1 //===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // A pre-emit peephole for catching opportunities introduced by late passes such
10 // as MachineBlockPlacement.
12 //===----------------------------------------------------------------------===//
15 #include "PPCInstrInfo.h"
16 #include "PPCSubtarget.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/LivePhysRegs.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/RegisterScavenging.h"
24 #include "llvm/MC/MCContext.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
30 #define DEBUG_TYPE "ppc-pre-emit-peephole"
32 STATISTIC(NumRRConvertedInPreEmit
,
33 "Number of r+r instructions converted to r+i in pre-emit peephole");
34 STATISTIC(NumRemovedInPreEmit
,
35 "Number of instructions deleted in pre-emit peephole");
36 STATISTIC(NumberOfSelfCopies
,
37 "Number of self copy instructions eliminated");
38 STATISTIC(NumFrameOffFoldInPreEmit
,
39 "Number of folding frame offset by using r+r in pre-emit peephole");
40 STATISTIC(NumCmpsInPreEmit
,
41 "Number of compares eliminated in pre-emit peephole");
44 EnablePCRelLinkerOpt("ppc-pcrel-linker-opt", cl::Hidden
, cl::init(true),
45 cl::desc("enable PC Relative linker optimization"));
48 RunPreEmitPeephole("ppc-late-peephole", cl::Hidden
, cl::init(true),
49 cl::desc("Run pre-emit peephole optimizations."));
51 static cl::opt
<uint64_t>
52 DSCRValue("ppc-set-dscr", cl::Hidden
,
53 cl::desc("Set the Data Stream Control Register."));
57 static bool hasPCRelativeForm(MachineInstr
&Use
) {
58 switch (Use
.getOpcode()) {
96 class PPCPreEmitPeephole
: public MachineFunctionPass
{
99 PPCPreEmitPeephole() : MachineFunctionPass(ID
) {
100 initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry());
103 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
104 MachineFunctionPass::getAnalysisUsage(AU
);
107 MachineFunctionProperties
getRequiredProperties() const override
{
108 return MachineFunctionProperties().set(
109 MachineFunctionProperties::Property::NoVRegs
);
112 // This function removes any redundant load immediates. It has two level
113 // loops - The outer loop finds the load immediates BBI that could be used
114 // to replace following redundancy. The inner loop scans instructions that
115 // after BBI to find redundancy and update kill/dead flags accordingly. If
116 // AfterBBI is the same as BBI, it is redundant, otherwise any instructions
117 // that modify the def register of BBI would break the scanning.
118 // DeadOrKillToUnset is a pointer to the previous operand that had the
119 // kill/dead flag set. It keeps track of the def register of BBI, the use
120 // registers of AfterBBIs and the def registers of AfterBBIs.
121 bool removeRedundantLIs(MachineBasicBlock
&MBB
,
122 const TargetRegisterInfo
*TRI
) {
123 LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n";
124 MBB
.dump(); dbgs() << "\n");
126 DenseSet
<MachineInstr
*> InstrsToErase
;
127 for (auto BBI
= MBB
.instr_begin(); BBI
!= MBB
.instr_end(); ++BBI
) {
128 // Skip load immediate that is marked to be erased later because it
129 // cannot be used to replace any other instructions.
130 if (InstrsToErase
.contains(&*BBI
))
132 // Skip non-load immediate.
133 unsigned Opc
= BBI
->getOpcode();
134 if (Opc
!= PPC::LI
&& Opc
!= PPC::LI8
&& Opc
!= PPC::LIS
&&
137 // Skip load immediate, where the operand is a relocation (e.g., $r3 =
138 // LI target-flags(ppc-lo) %const.0).
139 if (!BBI
->getOperand(1).isImm())
141 assert(BBI
->getOperand(0).isReg() &&
142 "Expected a register for the first operand");
144 LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI
->dump(););
146 Register Reg
= BBI
->getOperand(0).getReg();
147 int64_t Imm
= BBI
->getOperand(1).getImm();
148 MachineOperand
*DeadOrKillToUnset
= nullptr;
149 if (BBI
->getOperand(0).isDead()) {
150 DeadOrKillToUnset
= &BBI
->getOperand(0);
151 LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset
152 << " from load immediate " << *BBI
153 << " is a unsetting candidate\n");
155 // This loop scans instructions after BBI to see if there is any
156 // redundant load immediate.
157 for (auto AfterBBI
= std::next(BBI
); AfterBBI
!= MBB
.instr_end();
159 // Track the operand that kill Reg. We would unset the kill flag of
160 // the operand if there is a following redundant load immediate.
161 int KillIdx
= AfterBBI
->findRegisterUseOperandIdx(Reg
, TRI
, true);
163 // We can't just clear implicit kills, so if we encounter one, stop
165 if (KillIdx
!= -1 && AfterBBI
->getOperand(KillIdx
).isImplicit()) {
167 << "Encountered an implicit kill, cannot proceed: ");
168 LLVM_DEBUG(AfterBBI
->dump());
173 assert(!DeadOrKillToUnset
&& "Shouldn't kill same register twice");
174 DeadOrKillToUnset
= &AfterBBI
->getOperand(KillIdx
);
176 << " Kill flag of " << *DeadOrKillToUnset
<< " from "
177 << *AfterBBI
<< " is a unsetting candidate\n");
180 if (!AfterBBI
->modifiesRegister(Reg
, TRI
))
182 // Finish scanning because Reg is overwritten by a non-load
184 if (AfterBBI
->getOpcode() != Opc
)
186 assert(AfterBBI
->getOperand(0).isReg() &&
187 "Expected a register for the first operand");
188 // Finish scanning because Reg is overwritten by a relocation or a
190 if (!AfterBBI
->getOperand(1).isImm() ||
191 AfterBBI
->getOperand(1).getImm() != Imm
)
194 // It loads same immediate value to the same Reg, which is redundant.
195 // We would unset kill flag in previous Reg usage to extend live range
196 // of Reg first, then remove the redundancy.
197 if (DeadOrKillToUnset
) {
199 << " Unset dead/kill flag of " << *DeadOrKillToUnset
200 << " from " << *DeadOrKillToUnset
->getParent());
201 if (DeadOrKillToUnset
->isDef())
202 DeadOrKillToUnset
->setIsDead(false);
204 DeadOrKillToUnset
->setIsKill(false);
207 AfterBBI
->findRegisterDefOperand(Reg
, TRI
, true, true);
208 if (DeadOrKillToUnset
)
210 << " Dead flag of " << *DeadOrKillToUnset
<< " from "
211 << *AfterBBI
<< " is a unsetting candidate\n");
212 InstrsToErase
.insert(&*AfterBBI
);
213 LLVM_DEBUG(dbgs() << " Remove redundant load immediate: ";
218 for (MachineInstr
*MI
: InstrsToErase
) {
219 MI
->eraseFromParent();
221 NumRemovedInPreEmit
+= InstrsToErase
.size();
222 return !InstrsToErase
.empty();
225 // Check if this instruction is a PLDpc that is part of a GOT indirect
227 bool isGOTPLDpc(MachineInstr
&Instr
) {
228 if (Instr
.getOpcode() != PPC::PLDpc
)
231 // The result must be a register.
232 const MachineOperand
&LoadedAddressReg
= Instr
.getOperand(0);
233 if (!LoadedAddressReg
.isReg())
236 // Make sure that this is a global symbol.
237 const MachineOperand
&SymbolOp
= Instr
.getOperand(1);
238 if (!SymbolOp
.isGlobal())
241 // Finally return true only if the GOT flag is present.
242 return PPCInstrInfo::hasGOTFlag(SymbolOp
.getTargetFlags());
245 bool addLinkerOpt(MachineBasicBlock
&MBB
, const TargetRegisterInfo
*TRI
) {
246 MachineFunction
*MF
= MBB
.getParent();
247 // If the linker opt is disabled then just return.
248 if (!EnablePCRelLinkerOpt
)
251 // Add this linker opt only if we are using PC Relative memops.
252 if (!MF
->getSubtarget
<PPCSubtarget
>().isUsingPCRelativeCalls())
255 // Struct to keep track of one def/use pair for a GOT indirect access.
256 struct GOTDefUsePair
{
257 MachineBasicBlock::iterator DefInst
;
258 MachineBasicBlock::iterator UseInst
;
263 // Vector of def/ues pairs in this basic block.
264 SmallVector
<GOTDefUsePair
, 4> CandPairs
;
265 SmallVector
<GOTDefUsePair
, 4> ValidPairs
;
266 bool MadeChange
= false;
268 // Run through all of the instructions in the basic block and try to
269 // collect potential pairs of GOT indirect access instructions.
270 for (auto BBI
= MBB
.instr_begin(); BBI
!= MBB
.instr_end(); ++BBI
) {
271 // Look for the initial GOT indirect load.
272 if (isGOTPLDpc(*BBI
)) {
273 GOTDefUsePair CurrentPair
{BBI
, MachineBasicBlock::iterator(),
274 BBI
->getOperand(0).getReg(),
275 PPC::NoRegister
, true};
276 CandPairs
.push_back(CurrentPair
);
280 // We haven't encountered any new PLD instructions, nothing to check.
281 if (CandPairs
.empty())
284 // Run through the candidate pairs and see if any of the registers
285 // defined in the PLD instructions are used by this instruction.
286 // Note: the size of CandPairs can change in the loop.
287 for (unsigned Idx
= 0; Idx
< CandPairs
.size(); Idx
++) {
288 GOTDefUsePair
&Pair
= CandPairs
[Idx
];
289 // The instruction does not use or modify this PLD's def reg,
291 if (!BBI
->readsRegister(Pair
.DefReg
, TRI
) &&
292 !BBI
->modifiesRegister(Pair
.DefReg
, TRI
))
295 // The use needs to be used in the address computation and not
296 // as the register being stored for a store.
297 const MachineOperand
*UseOp
=
298 hasPCRelativeForm(*BBI
) ? &BBI
->getOperand(2) : nullptr;
300 // Check for a valid use.
301 if (UseOp
&& UseOp
->isReg() && UseOp
->getReg() == Pair
.DefReg
&&
302 UseOp
->isUse() && UseOp
->isKill()) {
304 Pair
.UseReg
= BBI
->getOperand(0).getReg();
305 ValidPairs
.push_back(Pair
);
307 CandPairs
.erase(CandPairs
.begin() + Idx
);
311 // Go through all of the pairs and check for any more valid uses.
312 for (auto Pair
= ValidPairs
.begin(); Pair
!= ValidPairs
.end(); Pair
++) {
313 // We shouldn't be here if we don't have a valid pair.
314 assert(Pair
->UseInst
.isValid() && Pair
->StillValid
&&
315 "Kept an invalid def/use pair for GOT PCRel opt");
316 // We have found a potential pair. Search through the instructions
317 // between the def and the use to see if it is valid to mark this as a
319 MachineBasicBlock::iterator BBI
= Pair
->DefInst
;
321 for (; BBI
!= Pair
->UseInst
; ++BBI
) {
322 if (BBI
->readsRegister(Pair
->UseReg
, TRI
) ||
323 BBI
->modifiesRegister(Pair
->UseReg
, TRI
)) {
324 Pair
->StillValid
= false;
329 if (!Pair
->StillValid
)
332 // The load/store instruction that uses the address from the PLD will
333 // either use a register (for a store) or define a register (for the
334 // load). That register will be added as an implicit def to the PLD
335 // and as an implicit use on the second memory op. This is a precaution
336 // to prevent future passes from using that register between the two
338 MachineOperand ImplDef
=
339 MachineOperand::CreateReg(Pair
->UseReg
, true, true);
340 MachineOperand ImplUse
=
341 MachineOperand::CreateReg(Pair
->UseReg
, false, true);
342 Pair
->DefInst
->addOperand(ImplDef
);
343 Pair
->UseInst
->addOperand(ImplUse
);
345 // Create the symbol.
346 MCContext
&Context
= MF
->getContext();
347 MCSymbol
*Symbol
= Context
.createNamedTempSymbol("pcrel");
348 MachineOperand PCRelLabel
=
349 MachineOperand::CreateMCSymbol(Symbol
, PPCII::MO_PCREL_OPT_FLAG
);
350 Pair
->DefInst
->addOperand(*MF
, PCRelLabel
);
351 Pair
->UseInst
->addOperand(*MF
, PCRelLabel
);
357 // This function removes redundant pairs of accumulator prime/unprime
358 // instructions. In some situations, it's possible the compiler inserts an
359 // accumulator prime instruction followed by an unprime instruction (e.g.
360 // when we store an accumulator after restoring it from a spill). If the
361 // accumulator is not used between the two, they can be removed. This
362 // function removes these redundant pairs from basic blocks.
363 // The algorithm is quite straightforward - every time we encounter a prime
364 // instruction, the primed register is added to a candidate set. Any use
365 // other than a prime removes the candidate from the set and any de-prime
366 // of a current candidate marks both the prime and de-prime for removal.
367 // This way we ensure we only remove prime/de-prime *pairs* with no
369 bool removeAccPrimeUnprime(MachineBasicBlock
&MBB
) {
370 DenseSet
<MachineInstr
*> InstrsToErase
;
371 // Initially, none of the acc registers are candidates.
372 SmallVector
<MachineInstr
*, 8> Candidates(
373 PPC::UACCRCRegClass
.getNumRegs(), nullptr);
375 for (MachineInstr
&BBI
: MBB
.instrs()) {
376 unsigned Opc
= BBI
.getOpcode();
377 // If we are visiting a xxmtacc instruction, we add it and its operand
378 // register to the candidate set.
379 if (Opc
== PPC::XXMTACC
) {
380 Register Acc
= BBI
.getOperand(0).getReg();
381 assert(PPC::ACCRCRegClass
.contains(Acc
) &&
382 "Unexpected register for XXMTACC");
383 Candidates
[Acc
- PPC::ACC0
] = &BBI
;
385 // If we are visiting a xxmfacc instruction and its operand register is
386 // in the candidate set, we mark the two instructions for removal.
387 else if (Opc
== PPC::XXMFACC
) {
388 Register Acc
= BBI
.getOperand(0).getReg();
389 assert(PPC::ACCRCRegClass
.contains(Acc
) &&
390 "Unexpected register for XXMFACC");
391 if (!Candidates
[Acc
- PPC::ACC0
])
393 InstrsToErase
.insert(&BBI
);
394 InstrsToErase
.insert(Candidates
[Acc
- PPC::ACC0
]);
396 // If we are visiting an instruction using an accumulator register
397 // as operand, we remove it from the candidate set.
399 for (MachineOperand
&Operand
: BBI
.operands()) {
400 if (!Operand
.isReg())
402 Register Reg
= Operand
.getReg();
403 if (PPC::ACCRCRegClass
.contains(Reg
))
404 Candidates
[Reg
- PPC::ACC0
] = nullptr;
409 for (MachineInstr
*MI
: InstrsToErase
)
410 MI
->eraseFromParent();
411 NumRemovedInPreEmit
+= InstrsToErase
.size();
412 return !InstrsToErase
.empty();
415 bool runOnMachineFunction(MachineFunction
&MF
) override
{
416 // If the user wants to set the DSCR using command-line options,
417 // load in the specified value at the start of main.
418 if (DSCRValue
.getNumOccurrences() > 0 && MF
.getName() == "main" &&
419 MF
.getFunction().hasExternalLinkage()) {
420 DSCRValue
= (uint32_t)(DSCRValue
& 0x01FFFFFF); // 25-bit DSCR mask
422 MachineBasicBlock
&MBB
= MF
.front();
423 // Find an unused GPR according to register liveness
424 RS
.enterBasicBlock(MBB
);
425 unsigned InDSCR
= RS
.FindUnusedReg(&PPC::GPRCRegClass
);
427 const PPCInstrInfo
*TII
=
428 MF
.getSubtarget
<PPCSubtarget
>().getInstrInfo();
430 MachineBasicBlock::iterator IP
= MBB
.begin(); // Insert Point
431 // Copy the 32-bit DSCRValue integer into the GPR InDSCR using LIS and
432 // ORI, then move to DSCR. If the requested DSCR value is contained
433 // in a 16-bit signed number, we can emit a single `LI`, but the
434 // impact of saving one instruction in one function does not warrant
435 // any additional complexity in the logic here.
436 BuildMI(MBB
, IP
, dl
, TII
->get(PPC::LIS
), InDSCR
)
437 .addImm(DSCRValue
>> 16);
438 BuildMI(MBB
, IP
, dl
, TII
->get(PPC::ORI
), InDSCR
)
440 .addImm(DSCRValue
& 0xFFFF);
441 BuildMI(MBB
, IP
, dl
, TII
->get(PPC::MTUDSCR
))
442 .addReg(InDSCR
, RegState::Kill
);
444 errs() << "Warning: Ran out of registers - Unable to set DSCR as "
448 if (skipFunction(MF
.getFunction()) || !RunPreEmitPeephole
) {
449 // Remove UNENCODED_NOP even when this pass is disabled.
450 // This needs to be done unconditionally so we don't emit zeros
451 // in the instruction stream.
452 SmallVector
<MachineInstr
*, 4> InstrsToErase
;
453 for (MachineBasicBlock
&MBB
: MF
)
454 for (MachineInstr
&MI
: MBB
)
455 if (MI
.getOpcode() == PPC::UNENCODED_NOP
)
456 InstrsToErase
.push_back(&MI
);
457 for (MachineInstr
*MI
: InstrsToErase
)
458 MI
->eraseFromParent();
461 bool Changed
= false;
462 const PPCInstrInfo
*TII
= MF
.getSubtarget
<PPCSubtarget
>().getInstrInfo();
463 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
464 SmallVector
<MachineInstr
*, 4> InstrsToErase
;
465 for (MachineBasicBlock
&MBB
: MF
) {
466 Changed
|= removeRedundantLIs(MBB
, TRI
);
467 Changed
|= addLinkerOpt(MBB
, TRI
);
468 Changed
|= removeAccPrimeUnprime(MBB
);
469 for (MachineInstr
&MI
: MBB
) {
470 unsigned Opc
= MI
.getOpcode();
471 if (Opc
== PPC::UNENCODED_NOP
) {
472 InstrsToErase
.push_back(&MI
);
475 // Detect self copies - these can result from running AADB.
476 if (PPCInstrInfo::isSameClassPhysRegCopy(Opc
)) {
477 const MCInstrDesc
&MCID
= TII
->get(Opc
);
478 if (MCID
.getNumOperands() == 3 &&
479 MI
.getOperand(0).getReg() == MI
.getOperand(1).getReg() &&
480 MI
.getOperand(0).getReg() == MI
.getOperand(2).getReg()) {
481 NumberOfSelfCopies
++;
482 LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
483 LLVM_DEBUG(MI
.dump());
484 InstrsToErase
.push_back(&MI
);
487 else if (MCID
.getNumOperands() == 2 &&
488 MI
.getOperand(0).getReg() == MI
.getOperand(1).getReg()) {
489 NumberOfSelfCopies
++;
490 LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
491 LLVM_DEBUG(MI
.dump());
492 InstrsToErase
.push_back(&MI
);
496 MachineInstr
*DefMIToErase
= nullptr;
497 SmallSet
<Register
, 4> UpdatedRegs
;
498 if (TII
->convertToImmediateForm(MI
, UpdatedRegs
, &DefMIToErase
)) {
500 NumRRConvertedInPreEmit
++;
501 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
502 LLVM_DEBUG(MI
.dump());
504 InstrsToErase
.push_back(DefMIToErase
);
507 if (TII
->foldFrameOffset(MI
)) {
509 NumFrameOffFoldInPreEmit
++;
510 LLVM_DEBUG(dbgs() << "Frame offset folding by using index form: ");
511 LLVM_DEBUG(MI
.dump());
513 if (TII
->optimizeCmpPostRA(MI
)) {
516 LLVM_DEBUG(dbgs() << "Optimize compare by using record form: ");
517 LLVM_DEBUG(MI
.dump());
518 InstrsToErase
.push_back(&MI
);
522 // Eliminate conditional branch based on a constant CR bit by
523 // CRSET or CRUNSET. We eliminate the conditional branch or
524 // convert it into an unconditional branch. Also, if the CR bit
525 // is not used by other instructions, we eliminate CRSET as well.
526 auto I
= MBB
.getFirstInstrTerminator();
527 if (I
== MBB
.instr_end())
529 MachineInstr
*Br
= &*I
;
530 if (Br
->getOpcode() != PPC::BC
&& Br
->getOpcode() != PPC::BCn
)
532 MachineInstr
*CRSetMI
= nullptr;
533 Register CRBit
= Br
->getOperand(0).getReg();
534 unsigned CRReg
= getCRFromCRBit(CRBit
);
535 bool SeenUse
= false;
536 MachineBasicBlock::reverse_iterator It
= Br
, Er
= MBB
.rend();
537 for (It
++; It
!= Er
; It
++) {
538 if (It
->modifiesRegister(CRBit
, TRI
)) {
539 if ((It
->getOpcode() == PPC::CRUNSET
||
540 It
->getOpcode() == PPC::CRSET
) &&
541 It
->getOperand(0).getReg() == CRBit
)
545 if (It
->readsRegister(CRBit
, TRI
))
548 if (!CRSetMI
) continue;
550 unsigned CRSetOp
= CRSetMI
->getOpcode();
551 if ((Br
->getOpcode() == PPC::BCn
&& CRSetOp
== PPC::CRSET
) ||
552 (Br
->getOpcode() == PPC::BC
&& CRSetOp
== PPC::CRUNSET
)) {
553 // Remove this branch since it cannot be taken.
554 InstrsToErase
.push_back(Br
);
555 MBB
.removeSuccessor(Br
->getOperand(1).getMBB());
558 // This conditional branch is always taken. So, remove all branches
559 // and insert an unconditional branch to the destination of this.
560 MachineBasicBlock::iterator It
= Br
, Er
= MBB
.end();
561 for (; It
!= Er
; It
++) {
562 if (It
->isDebugInstr()) continue;
563 assert(It
->isTerminator() && "Non-terminator after a terminator");
564 InstrsToErase
.push_back(&*It
);
566 if (!MBB
.isLayoutSuccessor(Br
->getOperand(1).getMBB())) {
567 ArrayRef
<MachineOperand
> NoCond
;
568 TII
->insertBranch(MBB
, Br
->getOperand(1).getMBB(), nullptr,
569 NoCond
, Br
->getDebugLoc());
571 for (auto &Succ
: MBB
.successors())
572 if (Succ
!= Br
->getOperand(1).getMBB()) {
573 MBB
.removeSuccessor(Succ
);
578 // If the CRBit is not used by another instruction, we can eliminate
579 // CRSET/CRUNSET instruction.
581 // We need to check use of the CRBit in successors.
582 for (auto &SuccMBB
: MBB
.successors())
583 if (SuccMBB
->isLiveIn(CRBit
) || SuccMBB
->isLiveIn(CRReg
)) {
588 InstrsToErase
.push_back(CRSetMI
);
591 for (MachineInstr
*MI
: InstrsToErase
) {
592 LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: ");
593 LLVM_DEBUG(MI
->dump());
594 MI
->eraseFromParent();
595 NumRemovedInPreEmit
++;
602 INITIALIZE_PASS(PPCPreEmitPeephole
, DEBUG_TYPE
, "PowerPC Pre-Emit Peephole",
604 char PPCPreEmitPeephole::ID
= 0;
606 FunctionPass
*llvm::createPPCPreEmitPeepholePass() {
607 return new PPCPreEmitPeephole();