Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / tools / llvm-exegesis / lib / SchedClassResolution.cpp
blob08fd7184068c3b9402a816712a03e41fd2e4120b
1 //===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "SchedClassResolution.h"
10 #include "BenchmarkResult.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/MC/MCAsmInfo.h"
13 #include "llvm/MCA/Support.h"
14 #include "llvm/Support/FormatVariadic.h"
15 #include <limits>
16 #include <unordered_set>
17 #include <vector>
19 namespace llvm {
20 namespace exegesis {
22 // Return the non-redundant list of WriteProcRes used by the given sched class.
23 // The scheduling model for LLVM is such that each instruction has a certain
24 // number of uops which consume resources which are described by WriteProcRes
25 // entries. Each entry describe how many cycles are spent on a specific ProcRes
26 // kind.
27 // For example, an instruction might have 3 uOps, one dispatching on P0
28 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
29 // Note that LLVM additionally denormalizes resource consumption to include
30 // usage of super resources by subresources. So in practice if there exists a
31 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
32 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
33 // by P06 are also consumed by P016. In the figure below, parenthesized cycles
34 // denote implied usage of superresources by subresources:
35 // P0 P06 P016
36 // uOp1 1 (1) (1)
37 // uOp2 1 (1)
38 // uOp3 1 (1)
39 // =============================
40 // 1 3 3
41 // Eventually we end up with three entries for the WriteProcRes of the
42 // instruction:
43 // {ProcResIdx=1, Cycles=1} // P0
44 // {ProcResIdx=7, Cycles=3} // P06
45 // {ProcResIdx=10, Cycles=3} // P016
47 // Note that in this case, P016 does not contribute any cycles, so it would
48 // be removed by this function.
49 // FIXME: Merge this with the equivalent in llvm-mca.
50 static SmallVector<MCWriteProcResEntry, 8>
51 getNonRedundantWriteProcRes(const MCSchedClassDesc &SCDesc,
52 const MCSubtargetInfo &STI) {
53 SmallVector<MCWriteProcResEntry, 8> Result;
54 const auto &SM = STI.getSchedModel();
55 const unsigned NumProcRes = SM.getNumProcResourceKinds();
57 // Collect resource masks.
58 SmallVector<uint64_t> ProcResourceMasks(NumProcRes);
59 mca::computeProcResourceMasks(SM, ProcResourceMasks);
61 // Sort entries by smaller resources for (basic) topological ordering.
62 using ResourceMaskAndEntry = std::pair<uint64_t, const MCWriteProcResEntry *>;
63 SmallVector<ResourceMaskAndEntry, 8> ResourceMaskAndEntries;
64 for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
65 *const WPREnd = STI.getWriteProcResEnd(&SCDesc);
66 WPR != WPREnd; ++WPR) {
67 uint64_t Mask = ProcResourceMasks[WPR->ProcResourceIdx];
68 ResourceMaskAndEntries.push_back({Mask, WPR});
70 sort(ResourceMaskAndEntries,
71 [](const ResourceMaskAndEntry &A, const ResourceMaskAndEntry &B) {
72 unsigned popcntA = llvm::popcount(A.first);
73 unsigned popcntB = llvm::popcount(B.first);
74 if (popcntA < popcntB)
75 return true;
76 if (popcntA > popcntB)
77 return false;
78 return A.first < B.first;
79 });
81 SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
82 for (const ResourceMaskAndEntry &Entry : ResourceMaskAndEntries) {
83 const MCWriteProcResEntry *WPR = Entry.second;
84 const MCProcResourceDesc *const ProcResDesc =
85 SM.getProcResource(WPR->ProcResourceIdx);
86 // TODO: Handle AcquireAtAtCycle in llvm-exegesis and llvm-mca. See
87 // https://github.com/llvm/llvm-project/issues/62680 and
88 // https://github.com/llvm/llvm-project/issues/62681
89 assert(WPR->AcquireAtCycle == 0 &&
90 "`llvm-exegesis` does not handle AcquireAtCycle > 0");
91 if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
92 // This is a ProcResUnit.
93 Result.push_back(
94 {WPR->ProcResourceIdx, WPR->ReleaseAtCycle, WPR->AcquireAtCycle});
95 ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->ReleaseAtCycle;
96 } else {
97 // This is a ProcResGroup. First see if it contributes any cycles or if
98 // it has cycles just from subunits.
99 float RemainingCycles = WPR->ReleaseAtCycle;
100 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
101 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
102 ++SubResIdx) {
103 RemainingCycles -= ProcResUnitUsage[*SubResIdx];
105 if (RemainingCycles < 0.01f) {
106 // The ProcResGroup contributes no cycles of its own.
107 continue;
109 // The ProcResGroup contributes `RemainingCycles` cycles of its own.
110 Result.push_back({WPR->ProcResourceIdx,
111 static_cast<uint16_t>(std::round(RemainingCycles)),
112 WPR->AcquireAtCycle});
113 // Spread the remaining cycles over all subunits.
114 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
115 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
116 ++SubResIdx) {
117 ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
121 return Result;
124 // Distributes a pressure budget as evenly as possible on the provided subunits
125 // given the already existing port pressure distribution.
127 // The algorithm is as follows: while there is remaining pressure to
128 // distribute, find the subunits with minimal pressure, and distribute
129 // remaining pressure equally up to the pressure of the unit with
130 // second-to-minimal pressure.
131 // For example, let's assume we want to distribute 2*P1256
132 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
133 // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
134 // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
135 // RemainingPressure = 2.0
136 // We sort the subunits by pressure:
137 // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
138 // We'll first start by the subunits with minimal pressure, which are at
139 // the beginning of the sorted array. In this example there is one (P2).
140 // The subunit with second-to-minimal pressure is the next one in the
141 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
142 // from the budget.
143 // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
144 // RemainingPressure = 1.9
145 // We repeat this process: distribute 0.2 pressure on each of the minimal
146 // P2 and P1, decrease budget by 2*0.2:
147 // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
148 // RemainingPressure = 1.5
149 // There are no second-to-minimal subunits so we just share the remaining
150 // budget (1.5 cycles) equally:
151 // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
152 // RemainingPressure = 0.0
153 // We stop as there is no remaining budget to distribute.
154 static void distributePressure(float RemainingPressure,
155 SmallVector<uint16_t, 32> Subunits,
156 SmallVector<float, 32> &DensePressure) {
157 // Find the number of subunits with minimal pressure (they are at the
158 // front).
159 sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
160 return DensePressure[A] < DensePressure[B];
162 const auto getPressureForSubunit = [&DensePressure,
163 &Subunits](size_t I) -> float & {
164 return DensePressure[Subunits[I]];
166 size_t NumMinimalSU = 1;
167 while (NumMinimalSU < Subunits.size() &&
168 getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
169 ++NumMinimalSU;
171 while (RemainingPressure > 0.0f) {
172 if (NumMinimalSU == Subunits.size()) {
173 // All units are minimal, just distribute evenly and be done.
174 for (size_t I = 0; I < NumMinimalSU; ++I) {
175 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
177 return;
179 // Distribute the remaining pressure equally.
180 const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
181 const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
182 assert(MinimalPressure < SecondToMinimalPressure);
183 const float Increment = SecondToMinimalPressure - MinimalPressure;
184 if (RemainingPressure <= NumMinimalSU * Increment) {
185 // There is not enough remaining pressure.
186 for (size_t I = 0; I < NumMinimalSU; ++I) {
187 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
189 return;
191 // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
192 for (size_t I = 0; I < NumMinimalSU; ++I) {
193 getPressureForSubunit(I) = SecondToMinimalPressure;
194 RemainingPressure -= SecondToMinimalPressure;
196 while (NumMinimalSU < Subunits.size() &&
197 getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
198 ++NumMinimalSU;
203 std::vector<std::pair<uint16_t, float>>
204 computeIdealizedProcResPressure(const MCSchedModel &SM,
205 SmallVector<MCWriteProcResEntry, 8> WPRS) {
206 // DensePressure[I] is the port pressure for Proc Resource I.
207 SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
208 sort(WPRS, [](const MCWriteProcResEntry &A, const MCWriteProcResEntry &B) {
209 return A.ProcResourceIdx < B.ProcResourceIdx;
211 for (const MCWriteProcResEntry &WPR : WPRS) {
212 // Get units for the entry.
213 const MCProcResourceDesc *const ProcResDesc =
214 SM.getProcResource(WPR.ProcResourceIdx);
215 if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
216 // This is a ProcResUnit.
217 DensePressure[WPR.ProcResourceIdx] += WPR.ReleaseAtCycle;
218 } else {
219 // This is a ProcResGroup.
220 SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
221 ProcResDesc->SubUnitsIdxBegin +
222 ProcResDesc->NumUnits);
223 distributePressure(WPR.ReleaseAtCycle, Subunits, DensePressure);
226 // Turn dense pressure into sparse pressure by removing zero entries.
227 std::vector<std::pair<uint16_t, float>> Pressure;
228 for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
229 if (DensePressure[I] > 0.0f)
230 Pressure.emplace_back(I, DensePressure[I]);
232 return Pressure;
235 ResolvedSchedClass::ResolvedSchedClass(const MCSubtargetInfo &STI,
236 unsigned ResolvedSchedClassId,
237 bool WasVariant)
238 : SchedClassId(ResolvedSchedClassId),
239 SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
240 WasVariant(WasVariant),
241 NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
242 IdealizedProcResPressure(computeIdealizedProcResPressure(
243 STI.getSchedModel(), NonRedundantWriteProcRes)) {
244 assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
245 "ResolvedSchedClass should never be variant");
248 static unsigned ResolveVariantSchedClassId(const MCSubtargetInfo &STI,
249 const MCInstrInfo &InstrInfo,
250 unsigned SchedClassId,
251 const MCInst &MCI) {
252 const auto &SM = STI.getSchedModel();
253 while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant()) {
254 SchedClassId = STI.resolveVariantSchedClass(SchedClassId, &MCI, &InstrInfo,
255 SM.getProcessorID());
257 return SchedClassId;
260 std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/>
261 ResolvedSchedClass::resolveSchedClassId(const MCSubtargetInfo &SubtargetInfo,
262 const MCInstrInfo &InstrInfo,
263 const MCInst &MCI) {
264 unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass();
265 const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel()
266 .getSchedClassDesc(SchedClassId)
267 ->isVariant();
268 SchedClassId =
269 ResolveVariantSchedClassId(SubtargetInfo, InstrInfo, SchedClassId, MCI);
270 return std::make_pair(SchedClassId, WasVariant);
273 // Returns a ProxResIdx by id or name.
274 static unsigned findProcResIdx(const MCSubtargetInfo &STI,
275 const StringRef NameOrId) {
276 // Interpret the key as an ProcResIdx.
277 unsigned ProcResIdx = 0;
278 if (to_integer(NameOrId, ProcResIdx, 10))
279 return ProcResIdx;
280 // Interpret the key as a ProcRes name.
281 const auto &SchedModel = STI.getSchedModel();
282 for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) {
283 if (NameOrId == SchedModel.getProcResource(I)->Name)
284 return I;
286 return 0;
289 std::vector<BenchmarkMeasure> ResolvedSchedClass::getAsPoint(
290 Benchmark::ModeE Mode, const MCSubtargetInfo &STI,
291 ArrayRef<PerInstructionStats> Representative) const {
292 const size_t NumMeasurements = Representative.size();
294 std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements);
296 if (Mode == Benchmark::Latency) {
297 assert(NumMeasurements == 1 && "Latency is a single measure.");
298 BenchmarkMeasure &LatencyMeasure = SchedClassPoint[0];
300 // Find the latency.
301 LatencyMeasure.PerInstructionValue = 0.0;
303 for (unsigned I = 0; I < SCDesc->NumWriteLatencyEntries; ++I) {
304 const MCWriteLatencyEntry *const WLE =
305 STI.getWriteLatencyEntry(SCDesc, I);
306 LatencyMeasure.PerInstructionValue =
307 std::max<double>(LatencyMeasure.PerInstructionValue, WLE->Cycles);
309 } else if (Mode == Benchmark::Uops) {
310 for (auto I : zip(SchedClassPoint, Representative)) {
311 BenchmarkMeasure &Measure = std::get<0>(I);
312 const PerInstructionStats &Stats = std::get<1>(I);
314 StringRef Key = Stats.key();
315 uint16_t ProcResIdx = findProcResIdx(STI, Key);
316 if (ProcResIdx > 0) {
317 // Find the pressure on ProcResIdx `Key`.
318 const auto ProcResPressureIt =
319 llvm::find_if(IdealizedProcResPressure,
320 [ProcResIdx](const std::pair<uint16_t, float> &WPR) {
321 return WPR.first == ProcResIdx;
323 Measure.PerInstructionValue =
324 ProcResPressureIt == IdealizedProcResPressure.end()
325 ? 0.0
326 : ProcResPressureIt->second;
327 } else if (Key == "NumMicroOps") {
328 Measure.PerInstructionValue = SCDesc->NumMicroOps;
329 } else {
330 errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
331 "name, got "
332 << Key << "\n";
333 return {};
336 } else if (Mode == Benchmark::InverseThroughput) {
337 assert(NumMeasurements == 1 && "Inverse Throughput is a single measure.");
338 BenchmarkMeasure &RThroughputMeasure = SchedClassPoint[0];
340 RThroughputMeasure.PerInstructionValue =
341 MCSchedModel::getReciprocalThroughput(STI, *SCDesc);
342 } else {
343 llvm_unreachable("unimplemented measurement matching mode");
346 return SchedClassPoint;
349 } // namespace exegesis
350 } // namespace llvm