1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Analysis/VectorUtils.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Transforms/Utils/SizeOpts.h"
28 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
31 using namespace PatternMatch
;
33 #define LV_NAME "loop-vectorize"
34 #define DEBUG_TYPE LV_NAME
37 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden
,
38 cl::desc("Enable if-conversion during vectorization."));
41 AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden
,
42 cl::desc("Enable recognition of non-constant strided "
43 "pointer induction variables."));
47 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden
,
48 cl::desc("Allow enabling loop hints to reorder "
49 "FP operations during vectorization."));
52 // TODO: Move size-based thresholds out of legality checking, make cost based
53 // decisions instead of hard thresholds.
54 static cl::opt
<unsigned> VectorizeSCEVCheckThreshold(
55 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden
,
56 cl::desc("The maximum number of SCEV checks allowed."));
58 static cl::opt
<unsigned> PragmaVectorizeSCEVCheckThreshold(
59 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden
,
60 cl::desc("The maximum number of SCEV checks allowed with a "
61 "vectorize(enable) pragma"));
63 static cl::opt
<LoopVectorizeHints::ScalableForceKind
>
64 ForceScalableVectorization(
65 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified
),
67 cl::desc("Control whether the compiler can use scalable vectors to "
70 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly
, "off",
71 "Scalable vectorization is disabled."),
73 LoopVectorizeHints::SK_PreferScalable
, "preferred",
74 "Scalable vectorization is available and favored when the "
75 "cost is inconclusive."),
77 LoopVectorizeHints::SK_PreferScalable
, "on",
78 "Scalable vectorization is available and favored when the "
79 "cost is inconclusive.")));
81 /// Maximum vectorization interleave count.
82 static const unsigned MaxInterleaveFactor
= 16;
86 bool LoopVectorizeHints::Hint::validate(unsigned Val
) {
89 return isPowerOf2_32(Val
) && Val
<= VectorizerParams::MaxVectorWidth
;
91 return isPowerOf2_32(Val
) && Val
<= MaxInterleaveFactor
;
97 return (Val
== 0 || Val
== 1);
102 LoopVectorizeHints::LoopVectorizeHints(const Loop
*L
,
103 bool InterleaveOnlyWhenForced
,
104 OptimizationRemarkEmitter
&ORE
,
105 const TargetTransformInfo
*TTI
)
106 : Width("vectorize.width", VectorizerParams::VectorizationFactor
, HK_WIDTH
),
107 Interleave("interleave.count", InterleaveOnlyWhenForced
, HK_INTERLEAVE
),
108 Force("vectorize.enable", FK_Undefined
, HK_FORCE
),
109 IsVectorized("isvectorized", 0, HK_ISVECTORIZED
),
110 Predicate("vectorize.predicate.enable", FK_Undefined
, HK_PREDICATE
),
111 Scalable("vectorize.scalable.enable", SK_Unspecified
, HK_SCALABLE
),
112 TheLoop(L
), ORE(ORE
) {
113 // Populate values with existing loop metadata.
114 getHintsFromMetadata();
116 // force-vector-interleave overrides DisableInterleaving.
117 if (VectorizerParams::isInterleaveForced())
118 Interleave
.Value
= VectorizerParams::VectorizationInterleave
;
120 // If the metadata doesn't explicitly specify whether to enable scalable
121 // vectorization, then decide based on the following criteria (increasing
122 // level of priority):
125 // - Force option (always overrides)
126 if ((LoopVectorizeHints::ScalableForceKind
)Scalable
.Value
== SK_Unspecified
) {
128 Scalable
.Value
= TTI
->enableScalableVectorization() ? SK_PreferScalable
132 // If the width is set, but the metadata says nothing about the scalable
133 // property, then assume it concerns only a fixed-width UserVF.
134 // If width is not set, the flag takes precedence.
135 Scalable
.Value
= SK_FixedWidthOnly
;
138 // If the flag is set to force any use of scalable vectors, override the loop
140 if (ForceScalableVectorization
.getValue() !=
141 LoopVectorizeHints::SK_Unspecified
)
142 Scalable
.Value
= ForceScalableVectorization
.getValue();
144 // Scalable vectorization is disabled if no preference is specified.
145 if ((LoopVectorizeHints::ScalableForceKind
)Scalable
.Value
== SK_Unspecified
)
146 Scalable
.Value
= SK_FixedWidthOnly
;
148 if (IsVectorized
.Value
!= 1)
149 // If the vectorization width and interleaving count are both 1 then
150 // consider the loop to have been already vectorized because there's
151 // nothing more that we can do.
153 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
154 LLVM_DEBUG(if (InterleaveOnlyWhenForced
&& getInterleave() == 1) dbgs()
155 << "LV: Interleaving disabled by the pass manager\n");
158 void LoopVectorizeHints::setAlreadyVectorized() {
159 LLVMContext
&Context
= TheLoop
->getHeader()->getContext();
161 MDNode
*IsVectorizedMD
= MDNode::get(
163 {MDString::get(Context
, "llvm.loop.isvectorized"),
164 ConstantAsMetadata::get(ConstantInt::get(Context
, APInt(32, 1)))});
165 MDNode
*LoopID
= TheLoop
->getLoopID();
167 makePostTransformationMetadata(Context
, LoopID
,
168 {Twine(Prefix(), "vectorize.").str(),
169 Twine(Prefix(), "interleave.").str()},
171 TheLoop
->setLoopID(NewLoopID
);
173 // Update internal cache.
174 IsVectorized
.Value
= 1;
177 bool LoopVectorizeHints::allowVectorization(
178 Function
*F
, Loop
*L
, bool VectorizeOnlyWhenForced
) const {
179 if (getForce() == LoopVectorizeHints::FK_Disabled
) {
180 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
181 emitRemarkWithHints();
185 if (VectorizeOnlyWhenForced
&& getForce() != LoopVectorizeHints::FK_Enabled
) {
186 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
187 emitRemarkWithHints();
191 if (getIsVectorized() == 1) {
192 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
193 // FIXME: Add interleave.disable metadata. This will allow
194 // vectorize.disable to be used without disabling the pass and errors
195 // to differentiate between disabled vectorization and a width of 1.
197 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
198 "AllDisabled", L
->getStartLoc(),
200 << "loop not vectorized: vectorization and interleaving are "
201 "explicitly disabled, or the loop has already been "
210 void LoopVectorizeHints::emitRemarkWithHints() const {
214 if (Force
.Value
== LoopVectorizeHints::FK_Disabled
)
215 return OptimizationRemarkMissed(LV_NAME
, "MissedExplicitlyDisabled",
216 TheLoop
->getStartLoc(),
217 TheLoop
->getHeader())
218 << "loop not vectorized: vectorization is explicitly disabled";
220 OptimizationRemarkMissed
R(LV_NAME
, "MissedDetails",
221 TheLoop
->getStartLoc(), TheLoop
->getHeader());
222 R
<< "loop not vectorized";
223 if (Force
.Value
== LoopVectorizeHints::FK_Enabled
) {
224 R
<< " (Force=" << NV("Force", true);
225 if (Width
.Value
!= 0)
226 R
<< ", Vector Width=" << NV("VectorWidth", getWidth());
227 if (getInterleave() != 0)
228 R
<< ", Interleave Count=" << NV("InterleaveCount", getInterleave());
236 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
237 if (getWidth() == ElementCount::getFixed(1))
239 if (getForce() == LoopVectorizeHints::FK_Disabled
)
241 if (getForce() == LoopVectorizeHints::FK_Undefined
&& getWidth().isZero())
243 return OptimizationRemarkAnalysis::AlwaysPrint
;
246 bool LoopVectorizeHints::allowReordering() const {
247 // Allow the vectorizer to change the order of operations if enabling
248 // loop hints are provided
249 ElementCount EC
= getWidth();
250 return HintsAllowReordering
&&
251 (getForce() == LoopVectorizeHints::FK_Enabled
||
252 EC
.getKnownMinValue() > 1);
255 void LoopVectorizeHints::getHintsFromMetadata() {
256 MDNode
*LoopID
= TheLoop
->getLoopID();
260 // First operand should refer to the loop id itself.
261 assert(LoopID
->getNumOperands() > 0 && "requires at least one operand");
262 assert(LoopID
->getOperand(0) == LoopID
&& "invalid loop id");
264 for (unsigned i
= 1, ie
= LoopID
->getNumOperands(); i
< ie
; ++i
) {
265 const MDString
*S
= nullptr;
266 SmallVector
<Metadata
*, 4> Args
;
268 // The expected hint is either a MDString or a MDNode with the first
269 // operand a MDString.
270 if (const MDNode
*MD
= dyn_cast
<MDNode
>(LoopID
->getOperand(i
))) {
271 if (!MD
|| MD
->getNumOperands() == 0)
273 S
= dyn_cast
<MDString
>(MD
->getOperand(0));
274 for (unsigned i
= 1, ie
= MD
->getNumOperands(); i
< ie
; ++i
)
275 Args
.push_back(MD
->getOperand(i
));
277 S
= dyn_cast
<MDString
>(LoopID
->getOperand(i
));
278 assert(Args
.size() == 0 && "too many arguments for MDString");
284 // Check if the hint starts with the loop metadata prefix.
285 StringRef Name
= S
->getString();
286 if (Args
.size() == 1)
287 setHint(Name
, Args
[0]);
291 void LoopVectorizeHints::setHint(StringRef Name
, Metadata
*Arg
) {
292 if (!Name
.startswith(Prefix()))
294 Name
= Name
.substr(Prefix().size(), StringRef::npos
);
296 const ConstantInt
*C
= mdconst::dyn_extract
<ConstantInt
>(Arg
);
299 unsigned Val
= C
->getZExtValue();
301 Hint
*Hints
[] = {&Width
, &Interleave
, &Force
,
302 &IsVectorized
, &Predicate
, &Scalable
};
303 for (auto *H
: Hints
) {
304 if (Name
== H
->Name
) {
305 if (H
->validate(Val
))
308 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name
<< "'\n");
314 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
315 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
316 // executing the inner loop will execute the same iterations). This check is
317 // very constrained for now but it will be relaxed in the future. \p Lp is
318 // considered uniform if it meets all the following conditions:
319 // 1) it has a canonical IV (starting from 0 and with stride 1),
320 // 2) its latch terminator is a conditional branch and,
321 // 3) its latch condition is a compare instruction whose operands are the
322 // canonical IV and an OuterLp invariant.
323 // This check doesn't take into account the uniformity of other conditions not
324 // related to the loop latch because they don't affect the loop uniformity.
326 // NOTE: We decided to keep all these checks and its associated documentation
327 // together so that we can easily have a picture of the current supported loop
328 // nests. However, some of the current checks don't depend on \p OuterLp and
329 // would be redundantly executed for each \p Lp if we invoked this function for
330 // different candidate outer loops. This is not the case for now because we
331 // don't currently have the infrastructure to evaluate multiple candidate outer
332 // loops and \p OuterLp will be a fixed parameter while we only support explicit
333 // outer loop vectorization. It's also very likely that these checks go away
334 // before introducing the aforementioned infrastructure. However, if this is not
335 // the case, we should move the \p OuterLp independent checks to a separate
336 // function that is only executed once for each \p Lp.
337 static bool isUniformLoop(Loop
*Lp
, Loop
*OuterLp
) {
338 assert(Lp
->getLoopLatch() && "Expected loop with a single latch.");
340 // If Lp is the outer loop, it's uniform by definition.
343 assert(OuterLp
->contains(Lp
) && "OuterLp must contain Lp.");
346 PHINode
*IV
= Lp
->getCanonicalInductionVariable();
348 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
353 BasicBlock
*Latch
= Lp
->getLoopLatch();
354 auto *LatchBr
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
355 if (!LatchBr
|| LatchBr
->isUnconditional()) {
356 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
361 auto *LatchCmp
= dyn_cast
<CmpInst
>(LatchBr
->getCondition());
364 dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
368 Value
*CondOp0
= LatchCmp
->getOperand(0);
369 Value
*CondOp1
= LatchCmp
->getOperand(1);
370 Value
*IVUpdate
= IV
->getIncomingValueForBlock(Latch
);
371 if (!(CondOp0
== IVUpdate
&& OuterLp
->isLoopInvariant(CondOp1
)) &&
372 !(CondOp1
== IVUpdate
&& OuterLp
->isLoopInvariant(CondOp0
))) {
373 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
380 // Return true if \p Lp and all its nested loops are uniform with regard to \p
382 static bool isUniformLoopNest(Loop
*Lp
, Loop
*OuterLp
) {
383 if (!isUniformLoop(Lp
, OuterLp
))
386 // Check if nested loops are uniform.
387 for (Loop
*SubLp
: *Lp
)
388 if (!isUniformLoopNest(SubLp
, OuterLp
))
394 static Type
*convertPointerToIntegerType(const DataLayout
&DL
, Type
*Ty
) {
395 if (Ty
->isPointerTy())
396 return DL
.getIntPtrType(Ty
);
398 // It is possible that char's or short's overflow when we ask for the loop's
399 // trip count, work around this by changing the type size.
400 if (Ty
->getScalarSizeInBits() < 32)
401 return Type::getInt32Ty(Ty
->getContext());
406 static Type
*getWiderType(const DataLayout
&DL
, Type
*Ty0
, Type
*Ty1
) {
407 Ty0
= convertPointerToIntegerType(DL
, Ty0
);
408 Ty1
= convertPointerToIntegerType(DL
, Ty1
);
409 if (Ty0
->getScalarSizeInBits() > Ty1
->getScalarSizeInBits())
414 /// Check that the instruction has outside loop users and is not an
415 /// identified reduction variable.
416 static bool hasOutsideLoopUser(const Loop
*TheLoop
, Instruction
*Inst
,
417 SmallPtrSetImpl
<Value
*> &AllowedExit
) {
418 // Reductions, Inductions and non-header phis are allowed to have exit users. All
419 // other instructions must not have external users.
420 if (!AllowedExit
.count(Inst
))
421 // Check that all of the users of the loop are inside the BB.
422 for (User
*U
: Inst
->users()) {
423 Instruction
*UI
= cast
<Instruction
>(U
);
424 // This user may be a reduction exit value.
425 if (!TheLoop
->contains(UI
)) {
426 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI
<< '\n');
433 /// Returns true if A and B have same pointer operands or same SCEVs addresses
434 static bool storeToSameAddress(ScalarEvolution
*SE
, StoreInst
*A
,
440 // Otherwise Compare pointers
441 Value
*APtr
= A
->getPointerOperand();
442 Value
*BPtr
= B
->getPointerOperand();
446 // Otherwise compare address SCEVs
447 if (SE
->getSCEV(APtr
) == SE
->getSCEV(BPtr
))
453 int LoopVectorizationLegality::isConsecutivePtr(Type
*AccessTy
,
455 // FIXME: Currently, the set of symbolic strides is sometimes queried before
456 // it's collected. This happens from canVectorizeWithIfConvert, when the
457 // pointer is checked to reference consecutive elements suitable for a
459 const auto &Strides
=
460 LAI
? LAI
->getSymbolicStrides() : DenseMap
<Value
*, const SCEV
*>();
462 Function
*F
= TheLoop
->getHeader()->getParent();
463 bool OptForSize
= F
->hasOptSize() ||
464 llvm::shouldOptimizeForSize(TheLoop
->getHeader(), PSI
, BFI
,
465 PGSOQueryType::IRPass
);
466 bool CanAddPredicate
= !OptForSize
;
467 int Stride
= getPtrStride(PSE
, AccessTy
, Ptr
, TheLoop
, Strides
,
468 CanAddPredicate
, false).value_or(0);
469 if (Stride
== 1 || Stride
== -1)
474 bool LoopVectorizationLegality::isInvariant(Value
*V
) const {
475 return LAI
->isInvariant(V
);
479 /// A rewriter to build the SCEVs for each of the VF lanes in the expected
480 /// vectorized loop, which can then be compared to detect their uniformity. This
481 /// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop)
482 /// with new AddRecs where the step is multiplied by StepMultiplier and Offset *
483 /// Step is added. Also checks if all sub-expressions are analyzable w.r.t.
485 class SCEVAddRecForUniformityRewriter
486 : public SCEVRewriteVisitor
<SCEVAddRecForUniformityRewriter
> {
487 /// Multiplier to be applied to the step of AddRecs in TheLoop.
488 unsigned StepMultiplier
;
490 /// Offset to be added to the AddRecs in TheLoop.
493 /// Loop for which to rewrite AddRecsFor.
496 /// Is any sub-expressions not analyzable w.r.t. uniformity?
497 bool CannotAnalyze
= false;
499 bool canAnalyze() const { return !CannotAnalyze
; }
502 SCEVAddRecForUniformityRewriter(ScalarEvolution
&SE
, unsigned StepMultiplier
,
503 unsigned Offset
, Loop
*TheLoop
)
504 : SCEVRewriteVisitor(SE
), StepMultiplier(StepMultiplier
), Offset(Offset
),
507 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
508 assert(Expr
->getLoop() == TheLoop
&&
509 "addrec outside of TheLoop must be invariant and should have been "
511 // Build a new AddRec by multiplying the step by StepMultiplier and
512 // incrementing the start by Offset * step.
513 Type
*Ty
= Expr
->getType();
514 auto *Step
= Expr
->getStepRecurrence(SE
);
515 if (!SE
.isLoopInvariant(Step
, TheLoop
)) {
516 CannotAnalyze
= true;
519 auto *NewStep
= SE
.getMulExpr(Step
, SE
.getConstant(Ty
, StepMultiplier
));
520 auto *ScaledOffset
= SE
.getMulExpr(Step
, SE
.getConstant(Ty
, Offset
));
521 auto *NewStart
= SE
.getAddExpr(Expr
->getStart(), ScaledOffset
);
522 return SE
.getAddRecExpr(NewStart
, NewStep
, TheLoop
, SCEV::FlagAnyWrap
);
525 const SCEV
*visit(const SCEV
*S
) {
526 if (CannotAnalyze
|| SE
.isLoopInvariant(S
, TheLoop
))
528 return SCEVRewriteVisitor
<SCEVAddRecForUniformityRewriter
>::visit(S
);
531 const SCEV
*visitUnknown(const SCEVUnknown
*S
) {
532 if (SE
.isLoopInvariant(S
, TheLoop
))
534 // The value could vary across iterations.
535 CannotAnalyze
= true;
539 const SCEV
*visitCouldNotCompute(const SCEVCouldNotCompute
*S
) {
540 // Could not analyze the expression.
541 CannotAnalyze
= true;
545 static const SCEV
*rewrite(const SCEV
*S
, ScalarEvolution
&SE
,
546 unsigned StepMultiplier
, unsigned Offset
,
548 /// Bail out if the expression does not contain an UDiv expression.
549 /// Uniform values which are not loop invariant require operations to strip
550 /// out the lowest bits. For now just look for UDivs and use it to avoid
551 /// re-writing UDIV-free expressions for other lanes to limit compile time.
552 if (!SCEVExprContains(S
,
553 [](const SCEV
*S
) { return isa
<SCEVUDivExpr
>(S
); }))
554 return SE
.getCouldNotCompute();
556 SCEVAddRecForUniformityRewriter
Rewriter(SE
, StepMultiplier
, Offset
,
558 const SCEV
*Result
= Rewriter
.visit(S
);
560 if (Rewriter
.canAnalyze())
562 return SE
.getCouldNotCompute();
568 bool LoopVectorizationLegality::isUniform(Value
*V
, ElementCount VF
) const {
576 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
577 // never considered uniform.
578 auto *SE
= PSE
.getSE();
579 if (!SE
->isSCEVable(V
->getType()))
581 const SCEV
*S
= SE
->getSCEV(V
);
583 // Rewrite AddRecs in TheLoop to step by VF and check if the expression for
584 // lane 0 matches the expressions for all other lanes.
585 unsigned FixedVF
= VF
.getKnownMinValue();
586 const SCEV
*FirstLaneExpr
=
587 SCEVAddRecForUniformityRewriter::rewrite(S
, *SE
, FixedVF
, 0, TheLoop
);
588 if (isa
<SCEVCouldNotCompute
>(FirstLaneExpr
))
591 // Make sure the expressions for lanes FixedVF-1..1 match the expression for
592 // lane 0. We check lanes in reverse order for compile-time, as frequently
593 // checking the last lane is sufficient to rule out uniformity.
594 return all_of(reverse(seq
<unsigned>(1, FixedVF
)), [&](unsigned I
) {
595 const SCEV
*IthLaneExpr
=
596 SCEVAddRecForUniformityRewriter::rewrite(S
, *SE
, FixedVF
, I
, TheLoop
);
597 return FirstLaneExpr
== IthLaneExpr
;
601 bool LoopVectorizationLegality::isUniformMemOp(Instruction
&I
,
602 ElementCount VF
) const {
603 Value
*Ptr
= getLoadStorePointerOperand(&I
);
606 // Note: There's nothing inherent which prevents predicated loads and
607 // stores from being uniform. The current lowering simply doesn't handle
608 // it; in particular, the cost model distinguishes scatter/gather from
609 // scalar w/predication, and we currently rely on the scalar path.
610 return isUniform(Ptr
, VF
) && !blockNeedsPredication(I
.getParent());
613 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
614 assert(!TheLoop
->isInnermost() && "We are not vectorizing an outer loop.");
615 // Store the result and return it at the end instead of exiting early, in case
616 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
618 bool DoExtraAnalysis
= ORE
->allowExtraAnalysis(DEBUG_TYPE
);
620 for (BasicBlock
*BB
: TheLoop
->blocks()) {
621 // Check whether the BB terminator is a BranchInst. Any other terminator is
622 // not supported yet.
623 auto *Br
= dyn_cast
<BranchInst
>(BB
->getTerminator());
625 reportVectorizationFailure("Unsupported basic block terminator",
626 "loop control flow is not understood by vectorizer",
627 "CFGNotUnderstood", ORE
, TheLoop
);
634 // Check whether the BranchInst is a supported one. Only unconditional
635 // branches, conditional branches with an outer loop invariant condition or
636 // backedges are supported.
637 // FIXME: We skip these checks when VPlan predication is enabled as we
638 // want to allow divergent branches. This whole check will be removed
639 // once VPlan predication is on by default.
640 if (Br
&& Br
->isConditional() &&
641 !TheLoop
->isLoopInvariant(Br
->getCondition()) &&
642 !LI
->isLoopHeader(Br
->getSuccessor(0)) &&
643 !LI
->isLoopHeader(Br
->getSuccessor(1))) {
644 reportVectorizationFailure("Unsupported conditional branch",
645 "loop control flow is not understood by vectorizer",
646 "CFGNotUnderstood", ORE
, TheLoop
);
654 // Check whether inner loops are uniform. At this point, we only support
655 // simple outer loops scenarios with uniform nested loops.
656 if (!isUniformLoopNest(TheLoop
/*loop nest*/,
657 TheLoop
/*context outer loop*/)) {
658 reportVectorizationFailure("Outer loop contains divergent loops",
659 "loop control flow is not understood by vectorizer",
660 "CFGNotUnderstood", ORE
, TheLoop
);
667 // Check whether we are able to set up outer loop induction.
668 if (!setupOuterLoopInductions()) {
669 reportVectorizationFailure("Unsupported outer loop Phi(s)",
670 "Unsupported outer loop Phi(s)",
671 "UnsupportedPhi", ORE
, TheLoop
);
681 void LoopVectorizationLegality::addInductionPhi(
682 PHINode
*Phi
, const InductionDescriptor
&ID
,
683 SmallPtrSetImpl
<Value
*> &AllowedExit
) {
684 Inductions
[Phi
] = ID
;
686 // In case this induction also comes with casts that we know we can ignore
687 // in the vectorized loop body, record them here. All casts could be recorded
688 // here for ignoring, but suffices to record only the first (as it is the
689 // only one that may bw used outside the cast sequence).
690 const SmallVectorImpl
<Instruction
*> &Casts
= ID
.getCastInsts();
692 InductionCastsToIgnore
.insert(*Casts
.begin());
694 Type
*PhiTy
= Phi
->getType();
695 const DataLayout
&DL
= Phi
->getModule()->getDataLayout();
697 // Get the widest type.
698 if (!PhiTy
->isFloatingPointTy()) {
700 WidestIndTy
= convertPointerToIntegerType(DL
, PhiTy
);
702 WidestIndTy
= getWiderType(DL
, PhiTy
, WidestIndTy
);
705 // Int inductions are special because we only allow one IV.
706 if (ID
.getKind() == InductionDescriptor::IK_IntInduction
&&
707 ID
.getConstIntStepValue() && ID
.getConstIntStepValue()->isOne() &&
708 isa
<Constant
>(ID
.getStartValue()) &&
709 cast
<Constant
>(ID
.getStartValue())->isNullValue()) {
711 // Use the phi node with the widest type as induction. Use the last
712 // one if there are multiple (no good reason for doing this other
713 // than it is expedient). We've checked that it begins at zero and
714 // steps by one, so this is a canonical induction variable.
715 if (!PrimaryInduction
|| PhiTy
== WidestIndTy
)
716 PrimaryInduction
= Phi
;
719 // Both the PHI node itself, and the "post-increment" value feeding
720 // back into the PHI node may have external users.
721 // We can allow those uses, except if the SCEVs we have for them rely
722 // on predicates that only hold within the loop, since allowing the exit
723 // currently means re-using this SCEV outside the loop (see PR33706 for more
725 if (PSE
.getPredicate().isAlwaysTrue()) {
726 AllowedExit
.insert(Phi
);
727 AllowedExit
.insert(Phi
->getIncomingValueForBlock(TheLoop
->getLoopLatch()));
730 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
733 bool LoopVectorizationLegality::setupOuterLoopInductions() {
734 BasicBlock
*Header
= TheLoop
->getHeader();
736 // Returns true if a given Phi is a supported induction.
737 auto isSupportedPhi
= [&](PHINode
&Phi
) -> bool {
738 InductionDescriptor ID
;
739 if (InductionDescriptor::isInductionPHI(&Phi
, TheLoop
, PSE
, ID
) &&
740 ID
.getKind() == InductionDescriptor::IK_IntInduction
) {
741 addInductionPhi(&Phi
, ID
, AllowedExit
);
744 // Bail out for any Phi in the outer loop header that is not a supported
748 << "LV: Found unsupported PHI for outer loop vectorization.\n");
753 if (llvm::all_of(Header
->phis(), isSupportedPhi
))
759 /// Checks if a function is scalarizable according to the TLI, in
760 /// the sense that it should be vectorized and then expanded in
761 /// multiple scalar calls. This is represented in the
762 /// TLI via mappings that do not specify a vector name, as in the
763 /// following example:
765 /// const VecDesc VecIntrinsics[] = {
766 /// {"llvm.phx.abs.i32", "", 4}
768 static bool isTLIScalarize(const TargetLibraryInfo
&TLI
, const CallInst
&CI
) {
769 const StringRef ScalarName
= CI
.getCalledFunction()->getName();
770 bool Scalarize
= TLI
.isFunctionVectorizable(ScalarName
);
771 // Check that all known VFs are not associated to a vector
772 // function, i.e. the vector name is emty.
774 ElementCount WidestFixedVF
, WidestScalableVF
;
775 TLI
.getWidestVF(ScalarName
, WidestFixedVF
, WidestScalableVF
);
776 for (ElementCount VF
= ElementCount::getFixed(2);
777 ElementCount::isKnownLE(VF
, WidestFixedVF
); VF
*= 2)
778 Scalarize
&= !TLI
.isFunctionVectorizable(ScalarName
, VF
);
779 for (ElementCount VF
= ElementCount::getScalable(1);
780 ElementCount::isKnownLE(VF
, WidestScalableVF
); VF
*= 2)
781 Scalarize
&= !TLI
.isFunctionVectorizable(ScalarName
, VF
);
782 assert((WidestScalableVF
.isZero() || !Scalarize
) &&
783 "Caller may decide to scalarize a variant using a scalable VF");
788 bool LoopVectorizationLegality::canVectorizeInstrs() {
789 BasicBlock
*Header
= TheLoop
->getHeader();
791 // For each block in the loop.
792 for (BasicBlock
*BB
: TheLoop
->blocks()) {
793 // Scan the instructions in the block and look for hazards.
794 for (Instruction
&I
: *BB
) {
795 if (auto *Phi
= dyn_cast
<PHINode
>(&I
)) {
796 Type
*PhiTy
= Phi
->getType();
797 // Check that this PHI type is allowed.
798 if (!PhiTy
->isIntegerTy() && !PhiTy
->isFloatingPointTy() &&
799 !PhiTy
->isPointerTy()) {
800 reportVectorizationFailure("Found a non-int non-pointer PHI",
801 "loop control flow is not understood by vectorizer",
802 "CFGNotUnderstood", ORE
, TheLoop
);
806 // If this PHINode is not in the header block, then we know that we
807 // can convert it to select during if-conversion. No need to check if
808 // the PHIs in this block are induction or reduction variables.
810 // Non-header phi nodes that have outside uses can be vectorized. Add
811 // them to the list of allowed exits.
812 // Unsafe cyclic dependencies with header phis are identified during
813 // legalization for reduction, induction and fixed order
815 AllowedExit
.insert(&I
);
819 // We only allow if-converted PHIs with exactly two incoming values.
820 if (Phi
->getNumIncomingValues() != 2) {
821 reportVectorizationFailure("Found an invalid PHI",
822 "loop control flow is not understood by vectorizer",
823 "CFGNotUnderstood", ORE
, TheLoop
, Phi
);
827 RecurrenceDescriptor RedDes
;
828 if (RecurrenceDescriptor::isReductionPHI(Phi
, TheLoop
, RedDes
, DB
, AC
,
830 Requirements
->addExactFPMathInst(RedDes
.getExactFPMathInst());
831 AllowedExit
.insert(RedDes
.getLoopExitInstr());
832 Reductions
[Phi
] = RedDes
;
836 // We prevent matching non-constant strided pointer IVS to preserve
837 // historical vectorizer behavior after a generalization of the
838 // IVDescriptor code. The intent is to remove this check, but we
839 // have to fix issues around code quality for such loops first.
840 auto isDisallowedStridedPointerInduction
=
841 [](const InductionDescriptor
&ID
) {
842 if (AllowStridedPointerIVs
)
844 return ID
.getKind() == InductionDescriptor::IK_PtrInduction
&&
845 ID
.getConstIntStepValue() == nullptr;
848 // TODO: Instead of recording the AllowedExit, it would be good to
849 // record the complementary set: NotAllowedExit. These include (but may
850 // not be limited to):
851 // 1. Reduction phis as they represent the one-before-last value, which
852 // is not available when vectorized
853 // 2. Induction phis and increment when SCEV predicates cannot be used
854 // outside the loop - see addInductionPhi
855 // 3. Non-Phis with outside uses when SCEV predicates cannot be used
856 // outside the loop - see call to hasOutsideLoopUser in the non-phi
858 // 4. FixedOrderRecurrence phis that can possibly be handled by
860 // By recording these, we can then reason about ways to vectorize each
861 // of these NotAllowedExit.
862 InductionDescriptor ID
;
863 if (InductionDescriptor::isInductionPHI(Phi
, TheLoop
, PSE
, ID
) &&
864 !isDisallowedStridedPointerInduction(ID
)) {
865 addInductionPhi(Phi
, ID
, AllowedExit
);
866 Requirements
->addExactFPMathInst(ID
.getExactFPMathInst());
870 if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi
, TheLoop
, DT
)) {
871 AllowedExit
.insert(Phi
);
872 FixedOrderRecurrences
.insert(Phi
);
876 // As a last resort, coerce the PHI to a AddRec expression
877 // and re-try classifying it a an induction PHI.
878 if (InductionDescriptor::isInductionPHI(Phi
, TheLoop
, PSE
, ID
, true) &&
879 !isDisallowedStridedPointerInduction(ID
)) {
880 addInductionPhi(Phi
, ID
, AllowedExit
);
884 reportVectorizationFailure("Found an unidentified PHI",
885 "value that could not be identified as "
886 "reduction is used outside the loop",
887 "NonReductionValueUsedOutsideLoop", ORE
, TheLoop
, Phi
);
889 } // end of PHI handling
891 // We handle calls that:
892 // * Are debug info intrinsics.
893 // * Have a mapping to an IR intrinsic.
894 // * Have a vector version available.
895 auto *CI
= dyn_cast
<CallInst
>(&I
);
897 if (CI
&& !getVectorIntrinsicIDForCall(CI
, TLI
) &&
898 !isa
<DbgInfoIntrinsic
>(CI
) &&
899 !(CI
->getCalledFunction() && TLI
&&
900 (!VFDatabase::getMappings(*CI
).empty() ||
901 isTLIScalarize(*TLI
, *CI
)))) {
902 // If the call is a recognized math libary call, it is likely that
903 // we can vectorize it given loosened floating-point constraints.
906 TLI
&& CI
->getCalledFunction() &&
907 CI
->getType()->isFloatingPointTy() &&
908 TLI
->getLibFunc(CI
->getCalledFunction()->getName(), Func
) &&
909 TLI
->hasOptimizedCodeGen(Func
);
912 // TODO: Ideally, we should not use clang-specific language here,
913 // but it's hard to provide meaningful yet generic advice.
914 // Also, should this be guarded by allowExtraAnalysis() and/or be part
915 // of the returned info from isFunctionVectorizable()?
916 reportVectorizationFailure(
917 "Found a non-intrinsic callsite",
918 "library call cannot be vectorized. "
919 "Try compiling with -fno-math-errno, -ffast-math, "
921 "CantVectorizeLibcall", ORE
, TheLoop
, CI
);
923 reportVectorizationFailure("Found a non-intrinsic callsite",
924 "call instruction cannot be vectorized",
925 "CantVectorizeLibcall", ORE
, TheLoop
, CI
);
930 // Some intrinsics have scalar arguments and should be same in order for
931 // them to be vectorized (i.e. loop invariant).
933 auto *SE
= PSE
.getSE();
934 Intrinsic::ID IntrinID
= getVectorIntrinsicIDForCall(CI
, TLI
);
935 for (unsigned i
= 0, e
= CI
->arg_size(); i
!= e
; ++i
)
936 if (isVectorIntrinsicWithScalarOpAtArg(IntrinID
, i
)) {
937 if (!SE
->isLoopInvariant(PSE
.getSCEV(CI
->getOperand(i
)), TheLoop
)) {
938 reportVectorizationFailure("Found unvectorizable intrinsic",
939 "intrinsic instruction cannot be vectorized",
940 "CantVectorizeIntrinsic", ORE
, TheLoop
, CI
);
946 // Check that the instruction return type is vectorizable.
947 // Also, we can't vectorize extractelement instructions.
948 if ((!VectorType::isValidElementType(I
.getType()) &&
949 !I
.getType()->isVoidTy()) ||
950 isa
<ExtractElementInst
>(I
)) {
951 reportVectorizationFailure("Found unvectorizable type",
952 "instruction return type cannot be vectorized",
953 "CantVectorizeInstructionReturnType", ORE
, TheLoop
, &I
);
957 // Check that the stored type is vectorizable.
958 if (auto *ST
= dyn_cast
<StoreInst
>(&I
)) {
959 Type
*T
= ST
->getValueOperand()->getType();
960 if (!VectorType::isValidElementType(T
)) {
961 reportVectorizationFailure("Store instruction cannot be vectorized",
962 "store instruction cannot be vectorized",
963 "CantVectorizeStore", ORE
, TheLoop
, ST
);
967 // For nontemporal stores, check that a nontemporal vector version is
968 // supported on the target.
969 if (ST
->getMetadata(LLVMContext::MD_nontemporal
)) {
970 // Arbitrarily try a vector of 2 elements.
971 auto *VecTy
= FixedVectorType::get(T
, /*NumElts=*/2);
972 assert(VecTy
&& "did not find vectorized version of stored type");
973 if (!TTI
->isLegalNTStore(VecTy
, ST
->getAlign())) {
974 reportVectorizationFailure(
975 "nontemporal store instruction cannot be vectorized",
976 "nontemporal store instruction cannot be vectorized",
977 "CantVectorizeNontemporalStore", ORE
, TheLoop
, ST
);
982 } else if (auto *LD
= dyn_cast
<LoadInst
>(&I
)) {
983 if (LD
->getMetadata(LLVMContext::MD_nontemporal
)) {
984 // For nontemporal loads, check that a nontemporal vector version is
985 // supported on the target (arbitrarily try a vector of 2 elements).
986 auto *VecTy
= FixedVectorType::get(I
.getType(), /*NumElts=*/2);
987 assert(VecTy
&& "did not find vectorized version of load type");
988 if (!TTI
->isLegalNTLoad(VecTy
, LD
->getAlign())) {
989 reportVectorizationFailure(
990 "nontemporal load instruction cannot be vectorized",
991 "nontemporal load instruction cannot be vectorized",
992 "CantVectorizeNontemporalLoad", ORE
, TheLoop
, LD
);
997 // FP instructions can allow unsafe algebra, thus vectorizable by
998 // non-IEEE-754 compliant SIMD units.
999 // This applies to floating-point math operations and calls, not memory
1000 // operations, shuffles, or casts, as they don't change precision or
1002 } else if (I
.getType()->isFloatingPointTy() && (CI
|| I
.isBinaryOp()) &&
1004 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
1005 Hints
->setPotentiallyUnsafe();
1008 // Reduction instructions are allowed to have exit users.
1009 // All other instructions must not have external users.
1010 if (hasOutsideLoopUser(TheLoop
, &I
, AllowedExit
)) {
1011 // We can safely vectorize loops where instructions within the loop are
1012 // used outside the loop only if the SCEV predicates within the loop is
1013 // same as outside the loop. Allowing the exit means reusing the SCEV
1014 // outside the loop.
1015 if (PSE
.getPredicate().isAlwaysTrue()) {
1016 AllowedExit
.insert(&I
);
1019 reportVectorizationFailure("Value cannot be used outside the loop",
1020 "value cannot be used outside the loop",
1021 "ValueUsedOutsideLoop", ORE
, TheLoop
, &I
);
1027 if (!PrimaryInduction
) {
1028 if (Inductions
.empty()) {
1029 reportVectorizationFailure("Did not find one integer induction var",
1030 "loop induction variable could not be identified",
1031 "NoInductionVariable", ORE
, TheLoop
);
1033 } else if (!WidestIndTy
) {
1034 reportVectorizationFailure("Did not find one integer induction var",
1035 "integer loop induction variable could not be identified",
1036 "NoIntegerInductionVariable", ORE
, TheLoop
);
1039 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
1043 // Now we know the widest induction type, check if our found induction
1044 // is the same size. If it's not, unset it here and InnerLoopVectorizer
1045 // will create another.
1046 if (PrimaryInduction
&& WidestIndTy
!= PrimaryInduction
->getType())
1047 PrimaryInduction
= nullptr;
1052 bool LoopVectorizationLegality::canVectorizeMemory() {
1053 LAI
= &LAIs
.getInfo(*TheLoop
);
1054 const OptimizationRemarkAnalysis
*LAR
= LAI
->getReport();
1057 return OptimizationRemarkAnalysis(Hints
->vectorizeAnalysisPassName(),
1058 "loop not vectorized: ", *LAR
);
1062 if (!LAI
->canVectorizeMemory())
1065 // We can vectorize stores to invariant address when final reduction value is
1066 // guaranteed to be stored at the end of the loop. Also, if decision to
1067 // vectorize loop is made, runtime checks are added so as to make sure that
1068 // invariant address won't alias with any other objects.
1069 if (!LAI
->getStoresToInvariantAddresses().empty()) {
1070 // For each invariant address, check if last stored value is unconditional
1071 // and the address is not calculated inside the loop.
1072 for (StoreInst
*SI
: LAI
->getStoresToInvariantAddresses()) {
1073 if (!isInvariantStoreOfReduction(SI
))
1076 if (blockNeedsPredication(SI
->getParent())) {
1077 reportVectorizationFailure(
1078 "We don't allow storing to uniform addresses",
1079 "write of conditional recurring variant value to a loop "
1080 "invariant address could not be vectorized",
1081 "CantVectorizeStoreToLoopInvariantAddress", ORE
, TheLoop
);
1085 // Invariant address should be defined outside of loop. LICM pass usually
1086 // makes sure it happens, but in rare cases it does not, we do not want
1087 // to overcomplicate vectorization to support this case.
1088 if (Instruction
*Ptr
= dyn_cast
<Instruction
>(SI
->getPointerOperand())) {
1089 if (TheLoop
->contains(Ptr
)) {
1090 reportVectorizationFailure(
1091 "Invariant address is calculated inside the loop",
1092 "write to a loop invariant address could not "
1094 "CantVectorizeStoreToLoopInvariantAddress", ORE
, TheLoop
);
1100 if (LAI
->hasDependenceInvolvingLoopInvariantAddress()) {
1101 // For each invariant address, check its last stored value is the result
1102 // of one of our reductions.
1104 // We do not check if dependence with loads exists because they are
1105 // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this
1106 // behaviour changes we have to modify this code.
1107 ScalarEvolution
*SE
= PSE
.getSE();
1108 SmallVector
<StoreInst
*, 4> UnhandledStores
;
1109 for (StoreInst
*SI
: LAI
->getStoresToInvariantAddresses()) {
1110 if (isInvariantStoreOfReduction(SI
)) {
1111 // Earlier stores to this address are effectively deadcode.
1112 // With opaque pointers it is possible for one pointer to be used with
1113 // different sizes of stored values:
1114 // store i32 0, ptr %x
1115 // store i8 0, ptr %x
1116 // The latest store doesn't complitely overwrite the first one in the
1117 // example. That is why we have to make sure that types of stored
1119 // TODO: Check that bitwidth of unhandled store is smaller then the
1120 // one that overwrites it and add a test.
1121 erase_if(UnhandledStores
, [SE
, SI
](StoreInst
*I
) {
1122 return storeToSameAddress(SE
, SI
, I
) &&
1123 I
->getValueOperand()->getType() ==
1124 SI
->getValueOperand()->getType();
1128 UnhandledStores
.push_back(SI
);
1131 bool IsOK
= UnhandledStores
.empty();
1132 // TODO: we should also validate against InvariantMemSets.
1134 reportVectorizationFailure(
1135 "We don't allow storing to uniform addresses",
1136 "write to a loop invariant address could not "
1138 "CantVectorizeStoreToLoopInvariantAddress", ORE
, TheLoop
);
1144 PSE
.addPredicate(LAI
->getPSE().getPredicate());
1148 bool LoopVectorizationLegality::canVectorizeFPMath(
1149 bool EnableStrictReductions
) {
1151 // First check if there is any ExactFP math or if we allow reassociations
1152 if (!Requirements
->getExactFPInst() || Hints
->allowReordering())
1155 // If the above is false, we have ExactFPMath & do not allow reordering.
1156 // If the EnableStrictReductions flag is set, first check if we have any
1157 // Exact FP induction vars, which we cannot vectorize.
1158 if (!EnableStrictReductions
||
1159 any_of(getInductionVars(), [&](auto &Induction
) -> bool {
1160 InductionDescriptor IndDesc
= Induction
.second
;
1161 return IndDesc
.getExactFPMathInst();
1165 // We can now only vectorize if all reductions with Exact FP math also
1166 // have the isOrdered flag set, which indicates that we can move the
1167 // reduction operations in-loop.
1168 return (all_of(getReductionVars(), [&](auto &Reduction
) -> bool {
1169 const RecurrenceDescriptor
&RdxDesc
= Reduction
.second
;
1170 return !RdxDesc
.hasExactFPMath() || RdxDesc
.isOrdered();
1174 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst
*SI
) {
1175 return any_of(getReductionVars(), [&](auto &Reduction
) -> bool {
1176 const RecurrenceDescriptor
&RdxDesc
= Reduction
.second
;
1177 return RdxDesc
.IntermediateStore
== SI
;
1181 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value
*V
) {
1182 return any_of(getReductionVars(), [&](auto &Reduction
) -> bool {
1183 const RecurrenceDescriptor
&RdxDesc
= Reduction
.second
;
1184 if (!RdxDesc
.IntermediateStore
)
1187 ScalarEvolution
*SE
= PSE
.getSE();
1188 Value
*InvariantAddress
= RdxDesc
.IntermediateStore
->getPointerOperand();
1189 return V
== InvariantAddress
||
1190 SE
->getSCEV(V
) == SE
->getSCEV(InvariantAddress
);
1194 bool LoopVectorizationLegality::isInductionPhi(const Value
*V
) const {
1195 Value
*In0
= const_cast<Value
*>(V
);
1196 PHINode
*PN
= dyn_cast_or_null
<PHINode
>(In0
);
1200 return Inductions
.count(PN
);
1203 const InductionDescriptor
*
1204 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode
*Phi
) const {
1205 if (!isInductionPhi(Phi
))
1207 auto &ID
= getInductionVars().find(Phi
)->second
;
1208 if (ID
.getKind() == InductionDescriptor::IK_IntInduction
||
1209 ID
.getKind() == InductionDescriptor::IK_FpInduction
)
1214 const InductionDescriptor
*
1215 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode
*Phi
) const {
1216 if (!isInductionPhi(Phi
))
1218 auto &ID
= getInductionVars().find(Phi
)->second
;
1219 if (ID
.getKind() == InductionDescriptor::IK_PtrInduction
)
1224 bool LoopVectorizationLegality::isCastedInductionVariable(
1225 const Value
*V
) const {
1226 auto *Inst
= dyn_cast
<Instruction
>(V
);
1227 return (Inst
&& InductionCastsToIgnore
.count(Inst
));
1230 bool LoopVectorizationLegality::isInductionVariable(const Value
*V
) const {
1231 return isInductionPhi(V
) || isCastedInductionVariable(V
);
1234 bool LoopVectorizationLegality::isFixedOrderRecurrence(
1235 const PHINode
*Phi
) const {
1236 return FixedOrderRecurrences
.count(Phi
);
1239 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock
*BB
) const {
1240 return LoopAccessInfo::blockNeedsPredication(BB
, TheLoop
, DT
);
1243 bool LoopVectorizationLegality::blockCanBePredicated(
1244 BasicBlock
*BB
, SmallPtrSetImpl
<Value
*> &SafePtrs
,
1245 SmallPtrSetImpl
<const Instruction
*> &MaskedOp
) const {
1246 for (Instruction
&I
: *BB
) {
1247 // We can predicate blocks with calls to assume, as long as we drop them in
1248 // case we flatten the CFG via predication.
1249 if (match(&I
, m_Intrinsic
<Intrinsic::assume
>())) {
1250 MaskedOp
.insert(&I
);
1254 // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1255 // TODO: there might be cases that it should block the vectorization. Let's
1256 // ignore those for now.
1257 if (isa
<NoAliasScopeDeclInst
>(&I
))
1260 // We can allow masked calls if there's at least one vector variant, even
1261 // if we end up scalarizing due to the cost model calculations.
1262 // TODO: Allow other calls if they have appropriate attributes... readonly
1264 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
1265 if (VFDatabase::hasMaskedVariant(*CI
)) {
1266 MaskedOp
.insert(CI
);
1270 // Loads are handled via masking (or speculated if safe to do so.)
1271 if (auto *LI
= dyn_cast
<LoadInst
>(&I
)) {
1272 if (!SafePtrs
.count(LI
->getPointerOperand()))
1273 MaskedOp
.insert(LI
);
1277 // Predicated store requires some form of masking:
1278 // 1) masked store HW instruction,
1279 // 2) emulation via load-blend-store (only if safe and legal to do so,
1280 // be aware on the race conditions), or
1281 // 3) element-by-element predicate check and scalar store.
1282 if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
1283 MaskedOp
.insert(SI
);
1287 if (I
.mayReadFromMemory() || I
.mayWriteToMemory() || I
.mayThrow())
1294 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1295 if (!EnableIfConversion
) {
1296 reportVectorizationFailure("If-conversion is disabled",
1297 "if-conversion is disabled",
1298 "IfConversionDisabled",
1303 assert(TheLoop
->getNumBlocks() > 1 && "Single block loops are vectorizable");
1305 // A list of pointers which are known to be dereferenceable within scope of
1306 // the loop body for each iteration of the loop which executes. That is,
1307 // the memory pointed to can be dereferenced (with the access size implied by
1308 // the value's type) unconditionally within the loop header without
1309 // introducing a new fault.
1310 SmallPtrSet
<Value
*, 8> SafePointers
;
1312 // Collect safe addresses.
1313 for (BasicBlock
*BB
: TheLoop
->blocks()) {
1314 if (!blockNeedsPredication(BB
)) {
1315 for (Instruction
&I
: *BB
)
1316 if (auto *Ptr
= getLoadStorePointerOperand(&I
))
1317 SafePointers
.insert(Ptr
);
1321 // For a block which requires predication, a address may be safe to access
1322 // in the loop w/o predication if we can prove dereferenceability facts
1323 // sufficient to ensure it'll never fault within the loop. For the moment,
1324 // we restrict this to loads; stores are more complicated due to
1325 // concurrency restrictions.
1326 ScalarEvolution
&SE
= *PSE
.getSE();
1327 for (Instruction
&I
: *BB
) {
1328 LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
);
1329 if (LI
&& !LI
->getType()->isVectorTy() && !mustSuppressSpeculation(*LI
) &&
1330 isDereferenceableAndAlignedInLoop(LI
, TheLoop
, SE
, *DT
, AC
))
1331 SafePointers
.insert(LI
->getPointerOperand());
1335 // Collect the blocks that need predication.
1336 for (BasicBlock
*BB
: TheLoop
->blocks()) {
1337 // We don't support switch statements inside loops.
1338 if (!isa
<BranchInst
>(BB
->getTerminator())) {
1339 reportVectorizationFailure("Loop contains a switch statement",
1340 "loop contains a switch statement",
1341 "LoopContainsSwitch", ORE
, TheLoop
,
1342 BB
->getTerminator());
1346 // We must be able to predicate all blocks that need to be predicated.
1347 if (blockNeedsPredication(BB
) &&
1348 !blockCanBePredicated(BB
, SafePointers
, MaskedOp
)) {
1349 reportVectorizationFailure(
1350 "Control flow cannot be substituted for a select",
1351 "control flow cannot be substituted for a select", "NoCFGForSelect",
1352 ORE
, TheLoop
, BB
->getTerminator());
1357 // We can if-convert this loop.
1361 // Helper function to canVectorizeLoopNestCFG.
1362 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop
*Lp
,
1363 bool UseVPlanNativePath
) {
1364 assert((UseVPlanNativePath
|| Lp
->isInnermost()) &&
1365 "VPlan-native path is not enabled.");
1367 // TODO: ORE should be improved to show more accurate information when an
1368 // outer loop can't be vectorized because a nested loop is not understood or
1369 // legal. Something like: "outer_loop_location: loop not vectorized:
1370 // (inner_loop_location) loop control flow is not understood by vectorizer".
1372 // Store the result and return it at the end instead of exiting early, in case
1373 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1375 bool DoExtraAnalysis
= ORE
->allowExtraAnalysis(DEBUG_TYPE
);
1377 // We must have a loop in canonical form. Loops with indirectbr in them cannot
1378 // be canonicalized.
1379 if (!Lp
->getLoopPreheader()) {
1380 reportVectorizationFailure("Loop doesn't have a legal pre-header",
1381 "loop control flow is not understood by vectorizer",
1382 "CFGNotUnderstood", ORE
, TheLoop
);
1383 if (DoExtraAnalysis
)
1389 // We must have a single backedge.
1390 if (Lp
->getNumBackEdges() != 1) {
1391 reportVectorizationFailure("The loop must have a single backedge",
1392 "loop control flow is not understood by vectorizer",
1393 "CFGNotUnderstood", ORE
, TheLoop
);
1394 if (DoExtraAnalysis
)
1403 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1404 Loop
*Lp
, bool UseVPlanNativePath
) {
1405 // Store the result and return it at the end instead of exiting early, in case
1406 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1408 bool DoExtraAnalysis
= ORE
->allowExtraAnalysis(DEBUG_TYPE
);
1409 if (!canVectorizeLoopCFG(Lp
, UseVPlanNativePath
)) {
1410 if (DoExtraAnalysis
)
1416 // Recursively check whether the loop control flow of nested loops is
1418 for (Loop
*SubLp
: *Lp
)
1419 if (!canVectorizeLoopNestCFG(SubLp
, UseVPlanNativePath
)) {
1420 if (DoExtraAnalysis
)
1429 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath
) {
1430 // Store the result and return it at the end instead of exiting early, in case
1431 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1434 bool DoExtraAnalysis
= ORE
->allowExtraAnalysis(DEBUG_TYPE
);
1435 // Check whether the loop-related control flow in the loop nest is expected by
1437 if (!canVectorizeLoopNestCFG(TheLoop
, UseVPlanNativePath
)) {
1438 if (DoExtraAnalysis
)
1444 // We need to have a loop header.
1445 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop
->getHeader()->getName()
1448 // Specific checks for outer loops. We skip the remaining legal checks at this
1449 // point because they don't support outer loops.
1450 if (!TheLoop
->isInnermost()) {
1451 assert(UseVPlanNativePath
&& "VPlan-native path is not enabled.");
1453 if (!canVectorizeOuterLoop()) {
1454 reportVectorizationFailure("Unsupported outer loop",
1455 "unsupported outer loop",
1456 "UnsupportedOuterLoop",
1458 // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1463 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1467 assert(TheLoop
->isInnermost() && "Inner loop expected.");
1468 // Check if we can if-convert non-single-bb loops.
1469 unsigned NumBlocks
= TheLoop
->getNumBlocks();
1470 if (NumBlocks
!= 1 && !canVectorizeWithIfConvert()) {
1471 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1472 if (DoExtraAnalysis
)
1478 // Check if we can vectorize the instructions and CFG in this loop.
1479 if (!canVectorizeInstrs()) {
1480 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1481 if (DoExtraAnalysis
)
1487 // Go over each instruction and look at memory deps.
1488 if (!canVectorizeMemory()) {
1489 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1490 if (DoExtraAnalysis
)
1496 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1497 << (LAI
->getRuntimePointerChecking()->Need
1498 ? " (with a runtime bound check)"
1502 unsigned SCEVThreshold
= VectorizeSCEVCheckThreshold
;
1503 if (Hints
->getForce() == LoopVectorizeHints::FK_Enabled
)
1504 SCEVThreshold
= PragmaVectorizeSCEVCheckThreshold
;
1506 if (PSE
.getPredicate().getComplexity() > SCEVThreshold
) {
1507 reportVectorizationFailure("Too many SCEV checks needed",
1508 "Too many SCEV assumptions need to be made and checked at runtime",
1509 "TooManySCEVRunTimeChecks", ORE
, TheLoop
);
1510 if (DoExtraAnalysis
)
1516 // Okay! We've done all the tests. If any have failed, return false. Otherwise
1517 // we can vectorize, and at this point we don't have any other mem analysis
1518 // which may limit our maximum vectorization factor, so just return true with
1523 bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1525 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1527 SmallPtrSet
<const Value
*, 8> ReductionLiveOuts
;
1529 for (const auto &Reduction
: getReductionVars())
1530 ReductionLiveOuts
.insert(Reduction
.second
.getLoopExitInstr());
1532 // TODO: handle non-reduction outside users when tail is folded by masking.
1533 for (auto *AE
: AllowedExit
) {
1534 // Check that all users of allowed exit values are inside the loop or
1535 // are the live-out of a reduction.
1536 if (ReductionLiveOuts
.count(AE
))
1538 for (User
*U
: AE
->users()) {
1539 Instruction
*UI
= cast
<Instruction
>(U
);
1540 if (TheLoop
->contains(UI
))
1544 << "LV: Cannot fold tail by masking, loop has an outside user for "
1550 // The list of pointers that we can safely read and write to remains empty.
1551 SmallPtrSet
<Value
*, 8> SafePointers
;
1553 // Collect masked ops in temporary set first to avoid partially populating
1554 // MaskedOp if a block cannot be predicated.
1555 SmallPtrSet
<const Instruction
*, 8> TmpMaskedOp
;
1557 // Check and mark all blocks for predication, including those that ordinarily
1558 // do not need predication such as the header block.
1559 for (BasicBlock
*BB
: TheLoop
->blocks()) {
1560 if (!blockCanBePredicated(BB
, SafePointers
, TmpMaskedOp
)) {
1561 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1566 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1568 MaskedOp
.insert(TmpMaskedOp
.begin(), TmpMaskedOp
.end());