2 ; RUN: opt < %s -passes=loop-vectorize -force-vector-width=2 -force-vector-interleave=1 -force-widen-divrem-via-safe-divisor=0 -disable-output -debug-only=loop-vectorize 2>&1 | FileCheck %s
4 target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128"
6 ; Test cases for PR50009, which require sinking a replicate-region due to a
7 ; first-order recurrence.
9 define void @sink_replicate_region_1(i32 %x, ptr %ptr, ptr noalias %dst) optsize {
10 ; CHECK-LABEL: sink_replicate_region_1
11 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
12 ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
13 ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
14 ; CHECK-NEXT: Live-in ir<20001> = original trip-count
16 ; CHECK-NEXT: vector.ph:
17 ; CHECK-NEXT: Successor(s): vector loop
19 ; CHECK-NEXT: <x1> vector loop: {
20 ; CHECK-NEXT: vector.body:
21 ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
22 ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%0> = phi ir<0>, ir<%conv>
23 ; CHECK-NEXT: WIDEN-INDUCTION %iv = phi 0, %iv.next, ir<1>
24 ; CHECK-NEXT: vp<[[STEPS:%.]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
25 ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
26 ; CHECK-NEXT: Successor(s): pred.load
28 ; CHECK-NEXT: <xVFxUF> pred.load: {
29 ; CHECK-NEXT: pred.load.entry:
30 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
31 ; CHECK-NEXT: Successor(s): pred.load.if, pred.load.continue
33 ; CHECK-NEXT: pred.load.if:
34 ; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
35 ; CHECK-NEXT: REPLICATE ir<%lv> = load ir<%gep> (S->V)
36 ; CHECK-NEXT: Successor(s): pred.load.continue
38 ; CHECK-NEXT: pred.load.continue:
39 ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED1:%.+]]> = ir<%lv>
40 ; CHECK-NEXT: No successors
42 ; CHECK-NEXT: Successor(s): loop.0
45 ; CHECK-NEXT: WIDEN-CAST ir<%conv> = sext vp<[[PRED1]]> to i32
46 ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%0>, ir<%conv>
47 ; CHECK-NEXT: Successor(s): pred.store
49 ; CHECK-NEXT: <xVFxUF> pred.store: {
50 ; CHECK-NEXT: pred.store.entry:
51 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
52 ; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
54 ; CHECK-NEXT: pred.store.if:
55 ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
56 ; CHECK-NEXT: REPLICATE ir<%gep.dst> = getelementptr ir<%dst>, vp<[[STEPS]]>
57 ; CHECK-NEXT: REPLICATE ir<%add> = add ir<%conv>, ir<%rem>
58 ; CHECK-NEXT: REPLICATE store ir<%add>, ir<%gep.dst>
59 ; CHECK-NEXT: Successor(s): pred.store.continue
61 ; CHECK-NEXT: pred.store.continue:
62 ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED2:%.+]]> = ir<%rem>
63 ; CHECK-NEXT: No successors
65 ; CHECK-NEXT: Successor(s): loop.2
68 ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF + vp<[[CAN_IV]]>
69 ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
70 ; CHECK-NEXT: No successors
72 ; CHECK-NEXT: Successor(s): middle.block
74 ; CHECK-NEXT: middle.block:
75 ; CHECK-NEXT: No successors
82 %0 = phi i32 [ 0, %entry ], [ %conv, %loop ]
83 %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
84 %rem = srem i32 %0, %x
85 %gep = getelementptr i8, ptr %ptr, i32 %iv
86 %lv = load i8, ptr %gep
87 %conv = sext i8 %lv to i32
88 %add = add i32 %conv, %rem
89 %gep.dst = getelementptr i32, ptr %dst, i32 %iv
90 store i32 %add, ptr %gep.dst
91 %iv.next = add nsw i32 %iv, 1
92 %ec = icmp eq i32 %iv.next, 20001
93 br i1 %ec, label %exit, label %loop
99 define void @sink_replicate_region_2(i32 %x, i8 %y, ptr %ptr) optsize {
100 ; CHECK-LABEL: sink_replicate_region_2
101 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
102 ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
103 ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
104 ; CHECK-NEXT: Live-in ir<20001> = original trip-count
106 ; CHECK-NEXT: vector.ph:
107 ; CHECK-NEXT: Successor(s): vector loop
109 ; CHECK-NEXT: <x1> vector loop: {
110 ; CHECK-NEXT: vector.body:
111 ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
112 ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next>
113 ; CHECK-NEXT: WIDEN-INDUCTION %iv = phi 0, %iv.next, ir<1>
114 ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
115 ; CHECK-NEXT: WIDEN-CAST ir<%recur.next> = sext ir<%y> to i32
116 ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur>, ir<%recur.next>
117 ; CHECK-NEXT: Successor(s): pred.store
119 ; CHECK-NEXT: <xVFxUF> pred.store: {
120 ; CHECK-NEXT: pred.store.entry:
121 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
122 ; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
124 ; CHECK-NEXT: pred.store.if:
125 ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
126 ; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
127 ; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
128 ; CHECK-NEXT: REPLICATE ir<%add> = add ir<%rem>, ir<%recur.next>
129 ; CHECK-NEXT: REPLICATE store ir<%add>, ir<%gep>
130 ; CHECK-NEXT: Successor(s): pred.store.continue
132 ; CHECK-NEXT: pred.store.continue:
133 ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED:%.+]]> = ir<%rem>
134 ; CHECK-NEXT: No successors
136 ; CHECK-NEXT: Successor(s): loop.1
138 ; CHECK-NEXT: loop.1:
139 ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF + vp<[[CAN_IV]]>
140 ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
141 ; CHECK-NEXT: No successors
143 ; CHECK-NEXT: Successor(s): middle.block
145 ; CHECK-NEXT: middle.block:
146 ; CHECK-NEXT: No successors
153 %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ]
154 %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
155 %rem = srem i32 %recur, %x
156 %recur.next = sext i8 %y to i32
157 %add = add i32 %rem, %recur.next
158 %gep = getelementptr i32, ptr %ptr, i32 %iv
159 store i32 %add, ptr %gep
160 %iv.next = add nsw i32 %iv, 1
161 %ec = icmp eq i32 %iv.next, 20001
162 br i1 %ec, label %exit, label %loop
168 define i32 @sink_replicate_region_3_reduction(i32 %x, i8 %y, ptr %ptr) optsize {
169 ; CHECK-LABEL: sink_replicate_region_3_reduction
170 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
171 ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
172 ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
173 ; CHECK-NEXT: Live-in ir<20001> = original trip-count
175 ; CHECK-NEXT: vector.ph:
176 ; CHECK-NEXT: Successor(s): vector loop
178 ; CHECK-NEXT: <x1> vector loop: {
179 ; CHECK-NEXT: vector.body:
180 ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
181 ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next>
182 ; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%and.red> = phi ir<1234>, ir<%and.red.next>
183 ; CHECK-NEXT: EMIT vp<[[WIDEN_CAN:%.+]]> = WIDEN-CANONICAL-INDUCTION vp<[[CAN_IV]]>
184 ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule vp<[[WIDEN_CAN]]>, vp<[[BTC]]>
185 ; CHECK-NEXT: WIDEN-CAST ir<%recur.next> = sext ir<%y> to i32
186 ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur>, ir<%recur.next>
187 ; CHECK-NEXT: Successor(s): pred.srem
189 ; CHECK-NEXT: <xVFxUF> pred.srem: {
190 ; CHECK-NEXT: pred.srem.entry:
191 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
192 ; CHECK-NEXT: Successor(s): pred.srem.if, pred.srem.continue
194 ; CHECK-NEXT: pred.srem.if:
195 ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x> (S->V)
196 ; CHECK-NEXT: Successor(s): pred.srem.continue
198 ; CHECK-NEXT: pred.srem.continue:
199 ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED:%.+]]> = ir<%rem>
200 ; CHECK-NEXT: No successors
202 ; CHECK-NEXT: Successor(s): loop.0
204 ; CHECK-NEXT: loop.0:
205 ; CHECK-NEXT: WIDEN ir<%add> = add vp<[[PRED]]>, ir<%recur.next>
206 ; CHECK-NEXT: WIDEN ir<%and.red.next> = and ir<%and.red>, ir<%add>
207 ; CHECK-NEXT: EMIT vp<[[SEL:%.+]]> = select vp<[[MASK]]>, ir<%and.red.next>, ir<%and.red>
208 ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF + vp<[[CAN_IV]]>
209 ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
210 ; CHECK-NEXT: No successors
212 ; CHECK-NEXT: Successor(s): middle.block
214 ; CHECK-NEXT: middle.block:
215 ; CHECK-NEXT: No successors
217 ; CHECK-NEXT: Live-out i32 %res = ir<%and.red.next>
224 %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ]
225 %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
226 %and.red = phi i32 [ 1234, %entry ], [ %and.red.next, %loop ]
227 %rem = srem i32 %recur, %x
228 %recur.next = sext i8 %y to i32
229 %add = add i32 %rem, %recur.next
230 %and.red.next = and i32 %and.red, %add
231 %iv.next = add nsw i32 %iv, 1
232 %ec = icmp eq i32 %iv.next, 20001
233 br i1 %ec, label %exit, label %loop
236 %res = phi i32 [ %and.red.next, %loop ]
240 ; To sink the replicate region containing %rem, we need to split the block
241 ; containing %conv at the end, because %conv is the last recipe in the block.
242 define void @sink_replicate_region_4_requires_split_at_end_of_block(i32 %x, ptr %ptr, ptr noalias %dst) optsize {
243 ; CHECK-LABEL: sink_replicate_region_4_requires_split_at_end_of_block
244 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
245 ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
246 ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
247 ; CHECK-NEXT: Live-in ir<20001> = original trip-count
249 ; CHECK-NEXT: vector.ph:
250 ; CHECK-NEXT: Successor(s): vector loop
252 ; CHECK-NEXT: <x1> vector loop: {
253 ; CHECK-NEXT: vector.body:
254 ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
255 ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%0> = phi ir<0>, ir<%conv>
256 ; CHECK-NEXT: WIDEN-INDUCTION %iv = phi 0, %iv.next, ir<1>
257 ; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
258 ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
259 ; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
260 ; CHECK-NEXT: Successor(s): pred.load
262 ; CHECK-NEXT: <xVFxUF> pred.load: {
263 ; CHECK-NEXT: pred.load.entry:
264 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
265 ; CHECK-NEXT: Successor(s): pred.load.if, pred.load.continue
267 ; CHECK-NEXT: pred.load.if:
268 ; CHECK-NEXT: REPLICATE ir<%lv> = load ir<%gep> (S->V)
269 ; CHECK-NEXT: Successor(s): pred.load.continue
271 ; CHECK-NEXT: pred.load.continue:
272 ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED:%.+]]> = ir<%lv>
273 ; CHECK-NEXT: No successors
275 ; CHECK-NEXT: Successor(s): loop.0
277 ; CHECK-NEXT: loop.0:
278 ; CHECK-NEXT: WIDEN-CAST ir<%conv> = sext vp<[[PRED]]> to i32
279 ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%0>, ir<%conv>
280 ; CHECK-NEXT: Successor(s): pred.store
282 ; CHECK: <xVFxUF> pred.store: {
283 ; CHECK-NEXT: pred.store.entry:
284 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
285 ; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
287 ; CHECK: pred.store.if:
288 ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
289 ; CHECK-NEXT: REPLICATE ir<%lv.2> = load ir<%gep>
290 ; CHECK-NEXT: REPLICATE ir<%conv.lv.2> = sext ir<%lv.2>
291 ; CHECK-NEXT: REPLICATE ir<%add.1> = add ir<%conv>, ir<%rem>
292 ; CHECK-NEXT: REPLICATE ir<%gep.dst> = getelementptr ir<%dst>, vp<[[STEPS]]>
293 ; CHECK-NEXT: REPLICATE ir<%add> = add ir<%add.1>, ir<%conv.lv.2>
294 ; CHECK-NEXT: REPLICATE store ir<%add>, ir<%gep.dst>
295 ; CHECK-NEXT: Successor(s): pred.store.continue
297 ; CHECK: pred.store.continue:
298 ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED1:%.+]]> = ir<%rem>
299 ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED2:%.+]]> = ir<%lv.2>
300 ; CHECK-NEXT: No successors
302 ; CHECK-NEXT: Successor(s): loop.3
305 ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF + vp<[[CAN_IV]]>
306 ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
307 ; CHECK-NEXT: No successors
309 ; CHECK-NEXT: Successor(s): middle.block
311 ; CHECK-NEXT: middle.block:
312 ; CHECK-NEXT: No successors
319 %0 = phi i32 [ 0, %entry ], [ %conv, %loop ]
320 %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
321 %gep = getelementptr i8, ptr %ptr, i32 %iv
322 %rem = srem i32 %0, %x
323 %lv = load i8, ptr %gep
324 %conv = sext i8 %lv to i32
325 %lv.2 = load i8, ptr %gep
326 %add.1 = add i32 %conv, %rem
327 %conv.lv.2 = sext i8 %lv.2 to i32
328 %add = add i32 %add.1, %conv.lv.2
329 %gep.dst = getelementptr i32, ptr %dst, i32 %iv
330 store i32 %add, ptr %gep.dst
331 %iv.next = add nsw i32 %iv, 1
332 %ec = icmp eq i32 %iv.next, 20001
333 br i1 %ec, label %exit, label %loop
339 ; Test case that requires sinking a recipe in a replicate region after another replicate region.
340 define void @sink_replicate_region_after_replicate_region(ptr %ptr, ptr noalias %dst.2, i32 %x, i8 %y) optsize {
341 ; CHECK-LABEL: sink_replicate_region_after_replicate_region
342 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
343 ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
344 ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
345 ; CHECK-NEXT: vp<[[TC:%.+]]> = original trip-count
348 ; CHECK-NEXT: EMIT vp<[[TC]]> = EXPAND SCEV (1 smax (1 + (sext i8 %y to i32))<nsw>)
349 ; CHECK-NEXT: No successors
351 ; CHECK-NEXT: vector.ph:
352 ; CHECK-NEXT: Successor(s): vector loop
354 ; CHECK-NEXT: <x1> vector loop: {
355 ; CHECK-NEXT: vector.body:
356 ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
357 ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next>
358 ; CHECK-NEXT: WIDEN-INDUCTION %iv = phi 0, %iv.next, ir<1>
359 ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
360 ; CHECK-NEXT: WIDEN-CAST ir<%recur.next> = sext ir<%y> to i32
361 ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur>, ir<%recur.next>
362 ; CHECK-NEXT: Successor(s): pred.store
364 ; CHECK-NEXT: <xVFxUF> pred.store: {
365 ; CHECK-NEXT: pred.store.entry:
366 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
367 ; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
369 ; CHECK-NEXT: pred.store.if:
370 ; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
371 ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
372 ; CHECK-NEXT: REPLICATE ir<%rem.div> = sdiv ir<20>, ir<%rem>
373 ; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
374 ; CHECK-NEXT: REPLICATE store ir<%rem.div>, ir<%gep>
375 ; CHECK-NEXT: REPLICATE ir<%gep.2> = getelementptr ir<%dst.2>, vp<[[STEPS]]>
376 ; CHECK-NEXT: REPLICATE store ir<%rem.div>, ir<%gep.2>
377 ; CHECK-NEXT: Successor(s): pred.store.continue
379 ; CHECK-NEXT: pred.store.continue:
380 ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED:%.+]]> = ir<%rem>
381 ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED2:%.+]]> = ir<%rem.div>
382 ; CHECK-NEXT: No successors
384 ; CHECK-NEXT: Successor(s): loop.3
386 ; CHECK-NEXT: loop.3:
387 ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF + vp<[[CAN_IV]]>
388 ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
389 ; CHECK-NEXT: No successors
391 ; CHECK-NEXT: Successor(s): middle.block
393 ; CHECK-NEXT: middle.block:
394 ; CHECK-NEXT: No successors
400 loop: ; preds = %loop, %entry
401 %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ]
402 %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
403 %rem = srem i32 %recur, %x
404 %rem.div = sdiv i32 20, %rem
405 %recur.next = sext i8 %y to i32
406 %gep = getelementptr i32, ptr %ptr, i32 %iv
407 store i32 %rem.div, ptr %gep
408 %gep.2 = getelementptr i32, ptr %dst.2, i32 %iv
409 store i32 %rem.div, ptr %gep.2
410 %iv.next = add nsw i32 %iv, 1
411 %C = icmp sgt i32 %iv.next, %recur.next
412 br i1 %C, label %exit, label %loop
414 exit: ; preds = %loop
418 define void @need_new_block_after_sinking_pr56146(i32 %x, ptr %src, ptr noalias %dst) {
419 ; CHECK-LABEL: need_new_block_after_sinking_pr56146
420 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
421 ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
422 ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
423 ; CHECK-NEXT: Live-in ir<3> = original trip-count
425 ; CHECK-NEXT: vector.ph:
426 ; CHECK-NEXT: Successor(s): vector loop
428 ; CHECK-NEXT: <x1> vector loop: {
429 ; CHECK-NEXT: vector.body:
430 ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
431 ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%.pn> = phi ir<0>, ir<[[L:%.+]]>
432 ; CHECK-NEXT: vp<[[DERIVED_IV:%.+]]> = DERIVED-IV ir<2> + vp<[[CAN_IV]]> * ir<1>
433 ; CHECK-NEXT: EMIT vp<[[WIDE_IV:%.+]]> = WIDEN-CANONICAL-INDUCTION vp<[[CAN_IV]]>
434 ; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp ule vp<[[WIDE_IV]]>, vp<[[BTC]]>
435 ; CHECK-NEXT: CLONE ir<[[L]]> = load ir<%src>
436 ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%.pn>, ir<[[L]]>
437 ; CHECK-NEXT: Successor(s): pred.store
439 ; CHECK-NEXT: <xVFxUF> pred.store: {
440 ; CHECK-NEXT: pred.store.entry:
441 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[CMP]]>
442 ; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
444 ; CHECK-NEXT: pred.store.if:
445 ; CHECK-NEXT: REPLICATE ir<%val> = sdiv vp<[[SPLICE]]>, ir<%x>
446 ; CHECK-NEXT: vp<[[SCALAR_STEPS:%.+]]> = SCALAR-STEPS vp<[[DERIVED_IV]]>, ir<1>
447 ; CHECK-NEXT: REPLICATE ir<%gep.dst> = getelementptr ir<%dst>, vp<[[SCALAR_STEPS]]>
448 ; CHECK-NEXT: REPLICATE store ir<%val>, ir<%gep.dst>
449 ; CHECK-NEXT: Successor(s): pred.store.continue
451 ; CHECK-NEXT: pred.store.continue:
452 ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[P_VAL:%.+]]> = ir<%val>
453 ; CHECK-NEXT: No successors
455 ; CHECK-NEXT: Successor(s): loop.1
457 ; CHECK-NEXT: loop.1:
458 ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF + vp<[[CAN_IV]]>
459 ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
460 ; CHECK-NEXT: No successors
462 ; CHECK-NEXT: Successor(s): middle.block
464 ; CHECK-NEXT: middle.block:
465 ; CHECK-NEXT: No successors
472 %iv = phi i64 [ 2, %entry ], [ %iv.next, %loop ]
473 %.pn = phi i32 [ 0, %entry ], [ %l, %loop ]
474 %val = sdiv i32 %.pn, %x
475 %l = load i32, ptr %src, align 4
476 %gep.dst = getelementptr i32, ptr %dst, i64 %iv
477 store i32 %val, ptr %gep.dst
478 %iv.next = add nuw nsw i64 %iv, 1
479 %ec = icmp ugt i64 %iv, 3
480 br i1 %ec, label %exit, label %loop