1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AliasSetTracker.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/PatternMatch.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
69 using namespace llvm::PatternMatch
;
71 #define DEBUG_TYPE "loop-accesses"
73 static cl::opt
<unsigned, true>
74 VectorizationFactor("force-vector-width", cl::Hidden
,
75 cl::desc("Sets the SIMD width. Zero is autoselect."),
76 cl::location(VectorizerParams::VectorizationFactor
));
77 unsigned VectorizerParams::VectorizationFactor
;
79 static cl::opt
<unsigned, true>
80 VectorizationInterleave("force-vector-interleave", cl::Hidden
,
81 cl::desc("Sets the vectorization interleave count. "
82 "Zero is autoselect."),
84 VectorizerParams::VectorizationInterleave
));
85 unsigned VectorizerParams::VectorizationInterleave
;
87 static cl::opt
<unsigned, true> RuntimeMemoryCheckThreshold(
88 "runtime-memory-check-threshold", cl::Hidden
,
89 cl::desc("When performing memory disambiguation checks at runtime do not "
90 "generate more than this number of comparisons (default = 8)."),
91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold
), cl::init(8));
92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold
;
94 /// The maximum iterations used to merge memory checks
95 static cl::opt
<unsigned> MemoryCheckMergeThreshold(
96 "memory-check-merge-threshold", cl::Hidden
,
97 cl::desc("Maximum number of comparisons done when trying to merge "
98 "runtime memory checks. (default = 100)"),
101 /// Maximum SIMD width.
102 const unsigned VectorizerParams::MaxVectorWidth
= 64;
104 /// We collect dependences up to this threshold.
105 static cl::opt
<unsigned>
106 MaxDependences("max-dependences", cl::Hidden
,
107 cl::desc("Maximum number of dependences collected by "
108 "loop-access analysis (default = 100)"),
111 /// This enables versioning on the strides of symbolically striding memory
112 /// accesses in code like the following.
113 /// for (i = 0; i < N; ++i)
114 /// A[i * Stride1] += B[i * Stride2] ...
116 /// Will be roughly translated to
117 /// if (Stride1 == 1 && Stride2 == 1) {
118 /// for (i = 0; i < N; i+=4)
122 static cl::opt
<bool> EnableMemAccessVersioning(
123 "enable-mem-access-versioning", cl::init(true), cl::Hidden
,
124 cl::desc("Enable symbolic stride memory access versioning"));
126 /// Enable store-to-load forwarding conflict detection. This option can
127 /// be disabled for correctness testing.
128 static cl::opt
<bool> EnableForwardingConflictDetection(
129 "store-to-load-forwarding-conflict-detection", cl::Hidden
,
130 cl::desc("Enable conflict detection in loop-access analysis"),
133 static cl::opt
<unsigned> MaxForkedSCEVDepth(
134 "max-forked-scev-depth", cl::Hidden
,
135 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
138 static cl::opt
<bool> SpeculateUnitStride(
139 "laa-speculate-unit-stride", cl::Hidden
,
140 cl::desc("Speculate that non-constant strides are unit in LAA"),
143 static cl::opt
<bool, true> HoistRuntimeChecks(
144 "hoist-runtime-checks", cl::Hidden
,
146 "Hoist inner loop runtime memory checks to outer loop if possible"),
147 cl::location(VectorizerParams::HoistRuntimeChecks
), cl::init(true));
148 bool VectorizerParams::HoistRuntimeChecks
;
150 bool VectorizerParams::isInterleaveForced() {
151 return ::VectorizationInterleave
.getNumOccurrences() > 0;
154 const SCEV
*llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution
&PSE
,
155 const DenseMap
<Value
*, const SCEV
*> &PtrToStride
,
157 const SCEV
*OrigSCEV
= PSE
.getSCEV(Ptr
);
159 // If there is an entry in the map return the SCEV of the pointer with the
160 // symbolic stride replaced by one.
161 DenseMap
<Value
*, const SCEV
*>::const_iterator SI
= PtrToStride
.find(Ptr
);
162 if (SI
== PtrToStride
.end())
163 // For a non-symbolic stride, just return the original expression.
166 const SCEV
*StrideSCEV
= SI
->second
;
167 // Note: This assert is both overly strong and overly weak. The actual
168 // invariant here is that StrideSCEV should be loop invariant. The only
169 // such invariant strides we happen to speculate right now are unknowns
170 // and thus this is a reasonable proxy of the actual invariant.
171 assert(isa
<SCEVUnknown
>(StrideSCEV
) && "shouldn't be in map");
173 ScalarEvolution
*SE
= PSE
.getSE();
174 const auto *CT
= SE
->getOne(StrideSCEV
->getType());
175 PSE
.addPredicate(*SE
->getEqualPredicate(StrideSCEV
, CT
));
176 auto *Expr
= PSE
.getSCEV(Ptr
);
178 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
179 << " by: " << *Expr
<< "\n");
183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
184 unsigned Index
, RuntimePointerChecking
&RtCheck
)
185 : High(RtCheck
.Pointers
[Index
].End
), Low(RtCheck
.Pointers
[Index
].Start
),
186 AddressSpace(RtCheck
.Pointers
[Index
]
187 .PointerValue
->getType()
188 ->getPointerAddressSpace()),
189 NeedsFreeze(RtCheck
.Pointers
[Index
].NeedsFreeze
) {
190 Members
.push_back(Index
);
193 /// Calculate Start and End points of memory access.
194 /// Let's assume A is the first access and B is a memory access on N-th loop
195 /// iteration. Then B is calculated as:
197 /// Step value may be positive or negative.
198 /// N is a calculated back-edge taken count:
199 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
200 /// Start and End points are calculated in the following way:
201 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
202 /// where SizeOfElt is the size of single memory access in bytes.
204 /// There is no conflict when the intervals are disjoint:
205 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
206 static std::pair
<const SCEV
*, const SCEV
*> getStartAndEndForAccess(
207 const Loop
*Lp
, const SCEV
*PtrExpr
, Type
*AccessTy
,
208 PredicatedScalarEvolution
&PSE
,
209 DenseMap
<std::pair
<const SCEV
*, Type
*>,
210 std::pair
<const SCEV
*, const SCEV
*>> &PointerBounds
) {
211 ScalarEvolution
*SE
= PSE
.getSE();
213 auto [Iter
, Ins
] = PointerBounds
.insert(
214 {{PtrExpr
, AccessTy
},
215 {SE
->getCouldNotCompute(), SE
->getCouldNotCompute()}});
222 if (SE
->isLoopInvariant(PtrExpr
, Lp
)) {
223 ScStart
= ScEnd
= PtrExpr
;
224 } else if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PtrExpr
)) {
225 const SCEV
*Ex
= PSE
.getSymbolicMaxBackedgeTakenCount();
227 ScStart
= AR
->getStart();
228 ScEnd
= AR
->evaluateAtIteration(Ex
, *SE
);
229 const SCEV
*Step
= AR
->getStepRecurrence(*SE
);
231 // For expressions with negative step, the upper bound is ScStart and the
232 // lower bound is ScEnd.
233 if (const auto *CStep
= dyn_cast
<SCEVConstant
>(Step
)) {
234 if (CStep
->getValue()->isNegative())
235 std::swap(ScStart
, ScEnd
);
237 // Fallback case: the step is not constant, but we can still
238 // get the upper and lower bounds of the interval by using min/max
240 ScStart
= SE
->getUMinExpr(ScStart
, ScEnd
);
241 ScEnd
= SE
->getUMaxExpr(AR
->getStart(), ScEnd
);
244 return {SE
->getCouldNotCompute(), SE
->getCouldNotCompute()};
246 assert(SE
->isLoopInvariant(ScStart
, Lp
) && "ScStart needs to be invariant");
247 assert(SE
->isLoopInvariant(ScEnd
, Lp
)&& "ScEnd needs to be invariant");
249 // Add the size of the pointed element to ScEnd.
250 auto &DL
= Lp
->getHeader()->getDataLayout();
251 Type
*IdxTy
= DL
.getIndexType(PtrExpr
->getType());
252 const SCEV
*EltSizeSCEV
= SE
->getStoreSizeOfExpr(IdxTy
, AccessTy
);
253 ScEnd
= SE
->getAddExpr(ScEnd
, EltSizeSCEV
);
255 Iter
->second
= {ScStart
, ScEnd
};
259 /// Calculate Start and End points of memory access using
260 /// getStartAndEndForAccess.
261 void RuntimePointerChecking::insert(Loop
*Lp
, Value
*Ptr
, const SCEV
*PtrExpr
,
262 Type
*AccessTy
, bool WritePtr
,
263 unsigned DepSetId
, unsigned ASId
,
264 PredicatedScalarEvolution
&PSE
,
266 const auto &[ScStart
, ScEnd
] = getStartAndEndForAccess(
267 Lp
, PtrExpr
, AccessTy
, PSE
, DC
.getPointerBounds());
268 assert(!isa
<SCEVCouldNotCompute
>(ScStart
) &&
269 !isa
<SCEVCouldNotCompute
>(ScEnd
) &&
270 "must be able to compute both start and end expressions");
271 Pointers
.emplace_back(Ptr
, ScStart
, ScEnd
, WritePtr
, DepSetId
, ASId
, PtrExpr
,
275 bool RuntimePointerChecking::tryToCreateDiffCheck(
276 const RuntimeCheckingPtrGroup
&CGI
, const RuntimeCheckingPtrGroup
&CGJ
) {
277 // If either group contains multiple different pointers, bail out.
278 // TODO: Support multiple pointers by using the minimum or maximum pointer,
279 // depending on src & sink.
280 if (CGI
.Members
.size() != 1 || CGJ
.Members
.size() != 1)
283 PointerInfo
*Src
= &Pointers
[CGI
.Members
[0]];
284 PointerInfo
*Sink
= &Pointers
[CGJ
.Members
[0]];
286 // If either pointer is read and written, multiple checks may be needed. Bail
288 if (!DC
.getOrderForAccess(Src
->PointerValue
, !Src
->IsWritePtr
).empty() ||
289 !DC
.getOrderForAccess(Sink
->PointerValue
, !Sink
->IsWritePtr
).empty())
292 ArrayRef
<unsigned> AccSrc
=
293 DC
.getOrderForAccess(Src
->PointerValue
, Src
->IsWritePtr
);
294 ArrayRef
<unsigned> AccSink
=
295 DC
.getOrderForAccess(Sink
->PointerValue
, Sink
->IsWritePtr
);
296 // If either pointer is accessed multiple times, there may not be a clear
297 // src/sink relation. Bail out for now.
298 if (AccSrc
.size() != 1 || AccSink
.size() != 1)
301 // If the sink is accessed before src, swap src/sink.
302 if (AccSink
[0] < AccSrc
[0])
303 std::swap(Src
, Sink
);
305 auto *SrcAR
= dyn_cast
<SCEVAddRecExpr
>(Src
->Expr
);
306 auto *SinkAR
= dyn_cast
<SCEVAddRecExpr
>(Sink
->Expr
);
307 if (!SrcAR
|| !SinkAR
|| SrcAR
->getLoop() != DC
.getInnermostLoop() ||
308 SinkAR
->getLoop() != DC
.getInnermostLoop())
311 SmallVector
<Instruction
*, 4> SrcInsts
=
312 DC
.getInstructionsForAccess(Src
->PointerValue
, Src
->IsWritePtr
);
313 SmallVector
<Instruction
*, 4> SinkInsts
=
314 DC
.getInstructionsForAccess(Sink
->PointerValue
, Sink
->IsWritePtr
);
315 Type
*SrcTy
= getLoadStoreType(SrcInsts
[0]);
316 Type
*DstTy
= getLoadStoreType(SinkInsts
[0]);
317 if (isa
<ScalableVectorType
>(SrcTy
) || isa
<ScalableVectorType
>(DstTy
))
320 const DataLayout
&DL
=
321 SinkAR
->getLoop()->getHeader()->getDataLayout();
323 std::max(DL
.getTypeAllocSize(SrcTy
), DL
.getTypeAllocSize(DstTy
));
325 // Only matching constant steps matching the AllocSize are supported at the
326 // moment. This simplifies the difference computation. Can be extended in the
328 auto *Step
= dyn_cast
<SCEVConstant
>(SinkAR
->getStepRecurrence(*SE
));
329 if (!Step
|| Step
!= SrcAR
->getStepRecurrence(*SE
) ||
330 Step
->getAPInt().abs() != AllocSize
)
334 IntegerType::get(Src
->PointerValue
->getContext(),
335 DL
.getPointerSizeInBits(CGI
.AddressSpace
));
337 // When counting down, the dependence distance needs to be swapped.
338 if (Step
->getValue()->isNegative())
339 std::swap(SinkAR
, SrcAR
);
341 const SCEV
*SinkStartInt
= SE
->getPtrToIntExpr(SinkAR
->getStart(), IntTy
);
342 const SCEV
*SrcStartInt
= SE
->getPtrToIntExpr(SrcAR
->getStart(), IntTy
);
343 if (isa
<SCEVCouldNotCompute
>(SinkStartInt
) ||
344 isa
<SCEVCouldNotCompute
>(SrcStartInt
))
347 const Loop
*InnerLoop
= SrcAR
->getLoop();
348 // If the start values for both Src and Sink also vary according to an outer
349 // loop, then it's probably better to avoid creating diff checks because
350 // they may not be hoisted. We should instead let llvm::addRuntimeChecks
351 // do the expanded full range overlap checks, which can be hoisted.
352 if (HoistRuntimeChecks
&& InnerLoop
->getParentLoop() &&
353 isa
<SCEVAddRecExpr
>(SinkStartInt
) && isa
<SCEVAddRecExpr
>(SrcStartInt
)) {
354 auto *SrcStartAR
= cast
<SCEVAddRecExpr
>(SrcStartInt
);
355 auto *SinkStartAR
= cast
<SCEVAddRecExpr
>(SinkStartInt
);
356 const Loop
*StartARLoop
= SrcStartAR
->getLoop();
357 if (StartARLoop
== SinkStartAR
->getLoop() &&
358 StartARLoop
== InnerLoop
->getParentLoop() &&
359 // If the diff check would already be loop invariant (due to the
360 // recurrences being the same), then we prefer to keep the diff checks
361 // because they are cheaper.
362 SrcStartAR
->getStepRecurrence(*SE
) !=
363 SinkStartAR
->getStepRecurrence(*SE
)) {
364 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
365 "cannot be hoisted out of the outer loop\n");
370 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
371 << "SrcStart: " << *SrcStartInt
<< '\n'
372 << "SinkStartInt: " << *SinkStartInt
<< '\n');
373 DiffChecks
.emplace_back(SrcStartInt
, SinkStartInt
, AllocSize
,
374 Src
->NeedsFreeze
|| Sink
->NeedsFreeze
);
378 SmallVector
<RuntimePointerCheck
, 4> RuntimePointerChecking::generateChecks() {
379 SmallVector
<RuntimePointerCheck
, 4> Checks
;
381 for (unsigned I
= 0; I
< CheckingGroups
.size(); ++I
) {
382 for (unsigned J
= I
+ 1; J
< CheckingGroups
.size(); ++J
) {
383 const RuntimeCheckingPtrGroup
&CGI
= CheckingGroups
[I
];
384 const RuntimeCheckingPtrGroup
&CGJ
= CheckingGroups
[J
];
386 if (needsChecking(CGI
, CGJ
)) {
387 CanUseDiffCheck
= CanUseDiffCheck
&& tryToCreateDiffCheck(CGI
, CGJ
);
388 Checks
.push_back(std::make_pair(&CGI
, &CGJ
));
395 void RuntimePointerChecking::generateChecks(
396 MemoryDepChecker::DepCandidates
&DepCands
, bool UseDependencies
) {
397 assert(Checks
.empty() && "Checks is not empty");
398 groupChecks(DepCands
, UseDependencies
);
399 Checks
= generateChecks();
402 bool RuntimePointerChecking::needsChecking(
403 const RuntimeCheckingPtrGroup
&M
, const RuntimeCheckingPtrGroup
&N
) const {
404 for (const auto &I
: M
.Members
)
405 for (const auto &J
: N
.Members
)
406 if (needsChecking(I
, J
))
411 /// Compare \p I and \p J and return the minimum.
412 /// Return nullptr in case we couldn't find an answer.
413 static const SCEV
*getMinFromExprs(const SCEV
*I
, const SCEV
*J
,
414 ScalarEvolution
*SE
) {
415 const SCEV
*Diff
= SE
->getMinusSCEV(J
, I
);
416 const SCEVConstant
*C
= dyn_cast
<const SCEVConstant
>(Diff
);
420 return C
->getValue()->isNegative() ? J
: I
;
423 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index
,
424 RuntimePointerChecking
&RtCheck
) {
426 Index
, RtCheck
.Pointers
[Index
].Start
, RtCheck
.Pointers
[Index
].End
,
427 RtCheck
.Pointers
[Index
].PointerValue
->getType()->getPointerAddressSpace(),
428 RtCheck
.Pointers
[Index
].NeedsFreeze
, *RtCheck
.SE
);
431 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index
, const SCEV
*Start
,
432 const SCEV
*End
, unsigned AS
,
434 ScalarEvolution
&SE
) {
435 assert(AddressSpace
== AS
&&
436 "all pointers in a checking group must be in the same address space");
438 // Compare the starts and ends with the known minimum and maximum
439 // of this set. We need to know how we compare against the min/max
440 // of the set in order to be able to emit memchecks.
441 const SCEV
*Min0
= getMinFromExprs(Start
, Low
, &SE
);
445 const SCEV
*Min1
= getMinFromExprs(End
, High
, &SE
);
449 // Update the low bound expression if we've found a new min value.
453 // Update the high bound expression if we've found a new max value.
457 Members
.push_back(Index
);
458 this->NeedsFreeze
|= NeedsFreeze
;
462 void RuntimePointerChecking::groupChecks(
463 MemoryDepChecker::DepCandidates
&DepCands
, bool UseDependencies
) {
464 // We build the groups from dependency candidates equivalence classes
466 // - We know that pointers in the same equivalence class share
467 // the same underlying object and therefore there is a chance
468 // that we can compare pointers
469 // - We wouldn't be able to merge two pointers for which we need
470 // to emit a memcheck. The classes in DepCands are already
471 // conveniently built such that no two pointers in the same
472 // class need checking against each other.
474 // We use the following (greedy) algorithm to construct the groups
475 // For every pointer in the equivalence class:
476 // For each existing group:
477 // - if the difference between this pointer and the min/max bounds
478 // of the group is a constant, then make the pointer part of the
479 // group and update the min/max bounds of that group as required.
481 CheckingGroups
.clear();
483 // If we need to check two pointers to the same underlying object
484 // with a non-constant difference, we shouldn't perform any pointer
485 // grouping with those pointers. This is because we can easily get
486 // into cases where the resulting check would return false, even when
487 // the accesses are safe.
489 // The following example shows this:
490 // for (i = 0; i < 1000; ++i)
491 // a[5000 + i * m] = a[i] + a[i + 9000]
493 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
494 // (0, 10000) which is always false. However, if m is 1, there is no
495 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
496 // us to perform an accurate check in this case.
498 // The above case requires that we have an UnknownDependence between
499 // accesses to the same underlying object. This cannot happen unless
500 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
501 // is also false. In this case we will use the fallback path and create
502 // separate checking groups for all pointers.
504 // If we don't have the dependency partitions, construct a new
505 // checking pointer group for each pointer. This is also required
506 // for correctness, because in this case we can have checking between
507 // pointers to the same underlying object.
508 if (!UseDependencies
) {
509 for (unsigned I
= 0; I
< Pointers
.size(); ++I
)
510 CheckingGroups
.push_back(RuntimeCheckingPtrGroup(I
, *this));
514 unsigned TotalComparisons
= 0;
516 DenseMap
<Value
*, SmallVector
<unsigned>> PositionMap
;
517 for (unsigned Index
= 0; Index
< Pointers
.size(); ++Index
) {
518 auto [It
, _
] = PositionMap
.insert({Pointers
[Index
].PointerValue
, {}});
519 It
->second
.push_back(Index
);
522 // We need to keep track of what pointers we've already seen so we
523 // don't process them twice.
524 SmallSet
<unsigned, 2> Seen
;
526 // Go through all equivalence classes, get the "pointer check groups"
527 // and add them to the overall solution. We use the order in which accesses
528 // appear in 'Pointers' to enforce determinism.
529 for (unsigned I
= 0; I
< Pointers
.size(); ++I
) {
530 // We've seen this pointer before, and therefore already processed
531 // its equivalence class.
535 MemoryDepChecker::MemAccessInfo
Access(Pointers
[I
].PointerValue
,
536 Pointers
[I
].IsWritePtr
);
538 SmallVector
<RuntimeCheckingPtrGroup
, 2> Groups
;
539 auto LeaderI
= DepCands
.findValue(DepCands
.getLeaderValue(Access
));
541 // Because DepCands is constructed by visiting accesses in the order in
542 // which they appear in alias sets (which is deterministic) and the
543 // iteration order within an equivalence class member is only dependent on
544 // the order in which unions and insertions are performed on the
545 // equivalence class, the iteration order is deterministic.
546 for (auto MI
= DepCands
.member_begin(LeaderI
), ME
= DepCands
.member_end();
548 auto PointerI
= PositionMap
.find(MI
->getPointer());
549 assert(PointerI
!= PositionMap
.end() &&
550 "pointer in equivalence class not found in PositionMap");
551 for (unsigned Pointer
: PointerI
->second
) {
553 // Mark this pointer as seen.
554 Seen
.insert(Pointer
);
556 // Go through all the existing sets and see if we can find one
557 // which can include this pointer.
558 for (RuntimeCheckingPtrGroup
&Group
: Groups
) {
559 // Don't perform more than a certain amount of comparisons.
560 // This should limit the cost of grouping the pointers to something
561 // reasonable. If we do end up hitting this threshold, the algorithm
562 // will create separate groups for all remaining pointers.
563 if (TotalComparisons
> MemoryCheckMergeThreshold
)
568 if (Group
.addPointer(Pointer
, *this)) {
575 // We couldn't add this pointer to any existing set or the threshold
576 // for the number of comparisons has been reached. Create a new group
577 // to hold the current pointer.
578 Groups
.push_back(RuntimeCheckingPtrGroup(Pointer
, *this));
582 // We've computed the grouped checks for this partition.
583 // Save the results and continue with the next one.
584 llvm::copy(Groups
, std::back_inserter(CheckingGroups
));
588 bool RuntimePointerChecking::arePointersInSamePartition(
589 const SmallVectorImpl
<int> &PtrToPartition
, unsigned PtrIdx1
,
591 return (PtrToPartition
[PtrIdx1
] != -1 &&
592 PtrToPartition
[PtrIdx1
] == PtrToPartition
[PtrIdx2
]);
595 bool RuntimePointerChecking::needsChecking(unsigned I
, unsigned J
) const {
596 const PointerInfo
&PointerI
= Pointers
[I
];
597 const PointerInfo
&PointerJ
= Pointers
[J
];
599 // No need to check if two readonly pointers intersect.
600 if (!PointerI
.IsWritePtr
&& !PointerJ
.IsWritePtr
)
603 // Only need to check pointers between two different dependency sets.
604 if (PointerI
.DependencySetId
== PointerJ
.DependencySetId
)
607 // Only need to check pointers in the same alias set.
608 if (PointerI
.AliasSetId
!= PointerJ
.AliasSetId
)
614 void RuntimePointerChecking::printChecks(
615 raw_ostream
&OS
, const SmallVectorImpl
<RuntimePointerCheck
> &Checks
,
616 unsigned Depth
) const {
618 for (const auto &[Check1
, Check2
] : Checks
) {
619 const auto &First
= Check1
->Members
, &Second
= Check2
->Members
;
621 OS
.indent(Depth
) << "Check " << N
++ << ":\n";
623 OS
.indent(Depth
+ 2) << "Comparing group (" << Check1
<< "):\n";
624 for (unsigned K
: First
)
625 OS
.indent(Depth
+ 2) << *Pointers
[K
].PointerValue
<< "\n";
627 OS
.indent(Depth
+ 2) << "Against group (" << Check2
<< "):\n";
628 for (unsigned K
: Second
)
629 OS
.indent(Depth
+ 2) << *Pointers
[K
].PointerValue
<< "\n";
633 void RuntimePointerChecking::print(raw_ostream
&OS
, unsigned Depth
) const {
635 OS
.indent(Depth
) << "Run-time memory checks:\n";
636 printChecks(OS
, Checks
, Depth
);
638 OS
.indent(Depth
) << "Grouped accesses:\n";
639 for (const auto &CG
: CheckingGroups
) {
640 OS
.indent(Depth
+ 2) << "Group " << &CG
<< ":\n";
641 OS
.indent(Depth
+ 4) << "(Low: " << *CG
.Low
<< " High: " << *CG
.High
643 for (unsigned Member
: CG
.Members
) {
644 OS
.indent(Depth
+ 6) << "Member: " << *Pointers
[Member
].Expr
<< "\n";
651 /// Analyses memory accesses in a loop.
653 /// Checks whether run time pointer checks are needed and builds sets for data
654 /// dependence checking.
655 class AccessAnalysis
{
657 /// Read or write access location.
658 typedef PointerIntPair
<Value
*, 1, bool> MemAccessInfo
;
659 typedef SmallVector
<MemAccessInfo
, 8> MemAccessInfoList
;
661 AccessAnalysis(Loop
*TheLoop
, AAResults
*AA
, LoopInfo
*LI
,
662 MemoryDepChecker::DepCandidates
&DA
,
663 PredicatedScalarEvolution
&PSE
,
664 SmallPtrSetImpl
<MDNode
*> &LoopAliasScopes
)
665 : TheLoop(TheLoop
), BAA(*AA
), AST(BAA
), LI(LI
), DepCands(DA
), PSE(PSE
),
666 LoopAliasScopes(LoopAliasScopes
) {
667 // We're analyzing dependences across loop iterations.
668 BAA
.enableCrossIterationMode();
671 /// Register a load and whether it is only read from.
672 void addLoad(MemoryLocation
&Loc
, Type
*AccessTy
, bool IsReadOnly
) {
673 Value
*Ptr
= const_cast<Value
*>(Loc
.Ptr
);
674 AST
.add(adjustLoc(Loc
));
675 Accesses
[MemAccessInfo(Ptr
, false)].insert(AccessTy
);
677 ReadOnlyPtr
.insert(Ptr
);
680 /// Register a store.
681 void addStore(MemoryLocation
&Loc
, Type
*AccessTy
) {
682 Value
*Ptr
= const_cast<Value
*>(Loc
.Ptr
);
683 AST
.add(adjustLoc(Loc
));
684 Accesses
[MemAccessInfo(Ptr
, true)].insert(AccessTy
);
687 /// Check if we can emit a run-time no-alias check for \p Access.
689 /// Returns true if we can emit a run-time no alias check for \p Access.
690 /// If we can check this access, this also adds it to a dependence set and
691 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
692 /// we will attempt to use additional run-time checks in order to get
693 /// the bounds of the pointer.
694 bool createCheckForAccess(RuntimePointerChecking
&RtCheck
,
695 MemAccessInfo Access
, Type
*AccessTy
,
696 const DenseMap
<Value
*, const SCEV
*> &Strides
,
697 DenseMap
<Value
*, unsigned> &DepSetId
,
698 Loop
*TheLoop
, unsigned &RunningDepId
,
699 unsigned ASId
, bool ShouldCheckStride
, bool Assume
);
701 /// Check whether we can check the pointers at runtime for
702 /// non-intersection.
704 /// Returns true if we need no check or if we do and we can generate them
705 /// (i.e. the pointers have computable bounds).
706 bool canCheckPtrAtRT(RuntimePointerChecking
&RtCheck
, ScalarEvolution
*SE
,
707 Loop
*TheLoop
, const DenseMap
<Value
*, const SCEV
*> &Strides
,
708 Value
*&UncomputablePtr
, bool ShouldCheckWrap
= false);
710 /// Goes over all memory accesses, checks whether a RT check is needed
711 /// and builds sets of dependent accesses.
712 void buildDependenceSets() {
713 processMemAccesses();
716 /// Initial processing of memory accesses determined that we need to
717 /// perform dependency checking.
719 /// Note that this can later be cleared if we retry memcheck analysis without
720 /// dependency checking (i.e. FoundNonConstantDistanceDependence).
721 bool isDependencyCheckNeeded() { return !CheckDeps
.empty(); }
723 /// We decided that no dependence analysis would be used. Reset the state.
724 void resetDepChecks(MemoryDepChecker
&DepChecker
) {
726 DepChecker
.clearDependences();
729 MemAccessInfoList
&getDependenciesToCheck() { return CheckDeps
; }
732 typedef MapVector
<MemAccessInfo
, SmallSetVector
<Type
*, 1>> PtrAccessMap
;
734 /// Adjust the MemoryLocation so that it represents accesses to this
735 /// location across all iterations, rather than a single one.
736 MemoryLocation
adjustLoc(MemoryLocation Loc
) const {
737 // The accessed location varies within the loop, but remains within the
738 // underlying object.
739 Loc
.Size
= LocationSize::beforeOrAfterPointer();
740 Loc
.AATags
.Scope
= adjustAliasScopeList(Loc
.AATags
.Scope
);
741 Loc
.AATags
.NoAlias
= adjustAliasScopeList(Loc
.AATags
.NoAlias
);
745 /// Drop alias scopes that are only valid within a single loop iteration.
746 MDNode
*adjustAliasScopeList(MDNode
*ScopeList
) const {
750 // For the sake of simplicity, drop the whole scope list if any scope is
752 if (any_of(ScopeList
->operands(), [&](Metadata
*Scope
) {
753 return LoopAliasScopes
.contains(cast
<MDNode
>(Scope
));
760 /// Go over all memory access and check whether runtime pointer checks
761 /// are needed and build sets of dependency check candidates.
762 void processMemAccesses();
764 /// Map of all accesses. Values are the types used to access memory pointed to
766 PtrAccessMap Accesses
;
768 /// The loop being checked.
771 /// List of accesses that need a further dependence check.
772 MemAccessInfoList CheckDeps
;
774 /// Set of pointers that are read only.
775 SmallPtrSet
<Value
*, 16> ReadOnlyPtr
;
777 /// Batched alias analysis results.
780 /// An alias set tracker to partition the access set by underlying object and
781 //intrinsic property (such as TBAA metadata).
786 /// Sets of potentially dependent accesses - members of one set share an
787 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
788 /// dependence check.
789 MemoryDepChecker::DepCandidates
&DepCands
;
791 /// Initial processing of memory accesses determined that we may need
792 /// to add memchecks. Perform the analysis to determine the necessary checks.
794 /// Note that, this is different from isDependencyCheckNeeded. When we retry
795 /// memcheck analysis without dependency checking
796 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
797 /// cleared while this remains set if we have potentially dependent accesses.
798 bool IsRTCheckAnalysisNeeded
= false;
800 /// The SCEV predicate containing all the SCEV-related assumptions.
801 PredicatedScalarEvolution
&PSE
;
803 DenseMap
<Value
*, SmallVector
<const Value
*, 16>> UnderlyingObjects
;
805 /// Alias scopes that are declared inside the loop, and as such not valid
806 /// across iterations.
807 SmallPtrSetImpl
<MDNode
*> &LoopAliasScopes
;
810 } // end anonymous namespace
812 /// Check whether a pointer can participate in a runtime bounds check.
813 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
814 /// by adding run-time checks (overflow checks) if necessary.
815 static bool hasComputableBounds(PredicatedScalarEvolution
&PSE
, Value
*Ptr
,
816 const SCEV
*PtrScev
, Loop
*L
, bool Assume
) {
817 // The bounds for loop-invariant pointer is trivial.
818 if (PSE
.getSE()->isLoopInvariant(PtrScev
, L
))
821 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(PtrScev
);
824 AR
= PSE
.getAsAddRec(Ptr
);
829 return AR
->isAffine();
832 /// Check whether a pointer address cannot wrap.
833 static bool isNoWrap(PredicatedScalarEvolution
&PSE
,
834 const DenseMap
<Value
*, const SCEV
*> &Strides
, Value
*Ptr
, Type
*AccessTy
,
836 const SCEV
*PtrScev
= PSE
.getSCEV(Ptr
);
837 if (PSE
.getSE()->isLoopInvariant(PtrScev
, L
))
840 int64_t Stride
= getPtrStride(PSE
, AccessTy
, Ptr
, L
, Strides
).value_or(0);
841 if (Stride
== 1 || PSE
.hasNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
))
847 static void visitPointers(Value
*StartPtr
, const Loop
&InnermostLoop
,
848 function_ref
<void(Value
*)> AddPointer
) {
849 SmallPtrSet
<Value
*, 8> Visited
;
850 SmallVector
<Value
*> WorkList
;
851 WorkList
.push_back(StartPtr
);
853 while (!WorkList
.empty()) {
854 Value
*Ptr
= WorkList
.pop_back_val();
855 if (!Visited
.insert(Ptr
).second
)
857 auto *PN
= dyn_cast
<PHINode
>(Ptr
);
858 // SCEV does not look through non-header PHIs inside the loop. Such phis
859 // can be analyzed by adding separate accesses for each incoming pointer
861 if (PN
&& InnermostLoop
.contains(PN
->getParent()) &&
862 PN
->getParent() != InnermostLoop
.getHeader()) {
863 for (const Use
&Inc
: PN
->incoming_values())
864 WorkList
.push_back(Inc
);
870 // Walk back through the IR for a pointer, looking for a select like the
873 // %offset = select i1 %cmp, i64 %a, i64 %b
874 // %addr = getelementptr double, double* %base, i64 %offset
875 // %ld = load double, double* %addr, align 8
877 // We won't be able to form a single SCEVAddRecExpr from this since the
878 // address for each loop iteration depends on %cmp. We could potentially
879 // produce multiple valid SCEVAddRecExprs, though, and check all of them for
880 // memory safety/aliasing if needed.
882 // If we encounter some IR we don't yet handle, or something obviously fine
883 // like a constant, then we just add the SCEV for that term to the list passed
884 // in by the caller. If we have a node that may potentially yield a valid
885 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
886 // ourselves before adding to the list.
887 static void findForkedSCEVs(
888 ScalarEvolution
*SE
, const Loop
*L
, Value
*Ptr
,
889 SmallVectorImpl
<PointerIntPair
<const SCEV
*, 1, bool>> &ScevList
,
891 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
892 // we've exceeded our limit on recursion, just return whatever we have
893 // regardless of whether it can be used for a forked pointer or not, along
894 // with an indication of whether it might be a poison or undef value.
895 const SCEV
*Scev
= SE
->getSCEV(Ptr
);
896 if (isa
<SCEVAddRecExpr
>(Scev
) || L
->isLoopInvariant(Ptr
) ||
897 !isa
<Instruction
>(Ptr
) || Depth
== 0) {
898 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(Ptr
));
904 auto UndefPoisonCheck
= [](PointerIntPair
<const SCEV
*, 1, bool> S
) {
908 auto GetBinOpExpr
= [&SE
](unsigned Opcode
, const SCEV
*L
, const SCEV
*R
) {
910 case Instruction::Add
:
911 return SE
->getAddExpr(L
, R
);
912 case Instruction::Sub
:
913 return SE
->getMinusSCEV(L
, R
);
915 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
919 Instruction
*I
= cast
<Instruction
>(Ptr
);
920 unsigned Opcode
= I
->getOpcode();
922 case Instruction::GetElementPtr
: {
923 GetElementPtrInst
*GEP
= cast
<GetElementPtrInst
>(I
);
924 Type
*SourceTy
= GEP
->getSourceElementType();
925 // We only handle base + single offset GEPs here for now.
926 // Not dealing with preexisting gathers yet, so no vectors.
927 if (I
->getNumOperands() != 2 || SourceTy
->isVectorTy()) {
928 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(GEP
));
931 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>, 2> BaseScevs
;
932 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>, 2> OffsetScevs
;
933 findForkedSCEVs(SE
, L
, I
->getOperand(0), BaseScevs
, Depth
);
934 findForkedSCEVs(SE
, L
, I
->getOperand(1), OffsetScevs
, Depth
);
936 // See if we need to freeze our fork...
937 bool NeedsFreeze
= any_of(BaseScevs
, UndefPoisonCheck
) ||
938 any_of(OffsetScevs
, UndefPoisonCheck
);
940 // Check that we only have a single fork, on either the base or the offset.
941 // Copy the SCEV across for the one without a fork in order to generate
942 // the full SCEV for both sides of the GEP.
943 if (OffsetScevs
.size() == 2 && BaseScevs
.size() == 1)
944 BaseScevs
.push_back(BaseScevs
[0]);
945 else if (BaseScevs
.size() == 2 && OffsetScevs
.size() == 1)
946 OffsetScevs
.push_back(OffsetScevs
[0]);
948 ScevList
.emplace_back(Scev
, NeedsFreeze
);
952 // Find the pointer type we need to extend to.
953 Type
*IntPtrTy
= SE
->getEffectiveSCEVType(
954 SE
->getSCEV(GEP
->getPointerOperand())->getType());
956 // Find the size of the type being pointed to. We only have a single
957 // index term (guarded above) so we don't need to index into arrays or
958 // structures, just get the size of the scalar value.
959 const SCEV
*Size
= SE
->getSizeOfExpr(IntPtrTy
, SourceTy
);
961 // Scale up the offsets by the size of the type, then add to the bases.
962 const SCEV
*Scaled1
= SE
->getMulExpr(
963 Size
, SE
->getTruncateOrSignExtend(get
<0>(OffsetScevs
[0]), IntPtrTy
));
964 const SCEV
*Scaled2
= SE
->getMulExpr(
965 Size
, SE
->getTruncateOrSignExtend(get
<0>(OffsetScevs
[1]), IntPtrTy
));
966 ScevList
.emplace_back(SE
->getAddExpr(get
<0>(BaseScevs
[0]), Scaled1
),
968 ScevList
.emplace_back(SE
->getAddExpr(get
<0>(BaseScevs
[1]), Scaled2
),
972 case Instruction::Select
: {
973 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>, 2> ChildScevs
;
974 // A select means we've found a forked pointer, but we currently only
975 // support a single select per pointer so if there's another behind this
976 // then we just bail out and return the generic SCEV.
977 findForkedSCEVs(SE
, L
, I
->getOperand(1), ChildScevs
, Depth
);
978 findForkedSCEVs(SE
, L
, I
->getOperand(2), ChildScevs
, Depth
);
979 if (ChildScevs
.size() == 2) {
980 ScevList
.push_back(ChildScevs
[0]);
981 ScevList
.push_back(ChildScevs
[1]);
983 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(Ptr
));
986 case Instruction::PHI
: {
987 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>, 2> ChildScevs
;
988 // A phi means we've found a forked pointer, but we currently only
989 // support a single phi per pointer so if there's another behind this
990 // then we just bail out and return the generic SCEV.
991 if (I
->getNumOperands() == 2) {
992 findForkedSCEVs(SE
, L
, I
->getOperand(0), ChildScevs
, Depth
);
993 findForkedSCEVs(SE
, L
, I
->getOperand(1), ChildScevs
, Depth
);
995 if (ChildScevs
.size() == 2) {
996 ScevList
.push_back(ChildScevs
[0]);
997 ScevList
.push_back(ChildScevs
[1]);
999 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(Ptr
));
1002 case Instruction::Add
:
1003 case Instruction::Sub
: {
1004 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>> LScevs
;
1005 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>> RScevs
;
1006 findForkedSCEVs(SE
, L
, I
->getOperand(0), LScevs
, Depth
);
1007 findForkedSCEVs(SE
, L
, I
->getOperand(1), RScevs
, Depth
);
1009 // See if we need to freeze our fork...
1011 any_of(LScevs
, UndefPoisonCheck
) || any_of(RScevs
, UndefPoisonCheck
);
1013 // Check that we only have a single fork, on either the left or right side.
1014 // Copy the SCEV across for the one without a fork in order to generate
1015 // the full SCEV for both sides of the BinOp.
1016 if (LScevs
.size() == 2 && RScevs
.size() == 1)
1017 RScevs
.push_back(RScevs
[0]);
1018 else if (RScevs
.size() == 2 && LScevs
.size() == 1)
1019 LScevs
.push_back(LScevs
[0]);
1021 ScevList
.emplace_back(Scev
, NeedsFreeze
);
1025 ScevList
.emplace_back(
1026 GetBinOpExpr(Opcode
, get
<0>(LScevs
[0]), get
<0>(RScevs
[0])),
1028 ScevList
.emplace_back(
1029 GetBinOpExpr(Opcode
, get
<0>(LScevs
[1]), get
<0>(RScevs
[1])),
1034 // Just return the current SCEV if we haven't handled the instruction yet.
1035 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I
<< "\n");
1036 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(Ptr
));
1041 static SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>>
1042 findForkedPointer(PredicatedScalarEvolution
&PSE
,
1043 const DenseMap
<Value
*, const SCEV
*> &StridesMap
, Value
*Ptr
,
1045 ScalarEvolution
*SE
= PSE
.getSE();
1046 assert(SE
->isSCEVable(Ptr
->getType()) && "Value is not SCEVable!");
1047 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>> Scevs
;
1048 findForkedSCEVs(SE
, L
, Ptr
, Scevs
, MaxForkedSCEVDepth
);
1050 // For now, we will only accept a forked pointer with two possible SCEVs
1051 // that are either SCEVAddRecExprs or loop invariant.
1052 if (Scevs
.size() == 2 &&
1053 (isa
<SCEVAddRecExpr
>(get
<0>(Scevs
[0])) ||
1054 SE
->isLoopInvariant(get
<0>(Scevs
[0]), L
)) &&
1055 (isa
<SCEVAddRecExpr
>(get
<0>(Scevs
[1])) ||
1056 SE
->isLoopInvariant(get
<0>(Scevs
[1]), L
))) {
1057 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr
<< "\n");
1058 LLVM_DEBUG(dbgs() << "\t(1) " << *get
<0>(Scevs
[0]) << "\n");
1059 LLVM_DEBUG(dbgs() << "\t(2) " << *get
<0>(Scevs
[1]) << "\n");
1063 return {{replaceSymbolicStrideSCEV(PSE
, StridesMap
, Ptr
), false}};
1066 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking
&RtCheck
,
1067 MemAccessInfo Access
, Type
*AccessTy
,
1068 const DenseMap
<Value
*, const SCEV
*> &StridesMap
,
1069 DenseMap
<Value
*, unsigned> &DepSetId
,
1070 Loop
*TheLoop
, unsigned &RunningDepId
,
1071 unsigned ASId
, bool ShouldCheckWrap
,
1073 Value
*Ptr
= Access
.getPointer();
1075 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>> TranslatedPtrs
=
1076 findForkedPointer(PSE
, StridesMap
, Ptr
, TheLoop
);
1078 for (auto &P
: TranslatedPtrs
) {
1079 const SCEV
*PtrExpr
= get
<0>(P
);
1080 if (!hasComputableBounds(PSE
, Ptr
, PtrExpr
, TheLoop
, Assume
))
1083 // When we run after a failing dependency check we have to make sure
1084 // we don't have wrapping pointers.
1085 if (ShouldCheckWrap
) {
1086 // Skip wrap checking when translating pointers.
1087 if (TranslatedPtrs
.size() > 1)
1090 if (!isNoWrap(PSE
, StridesMap
, Ptr
, AccessTy
, TheLoop
)) {
1091 auto *Expr
= PSE
.getSCEV(Ptr
);
1092 if (!Assume
|| !isa
<SCEVAddRecExpr
>(Expr
))
1094 PSE
.setNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
);
1097 // If there's only one option for Ptr, look it up after bounds and wrap
1098 // checking, because assumptions might have been added to PSE.
1099 if (TranslatedPtrs
.size() == 1)
1100 TranslatedPtrs
[0] = {replaceSymbolicStrideSCEV(PSE
, StridesMap
, Ptr
),
1104 for (auto [PtrExpr
, NeedsFreeze
] : TranslatedPtrs
) {
1105 // The id of the dependence set.
1108 if (isDependencyCheckNeeded()) {
1109 Value
*Leader
= DepCands
.getLeaderValue(Access
).getPointer();
1110 unsigned &LeaderId
= DepSetId
[Leader
];
1112 LeaderId
= RunningDepId
++;
1115 // Each access has its own dependence set.
1116 DepId
= RunningDepId
++;
1118 bool IsWrite
= Access
.getInt();
1119 RtCheck
.insert(TheLoop
, Ptr
, PtrExpr
, AccessTy
, IsWrite
, DepId
, ASId
, PSE
,
1121 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr
<< '\n');
1127 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking
&RtCheck
,
1128 ScalarEvolution
*SE
, Loop
*TheLoop
,
1129 const DenseMap
<Value
*, const SCEV
*> &StridesMap
,
1130 Value
*&UncomputablePtr
, bool ShouldCheckWrap
) {
1131 // Find pointers with computable bounds. We are going to use this information
1132 // to place a runtime bound check.
1133 bool CanDoRT
= true;
1135 bool MayNeedRTCheck
= false;
1136 if (!IsRTCheckAnalysisNeeded
) return true;
1138 bool IsDepCheckNeeded
= isDependencyCheckNeeded();
1140 // We assign a consecutive id to access from different alias sets.
1141 // Accesses between different groups doesn't need to be checked.
1143 for (auto &AS
: AST
) {
1144 int NumReadPtrChecks
= 0;
1145 int NumWritePtrChecks
= 0;
1146 bool CanDoAliasSetRT
= true;
1148 auto ASPointers
= AS
.getPointers();
1150 // We assign consecutive id to access from different dependence sets.
1151 // Accesses within the same set don't need a runtime check.
1152 unsigned RunningDepId
= 1;
1153 DenseMap
<Value
*, unsigned> DepSetId
;
1155 SmallVector
<std::pair
<MemAccessInfo
, Type
*>, 4> Retries
;
1157 // First, count how many write and read accesses are in the alias set. Also
1158 // collect MemAccessInfos for later.
1159 SmallVector
<MemAccessInfo
, 4> AccessInfos
;
1160 for (const Value
*ConstPtr
: ASPointers
) {
1161 Value
*Ptr
= const_cast<Value
*>(ConstPtr
);
1162 bool IsWrite
= Accesses
.count(MemAccessInfo(Ptr
, true));
1164 ++NumWritePtrChecks
;
1167 AccessInfos
.emplace_back(Ptr
, IsWrite
);
1170 // We do not need runtime checks for this alias set, if there are no writes
1171 // or a single write and no reads.
1172 if (NumWritePtrChecks
== 0 ||
1173 (NumWritePtrChecks
== 1 && NumReadPtrChecks
== 0)) {
1174 assert((ASPointers
.size() <= 1 ||
1176 [this](const Value
*Ptr
) {
1177 MemAccessInfo
AccessWrite(const_cast<Value
*>(Ptr
),
1179 return DepCands
.findValue(AccessWrite
) == DepCands
.end();
1181 "Can only skip updating CanDoRT below, if all entries in AS "
1182 "are reads or there is at most 1 entry");
1186 for (auto &Access
: AccessInfos
) {
1187 for (const auto &AccessTy
: Accesses
[Access
]) {
1188 if (!createCheckForAccess(RtCheck
, Access
, AccessTy
, StridesMap
,
1189 DepSetId
, TheLoop
, RunningDepId
, ASId
,
1190 ShouldCheckWrap
, false)) {
1191 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1192 << *Access
.getPointer() << '\n');
1193 Retries
.push_back({Access
, AccessTy
});
1194 CanDoAliasSetRT
= false;
1199 // Note that this function computes CanDoRT and MayNeedRTCheck
1200 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1201 // we have a pointer for which we couldn't find the bounds but we don't
1202 // actually need to emit any checks so it does not matter.
1204 // We need runtime checks for this alias set, if there are at least 2
1205 // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1206 // any bound checks (because in that case the number of dependence sets is
1208 bool NeedsAliasSetRTCheck
= RunningDepId
> 2 || !Retries
.empty();
1210 // We need to perform run-time alias checks, but some pointers had bounds
1211 // that couldn't be checked.
1212 if (NeedsAliasSetRTCheck
&& !CanDoAliasSetRT
) {
1213 // Reset the CanDoSetRt flag and retry all accesses that have failed.
1214 // We know that we need these checks, so we can now be more aggressive
1215 // and add further checks if required (overflow checks).
1216 CanDoAliasSetRT
= true;
1217 for (const auto &[Access
, AccessTy
] : Retries
) {
1218 if (!createCheckForAccess(RtCheck
, Access
, AccessTy
, StridesMap
,
1219 DepSetId
, TheLoop
, RunningDepId
, ASId
,
1220 ShouldCheckWrap
, /*Assume=*/true)) {
1221 CanDoAliasSetRT
= false;
1222 UncomputablePtr
= Access
.getPointer();
1228 CanDoRT
&= CanDoAliasSetRT
;
1229 MayNeedRTCheck
|= NeedsAliasSetRTCheck
;
1233 // If the pointers that we would use for the bounds comparison have different
1234 // address spaces, assume the values aren't directly comparable, so we can't
1235 // use them for the runtime check. We also have to assume they could
1236 // overlap. In the future there should be metadata for whether address spaces
1238 unsigned NumPointers
= RtCheck
.Pointers
.size();
1239 for (unsigned i
= 0; i
< NumPointers
; ++i
) {
1240 for (unsigned j
= i
+ 1; j
< NumPointers
; ++j
) {
1241 // Only need to check pointers between two different dependency sets.
1242 if (RtCheck
.Pointers
[i
].DependencySetId
==
1243 RtCheck
.Pointers
[j
].DependencySetId
)
1245 // Only need to check pointers in the same alias set.
1246 if (RtCheck
.Pointers
[i
].AliasSetId
!= RtCheck
.Pointers
[j
].AliasSetId
)
1249 Value
*PtrI
= RtCheck
.Pointers
[i
].PointerValue
;
1250 Value
*PtrJ
= RtCheck
.Pointers
[j
].PointerValue
;
1252 unsigned ASi
= PtrI
->getType()->getPointerAddressSpace();
1253 unsigned ASj
= PtrJ
->getType()->getPointerAddressSpace();
1256 dbgs() << "LAA: Runtime check would require comparison between"
1257 " different address spaces\n");
1263 if (MayNeedRTCheck
&& CanDoRT
)
1264 RtCheck
.generateChecks(DepCands
, IsDepCheckNeeded
);
1266 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck
.getNumberOfChecks()
1267 << " pointer comparisons.\n");
1269 // If we can do run-time checks, but there are no checks, no runtime checks
1270 // are needed. This can happen when all pointers point to the same underlying
1271 // object for example.
1272 RtCheck
.Need
= CanDoRT
? RtCheck
.getNumberOfChecks() != 0 : MayNeedRTCheck
;
1274 bool CanDoRTIfNeeded
= !RtCheck
.Need
|| CanDoRT
;
1275 if (!CanDoRTIfNeeded
)
1277 return CanDoRTIfNeeded
;
1280 void AccessAnalysis::processMemAccesses() {
1281 // We process the set twice: first we process read-write pointers, last we
1282 // process read-only pointers. This allows us to skip dependence tests for
1283 // read-only pointers.
1285 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1286 LLVM_DEBUG(dbgs() << " AST: "; AST
.dump());
1287 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses
.size() << "):\n");
1289 for (const auto &[A
, _
] : Accesses
)
1290 dbgs() << "\t" << *A
.getPointer() << " ("
1291 << (A
.getInt() ? "write"
1292 : (ReadOnlyPtr
.count(A
.getPointer()) ? "read-only"
1297 // The AliasSetTracker has nicely partitioned our pointers by metadata
1298 // compatibility and potential for underlying-object overlap. As a result, we
1299 // only need to check for potential pointer dependencies within each alias
1301 for (const auto &AS
: AST
) {
1302 // Note that both the alias-set tracker and the alias sets themselves used
1303 // ordered collections internally and so the iteration order here is
1305 auto ASPointers
= AS
.getPointers();
1307 bool SetHasWrite
= false;
1309 // Map of pointers to last access encountered.
1310 typedef DenseMap
<const Value
*, MemAccessInfo
> UnderlyingObjToAccessMap
;
1311 UnderlyingObjToAccessMap ObjToLastAccess
;
1313 // Set of access to check after all writes have been processed.
1314 PtrAccessMap DeferredAccesses
;
1316 // Iterate over each alias set twice, once to process read/write pointers,
1317 // and then to process read-only pointers.
1318 for (int SetIteration
= 0; SetIteration
< 2; ++SetIteration
) {
1319 bool UseDeferred
= SetIteration
> 0;
1320 PtrAccessMap
&S
= UseDeferred
? DeferredAccesses
: Accesses
;
1322 for (const Value
*ConstPtr
: ASPointers
) {
1323 Value
*Ptr
= const_cast<Value
*>(ConstPtr
);
1325 // For a single memory access in AliasSetTracker, Accesses may contain
1326 // both read and write, and they both need to be handled for CheckDeps.
1327 for (const auto &[AC
, _
] : S
) {
1328 if (AC
.getPointer() != Ptr
)
1331 bool IsWrite
= AC
.getInt();
1333 // If we're using the deferred access set, then it contains only
1335 bool IsReadOnlyPtr
= ReadOnlyPtr
.count(Ptr
) && !IsWrite
;
1336 if (UseDeferred
&& !IsReadOnlyPtr
)
1338 // Otherwise, the pointer must be in the PtrAccessSet, either as a
1340 assert(((IsReadOnlyPtr
&& UseDeferred
) || IsWrite
||
1341 S
.count(MemAccessInfo(Ptr
, false))) &&
1342 "Alias-set pointer not in the access set?");
1344 MemAccessInfo
Access(Ptr
, IsWrite
);
1345 DepCands
.insert(Access
);
1347 // Memorize read-only pointers for later processing and skip them in
1348 // the first round (they need to be checked after we have seen all
1349 // write pointers). Note: we also mark pointer that are not
1350 // consecutive as "read-only" pointers (so that we check
1351 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1352 if (!UseDeferred
&& IsReadOnlyPtr
) {
1353 // We only use the pointer keys, the types vector values don't
1355 DeferredAccesses
.insert({Access
, {}});
1359 // If this is a write - check other reads and writes for conflicts. If
1360 // this is a read only check other writes for conflicts (but only if
1361 // there is no other write to the ptr - this is an optimization to
1362 // catch "a[i] = a[i] + " without having to do a dependence check).
1363 if ((IsWrite
|| IsReadOnlyPtr
) && SetHasWrite
) {
1364 CheckDeps
.push_back(Access
);
1365 IsRTCheckAnalysisNeeded
= true;
1371 // Create sets of pointers connected by a shared alias set and
1372 // underlying object.
1373 typedef SmallVector
<const Value
*, 16> ValueVector
;
1374 ValueVector TempObjects
;
1376 UnderlyingObjects
[Ptr
] = {};
1377 SmallVector
<const Value
*, 16> &UOs
= UnderlyingObjects
[Ptr
];
1378 ::getUnderlyingObjects(Ptr
, UOs
, LI
);
1380 << "Underlying objects for pointer " << *Ptr
<< "\n");
1381 for (const Value
*UnderlyingObj
: UOs
) {
1382 // nullptr never alias, don't join sets for pointer that have "null"
1383 // in their UnderlyingObjects list.
1384 if (isa
<ConstantPointerNull
>(UnderlyingObj
) &&
1385 !NullPointerIsDefined(
1386 TheLoop
->getHeader()->getParent(),
1387 UnderlyingObj
->getType()->getPointerAddressSpace()))
1390 UnderlyingObjToAccessMap::iterator Prev
=
1391 ObjToLastAccess
.find(UnderlyingObj
);
1392 if (Prev
!= ObjToLastAccess
.end())
1393 DepCands
.unionSets(Access
, Prev
->second
);
1395 ObjToLastAccess
[UnderlyingObj
] = Access
;
1396 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj
<< "\n");
1404 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1405 /// i.e. monotonically increasing/decreasing.
1406 static bool isNoWrapAddRec(Value
*Ptr
, const SCEVAddRecExpr
*AR
,
1407 PredicatedScalarEvolution
&PSE
, const Loop
*L
) {
1409 // FIXME: This should probably only return true for NUW.
1410 if (AR
->getNoWrapFlags(SCEV::NoWrapMask
))
1413 if (PSE
.hasNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
))
1416 // Scalar evolution does not propagate the non-wrapping flags to values that
1417 // are derived from a non-wrapping induction variable because non-wrapping
1418 // could be flow-sensitive.
1420 // Look through the potentially overflowing instruction to try to prove
1421 // non-wrapping for the *specific* value of Ptr.
1423 // The arithmetic implied by an inbounds GEP can't overflow.
1424 auto *GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
1425 if (!GEP
|| !GEP
->isInBounds())
1428 // Make sure there is only one non-const index and analyze that.
1429 Value
*NonConstIndex
= nullptr;
1430 for (Value
*Index
: GEP
->indices())
1431 if (!isa
<ConstantInt
>(Index
)) {
1434 NonConstIndex
= Index
;
1437 // The recurrence is on the pointer, ignore for now.
1440 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
1441 // AddRec using a NSW operation.
1442 if (auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(NonConstIndex
))
1443 if (OBO
->hasNoSignedWrap() &&
1444 // Assume constant for other the operand so that the AddRec can be
1446 isa
<ConstantInt
>(OBO
->getOperand(1))) {
1447 auto *OpScev
= PSE
.getSCEV(OBO
->getOperand(0));
1449 if (auto *OpAR
= dyn_cast
<SCEVAddRecExpr
>(OpScev
))
1450 return OpAR
->getLoop() == L
&& OpAR
->getNoWrapFlags(SCEV::FlagNSW
);
1456 /// Check whether the access through \p Ptr has a constant stride.
1457 std::optional
<int64_t>
1458 llvm::getPtrStride(PredicatedScalarEvolution
&PSE
, Type
*AccessTy
, Value
*Ptr
,
1460 const DenseMap
<Value
*, const SCEV
*> &StridesMap
,
1461 bool Assume
, bool ShouldCheckWrap
) {
1462 const SCEV
*PtrScev
= replaceSymbolicStrideSCEV(PSE
, StridesMap
, Ptr
);
1463 if (PSE
.getSE()->isLoopInvariant(PtrScev
, Lp
))
1466 Type
*Ty
= Ptr
->getType();
1467 assert(Ty
->isPointerTy() && "Unexpected non-ptr");
1468 if (isa
<ScalableVectorType
>(AccessTy
)) {
1469 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1471 return std::nullopt
;
1474 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(PtrScev
);
1476 AR
= PSE
.getAsAddRec(Ptr
);
1479 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1480 << " SCEV: " << *PtrScev
<< "\n");
1481 return std::nullopt
;
1484 // The access function must stride over the innermost loop.
1485 if (Lp
!= AR
->getLoop()) {
1486 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1487 << *Ptr
<< " SCEV: " << *AR
<< "\n");
1488 return std::nullopt
;
1491 // Check the step is constant.
1492 const SCEV
*Step
= AR
->getStepRecurrence(*PSE
.getSE());
1494 // Calculate the pointer stride and check if it is constant.
1495 const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Step
);
1497 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1498 << " SCEV: " << *AR
<< "\n");
1499 return std::nullopt
;
1502 auto &DL
= Lp
->getHeader()->getDataLayout();
1503 TypeSize AllocSize
= DL
.getTypeAllocSize(AccessTy
);
1504 int64_t Size
= AllocSize
.getFixedValue();
1505 const APInt
&APStepVal
= C
->getAPInt();
1507 // Huge step value - give up.
1508 if (APStepVal
.getBitWidth() > 64)
1509 return std::nullopt
;
1511 int64_t StepVal
= APStepVal
.getSExtValue();
1514 int64_t Stride
= StepVal
/ Size
;
1515 int64_t Rem
= StepVal
% Size
;
1517 return std::nullopt
;
1519 if (!ShouldCheckWrap
)
1522 // The address calculation must not wrap. Otherwise, a dependence could be
1524 if (isNoWrapAddRec(Ptr
, AR
, PSE
, Lp
))
1527 // An inbounds getelementptr that is a AddRec with a unit stride
1528 // cannot wrap per definition. If it did, the result would be poison
1529 // and any memory access dependent on it would be immediate UB
1531 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
1532 GEP
&& GEP
->isInBounds() && (Stride
== 1 || Stride
== -1))
1535 // If the null pointer is undefined, then a access sequence which would
1536 // otherwise access it can be assumed not to unsigned wrap. Note that this
1537 // assumes the object in memory is aligned to the natural alignment.
1538 unsigned AddrSpace
= Ty
->getPointerAddressSpace();
1539 if (!NullPointerIsDefined(Lp
->getHeader()->getParent(), AddrSpace
) &&
1540 (Stride
== 1 || Stride
== -1))
1544 PSE
.setNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
);
1545 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1546 << "LAA: Pointer: " << *Ptr
<< "\n"
1547 << "LAA: SCEV: " << *AR
<< "\n"
1548 << "LAA: Added an overflow assumption\n");
1552 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1553 << *Ptr
<< " SCEV: " << *AR
<< "\n");
1554 return std::nullopt
;
1557 std::optional
<int> llvm::getPointersDiff(Type
*ElemTyA
, Value
*PtrA
,
1558 Type
*ElemTyB
, Value
*PtrB
,
1559 const DataLayout
&DL
,
1560 ScalarEvolution
&SE
, bool StrictCheck
,
1562 assert(PtrA
&& PtrB
&& "Expected non-nullptr pointers.");
1564 // Make sure that A and B are different pointers.
1568 // Make sure that the element types are the same if required.
1569 if (CheckType
&& ElemTyA
!= ElemTyB
)
1570 return std::nullopt
;
1572 unsigned ASA
= PtrA
->getType()->getPointerAddressSpace();
1573 unsigned ASB
= PtrB
->getType()->getPointerAddressSpace();
1575 // Check that the address spaces match.
1577 return std::nullopt
;
1578 unsigned IdxWidth
= DL
.getIndexSizeInBits(ASA
);
1580 APInt
OffsetA(IdxWidth
, 0), OffsetB(IdxWidth
, 0);
1581 Value
*PtrA1
= PtrA
->stripAndAccumulateInBoundsConstantOffsets(DL
, OffsetA
);
1582 Value
*PtrB1
= PtrB
->stripAndAccumulateInBoundsConstantOffsets(DL
, OffsetB
);
1585 if (PtrA1
== PtrB1
) {
1586 // Retrieve the address space again as pointer stripping now tracks through
1588 ASA
= cast
<PointerType
>(PtrA1
->getType())->getAddressSpace();
1589 ASB
= cast
<PointerType
>(PtrB1
->getType())->getAddressSpace();
1590 // Check that the address spaces match and that the pointers are valid.
1592 return std::nullopt
;
1594 IdxWidth
= DL
.getIndexSizeInBits(ASA
);
1595 OffsetA
= OffsetA
.sextOrTrunc(IdxWidth
);
1596 OffsetB
= OffsetB
.sextOrTrunc(IdxWidth
);
1599 Val
= OffsetB
.getSExtValue();
1601 // Otherwise compute the distance with SCEV between the base pointers.
1602 const SCEV
*PtrSCEVA
= SE
.getSCEV(PtrA
);
1603 const SCEV
*PtrSCEVB
= SE
.getSCEV(PtrB
);
1605 dyn_cast
<SCEVConstant
>(SE
.getMinusSCEV(PtrSCEVB
, PtrSCEVA
));
1607 return std::nullopt
;
1608 Val
= Diff
->getAPInt().getSExtValue();
1610 int Size
= DL
.getTypeStoreSize(ElemTyA
);
1611 int Dist
= Val
/ Size
;
1613 // Ensure that the calculated distance matches the type-based one after all
1614 // the bitcasts removal in the provided pointers.
1615 if (!StrictCheck
|| Dist
* Size
== Val
)
1617 return std::nullopt
;
1620 bool llvm::sortPtrAccesses(ArrayRef
<Value
*> VL
, Type
*ElemTy
,
1621 const DataLayout
&DL
, ScalarEvolution
&SE
,
1622 SmallVectorImpl
<unsigned> &SortedIndices
) {
1623 assert(llvm::all_of(
1624 VL
, [](const Value
*V
) { return V
->getType()->isPointerTy(); }) &&
1625 "Expected list of pointer operands.");
1626 // Walk over the pointers, and map each of them to an offset relative to
1627 // first pointer in the array.
1628 Value
*Ptr0
= VL
[0];
1630 using DistOrdPair
= std::pair
<int64_t, int>;
1631 auto Compare
= llvm::less_first();
1632 std::set
<DistOrdPair
, decltype(Compare
)> Offsets(Compare
);
1633 Offsets
.emplace(0, 0);
1634 bool IsConsecutive
= true;
1635 for (auto [Idx
, Ptr
] : drop_begin(enumerate(VL
))) {
1636 std::optional
<int> Diff
= getPointersDiff(ElemTy
, Ptr0
, ElemTy
, Ptr
, DL
, SE
,
1637 /*StrictCheck=*/true);
1641 // Check if the pointer with the same offset is found.
1642 int64_t Offset
= *Diff
;
1643 auto [It
, IsInserted
] = Offsets
.emplace(Offset
, Idx
);
1646 // Consecutive order if the inserted element is the last one.
1647 IsConsecutive
&= std::next(It
) == Offsets
.end();
1649 SortedIndices
.clear();
1650 if (!IsConsecutive
) {
1651 // Fill SortedIndices array only if it is non-consecutive.
1652 SortedIndices
.resize(VL
.size());
1653 for (auto [Idx
, Off
] : enumerate(Offsets
))
1654 SortedIndices
[Idx
] = Off
.second
;
1659 /// Returns true if the memory operations \p A and \p B are consecutive.
1660 bool llvm::isConsecutiveAccess(Value
*A
, Value
*B
, const DataLayout
&DL
,
1661 ScalarEvolution
&SE
, bool CheckType
) {
1662 Value
*PtrA
= getLoadStorePointerOperand(A
);
1663 Value
*PtrB
= getLoadStorePointerOperand(B
);
1666 Type
*ElemTyA
= getLoadStoreType(A
);
1667 Type
*ElemTyB
= getLoadStoreType(B
);
1668 std::optional
<int> Diff
=
1669 getPointersDiff(ElemTyA
, PtrA
, ElemTyB
, PtrB
, DL
, SE
,
1670 /*StrictCheck=*/true, CheckType
);
1671 return Diff
&& *Diff
== 1;
1674 void MemoryDepChecker::addAccess(StoreInst
*SI
) {
1675 visitPointers(SI
->getPointerOperand(), *InnermostLoop
,
1676 [this, SI
](Value
*Ptr
) {
1677 Accesses
[MemAccessInfo(Ptr
, true)].push_back(AccessIdx
);
1678 InstMap
.push_back(SI
);
1683 void MemoryDepChecker::addAccess(LoadInst
*LI
) {
1684 visitPointers(LI
->getPointerOperand(), *InnermostLoop
,
1685 [this, LI
](Value
*Ptr
) {
1686 Accesses
[MemAccessInfo(Ptr
, false)].push_back(AccessIdx
);
1687 InstMap
.push_back(LI
);
1692 MemoryDepChecker::VectorizationSafetyStatus
1693 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type
) {
1697 case BackwardVectorizable
:
1698 return VectorizationSafetyStatus::Safe
;
1701 return VectorizationSafetyStatus::PossiblySafeWithRtChecks
;
1702 case ForwardButPreventsForwarding
:
1704 case BackwardVectorizableButPreventsForwarding
:
1705 case IndirectUnsafe
:
1706 return VectorizationSafetyStatus::Unsafe
;
1708 llvm_unreachable("unexpected DepType!");
1711 bool MemoryDepChecker::Dependence::isBackward() const {
1715 case ForwardButPreventsForwarding
:
1717 case IndirectUnsafe
:
1720 case BackwardVectorizable
:
1722 case BackwardVectorizableButPreventsForwarding
:
1725 llvm_unreachable("unexpected DepType!");
1728 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1729 return isBackward() || Type
== Unknown
|| Type
== IndirectUnsafe
;
1732 bool MemoryDepChecker::Dependence::isForward() const {
1735 case ForwardButPreventsForwarding
:
1740 case BackwardVectorizable
:
1742 case BackwardVectorizableButPreventsForwarding
:
1743 case IndirectUnsafe
:
1746 llvm_unreachable("unexpected DepType!");
1749 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance
,
1750 uint64_t TypeByteSize
) {
1751 // If loads occur at a distance that is not a multiple of a feasible vector
1752 // factor store-load forwarding does not take place.
1753 // Positive dependences might cause troubles because vectorizing them might
1754 // prevent store-load forwarding making vectorized code run a lot slower.
1755 // a[i] = a[i-3] ^ a[i-8];
1756 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1757 // hence on your typical architecture store-load forwarding does not take
1758 // place. Vectorizing in such cases does not make sense.
1759 // Store-load forwarding distance.
1761 // After this many iterations store-to-load forwarding conflicts should not
1762 // cause any slowdowns.
1763 const uint64_t NumItersForStoreLoadThroughMemory
= 8 * TypeByteSize
;
1764 // Maximum vector factor.
1765 uint64_t MaxVFWithoutSLForwardIssues
= std::min(
1766 VectorizerParams::MaxVectorWidth
* TypeByteSize
, MinDepDistBytes
);
1768 // Compute the smallest VF at which the store and load would be misaligned.
1769 for (uint64_t VF
= 2 * TypeByteSize
; VF
<= MaxVFWithoutSLForwardIssues
;
1771 // If the number of vector iteration between the store and the load are
1772 // small we could incur conflicts.
1773 if (Distance
% VF
&& Distance
/ VF
< NumItersForStoreLoadThroughMemory
) {
1774 MaxVFWithoutSLForwardIssues
= (VF
>> 1);
1779 if (MaxVFWithoutSLForwardIssues
< 2 * TypeByteSize
) {
1781 dbgs() << "LAA: Distance " << Distance
1782 << " that could cause a store-load forwarding conflict\n");
1786 if (MaxVFWithoutSLForwardIssues
< MinDepDistBytes
&&
1787 MaxVFWithoutSLForwardIssues
!=
1788 VectorizerParams::MaxVectorWidth
* TypeByteSize
)
1789 MinDepDistBytes
= MaxVFWithoutSLForwardIssues
;
1793 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S
) {
1798 /// Given a dependence-distance \p Dist between two
1799 /// memory accesses, that have strides in the same direction whose absolute
1800 /// value of the maximum stride is given in \p MaxStride, and that have the same
1801 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is
1802 /// \p MaxBTC, check if it is possible to prove statically that the dependence
1803 /// distance is larger than the range that the accesses will travel through the
1804 /// execution of the loop. If so, return true; false otherwise. This is useful
1805 /// for example in loops such as the following (PR31098):
1806 /// for (i = 0; i < D; ++i) {
1810 static bool isSafeDependenceDistance(const DataLayout
&DL
, ScalarEvolution
&SE
,
1811 const SCEV
&MaxBTC
, const SCEV
&Dist
,
1813 uint64_t TypeByteSize
) {
1815 // If we can prove that
1816 // (**) |Dist| > MaxBTC * Step
1817 // where Step is the absolute stride of the memory accesses in bytes,
1818 // then there is no dependence.
1821 // We basically want to check if the absolute distance (|Dist/Step|)
1822 // is >= the loop iteration count (or > MaxBTC).
1823 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1824 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1825 // that the dependence distance is >= VF; This is checked elsewhere.
1826 // But in some cases we can prune dependence distances early, and
1827 // even before selecting the VF, and without a runtime test, by comparing
1828 // the distance against the loop iteration count. Since the vectorized code
1829 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1830 // also guarantees that distance >= VF.
1832 const uint64_t ByteStride
= MaxStride
* TypeByteSize
;
1833 const SCEV
*Step
= SE
.getConstant(MaxBTC
.getType(), ByteStride
);
1834 const SCEV
*Product
= SE
.getMulExpr(&MaxBTC
, Step
);
1836 const SCEV
*CastedDist
= &Dist
;
1837 const SCEV
*CastedProduct
= Product
;
1838 uint64_t DistTypeSizeBits
= DL
.getTypeSizeInBits(Dist
.getType());
1839 uint64_t ProductTypeSizeBits
= DL
.getTypeSizeInBits(Product
->getType());
1841 // The dependence distance can be positive/negative, so we sign extend Dist;
1842 // The multiplication of the absolute stride in bytes and the
1843 // backedgeTakenCount is non-negative, so we zero extend Product.
1844 if (DistTypeSizeBits
> ProductTypeSizeBits
)
1845 CastedProduct
= SE
.getZeroExtendExpr(Product
, Dist
.getType());
1847 CastedDist
= SE
.getNoopOrSignExtend(&Dist
, Product
->getType());
1849 // Is Dist - (MaxBTC * Step) > 0 ?
1850 // (If so, then we have proven (**) because |Dist| >= Dist)
1851 const SCEV
*Minus
= SE
.getMinusSCEV(CastedDist
, CastedProduct
);
1852 if (SE
.isKnownPositive(Minus
))
1855 // Second try: Is -Dist - (MaxBTC * Step) > 0 ?
1856 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1857 const SCEV
*NegDist
= SE
.getNegativeSCEV(CastedDist
);
1858 Minus
= SE
.getMinusSCEV(NegDist
, CastedProduct
);
1859 return SE
.isKnownPositive(Minus
);
1862 /// Check the dependence for two accesses with the same stride \p Stride.
1863 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1866 /// \returns true if they are independent.
1867 static bool areStridedAccessesIndependent(uint64_t Distance
, uint64_t Stride
,
1868 uint64_t TypeByteSize
) {
1869 assert(Stride
> 1 && "The stride must be greater than 1");
1870 assert(TypeByteSize
> 0 && "The type size in byte must be non-zero");
1871 assert(Distance
> 0 && "The distance must be non-zero");
1873 // Skip if the distance is not multiple of type byte size.
1874 if (Distance
% TypeByteSize
)
1877 uint64_t ScaledDist
= Distance
/ TypeByteSize
;
1879 // No dependence if the scaled distance is not multiple of the stride.
1881 // for (i = 0; i < 1024 ; i += 4)
1882 // A[i+2] = A[i] + 1;
1884 // Two accesses in memory (scaled distance is 2, stride is 4):
1885 // | A[0] | | | | A[4] | | | |
1886 // | | | A[2] | | | | A[6] | |
1889 // for (i = 0; i < 1024 ; i += 3)
1890 // A[i+4] = A[i] + 1;
1892 // Two accesses in memory (scaled distance is 4, stride is 3):
1893 // | A[0] | | | A[3] | | | A[6] | | |
1894 // | | | | | A[4] | | | A[7] | |
1895 return ScaledDist
% Stride
;
1898 std::variant
<MemoryDepChecker::Dependence::DepType
,
1899 MemoryDepChecker::DepDistanceStrideAndSizeInfo
>
1900 MemoryDepChecker::getDependenceDistanceStrideAndSize(
1901 const AccessAnalysis::MemAccessInfo
&A
, Instruction
*AInst
,
1902 const AccessAnalysis::MemAccessInfo
&B
, Instruction
*BInst
) {
1903 const auto &DL
= InnermostLoop
->getHeader()->getDataLayout();
1904 auto &SE
= *PSE
.getSE();
1905 auto [APtr
, AIsWrite
] = A
;
1906 auto [BPtr
, BIsWrite
] = B
;
1908 // Two reads are independent.
1909 if (!AIsWrite
&& !BIsWrite
)
1910 return MemoryDepChecker::Dependence::NoDep
;
1912 Type
*ATy
= getLoadStoreType(AInst
);
1913 Type
*BTy
= getLoadStoreType(BInst
);
1915 // We cannot check pointers in different address spaces.
1916 if (APtr
->getType()->getPointerAddressSpace() !=
1917 BPtr
->getType()->getPointerAddressSpace())
1918 return MemoryDepChecker::Dependence::Unknown
;
1920 std::optional
<int64_t> StrideAPtr
=
1921 getPtrStride(PSE
, ATy
, APtr
, InnermostLoop
, SymbolicStrides
, true, true);
1922 std::optional
<int64_t> StrideBPtr
=
1923 getPtrStride(PSE
, BTy
, BPtr
, InnermostLoop
, SymbolicStrides
, true, true);
1925 const SCEV
*Src
= PSE
.getSCEV(APtr
);
1926 const SCEV
*Sink
= PSE
.getSCEV(BPtr
);
1928 // If the induction step is negative we have to invert source and sink of the
1929 // dependence when measuring the distance between them. We should not swap
1930 // AIsWrite with BIsWrite, as their uses expect them in program order.
1931 if (StrideAPtr
&& *StrideAPtr
< 0) {
1932 std::swap(Src
, Sink
);
1933 std::swap(AInst
, BInst
);
1934 std::swap(StrideAPtr
, StrideBPtr
);
1937 const SCEV
*Dist
= SE
.getMinusSCEV(Sink
, Src
);
1939 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src
<< "Sink Scev: " << *Sink
1941 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst
<< " to " << *BInst
1942 << ": " << *Dist
<< "\n");
1944 // Check if we can prove that Sink only accesses memory after Src's end or
1945 // vice versa. At the moment this is limited to cases where either source or
1946 // sink are loop invariant to avoid compile-time increases. This is not
1947 // required for correctness.
1948 if (SE
.isLoopInvariant(Src
, InnermostLoop
) ||
1949 SE
.isLoopInvariant(Sink
, InnermostLoop
)) {
1950 const auto &[SrcStart
, SrcEnd
] =
1951 getStartAndEndForAccess(InnermostLoop
, Src
, ATy
, PSE
, PointerBounds
);
1952 const auto &[SinkStart
, SinkEnd
] =
1953 getStartAndEndForAccess(InnermostLoop
, Sink
, BTy
, PSE
, PointerBounds
);
1954 if (!isa
<SCEVCouldNotCompute
>(SrcStart
) &&
1955 !isa
<SCEVCouldNotCompute
>(SrcEnd
) &&
1956 !isa
<SCEVCouldNotCompute
>(SinkStart
) &&
1957 !isa
<SCEVCouldNotCompute
>(SinkEnd
)) {
1958 if (SE
.isKnownPredicate(CmpInst::ICMP_ULE
, SrcEnd
, SinkStart
))
1959 return MemoryDepChecker::Dependence::NoDep
;
1960 if (SE
.isKnownPredicate(CmpInst::ICMP_ULE
, SinkEnd
, SrcStart
))
1961 return MemoryDepChecker::Dependence::NoDep
;
1965 // Need accesses with constant strides and the same direction for further
1966 // dependence analysis. We don't want to vectorize "A[B[i]] += ..." and
1967 // similar code or pointer arithmetic that could wrap in the address space.
1969 // If either Src or Sink are not strided (i.e. not a non-wrapping AddRec) and
1970 // not loop-invariant (stride will be 0 in that case), we cannot analyze the
1971 // dependence further and also cannot generate runtime checks.
1972 if (!StrideAPtr
|| !StrideBPtr
) {
1973 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1974 return MemoryDepChecker::Dependence::IndirectUnsafe
;
1977 int64_t StrideAPtrInt
= *StrideAPtr
;
1978 int64_t StrideBPtrInt
= *StrideBPtr
;
1979 LLVM_DEBUG(dbgs() << "LAA: Src induction step: " << StrideAPtrInt
1980 << " Sink induction step: " << StrideBPtrInt
<< "\n");
1981 // At least Src or Sink are loop invariant and the other is strided or
1982 // invariant. We can generate a runtime check to disambiguate the accesses.
1983 if (StrideAPtrInt
== 0 || StrideBPtrInt
== 0)
1984 return MemoryDepChecker::Dependence::Unknown
;
1986 // Both Src and Sink have a constant stride, check if they are in the same
1988 if ((StrideAPtrInt
> 0 && StrideBPtrInt
< 0) ||
1989 (StrideAPtrInt
< 0 && StrideBPtrInt
> 0)) {
1991 dbgs() << "Pointer access with strides in different directions\n");
1992 return MemoryDepChecker::Dependence::Unknown
;
1995 uint64_t TypeByteSize
= DL
.getTypeAllocSize(ATy
);
1997 DL
.getTypeStoreSizeInBits(ATy
) == DL
.getTypeStoreSizeInBits(BTy
);
2000 return DepDistanceStrideAndSizeInfo(Dist
, std::abs(StrideAPtrInt
),
2001 std::abs(StrideBPtrInt
), TypeByteSize
,
2002 AIsWrite
, BIsWrite
);
2005 MemoryDepChecker::Dependence::DepType
2006 MemoryDepChecker::isDependent(const MemAccessInfo
&A
, unsigned AIdx
,
2007 const MemAccessInfo
&B
, unsigned BIdx
) {
2008 assert(AIdx
< BIdx
&& "Must pass arguments in program order");
2010 // Get the dependence distance, stride, type size and what access writes for
2011 // the dependence between A and B.
2013 getDependenceDistanceStrideAndSize(A
, InstMap
[AIdx
], B
, InstMap
[BIdx
]);
2014 if (std::holds_alternative
<Dependence::DepType
>(Res
))
2015 return std::get
<Dependence::DepType
>(Res
);
2017 auto &[Dist
, StrideA
, StrideB
, TypeByteSize
, AIsWrite
, BIsWrite
] =
2018 std::get
<DepDistanceStrideAndSizeInfo
>(Res
);
2019 bool HasSameSize
= TypeByteSize
> 0;
2021 std::optional
<uint64_t> CommonStride
=
2022 StrideA
== StrideB
? std::make_optional(StrideA
) : std::nullopt
;
2023 if (isa
<SCEVCouldNotCompute
>(Dist
)) {
2024 // TODO: Relax requirement that there is a common stride to retry with
2025 // non-constant distance dependencies.
2026 FoundNonConstantDistanceDependence
|= CommonStride
.has_value();
2027 LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n");
2028 return Dependence::Unknown
;
2031 ScalarEvolution
&SE
= *PSE
.getSE();
2032 auto &DL
= InnermostLoop
->getHeader()->getDataLayout();
2033 uint64_t MaxStride
= std::max(StrideA
, StrideB
);
2035 // If the distance between the acecsses is larger than their maximum absolute
2036 // stride multiplied by the symbolic maximum backedge taken count (which is an
2037 // upper bound of the number of iterations), the accesses are independet, i.e.
2038 // they are far enough appart that accesses won't access the same location
2039 // across all loop ierations.
2040 if (HasSameSize
&& isSafeDependenceDistance(
2041 DL
, SE
, *(PSE
.getSymbolicMaxBackedgeTakenCount()),
2042 *Dist
, MaxStride
, TypeByteSize
))
2043 return Dependence::NoDep
;
2045 const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Dist
);
2047 // Attempt to prove strided accesses independent.
2049 const APInt
&Val
= C
->getAPInt();
2050 int64_t Distance
= Val
.getSExtValue();
2052 // If the distance between accesses and their strides are known constants,
2053 // check whether the accesses interlace each other.
2054 if (std::abs(Distance
) > 0 && CommonStride
&& *CommonStride
> 1 &&
2056 areStridedAccessesIndependent(std::abs(Distance
), *CommonStride
,
2058 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
2059 return Dependence::NoDep
;
2062 Dist
= SE
.applyLoopGuards(Dist
, InnermostLoop
);
2064 // Negative distances are not plausible dependencies.
2065 if (SE
.isKnownNonPositive(Dist
)) {
2066 if (SE
.isKnownNonNegative(Dist
)) {
2068 // Write to the same location with the same size.
2069 return Dependence::Forward
;
2071 LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but "
2072 "different type sizes\n");
2073 return Dependence::Unknown
;
2076 bool IsTrueDataDependence
= (AIsWrite
&& !BIsWrite
);
2077 // Check if the first access writes to a location that is read in a later
2078 // iteration, where the distance between them is not a multiple of a vector
2079 // factor and relatively small.
2081 // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to
2082 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a
2083 // forward dependency will allow vectorization using any width.
2085 if (IsTrueDataDependence
&& EnableForwardingConflictDetection
) {
2087 // TODO: FoundNonConstantDistanceDependence is used as a necessary
2088 // condition to consider retrying with runtime checks. Historically, we
2089 // did not set it when strides were different but there is no inherent
2091 FoundNonConstantDistanceDependence
|= CommonStride
.has_value();
2092 return Dependence::Unknown
;
2095 couldPreventStoreLoadForward(C
->getAPInt().abs().getZExtValue(),
2098 dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
2099 return Dependence::ForwardButPreventsForwarding
;
2103 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
2104 return Dependence::Forward
;
2107 int64_t MinDistance
= SE
.getSignedRangeMin(Dist
).getSExtValue();
2108 // Below we only handle strictly positive distances.
2109 if (MinDistance
<= 0) {
2110 FoundNonConstantDistanceDependence
|= CommonStride
.has_value();
2111 return Dependence::Unknown
;
2114 if (!isa
<SCEVConstant
>(Dist
)) {
2115 // Previously this case would be treated as Unknown, possibly setting
2116 // FoundNonConstantDistanceDependence to force re-trying with runtime
2117 // checks. Until the TODO below is addressed, set it here to preserve
2118 // original behavior w.r.t. re-trying with runtime checks.
2119 // TODO: FoundNonConstantDistanceDependence is used as a necessary
2120 // condition to consider retrying with runtime checks. Historically, we
2121 // did not set it when strides were different but there is no inherent
2123 FoundNonConstantDistanceDependence
|= CommonStride
.has_value();
2127 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
2128 "different type sizes\n");
2129 return Dependence::Unknown
;
2133 return Dependence::Unknown
;
2135 // Bail out early if passed-in parameters make vectorization not feasible.
2136 unsigned ForcedFactor
= (VectorizerParams::VectorizationFactor
?
2137 VectorizerParams::VectorizationFactor
: 1);
2138 unsigned ForcedUnroll
= (VectorizerParams::VectorizationInterleave
?
2139 VectorizerParams::VectorizationInterleave
: 1);
2140 // The minimum number of iterations for a vectorized/unrolled version.
2141 unsigned MinNumIter
= std::max(ForcedFactor
* ForcedUnroll
, 2U);
2143 // It's not vectorizable if the distance is smaller than the minimum distance
2144 // needed for a vectroized/unrolled version. Vectorizing one iteration in
2145 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
2146 // TypeByteSize (No need to plus the last gap distance).
2148 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2150 // int *B = (int *)((char *)A + 14);
2151 // for (i = 0 ; i < 1024 ; i += 2)
2155 // Two accesses in memory (stride is 2):
2156 // | A[0] | | A[2] | | A[4] | | A[6] | |
2157 // | B[0] | | B[2] | | B[4] |
2159 // MinDistance needs for vectorizing iterations except the last iteration:
2160 // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4.
2161 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2163 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2164 // 12, which is less than distance.
2166 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2167 // the minimum distance needed is 28, which is greater than distance. It is
2168 // not safe to do vectorization.
2170 // We know that Dist is positive, but it may not be constant. Use the signed
2171 // minimum for computations below, as this ensures we compute the closest
2172 // possible dependence distance.
2173 uint64_t MinDistanceNeeded
=
2174 TypeByteSize
* *CommonStride
* (MinNumIter
- 1) + TypeByteSize
;
2175 if (MinDistanceNeeded
> static_cast<uint64_t>(MinDistance
)) {
2176 if (!isa
<SCEVConstant
>(Dist
)) {
2177 // For non-constant distances, we checked the lower bound of the
2178 // dependence distance and the distance may be larger at runtime (and safe
2179 // for vectorization). Classify it as Unknown, so we re-try with runtime
2181 return Dependence::Unknown
;
2183 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance "
2184 << MinDistance
<< '\n');
2185 return Dependence::Backward
;
2188 // Unsafe if the minimum distance needed is greater than smallest dependence
2189 // distance distance.
2190 if (MinDistanceNeeded
> MinDepDistBytes
) {
2191 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2192 << MinDistanceNeeded
<< " size in bytes\n");
2193 return Dependence::Backward
;
2196 // Positive distance bigger than max vectorization factor.
2197 // FIXME: Should use max factor instead of max distance in bytes, which could
2198 // not handle different types.
2199 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2200 // void foo (int *A, char *B) {
2201 // for (unsigned i = 0; i < 1024; i++) {
2202 // A[i+2] = A[i] + 1;
2203 // B[i+2] = B[i] + 1;
2207 // This case is currently unsafe according to the max safe distance. If we
2208 // analyze the two accesses on array B, the max safe dependence distance
2209 // is 2. Then we analyze the accesses on array A, the minimum distance needed
2210 // is 8, which is less than 2 and forbidden vectorization, But actually
2211 // both A and B could be vectorized by 2 iterations.
2213 std::min(static_cast<uint64_t>(MinDistance
), MinDepDistBytes
);
2215 bool IsTrueDataDependence
= (!AIsWrite
&& BIsWrite
);
2216 uint64_t MinDepDistBytesOld
= MinDepDistBytes
;
2217 if (IsTrueDataDependence
&& EnableForwardingConflictDetection
&&
2218 isa
<SCEVConstant
>(Dist
) &&
2219 couldPreventStoreLoadForward(MinDistance
, TypeByteSize
)) {
2220 // Sanity check that we didn't update MinDepDistBytes when calling
2221 // couldPreventStoreLoadForward
2222 assert(MinDepDistBytes
== MinDepDistBytesOld
&&
2223 "An update to MinDepDistBytes requires an update to "
2224 "MaxSafeVectorWidthInBits");
2225 (void)MinDepDistBytesOld
;
2226 return Dependence::BackwardVectorizableButPreventsForwarding
;
2229 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
2230 // since there is a backwards dependency.
2231 uint64_t MaxVF
= MinDepDistBytes
/ (TypeByteSize
* *CommonStride
);
2232 LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance
2233 << " with max VF = " << MaxVF
<< '\n');
2235 uint64_t MaxVFInBits
= MaxVF
* TypeByteSize
* 8;
2236 if (!isa
<SCEVConstant
>(Dist
) && MaxVFInBits
< MaxTargetVectorWidthInBits
) {
2237 // For non-constant distances, we checked the lower bound of the dependence
2238 // distance and the distance may be larger at runtime (and safe for
2239 // vectorization). Classify it as Unknown, so we re-try with runtime checks.
2240 return Dependence::Unknown
;
2243 MaxSafeVectorWidthInBits
= std::min(MaxSafeVectorWidthInBits
, MaxVFInBits
);
2244 return Dependence::BackwardVectorizable
;
2247 bool MemoryDepChecker::areDepsSafe(const DepCandidates
&AccessSets
,
2248 const MemAccessInfoList
&CheckDeps
) {
2250 MinDepDistBytes
= -1;
2251 SmallPtrSet
<MemAccessInfo
, 8> Visited
;
2252 for (MemAccessInfo CurAccess
: CheckDeps
) {
2253 if (Visited
.count(CurAccess
))
2256 // Get the relevant memory access set.
2257 EquivalenceClasses
<MemAccessInfo
>::iterator I
=
2258 AccessSets
.findValue(AccessSets
.getLeaderValue(CurAccess
));
2260 // Check accesses within this set.
2261 EquivalenceClasses
<MemAccessInfo
>::member_iterator AI
=
2262 AccessSets
.member_begin(I
);
2263 EquivalenceClasses
<MemAccessInfo
>::member_iterator AE
=
2264 AccessSets
.member_end();
2266 // Check every access pair.
2268 Visited
.insert(*AI
);
2269 bool AIIsWrite
= AI
->getInt();
2270 // Check loads only against next equivalent class, but stores also against
2271 // other stores in the same equivalence class - to the same address.
2272 EquivalenceClasses
<MemAccessInfo
>::member_iterator OI
=
2273 (AIIsWrite
? AI
: std::next(AI
));
2275 // Check every accessing instruction pair in program order.
2276 for (std::vector
<unsigned>::iterator I1
= Accesses
[*AI
].begin(),
2277 I1E
= Accesses
[*AI
].end(); I1
!= I1E
; ++I1
)
2278 // Scan all accesses of another equivalence class, but only the next
2279 // accesses of the same equivalent class.
2280 for (std::vector
<unsigned>::iterator
2281 I2
= (OI
== AI
? std::next(I1
) : Accesses
[*OI
].begin()),
2282 I2E
= (OI
== AI
? I1E
: Accesses
[*OI
].end());
2284 auto A
= std::make_pair(&*AI
, *I1
);
2285 auto B
= std::make_pair(&*OI
, *I2
);
2291 Dependence::DepType Type
=
2292 isDependent(*A
.first
, A
.second
, *B
.first
, B
.second
);
2293 mergeInStatus(Dependence::isSafeForVectorization(Type
));
2295 // Gather dependences unless we accumulated MaxDependences
2296 // dependences. In that case return as soon as we find the first
2297 // unsafe dependence. This puts a limit on this quadratic
2299 if (RecordDependences
) {
2300 if (Type
!= Dependence::NoDep
)
2301 Dependences
.push_back(Dependence(A
.second
, B
.second
, Type
));
2303 if (Dependences
.size() >= MaxDependences
) {
2304 RecordDependences
= false;
2305 Dependences
.clear();
2307 << "Too many dependences, stopped recording\n");
2310 if (!RecordDependences
&& !isSafeForVectorization())
2319 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences
.size() << "\n");
2320 return isSafeForVectorization();
2323 SmallVector
<Instruction
*, 4>
2324 MemoryDepChecker::getInstructionsForAccess(Value
*Ptr
, bool IsWrite
) const {
2325 MemAccessInfo
Access(Ptr
, IsWrite
);
2326 auto &IndexVector
= Accesses
.find(Access
)->second
;
2328 SmallVector
<Instruction
*, 4> Insts
;
2329 transform(IndexVector
,
2330 std::back_inserter(Insts
),
2331 [&](unsigned Idx
) { return this->InstMap
[Idx
]; });
2335 const char *MemoryDepChecker::Dependence::DepName
[] = {
2340 "ForwardButPreventsForwarding",
2342 "BackwardVectorizable",
2343 "BackwardVectorizableButPreventsForwarding"};
2345 void MemoryDepChecker::Dependence::print(
2346 raw_ostream
&OS
, unsigned Depth
,
2347 const SmallVectorImpl
<Instruction
*> &Instrs
) const {
2348 OS
.indent(Depth
) << DepName
[Type
] << ":\n";
2349 OS
.indent(Depth
+ 2) << *Instrs
[Source
] << " -> \n";
2350 OS
.indent(Depth
+ 2) << *Instrs
[Destination
] << "\n";
2353 bool LoopAccessInfo::canAnalyzeLoop() {
2354 // We need to have a loop header.
2355 LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '"
2356 << TheLoop
->getHeader()->getParent()->getName() << "' from "
2357 << TheLoop
->getLocStr() << "\n");
2359 // We can only analyze innermost loops.
2360 if (!TheLoop
->isInnermost()) {
2361 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2362 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2366 // We must have a single backedge.
2367 if (TheLoop
->getNumBackEdges() != 1) {
2369 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2370 recordAnalysis("CFGNotUnderstood")
2371 << "loop control flow is not understood by analyzer";
2375 // ScalarEvolution needs to be able to find the symbolic max backedge taken
2376 // count, which is an upper bound on the number of loop iterations. The loop
2377 // may execute fewer iterations, if it exits via an uncountable exit.
2378 const SCEV
*ExitCount
= PSE
->getSymbolicMaxBackedgeTakenCount();
2379 if (isa
<SCEVCouldNotCompute
>(ExitCount
)) {
2380 recordAnalysis("CantComputeNumberOfIterations")
2381 << "could not determine number of loop iterations";
2382 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2386 LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: "
2387 << TheLoop
->getHeader()->getName() << "\n");
2391 bool LoopAccessInfo::analyzeLoop(AAResults
*AA
, LoopInfo
*LI
,
2392 const TargetLibraryInfo
*TLI
,
2393 DominatorTree
*DT
) {
2394 // Holds the Load and Store instructions.
2395 SmallVector
<LoadInst
*, 16> Loads
;
2396 SmallVector
<StoreInst
*, 16> Stores
;
2397 SmallPtrSet
<MDNode
*, 8> LoopAliasScopes
;
2399 // Holds all the different accesses in the loop.
2400 unsigned NumReads
= 0;
2401 unsigned NumReadWrites
= 0;
2403 bool HasComplexMemInst
= false;
2405 // A runtime check is only legal to insert if there are no convergent calls.
2406 HasConvergentOp
= false;
2408 PtrRtChecking
->Pointers
.clear();
2409 PtrRtChecking
->Need
= false;
2411 const bool IsAnnotatedParallel
= TheLoop
->isAnnotatedParallel();
2413 const bool EnableMemAccessVersioningOfLoop
=
2414 EnableMemAccessVersioning
&&
2415 !TheLoop
->getHeader()->getParent()->hasOptSize();
2417 // Traverse blocks in fixed RPOT order, regardless of their storage in the
2418 // loop info, as it may be arbitrary.
2419 LoopBlocksRPO
RPOT(TheLoop
);
2421 for (BasicBlock
*BB
: RPOT
) {
2422 // Scan the BB and collect legal loads and stores. Also detect any
2423 // convergent instructions.
2424 for (Instruction
&I
: *BB
) {
2425 if (auto *Call
= dyn_cast
<CallBase
>(&I
)) {
2426 if (Call
->isConvergent())
2427 HasConvergentOp
= true;
2430 // With both a non-vectorizable memory instruction and a convergent
2431 // operation, found in this loop, no reason to continue the search.
2432 if (HasComplexMemInst
&& HasConvergentOp
)
2435 // Avoid hitting recordAnalysis multiple times.
2436 if (HasComplexMemInst
)
2439 // Record alias scopes defined inside the loop.
2440 if (auto *Decl
= dyn_cast
<NoAliasScopeDeclInst
>(&I
))
2441 for (Metadata
*Op
: Decl
->getScopeList()->operands())
2442 LoopAliasScopes
.insert(cast
<MDNode
>(Op
));
2444 // Many math library functions read the rounding mode. We will only
2445 // vectorize a loop if it contains known function calls that don't set
2446 // the flag. Therefore, it is safe to ignore this read from memory.
2447 auto *Call
= dyn_cast
<CallInst
>(&I
);
2448 if (Call
&& getVectorIntrinsicIDForCall(Call
, TLI
))
2451 // If this is a load, save it. If this instruction can read from memory
2452 // but is not a load, then we quit. Notice that we don't handle function
2453 // calls that read or write.
2454 if (I
.mayReadFromMemory()) {
2455 // If the function has an explicit vectorized counterpart, we can safely
2456 // assume that it can be vectorized.
2457 if (Call
&& !Call
->isNoBuiltin() && Call
->getCalledFunction() &&
2458 !VFDatabase::getMappings(*Call
).empty())
2461 auto *Ld
= dyn_cast
<LoadInst
>(&I
);
2463 recordAnalysis("CantVectorizeInstruction", Ld
)
2464 << "instruction cannot be vectorized";
2465 HasComplexMemInst
= true;
2468 if (!Ld
->isSimple() && !IsAnnotatedParallel
) {
2469 recordAnalysis("NonSimpleLoad", Ld
)
2470 << "read with atomic ordering or volatile read";
2471 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2472 HasComplexMemInst
= true;
2476 Loads
.push_back(Ld
);
2477 DepChecker
->addAccess(Ld
);
2478 if (EnableMemAccessVersioningOfLoop
)
2479 collectStridedAccess(Ld
);
2483 // Save 'store' instructions. Abort if other instructions write to memory.
2484 if (I
.mayWriteToMemory()) {
2485 auto *St
= dyn_cast
<StoreInst
>(&I
);
2487 recordAnalysis("CantVectorizeInstruction", St
)
2488 << "instruction cannot be vectorized";
2489 HasComplexMemInst
= true;
2492 if (!St
->isSimple() && !IsAnnotatedParallel
) {
2493 recordAnalysis("NonSimpleStore", St
)
2494 << "write with atomic ordering or volatile write";
2495 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2496 HasComplexMemInst
= true;
2500 Stores
.push_back(St
);
2501 DepChecker
->addAccess(St
);
2502 if (EnableMemAccessVersioningOfLoop
)
2503 collectStridedAccess(St
);
2508 if (HasComplexMemInst
)
2511 // Now we have two lists that hold the loads and the stores.
2512 // Next, we find the pointers that they use.
2514 // Check if we see any stores. If there are no stores, then we don't
2515 // care if the pointers are *restrict*.
2516 if (!Stores
.size()) {
2517 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2521 MemoryDepChecker::DepCandidates DependentAccesses
;
2522 AccessAnalysis
Accesses(TheLoop
, AA
, LI
, DependentAccesses
, *PSE
,
2525 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2526 // multiple times on the same object. If the ptr is accessed twice, once
2527 // for read and once for write, it will only appear once (on the write
2528 // list). This is okay, since we are going to check for conflicts between
2529 // writes and between reads and writes, but not between reads and reads.
2530 SmallSet
<std::pair
<Value
*, Type
*>, 16> Seen
;
2532 // Record uniform store addresses to identify if we have multiple stores
2533 // to the same address.
2534 SmallPtrSet
<Value
*, 16> UniformStores
;
2536 for (StoreInst
*ST
: Stores
) {
2537 Value
*Ptr
= ST
->getPointerOperand();
2539 if (isInvariant(Ptr
)) {
2540 // Record store instructions to loop invariant addresses
2541 StoresToInvariantAddresses
.push_back(ST
);
2542 HasStoreStoreDependenceInvolvingLoopInvariantAddress
|=
2543 !UniformStores
.insert(Ptr
).second
;
2546 // If we did *not* see this pointer before, insert it to the read-write
2547 // list. At this phase it is only a 'write' list.
2548 Type
*AccessTy
= getLoadStoreType(ST
);
2549 if (Seen
.insert({Ptr
, AccessTy
}).second
) {
2552 MemoryLocation Loc
= MemoryLocation::get(ST
);
2553 // The TBAA metadata could have a control dependency on the predication
2554 // condition, so we cannot rely on it when determining whether or not we
2555 // need runtime pointer checks.
2556 if (blockNeedsPredication(ST
->getParent(), TheLoop
, DT
))
2557 Loc
.AATags
.TBAA
= nullptr;
2559 visitPointers(const_cast<Value
*>(Loc
.Ptr
), *TheLoop
,
2560 [&Accesses
, AccessTy
, Loc
](Value
*Ptr
) {
2561 MemoryLocation NewLoc
= Loc
.getWithNewPtr(Ptr
);
2562 Accesses
.addStore(NewLoc
, AccessTy
);
2567 if (IsAnnotatedParallel
) {
2569 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2574 for (LoadInst
*LD
: Loads
) {
2575 Value
*Ptr
= LD
->getPointerOperand();
2576 // If we did *not* see this pointer before, insert it to the
2577 // read list. If we *did* see it before, then it is already in
2578 // the read-write list. This allows us to vectorize expressions
2579 // such as A[i] += x; Because the address of A[i] is a read-write
2580 // pointer. This only works if the index of A[i] is consecutive.
2581 // If the address of i is unknown (for example A[B[i]]) then we may
2582 // read a few words, modify, and write a few words, and some of the
2583 // words may be written to the same address.
2584 bool IsReadOnlyPtr
= false;
2585 Type
*AccessTy
= getLoadStoreType(LD
);
2586 if (Seen
.insert({Ptr
, AccessTy
}).second
||
2587 !getPtrStride(*PSE
, LD
->getType(), Ptr
, TheLoop
, SymbolicStrides
).value_or(0)) {
2589 IsReadOnlyPtr
= true;
2592 // See if there is an unsafe dependency between a load to a uniform address and
2593 // store to the same uniform address.
2594 if (UniformStores
.count(Ptr
)) {
2595 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2596 "load and uniform store to the same address!\n");
2597 HasLoadStoreDependenceInvolvingLoopInvariantAddress
= true;
2600 MemoryLocation Loc
= MemoryLocation::get(LD
);
2601 // The TBAA metadata could have a control dependency on the predication
2602 // condition, so we cannot rely on it when determining whether or not we
2603 // need runtime pointer checks.
2604 if (blockNeedsPredication(LD
->getParent(), TheLoop
, DT
))
2605 Loc
.AATags
.TBAA
= nullptr;
2607 visitPointers(const_cast<Value
*>(Loc
.Ptr
), *TheLoop
,
2608 [&Accesses
, AccessTy
, Loc
, IsReadOnlyPtr
](Value
*Ptr
) {
2609 MemoryLocation NewLoc
= Loc
.getWithNewPtr(Ptr
);
2610 Accesses
.addLoad(NewLoc
, AccessTy
, IsReadOnlyPtr
);
2614 // If we write (or read-write) to a single destination and there are no
2615 // other reads in this loop then is it safe to vectorize.
2616 if (NumReadWrites
== 1 && NumReads
== 0) {
2617 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2621 // Build dependence sets and check whether we need a runtime pointer bounds
2623 Accesses
.buildDependenceSets();
2625 // Find pointers with computable bounds. We are going to use this information
2626 // to place a runtime bound check.
2627 Value
*UncomputablePtr
= nullptr;
2628 bool CanDoRTIfNeeded
=
2629 Accesses
.canCheckPtrAtRT(*PtrRtChecking
, PSE
->getSE(), TheLoop
,
2630 SymbolicStrides
, UncomputablePtr
, false);
2631 if (!CanDoRTIfNeeded
) {
2632 auto *I
= dyn_cast_or_null
<Instruction
>(UncomputablePtr
);
2633 recordAnalysis("CantIdentifyArrayBounds", I
)
2634 << "cannot identify array bounds";
2635 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2636 << "the array bounds.\n");
2641 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2643 bool DepsAreSafe
= true;
2644 if (Accesses
.isDependencyCheckNeeded()) {
2645 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2646 DepsAreSafe
= DepChecker
->areDepsSafe(DependentAccesses
,
2647 Accesses
.getDependenciesToCheck());
2649 if (!DepsAreSafe
&& DepChecker
->shouldRetryWithRuntimeCheck()) {
2650 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2652 // Clear the dependency checks. We assume they are not needed.
2653 Accesses
.resetDepChecks(*DepChecker
);
2655 PtrRtChecking
->reset();
2656 PtrRtChecking
->Need
= true;
2658 auto *SE
= PSE
->getSE();
2659 UncomputablePtr
= nullptr;
2660 CanDoRTIfNeeded
= Accesses
.canCheckPtrAtRT(
2661 *PtrRtChecking
, SE
, TheLoop
, SymbolicStrides
, UncomputablePtr
, true);
2663 // Check that we found the bounds for the pointer.
2664 if (!CanDoRTIfNeeded
) {
2665 auto *I
= dyn_cast_or_null
<Instruction
>(UncomputablePtr
);
2666 recordAnalysis("CantCheckMemDepsAtRunTime", I
)
2667 << "cannot check memory dependencies at runtime";
2668 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2675 if (HasConvergentOp
) {
2676 recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2677 << "cannot add control dependency to convergent operation";
2678 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2679 "would be needed with a convergent operation\n");
2685 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
2686 << (PtrRtChecking
->Need
? "" : " don't")
2687 << " need runtime memory checks.\n");
2691 emitUnsafeDependenceRemark();
2695 void LoopAccessInfo::emitUnsafeDependenceRemark() {
2696 const auto *Deps
= getDepChecker().getDependences();
2700 llvm::find_if(*Deps
, [](const MemoryDepChecker::Dependence
&D
) {
2701 return MemoryDepChecker::Dependence::isSafeForVectorization(D
.Type
) !=
2702 MemoryDepChecker::VectorizationSafetyStatus::Safe
;
2704 if (Found
== Deps
->end())
2706 MemoryDepChecker::Dependence Dep
= *Found
;
2708 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2710 // Emit remark for first unsafe dependence
2711 bool HasForcedDistribution
= false;
2712 std::optional
<const MDOperand
*> Value
=
2713 findStringMetadataForLoop(TheLoop
, "llvm.loop.distribute.enable");
2715 const MDOperand
*Op
= *Value
;
2716 assert(Op
&& mdconst::hasa
<ConstantInt
>(*Op
) && "invalid metadata");
2717 HasForcedDistribution
= mdconst::extract
<ConstantInt
>(*Op
)->getZExtValue();
2720 const std::string Info
=
2721 HasForcedDistribution
2722 ? "unsafe dependent memory operations in loop."
2723 : "unsafe dependent memory operations in loop. Use "
2724 "#pragma clang loop distribute(enable) to allow loop distribution "
2725 "to attempt to isolate the offending operations into a separate "
2727 OptimizationRemarkAnalysis
&R
=
2728 recordAnalysis("UnsafeDep", Dep
.getDestination(getDepChecker())) << Info
;
2731 case MemoryDepChecker::Dependence::NoDep
:
2732 case MemoryDepChecker::Dependence::Forward
:
2733 case MemoryDepChecker::Dependence::BackwardVectorizable
:
2734 llvm_unreachable("Unexpected dependence");
2735 case MemoryDepChecker::Dependence::Backward
:
2736 R
<< "\nBackward loop carried data dependence.";
2738 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding
:
2739 R
<< "\nForward loop carried data dependence that prevents "
2740 "store-to-load forwarding.";
2742 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding
:
2743 R
<< "\nBackward loop carried data dependence that prevents "
2744 "store-to-load forwarding.";
2746 case MemoryDepChecker::Dependence::IndirectUnsafe
:
2747 R
<< "\nUnsafe indirect dependence.";
2749 case MemoryDepChecker::Dependence::Unknown
:
2750 R
<< "\nUnknown data dependence.";
2754 if (Instruction
*I
= Dep
.getSource(getDepChecker())) {
2755 DebugLoc SourceLoc
= I
->getDebugLoc();
2756 if (auto *DD
= dyn_cast_or_null
<Instruction
>(getPointerOperand(I
)))
2757 SourceLoc
= DD
->getDebugLoc();
2759 R
<< " Memory location is the same as accessed at "
2760 << ore::NV("Location", SourceLoc
);
2764 bool LoopAccessInfo::blockNeedsPredication(BasicBlock
*BB
, Loop
*TheLoop
,
2765 DominatorTree
*DT
) {
2766 assert(TheLoop
->contains(BB
) && "Unknown block used");
2768 // Blocks that do not dominate the latch need predication.
2769 BasicBlock
* Latch
= TheLoop
->getLoopLatch();
2770 return !DT
->dominates(BB
, Latch
);
2773 OptimizationRemarkAnalysis
&LoopAccessInfo::recordAnalysis(StringRef RemarkName
,
2775 assert(!Report
&& "Multiple reports generated");
2777 Value
*CodeRegion
= TheLoop
->getHeader();
2778 DebugLoc DL
= TheLoop
->getStartLoc();
2781 CodeRegion
= I
->getParent();
2782 // If there is no debug location attached to the instruction, revert back to
2783 // using the loop's.
2784 if (I
->getDebugLoc())
2785 DL
= I
->getDebugLoc();
2788 Report
= std::make_unique
<OptimizationRemarkAnalysis
>(DEBUG_TYPE
, RemarkName
, DL
,
2793 bool LoopAccessInfo::isInvariant(Value
*V
) const {
2794 auto *SE
= PSE
->getSE();
2795 // TODO: Is this really what we want? Even without FP SCEV, we may want some
2796 // trivially loop-invariant FP values to be considered invariant.
2797 if (!SE
->isSCEVable(V
->getType()))
2799 const SCEV
*S
= SE
->getSCEV(V
);
2800 return SE
->isLoopInvariant(S
, TheLoop
);
2803 /// Find the operand of the GEP that should be checked for consecutive
2804 /// stores. This ignores trailing indices that have no effect on the final
2806 static unsigned getGEPInductionOperand(const GetElementPtrInst
*Gep
) {
2807 const DataLayout
&DL
= Gep
->getDataLayout();
2808 unsigned LastOperand
= Gep
->getNumOperands() - 1;
2809 TypeSize GEPAllocSize
= DL
.getTypeAllocSize(Gep
->getResultElementType());
2811 // Walk backwards and try to peel off zeros.
2812 while (LastOperand
> 1 && match(Gep
->getOperand(LastOperand
), m_Zero())) {
2813 // Find the type we're currently indexing into.
2814 gep_type_iterator GEPTI
= gep_type_begin(Gep
);
2815 std::advance(GEPTI
, LastOperand
- 2);
2817 // If it's a type with the same allocation size as the result of the GEP we
2818 // can peel off the zero index.
2819 TypeSize ElemSize
= GEPTI
.isStruct()
2820 ? DL
.getTypeAllocSize(GEPTI
.getIndexedType())
2821 : GEPTI
.getSequentialElementStride(DL
);
2822 if (ElemSize
!= GEPAllocSize
)
2830 /// If the argument is a GEP, then returns the operand identified by
2831 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
2832 /// operand, it returns that instead.
2833 static Value
*stripGetElementPtr(Value
*Ptr
, ScalarEvolution
*SE
, Loop
*Lp
) {
2834 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
2838 unsigned InductionOperand
= getGEPInductionOperand(GEP
);
2840 // Check that all of the gep indices are uniform except for our induction
2842 for (unsigned I
= 0, E
= GEP
->getNumOperands(); I
!= E
; ++I
)
2843 if (I
!= InductionOperand
&&
2844 !SE
->isLoopInvariant(SE
->getSCEV(GEP
->getOperand(I
)), Lp
))
2846 return GEP
->getOperand(InductionOperand
);
2849 /// Get the stride of a pointer access in a loop. Looks for symbolic
2850 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2851 static const SCEV
*getStrideFromPointer(Value
*Ptr
, ScalarEvolution
*SE
, Loop
*Lp
) {
2852 auto *PtrTy
= dyn_cast
<PointerType
>(Ptr
->getType());
2853 if (!PtrTy
|| PtrTy
->isAggregateType())
2856 // Try to remove a gep instruction to make the pointer (actually index at this
2857 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2858 // pointer, otherwise, we are analyzing the index.
2859 Value
*OrigPtr
= Ptr
;
2861 // The size of the pointer access.
2862 int64_t PtrAccessSize
= 1;
2864 Ptr
= stripGetElementPtr(Ptr
, SE
, Lp
);
2865 const SCEV
*V
= SE
->getSCEV(Ptr
);
2869 while (const SCEVIntegralCastExpr
*C
= dyn_cast
<SCEVIntegralCastExpr
>(V
))
2870 V
= C
->getOperand();
2872 const SCEVAddRecExpr
*S
= dyn_cast
<SCEVAddRecExpr
>(V
);
2876 // If the pointer is invariant then there is no stride and it makes no
2877 // sense to add it here.
2878 if (Lp
!= S
->getLoop())
2881 V
= S
->getStepRecurrence(*SE
);
2885 // Strip off the size of access multiplication if we are still analyzing the
2887 if (OrigPtr
== Ptr
) {
2888 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(V
)) {
2889 if (M
->getOperand(0)->getSCEVType() != scConstant
)
2892 const APInt
&APStepVal
= cast
<SCEVConstant
>(M
->getOperand(0))->getAPInt();
2894 // Huge step value - give up.
2895 if (APStepVal
.getBitWidth() > 64)
2898 int64_t StepVal
= APStepVal
.getSExtValue();
2899 if (PtrAccessSize
!= StepVal
)
2901 V
= M
->getOperand(1);
2905 // Note that the restriction after this loop invariant check are only
2906 // profitability restrictions.
2907 if (!SE
->isLoopInvariant(V
, Lp
))
2910 // Look for the loop invariant symbolic value.
2911 if (isa
<SCEVUnknown
>(V
))
2914 if (const auto *C
= dyn_cast
<SCEVIntegralCastExpr
>(V
))
2915 if (isa
<SCEVUnknown
>(C
->getOperand()))
2921 void LoopAccessInfo::collectStridedAccess(Value
*MemAccess
) {
2922 Value
*Ptr
= getLoadStorePointerOperand(MemAccess
);
2926 // Note: getStrideFromPointer is a *profitability* heuristic. We
2927 // could broaden the scope of values returned here - to anything
2928 // which happens to be loop invariant and contributes to the
2929 // computation of an interesting IV - but we chose not to as we
2930 // don't have a cost model here, and broadening the scope exposes
2931 // far too many unprofitable cases.
2932 const SCEV
*StrideExpr
= getStrideFromPointer(Ptr
, PSE
->getSE(), TheLoop
);
2936 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2938 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr
<< " Stride: " << *StrideExpr
<< "\n");
2940 if (!SpeculateUnitStride
) {
2941 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n");
2945 // Avoid adding the "Stride == 1" predicate when we know that
2946 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2947 // or zero iteration loop, as Trip-Count <= Stride == 1.
2949 // TODO: We are currently not making a very informed decision on when it is
2950 // beneficial to apply stride versioning. It might make more sense that the
2951 // users of this analysis (such as the vectorizer) will trigger it, based on
2952 // their specific cost considerations; For example, in cases where stride
2953 // versioning does not help resolving memory accesses/dependences, the
2954 // vectorizer should evaluate the cost of the runtime test, and the benefit
2955 // of various possible stride specializations, considering the alternatives
2956 // of using gather/scatters (if available).
2958 const SCEV
*MaxBTC
= PSE
->getSymbolicMaxBackedgeTakenCount();
2960 // Match the types so we can compare the stride and the MaxBTC.
2961 // The Stride can be positive/negative, so we sign extend Stride;
2962 // The backedgeTakenCount is non-negative, so we zero extend MaxBTC.
2963 const DataLayout
&DL
= TheLoop
->getHeader()->getDataLayout();
2964 uint64_t StrideTypeSizeBits
= DL
.getTypeSizeInBits(StrideExpr
->getType());
2965 uint64_t BETypeSizeBits
= DL
.getTypeSizeInBits(MaxBTC
->getType());
2966 const SCEV
*CastedStride
= StrideExpr
;
2967 const SCEV
*CastedBECount
= MaxBTC
;
2968 ScalarEvolution
*SE
= PSE
->getSE();
2969 if (BETypeSizeBits
>= StrideTypeSizeBits
)
2970 CastedStride
= SE
->getNoopOrSignExtend(StrideExpr
, MaxBTC
->getType());
2972 CastedBECount
= SE
->getZeroExtendExpr(MaxBTC
, StrideExpr
->getType());
2973 const SCEV
*StrideMinusBETaken
= SE
->getMinusSCEV(CastedStride
, CastedBECount
);
2974 // Since TripCount == BackEdgeTakenCount + 1, checking:
2975 // "Stride >= TripCount" is equivalent to checking:
2976 // Stride - MaxBTC> 0
2977 if (SE
->isKnownPositive(StrideMinusBETaken
)) {
2979 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2980 "Stride==1 predicate will imply that the loop executes "
2984 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
2986 // Strip back off the integer cast, and check that our result is a
2987 // SCEVUnknown as we expect.
2988 const SCEV
*StrideBase
= StrideExpr
;
2989 if (const auto *C
= dyn_cast
<SCEVIntegralCastExpr
>(StrideBase
))
2990 StrideBase
= C
->getOperand();
2991 SymbolicStrides
[Ptr
] = cast
<SCEVUnknown
>(StrideBase
);
2994 LoopAccessInfo::LoopAccessInfo(Loop
*L
, ScalarEvolution
*SE
,
2995 const TargetTransformInfo
*TTI
,
2996 const TargetLibraryInfo
*TLI
, AAResults
*AA
,
2997 DominatorTree
*DT
, LoopInfo
*LI
)
2998 : PSE(std::make_unique
<PredicatedScalarEvolution
>(*SE
, *L
)),
2999 PtrRtChecking(nullptr), TheLoop(L
) {
3000 unsigned MaxTargetVectorWidthInBits
= std::numeric_limits
<unsigned>::max();
3002 TypeSize FixedWidth
=
3003 TTI
->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector
);
3004 if (FixedWidth
.isNonZero()) {
3005 // Scale the vector width by 2 as rough estimate to also consider
3007 MaxTargetVectorWidthInBits
= FixedWidth
.getFixedValue() * 2;
3010 TypeSize ScalableWidth
=
3011 TTI
->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector
);
3012 if (ScalableWidth
.isNonZero())
3013 MaxTargetVectorWidthInBits
= std::numeric_limits
<unsigned>::max();
3015 DepChecker
= std::make_unique
<MemoryDepChecker
>(*PSE
, L
, SymbolicStrides
,
3016 MaxTargetVectorWidthInBits
);
3017 PtrRtChecking
= std::make_unique
<RuntimePointerChecking
>(*DepChecker
, SE
);
3018 if (canAnalyzeLoop())
3019 CanVecMem
= analyzeLoop(AA
, LI
, TLI
, DT
);
3022 void LoopAccessInfo::print(raw_ostream
&OS
, unsigned Depth
) const {
3024 OS
.indent(Depth
) << "Memory dependences are safe";
3025 const MemoryDepChecker
&DC
= getDepChecker();
3026 if (!DC
.isSafeForAnyVectorWidth())
3027 OS
<< " with a maximum safe vector width of "
3028 << DC
.getMaxSafeVectorWidthInBits() << " bits";
3029 if (PtrRtChecking
->Need
)
3030 OS
<< " with run-time checks";
3034 if (HasConvergentOp
)
3035 OS
.indent(Depth
) << "Has convergent operation in loop\n";
3038 OS
.indent(Depth
) << "Report: " << Report
->getMsg() << "\n";
3040 if (auto *Dependences
= DepChecker
->getDependences()) {
3041 OS
.indent(Depth
) << "Dependences:\n";
3042 for (const auto &Dep
: *Dependences
) {
3043 Dep
.print(OS
, Depth
+ 2, DepChecker
->getMemoryInstructions());
3047 OS
.indent(Depth
) << "Too many dependences, not recorded\n";
3049 // List the pair of accesses need run-time checks to prove independence.
3050 PtrRtChecking
->print(OS
, Depth
);
3054 << "Non vectorizable stores to invariant address were "
3055 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress
||
3056 HasLoadStoreDependenceInvolvingLoopInvariantAddress
3059 << "found in loop.\n";
3061 OS
.indent(Depth
) << "SCEV assumptions:\n";
3062 PSE
->getPredicate().print(OS
, Depth
);
3066 OS
.indent(Depth
) << "Expressions re-written:\n";
3067 PSE
->print(OS
, Depth
);
3070 const LoopAccessInfo
&LoopAccessInfoManager::getInfo(Loop
&L
) {
3071 auto [It
, Inserted
] = LoopAccessInfoMap
.insert({&L
, nullptr});
3075 std::make_unique
<LoopAccessInfo
>(&L
, &SE
, TTI
, TLI
, &AA
, &DT
, &LI
);
3079 void LoopAccessInfoManager::clear() {
3080 SmallVector
<Loop
*> ToRemove
;
3081 // Collect LoopAccessInfo entries that may keep references to IR outside the
3082 // analyzed loop or SCEVs that may have been modified or invalidated. At the
3083 // moment, that is loops requiring memory or SCEV runtime checks, as those cache
3084 // SCEVs, e.g. for pointer expressions.
3085 for (const auto &[L
, LAI
] : LoopAccessInfoMap
) {
3086 if (LAI
->getRuntimePointerChecking()->getChecks().empty() &&
3087 LAI
->getPSE().getPredicate().isAlwaysTrue())
3089 ToRemove
.push_back(L
);
3092 for (Loop
*L
: ToRemove
)
3093 LoopAccessInfoMap
.erase(L
);
3096 bool LoopAccessInfoManager::invalidate(
3097 Function
&F
, const PreservedAnalyses
&PA
,
3098 FunctionAnalysisManager::Invalidator
&Inv
) {
3099 // Check whether our analysis is preserved.
3100 auto PAC
= PA
.getChecker
<LoopAccessAnalysis
>();
3101 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<Function
>>())
3102 // If not, give up now.
3105 // Check whether the analyses we depend on became invalid for any reason.
3106 // Skip checking TargetLibraryAnalysis as it is immutable and can't become
3108 return Inv
.invalidate
<AAManager
>(F
, PA
) ||
3109 Inv
.invalidate
<ScalarEvolutionAnalysis
>(F
, PA
) ||
3110 Inv
.invalidate
<LoopAnalysis
>(F
, PA
) ||
3111 Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
);
3114 LoopAccessInfoManager
LoopAccessAnalysis::run(Function
&F
,
3115 FunctionAnalysisManager
&FAM
) {
3116 auto &SE
= FAM
.getResult
<ScalarEvolutionAnalysis
>(F
);
3117 auto &AA
= FAM
.getResult
<AAManager
>(F
);
3118 auto &DT
= FAM
.getResult
<DominatorTreeAnalysis
>(F
);
3119 auto &LI
= FAM
.getResult
<LoopAnalysis
>(F
);
3120 auto &TTI
= FAM
.getResult
<TargetIRAnalysis
>(F
);
3121 auto &TLI
= FAM
.getResult
<TargetLibraryAnalysis
>(F
);
3122 return LoopAccessInfoManager(SE
, AA
, DT
, LI
, &TTI
, &TLI
);
3125 AnalysisKey
LoopAccessAnalysis::Key
;