Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / third-party / benchmark / src / statistics.cc
blob3e5ef0993971388fb5608b1f0e6752bf656f651a
1 // Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
2 // Copyright 2017 Roman Lebedev. All rights reserved.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
16 #include "statistics.h"
18 #include <algorithm>
19 #include <cmath>
20 #include <numeric>
21 #include <string>
22 #include <vector>
24 #include "benchmark/benchmark.h"
25 #include "check.h"
27 namespace benchmark {
29 auto StatisticsSum = [](const std::vector<double>& v) {
30 return std::accumulate(v.begin(), v.end(), 0.0);
33 double StatisticsMean(const std::vector<double>& v) {
34 if (v.empty()) return 0.0;
35 return StatisticsSum(v) * (1.0 / v.size());
38 double StatisticsMedian(const std::vector<double>& v) {
39 if (v.size() < 3) return StatisticsMean(v);
40 std::vector<double> copy(v);
42 auto center = copy.begin() + v.size() / 2;
43 std::nth_element(copy.begin(), center, copy.end());
45 // did we have an odd number of samples?
46 // if yes, then center is the median
47 // it no, then we are looking for the average between center and the value
48 // before
49 if (v.size() % 2 == 1) return *center;
50 auto center2 = copy.begin() + v.size() / 2 - 1;
51 std::nth_element(copy.begin(), center2, copy.end());
52 return (*center + *center2) / 2.0;
55 // Return the sum of the squares of this sample set
56 auto SumSquares = [](const std::vector<double>& v) {
57 return std::inner_product(v.begin(), v.end(), v.begin(), 0.0);
60 auto Sqr = [](const double dat) { return dat * dat; };
61 auto Sqrt = [](const double dat) {
62 // Avoid NaN due to imprecision in the calculations
63 if (dat < 0.0) return 0.0;
64 return std::sqrt(dat);
67 double StatisticsStdDev(const std::vector<double>& v) {
68 const auto mean = StatisticsMean(v);
69 if (v.empty()) return mean;
71 // Sample standard deviation is undefined for n = 1
72 if (v.size() == 1) return 0.0;
74 const double avg_squares = SumSquares(v) * (1.0 / v.size());
75 return Sqrt(v.size() / (v.size() - 1.0) * (avg_squares - Sqr(mean)));
78 double StatisticsCV(const std::vector<double>& v) {
79 if (v.size() < 2) return 0.0;
81 const auto stddev = StatisticsStdDev(v);
82 const auto mean = StatisticsMean(v);
84 return stddev / mean;
87 std::vector<BenchmarkReporter::Run> ComputeStats(
88 const std::vector<BenchmarkReporter::Run>& reports) {
89 typedef BenchmarkReporter::Run Run;
90 std::vector<Run> results;
92 auto error_count =
93 std::count_if(reports.begin(), reports.end(),
94 [](Run const& run) { return run.error_occurred; });
96 if (reports.size() - error_count < 2) {
97 // We don't report aggregated data if there was a single run.
98 return results;
101 // Accumulators.
102 std::vector<double> real_accumulated_time_stat;
103 std::vector<double> cpu_accumulated_time_stat;
105 real_accumulated_time_stat.reserve(reports.size());
106 cpu_accumulated_time_stat.reserve(reports.size());
108 // All repetitions should be run with the same number of iterations so we
109 // can take this information from the first benchmark.
110 const IterationCount run_iterations = reports.front().iterations;
111 // create stats for user counters
112 struct CounterStat {
113 Counter c;
114 std::vector<double> s;
116 std::map<std::string, CounterStat> counter_stats;
117 for (Run const& r : reports) {
118 for (auto const& cnt : r.counters) {
119 auto it = counter_stats.find(cnt.first);
120 if (it == counter_stats.end()) {
121 counter_stats.insert({cnt.first, {cnt.second, std::vector<double>{}}});
122 it = counter_stats.find(cnt.first);
123 it->second.s.reserve(reports.size());
124 } else {
125 BM_CHECK_EQ(counter_stats[cnt.first].c.flags, cnt.second.flags);
130 // Populate the accumulators.
131 for (Run const& run : reports) {
132 BM_CHECK_EQ(reports[0].benchmark_name(), run.benchmark_name());
133 BM_CHECK_EQ(run_iterations, run.iterations);
134 if (run.error_occurred) continue;
135 real_accumulated_time_stat.emplace_back(run.real_accumulated_time);
136 cpu_accumulated_time_stat.emplace_back(run.cpu_accumulated_time);
137 // user counters
138 for (auto const& cnt : run.counters) {
139 auto it = counter_stats.find(cnt.first);
140 BM_CHECK_NE(it, counter_stats.end());
141 it->second.s.emplace_back(cnt.second);
145 // Only add label if it is same for all runs
146 std::string report_label = reports[0].report_label;
147 for (std::size_t i = 1; i < reports.size(); i++) {
148 if (reports[i].report_label != report_label) {
149 report_label = "";
150 break;
154 const double iteration_rescale_factor =
155 double(reports.size()) / double(run_iterations);
157 for (const auto& Stat : *reports[0].statistics) {
158 // Get the data from the accumulator to BenchmarkReporter::Run's.
159 Run data;
160 data.run_name = reports[0].run_name;
161 data.family_index = reports[0].family_index;
162 data.per_family_instance_index = reports[0].per_family_instance_index;
163 data.run_type = BenchmarkReporter::Run::RT_Aggregate;
164 data.threads = reports[0].threads;
165 data.repetitions = reports[0].repetitions;
166 data.repetition_index = Run::no_repetition_index;
167 data.aggregate_name = Stat.name_;
168 data.aggregate_unit = Stat.unit_;
169 data.report_label = report_label;
171 // It is incorrect to say that an aggregate is computed over
172 // run's iterations, because those iterations already got averaged.
173 // Similarly, if there are N repetitions with 1 iterations each,
174 // an aggregate will be computed over N measurements, not 1.
175 // Thus it is best to simply use the count of separate reports.
176 data.iterations = reports.size();
178 data.real_accumulated_time = Stat.compute_(real_accumulated_time_stat);
179 data.cpu_accumulated_time = Stat.compute_(cpu_accumulated_time_stat);
181 if (data.aggregate_unit == StatisticUnit::kTime) {
182 // We will divide these times by data.iterations when reporting, but the
183 // data.iterations is not necessarily the scale of these measurements,
184 // because in each repetition, these timers are sum over all the iters.
185 // And if we want to say that the stats are over N repetitions and not
186 // M iterations, we need to multiply these by (N/M).
187 data.real_accumulated_time *= iteration_rescale_factor;
188 data.cpu_accumulated_time *= iteration_rescale_factor;
191 data.time_unit = reports[0].time_unit;
193 // user counters
194 for (auto const& kv : counter_stats) {
195 // Do *NOT* rescale the custom counters. They are already properly scaled.
196 const auto uc_stat = Stat.compute_(kv.second.s);
197 auto c = Counter(uc_stat, counter_stats[kv.first].c.flags,
198 counter_stats[kv.first].c.oneK);
199 data.counters[kv.first] = c;
202 results.push_back(data);
205 return results;
208 } // end namespace benchmark