1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines routines for folding instructions into constants.
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
16 //===----------------------------------------------------------------------===//
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantFold.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/IntrinsicsAArch64.h"
46 #include "llvm/IR/IntrinsicsAMDGPU.h"
47 #include "llvm/IR/IntrinsicsARM.h"
48 #include "llvm/IR/IntrinsicsNVPTX.h"
49 #include "llvm/IR/IntrinsicsWebAssembly.h"
50 #include "llvm/IR/IntrinsicsX86.h"
51 #include "llvm/IR/NVVMIntrinsicUtils.h"
52 #include "llvm/IR/Operator.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
69 //===----------------------------------------------------------------------===//
70 // Constant Folding internal helper functions
71 //===----------------------------------------------------------------------===//
73 static Constant
*foldConstVectorToAPInt(APInt
&Result
, Type
*DestTy
,
74 Constant
*C
, Type
*SrcEltTy
,
76 const DataLayout
&DL
) {
77 // Now that we know that the input value is a vector of integers, just shift
78 // and insert them into our result.
79 unsigned BitShift
= DL
.getTypeSizeInBits(SrcEltTy
);
80 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
) {
82 if (DL
.isLittleEndian())
83 Element
= C
->getAggregateElement(NumSrcElts
- i
- 1);
85 Element
= C
->getAggregateElement(i
);
87 if (isa_and_nonnull
<UndefValue
>(Element
)) {
92 auto *ElementCI
= dyn_cast_or_null
<ConstantInt
>(Element
);
94 return ConstantExpr::getBitCast(C
, DestTy
);
97 Result
|= ElementCI
->getValue().zext(Result
.getBitWidth());
103 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
104 /// This always returns a non-null constant, but it may be a
105 /// ConstantExpr if unfoldable.
106 Constant
*FoldBitCast(Constant
*C
, Type
*DestTy
, const DataLayout
&DL
) {
107 assert(CastInst::castIsValid(Instruction::BitCast
, C
, DestTy
) &&
108 "Invalid constantexpr bitcast!");
110 // Catch the obvious splat cases.
111 if (Constant
*Res
= ConstantFoldLoadFromUniformValue(C
, DestTy
, DL
))
114 if (auto *VTy
= dyn_cast
<VectorType
>(C
->getType())) {
115 // Handle a vector->scalar integer/fp cast.
116 if (isa
<IntegerType
>(DestTy
) || DestTy
->isFloatingPointTy()) {
117 unsigned NumSrcElts
= cast
<FixedVectorType
>(VTy
)->getNumElements();
118 Type
*SrcEltTy
= VTy
->getElementType();
120 // If the vector is a vector of floating point, convert it to vector of int
121 // to simplify things.
122 if (SrcEltTy
->isFloatingPointTy()) {
123 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
124 auto *SrcIVTy
= FixedVectorType::get(
125 IntegerType::get(C
->getContext(), FPWidth
), NumSrcElts
);
126 // Ask IR to do the conversion now that #elts line up.
127 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
130 APInt
Result(DL
.getTypeSizeInBits(DestTy
), 0);
131 if (Constant
*CE
= foldConstVectorToAPInt(Result
, DestTy
, C
,
132 SrcEltTy
, NumSrcElts
, DL
))
135 if (isa
<IntegerType
>(DestTy
))
136 return ConstantInt::get(DestTy
, Result
);
138 APFloat
FP(DestTy
->getFltSemantics(), Result
);
139 return ConstantFP::get(DestTy
->getContext(), FP
);
143 // The code below only handles casts to vectors currently.
144 auto *DestVTy
= dyn_cast
<VectorType
>(DestTy
);
146 return ConstantExpr::getBitCast(C
, DestTy
);
148 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
149 // vector so the code below can handle it uniformly.
150 if (!isa
<VectorType
>(C
->getType()) &&
151 (isa
<ConstantFP
>(C
) || isa
<ConstantInt
>(C
))) {
152 Constant
*Ops
= C
; // don't take the address of C!
153 return FoldBitCast(ConstantVector::get(Ops
), DestTy
, DL
);
156 // Some of what follows may extend to cover scalable vectors but the current
157 // implementation is fixed length specific.
158 if (!isa
<FixedVectorType
>(C
->getType()))
159 return ConstantExpr::getBitCast(C
, DestTy
);
161 // If this is a bitcast from constant vector -> vector, fold it.
162 if (!isa
<ConstantDataVector
>(C
) && !isa
<ConstantVector
>(C
) &&
163 !isa
<ConstantInt
>(C
) && !isa
<ConstantFP
>(C
))
164 return ConstantExpr::getBitCast(C
, DestTy
);
166 // If the element types match, IR can fold it.
167 unsigned NumDstElt
= cast
<FixedVectorType
>(DestVTy
)->getNumElements();
168 unsigned NumSrcElt
= cast
<FixedVectorType
>(C
->getType())->getNumElements();
169 if (NumDstElt
== NumSrcElt
)
170 return ConstantExpr::getBitCast(C
, DestTy
);
172 Type
*SrcEltTy
= cast
<VectorType
>(C
->getType())->getElementType();
173 Type
*DstEltTy
= DestVTy
->getElementType();
175 // Otherwise, we're changing the number of elements in a vector, which
176 // requires endianness information to do the right thing. For example,
177 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
178 // folds to (little endian):
179 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
180 // and to (big endian):
181 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
183 // First thing is first. We only want to think about integer here, so if
184 // we have something in FP form, recast it as integer.
185 if (DstEltTy
->isFloatingPointTy()) {
186 // Fold to an vector of integers with same size as our FP type.
187 unsigned FPWidth
= DstEltTy
->getPrimitiveSizeInBits();
188 auto *DestIVTy
= FixedVectorType::get(
189 IntegerType::get(C
->getContext(), FPWidth
), NumDstElt
);
190 // Recursively handle this integer conversion, if possible.
191 C
= FoldBitCast(C
, DestIVTy
, DL
);
193 // Finally, IR can handle this now that #elts line up.
194 return ConstantExpr::getBitCast(C
, DestTy
);
197 // Okay, we know the destination is integer, if the input is FP, convert
198 // it to integer first.
199 if (SrcEltTy
->isFloatingPointTy()) {
200 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
201 auto *SrcIVTy
= FixedVectorType::get(
202 IntegerType::get(C
->getContext(), FPWidth
), NumSrcElt
);
203 // Ask IR to do the conversion now that #elts line up.
204 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
205 assert((isa
<ConstantVector
>(C
) || // FIXME: Remove ConstantVector.
206 isa
<ConstantDataVector
>(C
) || isa
<ConstantInt
>(C
)) &&
207 "Constant folding cannot fail for plain fp->int bitcast!");
210 // Now we know that the input and output vectors are both integer vectors
211 // of the same size, and that their #elements is not the same. Do the
212 // conversion here, which depends on whether the input or output has
214 bool isLittleEndian
= DL
.isLittleEndian();
216 SmallVector
<Constant
*, 32> Result
;
217 if (NumDstElt
< NumSrcElt
) {
218 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
219 Constant
*Zero
= Constant::getNullValue(DstEltTy
);
220 unsigned Ratio
= NumSrcElt
/NumDstElt
;
221 unsigned SrcBitSize
= SrcEltTy
->getPrimitiveSizeInBits();
223 for (unsigned i
= 0; i
!= NumDstElt
; ++i
) {
224 // Build each element of the result.
225 Constant
*Elt
= Zero
;
226 unsigned ShiftAmt
= isLittleEndian
? 0 : SrcBitSize
*(Ratio
-1);
227 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
228 Constant
*Src
= C
->getAggregateElement(SrcElt
++);
229 if (isa_and_nonnull
<UndefValue
>(Src
))
230 Src
= Constant::getNullValue(
231 cast
<VectorType
>(C
->getType())->getElementType());
233 Src
= dyn_cast_or_null
<ConstantInt
>(Src
);
234 if (!Src
) // Reject constantexpr elements.
235 return ConstantExpr::getBitCast(C
, DestTy
);
237 // Zero extend the element to the right size.
238 Src
= ConstantFoldCastOperand(Instruction::ZExt
, Src
, Elt
->getType(),
240 assert(Src
&& "Constant folding cannot fail on plain integers");
242 // Shift it to the right place, depending on endianness.
243 Src
= ConstantFoldBinaryOpOperands(
244 Instruction::Shl
, Src
, ConstantInt::get(Src
->getType(), ShiftAmt
),
246 assert(Src
&& "Constant folding cannot fail on plain integers");
248 ShiftAmt
+= isLittleEndian
? SrcBitSize
: -SrcBitSize
;
251 Elt
= ConstantFoldBinaryOpOperands(Instruction::Or
, Elt
, Src
, DL
);
252 assert(Elt
&& "Constant folding cannot fail on plain integers");
254 Result
.push_back(Elt
);
256 return ConstantVector::get(Result
);
259 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
260 unsigned Ratio
= NumDstElt
/NumSrcElt
;
261 unsigned DstBitSize
= DL
.getTypeSizeInBits(DstEltTy
);
263 // Loop over each source value, expanding into multiple results.
264 for (unsigned i
= 0; i
!= NumSrcElt
; ++i
) {
265 auto *Element
= C
->getAggregateElement(i
);
267 if (!Element
) // Reject constantexpr elements.
268 return ConstantExpr::getBitCast(C
, DestTy
);
270 if (isa
<UndefValue
>(Element
)) {
271 // Correctly Propagate undef values.
272 Result
.append(Ratio
, UndefValue::get(DstEltTy
));
276 auto *Src
= dyn_cast
<ConstantInt
>(Element
);
278 return ConstantExpr::getBitCast(C
, DestTy
);
280 unsigned ShiftAmt
= isLittleEndian
? 0 : DstBitSize
*(Ratio
-1);
281 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
282 // Shift the piece of the value into the right place, depending on
284 APInt Elt
= Src
->getValue().lshr(ShiftAmt
);
285 ShiftAmt
+= isLittleEndian
? DstBitSize
: -DstBitSize
;
287 // Truncate and remember this piece.
288 Result
.push_back(ConstantInt::get(DstEltTy
, Elt
.trunc(DstBitSize
)));
292 return ConstantVector::get(Result
);
295 } // end anonymous namespace
297 /// If this constant is a constant offset from a global, return the global and
298 /// the constant. Because of constantexprs, this function is recursive.
299 bool llvm::IsConstantOffsetFromGlobal(Constant
*C
, GlobalValue
*&GV
,
300 APInt
&Offset
, const DataLayout
&DL
,
301 DSOLocalEquivalent
**DSOEquiv
) {
305 // Trivial case, constant is the global.
306 if ((GV
= dyn_cast
<GlobalValue
>(C
))) {
307 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GV
->getType());
308 Offset
= APInt(BitWidth
, 0);
312 if (auto *FoundDSOEquiv
= dyn_cast
<DSOLocalEquivalent
>(C
)) {
314 *DSOEquiv
= FoundDSOEquiv
;
315 GV
= FoundDSOEquiv
->getGlobalValue();
316 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GV
->getType());
317 Offset
= APInt(BitWidth
, 0);
321 // Otherwise, if this isn't a constant expr, bail out.
322 auto *CE
= dyn_cast
<ConstantExpr
>(C
);
323 if (!CE
) return false;
325 // Look through ptr->int and ptr->ptr casts.
326 if (CE
->getOpcode() == Instruction::PtrToInt
||
327 CE
->getOpcode() == Instruction::BitCast
)
328 return IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, Offset
, DL
,
331 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
332 auto *GEP
= dyn_cast
<GEPOperator
>(CE
);
336 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GEP
->getType());
337 APInt
TmpOffset(BitWidth
, 0);
339 // If the base isn't a global+constant, we aren't either.
340 if (!IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, TmpOffset
, DL
,
344 // Otherwise, add any offset that our operands provide.
345 if (!GEP
->accumulateConstantOffset(DL
, TmpOffset
))
352 Constant
*llvm::ConstantFoldLoadThroughBitcast(Constant
*C
, Type
*DestTy
,
353 const DataLayout
&DL
) {
355 Type
*SrcTy
= C
->getType();
359 TypeSize DestSize
= DL
.getTypeSizeInBits(DestTy
);
360 TypeSize SrcSize
= DL
.getTypeSizeInBits(SrcTy
);
361 if (!TypeSize::isKnownGE(SrcSize
, DestSize
))
364 // Catch the obvious splat cases (since all-zeros can coerce non-integral
365 // pointers legally).
366 if (Constant
*Res
= ConstantFoldLoadFromUniformValue(C
, DestTy
, DL
))
369 // If the type sizes are the same and a cast is legal, just directly
370 // cast the constant.
371 // But be careful not to coerce non-integral pointers illegally.
372 if (SrcSize
== DestSize
&&
373 DL
.isNonIntegralPointerType(SrcTy
->getScalarType()) ==
374 DL
.isNonIntegralPointerType(DestTy
->getScalarType())) {
375 Instruction::CastOps Cast
= Instruction::BitCast
;
376 // If we are going from a pointer to int or vice versa, we spell the cast
378 if (SrcTy
->isIntegerTy() && DestTy
->isPointerTy())
379 Cast
= Instruction::IntToPtr
;
380 else if (SrcTy
->isPointerTy() && DestTy
->isIntegerTy())
381 Cast
= Instruction::PtrToInt
;
383 if (CastInst::castIsValid(Cast
, C
, DestTy
))
384 return ConstantFoldCastOperand(Cast
, C
, DestTy
, DL
);
387 // If this isn't an aggregate type, there is nothing we can do to drill down
388 // and find a bitcastable constant.
389 if (!SrcTy
->isAggregateType() && !SrcTy
->isVectorTy())
392 // We're simulating a load through a pointer that was bitcast to point to
393 // a different type, so we can try to walk down through the initial
394 // elements of an aggregate to see if some part of the aggregate is
395 // castable to implement the "load" semantic model.
396 if (SrcTy
->isStructTy()) {
397 // Struct types might have leading zero-length elements like [0 x i32],
398 // which are certainly not what we are looking for, so skip them.
402 ElemC
= C
->getAggregateElement(Elem
++);
403 } while (ElemC
&& DL
.getTypeSizeInBits(ElemC
->getType()).isZero());
406 // For non-byte-sized vector elements, the first element is not
407 // necessarily located at the vector base address.
408 if (auto *VT
= dyn_cast
<VectorType
>(SrcTy
))
409 if (!DL
.typeSizeEqualsStoreSize(VT
->getElementType()))
412 C
= C
->getAggregateElement(0u);
421 /// Recursive helper to read bits out of global. C is the constant being copied
422 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
423 /// results into and BytesLeft is the number of bytes left in
424 /// the CurPtr buffer. DL is the DataLayout.
425 bool ReadDataFromGlobal(Constant
*C
, uint64_t ByteOffset
, unsigned char *CurPtr
,
426 unsigned BytesLeft
, const DataLayout
&DL
) {
427 assert(ByteOffset
<= DL
.getTypeAllocSize(C
->getType()) &&
428 "Out of range access");
430 // If this element is zero or undefined, we can just return since *CurPtr is
432 if (isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
))
435 if (auto *CI
= dyn_cast
<ConstantInt
>(C
)) {
436 if ((CI
->getBitWidth() & 7) != 0)
438 const APInt
&Val
= CI
->getValue();
439 unsigned IntBytes
= unsigned(CI
->getBitWidth()/8);
441 for (unsigned i
= 0; i
!= BytesLeft
&& ByteOffset
!= IntBytes
; ++i
) {
442 unsigned n
= ByteOffset
;
443 if (!DL
.isLittleEndian())
444 n
= IntBytes
- n
- 1;
445 CurPtr
[i
] = Val
.extractBits(8, n
* 8).getZExtValue();
451 if (auto *CFP
= dyn_cast
<ConstantFP
>(C
)) {
452 if (CFP
->getType()->isDoubleTy()) {
453 C
= FoldBitCast(C
, Type::getInt64Ty(C
->getContext()), DL
);
454 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
456 if (CFP
->getType()->isFloatTy()){
457 C
= FoldBitCast(C
, Type::getInt32Ty(C
->getContext()), DL
);
458 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
460 if (CFP
->getType()->isHalfTy()){
461 C
= FoldBitCast(C
, Type::getInt16Ty(C
->getContext()), DL
);
462 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
467 if (auto *CS
= dyn_cast
<ConstantStruct
>(C
)) {
468 const StructLayout
*SL
= DL
.getStructLayout(CS
->getType());
469 unsigned Index
= SL
->getElementContainingOffset(ByteOffset
);
470 uint64_t CurEltOffset
= SL
->getElementOffset(Index
);
471 ByteOffset
-= CurEltOffset
;
474 // If the element access is to the element itself and not to tail padding,
475 // read the bytes from the element.
476 uint64_t EltSize
= DL
.getTypeAllocSize(CS
->getOperand(Index
)->getType());
478 if (ByteOffset
< EltSize
&&
479 !ReadDataFromGlobal(CS
->getOperand(Index
), ByteOffset
, CurPtr
,
485 // Check to see if we read from the last struct element, if so we're done.
486 if (Index
== CS
->getType()->getNumElements())
489 // If we read all of the bytes we needed from this element we're done.
490 uint64_t NextEltOffset
= SL
->getElementOffset(Index
);
492 if (BytesLeft
<= NextEltOffset
- CurEltOffset
- ByteOffset
)
495 // Move to the next element of the struct.
496 CurPtr
+= NextEltOffset
- CurEltOffset
- ByteOffset
;
497 BytesLeft
-= NextEltOffset
- CurEltOffset
- ByteOffset
;
499 CurEltOffset
= NextEltOffset
;
504 if (isa
<ConstantArray
>(C
) || isa
<ConstantVector
>(C
) ||
505 isa
<ConstantDataSequential
>(C
)) {
506 uint64_t NumElts
, EltSize
;
508 if (auto *AT
= dyn_cast
<ArrayType
>(C
->getType())) {
509 NumElts
= AT
->getNumElements();
510 EltTy
= AT
->getElementType();
511 EltSize
= DL
.getTypeAllocSize(EltTy
);
513 NumElts
= cast
<FixedVectorType
>(C
->getType())->getNumElements();
514 EltTy
= cast
<FixedVectorType
>(C
->getType())->getElementType();
515 // TODO: For non-byte-sized vectors, current implementation assumes there is
516 // padding to the next byte boundary between elements.
517 if (!DL
.typeSizeEqualsStoreSize(EltTy
))
520 EltSize
= DL
.getTypeStoreSize(EltTy
);
522 uint64_t Index
= ByteOffset
/ EltSize
;
523 uint64_t Offset
= ByteOffset
- Index
* EltSize
;
525 for (; Index
!= NumElts
; ++Index
) {
526 if (!ReadDataFromGlobal(C
->getAggregateElement(Index
), Offset
, CurPtr
,
530 uint64_t BytesWritten
= EltSize
- Offset
;
531 assert(BytesWritten
<= EltSize
&& "Not indexing into this element?");
532 if (BytesWritten
>= BytesLeft
)
536 BytesLeft
-= BytesWritten
;
537 CurPtr
+= BytesWritten
;
542 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
543 if (CE
->getOpcode() == Instruction::IntToPtr
&&
544 CE
->getOperand(0)->getType() == DL
.getIntPtrType(CE
->getType())) {
545 return ReadDataFromGlobal(CE
->getOperand(0), ByteOffset
, CurPtr
,
550 // Otherwise, unknown initializer type.
554 Constant
*FoldReinterpretLoadFromConst(Constant
*C
, Type
*LoadTy
,
555 int64_t Offset
, const DataLayout
&DL
) {
556 // Bail out early. Not expect to load from scalable global variable.
557 if (isa
<ScalableVectorType
>(LoadTy
))
560 auto *IntType
= dyn_cast
<IntegerType
>(LoadTy
);
562 // If this isn't an integer load we can't fold it directly.
564 // If this is a non-integer load, we can try folding it as an int load and
565 // then bitcast the result. This can be useful for union cases. Note
566 // that address spaces don't matter here since we're not going to result in
567 // an actual new load.
568 if (!LoadTy
->isFloatingPointTy() && !LoadTy
->isPointerTy() &&
569 !LoadTy
->isVectorTy())
572 Type
*MapTy
= Type::getIntNTy(C
->getContext(),
573 DL
.getTypeSizeInBits(LoadTy
).getFixedValue());
574 if (Constant
*Res
= FoldReinterpretLoadFromConst(C
, MapTy
, Offset
, DL
)) {
575 if (Res
->isNullValue() && !LoadTy
->isX86_AMXTy())
576 // Materializing a zero can be done trivially without a bitcast
577 return Constant::getNullValue(LoadTy
);
578 Type
*CastTy
= LoadTy
->isPtrOrPtrVectorTy() ? DL
.getIntPtrType(LoadTy
) : LoadTy
;
579 Res
= FoldBitCast(Res
, CastTy
, DL
);
580 if (LoadTy
->isPtrOrPtrVectorTy()) {
581 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
582 if (Res
->isNullValue() && !LoadTy
->isX86_AMXTy())
583 return Constant::getNullValue(LoadTy
);
584 if (DL
.isNonIntegralPointerType(LoadTy
->getScalarType()))
585 // Be careful not to replace a load of an addrspace value with an inttoptr here
587 Res
= ConstantExpr::getIntToPtr(Res
, LoadTy
);
594 unsigned BytesLoaded
= (IntType
->getBitWidth() + 7) / 8;
595 if (BytesLoaded
> 32 || BytesLoaded
== 0)
598 // If we're not accessing anything in this constant, the result is undefined.
599 if (Offset
<= -1 * static_cast<int64_t>(BytesLoaded
))
600 return PoisonValue::get(IntType
);
602 // TODO: We should be able to support scalable types.
603 TypeSize InitializerSize
= DL
.getTypeAllocSize(C
->getType());
604 if (InitializerSize
.isScalable())
607 // If we're not accessing anything in this constant, the result is undefined.
608 if (Offset
>= (int64_t)InitializerSize
.getFixedValue())
609 return PoisonValue::get(IntType
);
611 unsigned char RawBytes
[32] = {0};
612 unsigned char *CurPtr
= RawBytes
;
613 unsigned BytesLeft
= BytesLoaded
;
615 // If we're loading off the beginning of the global, some bytes may be valid.
622 if (!ReadDataFromGlobal(C
, Offset
, CurPtr
, BytesLeft
, DL
))
625 APInt ResultVal
= APInt(IntType
->getBitWidth(), 0);
626 if (DL
.isLittleEndian()) {
627 ResultVal
= RawBytes
[BytesLoaded
- 1];
628 for (unsigned i
= 1; i
!= BytesLoaded
; ++i
) {
630 ResultVal
|= RawBytes
[BytesLoaded
- 1 - i
];
633 ResultVal
= RawBytes
[0];
634 for (unsigned i
= 1; i
!= BytesLoaded
; ++i
) {
636 ResultVal
|= RawBytes
[i
];
640 return ConstantInt::get(IntType
->getContext(), ResultVal
);
643 } // anonymous namespace
645 // If GV is a constant with an initializer read its representation starting
646 // at Offset and return it as a constant array of unsigned char. Otherwise
648 Constant
*llvm::ReadByteArrayFromGlobal(const GlobalVariable
*GV
,
650 if (!GV
->isConstant() || !GV
->hasDefinitiveInitializer())
653 const DataLayout
&DL
= GV
->getDataLayout();
654 Constant
*Init
= const_cast<Constant
*>(GV
->getInitializer());
655 TypeSize InitSize
= DL
.getTypeAllocSize(Init
->getType());
656 if (InitSize
< Offset
)
659 uint64_t NBytes
= InitSize
- Offset
;
660 if (NBytes
> UINT16_MAX
)
661 // Bail for large initializers in excess of 64K to avoid allocating
663 // Offset is assumed to be less than or equal than InitSize (this
664 // is enforced in ReadDataFromGlobal).
667 SmallVector
<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes
));
668 unsigned char *CurPtr
= RawBytes
.data();
670 if (!ReadDataFromGlobal(Init
, Offset
, CurPtr
, NBytes
, DL
))
673 return ConstantDataArray::get(GV
->getContext(), RawBytes
);
676 /// If this Offset points exactly to the start of an aggregate element, return
677 /// that element, otherwise return nullptr.
678 Constant
*getConstantAtOffset(Constant
*Base
, APInt Offset
,
679 const DataLayout
&DL
) {
683 if (!isa
<ConstantAggregate
>(Base
) && !isa
<ConstantDataSequential
>(Base
))
686 Type
*ElemTy
= Base
->getType();
687 SmallVector
<APInt
> Indices
= DL
.getGEPIndicesForOffset(ElemTy
, Offset
);
688 if (!Offset
.isZero() || !Indices
[0].isZero())
692 for (const APInt
&Index
: drop_begin(Indices
)) {
693 if (Index
.isNegative() || Index
.getActiveBits() >= 32)
696 C
= C
->getAggregateElement(Index
.getZExtValue());
704 Constant
*llvm::ConstantFoldLoadFromConst(Constant
*C
, Type
*Ty
,
706 const DataLayout
&DL
) {
707 if (Constant
*AtOffset
= getConstantAtOffset(C
, Offset
, DL
))
708 if (Constant
*Result
= ConstantFoldLoadThroughBitcast(AtOffset
, Ty
, DL
))
711 // Explicitly check for out-of-bounds access, so we return poison even if the
712 // constant is a uniform value.
713 TypeSize Size
= DL
.getTypeAllocSize(C
->getType());
714 if (!Size
.isScalable() && Offset
.sge(Size
.getFixedValue()))
715 return PoisonValue::get(Ty
);
717 // Try an offset-independent fold of a uniform value.
718 if (Constant
*Result
= ConstantFoldLoadFromUniformValue(C
, Ty
, DL
))
721 // Try hard to fold loads from bitcasted strange and non-type-safe things.
722 if (Offset
.getSignificantBits() <= 64)
723 if (Constant
*Result
=
724 FoldReinterpretLoadFromConst(C
, Ty
, Offset
.getSExtValue(), DL
))
730 Constant
*llvm::ConstantFoldLoadFromConst(Constant
*C
, Type
*Ty
,
731 const DataLayout
&DL
) {
732 return ConstantFoldLoadFromConst(C
, Ty
, APInt(64, 0), DL
);
735 Constant
*llvm::ConstantFoldLoadFromConstPtr(Constant
*C
, Type
*Ty
,
737 const DataLayout
&DL
) {
738 // We can only fold loads from constant globals with a definitive initializer.
739 // Check this upfront, to skip expensive offset calculations.
740 auto *GV
= dyn_cast
<GlobalVariable
>(getUnderlyingObject(C
));
741 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer())
744 C
= cast
<Constant
>(C
->stripAndAccumulateConstantOffsets(
745 DL
, Offset
, /* AllowNonInbounds */ true));
748 if (Constant
*Result
= ConstantFoldLoadFromConst(GV
->getInitializer(), Ty
,
752 // If this load comes from anywhere in a uniform constant global, the value
753 // is always the same, regardless of the loaded offset.
754 return ConstantFoldLoadFromUniformValue(GV
->getInitializer(), Ty
, DL
);
757 Constant
*llvm::ConstantFoldLoadFromConstPtr(Constant
*C
, Type
*Ty
,
758 const DataLayout
&DL
) {
759 APInt
Offset(DL
.getIndexTypeSizeInBits(C
->getType()), 0);
760 return ConstantFoldLoadFromConstPtr(C
, Ty
, std::move(Offset
), DL
);
763 Constant
*llvm::ConstantFoldLoadFromUniformValue(Constant
*C
, Type
*Ty
,
764 const DataLayout
&DL
) {
765 if (isa
<PoisonValue
>(C
))
766 return PoisonValue::get(Ty
);
767 if (isa
<UndefValue
>(C
))
768 return UndefValue::get(Ty
);
769 // If padding is needed when storing C to memory, then it isn't considered as
771 if (!DL
.typeSizeEqualsStoreSize(C
->getType()))
773 if (C
->isNullValue() && !Ty
->isX86_AMXTy())
774 return Constant::getNullValue(Ty
);
775 if (C
->isAllOnesValue() &&
776 (Ty
->isIntOrIntVectorTy() || Ty
->isFPOrFPVectorTy()))
777 return Constant::getAllOnesValue(Ty
);
783 /// One of Op0/Op1 is a constant expression.
784 /// Attempt to symbolically evaluate the result of a binary operator merging
785 /// these together. If target data info is available, it is provided as DL,
786 /// otherwise DL is null.
787 Constant
*SymbolicallyEvaluateBinop(unsigned Opc
, Constant
*Op0
, Constant
*Op1
,
788 const DataLayout
&DL
) {
791 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
792 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
795 if (Opc
== Instruction::And
) {
796 KnownBits Known0
= computeKnownBits(Op0
, DL
);
797 KnownBits Known1
= computeKnownBits(Op1
, DL
);
798 if ((Known1
.One
| Known0
.Zero
).isAllOnes()) {
799 // All the bits of Op0 that the 'and' could be masking are already zero.
802 if ((Known0
.One
| Known1
.Zero
).isAllOnes()) {
803 // All the bits of Op1 that the 'and' could be masking are already zero.
808 if (Known0
.isConstant())
809 return ConstantInt::get(Op0
->getType(), Known0
.getConstant());
812 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
813 // constant. This happens frequently when iterating over a global array.
814 if (Opc
== Instruction::Sub
) {
815 GlobalValue
*GV1
, *GV2
;
818 if (IsConstantOffsetFromGlobal(Op0
, GV1
, Offs1
, DL
))
819 if (IsConstantOffsetFromGlobal(Op1
, GV2
, Offs2
, DL
) && GV1
== GV2
) {
820 unsigned OpSize
= DL
.getTypeSizeInBits(Op0
->getType());
822 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
823 // PtrToInt may change the bitwidth so we have convert to the right size
825 return ConstantInt::get(Op0
->getType(), Offs1
.zextOrTrunc(OpSize
) -
826 Offs2
.zextOrTrunc(OpSize
));
833 /// If array indices are not pointer-sized integers, explicitly cast them so
834 /// that they aren't implicitly casted by the getelementptr.
835 Constant
*CastGEPIndices(Type
*SrcElemTy
, ArrayRef
<Constant
*> Ops
,
836 Type
*ResultTy
, GEPNoWrapFlags NW
,
837 std::optional
<ConstantRange
> InRange
,
838 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
) {
839 Type
*IntIdxTy
= DL
.getIndexType(ResultTy
);
840 Type
*IntIdxScalarTy
= IntIdxTy
->getScalarType();
843 SmallVector
<Constant
*, 32> NewIdxs
;
844 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
) {
846 !isa
<StructType
>(GetElementPtrInst::getIndexedType(
847 SrcElemTy
, Ops
.slice(1, i
- 1)))) &&
848 Ops
[i
]->getType()->getScalarType() != IntIdxScalarTy
) {
851 Ops
[i
]->getType()->isVectorTy() ? IntIdxTy
: IntIdxScalarTy
;
852 Constant
*NewIdx
= ConstantFoldCastOperand(
853 CastInst::getCastOpcode(Ops
[i
], true, NewType
, true), Ops
[i
], NewType
,
857 NewIdxs
.push_back(NewIdx
);
859 NewIdxs
.push_back(Ops
[i
]);
866 ConstantExpr::getGetElementPtr(SrcElemTy
, Ops
[0], NewIdxs
, NW
, InRange
);
867 return ConstantFoldConstant(C
, DL
, TLI
);
870 /// If we can symbolically evaluate the GEP constant expression, do so.
871 Constant
*SymbolicallyEvaluateGEP(const GEPOperator
*GEP
,
872 ArrayRef
<Constant
*> Ops
,
873 const DataLayout
&DL
,
874 const TargetLibraryInfo
*TLI
) {
875 Type
*SrcElemTy
= GEP
->getSourceElementType();
876 Type
*ResTy
= GEP
->getType();
877 if (!SrcElemTy
->isSized() || isa
<ScalableVectorType
>(SrcElemTy
))
880 if (Constant
*C
= CastGEPIndices(SrcElemTy
, Ops
, ResTy
, GEP
->getNoWrapFlags(),
881 GEP
->getInRange(), DL
, TLI
))
884 Constant
*Ptr
= Ops
[0];
885 if (!Ptr
->getType()->isPointerTy())
888 Type
*IntIdxTy
= DL
.getIndexType(Ptr
->getType());
890 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
891 if (!isa
<ConstantInt
>(Ops
[i
]) || !Ops
[i
]->getType()->isIntegerTy())
894 unsigned BitWidth
= DL
.getTypeSizeInBits(IntIdxTy
);
895 APInt Offset
= APInt(
897 DL
.getIndexedOffsetInType(
898 SrcElemTy
, ArrayRef((Value
*const *)Ops
.data() + 1, Ops
.size() - 1)),
899 /*isSigned=*/true, /*implicitTrunc=*/true);
901 std::optional
<ConstantRange
> InRange
= GEP
->getInRange();
903 InRange
= InRange
->sextOrTrunc(BitWidth
);
905 // If this is a GEP of a GEP, fold it all into a single GEP.
906 GEPNoWrapFlags NW
= GEP
->getNoWrapFlags();
907 bool Overflow
= false;
908 while (auto *GEP
= dyn_cast
<GEPOperator
>(Ptr
)) {
909 NW
&= GEP
->getNoWrapFlags();
911 SmallVector
<Value
*, 4> NestedOps(llvm::drop_begin(GEP
->operands()));
913 // Do not try the incorporate the sub-GEP if some index is not a number.
914 bool AllConstantInt
= true;
915 for (Value
*NestedOp
: NestedOps
)
916 if (!isa
<ConstantInt
>(NestedOp
)) {
917 AllConstantInt
= false;
923 // TODO: Try to intersect two inrange attributes?
925 InRange
= GEP
->getInRange();
927 // Adjust inrange by offset until now.
928 InRange
= InRange
->sextOrTrunc(BitWidth
).subtract(Offset
);
931 Ptr
= cast
<Constant
>(GEP
->getOperand(0));
932 SrcElemTy
= GEP
->getSourceElementType();
933 Offset
= Offset
.sadd_ov(
934 APInt(BitWidth
, DL
.getIndexedOffsetInType(SrcElemTy
, NestedOps
),
935 /*isSigned=*/true, /*implicitTrunc=*/true),
939 // Preserving nusw (without inbounds) also requires that the offset
940 // additions did not overflow.
941 if (NW
.hasNoUnsignedSignedWrap() && !NW
.isInBounds() && Overflow
)
942 NW
= NW
.withoutNoUnsignedSignedWrap();
944 // If the base value for this address is a literal integer value, fold the
945 // getelementptr to the resulting integer value casted to the pointer type.
946 APInt
BasePtr(BitWidth
, 0);
947 if (auto *CE
= dyn_cast
<ConstantExpr
>(Ptr
)) {
948 if (CE
->getOpcode() == Instruction::IntToPtr
) {
949 if (auto *Base
= dyn_cast
<ConstantInt
>(CE
->getOperand(0)))
950 BasePtr
= Base
->getValue().zextOrTrunc(BitWidth
);
954 auto *PTy
= cast
<PointerType
>(Ptr
->getType());
955 if ((Ptr
->isNullValue() || BasePtr
!= 0) &&
956 !DL
.isNonIntegralPointerType(PTy
)) {
957 Constant
*C
= ConstantInt::get(Ptr
->getContext(), Offset
+ BasePtr
);
958 return ConstantExpr::getIntToPtr(C
, ResTy
);
961 // Try to infer inbounds for GEPs of globals.
962 if (!NW
.isInBounds() && Offset
.isNonNegative()) {
963 bool CanBeNull
, CanBeFreed
;
964 uint64_t DerefBytes
=
965 Ptr
->getPointerDereferenceableBytes(DL
, CanBeNull
, CanBeFreed
);
966 if (DerefBytes
!= 0 && !CanBeNull
&& Offset
.sle(DerefBytes
))
967 NW
|= GEPNoWrapFlags::inBounds();
970 // nusw + nneg -> nuw
971 if (NW
.hasNoUnsignedSignedWrap() && Offset
.isNonNegative())
972 NW
|= GEPNoWrapFlags::noUnsignedWrap();
974 // Otherwise canonicalize this to a single ptradd.
975 LLVMContext
&Ctx
= Ptr
->getContext();
976 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ctx
), Ptr
,
977 ConstantInt::get(Ctx
, Offset
), NW
,
981 /// Attempt to constant fold an instruction with the
982 /// specified opcode and operands. If successful, the constant result is
983 /// returned, if not, null is returned. Note that this function can fail when
984 /// attempting to fold instructions like loads and stores, which have no
985 /// constant expression form.
986 Constant
*ConstantFoldInstOperandsImpl(const Value
*InstOrCE
, unsigned Opcode
,
987 ArrayRef
<Constant
*> Ops
,
988 const DataLayout
&DL
,
989 const TargetLibraryInfo
*TLI
,
990 bool AllowNonDeterministic
) {
991 Type
*DestTy
= InstOrCE
->getType();
993 if (Instruction::isUnaryOp(Opcode
))
994 return ConstantFoldUnaryOpOperand(Opcode
, Ops
[0], DL
);
996 if (Instruction::isBinaryOp(Opcode
)) {
1000 case Instruction::FAdd
:
1001 case Instruction::FSub
:
1002 case Instruction::FMul
:
1003 case Instruction::FDiv
:
1004 case Instruction::FRem
:
1005 // Handle floating point instructions separately to account for denormals
1006 // TODO: If a constant expression is being folded rather than an
1007 // instruction, denormals will not be flushed/treated as zero
1008 if (const auto *I
= dyn_cast
<Instruction
>(InstOrCE
)) {
1009 return ConstantFoldFPInstOperands(Opcode
, Ops
[0], Ops
[1], DL
, I
,
1010 AllowNonDeterministic
);
1013 return ConstantFoldBinaryOpOperands(Opcode
, Ops
[0], Ops
[1], DL
);
1016 if (Instruction::isCast(Opcode
))
1017 return ConstantFoldCastOperand(Opcode
, Ops
[0], DestTy
, DL
);
1019 if (auto *GEP
= dyn_cast
<GEPOperator
>(InstOrCE
)) {
1020 Type
*SrcElemTy
= GEP
->getSourceElementType();
1021 if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy
))
1024 if (Constant
*C
= SymbolicallyEvaluateGEP(GEP
, Ops
, DL
, TLI
))
1027 return ConstantExpr::getGetElementPtr(SrcElemTy
, Ops
[0], Ops
.slice(1),
1028 GEP
->getNoWrapFlags(),
1032 if (auto *CE
= dyn_cast
<ConstantExpr
>(InstOrCE
))
1033 return CE
->getWithOperands(Ops
);
1036 default: return nullptr;
1037 case Instruction::ICmp
:
1038 case Instruction::FCmp
: {
1039 auto *C
= cast
<CmpInst
>(InstOrCE
);
1040 return ConstantFoldCompareInstOperands(C
->getPredicate(), Ops
[0], Ops
[1],
1043 case Instruction::Freeze
:
1044 return isGuaranteedNotToBeUndefOrPoison(Ops
[0]) ? Ops
[0] : nullptr;
1045 case Instruction::Call
:
1046 if (auto *F
= dyn_cast
<Function
>(Ops
.back())) {
1047 const auto *Call
= cast
<CallBase
>(InstOrCE
);
1048 if (canConstantFoldCallTo(Call
, F
))
1049 return ConstantFoldCall(Call
, F
, Ops
.slice(0, Ops
.size() - 1), TLI
,
1050 AllowNonDeterministic
);
1053 case Instruction::Select
:
1054 return ConstantFoldSelectInstruction(Ops
[0], Ops
[1], Ops
[2]);
1055 case Instruction::ExtractElement
:
1056 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1]);
1057 case Instruction::ExtractValue
:
1058 return ConstantFoldExtractValueInstruction(
1059 Ops
[0], cast
<ExtractValueInst
>(InstOrCE
)->getIndices());
1060 case Instruction::InsertElement
:
1061 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2]);
1062 case Instruction::InsertValue
:
1063 return ConstantFoldInsertValueInstruction(
1064 Ops
[0], Ops
[1], cast
<InsertValueInst
>(InstOrCE
)->getIndices());
1065 case Instruction::ShuffleVector
:
1066 return ConstantExpr::getShuffleVector(
1067 Ops
[0], Ops
[1], cast
<ShuffleVectorInst
>(InstOrCE
)->getShuffleMask());
1068 case Instruction::Load
: {
1069 const auto *LI
= dyn_cast
<LoadInst
>(InstOrCE
);
1070 if (LI
->isVolatile())
1072 return ConstantFoldLoadFromConstPtr(Ops
[0], LI
->getType(), DL
);
1077 } // end anonymous namespace
1079 //===----------------------------------------------------------------------===//
1080 // Constant Folding public APIs
1081 //===----------------------------------------------------------------------===//
1086 ConstantFoldConstantImpl(const Constant
*C
, const DataLayout
&DL
,
1087 const TargetLibraryInfo
*TLI
,
1088 SmallDenseMap
<Constant
*, Constant
*> &FoldedOps
) {
1089 if (!isa
<ConstantVector
>(C
) && !isa
<ConstantExpr
>(C
))
1090 return const_cast<Constant
*>(C
);
1092 SmallVector
<Constant
*, 8> Ops
;
1093 for (const Use
&OldU
: C
->operands()) {
1094 Constant
*OldC
= cast
<Constant
>(&OldU
);
1095 Constant
*NewC
= OldC
;
1096 // Recursively fold the ConstantExpr's operands. If we have already folded
1097 // a ConstantExpr, we don't have to process it again.
1098 if (isa
<ConstantVector
>(OldC
) || isa
<ConstantExpr
>(OldC
)) {
1099 auto It
= FoldedOps
.find(OldC
);
1100 if (It
== FoldedOps
.end()) {
1101 NewC
= ConstantFoldConstantImpl(OldC
, DL
, TLI
, FoldedOps
);
1102 FoldedOps
.insert({OldC
, NewC
});
1107 Ops
.push_back(NewC
);
1110 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1111 if (Constant
*Res
= ConstantFoldInstOperandsImpl(
1112 CE
, CE
->getOpcode(), Ops
, DL
, TLI
, /*AllowNonDeterministic=*/true))
1114 return const_cast<Constant
*>(C
);
1117 assert(isa
<ConstantVector
>(C
));
1118 return ConstantVector::get(Ops
);
1121 } // end anonymous namespace
1123 Constant
*llvm::ConstantFoldInstruction(Instruction
*I
, const DataLayout
&DL
,
1124 const TargetLibraryInfo
*TLI
) {
1125 // Handle PHI nodes quickly here...
1126 if (auto *PN
= dyn_cast
<PHINode
>(I
)) {
1127 Constant
*CommonValue
= nullptr;
1129 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1130 for (Value
*Incoming
: PN
->incoming_values()) {
1131 // If the incoming value is undef then skip it. Note that while we could
1132 // skip the value if it is equal to the phi node itself we choose not to
1133 // because that would break the rule that constant folding only applies if
1134 // all operands are constants.
1135 if (isa
<UndefValue
>(Incoming
))
1137 // If the incoming value is not a constant, then give up.
1138 auto *C
= dyn_cast
<Constant
>(Incoming
);
1141 // Fold the PHI's operands.
1142 C
= ConstantFoldConstantImpl(C
, DL
, TLI
, FoldedOps
);
1143 // If the incoming value is a different constant to
1144 // the one we saw previously, then give up.
1145 if (CommonValue
&& C
!= CommonValue
)
1150 // If we reach here, all incoming values are the same constant or undef.
1151 return CommonValue
? CommonValue
: UndefValue::get(PN
->getType());
1154 // Scan the operand list, checking to see if they are all constants, if so,
1155 // hand off to ConstantFoldInstOperandsImpl.
1156 if (!all_of(I
->operands(), [](Use
&U
) { return isa
<Constant
>(U
); }))
1159 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1160 SmallVector
<Constant
*, 8> Ops
;
1161 for (const Use
&OpU
: I
->operands()) {
1162 auto *Op
= cast
<Constant
>(&OpU
);
1163 // Fold the Instruction's operands.
1164 Op
= ConstantFoldConstantImpl(Op
, DL
, TLI
, FoldedOps
);
1168 return ConstantFoldInstOperands(I
, Ops
, DL
, TLI
);
1171 Constant
*llvm::ConstantFoldConstant(const Constant
*C
, const DataLayout
&DL
,
1172 const TargetLibraryInfo
*TLI
) {
1173 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1174 return ConstantFoldConstantImpl(C
, DL
, TLI
, FoldedOps
);
1177 Constant
*llvm::ConstantFoldInstOperands(Instruction
*I
,
1178 ArrayRef
<Constant
*> Ops
,
1179 const DataLayout
&DL
,
1180 const TargetLibraryInfo
*TLI
,
1181 bool AllowNonDeterministic
) {
1182 return ConstantFoldInstOperandsImpl(I
, I
->getOpcode(), Ops
, DL
, TLI
,
1183 AllowNonDeterministic
);
1186 Constant
*llvm::ConstantFoldCompareInstOperands(
1187 unsigned IntPredicate
, Constant
*Ops0
, Constant
*Ops1
, const DataLayout
&DL
,
1188 const TargetLibraryInfo
*TLI
, const Instruction
*I
) {
1189 CmpInst::Predicate Predicate
= (CmpInst::Predicate
)IntPredicate
;
1190 // fold: icmp (inttoptr x), null -> icmp x, 0
1191 // fold: icmp null, (inttoptr x) -> icmp 0, x
1192 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1193 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1194 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1195 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1197 // FIXME: The following comment is out of data and the DataLayout is here now.
1198 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1199 // around to know if bit truncation is happening.
1200 if (auto *CE0
= dyn_cast
<ConstantExpr
>(Ops0
)) {
1201 if (Ops1
->isNullValue()) {
1202 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
1203 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getType());
1204 // Convert the integer value to the right size to ensure we get the
1205 // proper extension or truncation.
1206 if (Constant
*C
= ConstantFoldIntegerCast(CE0
->getOperand(0), IntPtrTy
,
1207 /*IsSigned*/ false, DL
)) {
1208 Constant
*Null
= Constant::getNullValue(C
->getType());
1209 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, DL
, TLI
);
1213 // Only do this transformation if the int is intptrty in size, otherwise
1214 // there is a truncation or extension that we aren't modeling.
1215 if (CE0
->getOpcode() == Instruction::PtrToInt
) {
1216 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getOperand(0)->getType());
1217 if (CE0
->getType() == IntPtrTy
) {
1218 Constant
*C
= CE0
->getOperand(0);
1219 Constant
*Null
= Constant::getNullValue(C
->getType());
1220 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, DL
, TLI
);
1225 if (auto *CE1
= dyn_cast
<ConstantExpr
>(Ops1
)) {
1226 if (CE0
->getOpcode() == CE1
->getOpcode()) {
1227 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
1228 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getType());
1230 // Convert the integer value to the right size to ensure we get the
1231 // proper extension or truncation.
1232 Constant
*C0
= ConstantFoldIntegerCast(CE0
->getOperand(0), IntPtrTy
,
1233 /*IsSigned*/ false, DL
);
1234 Constant
*C1
= ConstantFoldIntegerCast(CE1
->getOperand(0), IntPtrTy
,
1235 /*IsSigned*/ false, DL
);
1237 return ConstantFoldCompareInstOperands(Predicate
, C0
, C1
, DL
, TLI
);
1240 // Only do this transformation if the int is intptrty in size, otherwise
1241 // there is a truncation or extension that we aren't modeling.
1242 if (CE0
->getOpcode() == Instruction::PtrToInt
) {
1243 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getOperand(0)->getType());
1244 if (CE0
->getType() == IntPtrTy
&&
1245 CE0
->getOperand(0)->getType() == CE1
->getOperand(0)->getType()) {
1246 return ConstantFoldCompareInstOperands(
1247 Predicate
, CE0
->getOperand(0), CE1
->getOperand(0), DL
, TLI
);
1253 // Convert pointer comparison (base+offset1) pred (base+offset2) into
1254 // offset1 pred offset2, for the case where the offset is inbounds. This
1255 // only works for equality and unsigned comparison, as inbounds permits
1256 // crossing the sign boundary. However, the offset comparison itself is
1258 if (Ops0
->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate
)) {
1259 unsigned IndexWidth
= DL
.getIndexTypeSizeInBits(Ops0
->getType());
1260 APInt
Offset0(IndexWidth
, 0);
1261 bool IsEqPred
= ICmpInst::isEquality(Predicate
);
1262 Value
*Stripped0
= Ops0
->stripAndAccumulateConstantOffsets(
1263 DL
, Offset0
, /*AllowNonInbounds=*/IsEqPred
,
1264 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1265 /*LookThroughIntToPtr=*/IsEqPred
);
1266 APInt
Offset1(IndexWidth
, 0);
1267 Value
*Stripped1
= Ops1
->stripAndAccumulateConstantOffsets(
1268 DL
, Offset1
, /*AllowNonInbounds=*/IsEqPred
,
1269 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1270 /*LookThroughIntToPtr=*/IsEqPred
);
1271 if (Stripped0
== Stripped1
)
1272 return ConstantInt::getBool(
1274 ICmpInst::compare(Offset0
, Offset1
,
1275 ICmpInst::getSignedPredicate(Predicate
)));
1277 } else if (isa
<ConstantExpr
>(Ops1
)) {
1278 // If RHS is a constant expression, but the left side isn't, swap the
1279 // operands and try again.
1280 Predicate
= ICmpInst::getSwappedPredicate(Predicate
);
1281 return ConstantFoldCompareInstOperands(Predicate
, Ops1
, Ops0
, DL
, TLI
);
1284 if (CmpInst::isFPPredicate(Predicate
)) {
1285 // Flush any denormal constant float input according to denormal handling
1287 Ops0
= FlushFPConstant(Ops0
, I
, /*IsOutput=*/false);
1290 Ops1
= FlushFPConstant(Ops1
, I
, /*IsOutput=*/false);
1295 return ConstantFoldCompareInstruction(Predicate
, Ops0
, Ops1
);
1298 Constant
*llvm::ConstantFoldUnaryOpOperand(unsigned Opcode
, Constant
*Op
,
1299 const DataLayout
&DL
) {
1300 assert(Instruction::isUnaryOp(Opcode
));
1302 return ConstantFoldUnaryInstruction(Opcode
, Op
);
1305 Constant
*llvm::ConstantFoldBinaryOpOperands(unsigned Opcode
, Constant
*LHS
,
1307 const DataLayout
&DL
) {
1308 assert(Instruction::isBinaryOp(Opcode
));
1309 if (isa
<ConstantExpr
>(LHS
) || isa
<ConstantExpr
>(RHS
))
1310 if (Constant
*C
= SymbolicallyEvaluateBinop(Opcode
, LHS
, RHS
, DL
))
1313 if (ConstantExpr::isDesirableBinOp(Opcode
))
1314 return ConstantExpr::get(Opcode
, LHS
, RHS
);
1315 return ConstantFoldBinaryInstruction(Opcode
, LHS
, RHS
);
1318 static ConstantFP
*flushDenormalConstant(Type
*Ty
, const APFloat
&APF
,
1319 DenormalMode::DenormalModeKind Mode
) {
1321 case DenormalMode::Dynamic
:
1323 case DenormalMode::IEEE
:
1324 return ConstantFP::get(Ty
->getContext(), APF
);
1325 case DenormalMode::PreserveSign
:
1326 return ConstantFP::get(
1328 APFloat::getZero(APF
.getSemantics(), APF
.isNegative()));
1329 case DenormalMode::PositiveZero
:
1330 return ConstantFP::get(Ty
->getContext(),
1331 APFloat::getZero(APF
.getSemantics(), false));
1336 llvm_unreachable("unknown denormal mode");
1339 /// Return the denormal mode that can be assumed when executing a floating point
1340 /// operation at \p CtxI.
1341 static DenormalMode
getInstrDenormalMode(const Instruction
*CtxI
, Type
*Ty
) {
1342 if (!CtxI
|| !CtxI
->getParent() || !CtxI
->getFunction())
1343 return DenormalMode::getDynamic();
1344 return CtxI
->getFunction()->getDenormalMode(Ty
->getFltSemantics());
1347 static ConstantFP
*flushDenormalConstantFP(ConstantFP
*CFP
,
1348 const Instruction
*Inst
,
1350 const APFloat
&APF
= CFP
->getValueAPF();
1351 if (!APF
.isDenormal())
1354 DenormalMode Mode
= getInstrDenormalMode(Inst
, CFP
->getType());
1355 return flushDenormalConstant(CFP
->getType(), APF
,
1356 IsOutput
? Mode
.Output
: Mode
.Input
);
1359 Constant
*llvm::FlushFPConstant(Constant
*Operand
, const Instruction
*Inst
,
1361 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(Operand
))
1362 return flushDenormalConstantFP(CFP
, Inst
, IsOutput
);
1364 if (isa
<ConstantAggregateZero
, UndefValue
, ConstantExpr
>(Operand
))
1367 Type
*Ty
= Operand
->getType();
1368 VectorType
*VecTy
= dyn_cast
<VectorType
>(Ty
);
1370 if (auto *Splat
= dyn_cast_or_null
<ConstantFP
>(Operand
->getSplatValue())) {
1371 ConstantFP
*Folded
= flushDenormalConstantFP(Splat
, Inst
, IsOutput
);
1374 return ConstantVector::getSplat(VecTy
->getElementCount(), Folded
);
1377 Ty
= VecTy
->getElementType();
1380 if (const auto *CV
= dyn_cast
<ConstantVector
>(Operand
)) {
1381 SmallVector
<Constant
*, 16> NewElts
;
1382 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
) {
1383 Constant
*Element
= CV
->getAggregateElement(i
);
1384 if (isa
<UndefValue
>(Element
)) {
1385 NewElts
.push_back(Element
);
1389 ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(Element
);
1393 ConstantFP
*Folded
= flushDenormalConstantFP(CFP
, Inst
, IsOutput
);
1396 NewElts
.push_back(Folded
);
1399 return ConstantVector::get(NewElts
);
1402 if (const auto *CDV
= dyn_cast
<ConstantDataVector
>(Operand
)) {
1403 SmallVector
<Constant
*, 16> NewElts
;
1404 for (unsigned I
= 0, E
= CDV
->getNumElements(); I
< E
; ++I
) {
1405 const APFloat
&Elt
= CDV
->getElementAsAPFloat(I
);
1406 if (!Elt
.isDenormal()) {
1407 NewElts
.push_back(ConstantFP::get(Ty
, Elt
));
1409 DenormalMode Mode
= getInstrDenormalMode(Inst
, Ty
);
1410 ConstantFP
*Folded
=
1411 flushDenormalConstant(Ty
, Elt
, IsOutput
? Mode
.Output
: Mode
.Input
);
1414 NewElts
.push_back(Folded
);
1418 return ConstantVector::get(NewElts
);
1424 Constant
*llvm::ConstantFoldFPInstOperands(unsigned Opcode
, Constant
*LHS
,
1425 Constant
*RHS
, const DataLayout
&DL
,
1426 const Instruction
*I
,
1427 bool AllowNonDeterministic
) {
1428 if (Instruction::isBinaryOp(Opcode
)) {
1429 // Flush denormal inputs if needed.
1430 Constant
*Op0
= FlushFPConstant(LHS
, I
, /* IsOutput */ false);
1433 Constant
*Op1
= FlushFPConstant(RHS
, I
, /* IsOutput */ false);
1437 // If nsz or an algebraic FMF flag is set, the result of the FP operation
1438 // may change due to future optimization. Don't constant fold them if
1439 // non-deterministic results are not allowed.
1440 if (!AllowNonDeterministic
)
1441 if (auto *FP
= dyn_cast_or_null
<FPMathOperator
>(I
))
1442 if (FP
->hasNoSignedZeros() || FP
->hasAllowReassoc() ||
1443 FP
->hasAllowContract() || FP
->hasAllowReciprocal())
1446 // Calculate constant result.
1447 Constant
*C
= ConstantFoldBinaryOpOperands(Opcode
, Op0
, Op1
, DL
);
1451 // Flush denormal output if needed.
1452 C
= FlushFPConstant(C
, I
, /* IsOutput */ true);
1456 // The precise NaN value is non-deterministic.
1457 if (!AllowNonDeterministic
&& C
->isNaN())
1462 // If instruction lacks a parent/function and the denormal mode cannot be
1463 // determined, use the default (IEEE).
1464 return ConstantFoldBinaryOpOperands(Opcode
, LHS
, RHS
, DL
);
1467 Constant
*llvm::ConstantFoldCastOperand(unsigned Opcode
, Constant
*C
,
1468 Type
*DestTy
, const DataLayout
&DL
) {
1469 assert(Instruction::isCast(Opcode
));
1472 llvm_unreachable("Missing case");
1473 case Instruction::PtrToInt
:
1474 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1475 Constant
*FoldedValue
= nullptr;
1476 // If the input is a inttoptr, eliminate the pair. This requires knowing
1477 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1478 if (CE
->getOpcode() == Instruction::IntToPtr
) {
1479 // zext/trunc the inttoptr to pointer size.
1480 FoldedValue
= ConstantFoldIntegerCast(CE
->getOperand(0),
1481 DL
.getIntPtrType(CE
->getType()),
1482 /*IsSigned=*/false, DL
);
1483 } else if (auto *GEP
= dyn_cast
<GEPOperator
>(CE
)) {
1484 // If we have GEP, we can perform the following folds:
1485 // (ptrtoint (gep null, x)) -> x
1486 // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1487 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GEP
->getType());
1488 APInt
BaseOffset(BitWidth
, 0);
1489 auto *Base
= cast
<Constant
>(GEP
->stripAndAccumulateConstantOffsets(
1490 DL
, BaseOffset
, /*AllowNonInbounds=*/true));
1491 if (Base
->isNullValue()) {
1492 FoldedValue
= ConstantInt::get(CE
->getContext(), BaseOffset
);
1494 // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1495 if (GEP
->getNumIndices() == 1 &&
1496 GEP
->getSourceElementType()->isIntegerTy(8)) {
1497 auto *Ptr
= cast
<Constant
>(GEP
->getPointerOperand());
1498 auto *Sub
= dyn_cast
<ConstantExpr
>(GEP
->getOperand(1));
1499 Type
*IntIdxTy
= DL
.getIndexType(Ptr
->getType());
1500 if (Sub
&& Sub
->getType() == IntIdxTy
&&
1501 Sub
->getOpcode() == Instruction::Sub
&&
1502 Sub
->getOperand(0)->isNullValue())
1503 FoldedValue
= ConstantExpr::getSub(
1504 ConstantExpr::getPtrToInt(Ptr
, IntIdxTy
), Sub
->getOperand(1));
1509 // Do a zext or trunc to get to the ptrtoint dest size.
1510 return ConstantFoldIntegerCast(FoldedValue
, DestTy
, /*IsSigned=*/false,
1515 case Instruction::IntToPtr
:
1516 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1517 // the int size is >= the ptr size and the address spaces are the same.
1518 // This requires knowing the width of a pointer, so it can't be done in
1519 // ConstantExpr::getCast.
1520 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1521 if (CE
->getOpcode() == Instruction::PtrToInt
) {
1522 Constant
*SrcPtr
= CE
->getOperand(0);
1523 unsigned SrcPtrSize
= DL
.getPointerTypeSizeInBits(SrcPtr
->getType());
1524 unsigned MidIntSize
= CE
->getType()->getScalarSizeInBits();
1526 if (MidIntSize
>= SrcPtrSize
) {
1527 unsigned SrcAS
= SrcPtr
->getType()->getPointerAddressSpace();
1528 if (SrcAS
== DestTy
->getPointerAddressSpace())
1529 return FoldBitCast(CE
->getOperand(0), DestTy
, DL
);
1534 case Instruction::Trunc
:
1535 case Instruction::ZExt
:
1536 case Instruction::SExt
:
1537 case Instruction::FPTrunc
:
1538 case Instruction::FPExt
:
1539 case Instruction::UIToFP
:
1540 case Instruction::SIToFP
:
1541 case Instruction::FPToUI
:
1542 case Instruction::FPToSI
:
1543 case Instruction::AddrSpaceCast
:
1545 case Instruction::BitCast
:
1546 return FoldBitCast(C
, DestTy
, DL
);
1549 if (ConstantExpr::isDesirableCastOp(Opcode
))
1550 return ConstantExpr::getCast(Opcode
, C
, DestTy
);
1551 return ConstantFoldCastInstruction(Opcode
, C
, DestTy
);
1554 Constant
*llvm::ConstantFoldIntegerCast(Constant
*C
, Type
*DestTy
,
1555 bool IsSigned
, const DataLayout
&DL
) {
1556 Type
*SrcTy
= C
->getType();
1557 if (SrcTy
== DestTy
)
1559 if (SrcTy
->getScalarSizeInBits() > DestTy
->getScalarSizeInBits())
1560 return ConstantFoldCastOperand(Instruction::Trunc
, C
, DestTy
, DL
);
1562 return ConstantFoldCastOperand(Instruction::SExt
, C
, DestTy
, DL
);
1563 return ConstantFoldCastOperand(Instruction::ZExt
, C
, DestTy
, DL
);
1566 //===----------------------------------------------------------------------===//
1567 // Constant Folding for Calls
1570 bool llvm::canConstantFoldCallTo(const CallBase
*Call
, const Function
*F
) {
1571 if (Call
->isNoBuiltin())
1573 if (Call
->getFunctionType() != F
->getFunctionType())
1575 switch (F
->getIntrinsicID()) {
1576 // Operations that do not operate floating-point numbers and do not depend on
1577 // FP environment can be folded even in strictfp functions.
1578 case Intrinsic::bswap
:
1579 case Intrinsic::ctpop
:
1580 case Intrinsic::ctlz
:
1581 case Intrinsic::cttz
:
1582 case Intrinsic::fshl
:
1583 case Intrinsic::fshr
:
1584 case Intrinsic::launder_invariant_group
:
1585 case Intrinsic::strip_invariant_group
:
1586 case Intrinsic::masked_load
:
1587 case Intrinsic::get_active_lane_mask
:
1588 case Intrinsic::abs
:
1589 case Intrinsic::smax
:
1590 case Intrinsic::smin
:
1591 case Intrinsic::umax
:
1592 case Intrinsic::umin
:
1593 case Intrinsic::scmp
:
1594 case Intrinsic::ucmp
:
1595 case Intrinsic::sadd_with_overflow
:
1596 case Intrinsic::uadd_with_overflow
:
1597 case Intrinsic::ssub_with_overflow
:
1598 case Intrinsic::usub_with_overflow
:
1599 case Intrinsic::smul_with_overflow
:
1600 case Intrinsic::umul_with_overflow
:
1601 case Intrinsic::sadd_sat
:
1602 case Intrinsic::uadd_sat
:
1603 case Intrinsic::ssub_sat
:
1604 case Intrinsic::usub_sat
:
1605 case Intrinsic::smul_fix
:
1606 case Intrinsic::smul_fix_sat
:
1607 case Intrinsic::bitreverse
:
1608 case Intrinsic::is_constant
:
1609 case Intrinsic::vector_reduce_add
:
1610 case Intrinsic::vector_reduce_mul
:
1611 case Intrinsic::vector_reduce_and
:
1612 case Intrinsic::vector_reduce_or
:
1613 case Intrinsic::vector_reduce_xor
:
1614 case Intrinsic::vector_reduce_smin
:
1615 case Intrinsic::vector_reduce_smax
:
1616 case Intrinsic::vector_reduce_umin
:
1617 case Intrinsic::vector_reduce_umax
:
1618 // Target intrinsics
1619 case Intrinsic::amdgcn_perm
:
1620 case Intrinsic::amdgcn_wave_reduce_umin
:
1621 case Intrinsic::amdgcn_wave_reduce_umax
:
1622 case Intrinsic::amdgcn_s_wqm
:
1623 case Intrinsic::amdgcn_s_quadmask
:
1624 case Intrinsic::amdgcn_s_bitreplicate
:
1625 case Intrinsic::arm_mve_vctp8
:
1626 case Intrinsic::arm_mve_vctp16
:
1627 case Intrinsic::arm_mve_vctp32
:
1628 case Intrinsic::arm_mve_vctp64
:
1629 case Intrinsic::aarch64_sve_convert_from_svbool
:
1630 // WebAssembly float semantics are always known
1631 case Intrinsic::wasm_trunc_signed
:
1632 case Intrinsic::wasm_trunc_unsigned
:
1635 // Floating point operations cannot be folded in strictfp functions in
1636 // general case. They can be folded if FP environment is known to compiler.
1637 case Intrinsic::minnum
:
1638 case Intrinsic::maxnum
:
1639 case Intrinsic::minimum
:
1640 case Intrinsic::maximum
:
1641 case Intrinsic::log
:
1642 case Intrinsic::log2
:
1643 case Intrinsic::log10
:
1644 case Intrinsic::exp
:
1645 case Intrinsic::exp2
:
1646 case Intrinsic::exp10
:
1647 case Intrinsic::sqrt
:
1648 case Intrinsic::sin
:
1649 case Intrinsic::cos
:
1650 case Intrinsic::sincos
:
1651 case Intrinsic::pow
:
1652 case Intrinsic::powi
:
1653 case Intrinsic::ldexp
:
1654 case Intrinsic::fma
:
1655 case Intrinsic::fmuladd
:
1656 case Intrinsic::frexp
:
1657 case Intrinsic::fptoui_sat
:
1658 case Intrinsic::fptosi_sat
:
1659 case Intrinsic::convert_from_fp16
:
1660 case Intrinsic::convert_to_fp16
:
1661 case Intrinsic::amdgcn_cos
:
1662 case Intrinsic::amdgcn_cubeid
:
1663 case Intrinsic::amdgcn_cubema
:
1664 case Intrinsic::amdgcn_cubesc
:
1665 case Intrinsic::amdgcn_cubetc
:
1666 case Intrinsic::amdgcn_fmul_legacy
:
1667 case Intrinsic::amdgcn_fma_legacy
:
1668 case Intrinsic::amdgcn_fract
:
1669 case Intrinsic::amdgcn_sin
:
1670 // The intrinsics below depend on rounding mode in MXCSR.
1671 case Intrinsic::x86_sse_cvtss2si
:
1672 case Intrinsic::x86_sse_cvtss2si64
:
1673 case Intrinsic::x86_sse_cvttss2si
:
1674 case Intrinsic::x86_sse_cvttss2si64
:
1675 case Intrinsic::x86_sse2_cvtsd2si
:
1676 case Intrinsic::x86_sse2_cvtsd2si64
:
1677 case Intrinsic::x86_sse2_cvttsd2si
:
1678 case Intrinsic::x86_sse2_cvttsd2si64
:
1679 case Intrinsic::x86_avx512_vcvtss2si32
:
1680 case Intrinsic::x86_avx512_vcvtss2si64
:
1681 case Intrinsic::x86_avx512_cvttss2si
:
1682 case Intrinsic::x86_avx512_cvttss2si64
:
1683 case Intrinsic::x86_avx512_vcvtsd2si32
:
1684 case Intrinsic::x86_avx512_vcvtsd2si64
:
1685 case Intrinsic::x86_avx512_cvttsd2si
:
1686 case Intrinsic::x86_avx512_cvttsd2si64
:
1687 case Intrinsic::x86_avx512_vcvtss2usi32
:
1688 case Intrinsic::x86_avx512_vcvtss2usi64
:
1689 case Intrinsic::x86_avx512_cvttss2usi
:
1690 case Intrinsic::x86_avx512_cvttss2usi64
:
1691 case Intrinsic::x86_avx512_vcvtsd2usi32
:
1692 case Intrinsic::x86_avx512_vcvtsd2usi64
:
1693 case Intrinsic::x86_avx512_cvttsd2usi
:
1694 case Intrinsic::x86_avx512_cvttsd2usi64
:
1695 return !Call
->isStrictFP();
1697 // NVVM FMax intrinsics
1698 case Intrinsic::nvvm_fmax_d
:
1699 case Intrinsic::nvvm_fmax_f
:
1700 case Intrinsic::nvvm_fmax_ftz_f
:
1701 case Intrinsic::nvvm_fmax_ftz_nan_f
:
1702 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f
:
1703 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f
:
1704 case Intrinsic::nvvm_fmax_nan_f
:
1705 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f
:
1706 case Intrinsic::nvvm_fmax_xorsign_abs_f
:
1708 // NVVM FMin intrinsics
1709 case Intrinsic::nvvm_fmin_d
:
1710 case Intrinsic::nvvm_fmin_f
:
1711 case Intrinsic::nvvm_fmin_ftz_f
:
1712 case Intrinsic::nvvm_fmin_ftz_nan_f
:
1713 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f
:
1714 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f
:
1715 case Intrinsic::nvvm_fmin_nan_f
:
1716 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f
:
1717 case Intrinsic::nvvm_fmin_xorsign_abs_f
:
1719 // NVVM float/double to int32/uint32 conversion intrinsics
1720 case Intrinsic::nvvm_f2i_rm
:
1721 case Intrinsic::nvvm_f2i_rn
:
1722 case Intrinsic::nvvm_f2i_rp
:
1723 case Intrinsic::nvvm_f2i_rz
:
1724 case Intrinsic::nvvm_f2i_rm_ftz
:
1725 case Intrinsic::nvvm_f2i_rn_ftz
:
1726 case Intrinsic::nvvm_f2i_rp_ftz
:
1727 case Intrinsic::nvvm_f2i_rz_ftz
:
1728 case Intrinsic::nvvm_f2ui_rm
:
1729 case Intrinsic::nvvm_f2ui_rn
:
1730 case Intrinsic::nvvm_f2ui_rp
:
1731 case Intrinsic::nvvm_f2ui_rz
:
1732 case Intrinsic::nvvm_f2ui_rm_ftz
:
1733 case Intrinsic::nvvm_f2ui_rn_ftz
:
1734 case Intrinsic::nvvm_f2ui_rp_ftz
:
1735 case Intrinsic::nvvm_f2ui_rz_ftz
:
1736 case Intrinsic::nvvm_d2i_rm
:
1737 case Intrinsic::nvvm_d2i_rn
:
1738 case Intrinsic::nvvm_d2i_rp
:
1739 case Intrinsic::nvvm_d2i_rz
:
1740 case Intrinsic::nvvm_d2ui_rm
:
1741 case Intrinsic::nvvm_d2ui_rn
:
1742 case Intrinsic::nvvm_d2ui_rp
:
1743 case Intrinsic::nvvm_d2ui_rz
:
1745 // NVVM float/double to int64/uint64 conversion intrinsics
1746 case Intrinsic::nvvm_f2ll_rm
:
1747 case Intrinsic::nvvm_f2ll_rn
:
1748 case Intrinsic::nvvm_f2ll_rp
:
1749 case Intrinsic::nvvm_f2ll_rz
:
1750 case Intrinsic::nvvm_f2ll_rm_ftz
:
1751 case Intrinsic::nvvm_f2ll_rn_ftz
:
1752 case Intrinsic::nvvm_f2ll_rp_ftz
:
1753 case Intrinsic::nvvm_f2ll_rz_ftz
:
1754 case Intrinsic::nvvm_f2ull_rm
:
1755 case Intrinsic::nvvm_f2ull_rn
:
1756 case Intrinsic::nvvm_f2ull_rp
:
1757 case Intrinsic::nvvm_f2ull_rz
:
1758 case Intrinsic::nvvm_f2ull_rm_ftz
:
1759 case Intrinsic::nvvm_f2ull_rn_ftz
:
1760 case Intrinsic::nvvm_f2ull_rp_ftz
:
1761 case Intrinsic::nvvm_f2ull_rz_ftz
:
1762 case Intrinsic::nvvm_d2ll_rm
:
1763 case Intrinsic::nvvm_d2ll_rn
:
1764 case Intrinsic::nvvm_d2ll_rp
:
1765 case Intrinsic::nvvm_d2ll_rz
:
1766 case Intrinsic::nvvm_d2ull_rm
:
1767 case Intrinsic::nvvm_d2ull_rn
:
1768 case Intrinsic::nvvm_d2ull_rp
:
1769 case Intrinsic::nvvm_d2ull_rz
:
1771 // Sign operations are actually bitwise operations, they do not raise
1772 // exceptions even for SNANs.
1773 case Intrinsic::fabs
:
1774 case Intrinsic::copysign
:
1775 case Intrinsic::is_fpclass
:
1776 // Non-constrained variants of rounding operations means default FP
1777 // environment, they can be folded in any case.
1778 case Intrinsic::ceil
:
1779 case Intrinsic::floor
:
1780 case Intrinsic::round
:
1781 case Intrinsic::roundeven
:
1782 case Intrinsic::trunc
:
1783 case Intrinsic::nearbyint
:
1784 case Intrinsic::rint
:
1785 case Intrinsic::canonicalize
:
1786 // Constrained intrinsics can be folded if FP environment is known
1788 case Intrinsic::experimental_constrained_fma
:
1789 case Intrinsic::experimental_constrained_fmuladd
:
1790 case Intrinsic::experimental_constrained_fadd
:
1791 case Intrinsic::experimental_constrained_fsub
:
1792 case Intrinsic::experimental_constrained_fmul
:
1793 case Intrinsic::experimental_constrained_fdiv
:
1794 case Intrinsic::experimental_constrained_frem
:
1795 case Intrinsic::experimental_constrained_ceil
:
1796 case Intrinsic::experimental_constrained_floor
:
1797 case Intrinsic::experimental_constrained_round
:
1798 case Intrinsic::experimental_constrained_roundeven
:
1799 case Intrinsic::experimental_constrained_trunc
:
1800 case Intrinsic::experimental_constrained_nearbyint
:
1801 case Intrinsic::experimental_constrained_rint
:
1802 case Intrinsic::experimental_constrained_fcmp
:
1803 case Intrinsic::experimental_constrained_fcmps
:
1807 case Intrinsic::not_intrinsic
: break;
1810 if (!F
->hasName() || Call
->isStrictFP())
1813 // In these cases, the check of the length is required. We don't want to
1814 // return true for a name like "cos\0blah" which strcmp would return equal to
1815 // "cos", but has length 8.
1816 StringRef Name
= F
->getName();
1821 return Name
== "acos" || Name
== "acosf" ||
1822 Name
== "asin" || Name
== "asinf" ||
1823 Name
== "atan" || Name
== "atanf" ||
1824 Name
== "atan2" || Name
== "atan2f";
1826 return Name
== "ceil" || Name
== "ceilf" ||
1827 Name
== "cos" || Name
== "cosf" ||
1828 Name
== "cosh" || Name
== "coshf";
1830 return Name
== "exp" || Name
== "expf" || Name
== "exp2" ||
1831 Name
== "exp2f" || Name
== "erf" || Name
== "erff";
1833 return Name
== "fabs" || Name
== "fabsf" ||
1834 Name
== "floor" || Name
== "floorf" ||
1835 Name
== "fmod" || Name
== "fmodf";
1837 return Name
== "ilogb" || Name
== "ilogbf";
1839 return Name
== "log" || Name
== "logf" || Name
== "logl" ||
1840 Name
== "log2" || Name
== "log2f" || Name
== "log10" ||
1841 Name
== "log10f" || Name
== "logb" || Name
== "logbf" ||
1842 Name
== "log1p" || Name
== "log1pf";
1844 return Name
== "nearbyint" || Name
== "nearbyintf";
1846 return Name
== "pow" || Name
== "powf";
1848 return Name
== "remainder" || Name
== "remainderf" ||
1849 Name
== "rint" || Name
== "rintf" ||
1850 Name
== "round" || Name
== "roundf";
1852 return Name
== "sin" || Name
== "sinf" ||
1853 Name
== "sinh" || Name
== "sinhf" ||
1854 Name
== "sqrt" || Name
== "sqrtf";
1856 return Name
== "tan" || Name
== "tanf" ||
1857 Name
== "tanh" || Name
== "tanhf" ||
1858 Name
== "trunc" || Name
== "truncf";
1860 // Check for various function names that get used for the math functions
1861 // when the header files are preprocessed with the macro
1862 // __FINITE_MATH_ONLY__ enabled.
1863 // The '12' here is the length of the shortest name that can match.
1864 // We need to check the size before looking at Name[1] and Name[2]
1865 // so we may as well check a limit that will eliminate mismatches.
1866 if (Name
.size() < 12 || Name
[1] != '_')
1872 return Name
== "__acos_finite" || Name
== "__acosf_finite" ||
1873 Name
== "__asin_finite" || Name
== "__asinf_finite" ||
1874 Name
== "__atan2_finite" || Name
== "__atan2f_finite";
1876 return Name
== "__cosh_finite" || Name
== "__coshf_finite";
1878 return Name
== "__exp_finite" || Name
== "__expf_finite" ||
1879 Name
== "__exp2_finite" || Name
== "__exp2f_finite";
1881 return Name
== "__log_finite" || Name
== "__logf_finite" ||
1882 Name
== "__log10_finite" || Name
== "__log10f_finite";
1884 return Name
== "__pow_finite" || Name
== "__powf_finite";
1886 return Name
== "__sinh_finite" || Name
== "__sinhf_finite";
1893 Constant
*GetConstantFoldFPValue(double V
, Type
*Ty
) {
1894 if (Ty
->isHalfTy() || Ty
->isFloatTy()) {
1897 APF
.convert(Ty
->getFltSemantics(), APFloat::rmNearestTiesToEven
, &unused
);
1898 return ConstantFP::get(Ty
->getContext(), APF
);
1900 if (Ty
->isDoubleTy())
1901 return ConstantFP::get(Ty
->getContext(), APFloat(V
));
1902 llvm_unreachable("Can only constant fold half/float/double");
1905 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
1906 Constant
*GetConstantFoldFPValue128(float128 V
, Type
*Ty
) {
1907 if (Ty
->isFP128Ty())
1908 return ConstantFP::get(Ty
, V
);
1909 llvm_unreachable("Can only constant fold fp128");
1913 /// Clear the floating-point exception state.
1914 inline void llvm_fenv_clearexcept() {
1915 #if HAVE_DECL_FE_ALL_EXCEPT
1916 feclearexcept(FE_ALL_EXCEPT
);
1921 /// Test if a floating-point exception was raised.
1922 inline bool llvm_fenv_testexcept() {
1923 int errno_val
= errno
;
1924 if (errno_val
== ERANGE
|| errno_val
== EDOM
)
1926 #if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1927 if (fetestexcept(FE_ALL_EXCEPT
& ~FE_INEXACT
))
1933 static const APFloat
FTZPreserveSign(const APFloat
&V
) {
1935 return APFloat::getZero(V
.getSemantics(), V
.isNegative());
1939 Constant
*ConstantFoldFP(double (*NativeFP
)(double), const APFloat
&V
,
1941 llvm_fenv_clearexcept();
1942 double Result
= NativeFP(V
.convertToDouble());
1943 if (llvm_fenv_testexcept()) {
1944 llvm_fenv_clearexcept();
1948 return GetConstantFoldFPValue(Result
, Ty
);
1951 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
1952 Constant
*ConstantFoldFP128(float128 (*NativeFP
)(float128
), const APFloat
&V
,
1954 llvm_fenv_clearexcept();
1955 float128 Result
= NativeFP(V
.convertToQuad());
1956 if (llvm_fenv_testexcept()) {
1957 llvm_fenv_clearexcept();
1961 return GetConstantFoldFPValue128(Result
, Ty
);
1965 Constant
*ConstantFoldBinaryFP(double (*NativeFP
)(double, double),
1966 const APFloat
&V
, const APFloat
&W
, Type
*Ty
) {
1967 llvm_fenv_clearexcept();
1968 double Result
= NativeFP(V
.convertToDouble(), W
.convertToDouble());
1969 if (llvm_fenv_testexcept()) {
1970 llvm_fenv_clearexcept();
1974 return GetConstantFoldFPValue(Result
, Ty
);
1977 Constant
*constantFoldVectorReduce(Intrinsic::ID IID
, Constant
*Op
) {
1978 FixedVectorType
*VT
= dyn_cast
<FixedVectorType
>(Op
->getType());
1982 // This isn't strictly necessary, but handle the special/common case of zero:
1983 // all integer reductions of a zero input produce zero.
1984 if (isa
<ConstantAggregateZero
>(Op
))
1985 return ConstantInt::get(VT
->getElementType(), 0);
1987 // This is the same as the underlying binops - poison propagates.
1988 if (isa
<PoisonValue
>(Op
) || Op
->containsPoisonElement())
1989 return PoisonValue::get(VT
->getElementType());
1991 // TODO: Handle undef.
1992 if (!isa
<ConstantVector
>(Op
) && !isa
<ConstantDataVector
>(Op
))
1995 auto *EltC
= dyn_cast
<ConstantInt
>(Op
->getAggregateElement(0U));
1999 APInt Acc
= EltC
->getValue();
2000 for (unsigned I
= 1, E
= VT
->getNumElements(); I
!= E
; I
++) {
2001 if (!(EltC
= dyn_cast
<ConstantInt
>(Op
->getAggregateElement(I
))))
2003 const APInt
&X
= EltC
->getValue();
2005 case Intrinsic::vector_reduce_add
:
2008 case Intrinsic::vector_reduce_mul
:
2011 case Intrinsic::vector_reduce_and
:
2014 case Intrinsic::vector_reduce_or
:
2017 case Intrinsic::vector_reduce_xor
:
2020 case Intrinsic::vector_reduce_smin
:
2021 Acc
= APIntOps::smin(Acc
, X
);
2023 case Intrinsic::vector_reduce_smax
:
2024 Acc
= APIntOps::smax(Acc
, X
);
2026 case Intrinsic::vector_reduce_umin
:
2027 Acc
= APIntOps::umin(Acc
, X
);
2029 case Intrinsic::vector_reduce_umax
:
2030 Acc
= APIntOps::umax(Acc
, X
);
2035 return ConstantInt::get(Op
->getContext(), Acc
);
2038 /// Attempt to fold an SSE floating point to integer conversion of a constant
2039 /// floating point. If roundTowardZero is false, the default IEEE rounding is
2040 /// used (toward nearest, ties to even). This matches the behavior of the
2041 /// non-truncating SSE instructions in the default rounding mode. The desired
2042 /// integer type Ty is used to select how many bits are available for the
2043 /// result. Returns null if the conversion cannot be performed, otherwise
2044 /// returns the Constant value resulting from the conversion.
2045 Constant
*ConstantFoldSSEConvertToInt(const APFloat
&Val
, bool roundTowardZero
,
2046 Type
*Ty
, bool IsSigned
) {
2047 // All of these conversion intrinsics form an integer of at most 64bits.
2048 unsigned ResultWidth
= Ty
->getIntegerBitWidth();
2049 assert(ResultWidth
<= 64 &&
2050 "Can only constant fold conversions to 64 and 32 bit ints");
2053 bool isExact
= false;
2054 APFloat::roundingMode mode
= roundTowardZero
? APFloat::rmTowardZero
2055 : APFloat::rmNearestTiesToEven
;
2056 APFloat::opStatus status
=
2057 Val
.convertToInteger(MutableArrayRef(UIntVal
), ResultWidth
,
2058 IsSigned
, mode
, &isExact
);
2059 if (status
!= APFloat::opOK
&&
2060 (!roundTowardZero
|| status
!= APFloat::opInexact
))
2062 return ConstantInt::get(Ty
, UIntVal
, IsSigned
);
2065 double getValueAsDouble(ConstantFP
*Op
) {
2066 Type
*Ty
= Op
->getType();
2068 if (Ty
->isBFloatTy() || Ty
->isHalfTy() || Ty
->isFloatTy() || Ty
->isDoubleTy())
2069 return Op
->getValueAPF().convertToDouble();
2072 APFloat APF
= Op
->getValueAPF();
2073 APF
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
, &unused
);
2074 return APF
.convertToDouble();
2077 static bool getConstIntOrUndef(Value
*Op
, const APInt
*&C
) {
2078 if (auto *CI
= dyn_cast
<ConstantInt
>(Op
)) {
2079 C
= &CI
->getValue();
2082 if (isa
<UndefValue
>(Op
)) {
2089 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
2092 /// \param CI Constrained intrinsic call.
2093 /// \param St Exception flags raised during constant evaluation.
2094 static bool mayFoldConstrained(ConstrainedFPIntrinsic
*CI
,
2095 APFloat::opStatus St
) {
2096 std::optional
<RoundingMode
> ORM
= CI
->getRoundingMode();
2097 std::optional
<fp::ExceptionBehavior
> EB
= CI
->getExceptionBehavior();
2099 // If the operation does not change exception status flags, it is safe
2101 if (St
== APFloat::opStatus::opOK
)
2104 // If evaluation raised FP exception, the result can depend on rounding
2105 // mode. If the latter is unknown, folding is not possible.
2106 if (ORM
&& *ORM
== RoundingMode::Dynamic
)
2109 // If FP exceptions are ignored, fold the call, even if such exception is
2111 if (EB
&& *EB
!= fp::ExceptionBehavior::ebStrict
)
2114 // Leave the calculation for runtime so that exception flags be correctly set
2119 /// Returns the rounding mode that should be used for constant evaluation.
2121 getEvaluationRoundingMode(const ConstrainedFPIntrinsic
*CI
) {
2122 std::optional
<RoundingMode
> ORM
= CI
->getRoundingMode();
2123 if (!ORM
|| *ORM
== RoundingMode::Dynamic
)
2124 // Even if the rounding mode is unknown, try evaluating the operation.
2125 // If it does not raise inexact exception, rounding was not applied,
2126 // so the result is exact and does not depend on rounding mode. Whether
2127 // other FP exceptions are raised, it does not depend on rounding mode.
2128 return RoundingMode::NearestTiesToEven
;
2132 /// Try to constant fold llvm.canonicalize for the given caller and value.
2133 static Constant
*constantFoldCanonicalize(const Type
*Ty
, const CallBase
*CI
,
2134 const APFloat
&Src
) {
2135 // Zero, positive and negative, is always OK to fold.
2137 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
2138 return ConstantFP::get(
2140 APFloat::getZero(Src
.getSemantics(), Src
.isNegative()));
2143 if (!Ty
->isIEEELikeFPTy())
2146 // Zero is always canonical and the sign must be preserved.
2148 // Denorms and nans may have special encodings, but it should be OK to fold a
2149 // totally average number.
2150 if (Src
.isNormal() || Src
.isInfinity())
2151 return ConstantFP::get(CI
->getContext(), Src
);
2153 if (Src
.isDenormal() && CI
->getParent() && CI
->getFunction()) {
2154 DenormalMode DenormMode
=
2155 CI
->getFunction()->getDenormalMode(Src
.getSemantics());
2157 if (DenormMode
== DenormalMode::getIEEE())
2158 return ConstantFP::get(CI
->getContext(), Src
);
2160 if (DenormMode
.Input
== DenormalMode::Dynamic
)
2163 // If we know if either input or output is flushed, we can fold.
2164 if ((DenormMode
.Input
== DenormalMode::Dynamic
&&
2165 DenormMode
.Output
== DenormalMode::IEEE
) ||
2166 (DenormMode
.Input
== DenormalMode::IEEE
&&
2167 DenormMode
.Output
== DenormalMode::Dynamic
))
2171 (!Src
.isNegative() || DenormMode
.Input
== DenormalMode::PositiveZero
||
2172 (DenormMode
.Output
== DenormalMode::PositiveZero
&&
2173 DenormMode
.Input
== DenormalMode::IEEE
));
2175 return ConstantFP::get(CI
->getContext(),
2176 APFloat::getZero(Src
.getSemantics(), !IsPositive
));
2182 static Constant
*ConstantFoldScalarCall1(StringRef Name
,
2183 Intrinsic::ID IntrinsicID
,
2185 ArrayRef
<Constant
*> Operands
,
2186 const TargetLibraryInfo
*TLI
,
2187 const CallBase
*Call
) {
2188 assert(Operands
.size() == 1 && "Wrong number of operands.");
2190 if (IntrinsicID
== Intrinsic::is_constant
) {
2191 // We know we have a "Constant" argument. But we want to only
2192 // return true for manifest constants, not those that depend on
2193 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2194 if (Operands
[0]->isManifestConstant())
2195 return ConstantInt::getTrue(Ty
->getContext());
2199 if (isa
<PoisonValue
>(Operands
[0])) {
2200 // TODO: All of these operations should probably propagate poison.
2201 if (IntrinsicID
== Intrinsic::canonicalize
)
2202 return PoisonValue::get(Ty
);
2205 if (isa
<UndefValue
>(Operands
[0])) {
2206 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2207 // ctpop() is between 0 and bitwidth, pick 0 for undef.
2208 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2209 if (IntrinsicID
== Intrinsic::cos
||
2210 IntrinsicID
== Intrinsic::ctpop
||
2211 IntrinsicID
== Intrinsic::fptoui_sat
||
2212 IntrinsicID
== Intrinsic::fptosi_sat
||
2213 IntrinsicID
== Intrinsic::canonicalize
)
2214 return Constant::getNullValue(Ty
);
2215 if (IntrinsicID
== Intrinsic::bswap
||
2216 IntrinsicID
== Intrinsic::bitreverse
||
2217 IntrinsicID
== Intrinsic::launder_invariant_group
||
2218 IntrinsicID
== Intrinsic::strip_invariant_group
)
2222 if (isa
<ConstantPointerNull
>(Operands
[0])) {
2223 // launder(null) == null == strip(null) iff in addrspace 0
2224 if (IntrinsicID
== Intrinsic::launder_invariant_group
||
2225 IntrinsicID
== Intrinsic::strip_invariant_group
) {
2226 // If instruction is not yet put in a basic block (e.g. when cloning
2227 // a function during inlining), Call's caller may not be available.
2228 // So check Call's BB first before querying Call->getCaller.
2229 const Function
*Caller
=
2230 Call
->getParent() ? Call
->getCaller() : nullptr;
2232 !NullPointerIsDefined(
2233 Caller
, Operands
[0]->getType()->getPointerAddressSpace())) {
2240 if (auto *Op
= dyn_cast
<ConstantFP
>(Operands
[0])) {
2241 if (IntrinsicID
== Intrinsic::convert_to_fp16
) {
2242 APFloat
Val(Op
->getValueAPF());
2245 Val
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
, &lost
);
2247 return ConstantInt::get(Ty
->getContext(), Val
.bitcastToAPInt());
2250 APFloat U
= Op
->getValueAPF();
2252 if (IntrinsicID
== Intrinsic::wasm_trunc_signed
||
2253 IntrinsicID
== Intrinsic::wasm_trunc_unsigned
) {
2254 bool Signed
= IntrinsicID
== Intrinsic::wasm_trunc_signed
;
2259 unsigned Width
= Ty
->getIntegerBitWidth();
2260 APSInt
Int(Width
, !Signed
);
2261 bool IsExact
= false;
2262 APFloat::opStatus Status
=
2263 U
.convertToInteger(Int
, APFloat::rmTowardZero
, &IsExact
);
2265 if (Status
== APFloat::opOK
|| Status
== APFloat::opInexact
)
2266 return ConstantInt::get(Ty
, Int
);
2271 if (IntrinsicID
== Intrinsic::fptoui_sat
||
2272 IntrinsicID
== Intrinsic::fptosi_sat
) {
2273 // convertToInteger() already has the desired saturation semantics.
2274 APSInt
Int(Ty
->getIntegerBitWidth(),
2275 IntrinsicID
== Intrinsic::fptoui_sat
);
2277 U
.convertToInteger(Int
, APFloat::rmTowardZero
, &IsExact
);
2278 return ConstantInt::get(Ty
, Int
);
2281 if (IntrinsicID
== Intrinsic::canonicalize
)
2282 return constantFoldCanonicalize(Ty
, Call
, U
);
2284 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2285 if (Ty
->isFP128Ty()) {
2286 if (IntrinsicID
== Intrinsic::log
) {
2287 float128 Result
= logf128(Op
->getValueAPF().convertToQuad());
2288 return GetConstantFoldFPValue128(Result
, Ty
);
2291 LibFunc Fp128Func
= NotLibFunc
;
2292 if (TLI
&& TLI
->getLibFunc(Name
, Fp128Func
) && TLI
->has(Fp128Func
) &&
2293 Fp128Func
== LibFunc_logl
)
2294 return ConstantFoldFP128(logf128
, Op
->getValueAPF(), Ty
);
2298 if (!Ty
->isHalfTy() && !Ty
->isFloatTy() && !Ty
->isDoubleTy() &&
2302 // Use internal versions of these intrinsics.
2304 if (IntrinsicID
== Intrinsic::nearbyint
|| IntrinsicID
== Intrinsic::rint
) {
2305 U
.roundToIntegral(APFloat::rmNearestTiesToEven
);
2306 return ConstantFP::get(Ty
->getContext(), U
);
2309 if (IntrinsicID
== Intrinsic::round
) {
2310 U
.roundToIntegral(APFloat::rmNearestTiesToAway
);
2311 return ConstantFP::get(Ty
->getContext(), U
);
2314 if (IntrinsicID
== Intrinsic::roundeven
) {
2315 U
.roundToIntegral(APFloat::rmNearestTiesToEven
);
2316 return ConstantFP::get(Ty
->getContext(), U
);
2319 if (IntrinsicID
== Intrinsic::ceil
) {
2320 U
.roundToIntegral(APFloat::rmTowardPositive
);
2321 return ConstantFP::get(Ty
->getContext(), U
);
2324 if (IntrinsicID
== Intrinsic::floor
) {
2325 U
.roundToIntegral(APFloat::rmTowardNegative
);
2326 return ConstantFP::get(Ty
->getContext(), U
);
2329 if (IntrinsicID
== Intrinsic::trunc
) {
2330 U
.roundToIntegral(APFloat::rmTowardZero
);
2331 return ConstantFP::get(Ty
->getContext(), U
);
2334 if (IntrinsicID
== Intrinsic::fabs
) {
2336 return ConstantFP::get(Ty
->getContext(), U
);
2339 if (IntrinsicID
== Intrinsic::amdgcn_fract
) {
2340 // The v_fract instruction behaves like the OpenCL spec, which defines
2341 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2342 // there to prevent fract(-small) from returning 1.0. It returns the
2343 // largest positive floating-point number less than 1.0."
2345 FloorU
.roundToIntegral(APFloat::rmTowardNegative
);
2346 APFloat
FractU(U
- FloorU
);
2347 APFloat
AlmostOne(U
.getSemantics(), 1);
2348 AlmostOne
.next(/*nextDown*/ true);
2349 return ConstantFP::get(Ty
->getContext(), minimum(FractU
, AlmostOne
));
2352 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2353 // raise FP exceptions, unless the argument is signaling NaN.
2355 std::optional
<APFloat::roundingMode
> RM
;
2356 switch (IntrinsicID
) {
2359 case Intrinsic::experimental_constrained_nearbyint
:
2360 case Intrinsic::experimental_constrained_rint
: {
2361 auto CI
= cast
<ConstrainedFPIntrinsic
>(Call
);
2362 RM
= CI
->getRoundingMode();
2363 if (!RM
|| *RM
== RoundingMode::Dynamic
)
2367 case Intrinsic::experimental_constrained_round
:
2368 RM
= APFloat::rmNearestTiesToAway
;
2370 case Intrinsic::experimental_constrained_ceil
:
2371 RM
= APFloat::rmTowardPositive
;
2373 case Intrinsic::experimental_constrained_floor
:
2374 RM
= APFloat::rmTowardNegative
;
2376 case Intrinsic::experimental_constrained_trunc
:
2377 RM
= APFloat::rmTowardZero
;
2381 auto CI
= cast
<ConstrainedFPIntrinsic
>(Call
);
2383 APFloat::opStatus St
= U
.roundToIntegral(*RM
);
2384 if (IntrinsicID
== Intrinsic::experimental_constrained_rint
&&
2385 St
== APFloat::opInexact
) {
2386 std::optional
<fp::ExceptionBehavior
> EB
= CI
->getExceptionBehavior();
2387 if (EB
&& *EB
== fp::ebStrict
)
2390 } else if (U
.isSignaling()) {
2391 std::optional
<fp::ExceptionBehavior
> EB
= CI
->getExceptionBehavior();
2392 if (EB
&& *EB
!= fp::ebIgnore
)
2394 U
= APFloat::getQNaN(U
.getSemantics());
2396 return ConstantFP::get(Ty
->getContext(), U
);
2399 // NVVM float/double to signed/unsigned int32/int64 conversions:
2400 switch (IntrinsicID
) {
2402 case Intrinsic::nvvm_f2i_rm
:
2403 case Intrinsic::nvvm_f2i_rn
:
2404 case Intrinsic::nvvm_f2i_rp
:
2405 case Intrinsic::nvvm_f2i_rz
:
2406 case Intrinsic::nvvm_f2i_rm_ftz
:
2407 case Intrinsic::nvvm_f2i_rn_ftz
:
2408 case Intrinsic::nvvm_f2i_rp_ftz
:
2409 case Intrinsic::nvvm_f2i_rz_ftz
:
2411 case Intrinsic::nvvm_f2ui_rm
:
2412 case Intrinsic::nvvm_f2ui_rn
:
2413 case Intrinsic::nvvm_f2ui_rp
:
2414 case Intrinsic::nvvm_f2ui_rz
:
2415 case Intrinsic::nvvm_f2ui_rm_ftz
:
2416 case Intrinsic::nvvm_f2ui_rn_ftz
:
2417 case Intrinsic::nvvm_f2ui_rp_ftz
:
2418 case Intrinsic::nvvm_f2ui_rz_ftz
:
2420 case Intrinsic::nvvm_d2i_rm
:
2421 case Intrinsic::nvvm_d2i_rn
:
2422 case Intrinsic::nvvm_d2i_rp
:
2423 case Intrinsic::nvvm_d2i_rz
:
2425 case Intrinsic::nvvm_d2ui_rm
:
2426 case Intrinsic::nvvm_d2ui_rn
:
2427 case Intrinsic::nvvm_d2ui_rp
:
2428 case Intrinsic::nvvm_d2ui_rz
:
2430 case Intrinsic::nvvm_f2ll_rm
:
2431 case Intrinsic::nvvm_f2ll_rn
:
2432 case Intrinsic::nvvm_f2ll_rp
:
2433 case Intrinsic::nvvm_f2ll_rz
:
2434 case Intrinsic::nvvm_f2ll_rm_ftz
:
2435 case Intrinsic::nvvm_f2ll_rn_ftz
:
2436 case Intrinsic::nvvm_f2ll_rp_ftz
:
2437 case Intrinsic::nvvm_f2ll_rz_ftz
:
2439 case Intrinsic::nvvm_f2ull_rm
:
2440 case Intrinsic::nvvm_f2ull_rn
:
2441 case Intrinsic::nvvm_f2ull_rp
:
2442 case Intrinsic::nvvm_f2ull_rz
:
2443 case Intrinsic::nvvm_f2ull_rm_ftz
:
2444 case Intrinsic::nvvm_f2ull_rn_ftz
:
2445 case Intrinsic::nvvm_f2ull_rp_ftz
:
2446 case Intrinsic::nvvm_f2ull_rz_ftz
:
2448 case Intrinsic::nvvm_d2ll_rm
:
2449 case Intrinsic::nvvm_d2ll_rn
:
2450 case Intrinsic::nvvm_d2ll_rp
:
2451 case Intrinsic::nvvm_d2ll_rz
:
2453 case Intrinsic::nvvm_d2ull_rm
:
2454 case Intrinsic::nvvm_d2ull_rn
:
2455 case Intrinsic::nvvm_d2ull_rp
:
2456 case Intrinsic::nvvm_d2ull_rz
: {
2457 // In float-to-integer conversion, NaN inputs are converted to 0.
2459 return ConstantInt::get(Ty
, 0);
2461 APFloat::roundingMode RMode
=
2462 nvvm::GetFPToIntegerRoundingMode(IntrinsicID
);
2463 bool IsFTZ
= nvvm::FPToIntegerIntrinsicShouldFTZ(IntrinsicID
);
2464 bool IsSigned
= nvvm::FPToIntegerIntrinsicResultIsSigned(IntrinsicID
);
2466 APSInt
ResInt(Ty
->getIntegerBitWidth(), !IsSigned
);
2467 auto FloatToRound
= IsFTZ
? FTZPreserveSign(U
) : U
;
2469 bool IsExact
= false;
2470 APFloat::opStatus Status
=
2471 FloatToRound
.convertToInteger(ResInt
, RMode
, &IsExact
);
2473 if (Status
!= APFloat::opInvalidOp
)
2474 return ConstantInt::get(Ty
, ResInt
);
2479 /// We only fold functions with finite arguments. Folding NaN and inf is
2480 /// likely to be aborted with an exception anyway, and some host libms
2481 /// have known errors raising exceptions.
2485 /// Currently APFloat versions of these functions do not exist, so we use
2486 /// the host native double versions. Float versions are not called
2487 /// directly but for all these it is true (float)(f((double)arg)) ==
2488 /// f(arg). Long double not supported yet.
2489 const APFloat
&APF
= Op
->getValueAPF();
2491 switch (IntrinsicID
) {
2493 case Intrinsic::log
:
2494 return ConstantFoldFP(log
, APF
, Ty
);
2495 case Intrinsic::log2
:
2496 // TODO: What about hosts that lack a C99 library?
2497 return ConstantFoldFP(log2
, APF
, Ty
);
2498 case Intrinsic::log10
:
2499 // TODO: What about hosts that lack a C99 library?
2500 return ConstantFoldFP(log10
, APF
, Ty
);
2501 case Intrinsic::exp
:
2502 return ConstantFoldFP(exp
, APF
, Ty
);
2503 case Intrinsic::exp2
:
2504 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2505 return ConstantFoldBinaryFP(pow
, APFloat(2.0), APF
, Ty
);
2506 case Intrinsic::exp10
:
2507 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2508 return ConstantFoldBinaryFP(pow
, APFloat(10.0), APF
, Ty
);
2509 case Intrinsic::sin
:
2510 return ConstantFoldFP(sin
, APF
, Ty
);
2511 case Intrinsic::cos
:
2512 return ConstantFoldFP(cos
, APF
, Ty
);
2513 case Intrinsic::sqrt
:
2514 return ConstantFoldFP(sqrt
, APF
, Ty
);
2515 case Intrinsic::amdgcn_cos
:
2516 case Intrinsic::amdgcn_sin
: {
2517 double V
= getValueAsDouble(Op
);
2518 if (V
< -256.0 || V
> 256.0)
2519 // The gfx8 and gfx9 architectures handle arguments outside the range
2520 // [-256, 256] differently. This should be a rare case so bail out
2521 // rather than trying to handle the difference.
2523 bool IsCos
= IntrinsicID
== Intrinsic::amdgcn_cos
;
2524 double V4
= V
* 4.0;
2525 if (V4
== floor(V4
)) {
2526 // Force exact results for quarter-integer inputs.
2527 const double SinVals
[4] = { 0.0, 1.0, 0.0, -1.0 };
2528 V
= SinVals
[((int)V4
+ (IsCos
? 1 : 0)) & 3];
2531 V
= cos(V
* 2.0 * numbers::pi
);
2533 V
= sin(V
* 2.0 * numbers::pi
);
2535 return GetConstantFoldFPValue(V
, Ty
);
2542 LibFunc Func
= NotLibFunc
;
2543 if (!TLI
->getLibFunc(Name
, Func
))
2551 case LibFunc_acos_finite
:
2552 case LibFunc_acosf_finite
:
2554 return ConstantFoldFP(acos
, APF
, Ty
);
2558 case LibFunc_asin_finite
:
2559 case LibFunc_asinf_finite
:
2561 return ConstantFoldFP(asin
, APF
, Ty
);
2566 return ConstantFoldFP(atan
, APF
, Ty
);
2570 if (TLI
->has(Func
)) {
2571 U
.roundToIntegral(APFloat::rmTowardPositive
);
2572 return ConstantFP::get(Ty
->getContext(), U
);
2578 return ConstantFoldFP(cos
, APF
, Ty
);
2582 case LibFunc_cosh_finite
:
2583 case LibFunc_coshf_finite
:
2585 return ConstantFoldFP(cosh
, APF
, Ty
);
2589 case LibFunc_exp_finite
:
2590 case LibFunc_expf_finite
:
2592 return ConstantFoldFP(exp
, APF
, Ty
);
2596 case LibFunc_exp2_finite
:
2597 case LibFunc_exp2f_finite
:
2599 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2600 return ConstantFoldBinaryFP(pow
, APFloat(2.0), APF
, Ty
);
2604 if (TLI
->has(Func
)) {
2606 return ConstantFP::get(Ty
->getContext(), U
);
2610 case LibFunc_floorf
:
2611 if (TLI
->has(Func
)) {
2612 U
.roundToIntegral(APFloat::rmTowardNegative
);
2613 return ConstantFP::get(Ty
->getContext(), U
);
2618 case LibFunc_log_finite
:
2619 case LibFunc_logf_finite
:
2620 if (!APF
.isNegative() && !APF
.isZero() && TLI
->has(Func
))
2621 return ConstantFoldFP(log
, APF
, Ty
);
2625 case LibFunc_log2_finite
:
2626 case LibFunc_log2f_finite
:
2627 if (!APF
.isNegative() && !APF
.isZero() && TLI
->has(Func
))
2628 // TODO: What about hosts that lack a C99 library?
2629 return ConstantFoldFP(log2
, APF
, Ty
);
2632 case LibFunc_log10f
:
2633 case LibFunc_log10_finite
:
2634 case LibFunc_log10f_finite
:
2635 if (!APF
.isNegative() && !APF
.isZero() && TLI
->has(Func
))
2636 // TODO: What about hosts that lack a C99 library?
2637 return ConstantFoldFP(log10
, APF
, Ty
);
2640 case LibFunc_ilogbf
:
2641 if (!APF
.isZero() && TLI
->has(Func
))
2642 return ConstantInt::get(Ty
, ilogb(APF
), true);
2646 if (!APF
.isZero() && TLI
->has(Func
))
2647 return ConstantFoldFP(logb
, APF
, Ty
);
2650 case LibFunc_log1pf
:
2651 // Implement optional behavior from C's Annex F for +/-0.0.
2653 return ConstantFP::get(Ty
->getContext(), U
);
2654 if (APF
> APFloat::getOne(APF
.getSemantics(), true) && TLI
->has(Func
))
2655 return ConstantFoldFP(log1p
, APF
, Ty
);
2662 return ConstantFoldFP(erf
, APF
, Ty
);
2664 case LibFunc_nearbyint
:
2665 case LibFunc_nearbyintf
:
2668 if (TLI
->has(Func
)) {
2669 U
.roundToIntegral(APFloat::rmNearestTiesToEven
);
2670 return ConstantFP::get(Ty
->getContext(), U
);
2674 case LibFunc_roundf
:
2675 if (TLI
->has(Func
)) {
2676 U
.roundToIntegral(APFloat::rmNearestTiesToAway
);
2677 return ConstantFP::get(Ty
->getContext(), U
);
2683 return ConstantFoldFP(sin
, APF
, Ty
);
2687 case LibFunc_sinh_finite
:
2688 case LibFunc_sinhf_finite
:
2690 return ConstantFoldFP(sinh
, APF
, Ty
);
2694 if (!APF
.isNegative() && TLI
->has(Func
))
2695 return ConstantFoldFP(sqrt
, APF
, Ty
);
2700 return ConstantFoldFP(tan
, APF
, Ty
);
2705 return ConstantFoldFP(tanh
, APF
, Ty
);
2708 case LibFunc_truncf
:
2709 if (TLI
->has(Func
)) {
2710 U
.roundToIntegral(APFloat::rmTowardZero
);
2711 return ConstantFP::get(Ty
->getContext(), U
);
2718 if (auto *Op
= dyn_cast
<ConstantInt
>(Operands
[0])) {
2719 switch (IntrinsicID
) {
2720 case Intrinsic::bswap
:
2721 return ConstantInt::get(Ty
->getContext(), Op
->getValue().byteSwap());
2722 case Intrinsic::ctpop
:
2723 return ConstantInt::get(Ty
, Op
->getValue().popcount());
2724 case Intrinsic::bitreverse
:
2725 return ConstantInt::get(Ty
->getContext(), Op
->getValue().reverseBits());
2726 case Intrinsic::convert_from_fp16
: {
2727 APFloat
Val(APFloat::IEEEhalf(), Op
->getValue());
2730 APFloat::opStatus status
= Val
.convert(
2731 Ty
->getFltSemantics(), APFloat::rmNearestTiesToEven
, &lost
);
2733 // Conversion is always precise.
2735 assert(status
!= APFloat::opInexact
&& !lost
&&
2736 "Precision lost during fp16 constfolding");
2738 return ConstantFP::get(Ty
->getContext(), Val
);
2741 case Intrinsic::amdgcn_s_wqm
: {
2742 uint64_t Val
= Op
->getZExtValue();
2743 Val
|= (Val
& 0x5555555555555555ULL
) << 1 |
2744 ((Val
>> 1) & 0x5555555555555555ULL
);
2745 Val
|= (Val
& 0x3333333333333333ULL
) << 2 |
2746 ((Val
>> 2) & 0x3333333333333333ULL
);
2747 return ConstantInt::get(Ty
, Val
);
2750 case Intrinsic::amdgcn_s_quadmask
: {
2751 uint64_t Val
= Op
->getZExtValue();
2752 uint64_t QuadMask
= 0;
2753 for (unsigned I
= 0; I
< Op
->getBitWidth() / 4; ++I
, Val
>>= 4) {
2757 QuadMask
|= (1ULL << I
);
2759 return ConstantInt::get(Ty
, QuadMask
);
2762 case Intrinsic::amdgcn_s_bitreplicate
: {
2763 uint64_t Val
= Op
->getZExtValue();
2764 Val
= (Val
& 0x000000000000FFFFULL
) | (Val
& 0x00000000FFFF0000ULL
) << 16;
2765 Val
= (Val
& 0x000000FF000000FFULL
) | (Val
& 0x0000FF000000FF00ULL
) << 8;
2766 Val
= (Val
& 0x000F000F000F000FULL
) | (Val
& 0x00F000F000F000F0ULL
) << 4;
2767 Val
= (Val
& 0x0303030303030303ULL
) | (Val
& 0x0C0C0C0C0C0C0C0CULL
) << 2;
2768 Val
= (Val
& 0x1111111111111111ULL
) | (Val
& 0x2222222222222222ULL
) << 1;
2769 Val
= Val
| Val
<< 1;
2770 return ConstantInt::get(Ty
, Val
);
2778 switch (IntrinsicID
) {
2780 case Intrinsic::vector_reduce_add
:
2781 case Intrinsic::vector_reduce_mul
:
2782 case Intrinsic::vector_reduce_and
:
2783 case Intrinsic::vector_reduce_or
:
2784 case Intrinsic::vector_reduce_xor
:
2785 case Intrinsic::vector_reduce_smin
:
2786 case Intrinsic::vector_reduce_smax
:
2787 case Intrinsic::vector_reduce_umin
:
2788 case Intrinsic::vector_reduce_umax
:
2789 if (Constant
*C
= constantFoldVectorReduce(IntrinsicID
, Operands
[0]))
2794 // Support ConstantVector in case we have an Undef in the top.
2795 if (isa
<ConstantVector
>(Operands
[0]) ||
2796 isa
<ConstantDataVector
>(Operands
[0])) {
2797 auto *Op
= cast
<Constant
>(Operands
[0]);
2798 switch (IntrinsicID
) {
2800 case Intrinsic::x86_sse_cvtss2si
:
2801 case Intrinsic::x86_sse_cvtss2si64
:
2802 case Intrinsic::x86_sse2_cvtsd2si
:
2803 case Intrinsic::x86_sse2_cvtsd2si64
:
2804 if (ConstantFP
*FPOp
=
2805 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2806 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2807 /*roundTowardZero=*/false, Ty
,
2810 case Intrinsic::x86_sse_cvttss2si
:
2811 case Intrinsic::x86_sse_cvttss2si64
:
2812 case Intrinsic::x86_sse2_cvttsd2si
:
2813 case Intrinsic::x86_sse2_cvttsd2si64
:
2814 if (ConstantFP
*FPOp
=
2815 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2816 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2817 /*roundTowardZero=*/true, Ty
,
2826 static Constant
*evaluateCompare(const APFloat
&Op1
, const APFloat
&Op2
,
2827 const ConstrainedFPIntrinsic
*Call
) {
2828 APFloat::opStatus St
= APFloat::opOK
;
2829 auto *FCmp
= cast
<ConstrainedFPCmpIntrinsic
>(Call
);
2830 FCmpInst::Predicate Cond
= FCmp
->getPredicate();
2831 if (FCmp
->isSignaling()) {
2832 if (Op1
.isNaN() || Op2
.isNaN())
2833 St
= APFloat::opInvalidOp
;
2835 if (Op1
.isSignaling() || Op2
.isSignaling())
2836 St
= APFloat::opInvalidOp
;
2838 bool Result
= FCmpInst::compare(Op1
, Op2
, Cond
);
2839 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic
*>(FCmp
), St
))
2840 return ConstantInt::get(Call
->getType()->getScalarType(), Result
);
2844 static Constant
*ConstantFoldLibCall2(StringRef Name
, Type
*Ty
,
2845 ArrayRef
<Constant
*> Operands
,
2846 const TargetLibraryInfo
*TLI
) {
2850 LibFunc Func
= NotLibFunc
;
2851 if (!TLI
->getLibFunc(Name
, Func
))
2854 const auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0]);
2858 const auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1]);
2862 const APFloat
&Op1V
= Op1
->getValueAPF();
2863 const APFloat
&Op2V
= Op2
->getValueAPF();
2870 case LibFunc_pow_finite
:
2871 case LibFunc_powf_finite
:
2873 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
2877 if (TLI
->has(Func
)) {
2878 APFloat V
= Op1
->getValueAPF();
2879 if (APFloat::opStatus::opOK
== V
.mod(Op2
->getValueAPF()))
2880 return ConstantFP::get(Ty
->getContext(), V
);
2883 case LibFunc_remainder
:
2884 case LibFunc_remainderf
:
2885 if (TLI
->has(Func
)) {
2886 APFloat V
= Op1
->getValueAPF();
2887 if (APFloat::opStatus::opOK
== V
.remainder(Op2
->getValueAPF()))
2888 return ConstantFP::get(Ty
->getContext(), V
);
2892 case LibFunc_atan2f
:
2893 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
2894 // (Solaris), so we do not assume a known result for that.
2895 if (Op1V
.isZero() && Op2V
.isZero())
2898 case LibFunc_atan2_finite
:
2899 case LibFunc_atan2f_finite
:
2901 return ConstantFoldBinaryFP(atan2
, Op1V
, Op2V
, Ty
);
2908 static Constant
*ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID
, Type
*Ty
,
2909 ArrayRef
<Constant
*> Operands
,
2910 const CallBase
*Call
) {
2911 assert(Operands
.size() == 2 && "Wrong number of operands.");
2913 if (Ty
->isFloatingPointTy()) {
2914 // TODO: We should have undef handling for all of the FP intrinsics that
2915 // are attempted to be folded in this function.
2916 bool IsOp0Undef
= isa
<UndefValue
>(Operands
[0]);
2917 bool IsOp1Undef
= isa
<UndefValue
>(Operands
[1]);
2918 switch (IntrinsicID
) {
2919 case Intrinsic::maxnum
:
2920 case Intrinsic::minnum
:
2921 case Intrinsic::maximum
:
2922 case Intrinsic::minimum
:
2923 case Intrinsic::nvvm_fmax_d
:
2924 case Intrinsic::nvvm_fmin_d
:
2925 // If one argument is undef, return the other argument.
2932 case Intrinsic::nvvm_fmax_f
:
2933 case Intrinsic::nvvm_fmax_ftz_f
:
2934 case Intrinsic::nvvm_fmax_ftz_nan_f
:
2935 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f
:
2936 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f
:
2937 case Intrinsic::nvvm_fmax_nan_f
:
2938 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f
:
2939 case Intrinsic::nvvm_fmax_xorsign_abs_f
:
2941 case Intrinsic::nvvm_fmin_f
:
2942 case Intrinsic::nvvm_fmin_ftz_f
:
2943 case Intrinsic::nvvm_fmin_ftz_nan_f
:
2944 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f
:
2945 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f
:
2946 case Intrinsic::nvvm_fmin_nan_f
:
2947 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f
:
2948 case Intrinsic::nvvm_fmin_xorsign_abs_f
:
2949 // If one arg is undef, the other arg can be returned only if it is
2950 // constant, as we may need to flush it to sign-preserving zero or
2951 // canonicalize the NaN.
2952 if (!IsOp0Undef
&& !IsOp1Undef
)
2954 if (auto *Op
= dyn_cast
<ConstantFP
>(Operands
[IsOp0Undef
? 1 : 0])) {
2956 APInt
NVCanonicalNaN(32, 0x7fffffff);
2957 return ConstantFP::get(
2958 Ty
, APFloat(Ty
->getFltSemantics(), NVCanonicalNaN
));
2960 if (nvvm::FMinFMaxShouldFTZ(IntrinsicID
))
2961 return ConstantFP::get(Ty
, FTZPreserveSign(Op
->getValueAPF()));
2969 if (const auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
2970 const APFloat
&Op1V
= Op1
->getValueAPF();
2972 if (const auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
2973 if (Op2
->getType() != Op1
->getType())
2975 const APFloat
&Op2V
= Op2
->getValueAPF();
2977 if (const auto *ConstrIntr
=
2978 dyn_cast_if_present
<ConstrainedFPIntrinsic
>(Call
)) {
2979 RoundingMode RM
= getEvaluationRoundingMode(ConstrIntr
);
2981 APFloat::opStatus St
;
2982 switch (IntrinsicID
) {
2985 case Intrinsic::experimental_constrained_fadd
:
2986 St
= Res
.add(Op2V
, RM
);
2988 case Intrinsic::experimental_constrained_fsub
:
2989 St
= Res
.subtract(Op2V
, RM
);
2991 case Intrinsic::experimental_constrained_fmul
:
2992 St
= Res
.multiply(Op2V
, RM
);
2994 case Intrinsic::experimental_constrained_fdiv
:
2995 St
= Res
.divide(Op2V
, RM
);
2997 case Intrinsic::experimental_constrained_frem
:
3000 case Intrinsic::experimental_constrained_fcmp
:
3001 case Intrinsic::experimental_constrained_fcmps
:
3002 return evaluateCompare(Op1V
, Op2V
, ConstrIntr
);
3004 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic
*>(ConstrIntr
),
3006 return ConstantFP::get(Ty
->getContext(), Res
);
3010 switch (IntrinsicID
) {
3013 case Intrinsic::copysign
:
3014 return ConstantFP::get(Ty
->getContext(), APFloat::copySign(Op1V
, Op2V
));
3015 case Intrinsic::minnum
:
3016 return ConstantFP::get(Ty
->getContext(), minnum(Op1V
, Op2V
));
3017 case Intrinsic::maxnum
:
3018 return ConstantFP::get(Ty
->getContext(), maxnum(Op1V
, Op2V
));
3019 case Intrinsic::minimum
:
3020 return ConstantFP::get(Ty
->getContext(), minimum(Op1V
, Op2V
));
3021 case Intrinsic::maximum
:
3022 return ConstantFP::get(Ty
->getContext(), maximum(Op1V
, Op2V
));
3024 case Intrinsic::nvvm_fmax_d
:
3025 case Intrinsic::nvvm_fmax_f
:
3026 case Intrinsic::nvvm_fmax_ftz_f
:
3027 case Intrinsic::nvvm_fmax_ftz_nan_f
:
3028 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f
:
3029 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f
:
3030 case Intrinsic::nvvm_fmax_nan_f
:
3031 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f
:
3032 case Intrinsic::nvvm_fmax_xorsign_abs_f
:
3034 case Intrinsic::nvvm_fmin_d
:
3035 case Intrinsic::nvvm_fmin_f
:
3036 case Intrinsic::nvvm_fmin_ftz_f
:
3037 case Intrinsic::nvvm_fmin_ftz_nan_f
:
3038 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f
:
3039 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f
:
3040 case Intrinsic::nvvm_fmin_nan_f
:
3041 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f
:
3042 case Intrinsic::nvvm_fmin_xorsign_abs_f
: {
3044 bool ShouldCanonicalizeNaNs
= !(IntrinsicID
== Intrinsic::nvvm_fmax_d
||
3045 IntrinsicID
== Intrinsic::nvvm_fmin_d
);
3046 bool IsFTZ
= nvvm::FMinFMaxShouldFTZ(IntrinsicID
);
3047 bool IsNaNPropagating
= nvvm::FMinFMaxPropagatesNaNs(IntrinsicID
);
3048 bool IsXorSignAbs
= nvvm::FMinFMaxIsXorSignAbs(IntrinsicID
);
3050 APFloat A
= IsFTZ
? FTZPreserveSign(Op1V
) : Op1V
;
3051 APFloat B
= IsFTZ
? FTZPreserveSign(Op2V
) : Op2V
;
3053 bool XorSign
= false;
3055 XorSign
= A
.isNegative() ^ B
.isNegative();
3060 bool IsFMax
= false;
3061 switch (IntrinsicID
) {
3062 case Intrinsic::nvvm_fmax_d
:
3063 case Intrinsic::nvvm_fmax_f
:
3064 case Intrinsic::nvvm_fmax_ftz_f
:
3065 case Intrinsic::nvvm_fmax_ftz_nan_f
:
3066 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f
:
3067 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f
:
3068 case Intrinsic::nvvm_fmax_nan_f
:
3069 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f
:
3070 case Intrinsic::nvvm_fmax_xorsign_abs_f
:
3074 APFloat Res
= IsFMax
? maximum(A
, B
) : minimum(A
, B
);
3076 if (ShouldCanonicalizeNaNs
) {
3077 APFloat
NVCanonicalNaN(Res
.getSemantics(), APInt(32, 0x7fffffff));
3078 if (A
.isNaN() && B
.isNaN())
3079 return ConstantFP::get(Ty
, NVCanonicalNaN
);
3080 else if (IsNaNPropagating
&& (A
.isNaN() || B
.isNaN()))
3081 return ConstantFP::get(Ty
, NVCanonicalNaN
);
3084 if (A
.isNaN() && B
.isNaN())
3091 if (IsXorSignAbs
&& XorSign
!= Res
.isNegative())
3094 return ConstantFP::get(Ty
->getContext(), Res
);
3098 if (!Ty
->isHalfTy() && !Ty
->isFloatTy() && !Ty
->isDoubleTy())
3101 switch (IntrinsicID
) {
3104 case Intrinsic::pow
:
3105 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
3106 case Intrinsic::amdgcn_fmul_legacy
:
3107 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3108 // NaN or infinity, gives +0.0.
3109 if (Op1V
.isZero() || Op2V
.isZero())
3110 return ConstantFP::getZero(Ty
);
3111 return ConstantFP::get(Ty
->getContext(), Op1V
* Op2V
);
3114 } else if (auto *Op2C
= dyn_cast
<ConstantInt
>(Operands
[1])) {
3115 switch (IntrinsicID
) {
3116 case Intrinsic::ldexp
: {
3117 return ConstantFP::get(
3119 scalbn(Op1V
, Op2C
->getSExtValue(), APFloat::rmNearestTiesToEven
));
3121 case Intrinsic::is_fpclass
: {
3122 FPClassTest Mask
= static_cast<FPClassTest
>(Op2C
->getZExtValue());
3124 ((Mask
& fcSNan
) && Op1V
.isNaN() && Op1V
.isSignaling()) ||
3125 ((Mask
& fcQNan
) && Op1V
.isNaN() && !Op1V
.isSignaling()) ||
3126 ((Mask
& fcNegInf
) && Op1V
.isNegInfinity()) ||
3127 ((Mask
& fcNegNormal
) && Op1V
.isNormal() && Op1V
.isNegative()) ||
3128 ((Mask
& fcNegSubnormal
) && Op1V
.isDenormal() && Op1V
.isNegative()) ||
3129 ((Mask
& fcNegZero
) && Op1V
.isZero() && Op1V
.isNegative()) ||
3130 ((Mask
& fcPosZero
) && Op1V
.isZero() && !Op1V
.isNegative()) ||
3131 ((Mask
& fcPosSubnormal
) && Op1V
.isDenormal() && !Op1V
.isNegative()) ||
3132 ((Mask
& fcPosNormal
) && Op1V
.isNormal() && !Op1V
.isNegative()) ||
3133 ((Mask
& fcPosInf
) && Op1V
.isPosInfinity());
3134 return ConstantInt::get(Ty
, Result
);
3136 case Intrinsic::powi
: {
3137 int Exp
= static_cast<int>(Op2C
->getSExtValue());
3138 switch (Ty
->getTypeID()) {
3139 case Type::HalfTyID
:
3140 case Type::FloatTyID
: {
3141 APFloat
Res(static_cast<float>(std::pow(Op1V
.convertToFloat(), Exp
)));
3142 if (Ty
->isHalfTy()) {
3144 Res
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
,
3147 return ConstantFP::get(Ty
->getContext(), Res
);
3149 case Type::DoubleTyID
:
3150 return ConstantFP::get(Ty
, std::pow(Op1V
.convertToDouble(), Exp
));
3162 if (Operands
[0]->getType()->isIntegerTy() &&
3163 Operands
[1]->getType()->isIntegerTy()) {
3164 const APInt
*C0
, *C1
;
3165 if (!getConstIntOrUndef(Operands
[0], C0
) ||
3166 !getConstIntOrUndef(Operands
[1], C1
))
3169 switch (IntrinsicID
) {
3171 case Intrinsic::smax
:
3172 case Intrinsic::smin
:
3173 case Intrinsic::umax
:
3174 case Intrinsic::umin
:
3175 // This is the same as for binary ops - poison propagates.
3176 // TODO: Poison handling should be consolidated.
3177 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
3178 return PoisonValue::get(Ty
);
3181 return UndefValue::get(Ty
);
3183 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID
, Ty
);
3184 return ConstantInt::get(
3185 Ty
, ICmpInst::compare(*C0
, *C1
,
3186 MinMaxIntrinsic::getPredicate(IntrinsicID
))
3190 case Intrinsic::scmp
:
3191 case Intrinsic::ucmp
:
3192 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
3193 return PoisonValue::get(Ty
);
3196 return ConstantInt::get(Ty
, 0);
3199 if (IntrinsicID
== Intrinsic::scmp
)
3200 Res
= C0
->sgt(*C1
) ? 1 : C0
->slt(*C1
) ? -1 : 0;
3202 Res
= C0
->ugt(*C1
) ? 1 : C0
->ult(*C1
) ? -1 : 0;
3203 return ConstantInt::get(Ty
, Res
, /*IsSigned=*/true);
3205 case Intrinsic::usub_with_overflow
:
3206 case Intrinsic::ssub_with_overflow
:
3207 // X - undef -> { 0, false }
3208 // undef - X -> { 0, false }
3210 return Constant::getNullValue(Ty
);
3212 case Intrinsic::uadd_with_overflow
:
3213 case Intrinsic::sadd_with_overflow
:
3214 // X + undef -> { -1, false }
3215 // undef + x -> { -1, false }
3217 return ConstantStruct::get(
3218 cast
<StructType
>(Ty
),
3219 {Constant::getAllOnesValue(Ty
->getStructElementType(0)),
3220 Constant::getNullValue(Ty
->getStructElementType(1))});
3223 case Intrinsic::smul_with_overflow
:
3224 case Intrinsic::umul_with_overflow
: {
3225 // undef * X -> { 0, false }
3226 // X * undef -> { 0, false }
3228 return Constant::getNullValue(Ty
);
3232 switch (IntrinsicID
) {
3233 default: llvm_unreachable("Invalid case");
3234 case Intrinsic::sadd_with_overflow
:
3235 Res
= C0
->sadd_ov(*C1
, Overflow
);
3237 case Intrinsic::uadd_with_overflow
:
3238 Res
= C0
->uadd_ov(*C1
, Overflow
);
3240 case Intrinsic::ssub_with_overflow
:
3241 Res
= C0
->ssub_ov(*C1
, Overflow
);
3243 case Intrinsic::usub_with_overflow
:
3244 Res
= C0
->usub_ov(*C1
, Overflow
);
3246 case Intrinsic::smul_with_overflow
:
3247 Res
= C0
->smul_ov(*C1
, Overflow
);
3249 case Intrinsic::umul_with_overflow
:
3250 Res
= C0
->umul_ov(*C1
, Overflow
);
3254 ConstantInt::get(Ty
->getContext(), Res
),
3255 ConstantInt::get(Type::getInt1Ty(Ty
->getContext()), Overflow
)
3257 return ConstantStruct::get(cast
<StructType
>(Ty
), Ops
);
3259 case Intrinsic::uadd_sat
:
3260 case Intrinsic::sadd_sat
:
3261 // This is the same as for binary ops - poison propagates.
3262 // TODO: Poison handling should be consolidated.
3263 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
3264 return PoisonValue::get(Ty
);
3267 return UndefValue::get(Ty
);
3269 return Constant::getAllOnesValue(Ty
);
3270 if (IntrinsicID
== Intrinsic::uadd_sat
)
3271 return ConstantInt::get(Ty
, C0
->uadd_sat(*C1
));
3273 return ConstantInt::get(Ty
, C0
->sadd_sat(*C1
));
3274 case Intrinsic::usub_sat
:
3275 case Intrinsic::ssub_sat
:
3276 // This is the same as for binary ops - poison propagates.
3277 // TODO: Poison handling should be consolidated.
3278 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
3279 return PoisonValue::get(Ty
);
3282 return UndefValue::get(Ty
);
3284 return Constant::getNullValue(Ty
);
3285 if (IntrinsicID
== Intrinsic::usub_sat
)
3286 return ConstantInt::get(Ty
, C0
->usub_sat(*C1
));
3288 return ConstantInt::get(Ty
, C0
->ssub_sat(*C1
));
3289 case Intrinsic::cttz
:
3290 case Intrinsic::ctlz
:
3291 assert(C1
&& "Must be constant int");
3293 // cttz(0, 1) and ctlz(0, 1) are poison.
3294 if (C1
->isOne() && (!C0
|| C0
->isZero()))
3295 return PoisonValue::get(Ty
);
3297 return Constant::getNullValue(Ty
);
3298 if (IntrinsicID
== Intrinsic::cttz
)
3299 return ConstantInt::get(Ty
, C0
->countr_zero());
3301 return ConstantInt::get(Ty
, C0
->countl_zero());
3303 case Intrinsic::abs
:
3304 assert(C1
&& "Must be constant int");
3305 assert((C1
->isOne() || C1
->isZero()) && "Must be 0 or 1");
3307 // Undef or minimum val operand with poison min --> poison
3308 if (C1
->isOne() && (!C0
|| C0
->isMinSignedValue()))
3309 return PoisonValue::get(Ty
);
3311 // Undef operand with no poison min --> 0 (sign bit must be clear)
3313 return Constant::getNullValue(Ty
);
3315 return ConstantInt::get(Ty
, C0
->abs());
3316 case Intrinsic::amdgcn_wave_reduce_umin
:
3317 case Intrinsic::amdgcn_wave_reduce_umax
:
3318 return dyn_cast
<Constant
>(Operands
[0]);
3324 // Support ConstantVector in case we have an Undef in the top.
3325 if ((isa
<ConstantVector
>(Operands
[0]) ||
3326 isa
<ConstantDataVector
>(Operands
[0])) &&
3327 // Check for default rounding mode.
3328 // FIXME: Support other rounding modes?
3329 isa
<ConstantInt
>(Operands
[1]) &&
3330 cast
<ConstantInt
>(Operands
[1])->getValue() == 4) {
3331 auto *Op
= cast
<Constant
>(Operands
[0]);
3332 switch (IntrinsicID
) {
3334 case Intrinsic::x86_avx512_vcvtss2si32
:
3335 case Intrinsic::x86_avx512_vcvtss2si64
:
3336 case Intrinsic::x86_avx512_vcvtsd2si32
:
3337 case Intrinsic::x86_avx512_vcvtsd2si64
:
3338 if (ConstantFP
*FPOp
=
3339 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
3340 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
3341 /*roundTowardZero=*/false, Ty
,
3344 case Intrinsic::x86_avx512_vcvtss2usi32
:
3345 case Intrinsic::x86_avx512_vcvtss2usi64
:
3346 case Intrinsic::x86_avx512_vcvtsd2usi32
:
3347 case Intrinsic::x86_avx512_vcvtsd2usi64
:
3348 if (ConstantFP
*FPOp
=
3349 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
3350 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
3351 /*roundTowardZero=*/false, Ty
,
3354 case Intrinsic::x86_avx512_cvttss2si
:
3355 case Intrinsic::x86_avx512_cvttss2si64
:
3356 case Intrinsic::x86_avx512_cvttsd2si
:
3357 case Intrinsic::x86_avx512_cvttsd2si64
:
3358 if (ConstantFP
*FPOp
=
3359 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
3360 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
3361 /*roundTowardZero=*/true, Ty
,
3364 case Intrinsic::x86_avx512_cvttss2usi
:
3365 case Intrinsic::x86_avx512_cvttss2usi64
:
3366 case Intrinsic::x86_avx512_cvttsd2usi
:
3367 case Intrinsic::x86_avx512_cvttsd2usi64
:
3368 if (ConstantFP
*FPOp
=
3369 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
3370 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
3371 /*roundTowardZero=*/true, Ty
,
3379 static APFloat
ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID
,
3382 const APFloat
&S2
) {
3384 const fltSemantics
&Sem
= S0
.getSemantics();
3385 APFloat
MA(Sem
), SC(Sem
), TC(Sem
);
3386 if (abs(S2
) >= abs(S0
) && abs(S2
) >= abs(S1
)) {
3387 if (S2
.isNegative() && S2
.isNonZero() && !S2
.isNaN()) {
3397 } else if (abs(S1
) >= abs(S0
)) {
3398 if (S1
.isNegative() && S1
.isNonZero() && !S1
.isNaN()) {
3409 if (S0
.isNegative() && S0
.isNonZero() && !S0
.isNaN()) {
3420 switch (IntrinsicID
) {
3422 llvm_unreachable("unhandled amdgcn cube intrinsic");
3423 case Intrinsic::amdgcn_cubeid
:
3424 return APFloat(Sem
, ID
);
3425 case Intrinsic::amdgcn_cubema
:
3427 case Intrinsic::amdgcn_cubesc
:
3429 case Intrinsic::amdgcn_cubetc
:
3434 static Constant
*ConstantFoldAMDGCNPermIntrinsic(ArrayRef
<Constant
*> Operands
,
3436 const APInt
*C0
, *C1
, *C2
;
3437 if (!getConstIntOrUndef(Operands
[0], C0
) ||
3438 !getConstIntOrUndef(Operands
[1], C1
) ||
3439 !getConstIntOrUndef(Operands
[2], C2
))
3443 return UndefValue::get(Ty
);
3446 unsigned NumUndefBytes
= 0;
3447 for (unsigned I
= 0; I
< 32; I
+= 8) {
3448 unsigned Sel
= C2
->extractBitsAsZExtValue(8, I
);
3456 const APInt
*Src
= ((Sel
& 10) == 10 || (Sel
& 12) == 4) ? C0
: C1
;
3460 B
= Src
->extractBitsAsZExtValue(8, (Sel
& 3) * 8);
3462 B
= Src
->extractBitsAsZExtValue(1, (Sel
& 1) ? 31 : 15) * 0xff;
3465 Val
.insertBits(B
, I
, 8);
3468 if (NumUndefBytes
== 4)
3469 return UndefValue::get(Ty
);
3471 return ConstantInt::get(Ty
, Val
);
3474 static Constant
*ConstantFoldScalarCall3(StringRef Name
,
3475 Intrinsic::ID IntrinsicID
,
3477 ArrayRef
<Constant
*> Operands
,
3478 const TargetLibraryInfo
*TLI
,
3479 const CallBase
*Call
) {
3480 assert(Operands
.size() == 3 && "Wrong number of operands.");
3482 if (const auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
3483 if (const auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
3484 if (const auto *Op3
= dyn_cast
<ConstantFP
>(Operands
[2])) {
3485 const APFloat
&C1
= Op1
->getValueAPF();
3486 const APFloat
&C2
= Op2
->getValueAPF();
3487 const APFloat
&C3
= Op3
->getValueAPF();
3489 if (const auto *ConstrIntr
= dyn_cast
<ConstrainedFPIntrinsic
>(Call
)) {
3490 RoundingMode RM
= getEvaluationRoundingMode(ConstrIntr
);
3492 APFloat::opStatus St
;
3493 switch (IntrinsicID
) {
3496 case Intrinsic::experimental_constrained_fma
:
3497 case Intrinsic::experimental_constrained_fmuladd
:
3498 St
= Res
.fusedMultiplyAdd(C2
, C3
, RM
);
3501 if (mayFoldConstrained(
3502 const_cast<ConstrainedFPIntrinsic
*>(ConstrIntr
), St
))
3503 return ConstantFP::get(Ty
->getContext(), Res
);
3507 switch (IntrinsicID
) {
3509 case Intrinsic::amdgcn_fma_legacy
: {
3510 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3511 // NaN or infinity, gives +0.0.
3512 if (C1
.isZero() || C2
.isZero()) {
3513 // It's tempting to just return C3 here, but that would give the
3514 // wrong result if C3 was -0.0.
3515 return ConstantFP::get(Ty
->getContext(), APFloat(0.0f
) + C3
);
3519 case Intrinsic::fma
:
3520 case Intrinsic::fmuladd
: {
3522 V
.fusedMultiplyAdd(C2
, C3
, APFloat::rmNearestTiesToEven
);
3523 return ConstantFP::get(Ty
->getContext(), V
);
3525 case Intrinsic::amdgcn_cubeid
:
3526 case Intrinsic::amdgcn_cubema
:
3527 case Intrinsic::amdgcn_cubesc
:
3528 case Intrinsic::amdgcn_cubetc
: {
3529 APFloat V
= ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID
, C1
, C2
, C3
);
3530 return ConstantFP::get(Ty
->getContext(), V
);
3537 if (IntrinsicID
== Intrinsic::smul_fix
||
3538 IntrinsicID
== Intrinsic::smul_fix_sat
) {
3539 // poison * C -> poison
3540 // C * poison -> poison
3541 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
3542 return PoisonValue::get(Ty
);
3544 const APInt
*C0
, *C1
;
3545 if (!getConstIntOrUndef(Operands
[0], C0
) ||
3546 !getConstIntOrUndef(Operands
[1], C1
))
3552 return Constant::getNullValue(Ty
);
3554 // This code performs rounding towards negative infinity in case the result
3555 // cannot be represented exactly for the given scale. Targets that do care
3556 // about rounding should use a target hook for specifying how rounding
3557 // should be done, and provide their own folding to be consistent with
3558 // rounding. This is the same approach as used by
3559 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3560 unsigned Scale
= cast
<ConstantInt
>(Operands
[2])->getZExtValue();
3561 unsigned Width
= C0
->getBitWidth();
3562 assert(Scale
< Width
&& "Illegal scale.");
3563 unsigned ExtendedWidth
= Width
* 2;
3565 (C0
->sext(ExtendedWidth
) * C1
->sext(ExtendedWidth
)).ashr(Scale
);
3566 if (IntrinsicID
== Intrinsic::smul_fix_sat
) {
3567 APInt Max
= APInt::getSignedMaxValue(Width
).sext(ExtendedWidth
);
3568 APInt Min
= APInt::getSignedMinValue(Width
).sext(ExtendedWidth
);
3569 Product
= APIntOps::smin(Product
, Max
);
3570 Product
= APIntOps::smax(Product
, Min
);
3572 return ConstantInt::get(Ty
->getContext(), Product
.sextOrTrunc(Width
));
3575 if (IntrinsicID
== Intrinsic::fshl
|| IntrinsicID
== Intrinsic::fshr
) {
3576 const APInt
*C0
, *C1
, *C2
;
3577 if (!getConstIntOrUndef(Operands
[0], C0
) ||
3578 !getConstIntOrUndef(Operands
[1], C1
) ||
3579 !getConstIntOrUndef(Operands
[2], C2
))
3582 bool IsRight
= IntrinsicID
== Intrinsic::fshr
;
3584 return Operands
[IsRight
? 1 : 0];
3586 return UndefValue::get(Ty
);
3588 // The shift amount is interpreted as modulo the bitwidth. If the shift
3589 // amount is effectively 0, avoid UB due to oversized inverse shift below.
3590 unsigned BitWidth
= C2
->getBitWidth();
3591 unsigned ShAmt
= C2
->urem(BitWidth
);
3593 return Operands
[IsRight
? 1 : 0];
3595 // (C0 << ShlAmt) | (C1 >> LshrAmt)
3596 unsigned LshrAmt
= IsRight
? ShAmt
: BitWidth
- ShAmt
;
3597 unsigned ShlAmt
= !IsRight
? ShAmt
: BitWidth
- ShAmt
;
3599 return ConstantInt::get(Ty
, C1
->lshr(LshrAmt
));
3601 return ConstantInt::get(Ty
, C0
->shl(ShlAmt
));
3602 return ConstantInt::get(Ty
, C0
->shl(ShlAmt
) | C1
->lshr(LshrAmt
));
3605 if (IntrinsicID
== Intrinsic::amdgcn_perm
)
3606 return ConstantFoldAMDGCNPermIntrinsic(Operands
, Ty
);
3611 static Constant
*ConstantFoldScalarCall(StringRef Name
,
3612 Intrinsic::ID IntrinsicID
,
3614 ArrayRef
<Constant
*> Operands
,
3615 const TargetLibraryInfo
*TLI
,
3616 const CallBase
*Call
) {
3617 if (Operands
.size() == 1)
3618 return ConstantFoldScalarCall1(Name
, IntrinsicID
, Ty
, Operands
, TLI
, Call
);
3620 if (Operands
.size() == 2) {
3621 if (Constant
*FoldedLibCall
=
3622 ConstantFoldLibCall2(Name
, Ty
, Operands
, TLI
)) {
3623 return FoldedLibCall
;
3625 return ConstantFoldIntrinsicCall2(IntrinsicID
, Ty
, Operands
, Call
);
3628 if (Operands
.size() == 3)
3629 return ConstantFoldScalarCall3(Name
, IntrinsicID
, Ty
, Operands
, TLI
, Call
);
3634 static Constant
*ConstantFoldFixedVectorCall(
3635 StringRef Name
, Intrinsic::ID IntrinsicID
, FixedVectorType
*FVTy
,
3636 ArrayRef
<Constant
*> Operands
, const DataLayout
&DL
,
3637 const TargetLibraryInfo
*TLI
, const CallBase
*Call
) {
3638 SmallVector
<Constant
*, 4> Result(FVTy
->getNumElements());
3639 SmallVector
<Constant
*, 4> Lane(Operands
.size());
3640 Type
*Ty
= FVTy
->getElementType();
3642 switch (IntrinsicID
) {
3643 case Intrinsic::masked_load
: {
3644 auto *SrcPtr
= Operands
[0];
3645 auto *Mask
= Operands
[2];
3646 auto *Passthru
= Operands
[3];
3648 Constant
*VecData
= ConstantFoldLoadFromConstPtr(SrcPtr
, FVTy
, DL
);
3650 SmallVector
<Constant
*, 32> NewElements
;
3651 for (unsigned I
= 0, E
= FVTy
->getNumElements(); I
!= E
; ++I
) {
3652 auto *MaskElt
= Mask
->getAggregateElement(I
);
3655 auto *PassthruElt
= Passthru
->getAggregateElement(I
);
3656 auto *VecElt
= VecData
? VecData
->getAggregateElement(I
) : nullptr;
3657 if (isa
<UndefValue
>(MaskElt
)) {
3659 NewElements
.push_back(PassthruElt
);
3661 NewElements
.push_back(VecElt
);
3665 if (MaskElt
->isNullValue()) {
3668 NewElements
.push_back(PassthruElt
);
3669 } else if (MaskElt
->isOneValue()) {
3672 NewElements
.push_back(VecElt
);
3677 if (NewElements
.size() != FVTy
->getNumElements())
3679 return ConstantVector::get(NewElements
);
3681 case Intrinsic::arm_mve_vctp8
:
3682 case Intrinsic::arm_mve_vctp16
:
3683 case Intrinsic::arm_mve_vctp32
:
3684 case Intrinsic::arm_mve_vctp64
: {
3685 if (auto *Op
= dyn_cast
<ConstantInt
>(Operands
[0])) {
3686 unsigned Lanes
= FVTy
->getNumElements();
3687 uint64_t Limit
= Op
->getZExtValue();
3689 SmallVector
<Constant
*, 16> NCs
;
3690 for (unsigned i
= 0; i
< Lanes
; i
++) {
3692 NCs
.push_back(ConstantInt::getTrue(Ty
));
3694 NCs
.push_back(ConstantInt::getFalse(Ty
));
3696 return ConstantVector::get(NCs
);
3700 case Intrinsic::get_active_lane_mask
: {
3701 auto *Op0
= dyn_cast
<ConstantInt
>(Operands
[0]);
3702 auto *Op1
= dyn_cast
<ConstantInt
>(Operands
[1]);
3704 unsigned Lanes
= FVTy
->getNumElements();
3705 uint64_t Base
= Op0
->getZExtValue();
3706 uint64_t Limit
= Op1
->getZExtValue();
3708 SmallVector
<Constant
*, 16> NCs
;
3709 for (unsigned i
= 0; i
< Lanes
; i
++) {
3710 if (Base
+ i
< Limit
)
3711 NCs
.push_back(ConstantInt::getTrue(Ty
));
3713 NCs
.push_back(ConstantInt::getFalse(Ty
));
3715 return ConstantVector::get(NCs
);
3723 for (unsigned I
= 0, E
= FVTy
->getNumElements(); I
!= E
; ++I
) {
3724 // Gather a column of constants.
3725 for (unsigned J
= 0, JE
= Operands
.size(); J
!= JE
; ++J
) {
3726 // Some intrinsics use a scalar type for certain arguments.
3727 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID
, J
, /*TTI=*/nullptr)) {
3728 Lane
[J
] = Operands
[J
];
3732 Constant
*Agg
= Operands
[J
]->getAggregateElement(I
);
3739 // Use the regular scalar folding to simplify this column.
3741 ConstantFoldScalarCall(Name
, IntrinsicID
, Ty
, Lane
, TLI
, Call
);
3747 return ConstantVector::get(Result
);
3750 static Constant
*ConstantFoldScalableVectorCall(
3751 StringRef Name
, Intrinsic::ID IntrinsicID
, ScalableVectorType
*SVTy
,
3752 ArrayRef
<Constant
*> Operands
, const DataLayout
&DL
,
3753 const TargetLibraryInfo
*TLI
, const CallBase
*Call
) {
3754 switch (IntrinsicID
) {
3755 case Intrinsic::aarch64_sve_convert_from_svbool
: {
3756 auto *Src
= dyn_cast
<Constant
>(Operands
[0]);
3757 if (!Src
|| !Src
->isNullValue())
3760 return ConstantInt::getFalse(SVTy
);
3768 static std::pair
<Constant
*, Constant
*>
3769 ConstantFoldScalarFrexpCall(Constant
*Op
, Type
*IntTy
) {
3770 if (isa
<PoisonValue
>(Op
))
3771 return {Op
, PoisonValue::get(IntTy
)};
3773 auto *ConstFP
= dyn_cast
<ConstantFP
>(Op
);
3777 const APFloat
&U
= ConstFP
->getValueAPF();
3779 APFloat FrexpMant
= frexp(U
, FrexpExp
, APFloat::rmNearestTiesToEven
);
3780 Constant
*Result0
= ConstantFP::get(ConstFP
->getType(), FrexpMant
);
3782 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
3784 Constant
*Result1
= FrexpMant
.isFinite()
3785 ? ConstantInt::getSigned(IntTy
, FrexpExp
)
3786 : ConstantInt::getNullValue(IntTy
);
3787 return {Result0
, Result1
};
3790 /// Handle intrinsics that return tuples, which may be tuples of vectors.
3792 ConstantFoldStructCall(StringRef Name
, Intrinsic::ID IntrinsicID
,
3793 StructType
*StTy
, ArrayRef
<Constant
*> Operands
,
3794 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
,
3795 const CallBase
*Call
) {
3797 switch (IntrinsicID
) {
3798 case Intrinsic::frexp
: {
3799 Type
*Ty0
= StTy
->getContainedType(0);
3800 Type
*Ty1
= StTy
->getContainedType(1)->getScalarType();
3802 if (auto *FVTy0
= dyn_cast
<FixedVectorType
>(Ty0
)) {
3803 SmallVector
<Constant
*, 4> Results0(FVTy0
->getNumElements());
3804 SmallVector
<Constant
*, 4> Results1(FVTy0
->getNumElements());
3806 for (unsigned I
= 0, E
= FVTy0
->getNumElements(); I
!= E
; ++I
) {
3807 Constant
*Lane
= Operands
[0]->getAggregateElement(I
);
3808 std::tie(Results0
[I
], Results1
[I
]) =
3809 ConstantFoldScalarFrexpCall(Lane
, Ty1
);
3814 return ConstantStruct::get(StTy
, ConstantVector::get(Results0
),
3815 ConstantVector::get(Results1
));
3818 auto [Result0
, Result1
] = ConstantFoldScalarFrexpCall(Operands
[0], Ty1
);
3821 return ConstantStruct::get(StTy
, Result0
, Result1
);
3823 case Intrinsic::sincos
: {
3824 Type
*Ty
= StTy
->getContainedType(0);
3825 Type
*TyScalar
= Ty
->getScalarType();
3827 auto ConstantFoldScalarSincosCall
=
3828 [&](Constant
*Op
) -> std::pair
<Constant
*, Constant
*> {
3829 Constant
*SinResult
=
3830 ConstantFoldScalarCall(Name
, Intrinsic::sin
, TyScalar
, Op
, TLI
, Call
);
3831 Constant
*CosResult
=
3832 ConstantFoldScalarCall(Name
, Intrinsic::cos
, TyScalar
, Op
, TLI
, Call
);
3833 return std::make_pair(SinResult
, CosResult
);
3836 if (auto *FVTy
= dyn_cast
<FixedVectorType
>(Ty
)) {
3837 SmallVector
<Constant
*> SinResults(FVTy
->getNumElements());
3838 SmallVector
<Constant
*> CosResults(FVTy
->getNumElements());
3840 for (unsigned I
= 0, E
= FVTy
->getNumElements(); I
!= E
; ++I
) {
3841 Constant
*Lane
= Operands
[0]->getAggregateElement(I
);
3842 std::tie(SinResults
[I
], CosResults
[I
]) =
3843 ConstantFoldScalarSincosCall(Lane
);
3844 if (!SinResults
[I
] || !CosResults
[I
])
3848 return ConstantStruct::get(StTy
, ConstantVector::get(SinResults
),
3849 ConstantVector::get(CosResults
));
3852 auto [SinResult
, CosResult
] = ConstantFoldScalarSincosCall(Operands
[0]);
3853 if (!SinResult
|| !CosResult
)
3855 return ConstantStruct::get(StTy
, SinResult
, CosResult
);
3858 // TODO: Constant folding of vector intrinsics that fall through here does
3859 // not work (e.g. overflow intrinsics)
3860 return ConstantFoldScalarCall(Name
, IntrinsicID
, StTy
, Operands
, TLI
, Call
);
3866 } // end anonymous namespace
3868 Constant
*llvm::ConstantFoldBinaryIntrinsic(Intrinsic::ID ID
, Constant
*LHS
,
3869 Constant
*RHS
, Type
*Ty
,
3870 Instruction
*FMFSource
) {
3871 return ConstantFoldIntrinsicCall2(ID
, Ty
, {LHS
, RHS
},
3872 dyn_cast_if_present
<CallBase
>(FMFSource
));
3875 Constant
*llvm::ConstantFoldCall(const CallBase
*Call
, Function
*F
,
3876 ArrayRef
<Constant
*> Operands
,
3877 const TargetLibraryInfo
*TLI
,
3878 bool AllowNonDeterministic
) {
3879 if (Call
->isNoBuiltin())
3884 // If this is not an intrinsic and not recognized as a library call, bail out.
3885 Intrinsic::ID IID
= F
->getIntrinsicID();
3886 if (IID
== Intrinsic::not_intrinsic
) {
3890 if (!TLI
->getLibFunc(*F
, LibF
))
3894 // Conservatively assume that floating-point libcalls may be
3895 // non-deterministic.
3896 Type
*Ty
= F
->getReturnType();
3897 if (!AllowNonDeterministic
&& Ty
->isFPOrFPVectorTy())
3900 StringRef Name
= F
->getName();
3901 if (auto *FVTy
= dyn_cast
<FixedVectorType
>(Ty
))
3902 return ConstantFoldFixedVectorCall(
3903 Name
, IID
, FVTy
, Operands
, F
->getDataLayout(), TLI
, Call
);
3905 if (auto *SVTy
= dyn_cast
<ScalableVectorType
>(Ty
))
3906 return ConstantFoldScalableVectorCall(
3907 Name
, IID
, SVTy
, Operands
, F
->getDataLayout(), TLI
, Call
);
3909 if (auto *StTy
= dyn_cast
<StructType
>(Ty
))
3910 return ConstantFoldStructCall(Name
, IID
, StTy
, Operands
,
3911 F
->getDataLayout(), TLI
, Call
);
3913 // TODO: If this is a library function, we already discovered that above,
3914 // so we should pass the LibFunc, not the name (and it might be better
3915 // still to separate intrinsic handling from libcalls).
3916 return ConstantFoldScalarCall(Name
, IID
, Ty
, Operands
, TLI
, Call
);
3919 bool llvm::isMathLibCallNoop(const CallBase
*Call
,
3920 const TargetLibraryInfo
*TLI
) {
3921 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3922 // (and to some extent ConstantFoldScalarCall).
3923 if (Call
->isNoBuiltin() || Call
->isStrictFP())
3925 Function
*F
= Call
->getCalledFunction();
3930 if (!TLI
|| !TLI
->getLibFunc(*F
, Func
))
3933 if (Call
->arg_size() == 1) {
3934 if (ConstantFP
*OpC
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(0))) {
3935 const APFloat
&Op
= OpC
->getValueAPF();
3943 case LibFunc_log10l
:
3945 case LibFunc_log10f
:
3946 return Op
.isNaN() || (!Op
.isZero() && !Op
.isNegative());
3949 return !Op
.isNaN() && !Op
.isZero() && !Op
.isInfinity();
3954 // FIXME: These boundaries are slightly conservative.
3955 if (OpC
->getType()->isDoubleTy())
3956 return !(Op
< APFloat(-745.0) || Op
> APFloat(709.0));
3957 if (OpC
->getType()->isFloatTy())
3958 return !(Op
< APFloat(-103.0f
) || Op
> APFloat(88.0f
));
3964 // FIXME: These boundaries are slightly conservative.
3965 if (OpC
->getType()->isDoubleTy())
3966 return !(Op
< APFloat(-1074.0) || Op
> APFloat(1023.0));
3967 if (OpC
->getType()->isFloatTy())
3968 return !(Op
< APFloat(-149.0f
) || Op
> APFloat(127.0f
));
3977 return !Op
.isInfinity();
3981 case LibFunc_tanf
: {
3982 // FIXME: Stop using the host math library.
3983 // FIXME: The computation isn't done in the right precision.
3984 Type
*Ty
= OpC
->getType();
3985 if (Ty
->isDoubleTy() || Ty
->isFloatTy() || Ty
->isHalfTy())
3986 return ConstantFoldFP(tan
, OpC
->getValueAPF(), Ty
) != nullptr;
3993 // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
4002 return !(Op
< APFloat::getOne(Op
.getSemantics(), true) ||
4003 Op
> APFloat::getOne(Op
.getSemantics()));
4011 // FIXME: These boundaries are slightly conservative.
4012 if (OpC
->getType()->isDoubleTy())
4013 return !(Op
< APFloat(-710.0) || Op
> APFloat(710.0));
4014 if (OpC
->getType()->isFloatTy())
4015 return !(Op
< APFloat(-89.0f
) || Op
> APFloat(89.0f
));
4021 return Op
.isNaN() || Op
.isZero() || !Op
.isNegative();
4023 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
4031 if (Call
->arg_size() == 2) {
4032 ConstantFP
*Op0C
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(0));
4033 ConstantFP
*Op1C
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(1));
4035 const APFloat
&Op0
= Op0C
->getValueAPF();
4036 const APFloat
&Op1
= Op1C
->getValueAPF();
4041 case LibFunc_powf
: {
4042 // FIXME: Stop using the host math library.
4043 // FIXME: The computation isn't done in the right precision.
4044 Type
*Ty
= Op0C
->getType();
4045 if (Ty
->isDoubleTy() || Ty
->isFloatTy() || Ty
->isHalfTy()) {
4046 if (Ty
== Op1C
->getType())
4047 return ConstantFoldBinaryFP(pow
, Op0
, Op1
, Ty
) != nullptr;
4055 case LibFunc_remainderl
:
4056 case LibFunc_remainder
:
4057 case LibFunc_remainderf
:
4058 return Op0
.isNaN() || Op1
.isNaN() ||
4059 (!Op0
.isInfinity() && !Op1
.isZero());
4062 case LibFunc_atan2f
:
4063 case LibFunc_atan2l
:
4064 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
4065 // GLIBC and MSVC do not appear to raise an error on those, we
4066 // cannot rely on that behavior. POSIX and C11 say that a domain error
4067 // may occur, so allow for that possibility.
4068 return !Op0
.isZero() || !Op1
.isZero();
4079 void TargetFolder::anchor() {}