported outer loop",
1456 "UnsupportedOuterLoop",
1457 ORE, TheLoop);
1458 // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1459 // outer loops.
1460 return false;
1463 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1464 return Result;
1467 assert(TheLoop->isInnermost() && "Inner loop expected.");
1468 // Check if we can if-convert non-single-bb loops.
1469 unsigned NumBlocks = TheLoop->getNumBlocks();
1470 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1471 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1472 if (DoExtraAnalysis)
1473 Result = false;
1474 else
1475 return false;
1478 // Check if we can vectorize the instructions and CFG in this loop.
1479 if (!canVectorizeInstrs()) {
1480 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1481 if (DoExtraAnalysis)
1482 Result = false;
1483 else
1484 return false;
1487 // Go over each instruction and look at memory deps.
1488 if (!canVectorizeMemory()) {
1489 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1490 if (DoExtraAnalysis)
1491 Result = false;
1492 else
1493 return false;
1496 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1497 << (LAI->getRuntimePointerChecking()->Need
1498 ? " (with a runtime bound check)"
1499 : "")
1500 << "!\n");
1502 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1503 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1504 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1506 if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
1507 reportVectorizationFailure("Too many SCEV checks needed",
1508 "Too many SCEV assumptions need to be made and checked at runtime",
1509 "TooManySCEVRunTimeChecks", ORE, TheLoop);
1510 if (DoExtraAnalysis)
1511 Result = false;
1512 else
1513 return false;
1516 // Okay! We've done all the tests. If any have failed, return false. Otherwise
1517 // we can vectorize, and at this point we don't have any other mem analysis
1518 // which may limit our maximum vectorization factor, so just return true with
1519 // no restrictions.
1520 return Result;
1523 bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1525 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1527 SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1529 for (const auto &Reduction : getReductionVars())
1530 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1532 // TODO: handle non-reduction outside users when tail is folded by masking.
1533 for (auto *AE : AllowedExit) {
1534 // Check that all users of allowed exit values are inside the loop or
1535 // are the live-out of a reduction.
1536 if (ReductionLiveOuts.count(AE))
1537 continue;
1538 for (User *U : AE->users()) {
1539 Instruction *UI = cast<Instruction>(U);
1540 if (TheLoop->contains(UI))
1541 continue;
1542 LLVM_DEBUG(
1543 dbgs()
1544 << "LV: Cannot fold tail by masking, loop has an outside user for "
1545 << *UI << "\n");
1546 return false;
1550 // The list of pointers that we can safely read and write to remains empty.
1551 SmallPtrSet<Value *, 8> SafePointers;
1553 // Collect masked ops in temporary set first to avoid partially populating
1554 // MaskedOp if a block cannot be predicated.
1555 SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1557 // Check and mark all blocks for predication, including those that ordinarily
1558 // do not need predication such as the header block.
1559 for (BasicBlock *BB : TheLoop->blocks()) {
1560 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp)) {
1561 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1562 return false;
1566 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1568 MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
1569 return true;
1572 } // namespace llvm