Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / utils / TableGen / SubtargetEmitter.cpp
blobf7a7172d61fc618b809e916877ece1e3477baaec
1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits subtarget enumerations.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenHwModes.h"
14 #include "CodeGenSchedule.h"
15 #include "CodeGenTarget.h"
16 #include "PredicateExpander.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/MC/MCInstrItineraries.h"
22 #include "llvm/MC/MCSchedule.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include "llvm/TableGen/TableGenBackend.h"
29 #include "llvm/TargetParser/SubtargetFeature.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <iterator>
34 #include <map>
35 #include <string>
36 #include <vector>
38 using namespace llvm;
40 #define DEBUG_TYPE "subtarget-emitter"
42 namespace {
44 /// Sorting predicate to sort record pointers by their
45 /// FieldName field.
46 struct LessRecordFieldFieldName {
47 bool operator()(const Record *Rec1, const Record *Rec2) const {
48 return Rec1->getValueAsString("FieldName") <
49 Rec2->getValueAsString("FieldName");
53 class SubtargetEmitter {
54 // Each processor has a SchedClassDesc table with an entry for each SchedClass.
55 // The SchedClassDesc table indexes into a global write resource table, write
56 // latency table, and read advance table.
57 struct SchedClassTables {
58 std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses;
59 std::vector<MCWriteProcResEntry> WriteProcResources;
60 std::vector<MCWriteLatencyEntry> WriteLatencies;
61 std::vector<std::string> WriterNames;
62 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
64 // Reserve an invalid entry at index 0
65 SchedClassTables() {
66 ProcSchedClasses.resize(1);
67 WriteProcResources.resize(1);
68 WriteLatencies.resize(1);
69 WriterNames.push_back("InvalidWrite");
70 ReadAdvanceEntries.resize(1);
74 struct LessWriteProcResources {
75 bool operator()(const MCWriteProcResEntry &LHS,
76 const MCWriteProcResEntry &RHS) {
77 return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
81 CodeGenTarget TGT;
82 RecordKeeper &Records;
83 CodeGenSchedModels &SchedModels;
84 std::string Target;
86 void Enumeration(raw_ostream &OS, DenseMap<Record *, unsigned> &FeatureMap);
87 void EmitSubtargetInfoMacroCalls(raw_ostream &OS);
88 unsigned FeatureKeyValues(raw_ostream &OS,
89 const DenseMap<Record *, unsigned> &FeatureMap);
90 unsigned CPUKeyValues(raw_ostream &OS,
91 const DenseMap<Record *, unsigned> &FeatureMap);
92 void FormItineraryStageString(const std::string &Names,
93 Record *ItinData, std::string &ItinString,
94 unsigned &NStages);
95 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
96 unsigned &NOperandCycles);
97 void FormItineraryBypassString(const std::string &Names,
98 Record *ItinData,
99 std::string &ItinString, unsigned NOperandCycles);
100 void EmitStageAndOperandCycleData(raw_ostream &OS,
101 std::vector<std::vector<InstrItinerary>>
102 &ProcItinLists);
103 void EmitItineraries(raw_ostream &OS,
104 std::vector<std::vector<InstrItinerary>>
105 &ProcItinLists);
106 unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
107 raw_ostream &OS);
108 void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
109 raw_ostream &OS);
110 void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
111 raw_ostream &OS);
112 void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name,
113 char Separator);
114 void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel,
115 raw_ostream &OS);
116 void EmitProcessorResources(const CodeGenProcModel &ProcModel,
117 raw_ostream &OS);
118 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
119 const CodeGenProcModel &ProcModel);
120 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
121 const CodeGenProcModel &ProcModel);
122 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &ReleaseAtCycles,
123 std::vector<int64_t> &AcquireAtCycles,
124 const CodeGenProcModel &ProcModel);
125 void GenSchedClassTables(const CodeGenProcModel &ProcModel,
126 SchedClassTables &SchedTables);
127 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
128 void EmitProcessorModels(raw_ostream &OS);
129 void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
130 void emitSchedModelHelpersImpl(raw_ostream &OS,
131 bool OnlyExpandMCInstPredicates = false);
132 void emitGenMCSubtargetInfo(raw_ostream &OS);
133 void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS);
135 void EmitSchedModel(raw_ostream &OS);
136 void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS);
137 void ParseFeaturesFunction(raw_ostream &OS);
139 public:
140 SubtargetEmitter(RecordKeeper &R)
141 : TGT(R), Records(R), SchedModels(TGT.getSchedModels()),
142 Target(TGT.getName()) {}
144 void run(raw_ostream &o);
147 } // end anonymous namespace
150 // Enumeration - Emit the specified class as an enumeration.
152 void SubtargetEmitter::Enumeration(raw_ostream &OS,
153 DenseMap<Record *, unsigned> &FeatureMap) {
154 // Get all records of class and sort
155 std::vector<Record*> DefList =
156 Records.getAllDerivedDefinitions("SubtargetFeature");
157 llvm::sort(DefList, LessRecord());
159 unsigned N = DefList.size();
160 if (N == 0)
161 return;
162 if (N + 1 > MAX_SUBTARGET_FEATURES)
163 PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
165 OS << "namespace " << Target << " {\n";
167 // Open enumeration.
168 OS << "enum {\n";
170 // For each record
171 for (unsigned i = 0; i < N; ++i) {
172 // Next record
173 Record *Def = DefList[i];
175 // Get and emit name
176 OS << " " << Def->getName() << " = " << i << ",\n";
178 // Save the index for this feature.
179 FeatureMap[Def] = i;
182 OS << " "
183 << "NumSubtargetFeatures = " << N << "\n";
185 // Close enumeration and namespace
186 OS << "};\n";
187 OS << "} // end namespace " << Target << "\n";
190 static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList,
191 const DenseMap<Record *, unsigned> &FeatureMap) {
192 std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {};
193 for (const Record *Feature : FeatureList) {
194 unsigned Bit = FeatureMap.lookup(Feature);
195 Mask[Bit / 64] |= 1ULL << (Bit % 64);
198 OS << "{ { { ";
199 for (unsigned i = 0; i != Mask.size(); ++i) {
200 OS << "0x";
201 OS.write_hex(Mask[i]);
202 OS << "ULL, ";
204 OS << "} } }";
207 /// Emit some information about the SubtargetFeature as calls to a macro so
208 /// that they can be used from C++.
209 void SubtargetEmitter::EmitSubtargetInfoMacroCalls(raw_ostream &OS) {
210 OS << "\n#ifdef GET_SUBTARGETINFO_MACRO\n";
212 std::vector<Record *> FeatureList =
213 Records.getAllDerivedDefinitions("SubtargetFeature");
214 llvm::sort(FeatureList, LessRecordFieldFieldName());
216 for (const Record *Feature : FeatureList) {
217 const StringRef FieldName = Feature->getValueAsString("FieldName");
218 const StringRef Value = Feature->getValueAsString("Value");
220 // Only handle boolean features for now, excluding BitVectors and enums.
221 const bool IsBool = (Value == "false" || Value == "true") &&
222 !StringRef(FieldName).contains('[');
223 if (!IsBool)
224 continue;
226 // Some features default to true, with values set to false if enabled.
227 const char *Default = Value == "false" ? "true" : "false";
229 // Define the getter with lowercased first char: xxxYyy() { return XxxYyy; }
230 const std::string Getter =
231 FieldName.substr(0, 1).lower() + FieldName.substr(1).str();
233 OS << "GET_SUBTARGETINFO_MACRO(" << FieldName << ", " << Default << ", "
234 << Getter << ")\n";
236 OS << "#undef GET_SUBTARGETINFO_MACRO\n";
237 OS << "#endif // GET_SUBTARGETINFO_MACRO\n\n";
239 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
240 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
244 // FeatureKeyValues - Emit data of all the subtarget features. Used by the
245 // command line.
247 unsigned SubtargetEmitter::FeatureKeyValues(
248 raw_ostream &OS, const DenseMap<Record *, unsigned> &FeatureMap) {
249 // Gather and sort all the features
250 std::vector<Record*> FeatureList =
251 Records.getAllDerivedDefinitions("SubtargetFeature");
253 if (FeatureList.empty())
254 return 0;
256 llvm::sort(FeatureList, LessRecordFieldName());
258 // Begin feature table
259 OS << "// Sorted (by key) array of values for CPU features.\n"
260 << "extern const llvm::SubtargetFeatureKV " << Target
261 << "FeatureKV[] = {\n";
263 // For each feature
264 unsigned NumFeatures = 0;
265 for (const Record *Feature : FeatureList) {
266 // Next feature
267 StringRef Name = Feature->getName();
268 StringRef CommandLineName = Feature->getValueAsString("Name");
269 StringRef Desc = Feature->getValueAsString("Desc");
271 if (CommandLineName.empty()) continue;
273 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
274 OS << " { "
275 << "\"" << CommandLineName << "\", "
276 << "\"" << Desc << "\", "
277 << Target << "::" << Name << ", ";
279 RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
281 printFeatureMask(OS, ImpliesList, FeatureMap);
283 OS << " },\n";
284 ++NumFeatures;
287 // End feature table
288 OS << "};\n";
290 return NumFeatures;
294 // CPUKeyValues - Emit data of all the subtarget processors. Used by command
295 // line.
297 unsigned
298 SubtargetEmitter::CPUKeyValues(raw_ostream &OS,
299 const DenseMap<Record *, unsigned> &FeatureMap) {
300 // Gather and sort processor information
301 std::vector<Record*> ProcessorList =
302 Records.getAllDerivedDefinitions("Processor");
303 llvm::sort(ProcessorList, LessRecordFieldName());
305 // Begin processor table
306 OS << "// Sorted (by key) array of values for CPU subtype.\n"
307 << "extern const llvm::SubtargetSubTypeKV " << Target
308 << "SubTypeKV[] = {\n";
310 // For each processor
311 for (Record *Processor : ProcessorList) {
312 StringRef Name = Processor->getValueAsString("Name");
313 RecVec FeatureList = Processor->getValueAsListOfDefs("Features");
314 RecVec TuneFeatureList = Processor->getValueAsListOfDefs("TuneFeatures");
316 // Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } },
317 OS << " { "
318 << "\"" << Name << "\", ";
320 printFeatureMask(OS, FeatureList, FeatureMap);
321 OS << ", ";
322 printFeatureMask(OS, TuneFeatureList, FeatureMap);
324 // Emit the scheduler model pointer.
325 const std::string &ProcModelName =
326 SchedModels.getModelForProc(Processor).ModelName;
327 OS << ", &" << ProcModelName << " },\n";
330 // End processor table
331 OS << "};\n";
333 return ProcessorList.size();
337 // FormItineraryStageString - Compose a string containing the stage
338 // data initialization for the specified itinerary. N is the number
339 // of stages.
341 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
342 Record *ItinData,
343 std::string &ItinString,
344 unsigned &NStages) {
345 // Get states list
346 RecVec StageList = ItinData->getValueAsListOfDefs("Stages");
348 // For each stage
349 unsigned N = NStages = StageList.size();
350 for (unsigned i = 0; i < N;) {
351 // Next stage
352 const Record *Stage = StageList[i];
354 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
355 int Cycles = Stage->getValueAsInt("Cycles");
356 ItinString += " { " + itostr(Cycles) + ", ";
358 // Get unit list
359 RecVec UnitList = Stage->getValueAsListOfDefs("Units");
361 // For each unit
362 for (unsigned j = 0, M = UnitList.size(); j < M;) {
363 // Add name and bitwise or
364 ItinString += Name + "FU::" + UnitList[j]->getName().str();
365 if (++j < M) ItinString += " | ";
368 int TimeInc = Stage->getValueAsInt("TimeInc");
369 ItinString += ", " + itostr(TimeInc);
371 int Kind = Stage->getValueAsInt("Kind");
372 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
374 // Close off stage
375 ItinString += " }";
376 if (++i < N) ItinString += ", ";
381 // FormItineraryOperandCycleString - Compose a string containing the
382 // operand cycle initialization for the specified itinerary. N is the
383 // number of operands that has cycles specified.
385 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
386 std::string &ItinString, unsigned &NOperandCycles) {
387 // Get operand cycle list
388 std::vector<int64_t> OperandCycleList =
389 ItinData->getValueAsListOfInts("OperandCycles");
391 // For each operand cycle
392 NOperandCycles = OperandCycleList.size();
393 ListSeparator LS;
394 for (int OCycle : OperandCycleList) {
395 // Next operand cycle
396 ItinString += LS;
397 ItinString += " " + itostr(OCycle);
401 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
402 Record *ItinData,
403 std::string &ItinString,
404 unsigned NOperandCycles) {
405 RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses");
406 unsigned N = BypassList.size();
407 unsigned i = 0;
408 ListSeparator LS;
409 for (; i < N; ++i) {
410 ItinString += LS;
411 ItinString += Name + "Bypass::" + BypassList[i]->getName().str();
413 for (; i < NOperandCycles; ++i) {
414 ItinString += LS;
415 ItinString += " 0";
420 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
421 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
422 // by CodeGenSchedClass::Index.
424 void SubtargetEmitter::
425 EmitStageAndOperandCycleData(raw_ostream &OS,
426 std::vector<std::vector<InstrItinerary>>
427 &ProcItinLists) {
428 // Multiple processor models may share an itinerary record. Emit it once.
429 SmallPtrSet<Record*, 8> ItinsDefSet;
431 // Emit functional units for all the itineraries.
432 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
434 if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
435 continue;
437 RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
438 if (FUs.empty())
439 continue;
441 StringRef Name = ProcModel.ItinsDef->getName();
442 OS << "\n// Functional units for \"" << Name << "\"\n"
443 << "namespace " << Name << "FU {\n";
445 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
446 OS << " const InstrStage::FuncUnits " << FUs[j]->getName()
447 << " = 1ULL << " << j << ";\n";
449 OS << "} // end namespace " << Name << "FU\n";
451 RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
452 if (!BPs.empty()) {
453 OS << "\n// Pipeline forwarding paths for itineraries \"" << Name
454 << "\"\n" << "namespace " << Name << "Bypass {\n";
456 OS << " const unsigned NoBypass = 0;\n";
457 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
458 OS << " const unsigned " << BPs[j]->getName()
459 << " = 1 << " << j << ";\n";
461 OS << "} // end namespace " << Name << "Bypass\n";
465 // Begin stages table
466 std::string StageTable = "\nextern const llvm::InstrStage " + Target +
467 "Stages[] = {\n";
468 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
470 // Begin operand cycle table
471 std::string OperandCycleTable = "extern const unsigned " + Target +
472 "OperandCycles[] = {\n";
473 OperandCycleTable += " 0, // No itinerary\n";
475 // Begin pipeline bypass table
476 std::string BypassTable = "extern const unsigned " + Target +
477 "ForwardingPaths[] = {\n";
478 BypassTable += " 0, // No itinerary\n";
480 // For each Itinerary across all processors, add a unique entry to the stages,
481 // operand cycles, and pipeline bypass tables. Then add the new Itinerary
482 // object with computed offsets to the ProcItinLists result.
483 unsigned StageCount = 1, OperandCycleCount = 1;
484 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
485 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
486 // Add process itinerary to the list.
487 ProcItinLists.resize(ProcItinLists.size()+1);
489 // If this processor defines no itineraries, then leave the itinerary list
490 // empty.
491 std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
492 if (!ProcModel.hasItineraries())
493 continue;
495 StringRef Name = ProcModel.ItinsDef->getName();
497 ItinList.resize(SchedModels.numInstrSchedClasses());
498 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
500 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
501 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
503 // Next itinerary data
504 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
506 // Get string and stage count
507 std::string ItinStageString;
508 unsigned NStages = 0;
509 if (ItinData)
510 FormItineraryStageString(std::string(Name), ItinData, ItinStageString,
511 NStages);
513 // Get string and operand cycle count
514 std::string ItinOperandCycleString;
515 unsigned NOperandCycles = 0;
516 std::string ItinBypassString;
517 if (ItinData) {
518 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
519 NOperandCycles);
521 FormItineraryBypassString(std::string(Name), ItinData, ItinBypassString,
522 NOperandCycles);
525 // Check to see if stage already exists and create if it doesn't
526 uint16_t FindStage = 0;
527 if (NStages > 0) {
528 FindStage = ItinStageMap[ItinStageString];
529 if (FindStage == 0) {
530 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
531 StageTable += ItinStageString + ", // " + itostr(StageCount);
532 if (NStages > 1)
533 StageTable += "-" + itostr(StageCount + NStages - 1);
534 StageTable += "\n";
535 // Record Itin class number.
536 ItinStageMap[ItinStageString] = FindStage = StageCount;
537 StageCount += NStages;
541 // Check to see if operand cycle already exists and create if it doesn't
542 uint16_t FindOperandCycle = 0;
543 if (NOperandCycles > 0) {
544 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
545 FindOperandCycle = ItinOperandMap[ItinOperandString];
546 if (FindOperandCycle == 0) {
547 // Emit as cycle, // index
548 OperandCycleTable += ItinOperandCycleString + ", // ";
549 std::string OperandIdxComment = itostr(OperandCycleCount);
550 if (NOperandCycles > 1)
551 OperandIdxComment += "-"
552 + itostr(OperandCycleCount + NOperandCycles - 1);
553 OperandCycleTable += OperandIdxComment + "\n";
554 // Record Itin class number.
555 ItinOperandMap[ItinOperandCycleString] =
556 FindOperandCycle = OperandCycleCount;
557 // Emit as bypass, // index
558 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
559 OperandCycleCount += NOperandCycles;
563 // Set up itinerary as location and location + stage count
564 int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
565 InstrItinerary Intinerary = {
566 NumUOps,
567 FindStage,
568 uint16_t(FindStage + NStages),
569 FindOperandCycle,
570 uint16_t(FindOperandCycle + NOperandCycles),
573 // Inject - empty slots will be 0, 0
574 ItinList[SchedClassIdx] = Intinerary;
578 // Closing stage
579 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
580 StageTable += "};\n";
582 // Closing operand cycles
583 OperandCycleTable += " 0 // End operand cycles\n";
584 OperandCycleTable += "};\n";
586 BypassTable += " 0 // End bypass tables\n";
587 BypassTable += "};\n";
589 // Emit tables.
590 OS << StageTable;
591 OS << OperandCycleTable;
592 OS << BypassTable;
596 // EmitProcessorData - Generate data for processor itineraries that were
597 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
598 // Itineraries for each processor. The Itinerary lists are indexed on
599 // CodeGenSchedClass::Index.
601 void SubtargetEmitter::
602 EmitItineraries(raw_ostream &OS,
603 std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
604 // Multiple processor models may share an itinerary record. Emit it once.
605 SmallPtrSet<Record*, 8> ItinsDefSet;
607 // For each processor's machine model
608 std::vector<std::vector<InstrItinerary>>::iterator
609 ProcItinListsIter = ProcItinLists.begin();
610 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
611 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
613 Record *ItinsDef = PI->ItinsDef;
614 if (!ItinsDefSet.insert(ItinsDef).second)
615 continue;
617 // Get the itinerary list for the processor.
618 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
619 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
621 // Empty itineraries aren't referenced anywhere in the tablegen output
622 // so don't emit them.
623 if (ItinList.empty())
624 continue;
626 OS << "\n";
627 OS << "static const llvm::InstrItinerary ";
629 // Begin processor itinerary table
630 OS << ItinsDef->getName() << "[] = {\n";
632 // For each itinerary class in CodeGenSchedClass::Index order.
633 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
634 InstrItinerary &Intinerary = ItinList[j];
636 // Emit Itinerary in the form of
637 // { firstStage, lastStage, firstCycle, lastCycle } // index
638 OS << " { " <<
639 Intinerary.NumMicroOps << ", " <<
640 Intinerary.FirstStage << ", " <<
641 Intinerary.LastStage << ", " <<
642 Intinerary.FirstOperandCycle << ", " <<
643 Intinerary.LastOperandCycle << " }" <<
644 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
646 // End processor itinerary table
647 OS << " { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
648 "// end marker\n";
649 OS << "};\n";
653 // Emit either the value defined in the TableGen Record, or the default
654 // value defined in the C++ header. The Record is null if the processor does not
655 // define a model.
656 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
657 StringRef Name, char Separator) {
658 OS << " ";
659 int V = R ? R->getValueAsInt(Name) : -1;
660 if (V >= 0)
661 OS << V << Separator << " // " << Name;
662 else
663 OS << "MCSchedModel::Default" << Name << Separator;
664 OS << '\n';
667 void SubtargetEmitter::EmitProcessorResourceSubUnits(
668 const CodeGenProcModel &ProcModel, raw_ostream &OS) {
669 OS << "\nstatic const unsigned " << ProcModel.ModelName
670 << "ProcResourceSubUnits[] = {\n"
671 << " 0, // Invalid\n";
673 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
674 Record *PRDef = ProcModel.ProcResourceDefs[i];
675 if (!PRDef->isSubClassOf("ProcResGroup"))
676 continue;
677 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
678 for (Record *RUDef : ResUnits) {
679 Record *const RU =
680 SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc());
681 for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) {
682 OS << " " << ProcModel.getProcResourceIdx(RU) << ", ";
685 OS << " // " << PRDef->getName() << "\n";
687 OS << "};\n";
690 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
691 raw_ostream &OS) {
692 int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
693 if (Record *RCU = ProcModel.RetireControlUnit) {
694 ReorderBufferSize =
695 std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
696 MaxRetirePerCycle =
697 std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
700 OS << ReorderBufferSize << ", // ReorderBufferSize\n ";
701 OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n ";
704 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel,
705 unsigned NumRegisterFiles,
706 unsigned NumCostEntries, raw_ostream &OS) {
707 if (NumRegisterFiles)
708 OS << ProcModel.ModelName << "RegisterFiles,\n " << (1 + NumRegisterFiles);
709 else
710 OS << "nullptr,\n 0";
712 OS << ", // Number of register files.\n ";
713 if (NumCostEntries)
714 OS << ProcModel.ModelName << "RegisterCosts,\n ";
715 else
716 OS << "nullptr,\n ";
717 OS << NumCostEntries << ", // Number of register cost entries.\n";
720 unsigned
721 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
722 raw_ostream &OS) {
723 if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
724 return RF.hasDefaultCosts();
726 return 0;
728 // Print the RegisterCost table first.
729 OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n";
730 OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName
731 << "RegisterCosts"
732 << "[] = {\n";
734 for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) {
735 // Skip register files with a default cost table.
736 if (RF.hasDefaultCosts())
737 continue;
738 // Add entries to the cost table.
739 for (const CodeGenRegisterCost &RC : RF.Costs) {
740 OS << " { ";
741 Record *Rec = RC.RCDef;
742 if (Rec->getValue("Namespace"))
743 OS << Rec->getValueAsString("Namespace") << "::";
744 OS << Rec->getName() << "RegClassID, " << RC.Cost << ", "
745 << RC.AllowMoveElimination << "},\n";
748 OS << "};\n";
750 // Now generate a table with register file info.
751 OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, "
752 << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n";
753 OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName
754 << "RegisterFiles"
755 << "[] = {\n"
756 << " { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n";
757 unsigned CostTblIndex = 0;
759 for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) {
760 OS << " { ";
761 OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", ";
762 unsigned NumCostEntries = RD.Costs.size();
763 OS << NumCostEntries << ", " << CostTblIndex << ", "
764 << RD.MaxMovesEliminatedPerCycle << ", "
765 << RD.AllowZeroMoveEliminationOnly << "},\n";
766 CostTblIndex += NumCostEntries;
768 OS << "};\n";
770 return CostTblIndex;
773 void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
774 raw_ostream &OS) {
775 unsigned QueueID = 0;
776 if (ProcModel.LoadQueue) {
777 const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor");
778 QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
779 find(ProcModel.ProcResourceDefs, Queue));
781 OS << " " << QueueID << ", // Resource Descriptor for the Load Queue\n";
783 QueueID = 0;
784 if (ProcModel.StoreQueue) {
785 const Record *Queue =
786 ProcModel.StoreQueue->getValueAsDef("QueueDescriptor");
787 QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
788 find(ProcModel.ProcResourceDefs, Queue));
790 OS << " " << QueueID << ", // Resource Descriptor for the Store Queue\n";
793 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
794 raw_ostream &OS) {
795 // Generate a table of register file descriptors (one entry per each user
796 // defined register file), and a table of register costs.
797 unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS);
799 // Now generate a table for the extra processor info.
800 OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName
801 << "ExtraInfo = {\n ";
803 // Add information related to the retire control unit.
804 EmitRetireControlUnitInfo(ProcModel, OS);
806 // Add information related to the register files (i.e. where to find register
807 // file descriptors and register costs).
808 EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
809 NumCostEntries, OS);
811 // Add information about load/store queues.
812 EmitLoadStoreQueueInfo(ProcModel, OS);
814 OS << "};\n";
817 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
818 raw_ostream &OS) {
819 EmitProcessorResourceSubUnits(ProcModel, OS);
821 OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n";
822 OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName
823 << "ProcResources"
824 << "[] = {\n"
825 << " {\"InvalidUnit\", 0, 0, 0, 0},\n";
827 unsigned SubUnitsOffset = 1;
828 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
829 Record *PRDef = ProcModel.ProcResourceDefs[i];
831 Record *SuperDef = nullptr;
832 unsigned SuperIdx = 0;
833 unsigned NumUnits = 0;
834 const unsigned SubUnitsBeginOffset = SubUnitsOffset;
835 int BufferSize = PRDef->getValueAsInt("BufferSize");
836 if (PRDef->isSubClassOf("ProcResGroup")) {
837 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
838 for (Record *RU : ResUnits) {
839 NumUnits += RU->getValueAsInt("NumUnits");
840 SubUnitsOffset += RU->getValueAsInt("NumUnits");
843 else {
844 // Find the SuperIdx
845 if (PRDef->getValueInit("Super")->isComplete()) {
846 SuperDef =
847 SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
848 ProcModel, PRDef->getLoc());
849 SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
851 NumUnits = PRDef->getValueAsInt("NumUnits");
853 // Emit the ProcResourceDesc
854 OS << " {\"" << PRDef->getName() << "\", ";
855 if (PRDef->getName().size() < 15)
856 OS.indent(15 - PRDef->getName().size());
857 OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", ";
858 if (SubUnitsBeginOffset != SubUnitsOffset) {
859 OS << ProcModel.ModelName << "ProcResourceSubUnits + "
860 << SubUnitsBeginOffset;
861 } else {
862 OS << "nullptr";
864 OS << "}, // #" << i+1;
865 if (SuperDef)
866 OS << ", Super=" << SuperDef->getName();
867 OS << "\n";
869 OS << "};\n";
872 // Find the WriteRes Record that defines processor resources for this
873 // SchedWrite.
874 Record *SubtargetEmitter::FindWriteResources(
875 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
877 // Check if the SchedWrite is already subtarget-specific and directly
878 // specifies a set of processor resources.
879 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
880 return SchedWrite.TheDef;
882 Record *AliasDef = nullptr;
883 for (Record *A : SchedWrite.Aliases) {
884 const CodeGenSchedRW &AliasRW =
885 SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
886 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
887 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
888 if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
889 continue;
891 if (AliasDef)
892 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
893 "defined for processor " + ProcModel.ModelName +
894 " Ensure only one SchedAlias exists per RW.");
895 AliasDef = AliasRW.TheDef;
897 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
898 return AliasDef;
900 // Check this processor's list of write resources.
901 Record *ResDef = nullptr;
902 for (Record *WR : ProcModel.WriteResDefs) {
903 if (!WR->isSubClassOf("WriteRes"))
904 continue;
905 if (AliasDef == WR->getValueAsDef("WriteType")
906 || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
907 if (ResDef) {
908 PrintFatalError(WR->getLoc(), "Resources are defined for both "
909 "SchedWrite and its alias on processor " +
910 ProcModel.ModelName);
912 ResDef = WR;
915 // TODO: If ProcModel has a base model (previous generation processor),
916 // then call FindWriteResources recursively with that model here.
917 if (!ResDef) {
918 PrintFatalError(ProcModel.ModelDef->getLoc(),
919 Twine("Processor does not define resources for ") +
920 SchedWrite.TheDef->getName());
922 return ResDef;
925 /// Find the ReadAdvance record for the given SchedRead on this processor or
926 /// return NULL.
927 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
928 const CodeGenProcModel &ProcModel) {
929 // Check for SchedReads that directly specify a ReadAdvance.
930 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
931 return SchedRead.TheDef;
933 // Check this processor's list of aliases for SchedRead.
934 Record *AliasDef = nullptr;
935 for (Record *A : SchedRead.Aliases) {
936 const CodeGenSchedRW &AliasRW =
937 SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
938 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
939 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
940 if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
941 continue;
943 if (AliasDef)
944 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
945 "defined for processor " + ProcModel.ModelName +
946 " Ensure only one SchedAlias exists per RW.");
947 AliasDef = AliasRW.TheDef;
949 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
950 return AliasDef;
952 // Check this processor's ReadAdvanceList.
953 Record *ResDef = nullptr;
954 for (Record *RA : ProcModel.ReadAdvanceDefs) {
955 if (!RA->isSubClassOf("ReadAdvance"))
956 continue;
957 if (AliasDef == RA->getValueAsDef("ReadType")
958 || SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
959 if (ResDef) {
960 PrintFatalError(RA->getLoc(), "Resources are defined for both "
961 "SchedRead and its alias on processor " +
962 ProcModel.ModelName);
964 ResDef = RA;
967 // TODO: If ProcModel has a base model (previous generation processor),
968 // then call FindReadAdvance recursively with that model here.
969 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
970 PrintFatalError(ProcModel.ModelDef->getLoc(),
971 Twine("Processor does not define resources for ") +
972 SchedRead.TheDef->getName());
974 return ResDef;
977 // Expand an explicit list of processor resources into a full list of implied
978 // resource groups and super resources that cover them.
979 void SubtargetEmitter::ExpandProcResources(
980 RecVec &PRVec, std::vector<int64_t> &ReleaseAtCycles,
981 std::vector<int64_t> &AcquireAtCycles, const CodeGenProcModel &PM) {
982 assert(PRVec.size() == ReleaseAtCycles.size() && "failed precondition");
983 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
984 Record *PRDef = PRVec[i];
985 RecVec SubResources;
986 if (PRDef->isSubClassOf("ProcResGroup"))
987 SubResources = PRDef->getValueAsListOfDefs("Resources");
988 else {
989 SubResources.push_back(PRDef);
990 PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
991 for (Record *SubDef = PRDef;
992 SubDef->getValueInit("Super")->isComplete();) {
993 if (SubDef->isSubClassOf("ProcResGroup")) {
994 // Disallow this for simplicitly.
995 PrintFatalError(SubDef->getLoc(), "Processor resource group "
996 " cannot be a super resources.");
998 Record *SuperDef =
999 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM,
1000 SubDef->getLoc());
1001 PRVec.push_back(SuperDef);
1002 ReleaseAtCycles.push_back(ReleaseAtCycles[i]);
1003 AcquireAtCycles.push_back(AcquireAtCycles[i]);
1004 SubDef = SuperDef;
1007 for (Record *PR : PM.ProcResourceDefs) {
1008 if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
1009 continue;
1010 RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
1011 RecIter SubI = SubResources.begin(), SubE = SubResources.end();
1012 for( ; SubI != SubE; ++SubI) {
1013 if (!is_contained(SuperResources, *SubI)) {
1014 break;
1017 if (SubI == SubE) {
1018 PRVec.push_back(PR);
1019 ReleaseAtCycles.push_back(ReleaseAtCycles[i]);
1020 AcquireAtCycles.push_back(AcquireAtCycles[i]);
1026 // Generate the SchedClass table for this processor and update global
1027 // tables. Must be called for each processor in order.
1028 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
1029 SchedClassTables &SchedTables) {
1030 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
1031 if (!ProcModel.hasInstrSchedModel())
1032 return;
1034 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
1035 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
1036 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1037 LLVM_DEBUG(SC.dump(&SchedModels));
1039 SCTab.resize(SCTab.size() + 1);
1040 MCSchedClassDesc &SCDesc = SCTab.back();
1041 // SCDesc.Name is guarded by NDEBUG
1042 SCDesc.NumMicroOps = 0;
1043 SCDesc.BeginGroup = false;
1044 SCDesc.EndGroup = false;
1045 SCDesc.RetireOOO = false;
1046 SCDesc.WriteProcResIdx = 0;
1047 SCDesc.WriteLatencyIdx = 0;
1048 SCDesc.ReadAdvanceIdx = 0;
1050 // A Variant SchedClass has no resources of its own.
1051 bool HasVariants = false;
1052 for (const CodeGenSchedTransition &CGT :
1053 make_range(SC.Transitions.begin(), SC.Transitions.end())) {
1054 if (CGT.ProcIndex == ProcModel.Index) {
1055 HasVariants = true;
1056 break;
1059 if (HasVariants) {
1060 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
1061 continue;
1064 // Determine if the SchedClass is actually reachable on this processor. If
1065 // not don't try to locate the processor resources, it will fail.
1066 // If ProcIndices contains 0, this class applies to all processors.
1067 assert(!SC.ProcIndices.empty() && "expect at least one procidx");
1068 if (SC.ProcIndices[0] != 0) {
1069 if (!is_contained(SC.ProcIndices, ProcModel.Index))
1070 continue;
1072 IdxVec Writes = SC.Writes;
1073 IdxVec Reads = SC.Reads;
1074 if (!SC.InstRWs.empty()) {
1075 // This class has a default ReadWrite list which can be overridden by
1076 // InstRW definitions.
1077 Record *RWDef = nullptr;
1078 for (Record *RW : SC.InstRWs) {
1079 Record *RWModelDef = RW->getValueAsDef("SchedModel");
1080 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
1081 RWDef = RW;
1082 break;
1085 if (RWDef) {
1086 Writes.clear();
1087 Reads.clear();
1088 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
1089 Writes, Reads);
1092 if (Writes.empty()) {
1093 // Check this processor's itinerary class resources.
1094 for (Record *I : ProcModel.ItinRWDefs) {
1095 RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
1096 if (is_contained(Matched, SC.ItinClassDef)) {
1097 SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
1098 Writes, Reads);
1099 break;
1102 if (Writes.empty()) {
1103 LLVM_DEBUG(dbgs() << ProcModel.ModelName
1104 << " does not have resources for class " << SC.Name
1105 << '\n');
1106 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1109 // Sum resources across all operand writes.
1110 std::vector<MCWriteProcResEntry> WriteProcResources;
1111 std::vector<MCWriteLatencyEntry> WriteLatencies;
1112 std::vector<std::string> WriterNames;
1113 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
1114 for (unsigned W : Writes) {
1115 IdxVec WriteSeq;
1116 SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
1117 ProcModel);
1119 // For each operand, create a latency entry.
1120 MCWriteLatencyEntry WLEntry;
1121 WLEntry.Cycles = 0;
1122 unsigned WriteID = WriteSeq.back();
1123 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
1124 // If this Write is not referenced by a ReadAdvance, don't distinguish it
1125 // from other WriteLatency entries.
1126 if (!SchedModels.hasReadOfWrite(
1127 SchedModels.getSchedWrite(WriteID).TheDef)) {
1128 WriteID = 0;
1130 WLEntry.WriteResourceID = WriteID;
1132 for (unsigned WS : WriteSeq) {
1134 Record *WriteRes =
1135 FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
1137 // Mark the parent class as invalid for unsupported write types.
1138 if (WriteRes->getValueAsBit("Unsupported")) {
1139 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1140 break;
1142 WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
1143 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
1144 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
1145 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
1146 SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
1147 SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
1148 SCDesc.RetireOOO |= WriteRes->getValueAsBit("RetireOOO");
1150 // Create an entry for each ProcResource listed in WriteRes.
1151 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
1152 std::vector<int64_t> ReleaseAtCycles =
1153 WriteRes->getValueAsListOfInts("ReleaseAtCycles");
1155 std::vector<int64_t> AcquireAtCycles =
1156 WriteRes->getValueAsListOfInts("AcquireAtCycles");
1158 // Check consistency of the two vectors carrying the start and
1159 // stop cycles of the resources.
1160 if (!ReleaseAtCycles.empty() &&
1161 ReleaseAtCycles.size() != PRVec.size()) {
1162 // If ReleaseAtCycles is provided, check consistency.
1163 PrintFatalError(
1164 WriteRes->getLoc(),
1165 Twine("Inconsistent release at cycles: size(ReleaseAtCycles) != "
1166 "size(ProcResources): ")
1167 .concat(Twine(PRVec.size()))
1168 .concat(" vs ")
1169 .concat(Twine(ReleaseAtCycles.size())));
1172 if (!AcquireAtCycles.empty() && AcquireAtCycles.size() != PRVec.size()) {
1173 PrintFatalError(
1174 WriteRes->getLoc(),
1175 Twine("Inconsistent resource cycles: size(AcquireAtCycles) != "
1176 "size(ProcResources): ")
1177 .concat(Twine(AcquireAtCycles.size()))
1178 .concat(" vs ")
1179 .concat(Twine(PRVec.size())));
1182 if (ReleaseAtCycles.empty()) {
1183 // If ReleaseAtCycles is not provided, default to one cycle
1184 // per resource.
1185 ReleaseAtCycles.resize(PRVec.size(), 1);
1188 if (AcquireAtCycles.empty()) {
1189 // If AcquireAtCycles is not provided, reserve the resource
1190 // starting from cycle 0.
1191 AcquireAtCycles.resize(PRVec.size(), 0);
1194 assert(AcquireAtCycles.size() == ReleaseAtCycles.size());
1196 ExpandProcResources(PRVec, ReleaseAtCycles, AcquireAtCycles, ProcModel);
1197 assert(AcquireAtCycles.size() == ReleaseAtCycles.size());
1199 for (unsigned PRIdx = 0, PREnd = PRVec.size();
1200 PRIdx != PREnd; ++PRIdx) {
1201 MCWriteProcResEntry WPREntry;
1202 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
1203 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
1204 WPREntry.ReleaseAtCycle = ReleaseAtCycles[PRIdx];
1205 WPREntry.AcquireAtCycle = AcquireAtCycles[PRIdx];
1206 if (AcquireAtCycles[PRIdx] > ReleaseAtCycles[PRIdx]) {
1207 PrintFatalError(
1208 WriteRes->getLoc(),
1209 Twine("Inconsistent resource cycles: AcquireAtCycles "
1210 "< ReleaseAtCycles must hold."));
1212 if (AcquireAtCycles[PRIdx] < 0) {
1213 PrintFatalError(WriteRes->getLoc(),
1214 Twine("Invalid value: AcquireAtCycle "
1215 "must be a non-negative value."));
1217 // If this resource is already used in this sequence, add the current
1218 // entry's cycles so that the same resource appears to be used
1219 // serially, rather than multiple parallel uses. This is important for
1220 // in-order machine where the resource consumption is a hazard.
1221 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
1222 for( ; WPRIdx != WPREnd; ++WPRIdx) {
1223 if (WriteProcResources[WPRIdx].ProcResourceIdx
1224 == WPREntry.ProcResourceIdx) {
1225 // TODO: multiple use of the same resources would
1226 // require either 1. thinking of how to handle multiple
1227 // intervals for the same resource in
1228 // `<Target>WriteProcResTable` (see
1229 // `SubtargetEmitter::EmitSchedClassTables`), or
1230 // 2. thinking how to merge multiple intervals into a
1231 // single interval.
1232 assert(WPREntry.AcquireAtCycle == 0 &&
1233 "multiple use ofthe same resource is not yet handled");
1234 WriteProcResources[WPRIdx].ReleaseAtCycle +=
1235 WPREntry.ReleaseAtCycle;
1236 break;
1239 if (WPRIdx == WPREnd)
1240 WriteProcResources.push_back(WPREntry);
1243 WriteLatencies.push_back(WLEntry);
1245 // Create an entry for each operand Read in this SchedClass.
1246 // Entries must be sorted first by UseIdx then by WriteResourceID.
1247 for (unsigned UseIdx = 0, EndIdx = Reads.size();
1248 UseIdx != EndIdx; ++UseIdx) {
1249 Record *ReadAdvance =
1250 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
1251 if (!ReadAdvance)
1252 continue;
1254 // Mark the parent class as invalid for unsupported write types.
1255 if (ReadAdvance->getValueAsBit("Unsupported")) {
1256 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1257 break;
1259 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
1260 IdxVec WriteIDs;
1261 if (ValidWrites.empty())
1262 WriteIDs.push_back(0);
1263 else {
1264 for (Record *VW : ValidWrites) {
1265 WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
1268 llvm::sort(WriteIDs);
1269 for(unsigned W : WriteIDs) {
1270 MCReadAdvanceEntry RAEntry;
1271 RAEntry.UseIdx = UseIdx;
1272 RAEntry.WriteResourceID = W;
1273 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1274 ReadAdvanceEntries.push_back(RAEntry);
1277 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1278 WriteProcResources.clear();
1279 WriteLatencies.clear();
1280 ReadAdvanceEntries.clear();
1282 // Add the information for this SchedClass to the global tables using basic
1283 // compression.
1285 // WritePrecRes entries are sorted by ProcResIdx.
1286 llvm::sort(WriteProcResources, LessWriteProcResources());
1288 SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1289 std::vector<MCWriteProcResEntry>::iterator WPRPos =
1290 std::search(SchedTables.WriteProcResources.begin(),
1291 SchedTables.WriteProcResources.end(),
1292 WriteProcResources.begin(), WriteProcResources.end());
1293 if (WPRPos != SchedTables.WriteProcResources.end())
1294 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1295 else {
1296 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1297 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1298 WriteProcResources.end());
1300 // Latency entries must remain in operand order.
1301 SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1302 std::vector<MCWriteLatencyEntry>::iterator WLPos =
1303 std::search(SchedTables.WriteLatencies.begin(),
1304 SchedTables.WriteLatencies.end(),
1305 WriteLatencies.begin(), WriteLatencies.end());
1306 if (WLPos != SchedTables.WriteLatencies.end()) {
1307 unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1308 SCDesc.WriteLatencyIdx = idx;
1309 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1310 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1311 std::string::npos) {
1312 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1315 else {
1316 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1317 llvm::append_range(SchedTables.WriteLatencies, WriteLatencies);
1318 llvm::append_range(SchedTables.WriterNames, WriterNames);
1320 // ReadAdvanceEntries must remain in operand order.
1321 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1322 std::vector<MCReadAdvanceEntry>::iterator RAPos =
1323 std::search(SchedTables.ReadAdvanceEntries.begin(),
1324 SchedTables.ReadAdvanceEntries.end(),
1325 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1326 if (RAPos != SchedTables.ReadAdvanceEntries.end())
1327 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1328 else {
1329 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1330 llvm::append_range(SchedTables.ReadAdvanceEntries, ReadAdvanceEntries);
1335 // Emit SchedClass tables for all processors and associated global tables.
1336 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1337 raw_ostream &OS) {
1338 // Emit global WriteProcResTable.
1339 OS << "\n// {ProcResourceIdx, ReleaseAtCycle, AcquireAtCycle}\n"
1340 << "extern const llvm::MCWriteProcResEntry " << Target
1341 << "WriteProcResTable[] = {\n"
1342 << " { 0, 0, 0 }, // Invalid\n";
1343 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1344 WPRIdx != WPREnd; ++WPRIdx) {
1345 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1346 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1347 << format("%2d", WPREntry.ReleaseAtCycle) << ", "
1348 << format("%2d", WPREntry.AcquireAtCycle) << "}";
1349 if (WPRIdx + 1 < WPREnd)
1350 OS << ',';
1351 OS << " // #" << WPRIdx << '\n';
1353 OS << "}; // " << Target << "WriteProcResTable\n";
1355 // Emit global WriteLatencyTable.
1356 OS << "\n// {Cycles, WriteResourceID}\n"
1357 << "extern const llvm::MCWriteLatencyEntry "
1358 << Target << "WriteLatencyTable[] = {\n"
1359 << " { 0, 0}, // Invalid\n";
1360 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1361 WLIdx != WLEnd; ++WLIdx) {
1362 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1363 OS << " {" << format("%2d", WLEntry.Cycles) << ", "
1364 << format("%2d", WLEntry.WriteResourceID) << "}";
1365 if (WLIdx + 1 < WLEnd)
1366 OS << ',';
1367 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1369 OS << "}; // " << Target << "WriteLatencyTable\n";
1371 // Emit global ReadAdvanceTable.
1372 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1373 << "extern const llvm::MCReadAdvanceEntry "
1374 << Target << "ReadAdvanceTable[] = {\n"
1375 << " {0, 0, 0}, // Invalid\n";
1376 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1377 RAIdx != RAEnd; ++RAIdx) {
1378 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1379 OS << " {" << RAEntry.UseIdx << ", "
1380 << format("%2d", RAEntry.WriteResourceID) << ", "
1381 << format("%2d", RAEntry.Cycles) << "}";
1382 if (RAIdx + 1 < RAEnd)
1383 OS << ',';
1384 OS << " // #" << RAIdx << '\n';
1386 OS << "}; // " << Target << "ReadAdvanceTable\n";
1388 // Emit a SchedClass table for each processor.
1389 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1390 PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1391 if (!PI->hasInstrSchedModel())
1392 continue;
1394 std::vector<MCSchedClassDesc> &SCTab =
1395 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1397 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup, RetireOOO,"
1398 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1399 OS << "static const llvm::MCSchedClassDesc "
1400 << PI->ModelName << "SchedClasses[] = {\n";
1402 // The first class is always invalid. We no way to distinguish it except by
1403 // name and position.
1404 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1405 && "invalid class not first");
1406 OS << " {DBGFIELD(\"InvalidSchedClass\") "
1407 << MCSchedClassDesc::InvalidNumMicroOps
1408 << ", false, false, false, 0, 0, 0, 0, 0, 0},\n";
1410 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1411 MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1412 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1413 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") ";
1414 if (SchedClass.Name.size() < 18)
1415 OS.indent(18 - SchedClass.Name.size());
1416 OS << MCDesc.NumMicroOps
1417 << ", " << ( MCDesc.BeginGroup ? "true" : "false" )
1418 << ", " << ( MCDesc.EndGroup ? "true" : "false" )
1419 << ", " << ( MCDesc.RetireOOO ? "true" : "false" )
1420 << ", " << format("%2d", MCDesc.WriteProcResIdx)
1421 << ", " << MCDesc.NumWriteProcResEntries
1422 << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1423 << ", " << MCDesc.NumWriteLatencyEntries
1424 << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1425 << ", " << MCDesc.NumReadAdvanceEntries
1426 << "}, // #" << SCIdx << '\n';
1428 OS << "}; // " << PI->ModelName << "SchedClasses\n";
1432 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1433 // For each processor model.
1434 for (const CodeGenProcModel &PM : SchedModels.procModels()) {
1435 // Emit extra processor info if available.
1436 if (PM.hasExtraProcessorInfo())
1437 EmitExtraProcessorInfo(PM, OS);
1438 // Emit processor resource table.
1439 if (PM.hasInstrSchedModel())
1440 EmitProcessorResources(PM, OS);
1441 else if(!PM.ProcResourceDefs.empty())
1442 PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
1443 "ProcResources without defining WriteRes SchedWriteRes");
1445 // Begin processor itinerary properties
1446 OS << "\n";
1447 OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
1448 EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
1449 EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
1450 EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
1451 EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
1452 EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
1453 EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
1455 bool PostRAScheduler =
1456 (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
1458 OS << " " << (PostRAScheduler ? "true" : "false") << ", // "
1459 << "PostRAScheduler\n";
1461 bool CompleteModel =
1462 (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
1464 OS << " " << (CompleteModel ? "true" : "false") << ", // "
1465 << "CompleteModel\n";
1467 bool EnableIntervals =
1468 (PM.ModelDef ? PM.ModelDef->getValueAsBit("EnableIntervals") : false);
1470 OS << " " << (EnableIntervals ? "true" : "false") << ", // "
1471 << "EnableIntervals\n";
1473 OS << " " << PM.Index << ", // Processor ID\n";
1474 if (PM.hasInstrSchedModel())
1475 OS << " " << PM.ModelName << "ProcResources" << ",\n"
1476 << " " << PM.ModelName << "SchedClasses" << ",\n"
1477 << " " << PM.ProcResourceDefs.size()+1 << ",\n"
1478 << " " << (SchedModels.schedClassEnd()
1479 - SchedModels.schedClassBegin()) << ",\n";
1480 else
1481 OS << " nullptr, nullptr, 0, 0,"
1482 << " // No instruction-level machine model.\n";
1483 if (PM.hasItineraries())
1484 OS << " " << PM.ItinsDef->getName() << ",\n";
1485 else
1486 OS << " nullptr, // No Itinerary\n";
1487 if (PM.hasExtraProcessorInfo())
1488 OS << " &" << PM.ModelName << "ExtraInfo,\n";
1489 else
1490 OS << " nullptr // No extra processor descriptor\n";
1491 OS << "};\n";
1496 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1498 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1499 OS << "#ifdef DBGFIELD\n"
1500 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1501 << "#endif\n"
1502 << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
1503 << "#define DBGFIELD(x) x,\n"
1504 << "#else\n"
1505 << "#define DBGFIELD(x)\n"
1506 << "#endif\n";
1508 if (SchedModels.hasItineraries()) {
1509 std::vector<std::vector<InstrItinerary>> ProcItinLists;
1510 // Emit the stage data
1511 EmitStageAndOperandCycleData(OS, ProcItinLists);
1512 EmitItineraries(OS, ProcItinLists);
1514 OS << "\n// ===============================================================\n"
1515 << "// Data tables for the new per-operand machine model.\n";
1517 SchedClassTables SchedTables;
1518 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
1519 GenSchedClassTables(ProcModel, SchedTables);
1521 EmitSchedClassTables(SchedTables, OS);
1523 OS << "\n#undef DBGFIELD\n";
1525 // Emit the processor machine model
1526 EmitProcessorModels(OS);
1529 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) {
1530 std::string Buffer;
1531 raw_string_ostream Stream(Buffer);
1533 // Collect all the PredicateProlog records and print them to the output
1534 // stream.
1535 std::vector<Record *> Prologs =
1536 Records.getAllDerivedDefinitions("PredicateProlog");
1537 llvm::sort(Prologs, LessRecord());
1538 for (Record *P : Prologs)
1539 Stream << P->getValueAsString("Code") << '\n';
1541 OS << Buffer;
1544 static bool isTruePredicate(const Record *Rec) {
1545 return Rec->isSubClassOf("MCSchedPredicate") &&
1546 Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
1549 static void emitPredicates(const CodeGenSchedTransition &T,
1550 const CodeGenSchedClass &SC, PredicateExpander &PE,
1551 raw_ostream &OS) {
1552 std::string Buffer;
1553 raw_string_ostream SS(Buffer);
1555 // If not all predicates are MCTrue, then we need an if-stmt.
1556 unsigned NumNonTruePreds =
1557 T.PredTerm.size() - count_if(T.PredTerm, isTruePredicate);
1559 SS.indent(PE.getIndentLevel() * 2);
1561 if (NumNonTruePreds) {
1562 bool FirstNonTruePredicate = true;
1563 SS << "if (";
1565 PE.setIndentLevel(PE.getIndentLevel() + 2);
1567 for (const Record *Rec : T.PredTerm) {
1568 // Skip predicates that evaluate to "true".
1569 if (isTruePredicate(Rec))
1570 continue;
1572 if (FirstNonTruePredicate) {
1573 FirstNonTruePredicate = false;
1574 } else {
1575 SS << "\n";
1576 SS.indent(PE.getIndentLevel() * 2);
1577 SS << "&& ";
1580 if (Rec->isSubClassOf("MCSchedPredicate")) {
1581 PE.expandPredicate(SS, Rec->getValueAsDef("Pred"));
1582 continue;
1585 // Expand this legacy predicate and wrap it around braces if there is more
1586 // than one predicate to expand.
1587 SS << ((NumNonTruePreds > 1) ? "(" : "")
1588 << Rec->getValueAsString("Predicate")
1589 << ((NumNonTruePreds > 1) ? ")" : "");
1592 SS << ")\n"; // end of if-stmt
1593 PE.decreaseIndentLevel();
1594 SS.indent(PE.getIndentLevel() * 2);
1595 PE.decreaseIndentLevel();
1598 SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n';
1599 OS << Buffer;
1602 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate
1603 // epilogue code for the auto-generated helper.
1604 static void emitSchedModelHelperEpilogue(raw_ostream &OS,
1605 bool ShouldReturnZero) {
1606 if (ShouldReturnZero) {
1607 OS << " // Don't know how to resolve this scheduling class.\n"
1608 << " return 0;\n";
1609 return;
1612 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n";
1615 static bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
1616 return all_of(T.PredTerm, [](const Record *Rec) {
1617 return Rec->isSubClassOf("MCSchedPredicate");
1621 static void collectVariantClasses(const CodeGenSchedModels &SchedModels,
1622 IdxVec &VariantClasses,
1623 bool OnlyExpandMCInstPredicates) {
1624 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1625 // Ignore non-variant scheduling classes.
1626 if (SC.Transitions.empty())
1627 continue;
1629 if (OnlyExpandMCInstPredicates) {
1630 // Ignore this variant scheduling class no transitions use any meaningful
1631 // MCSchedPredicate definitions.
1632 if (llvm::none_of(SC.Transitions, hasMCSchedPredicates))
1633 continue;
1636 VariantClasses.push_back(SC.Index);
1640 static void collectProcessorIndices(const CodeGenSchedClass &SC,
1641 IdxVec &ProcIndices) {
1642 // A variant scheduling class may define transitions for multiple
1643 // processors. This function identifies wich processors are associated with
1644 // transition rules specified by variant class `SC`.
1645 for (const CodeGenSchedTransition &T : SC.Transitions) {
1646 IdxVec PI;
1647 std::set_union(&T.ProcIndex, &T.ProcIndex + 1, ProcIndices.begin(),
1648 ProcIndices.end(), std::back_inserter(PI));
1649 ProcIndices.swap(PI);
1653 static bool isAlwaysTrue(const CodeGenSchedTransition &T) {
1654 return llvm::all_of(T.PredTerm, isTruePredicate);
1657 void SubtargetEmitter::emitSchedModelHelpersImpl(
1658 raw_ostream &OS, bool OnlyExpandMCInstPredicates) {
1659 IdxVec VariantClasses;
1660 collectVariantClasses(SchedModels, VariantClasses,
1661 OnlyExpandMCInstPredicates);
1663 if (VariantClasses.empty()) {
1664 emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1665 return;
1668 // Construct a switch statement where the condition is a check on the
1669 // scheduling class identifier. There is a `case` for every variant class
1670 // defined by the processor models of this target.
1671 // Each `case` implements a number of rules to resolve (i.e. to transition from)
1672 // a variant scheduling class to another scheduling class. Rules are
1673 // described by instances of CodeGenSchedTransition. Note that transitions may
1674 // not be valid for all processors.
1675 OS << " switch (SchedClass) {\n";
1676 for (unsigned VC : VariantClasses) {
1677 IdxVec ProcIndices;
1678 const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
1679 collectProcessorIndices(SC, ProcIndices);
1681 OS << " case " << VC << ": // " << SC.Name << '\n';
1683 PredicateExpander PE(Target);
1684 PE.setByRef(false);
1685 PE.setExpandForMC(OnlyExpandMCInstPredicates);
1686 for (unsigned PI : ProcIndices) {
1687 OS << " ";
1689 // Emit a guard on the processor ID.
1690 if (PI != 0) {
1691 OS << (OnlyExpandMCInstPredicates
1692 ? "if (CPUID == "
1693 : "if (SchedModel->getProcessorID() == ");
1694 OS << PI << ") ";
1695 OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n';
1698 // Now emit transitions associated with processor PI.
1699 const CodeGenSchedTransition *FinalT = nullptr;
1700 for (const CodeGenSchedTransition &T : SC.Transitions) {
1701 if (PI != 0 && T.ProcIndex != PI)
1702 continue;
1704 // Emit only transitions based on MCSchedPredicate, if it's the case.
1705 // At least the transition specified by NoSchedPred is emitted,
1706 // which becomes the default transition for those variants otherwise
1707 // not based on MCSchedPredicate.
1708 // FIXME: preferably, llvm-mca should instead assume a reasonable
1709 // default when a variant transition is not based on MCSchedPredicate
1710 // for a given processor.
1711 if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T))
1712 continue;
1714 // If transition is folded to 'return X' it should be the last one.
1715 if (isAlwaysTrue(T)) {
1716 FinalT = &T;
1717 continue;
1719 PE.setIndentLevel(3);
1720 emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS);
1722 if (FinalT)
1723 emitPredicates(*FinalT, SchedModels.getSchedClass(FinalT->ToClassIdx),
1724 PE, OS);
1726 OS << " }\n";
1728 if (PI == 0)
1729 break;
1732 if (SC.isInferred())
1733 OS << " return " << SC.Index << ";\n";
1734 OS << " break;\n";
1737 OS << " };\n";
1739 emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1742 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName,
1743 raw_ostream &OS) {
1744 OS << "unsigned " << ClassName
1745 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1746 << " const TargetSchedModel *SchedModel) const {\n";
1748 // Emit the predicate prolog code.
1749 emitPredicateProlog(Records, OS);
1751 // Emit target predicates.
1752 emitSchedModelHelpersImpl(OS);
1754 OS << "} // " << ClassName << "::resolveSchedClass\n\n";
1756 OS << "unsigned " << ClassName
1757 << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI,"
1758 << " const MCInstrInfo *MCII, unsigned CPUID) const {\n"
1759 << " return " << Target << "_MC"
1760 << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n"
1761 << "} // " << ClassName << "::resolveVariantSchedClass\n\n";
1763 STIPredicateExpander PE(Target);
1764 PE.setClassPrefix(ClassName);
1765 PE.setExpandDefinition(true);
1766 PE.setByRef(false);
1767 PE.setIndentLevel(0);
1769 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1770 PE.expandSTIPredicate(OS, Fn);
1773 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName,
1774 raw_ostream &OS) {
1775 const CodeGenHwModes &CGH = TGT.getHwModes();
1776 assert(CGH.getNumModeIds() > 0);
1777 if (CGH.getNumModeIds() == 1)
1778 return;
1780 OS << "unsigned " << ClassName << "::getHwMode() const {\n";
1781 for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
1782 const HwMode &HM = CGH.getMode(M);
1783 OS << " if (checkFeatures(\"" << HM.Features
1784 << "\")) return " << M << ";\n";
1786 OS << " return 0;\n}\n";
1789 // Produces a subtarget specific function for parsing
1790 // the subtarget features string.
1791 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS) {
1792 std::vector<Record*> Features =
1793 Records.getAllDerivedDefinitions("SubtargetFeature");
1794 llvm::sort(Features, LessRecord());
1796 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1797 << "// subtarget options.\n"
1798 << "void llvm::";
1799 OS << Target;
1800 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, "
1801 << "StringRef FS) {\n"
1802 << " LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1803 << " LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU);\n"
1804 << " LLVM_DEBUG(dbgs() << \"\\nTuneCPU:\" << TuneCPU << \"\\n\\n\");\n";
1806 if (Features.empty()) {
1807 OS << "}\n";
1808 return;
1811 OS << " InitMCProcessorInfo(CPU, TuneCPU, FS);\n"
1812 << " const FeatureBitset &Bits = getFeatureBits();\n";
1814 for (Record *R : Features) {
1815 // Next record
1816 StringRef Instance = R->getName();
1817 StringRef Value = R->getValueAsString("Value");
1818 StringRef FieldName = R->getValueAsString("FieldName");
1820 if (Value=="true" || Value=="false")
1821 OS << " if (Bits[" << Target << "::"
1822 << Instance << "]) "
1823 << FieldName << " = " << Value << ";\n";
1824 else
1825 OS << " if (Bits[" << Target << "::"
1826 << Instance << "] && "
1827 << FieldName << " < " << Value << ") "
1828 << FieldName << " = " << Value << ";\n";
1831 OS << "}\n";
1834 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) {
1835 OS << "namespace " << Target << "_MC {\n"
1836 << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n"
1837 << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) {\n";
1838 emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true);
1839 OS << "}\n";
1840 OS << "} // end namespace " << Target << "_MC\n\n";
1842 OS << "struct " << Target
1843 << "GenMCSubtargetInfo : public MCSubtargetInfo {\n";
1844 OS << " " << Target << "GenMCSubtargetInfo(const Triple &TT,\n"
1845 << " StringRef CPU, StringRef TuneCPU, StringRef FS,\n"
1846 << " ArrayRef<SubtargetFeatureKV> PF,\n"
1847 << " ArrayRef<SubtargetSubTypeKV> PD,\n"
1848 << " const MCWriteProcResEntry *WPR,\n"
1849 << " const MCWriteLatencyEntry *WL,\n"
1850 << " const MCReadAdvanceEntry *RA, const InstrStage *IS,\n"
1851 << " const unsigned *OC, const unsigned *FP) :\n"
1852 << " MCSubtargetInfo(TT, CPU, TuneCPU, FS, PF, PD,\n"
1853 << " WPR, WL, RA, IS, OC, FP) { }\n\n"
1854 << " unsigned resolveVariantSchedClass(unsigned SchedClass,\n"
1855 << " const MCInst *MI, const MCInstrInfo *MCII,\n"
1856 << " unsigned CPUID) const override {\n"
1857 << " return " << Target << "_MC"
1858 << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n";
1859 OS << " }\n";
1860 if (TGT.getHwModes().getNumModeIds() > 1)
1861 OS << " unsigned getHwMode() const override;\n";
1862 OS << "};\n";
1863 EmitHwModeCheck(Target + "GenMCSubtargetInfo", OS);
1866 void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) {
1867 OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n";
1868 OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1870 STIPredicateExpander PE(Target);
1871 PE.setExpandForMC(true);
1872 PE.setByRef(true);
1873 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1874 PE.expandSTIPredicate(OS, Fn);
1876 OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1878 OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n";
1879 OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1881 std::string ClassPrefix = Target + "MCInstrAnalysis";
1882 PE.setExpandDefinition(true);
1883 PE.setClassPrefix(ClassPrefix);
1884 PE.setIndentLevel(0);
1885 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1886 PE.expandSTIPredicate(OS, Fn);
1888 OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1892 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1894 void SubtargetEmitter::run(raw_ostream &OS) {
1895 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1897 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1898 OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
1900 DenseMap<Record *, unsigned> FeatureMap;
1902 OS << "namespace llvm {\n";
1903 Enumeration(OS, FeatureMap);
1904 OS << "} // end namespace llvm\n\n";
1905 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1907 EmitSubtargetInfoMacroCalls(OS);
1909 OS << "namespace llvm {\n";
1910 #if 0
1911 OS << "namespace {\n";
1912 #endif
1913 unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap);
1914 OS << "\n";
1915 EmitSchedModel(OS);
1916 OS << "\n";
1917 unsigned NumProcs = CPUKeyValues(OS, FeatureMap);
1918 OS << "\n";
1919 #if 0
1920 OS << "} // end anonymous namespace\n\n";
1921 #endif
1923 // MCInstrInfo initialization routine.
1924 emitGenMCSubtargetInfo(OS);
1926 OS << "\nstatic inline MCSubtargetInfo *create" << Target
1927 << "MCSubtargetInfoImpl("
1928 << "const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS) {\n";
1929 OS << " return new " << Target
1930 << "GenMCSubtargetInfo(TT, CPU, TuneCPU, FS, ";
1931 if (NumFeatures)
1932 OS << Target << "FeatureKV, ";
1933 else
1934 OS << "std::nullopt, ";
1935 if (NumProcs)
1936 OS << Target << "SubTypeKV, ";
1937 else
1938 OS << "std::nullopt, ";
1939 OS << '\n'; OS.indent(22);
1940 OS << Target << "WriteProcResTable, "
1941 << Target << "WriteLatencyTable, "
1942 << Target << "ReadAdvanceTable, ";
1943 OS << '\n'; OS.indent(22);
1944 if (SchedModels.hasItineraries()) {
1945 OS << Target << "Stages, "
1946 << Target << "OperandCycles, "
1947 << Target << "ForwardingPaths";
1948 } else
1949 OS << "nullptr, nullptr, nullptr";
1950 OS << ");\n}\n\n";
1952 OS << "} // end namespace llvm\n\n";
1954 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1956 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1957 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
1959 OS << "#include \"llvm/Support/Debug.h\"\n";
1960 OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
1961 ParseFeaturesFunction(OS);
1963 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1965 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1966 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1967 OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
1969 std::string ClassName = Target + "GenSubtargetInfo";
1970 OS << "namespace llvm {\n";
1971 OS << "class DFAPacketizer;\n";
1972 OS << "namespace " << Target << "_MC {\n"
1973 << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,"
1974 << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID);\n"
1975 << "} // end namespace " << Target << "_MC\n\n";
1976 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1977 << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
1978 << "StringRef TuneCPU, StringRef FS);\n"
1979 << "public:\n"
1980 << " unsigned resolveSchedClass(unsigned SchedClass, "
1981 << " const MachineInstr *DefMI,"
1982 << " const TargetSchedModel *SchedModel) const override;\n"
1983 << " unsigned resolveVariantSchedClass(unsigned SchedClass,"
1984 << " const MCInst *MI, const MCInstrInfo *MCII,"
1985 << " unsigned CPUID) const override;\n"
1986 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1987 << " const;\n";
1988 if (TGT.getHwModes().getNumModeIds() > 1)
1989 OS << " unsigned getHwMode() const override;\n";
1991 STIPredicateExpander PE(Target);
1992 PE.setByRef(false);
1993 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1994 PE.expandSTIPredicate(OS, Fn);
1996 OS << "};\n"
1997 << "} // end namespace llvm\n\n";
1999 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
2001 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
2002 OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
2004 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
2005 OS << "namespace llvm {\n";
2006 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
2007 OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n";
2008 OS << "extern const llvm::MCWriteProcResEntry "
2009 << Target << "WriteProcResTable[];\n";
2010 OS << "extern const llvm::MCWriteLatencyEntry "
2011 << Target << "WriteLatencyTable[];\n";
2012 OS << "extern const llvm::MCReadAdvanceEntry "
2013 << Target << "ReadAdvanceTable[];\n";
2015 if (SchedModels.hasItineraries()) {
2016 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
2017 OS << "extern const unsigned " << Target << "OperandCycles[];\n";
2018 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
2021 OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
2022 << "StringRef TuneCPU, StringRef FS)\n"
2023 << " : TargetSubtargetInfo(TT, CPU, TuneCPU, FS, ";
2024 if (NumFeatures)
2025 OS << "ArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
2026 else
2027 OS << "std::nullopt, ";
2028 if (NumProcs)
2029 OS << "ArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
2030 else
2031 OS << "std::nullopt, ";
2032 OS << '\n'; OS.indent(24);
2033 OS << Target << "WriteProcResTable, "
2034 << Target << "WriteLatencyTable, "
2035 << Target << "ReadAdvanceTable, ";
2036 OS << '\n'; OS.indent(24);
2037 if (SchedModels.hasItineraries()) {
2038 OS << Target << "Stages, "
2039 << Target << "OperandCycles, "
2040 << Target << "ForwardingPaths";
2041 } else
2042 OS << "nullptr, nullptr, nullptr";
2043 OS << ") {}\n\n";
2045 EmitSchedModelHelpers(ClassName, OS);
2046 EmitHwModeCheck(ClassName, OS);
2048 OS << "} // end namespace llvm\n\n";
2050 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
2052 EmitMCInstrAnalysisPredicateFunctions(OS);
2055 static TableGen::Emitter::OptClass<SubtargetEmitter>
2056 X("gen-subtarget", "Generate subtarget enumerations");