2 * z_Windows_NT_util.cpp -- platform specific routines.
5 //===----------------------------------------------------------------------===//
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //===----------------------------------------------------------------------===//
14 #include "kmp_affinity.h"
18 #include "kmp_wait_release.h"
20 /* This code is related to NtQuerySystemInformation() function. This function
21 is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
22 number of running threads in the system. */
24 #include <ntsecapi.h> // UNICODE_STRING
28 #pragma comment(lib, "psapi.lib")
31 enum SYSTEM_INFORMATION_CLASS
{
32 SystemProcessInformation
= 5
33 }; // SYSTEM_INFORMATION_CLASS
38 }; // struct CLIENT_ID
49 }; // enum THREAD_STATE
52 SIZE_T PeakVirtualSize
;
55 SIZE_T PeakWorkingSetSize
;
56 SIZE_T WorkingSetSize
;
57 SIZE_T QuotaPeakPagedPoolUsage
;
58 SIZE_T QuotaPagedPoolUsage
;
59 SIZE_T QuotaPeakNonPagedPoolUsage
;
60 SIZE_T QuotaNonPagedPoolUsage
;
62 SIZE_T PeakPagefileUsage
;
63 SIZE_T PrivatePageCount
;
64 }; // struct VM_COUNTERS
66 struct SYSTEM_THREAD
{
67 LARGE_INTEGER KernelTime
;
68 LARGE_INTEGER UserTime
;
69 LARGE_INTEGER CreateTime
;
75 ULONG ContextSwitchCount
;
80 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD
, KernelTime
) == 0);
81 #if KMP_ARCH_X86 || KMP_ARCH_ARM
82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD
, StartAddress
) == 28);
83 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD
, State
) == 52);
85 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD
, StartAddress
) == 32);
86 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD
, State
) == 68);
89 struct SYSTEM_PROCESS_INFORMATION
{
90 ULONG NextEntryOffset
;
91 ULONG NumberOfThreads
;
92 LARGE_INTEGER Reserved
[3];
93 LARGE_INTEGER CreateTime
;
94 LARGE_INTEGER UserTime
;
95 LARGE_INTEGER KernelTime
;
96 UNICODE_STRING ImageName
;
99 HANDLE ParentProcessId
;
102 VM_COUNTERS VMCounters
;
103 IO_COUNTERS IOCounters
;
104 SYSTEM_THREAD Threads
[1];
105 }; // SYSTEM_PROCESS_INFORMATION
106 typedef SYSTEM_PROCESS_INFORMATION
*PSYSTEM_PROCESS_INFORMATION
;
108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION
, NextEntryOffset
) == 0);
109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION
, CreateTime
) == 32);
110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION
, ImageName
) == 56);
111 #if KMP_ARCH_X86 || KMP_ARCH_ARM
112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION
, ProcessId
) == 68);
113 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION
, HandleCount
) == 76);
114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION
, VMCounters
) == 88);
115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION
, IOCounters
) == 136);
116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION
, Threads
) == 184);
118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION
, ProcessId
) == 80);
119 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION
, HandleCount
) == 96);
120 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION
, VMCounters
) == 112);
121 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION
, IOCounters
) == 208);
122 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION
, Threads
) == 256);
125 typedef NTSTATUS(NTAPI
*NtQuerySystemInformation_t
)(SYSTEM_INFORMATION_CLASS
,
126 PVOID
, ULONG
, PULONG
);
127 NtQuerySystemInformation_t NtQuerySystemInformation
= NULL
;
129 HMODULE ntdll
= NULL
;
131 /* End of NtQuerySystemInformation()-related code */
133 static HMODULE kernel32
= NULL
;
135 #if KMP_HANDLE_SIGNALS
136 typedef void (*sig_func_t
)(int);
137 static sig_func_t __kmp_sighldrs
[NSIG
];
138 static int __kmp_siginstalled
[NSIG
];
142 static HANDLE __kmp_monitor_ev
;
144 static kmp_int64 __kmp_win32_time
;
145 double __kmp_win32_tick
;
147 int __kmp_init_runtime
= FALSE
;
148 CRITICAL_SECTION __kmp_win32_section
;
150 void __kmp_win32_mutex_init(kmp_win32_mutex_t
*mx
) {
151 InitializeCriticalSection(&mx
->cs
);
153 __kmp_itt_system_object_created(&mx
->cs
, "Critical Section");
154 #endif /* USE_ITT_BUILD */
157 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t
*mx
) {
158 DeleteCriticalSection(&mx
->cs
);
161 void __kmp_win32_mutex_lock(kmp_win32_mutex_t
*mx
) {
162 EnterCriticalSection(&mx
->cs
);
165 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t
*mx
) {
166 return TryEnterCriticalSection(&mx
->cs
);
169 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t
*mx
) {
170 LeaveCriticalSection(&mx
->cs
);
173 void __kmp_win32_cond_init(kmp_win32_cond_t
*cv
) {
174 cv
->waiters_count_
= 0;
175 cv
->wait_generation_count_
= 0;
176 cv
->release_count_
= 0;
178 /* Initialize the critical section */
179 __kmp_win32_mutex_init(&cv
->waiters_count_lock_
);
181 /* Create a manual-reset event. */
182 cv
->event_
= CreateEvent(NULL
, // no security
183 TRUE
, // manual-reset
184 FALSE
, // non-signaled initially
187 __kmp_itt_system_object_created(cv
->event_
, "Event");
188 #endif /* USE_ITT_BUILD */
191 void __kmp_win32_cond_destroy(kmp_win32_cond_t
*cv
) {
192 __kmp_win32_mutex_destroy(&cv
->waiters_count_lock_
);
193 __kmp_free_handle(cv
->event_
);
194 memset(cv
, '\0', sizeof(*cv
));
197 /* TODO associate cv with a team instead of a thread so as to optimize
198 the case where we wake up a whole team */
201 static void __kmp_win32_cond_wait(kmp_win32_cond_t
*cv
, kmp_win32_mutex_t
*mx
,
202 kmp_info_t
*th
, C
*flag
) {
206 /* Avoid race conditions */
207 __kmp_win32_mutex_lock(&cv
->waiters_count_lock_
);
209 /* Increment count of waiters */
210 cv
->waiters_count_
++;
212 /* Store current generation in our activation record. */
213 my_generation
= cv
->wait_generation_count_
;
215 __kmp_win32_mutex_unlock(&cv
->waiters_count_lock_
);
216 __kmp_win32_mutex_unlock(mx
);
220 DWORD res
, timeout
= 5000; // just tried to quess an appropriate number
221 /* Wait until the event is signaled */
222 res
= WaitForSingleObject(cv
->event_
, timeout
);
224 if (res
== WAIT_OBJECT_0
) {
226 __kmp_win32_mutex_lock(&cv
->waiters_count_lock_
);
227 /* Exit the loop when the <cv->event_> is signaled and there are still
228 waiting threads from this <wait_generation> that haven't been released
229 from this wait yet. */
230 wait_done
= (cv
->release_count_
> 0) &&
231 (cv
->wait_generation_count_
!= my_generation
);
232 __kmp_win32_mutex_unlock(&cv
->waiters_count_lock_
);
233 } else if (res
== WAIT_TIMEOUT
|| res
== WAIT_FAILED
) {
234 // check if the flag and cv counters are in consistent state
235 // as MS sent us debug dump whith inconsistent state of data
236 __kmp_win32_mutex_lock(mx
);
237 typename
C::flag_t old_f
= flag
->set_sleeping();
238 if (!flag
->done_check_val(old_f
& ~KMP_BARRIER_SLEEP_STATE
)) {
239 __kmp_win32_mutex_unlock(mx
);
242 // condition fulfilled, exiting
243 flag
->unset_sleeping();
244 TCW_PTR(th
->th
.th_sleep_loc
, NULL
);
245 th
->th
.th_sleep_loc_type
= flag_unset
;
246 KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition "
247 "fulfilled: flag's loc(%p): %u\n",
248 flag
->get(), (unsigned int)flag
->load()));
250 __kmp_win32_mutex_lock(&cv
->waiters_count_lock_
);
251 KMP_DEBUG_ASSERT(cv
->waiters_count_
> 0);
252 cv
->release_count_
= cv
->waiters_count_
;
253 cv
->wait_generation_count_
++;
255 __kmp_win32_mutex_unlock(&cv
->waiters_count_lock_
);
257 __kmp_win32_mutex_unlock(mx
);
259 /* there used to be a semicolon after the if statement, it looked like a
260 bug, so i removed it */
265 __kmp_win32_mutex_lock(mx
);
266 __kmp_win32_mutex_lock(&cv
->waiters_count_lock_
);
268 cv
->waiters_count_
--;
269 cv
->release_count_
--;
271 last_waiter
= (cv
->release_count_
== 0);
273 __kmp_win32_mutex_unlock(&cv
->waiters_count_lock_
);
276 /* We're the last waiter to be notified, so reset the manual event. */
277 ResetEvent(cv
->event_
);
281 void __kmp_win32_cond_broadcast(kmp_win32_cond_t
*cv
) {
282 __kmp_win32_mutex_lock(&cv
->waiters_count_lock_
);
284 if (cv
->waiters_count_
> 0) {
285 SetEvent(cv
->event_
);
286 /* Release all the threads in this generation. */
288 cv
->release_count_
= cv
->waiters_count_
;
290 /* Start a new generation. */
291 cv
->wait_generation_count_
++;
294 __kmp_win32_mutex_unlock(&cv
->waiters_count_lock_
);
297 void __kmp_win32_cond_signal(kmp_win32_cond_t
*cv
) {
298 __kmp_win32_cond_broadcast(cv
);
301 void __kmp_enable(int new_state
) {
302 if (__kmp_init_runtime
)
303 LeaveCriticalSection(&__kmp_win32_section
);
306 void __kmp_disable(int *old_state
) {
309 if (__kmp_init_runtime
)
310 EnterCriticalSection(&__kmp_win32_section
);
313 void __kmp_suspend_initialize(void) { /* do nothing */
316 void __kmp_suspend_initialize_thread(kmp_info_t
*th
) {
317 int old_value
= KMP_ATOMIC_LD_RLX(&th
->th
.th_suspend_init
);
318 int new_value
= TRUE
;
319 // Return if already initialized
320 if (old_value
== new_value
)
322 // Wait, then return if being initialized
323 if (old_value
== -1 ||
324 !__kmp_atomic_compare_store(&th
->th
.th_suspend_init
, old_value
, -1)) {
325 while (KMP_ATOMIC_LD_ACQ(&th
->th
.th_suspend_init
) != new_value
) {
329 // Claim to be the initializer and do initializations
330 __kmp_win32_cond_init(&th
->th
.th_suspend_cv
);
331 __kmp_win32_mutex_init(&th
->th
.th_suspend_mx
);
332 KMP_ATOMIC_ST_REL(&th
->th
.th_suspend_init
, new_value
);
336 void __kmp_suspend_uninitialize_thread(kmp_info_t
*th
) {
337 if (KMP_ATOMIC_LD_ACQ(&th
->th
.th_suspend_init
)) {
338 /* this means we have initialize the suspension pthread objects for this
339 thread in this instance of the process */
340 __kmp_win32_cond_destroy(&th
->th
.th_suspend_cv
);
341 __kmp_win32_mutex_destroy(&th
->th
.th_suspend_mx
);
342 KMP_ATOMIC_ST_REL(&th
->th
.th_suspend_init
, FALSE
);
346 int __kmp_try_suspend_mx(kmp_info_t
*th
) {
347 return __kmp_win32_mutex_trylock(&th
->th
.th_suspend_mx
);
350 void __kmp_lock_suspend_mx(kmp_info_t
*th
) {
351 __kmp_win32_mutex_lock(&th
->th
.th_suspend_mx
);
354 void __kmp_unlock_suspend_mx(kmp_info_t
*th
) {
355 __kmp_win32_mutex_unlock(&th
->th
.th_suspend_mx
);
358 /* This routine puts the calling thread to sleep after setting the
359 sleep bit for the indicated flag variable to true. */
361 static inline void __kmp_suspend_template(int th_gtid
, C
*flag
) {
362 kmp_info_t
*th
= __kmp_threads
[th_gtid
];
363 typename
C::flag_t old_spin
;
365 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
366 th_gtid
, flag
->get()));
368 __kmp_suspend_initialize_thread(th
);
369 __kmp_lock_suspend_mx(th
);
371 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
373 th_gtid
, flag
->get()));
375 /* TODO: shouldn't this use release semantics to ensure that
376 __kmp_suspend_initialize_thread gets called first? */
377 old_spin
= flag
->set_sleeping();
378 TCW_PTR(th
->th
.th_sleep_loc
, (void *)flag
);
379 th
->th
.th_sleep_loc_type
= flag
->get_type();
380 if (__kmp_dflt_blocktime
== KMP_MAX_BLOCKTIME
&&
381 __kmp_pause_status
!= kmp_soft_paused
) {
382 flag
->unset_sleeping();
383 TCW_PTR(th
->th
.th_sleep_loc
, NULL
);
384 th
->th
.th_sleep_loc_type
= flag_unset
;
385 __kmp_unlock_suspend_mx(th
);
389 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
391 th_gtid
, flag
->get(), (unsigned int)flag
->load()));
393 if (flag
->done_check_val(old_spin
) || flag
->done_check()) {
394 flag
->unset_sleeping();
395 TCW_PTR(th
->th
.th_sleep_loc
, NULL
);
396 th
->th
.th_sleep_loc_type
= flag_unset
;
397 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
398 "for flag's loc(%p)\n",
399 th_gtid
, flag
->get()));
402 __kmp_suspend_count
++;
404 /* Encapsulate in a loop as the documentation states that this may "with
405 low probability" return when the condition variable has not been signaled
407 int deactivated
= FALSE
;
409 while (flag
->is_sleeping()) {
410 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
411 "kmp_win32_cond_wait()\n",
413 // Mark the thread as no longer active (only in the first iteration of the
416 th
->th
.th_active
= FALSE
;
417 if (th
->th
.th_active_in_pool
) {
418 th
->th
.th_active_in_pool
= FALSE
;
419 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth
);
420 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth
) >= 0);
425 KMP_DEBUG_ASSERT(th
->th
.th_sleep_loc
);
426 KMP_DEBUG_ASSERT(th
->th
.th_sleep_loc_type
== flag
->get_type());
428 __kmp_win32_cond_wait(&th
->th
.th_suspend_cv
, &th
->th
.th_suspend_mx
, th
,
432 if (flag
->is_sleeping()) {
434 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid
));
436 #endif /* KMP_DEBUG */
440 // We may have had the loop variable set before entering the loop body;
441 // so we need to reset sleep_loc.
442 TCW_PTR(th
->th
.th_sleep_loc
, NULL
);
443 th
->th
.th_sleep_loc_type
= flag_unset
;
445 KMP_DEBUG_ASSERT(!flag
->is_sleeping());
446 KMP_DEBUG_ASSERT(!th
->th
.th_sleep_loc
);
448 // Mark the thread as active again (if it was previous marked as inactive)
450 th
->th
.th_active
= TRUE
;
451 if (TCR_4(th
->th
.th_in_pool
)) {
452 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth
);
453 th
->th
.th_active_in_pool
= TRUE
;
458 __kmp_unlock_suspend_mx(th
);
459 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid
));
462 template <bool C
, bool S
>
463 void __kmp_suspend_32(int th_gtid
, kmp_flag_32
<C
, S
> *flag
) {
464 __kmp_suspend_template(th_gtid
, flag
);
466 template <bool C
, bool S
>
467 void __kmp_suspend_64(int th_gtid
, kmp_flag_64
<C
, S
> *flag
) {
468 __kmp_suspend_template(th_gtid
, flag
);
470 template <bool C
, bool S
>
471 void __kmp_atomic_suspend_64(int th_gtid
, kmp_atomic_flag_64
<C
, S
> *flag
) {
472 __kmp_suspend_template(th_gtid
, flag
);
474 void __kmp_suspend_oncore(int th_gtid
, kmp_flag_oncore
*flag
) {
475 __kmp_suspend_template(th_gtid
, flag
);
478 template void __kmp_suspend_32
<false, false>(int, kmp_flag_32
<false, false> *);
479 template void __kmp_suspend_64
<false, true>(int, kmp_flag_64
<false, true> *);
480 template void __kmp_suspend_64
<true, false>(int, kmp_flag_64
<true, false> *);
482 __kmp_atomic_suspend_64
<false, true>(int, kmp_atomic_flag_64
<false, true> *);
484 __kmp_atomic_suspend_64
<true, false>(int, kmp_atomic_flag_64
<true, false> *);
486 /* This routine signals the thread specified by target_gtid to wake up
487 after setting the sleep bit indicated by the flag argument to FALSE */
489 static inline void __kmp_resume_template(int target_gtid
, C
*flag
) {
490 kmp_info_t
*th
= __kmp_threads
[target_gtid
];
493 int gtid
= TCR_4(__kmp_init_gtid
) ? __kmp_get_gtid() : -1;
496 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
499 __kmp_suspend_initialize_thread(th
);
500 __kmp_lock_suspend_mx(th
);
502 if (!flag
|| flag
!= th
->th
.th_sleep_loc
) {
503 // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
504 // different location; wake up at new location
505 flag
= (C
*)th
->th
.th_sleep_loc
;
508 // First, check if the flag is null or its type has changed. If so, someone
510 if (!flag
|| flag
->get_type() != th
->th
.th_sleep_loc_type
) {
511 // simply shows what flag was cast to
512 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
513 "awake: flag's loc(%p)\n",
514 gtid
, target_gtid
, NULL
));
515 __kmp_unlock_suspend_mx(th
);
518 if (!flag
->is_sleeping()) {
519 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
520 "awake: flag's loc(%p): %u\n",
521 gtid
, target_gtid
, flag
->get(), (unsigned int)flag
->load()));
522 __kmp_unlock_suspend_mx(th
);
526 KMP_DEBUG_ASSERT(flag
);
527 flag
->unset_sleeping();
528 TCW_PTR(th
->th
.th_sleep_loc
, NULL
);
529 th
->th
.th_sleep_loc_type
= flag_unset
;
531 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
532 "bit for flag's loc(%p)\n",
533 gtid
, target_gtid
, flag
->get()));
535 __kmp_win32_cond_signal(&th
->th
.th_suspend_cv
);
536 __kmp_unlock_suspend_mx(th
);
538 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
543 template <bool C
, bool S
>
544 void __kmp_resume_32(int target_gtid
, kmp_flag_32
<C
, S
> *flag
) {
545 __kmp_resume_template(target_gtid
, flag
);
547 template <bool C
, bool S
>
548 void __kmp_resume_64(int target_gtid
, kmp_flag_64
<C
, S
> *flag
) {
549 __kmp_resume_template(target_gtid
, flag
);
551 template <bool C
, bool S
>
552 void __kmp_atomic_resume_64(int target_gtid
, kmp_atomic_flag_64
<C
, S
> *flag
) {
553 __kmp_resume_template(target_gtid
, flag
);
555 void __kmp_resume_oncore(int target_gtid
, kmp_flag_oncore
*flag
) {
556 __kmp_resume_template(target_gtid
, flag
);
559 template void __kmp_resume_32
<false, true>(int, kmp_flag_32
<false, true> *);
560 template void __kmp_resume_32
<false, false>(int, kmp_flag_32
<false, false> *);
561 template void __kmp_resume_64
<false, true>(int, kmp_flag_64
<false, true> *);
563 __kmp_atomic_resume_64
<false, true>(int, kmp_atomic_flag_64
<false, true> *);
565 void __kmp_yield() { Sleep(0); }
567 void __kmp_gtid_set_specific(int gtid
) {
568 if (__kmp_init_gtid
) {
569 KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid
,
570 __kmp_gtid_threadprivate_key
));
571 kmp_intptr_t g
= (kmp_intptr_t
)gtid
;
572 if (!TlsSetValue(__kmp_gtid_threadprivate_key
, (LPVOID
)(g
+ 1)))
573 KMP_FATAL(TLSSetValueFailed
);
575 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
579 int __kmp_gtid_get_specific() {
581 if (!__kmp_init_gtid
) {
582 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
583 "KMP_GTID_SHUTDOWN\n"));
584 return KMP_GTID_SHUTDOWN
;
586 gtid
= (int)(kmp_intptr_t
)TlsGetValue(__kmp_gtid_threadprivate_key
);
592 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
593 __kmp_gtid_threadprivate_key
, gtid
));
597 void __kmp_affinity_bind_thread(int proc
) {
598 if (__kmp_num_proc_groups
> 1) {
599 // Form the GROUP_AFFINITY struct directly, rather than filling
600 // out a bit vector and calling __kmp_set_system_affinity().
602 KMP_DEBUG_ASSERT((proc
>= 0) && (proc
< (__kmp_num_proc_groups
* CHAR_BIT
*
603 sizeof(DWORD_PTR
))));
604 ga
.Group
= proc
/ (CHAR_BIT
* sizeof(DWORD_PTR
));
605 ga
.Mask
= (unsigned long long)1 << (proc
% (CHAR_BIT
* sizeof(DWORD_PTR
)));
606 ga
.Reserved
[0] = ga
.Reserved
[1] = ga
.Reserved
[2] = 0;
608 KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity
!= NULL
);
609 if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga
, NULL
) == 0) {
610 DWORD error
= GetLastError();
611 // AC: continue silently if not verbose
612 if (__kmp_affinity
.flags
.verbose
) {
613 kmp_msg_t err_code
= KMP_ERR(error
);
614 __kmp_msg(kmp_ms_warning
, KMP_MSG(CantSetThreadAffMask
), err_code
,
616 if (__kmp_generate_warnings
== kmp_warnings_off
) {
617 __kmp_str_free(&err_code
.str
);
622 kmp_affin_mask_t
*mask
;
623 KMP_CPU_ALLOC_ON_STACK(mask
);
625 KMP_CPU_SET(proc
, mask
);
626 __kmp_set_system_affinity(mask
, TRUE
);
627 KMP_CPU_FREE_FROM_STACK(mask
);
631 void __kmp_affinity_determine_capable(const char *env_var
) {
632 // All versions of Windows* OS (since Win '95) support
633 // SetThreadAffinityMask().
635 #if KMP_GROUP_AFFINITY
636 KMP_AFFINITY_ENABLE(__kmp_num_proc_groups
* sizeof(DWORD_PTR
));
638 KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR
));
641 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
642 "Windows* OS affinity interface functional (mask size = "
643 "%" KMP_SIZE_T_SPEC
").\n",
644 __kmp_affin_mask_size
));
647 double __kmp_read_cpu_time(void) {
648 FILETIME CreationTime
, ExitTime
, KernelTime
, UserTime
;
654 status
= GetProcessTimes(GetCurrentProcess(), &CreationTime
, &ExitTime
,
655 &KernelTime
, &UserTime
);
660 sec
+= KernelTime
.dwHighDateTime
;
661 sec
+= UserTime
.dwHighDateTime
;
663 /* Shift left by 32 bits */
664 sec
*= (double)(1 << 16) * (double)(1 << 16);
666 sec
+= KernelTime
.dwLowDateTime
;
667 sec
+= UserTime
.dwLowDateTime
;
669 cpu_time
+= (sec
* 100.0) / KMP_NSEC_PER_SEC
;
675 int __kmp_read_system_info(struct kmp_sys_info
*info
) {
676 info
->maxrss
= 0; /* the maximum resident set size utilized (in kilobytes) */
677 info
->minflt
= 0; /* the number of page faults serviced without any I/O */
678 info
->majflt
= 0; /* the number of page faults serviced that required I/O */
679 info
->nswap
= 0; // the number of times a process was "swapped" out of memory
680 info
->inblock
= 0; // the number of times the file system had to perform input
681 info
->oublock
= 0; // number of times the file system had to perform output
682 info
->nvcsw
= 0; /* the number of times a context switch was voluntarily */
683 info
->nivcsw
= 0; /* the number of times a context switch was forced */
688 void __kmp_runtime_initialize(void) {
693 if (__kmp_init_runtime
) {
698 /* Pin dynamic library for the lifetime of application */
700 // First, turn off error message boxes
701 UINT err_mode
= SetErrorMode(SEM_FAILCRITICALERRORS
);
703 BOOL ret
= GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS
|
704 GET_MODULE_HANDLE_EX_FLAG_PIN
,
705 (LPCTSTR
)&__kmp_serial_initialize
, &h
);
707 KMP_DEBUG_ASSERT2(h
&& ret
, "OpenMP RTL cannot find itself loaded");
708 SetErrorMode(err_mode
); // Restore error mode
709 KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
713 InitializeCriticalSection(&__kmp_win32_section
);
715 __kmp_itt_system_object_created(&__kmp_win32_section
, "Critical Section");
716 #endif /* USE_ITT_BUILD */
717 __kmp_initialize_system_tick();
719 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
720 if (!__kmp_cpuinfo
.initialized
) {
721 __kmp_query_cpuid(&__kmp_cpuinfo
);
723 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
725 /* Set up minimum number of threads to switch to TLS gtid */
726 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
727 // Windows* OS, static library.
728 /* New thread may use stack space previously used by another thread,
729 currently terminated. On Windows* OS, in case of static linking, we do not
730 know the moment of thread termination, and our structures (__kmp_threads
731 and __kmp_root arrays) are still keep info about dead threads. This leads
732 to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
733 (by searching through stack addresses of all known threads) for
734 unregistered foreign tread.
736 Setting __kmp_tls_gtid_min to 0 workarounds this problem:
737 __kmp_get_global_thread_id() does not search through stacks, but get gtid
738 from TLS immediately.
741 __kmp_tls_gtid_min
= 0;
743 __kmp_tls_gtid_min
= KMP_TLS_GTID_MIN
;
746 /* for the static library */
747 if (!__kmp_gtid_threadprivate_key
) {
748 __kmp_gtid_threadprivate_key
= TlsAlloc();
749 if (__kmp_gtid_threadprivate_key
== TLS_OUT_OF_INDEXES
) {
750 KMP_FATAL(TLSOutOfIndexes
);
755 /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
756 (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
757 have to specify full path to the library. */
758 __kmp_str_buf_init(&path
);
759 path_size
= GetSystemDirectory(path
.str
, path
.size
);
760 KMP_DEBUG_ASSERT(path_size
> 0);
761 if (path_size
>= path
.size
) {
762 // Buffer is too short. Expand the buffer and try again.
763 __kmp_str_buf_reserve(&path
, path_size
);
764 path_size
= GetSystemDirectory(path
.str
, path
.size
);
765 KMP_DEBUG_ASSERT(path_size
> 0);
767 if (path_size
> 0 && path_size
< path
.size
) {
768 // Now we have system directory name in the buffer.
769 // Append backslash and name of dll to form full path,
770 path
.used
= path_size
;
771 __kmp_str_buf_print(&path
, "\\%s", "ntdll.dll");
773 // Now load ntdll using full path.
774 ntdll
= GetModuleHandle(path
.str
);
777 KMP_DEBUG_ASSERT(ntdll
!= NULL
);
779 NtQuerySystemInformation
= (NtQuerySystemInformation_t
)GetProcAddress(
780 ntdll
, "NtQuerySystemInformation");
782 KMP_DEBUG_ASSERT(NtQuerySystemInformation
!= NULL
);
784 #if KMP_GROUP_AFFINITY
785 // Load kernel32.dll.
786 // Same caveat - must use full system path name.
787 if (path_size
> 0 && path_size
< path
.size
) {
788 // Truncate the buffer back to just the system path length,
789 // discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
790 path
.used
= path_size
;
791 __kmp_str_buf_print(&path
, "\\%s", "kernel32.dll");
793 // Load kernel32.dll using full path.
794 kernel32
= GetModuleHandle(path
.str
);
795 KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path
.str
));
797 // Load the function pointers to kernel32.dll routines
798 // that may or may not exist on this system.
799 if (kernel32
!= NULL
) {
800 __kmp_GetActiveProcessorCount
=
801 (kmp_GetActiveProcessorCount_t
)GetProcAddress(
802 kernel32
, "GetActiveProcessorCount");
803 __kmp_GetActiveProcessorGroupCount
=
804 (kmp_GetActiveProcessorGroupCount_t
)GetProcAddress(
805 kernel32
, "GetActiveProcessorGroupCount");
806 __kmp_GetThreadGroupAffinity
=
807 (kmp_GetThreadGroupAffinity_t
)GetProcAddress(
808 kernel32
, "GetThreadGroupAffinity");
809 __kmp_SetThreadGroupAffinity
=
810 (kmp_SetThreadGroupAffinity_t
)GetProcAddress(
811 kernel32
, "SetThreadGroupAffinity");
813 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
815 __kmp_GetActiveProcessorCount
));
816 KA_TRACE(10, ("__kmp_runtime_initialize: "
817 "__kmp_GetActiveProcessorGroupCount = %p\n",
818 __kmp_GetActiveProcessorGroupCount
));
819 KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
821 __kmp_GetThreadGroupAffinity
));
822 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
824 __kmp_SetThreadGroupAffinity
));
825 KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
826 sizeof(kmp_affin_mask_t
)));
828 // See if group affinity is supported on this system.
829 // If so, calculate the #groups and #procs.
831 // Group affinity was introduced with Windows* 7 OS and
832 // Windows* Server 2008 R2 OS.
833 if ((__kmp_GetActiveProcessorCount
!= NULL
) &&
834 (__kmp_GetActiveProcessorGroupCount
!= NULL
) &&
835 (__kmp_GetThreadGroupAffinity
!= NULL
) &&
836 (__kmp_SetThreadGroupAffinity
!= NULL
) &&
837 ((__kmp_num_proc_groups
= __kmp_GetActiveProcessorGroupCount()) >
839 // Calculate the total number of active OS procs.
842 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
844 __kmp_num_proc_groups
));
848 for (i
= 0; i
< __kmp_num_proc_groups
; i
++) {
849 DWORD size
= __kmp_GetActiveProcessorCount(i
);
851 KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
855 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
857 __kmp_num_proc_groups
));
861 if (__kmp_num_proc_groups
<= 1) {
862 GetSystemInfo(&info
);
863 __kmp_xproc
= info
.dwNumberOfProcessors
;
867 GetSystemInfo(&info
);
868 __kmp_xproc
= info
.dwNumberOfProcessors
;
869 #endif /* KMP_GROUP_AFFINITY */
871 // If the OS said there were 0 procs, take a guess and use a value of 2.
872 // This is done for Linux* OS, also. Do we need error / warning?
873 if (__kmp_xproc
<= 0) {
878 ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc
));
880 __kmp_str_buf_free(&path
);
883 __kmp_itt_initialize();
884 #endif /* USE_ITT_BUILD */
886 __kmp_init_runtime
= TRUE
;
887 } // __kmp_runtime_initialize
889 void __kmp_runtime_destroy(void) {
890 if (!__kmp_init_runtime
) {
896 #endif /* USE_ITT_BUILD */
898 /* we can't DeleteCriticalsection( & __kmp_win32_section ); */
899 /* due to the KX_TRACE() commands */
900 KA_TRACE(40, ("__kmp_runtime_destroy\n"));
902 if (__kmp_gtid_threadprivate_key
) {
903 TlsFree(__kmp_gtid_threadprivate_key
);
904 __kmp_gtid_threadprivate_key
= 0;
907 __kmp_affinity_uninitialize();
908 DeleteCriticalSection(&__kmp_win32_section
);
911 NtQuerySystemInformation
= NULL
;
915 __kmp_GetActiveProcessorCount
= NULL
;
916 __kmp_GetActiveProcessorGroupCount
= NULL
;
917 __kmp_GetThreadGroupAffinity
= NULL
;
918 __kmp_SetThreadGroupAffinity
= NULL
;
919 #endif // KMP_ARCH_X86_64
921 __kmp_init_runtime
= FALSE
;
924 void __kmp_terminate_thread(int gtid
) {
925 kmp_info_t
*th
= __kmp_threads
[gtid
];
930 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid
));
932 if (TerminateThread(th
->th
.th_info
.ds
.ds_thread
, (DWORD
)-1) == FALSE
) {
933 /* It's OK, the thread may have exited already */
935 __kmp_free_handle(th
->th
.th_info
.ds
.ds_thread
);
938 void __kmp_clear_system_time(void) {
940 QueryPerformanceCounter(&time
);
941 __kmp_win32_time
= (kmp_int64
)time
.QuadPart
;
944 void __kmp_initialize_system_tick(void) {
949 status
= QueryPerformanceFrequency(&freq
);
951 DWORD error
= GetLastError();
952 __kmp_fatal(KMP_MSG(FunctionError
, "QueryPerformanceFrequency()"),
953 KMP_ERR(error
), __kmp_msg_null
);
956 __kmp_win32_tick
= ((double)1.0) / (double)freq
.QuadPart
;
961 /* Calculate the elapsed wall clock time for the user */
963 void __kmp_elapsed(double *t
) {
965 QueryPerformanceCounter(&now
);
966 *t
= ((double)now
.QuadPart
) * __kmp_win32_tick
;
969 /* Calculate the elapsed wall clock tick for the user */
971 void __kmp_elapsed_tick(double *t
) { *t
= __kmp_win32_tick
; }
973 void __kmp_read_system_time(double *delta
) {
976 QueryPerformanceCounter(&now
);
977 *delta
= ((double)(((kmp_int64
)now
.QuadPart
) - __kmp_win32_time
)) *
982 /* Return the current time stamp in nsec */
983 kmp_uint64
__kmp_now_nsec() {
985 QueryPerformanceCounter(&now
);
986 return 1e9
* __kmp_win32_tick
* now
.QuadPart
;
989 extern "C" void *__stdcall
__kmp_launch_worker(void *arg
) {
990 volatile void *stack_data
;
993 kmp_info_t
*this_thr
= (kmp_info_t
*)arg
;
996 gtid
= this_thr
->th
.th_info
.ds
.ds_gtid
;
997 __kmp_gtid_set_specific(gtid
);
998 #ifdef KMP_TDATA_GTID
999 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1000 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
1001 "reference: http://support.microsoft.com/kb/118816"
1002 //__kmp_gtid = gtid;
1006 __kmp_itt_thread_name(gtid
);
1007 #endif /* USE_ITT_BUILD */
1009 __kmp_affinity_bind_init_mask(gtid
);
1011 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1012 // Set FP control regs to be a copy of the parallel initialization thread's.
1013 __kmp_clear_x87_fpu_status_word();
1014 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word
);
1015 __kmp_load_mxcsr(&__kmp_init_mxcsr
);
1016 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1018 if (__kmp_stkoffset
> 0 && gtid
> 0) {
1019 padding
= KMP_ALLOCA(gtid
* __kmp_stkoffset
);
1023 KMP_FSYNC_RELEASING(&this_thr
->th
.th_info
.ds
.ds_alive
);
1024 this_thr
->th
.th_info
.ds
.ds_thread_id
= GetCurrentThreadId();
1025 TCW_4(this_thr
->th
.th_info
.ds
.ds_alive
, TRUE
);
1027 if (TCR_4(__kmp_gtid_mode
) <
1028 2) { // check stack only if it is used to get gtid
1029 TCW_PTR(this_thr
->th
.th_info
.ds
.ds_stackbase
, &stack_data
);
1030 KMP_ASSERT(this_thr
->th
.th_info
.ds
.ds_stackgrow
== FALSE
);
1031 __kmp_check_stack_overlap(this_thr
);
1034 exit_val
= __kmp_launch_thread(this_thr
);
1035 KMP_FSYNC_RELEASING(&this_thr
->th
.th_info
.ds
.ds_alive
);
1036 TCW_4(this_thr
->th
.th_info
.ds
.ds_alive
, FALSE
);
1042 /* The monitor thread controls all of the threads in the complex */
1044 void *__stdcall
__kmp_launch_monitor(void *arg
) {
1046 kmp_thread_t monitor
;
1049 kmp_info_t
*this_thr
= (kmp_info_t
*)arg
;
1051 KMP_DEBUG_ASSERT(__kmp_init_monitor
);
1052 TCW_4(__kmp_init_monitor
, 2); // AC: Signal library that monitor has started
1053 // TODO: hide "2" in enum (like {true,false,started})
1054 this_thr
->th
.th_info
.ds
.ds_thread_id
= GetCurrentThreadId();
1055 TCW_4(this_thr
->th
.th_info
.ds
.ds_alive
, TRUE
);
1057 KMP_MB(); /* Flush all pending memory write invalidates. */
1058 KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
1060 monitor
= GetCurrentThread();
1062 /* set thread priority */
1063 status
= SetThreadPriority(monitor
, THREAD_PRIORITY_HIGHEST
);
1065 DWORD error
= GetLastError();
1066 __kmp_fatal(KMP_MSG(CantSetThreadPriority
), KMP_ERR(error
), __kmp_msg_null
);
1069 /* register us as monitor */
1070 __kmp_gtid_set_specific(KMP_GTID_MONITOR
);
1071 #ifdef KMP_TDATA_GTID
1072 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1073 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
1074 "reference: http://support.microsoft.com/kb/118816"
1075 //__kmp_gtid = KMP_GTID_MONITOR;
1079 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
1081 #endif /* USE_ITT_BUILD */
1083 KMP_MB(); /* Flush all pending memory write invalidates. */
1085 interval
= (1000 / __kmp_monitor_wakeups
); /* in milliseconds */
1087 while (!TCR_4(__kmp_global
.g
.g_done
)) {
1088 /* This thread monitors the state of the system */
1090 KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
1092 wait_status
= WaitForSingleObject(__kmp_monitor_ev
, interval
);
1094 if (wait_status
== WAIT_TIMEOUT
) {
1095 TCW_4(__kmp_global
.g
.g_time
.dt
.t_value
,
1096 TCR_4(__kmp_global
.g
.g_time
.dt
.t_value
) + 1);
1099 KMP_MB(); /* Flush all pending memory write invalidates. */
1102 KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
1104 status
= SetThreadPriority(monitor
, THREAD_PRIORITY_NORMAL
);
1106 DWORD error
= GetLastError();
1107 __kmp_fatal(KMP_MSG(CantSetThreadPriority
), KMP_ERR(error
), __kmp_msg_null
);
1110 if (__kmp_global
.g
.g_abort
!= 0) {
1111 /* now we need to terminate the worker threads */
1112 /* the value of t_abort is the signal we caught */
1115 KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
1116 (__kmp_global
.g
.g_abort
)));
1118 /* terminate the OpenMP worker threads */
1119 /* TODO this is not valid for sibling threads!!
1120 * the uber master might not be 0 anymore.. */
1121 for (gtid
= 1; gtid
< __kmp_threads_capacity
; ++gtid
)
1122 __kmp_terminate_thread(gtid
);
1129 ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global
.g
.g_abort
));
1131 if (__kmp_global
.g
.g_abort
> 0) {
1132 raise(__kmp_global
.g
.g_abort
);
1136 TCW_4(this_thr
->th
.th_info
.ds
.ds_alive
, FALSE
);
1143 void __kmp_create_worker(int gtid
, kmp_info_t
*th
, size_t stack_size
) {
1144 kmp_thread_t handle
;
1147 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid
));
1149 th
->th
.th_info
.ds
.ds_gtid
= gtid
;
1151 if (KMP_UBER_GTID(gtid
)) {
1154 /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
1155 other threads to use. Is it appropriate to just use GetCurrentThread?
1156 When should we close this handle? When unregistering the root? */
1159 rc
= DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
1160 GetCurrentProcess(), &th
->th
.th_info
.ds
.ds_thread
, 0,
1161 FALSE
, DUPLICATE_SAME_ACCESS
);
1163 KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
1164 "handle = %" KMP_UINTPTR_SPEC
"\n",
1165 (LPVOID
)th
, th
->th
.th_info
.ds
.ds_thread
));
1166 th
->th
.th_info
.ds
.ds_thread_id
= GetCurrentThreadId();
1168 if (TCR_4(__kmp_gtid_mode
) < 2) { // check stack only if used to get gtid
1169 /* we will dynamically update the stack range if gtid_mode == 1 */
1170 TCW_PTR(th
->th
.th_info
.ds
.ds_stackbase
, &stack_data
);
1171 TCW_PTR(th
->th
.th_info
.ds
.ds_stacksize
, 0);
1172 TCW_4(th
->th
.th_info
.ds
.ds_stackgrow
, TRUE
);
1173 __kmp_check_stack_overlap(th
);
1176 KMP_MB(); /* Flush all pending memory write invalidates. */
1178 /* Set stack size for this thread now. */
1180 ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC
" bytes\n",
1183 stack_size
+= gtid
* __kmp_stkoffset
;
1185 TCW_PTR(th
->th
.th_info
.ds
.ds_stacksize
, stack_size
);
1186 TCW_4(th
->th
.th_info
.ds
.ds_stackgrow
, FALSE
);
1189 ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
1190 " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
1191 (SIZE_T
)stack_size
, (LPTHREAD_START_ROUTINE
)&__kmp_launch_worker
,
1192 (LPVOID
)th
, &idThread
));
1194 handle
= CreateThread(
1195 NULL
, (SIZE_T
)stack_size
, (LPTHREAD_START_ROUTINE
)__kmp_launch_worker
,
1196 (LPVOID
)th
, STACK_SIZE_PARAM_IS_A_RESERVATION
, &idThread
);
1199 ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
1200 " bytes, &__kmp_launch_worker = %p, th = %p, "
1201 "idThread = %u, handle = %" KMP_UINTPTR_SPEC
"\n",
1202 (SIZE_T
)stack_size
, (LPTHREAD_START_ROUTINE
)&__kmp_launch_worker
,
1203 (LPVOID
)th
, idThread
, handle
));
1206 DWORD error
= GetLastError();
1207 __kmp_fatal(KMP_MSG(CantCreateThread
), KMP_ERR(error
), __kmp_msg_null
);
1209 th
->th
.th_info
.ds
.ds_thread
= handle
;
1212 KMP_MB(); /* Flush all pending memory write invalidates. */
1215 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid
));
1218 int __kmp_still_running(kmp_info_t
*th
) {
1219 return (WAIT_TIMEOUT
== WaitForSingleObject(th
->th
.th_info
.ds
.ds_thread
, 0));
1223 void __kmp_create_monitor(kmp_info_t
*th
) {
1224 kmp_thread_t handle
;
1226 int ideal
, new_ideal
;
1228 if (__kmp_dflt_blocktime
== KMP_MAX_BLOCKTIME
) {
1229 // We don't need monitor thread in case of MAX_BLOCKTIME
1230 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
1231 "MAX blocktime\n"));
1232 th
->th
.th_info
.ds
.ds_tid
= 0; // this makes reap_monitor no-op
1233 th
->th
.th_info
.ds
.ds_gtid
= 0;
1234 TCW_4(__kmp_init_monitor
, 2); // Signal to stop waiting for monitor creation
1237 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
1239 KMP_MB(); /* Flush all pending memory write invalidates. */
1241 __kmp_monitor_ev
= CreateEvent(NULL
, TRUE
, FALSE
, NULL
);
1242 if (__kmp_monitor_ev
== NULL
) {
1243 DWORD error
= GetLastError();
1244 __kmp_fatal(KMP_MSG(CantCreateEvent
), KMP_ERR(error
), __kmp_msg_null
);
1247 __kmp_itt_system_object_created(__kmp_monitor_ev
, "Event");
1248 #endif /* USE_ITT_BUILD */
1250 th
->th
.th_info
.ds
.ds_tid
= KMP_GTID_MONITOR
;
1251 th
->th
.th_info
.ds
.ds_gtid
= KMP_GTID_MONITOR
;
1253 // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
1254 // to automatically expand stacksize based on CreateThread error code.
1255 if (__kmp_monitor_stksize
== 0) {
1256 __kmp_monitor_stksize
= KMP_DEFAULT_MONITOR_STKSIZE
;
1258 if (__kmp_monitor_stksize
< __kmp_sys_min_stksize
) {
1259 __kmp_monitor_stksize
= __kmp_sys_min_stksize
;
1262 KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
1263 (int)__kmp_monitor_stksize
));
1265 TCW_4(__kmp_global
.g
.g_time
.dt
.t_value
, 0);
1268 CreateThread(NULL
, (SIZE_T
)__kmp_monitor_stksize
,
1269 (LPTHREAD_START_ROUTINE
)__kmp_launch_monitor
, (LPVOID
)th
,
1270 STACK_SIZE_PARAM_IS_A_RESERVATION
, &idThread
);
1272 DWORD error
= GetLastError();
1273 __kmp_fatal(KMP_MSG(CantCreateThread
), KMP_ERR(error
), __kmp_msg_null
);
1275 th
->th
.th_info
.ds
.ds_thread
= handle
;
1277 KMP_MB(); /* Flush all pending memory write invalidates. */
1279 KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
1280 (void *)th
->th
.th_info
.ds
.ds_thread
));
1284 /* Check to see if thread is still alive.
1285 NOTE: The ExitProcess(code) system call causes all threads to Terminate
1286 with a exit_val = code. Because of this we can not rely on exit_val having
1287 any particular value. So this routine may return STILL_ALIVE in exit_val
1288 even after the thread is dead. */
1290 int __kmp_is_thread_alive(kmp_info_t
*th
, DWORD
*exit_val
) {
1292 rc
= GetExitCodeThread(th
->th
.th_info
.ds
.ds_thread
, exit_val
);
1294 DWORD error
= GetLastError();
1295 __kmp_fatal(KMP_MSG(FunctionError
, "GetExitCodeThread()"), KMP_ERR(error
),
1298 return (*exit_val
== STILL_ACTIVE
);
1301 void __kmp_exit_thread(int exit_status
) {
1302 ExitThread(exit_status
);
1303 } // __kmp_exit_thread
1305 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
1306 static void __kmp_reap_common(kmp_info_t
*th
) {
1309 KMP_MB(); /* Flush all pending memory write invalidates. */
1312 10, ("__kmp_reap_common: try to reap (%d)\n", th
->th
.th_info
.ds
.ds_gtid
));
1315 There are two opposite situations:
1316 1. Windows* OS keep thread alive after it resets ds_alive flag and
1317 exits from thread function. (For example, see C70770/Q394281 "unloading of
1318 dll based on OMP is very slow".)
1319 2. Windows* OS may kill thread before it resets ds_alive flag.
1321 Right solution seems to be waiting for *either* thread termination *or*
1322 ds_alive resetting. */
1324 // TODO: This code is very similar to KMP_WAIT. Need to generalize
1325 // KMP_WAIT to cover this usage also.
1330 KMP_FSYNC_SPIN_INIT(obj
, (void *)&th
->th
.th_info
.ds
.ds_alive
);
1331 #endif /* USE_ITT_BUILD */
1332 KMP_INIT_YIELD(spins
);
1333 KMP_INIT_BACKOFF(time
);
1336 KMP_FSYNC_SPIN_PREPARE(obj
);
1337 #endif /* USE_ITT_BUILD */
1338 __kmp_is_thread_alive(th
, &exit_val
);
1339 KMP_YIELD_OVERSUB_ELSE_SPIN(spins
, time
);
1340 } while (exit_val
== STILL_ACTIVE
&& TCR_4(th
->th
.th_info
.ds
.ds_alive
));
1342 if (exit_val
== STILL_ACTIVE
) {
1343 KMP_FSYNC_CANCEL(obj
);
1345 KMP_FSYNC_SPIN_ACQUIRED(obj
);
1347 #endif /* USE_ITT_BUILD */
1350 __kmp_free_handle(th
->th
.th_info
.ds
.ds_thread
);
1352 /* NOTE: The ExitProcess(code) system call causes all threads to Terminate
1353 with a exit_val = code. Because of this we can not rely on exit_val having
1354 any particular value. */
1355 kmp_intptr_t e
= (kmp_intptr_t
)exit_val
;
1356 if (exit_val
== STILL_ACTIVE
) {
1357 KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
1358 } else if ((void *)e
!= (void *)th
) {
1359 KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
1363 ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
1365 th
->th
.th_info
.ds
.ds_gtid
, th
->th
.th_info
.ds
.ds_thread
));
1367 th
->th
.th_info
.ds
.ds_thread
= 0;
1368 th
->th
.th_info
.ds
.ds_tid
= KMP_GTID_DNE
;
1369 th
->th
.th_info
.ds
.ds_gtid
= KMP_GTID_DNE
;
1370 th
->th
.th_info
.ds
.ds_thread_id
= 0;
1372 KMP_MB(); /* Flush all pending memory write invalidates. */
1376 void __kmp_reap_monitor(kmp_info_t
*th
) {
1379 KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
1380 (void *)th
->th
.th_info
.ds
.ds_thread
));
1382 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1383 // If both tid and gtid are 0, it means the monitor did not ever start.
1384 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1385 KMP_DEBUG_ASSERT(th
->th
.th_info
.ds
.ds_tid
== th
->th
.th_info
.ds
.ds_gtid
);
1386 if (th
->th
.th_info
.ds
.ds_gtid
!= KMP_GTID_MONITOR
) {
1387 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1391 KMP_MB(); /* Flush all pending memory write invalidates. */
1393 status
= SetEvent(__kmp_monitor_ev
);
1394 if (status
== FALSE
) {
1395 DWORD error
= GetLastError();
1396 __kmp_fatal(KMP_MSG(CantSetEvent
), KMP_ERR(error
), __kmp_msg_null
);
1398 KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
1399 th
->th
.th_info
.ds
.ds_gtid
));
1400 __kmp_reap_common(th
);
1402 __kmp_free_handle(__kmp_monitor_ev
);
1404 KMP_MB(); /* Flush all pending memory write invalidates. */
1408 void __kmp_reap_worker(kmp_info_t
*th
) {
1409 KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
1410 th
->th
.th_info
.ds
.ds_gtid
));
1411 __kmp_reap_common(th
);
1414 #if KMP_HANDLE_SIGNALS
1416 static void __kmp_team_handler(int signo
) {
1417 if (__kmp_global
.g
.g_abort
== 0) {
1418 // Stage 1 signal handler, let's shut down all of the threads.
1419 if (__kmp_debug_buf
) {
1420 __kmp_dump_debug_buffer();
1422 KMP_MB(); // Flush all pending memory write invalidates.
1423 TCW_4(__kmp_global
.g
.g_abort
, signo
);
1424 KMP_MB(); // Flush all pending memory write invalidates.
1425 TCW_4(__kmp_global
.g
.g_done
, TRUE
);
1426 KMP_MB(); // Flush all pending memory write invalidates.
1428 } // __kmp_team_handler
1430 static sig_func_t
__kmp_signal(int signum
, sig_func_t handler
) {
1431 sig_func_t old
= signal(signum
, handler
);
1432 if (old
== SIG_ERR
) {
1434 __kmp_fatal(KMP_MSG(FunctionError
, "signal"), KMP_ERR(error
),
1440 static void __kmp_install_one_handler(int sig
, sig_func_t handler
,
1441 int parallel_init
) {
1443 KMP_MB(); /* Flush all pending memory write invalidates. */
1444 KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig
));
1445 if (parallel_init
) {
1446 old
= __kmp_signal(sig
, handler
);
1447 // SIG_DFL on Windows* OS in NULL or 0.
1448 if (old
== __kmp_sighldrs
[sig
]) {
1449 __kmp_siginstalled
[sig
] = 1;
1450 } else { // Restore/keep user's handler if one previously installed.
1451 old
= __kmp_signal(sig
, old
);
1454 // Save initial/system signal handlers to see if user handlers installed.
1455 // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
1456 // called once with parallel_init == TRUE.
1457 old
= __kmp_signal(sig
, SIG_DFL
);
1458 __kmp_sighldrs
[sig
] = old
;
1459 __kmp_signal(sig
, old
);
1461 KMP_MB(); /* Flush all pending memory write invalidates. */
1462 } // __kmp_install_one_handler
1464 static void __kmp_remove_one_handler(int sig
) {
1465 if (__kmp_siginstalled
[sig
]) {
1467 KMP_MB(); // Flush all pending memory write invalidates.
1468 KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig
));
1469 old
= __kmp_signal(sig
, __kmp_sighldrs
[sig
]);
1470 if (old
!= __kmp_team_handler
) {
1471 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1472 "restoring: sig=%d\n",
1474 old
= __kmp_signal(sig
, old
);
1476 __kmp_sighldrs
[sig
] = NULL
;
1477 __kmp_siginstalled
[sig
] = 0;
1478 KMP_MB(); // Flush all pending memory write invalidates.
1480 } // __kmp_remove_one_handler
1482 void __kmp_install_signals(int parallel_init
) {
1483 KB_TRACE(10, ("__kmp_install_signals: called\n"));
1484 if (!__kmp_handle_signals
) {
1485 KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
1486 "handlers not installed\n"));
1489 __kmp_install_one_handler(SIGINT
, __kmp_team_handler
, parallel_init
);
1490 __kmp_install_one_handler(SIGILL
, __kmp_team_handler
, parallel_init
);
1491 __kmp_install_one_handler(SIGABRT
, __kmp_team_handler
, parallel_init
);
1492 __kmp_install_one_handler(SIGFPE
, __kmp_team_handler
, parallel_init
);
1493 __kmp_install_one_handler(SIGSEGV
, __kmp_team_handler
, parallel_init
);
1494 __kmp_install_one_handler(SIGTERM
, __kmp_team_handler
, parallel_init
);
1495 } // __kmp_install_signals
1497 void __kmp_remove_signals(void) {
1499 KB_TRACE(10, ("__kmp_remove_signals: called\n"));
1500 for (sig
= 1; sig
< NSIG
; ++sig
) {
1501 __kmp_remove_one_handler(sig
);
1503 } // __kmp_remove_signals
1505 #endif // KMP_HANDLE_SIGNALS
1507 /* Put the thread to sleep for a time period */
1508 void __kmp_thread_sleep(int millis
) {
1511 status
= SleepEx((DWORD
)millis
, FALSE
);
1513 DWORD error
= GetLastError();
1514 __kmp_fatal(KMP_MSG(FunctionError
, "SleepEx()"), KMP_ERR(error
),
1519 // Determine whether the given address is mapped into the current address space.
1520 int __kmp_is_address_mapped(void *addr
) {
1521 MEMORY_BASIC_INFORMATION lpBuffer
;
1524 dwLength
= sizeof(MEMORY_BASIC_INFORMATION
);
1526 VirtualQuery(addr
, &lpBuffer
, dwLength
);
1528 return !(((lpBuffer
.State
== MEM_RESERVE
) || (lpBuffer
.State
== MEM_FREE
)) ||
1529 ((lpBuffer
.Protect
== PAGE_NOACCESS
) ||
1530 (lpBuffer
.Protect
== PAGE_EXECUTE
)));
1533 kmp_uint64
__kmp_hardware_timestamp(void) {
1536 QueryPerformanceCounter((LARGE_INTEGER
*)&r
);
1540 /* Free handle and check the error code */
1541 void __kmp_free_handle(kmp_thread_t tHandle
) {
1542 /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
1545 rc
= CloseHandle(tHandle
);
1547 DWORD error
= GetLastError();
1548 __kmp_fatal(KMP_MSG(CantCloseHandle
), KMP_ERR(error
), __kmp_msg_null
);
1552 int __kmp_get_load_balance(int max
) {
1553 static ULONG glb_buff_size
= 100 * 1024;
1555 // Saved count of the running threads for the thread balance algorithm
1556 static int glb_running_threads
= 0;
1557 static double glb_call_time
= 0; /* Thread balance algorithm call time */
1559 int running_threads
= 0; // Number of running threads in the system.
1560 NTSTATUS status
= 0;
1561 ULONG buff_size
= 0;
1562 ULONG info_size
= 0;
1563 void *buffer
= NULL
;
1564 PSYSTEM_PROCESS_INFORMATION spi
= NULL
;
1567 double call_time
= 0.0; // start, finish;
1569 __kmp_elapsed(&call_time
);
1571 if (glb_call_time
&&
1572 (call_time
- glb_call_time
< __kmp_load_balance_interval
)) {
1573 running_threads
= glb_running_threads
;
1576 glb_call_time
= call_time
;
1578 // Do not spend time on running algorithm if we have a permanent error.
1579 if (NtQuerySystemInformation
== NULL
) {
1580 running_threads
= -1;
1591 buff_size
= glb_buff_size
;
1593 buff_size
= 2 * buff_size
;
1596 buffer
= KMP_INTERNAL_REALLOC(buffer
, buff_size
);
1597 if (buffer
== NULL
) {
1598 running_threads
= -1;
1601 status
= NtQuerySystemInformation(SystemProcessInformation
, buffer
,
1602 buff_size
, &info_size
);
1605 } while (status
== STATUS_INFO_LENGTH_MISMATCH
);
1606 glb_buff_size
= buff_size
;
1608 #define CHECK(cond) \
1610 KMP_DEBUG_ASSERT(cond); \
1612 running_threads = -1; \
1617 CHECK(buff_size
>= info_size
);
1618 spi
= PSYSTEM_PROCESS_INFORMATION(buffer
);
1620 ptrdiff_t offset
= uintptr_t(spi
) - uintptr_t(buffer
);
1621 CHECK(0 <= offset
&&
1622 offset
+ sizeof(SYSTEM_PROCESS_INFORMATION
) < info_size
);
1623 HANDLE pid
= spi
->ProcessId
;
1624 ULONG num
= spi
->NumberOfThreads
;
1627 sizeof(SYSTEM_PROCESS_INFORMATION
) + sizeof(SYSTEM_THREAD
) * (num
- 1);
1628 CHECK(offset
+ spi_size
<
1629 info_size
); // Make sure process info record fits the buffer.
1630 if (spi
->NextEntryOffset
!= 0) {
1632 spi
->NextEntryOffset
); // And do not overlap with the next record.
1634 // pid == 0 corresponds to the System Idle Process. It always has running
1635 // threads on all cores. So, we don't consider the running threads of this
1638 for (int i
= 0; i
< num
; ++i
) {
1639 THREAD_STATE state
= spi
->Threads
[i
].State
;
1640 // Count threads that have Ready or Running state.
1641 // !!! TODO: Why comment does not match the code???
1642 if (state
== StateRunning
) {
1644 // Stop counting running threads if the number is already greater than
1645 // the number of available cores
1646 if (running_threads
>= max
) {
1652 if (spi
->NextEntryOffset
== 0) {
1655 spi
= PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi
) + spi
->NextEntryOffset
);
1660 finish
: // Clean up and exit.
1662 if (buffer
!= NULL
) {
1663 KMP_INTERNAL_FREE(buffer
);
1666 glb_running_threads
= running_threads
;
1668 return running_threads
;
1669 } //__kmp_get_load_balance()
1671 // Find symbol from the loaded modules
1672 void *__kmp_lookup_symbol(const char *name
, bool next
) {
1673 HANDLE process
= GetCurrentProcess();
1675 HMODULE
*modules
= nullptr;
1676 if (!EnumProcessModules(process
, modules
, 0, &needed
))
1678 DWORD num_modules
= needed
/ sizeof(HMODULE
);
1679 modules
= (HMODULE
*)malloc(num_modules
* sizeof(HMODULE
));
1680 if (!EnumProcessModules(process
, modules
, needed
, &needed
)) {
1684 HMODULE curr_module
= nullptr;
1686 // Current module needs to be skipped if next flag is true
1687 if (!GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS
,
1688 (LPCTSTR
)&__kmp_lookup_symbol
, &curr_module
)) {
1693 void *proc
= nullptr;
1694 for (uint32_t i
= 0; i
< num_modules
; i
++) {
1695 if (next
&& modules
[i
] == curr_module
)
1697 proc
= (void *)GetProcAddress(modules
[i
], name
);
1705 // Functions for hidden helper task
1706 void __kmp_hidden_helper_worker_thread_wait() {
1707 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1710 void __kmp_do_initialize_hidden_helper_threads() {
1711 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1714 void __kmp_hidden_helper_threads_initz_wait() {
1715 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1718 void __kmp_hidden_helper_initz_release() {
1719 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1722 void __kmp_hidden_helper_main_thread_wait() {
1723 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1726 void __kmp_hidden_helper_main_thread_release() {
1727 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1730 void __kmp_hidden_helper_worker_thread_signal() {
1731 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1734 void __kmp_hidden_helper_threads_deinitz_wait() {
1735 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1738 void __kmp_hidden_helper_threads_deinitz_release() {
1739 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");