[clang][bytecode][NFC] Only get expr when checking for UB (#125397)
[llvm-project.git] / llvm / lib / Analysis / LoopAccessAnalysis.cpp
blobac8a35fbc54fb1dbe4347889826f44b0cdb22f23
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AliasSetTracker.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/PatternMatch.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <utility>
65 #include <variant>
66 #include <vector>
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
71 #define DEBUG_TYPE "loop-accesses"
73 static cl::opt<unsigned, true>
74 VectorizationFactor("force-vector-width", cl::Hidden,
75 cl::desc("Sets the SIMD width. Zero is autoselect."),
76 cl::location(VectorizerParams::VectorizationFactor));
77 unsigned VectorizerParams::VectorizationFactor;
79 static cl::opt<unsigned, true>
80 VectorizationInterleave("force-vector-interleave", cl::Hidden,
81 cl::desc("Sets the vectorization interleave count. "
82 "Zero is autoselect."),
83 cl::location(
84 VectorizerParams::VectorizationInterleave));
85 unsigned VectorizerParams::VectorizationInterleave;
87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
88 "runtime-memory-check-threshold", cl::Hidden,
89 cl::desc("When performing memory disambiguation checks at runtime do not "
90 "generate more than this number of comparisons (default = 8)."),
91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
94 /// The maximum iterations used to merge memory checks
95 static cl::opt<unsigned> MemoryCheckMergeThreshold(
96 "memory-check-merge-threshold", cl::Hidden,
97 cl::desc("Maximum number of comparisons done when trying to merge "
98 "runtime memory checks. (default = 100)"),
99 cl::init(100));
101 /// Maximum SIMD width.
102 const unsigned VectorizerParams::MaxVectorWidth = 64;
104 /// We collect dependences up to this threshold.
105 static cl::opt<unsigned>
106 MaxDependences("max-dependences", cl::Hidden,
107 cl::desc("Maximum number of dependences collected by "
108 "loop-access analysis (default = 100)"),
109 cl::init(100));
111 /// This enables versioning on the strides of symbolically striding memory
112 /// accesses in code like the following.
113 /// for (i = 0; i < N; ++i)
114 /// A[i * Stride1] += B[i * Stride2] ...
116 /// Will be roughly translated to
117 /// if (Stride1 == 1 && Stride2 == 1) {
118 /// for (i = 0; i < N; i+=4)
119 /// A[i:i+3] += ...
120 /// } else
121 /// ...
122 static cl::opt<bool> EnableMemAccessVersioning(
123 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
124 cl::desc("Enable symbolic stride memory access versioning"));
126 /// Enable store-to-load forwarding conflict detection. This option can
127 /// be disabled for correctness testing.
128 static cl::opt<bool> EnableForwardingConflictDetection(
129 "store-to-load-forwarding-conflict-detection", cl::Hidden,
130 cl::desc("Enable conflict detection in loop-access analysis"),
131 cl::init(true));
133 static cl::opt<unsigned> MaxForkedSCEVDepth(
134 "max-forked-scev-depth", cl::Hidden,
135 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
136 cl::init(5));
138 static cl::opt<bool> SpeculateUnitStride(
139 "laa-speculate-unit-stride", cl::Hidden,
140 cl::desc("Speculate that non-constant strides are unit in LAA"),
141 cl::init(true));
143 static cl::opt<bool, true> HoistRuntimeChecks(
144 "hoist-runtime-checks", cl::Hidden,
145 cl::desc(
146 "Hoist inner loop runtime memory checks to outer loop if possible"),
147 cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true));
148 bool VectorizerParams::HoistRuntimeChecks;
150 bool VectorizerParams::isInterleaveForced() {
151 return ::VectorizationInterleave.getNumOccurrences() > 0;
154 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
155 const DenseMap<Value *, const SCEV *> &PtrToStride,
156 Value *Ptr) {
157 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
159 // If there is an entry in the map return the SCEV of the pointer with the
160 // symbolic stride replaced by one.
161 DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr);
162 if (SI == PtrToStride.end())
163 // For a non-symbolic stride, just return the original expression.
164 return OrigSCEV;
166 const SCEV *StrideSCEV = SI->second;
167 // Note: This assert is both overly strong and overly weak. The actual
168 // invariant here is that StrideSCEV should be loop invariant. The only
169 // such invariant strides we happen to speculate right now are unknowns
170 // and thus this is a reasonable proxy of the actual invariant.
171 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map");
173 ScalarEvolution *SE = PSE.getSE();
174 const SCEV *CT = SE->getOne(StrideSCEV->getType());
175 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT));
176 const SCEV *Expr = PSE.getSCEV(Ptr);
178 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
179 << " by: " << *Expr << "\n");
180 return Expr;
183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
184 unsigned Index, const RuntimePointerChecking &RtCheck)
185 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
186 AddressSpace(RtCheck.Pointers[Index]
187 .PointerValue->getType()
188 ->getPointerAddressSpace()),
189 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
190 Members.push_back(Index);
193 std::pair<const SCEV *, const SCEV *> llvm::getStartAndEndForAccess(
194 const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *MaxBECount,
195 ScalarEvolution *SE,
196 DenseMap<std::pair<const SCEV *, Type *>,
197 std::pair<const SCEV *, const SCEV *>> *PointerBounds) {
198 std::pair<const SCEV *, const SCEV *> *PtrBoundsPair;
199 if (PointerBounds) {
200 auto [Iter, Ins] = PointerBounds->insert(
201 {{PtrExpr, AccessTy},
202 {SE->getCouldNotCompute(), SE->getCouldNotCompute()}});
203 if (!Ins)
204 return Iter->second;
205 PtrBoundsPair = &Iter->second;
208 const SCEV *ScStart;
209 const SCEV *ScEnd;
211 if (SE->isLoopInvariant(PtrExpr, Lp)) {
212 ScStart = ScEnd = PtrExpr;
213 } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) {
214 ScStart = AR->getStart();
215 ScEnd = AR->evaluateAtIteration(MaxBECount, *SE);
216 const SCEV *Step = AR->getStepRecurrence(*SE);
218 // For expressions with negative step, the upper bound is ScStart and the
219 // lower bound is ScEnd.
220 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
221 if (CStep->getValue()->isNegative())
222 std::swap(ScStart, ScEnd);
223 } else {
224 // Fallback case: the step is not constant, but we can still
225 // get the upper and lower bounds of the interval by using min/max
226 // expressions.
227 ScStart = SE->getUMinExpr(ScStart, ScEnd);
228 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
230 } else
231 return {SE->getCouldNotCompute(), SE->getCouldNotCompute()};
233 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
234 assert(SE->isLoopInvariant(ScEnd, Lp) && "ScEnd needs to be invariant");
236 // Add the size of the pointed element to ScEnd.
237 auto &DL = Lp->getHeader()->getDataLayout();
238 Type *IdxTy = DL.getIndexType(PtrExpr->getType());
239 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
240 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
242 std::pair<const SCEV *, const SCEV *> Res = {ScStart, ScEnd};
243 if (PointerBounds)
244 *PtrBoundsPair = Res;
245 return Res;
248 /// Calculate Start and End points of memory access using
249 /// getStartAndEndForAccess.
250 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
251 Type *AccessTy, bool WritePtr,
252 unsigned DepSetId, unsigned ASId,
253 PredicatedScalarEvolution &PSE,
254 bool NeedsFreeze) {
255 const SCEV *MaxBECount = PSE.getSymbolicMaxBackedgeTakenCount();
256 const auto &[ScStart, ScEnd] = getStartAndEndForAccess(
257 Lp, PtrExpr, AccessTy, MaxBECount, PSE.getSE(), &DC.getPointerBounds());
258 assert(!isa<SCEVCouldNotCompute>(ScStart) &&
259 !isa<SCEVCouldNotCompute>(ScEnd) &&
260 "must be able to compute both start and end expressions");
261 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
262 NeedsFreeze);
265 bool RuntimePointerChecking::tryToCreateDiffCheck(
266 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
267 // If either group contains multiple different pointers, bail out.
268 // TODO: Support multiple pointers by using the minimum or maximum pointer,
269 // depending on src & sink.
270 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1)
271 return false;
273 const PointerInfo *Src = &Pointers[CGI.Members[0]];
274 const PointerInfo *Sink = &Pointers[CGJ.Members[0]];
276 // If either pointer is read and written, multiple checks may be needed. Bail
277 // out.
278 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
279 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty())
280 return false;
282 ArrayRef<unsigned> AccSrc =
283 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
284 ArrayRef<unsigned> AccSink =
285 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
286 // If either pointer is accessed multiple times, there may not be a clear
287 // src/sink relation. Bail out for now.
288 if (AccSrc.size() != 1 || AccSink.size() != 1)
289 return false;
291 // If the sink is accessed before src, swap src/sink.
292 if (AccSink[0] < AccSrc[0])
293 std::swap(Src, Sink);
295 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
296 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
297 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
298 SinkAR->getLoop() != DC.getInnermostLoop())
299 return false;
301 SmallVector<Instruction *, 4> SrcInsts =
302 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
303 SmallVector<Instruction *, 4> SinkInsts =
304 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
305 Type *SrcTy = getLoadStoreType(SrcInsts[0]);
306 Type *DstTy = getLoadStoreType(SinkInsts[0]);
307 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy))
308 return false;
310 const DataLayout &DL =
311 SinkAR->getLoop()->getHeader()->getDataLayout();
312 unsigned AllocSize =
313 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
315 // Only matching constant steps matching the AllocSize are supported at the
316 // moment. This simplifies the difference computation. Can be extended in the
317 // future.
318 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
319 if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
320 Step->getAPInt().abs() != AllocSize)
321 return false;
323 IntegerType *IntTy =
324 IntegerType::get(Src->PointerValue->getContext(),
325 DL.getPointerSizeInBits(CGI.AddressSpace));
327 // When counting down, the dependence distance needs to be swapped.
328 if (Step->getValue()->isNegative())
329 std::swap(SinkAR, SrcAR);
331 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
332 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
333 if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
334 isa<SCEVCouldNotCompute>(SrcStartInt))
335 return false;
337 const Loop *InnerLoop = SrcAR->getLoop();
338 // If the start values for both Src and Sink also vary according to an outer
339 // loop, then it's probably better to avoid creating diff checks because
340 // they may not be hoisted. We should instead let llvm::addRuntimeChecks
341 // do the expanded full range overlap checks, which can be hoisted.
342 if (HoistRuntimeChecks && InnerLoop->getParentLoop() &&
343 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
344 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
345 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
346 const Loop *StartARLoop = SrcStartAR->getLoop();
347 if (StartARLoop == SinkStartAR->getLoop() &&
348 StartARLoop == InnerLoop->getParentLoop() &&
349 // If the diff check would already be loop invariant (due to the
350 // recurrences being the same), then we prefer to keep the diff checks
351 // because they are cheaper.
352 SrcStartAR->getStepRecurrence(*SE) !=
353 SinkStartAR->getStepRecurrence(*SE)) {
354 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
355 "cannot be hoisted out of the outer loop\n");
356 return false;
360 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
361 << "SrcStart: " << *SrcStartInt << '\n'
362 << "SinkStartInt: " << *SinkStartInt << '\n');
363 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
364 Src->NeedsFreeze || Sink->NeedsFreeze);
365 return true;
368 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
369 SmallVector<RuntimePointerCheck, 4> Checks;
371 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
372 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
373 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
374 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
376 if (needsChecking(CGI, CGJ)) {
377 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
378 Checks.emplace_back(&CGI, &CGJ);
382 return Checks;
385 void RuntimePointerChecking::generateChecks(
386 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
387 assert(Checks.empty() && "Checks is not empty");
388 groupChecks(DepCands, UseDependencies);
389 Checks = generateChecks();
392 bool RuntimePointerChecking::needsChecking(
393 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
394 for (const auto &I : M.Members)
395 for (const auto &J : N.Members)
396 if (needsChecking(I, J))
397 return true;
398 return false;
401 /// Compare \p I and \p J and return the minimum.
402 /// Return nullptr in case we couldn't find an answer.
403 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
404 ScalarEvolution *SE) {
405 std::optional<APInt> Diff = SE->computeConstantDifference(J, I);
406 if (!Diff)
407 return nullptr;
408 return Diff->isNegative() ? J : I;
411 bool RuntimeCheckingPtrGroup::addPointer(
412 unsigned Index, const RuntimePointerChecking &RtCheck) {
413 return addPointer(
414 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
415 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
416 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
419 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
420 const SCEV *End, unsigned AS,
421 bool NeedsFreeze,
422 ScalarEvolution &SE) {
423 assert(AddressSpace == AS &&
424 "all pointers in a checking group must be in the same address space");
426 // Compare the starts and ends with the known minimum and maximum
427 // of this set. We need to know how we compare against the min/max
428 // of the set in order to be able to emit memchecks.
429 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
430 if (!Min0)
431 return false;
433 const SCEV *Min1 = getMinFromExprs(End, High, &SE);
434 if (!Min1)
435 return false;
437 // Update the low bound expression if we've found a new min value.
438 if (Min0 == Start)
439 Low = Start;
441 // Update the high bound expression if we've found a new max value.
442 if (Min1 != End)
443 High = End;
445 Members.push_back(Index);
446 this->NeedsFreeze |= NeedsFreeze;
447 return true;
450 void RuntimePointerChecking::groupChecks(
451 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
452 // We build the groups from dependency candidates equivalence classes
453 // because:
454 // - We know that pointers in the same equivalence class share
455 // the same underlying object and therefore there is a chance
456 // that we can compare pointers
457 // - We wouldn't be able to merge two pointers for which we need
458 // to emit a memcheck. The classes in DepCands are already
459 // conveniently built such that no two pointers in the same
460 // class need checking against each other.
462 // We use the following (greedy) algorithm to construct the groups
463 // For every pointer in the equivalence class:
464 // For each existing group:
465 // - if the difference between this pointer and the min/max bounds
466 // of the group is a constant, then make the pointer part of the
467 // group and update the min/max bounds of that group as required.
469 CheckingGroups.clear();
471 // If we need to check two pointers to the same underlying object
472 // with a non-constant difference, we shouldn't perform any pointer
473 // grouping with those pointers. This is because we can easily get
474 // into cases where the resulting check would return false, even when
475 // the accesses are safe.
477 // The following example shows this:
478 // for (i = 0; i < 1000; ++i)
479 // a[5000 + i * m] = a[i] + a[i + 9000]
481 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
482 // (0, 10000) which is always false. However, if m is 1, there is no
483 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
484 // us to perform an accurate check in this case.
486 // The above case requires that we have an UnknownDependence between
487 // accesses to the same underlying object. This cannot happen unless
488 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
489 // is also false. In this case we will use the fallback path and create
490 // separate checking groups for all pointers.
492 // If we don't have the dependency partitions, construct a new
493 // checking pointer group for each pointer. This is also required
494 // for correctness, because in this case we can have checking between
495 // pointers to the same underlying object.
496 if (!UseDependencies) {
497 for (unsigned I = 0; I < Pointers.size(); ++I)
498 CheckingGroups.emplace_back(I, *this);
499 return;
502 unsigned TotalComparisons = 0;
504 DenseMap<Value *, SmallVector<unsigned>> PositionMap;
505 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
506 PositionMap[Pointers[Index].PointerValue].push_back(Index);
508 // We need to keep track of what pointers we've already seen so we
509 // don't process them twice.
510 SmallSet<unsigned, 2> Seen;
512 // Go through all equivalence classes, get the "pointer check groups"
513 // and add them to the overall solution. We use the order in which accesses
514 // appear in 'Pointers' to enforce determinism.
515 for (unsigned I = 0; I < Pointers.size(); ++I) {
516 // We've seen this pointer before, and therefore already processed
517 // its equivalence class.
518 if (Seen.count(I))
519 continue;
521 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
522 Pointers[I].IsWritePtr);
524 SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
525 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
527 // Because DepCands is constructed by visiting accesses in the order in
528 // which they appear in alias sets (which is deterministic) and the
529 // iteration order within an equivalence class member is only dependent on
530 // the order in which unions and insertions are performed on the
531 // equivalence class, the iteration order is deterministic.
532 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
533 MI != ME; ++MI) {
534 auto PointerI = PositionMap.find(MI->getPointer());
535 assert(PointerI != PositionMap.end() &&
536 "pointer in equivalence class not found in PositionMap");
537 for (unsigned Pointer : PointerI->second) {
538 bool Merged = false;
539 // Mark this pointer as seen.
540 Seen.insert(Pointer);
542 // Go through all the existing sets and see if we can find one
543 // which can include this pointer.
544 for (RuntimeCheckingPtrGroup &Group : Groups) {
545 // Don't perform more than a certain amount of comparisons.
546 // This should limit the cost of grouping the pointers to something
547 // reasonable. If we do end up hitting this threshold, the algorithm
548 // will create separate groups for all remaining pointers.
549 if (TotalComparisons > MemoryCheckMergeThreshold)
550 break;
552 TotalComparisons++;
554 if (Group.addPointer(Pointer, *this)) {
555 Merged = true;
556 break;
560 if (!Merged)
561 // We couldn't add this pointer to any existing set or the threshold
562 // for the number of comparisons has been reached. Create a new group
563 // to hold the current pointer.
564 Groups.emplace_back(Pointer, *this);
568 // We've computed the grouped checks for this partition.
569 // Save the results and continue with the next one.
570 llvm::copy(Groups, std::back_inserter(CheckingGroups));
574 bool RuntimePointerChecking::arePointersInSamePartition(
575 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
576 unsigned PtrIdx2) {
577 return (PtrToPartition[PtrIdx1] != -1 &&
578 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
581 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
582 const PointerInfo &PointerI = Pointers[I];
583 const PointerInfo &PointerJ = Pointers[J];
585 // No need to check if two readonly pointers intersect.
586 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
587 return false;
589 // Only need to check pointers between two different dependency sets.
590 if (PointerI.DependencySetId == PointerJ.DependencySetId)
591 return false;
593 // Only need to check pointers in the same alias set.
594 return PointerI.AliasSetId == PointerJ.AliasSetId;
597 void RuntimePointerChecking::printChecks(
598 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
599 unsigned Depth) const {
600 unsigned N = 0;
601 for (const auto &[Check1, Check2] : Checks) {
602 const auto &First = Check1->Members, &Second = Check2->Members;
604 OS.indent(Depth) << "Check " << N++ << ":\n";
606 OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n";
607 for (unsigned K : First)
608 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
610 OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n";
611 for (unsigned K : Second)
612 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
616 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
618 OS.indent(Depth) << "Run-time memory checks:\n";
619 printChecks(OS, Checks, Depth);
621 OS.indent(Depth) << "Grouped accesses:\n";
622 for (const auto &CG : CheckingGroups) {
623 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
624 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
625 << ")\n";
626 for (unsigned Member : CG.Members) {
627 OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n";
632 namespace {
634 /// Analyses memory accesses in a loop.
636 /// Checks whether run time pointer checks are needed and builds sets for data
637 /// dependence checking.
638 class AccessAnalysis {
639 public:
640 /// Read or write access location.
641 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
642 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
644 AccessAnalysis(const Loop *TheLoop, AAResults *AA, const LoopInfo *LI,
645 MemoryDepChecker::DepCandidates &DA,
646 PredicatedScalarEvolution &PSE,
647 SmallPtrSetImpl<MDNode *> &LoopAliasScopes)
648 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
649 LoopAliasScopes(LoopAliasScopes) {
650 // We're analyzing dependences across loop iterations.
651 BAA.enableCrossIterationMode();
654 /// Register a load and whether it is only read from.
655 void addLoad(const MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
656 Value *Ptr = const_cast<Value *>(Loc.Ptr);
657 AST.add(adjustLoc(Loc));
658 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
659 if (IsReadOnly)
660 ReadOnlyPtr.insert(Ptr);
663 /// Register a store.
664 void addStore(const MemoryLocation &Loc, Type *AccessTy) {
665 Value *Ptr = const_cast<Value *>(Loc.Ptr);
666 AST.add(adjustLoc(Loc));
667 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
670 /// Check if we can emit a run-time no-alias check for \p Access.
672 /// Returns true if we can emit a run-time no alias check for \p Access.
673 /// If we can check this access, this also adds it to a dependence set and
674 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
675 /// we will attempt to use additional run-time checks in order to get
676 /// the bounds of the pointer.
677 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
678 MemAccessInfo Access, Type *AccessTy,
679 const DenseMap<Value *, const SCEV *> &Strides,
680 DenseMap<Value *, unsigned> &DepSetId,
681 Loop *TheLoop, unsigned &RunningDepId,
682 unsigned ASId, bool ShouldCheckStride, bool Assume);
684 /// Check whether we can check the pointers at runtime for
685 /// non-intersection.
687 /// Returns true if we need no check or if we do and we can generate them
688 /// (i.e. the pointers have computable bounds).
689 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
690 Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides,
691 Value *&UncomputablePtr, bool ShouldCheckWrap = false);
693 /// Goes over all memory accesses, checks whether a RT check is needed
694 /// and builds sets of dependent accesses.
695 void buildDependenceSets() {
696 processMemAccesses();
699 /// Initial processing of memory accesses determined that we need to
700 /// perform dependency checking.
702 /// Note that this can later be cleared if we retry memcheck analysis without
703 /// dependency checking (i.e. FoundNonConstantDistanceDependence).
704 bool isDependencyCheckNeeded() const { return !CheckDeps.empty(); }
706 /// We decided that no dependence analysis would be used. Reset the state.
707 void resetDepChecks(MemoryDepChecker &DepChecker) {
708 CheckDeps.clear();
709 DepChecker.clearDependences();
712 const MemAccessInfoList &getDependenciesToCheck() const { return CheckDeps; }
714 private:
715 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
717 /// Adjust the MemoryLocation so that it represents accesses to this
718 /// location across all iterations, rather than a single one.
719 MemoryLocation adjustLoc(MemoryLocation Loc) const {
720 // The accessed location varies within the loop, but remains within the
721 // underlying object.
722 Loc.Size = LocationSize::beforeOrAfterPointer();
723 Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope);
724 Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias);
725 return Loc;
728 /// Drop alias scopes that are only valid within a single loop iteration.
729 MDNode *adjustAliasScopeList(MDNode *ScopeList) const {
730 if (!ScopeList)
731 return nullptr;
733 // For the sake of simplicity, drop the whole scope list if any scope is
734 // iteration-local.
735 if (any_of(ScopeList->operands(), [&](Metadata *Scope) {
736 return LoopAliasScopes.contains(cast<MDNode>(Scope));
738 return nullptr;
740 return ScopeList;
743 /// Go over all memory access and check whether runtime pointer checks
744 /// are needed and build sets of dependency check candidates.
745 void processMemAccesses();
747 /// Map of all accesses. Values are the types used to access memory pointed to
748 /// by the pointer.
749 PtrAccessMap Accesses;
751 /// The loop being checked.
752 const Loop *TheLoop;
754 /// List of accesses that need a further dependence check.
755 MemAccessInfoList CheckDeps;
757 /// Set of pointers that are read only.
758 SmallPtrSet<Value*, 16> ReadOnlyPtr;
760 /// Batched alias analysis results.
761 BatchAAResults BAA;
763 /// An alias set tracker to partition the access set by underlying object and
764 //intrinsic property (such as TBAA metadata).
765 AliasSetTracker AST;
767 /// The LoopInfo of the loop being checked.
768 const LoopInfo *LI;
770 /// Sets of potentially dependent accesses - members of one set share an
771 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
772 /// dependence check.
773 MemoryDepChecker::DepCandidates &DepCands;
775 /// Initial processing of memory accesses determined that we may need
776 /// to add memchecks. Perform the analysis to determine the necessary checks.
778 /// Note that, this is different from isDependencyCheckNeeded. When we retry
779 /// memcheck analysis without dependency checking
780 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
781 /// cleared while this remains set if we have potentially dependent accesses.
782 bool IsRTCheckAnalysisNeeded = false;
784 /// The SCEV predicate containing all the SCEV-related assumptions.
785 PredicatedScalarEvolution &PSE;
787 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
789 /// Alias scopes that are declared inside the loop, and as such not valid
790 /// across iterations.
791 SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
794 } // end anonymous namespace
796 /// Check whether a pointer can participate in a runtime bounds check.
797 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
798 /// by adding run-time checks (overflow checks) if necessary.
799 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
800 const SCEV *PtrScev, Loop *L, bool Assume) {
801 // The bounds for loop-invariant pointer is trivial.
802 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
803 return true;
805 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
807 if (!AR && Assume)
808 AR = PSE.getAsAddRec(Ptr);
810 if (!AR)
811 return false;
813 return AR->isAffine();
816 /// Check whether a pointer address cannot wrap.
817 static bool isNoWrap(PredicatedScalarEvolution &PSE,
818 const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr,
819 Type *AccessTy, Loop *L, bool Assume) {
820 const SCEV *PtrScev = PSE.getSCEV(Ptr);
821 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
822 return true;
824 return getPtrStride(PSE, AccessTy, Ptr, L, Strides, Assume).has_value() ||
825 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
828 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
829 function_ref<void(Value *)> AddPointer) {
830 SmallPtrSet<Value *, 8> Visited;
831 SmallVector<Value *> WorkList;
832 WorkList.push_back(StartPtr);
834 while (!WorkList.empty()) {
835 Value *Ptr = WorkList.pop_back_val();
836 if (!Visited.insert(Ptr).second)
837 continue;
838 auto *PN = dyn_cast<PHINode>(Ptr);
839 // SCEV does not look through non-header PHIs inside the loop. Such phis
840 // can be analyzed by adding separate accesses for each incoming pointer
841 // value.
842 if (PN && InnermostLoop.contains(PN->getParent()) &&
843 PN->getParent() != InnermostLoop.getHeader()) {
844 for (const Use &Inc : PN->incoming_values())
845 WorkList.push_back(Inc);
846 } else
847 AddPointer(Ptr);
851 // Walk back through the IR for a pointer, looking for a select like the
852 // following:
854 // %offset = select i1 %cmp, i64 %a, i64 %b
855 // %addr = getelementptr double, double* %base, i64 %offset
856 // %ld = load double, double* %addr, align 8
858 // We won't be able to form a single SCEVAddRecExpr from this since the
859 // address for each loop iteration depends on %cmp. We could potentially
860 // produce multiple valid SCEVAddRecExprs, though, and check all of them for
861 // memory safety/aliasing if needed.
863 // If we encounter some IR we don't yet handle, or something obviously fine
864 // like a constant, then we just add the SCEV for that term to the list passed
865 // in by the caller. If we have a node that may potentially yield a valid
866 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
867 // ourselves before adding to the list.
868 static void findForkedSCEVs(
869 ScalarEvolution *SE, const Loop *L, Value *Ptr,
870 SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
871 unsigned Depth) {
872 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
873 // we've exceeded our limit on recursion, just return whatever we have
874 // regardless of whether it can be used for a forked pointer or not, along
875 // with an indication of whether it might be a poison or undef value.
876 const SCEV *Scev = SE->getSCEV(Ptr);
877 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
878 !isa<Instruction>(Ptr) || Depth == 0) {
879 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
880 return;
883 Depth--;
885 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
886 return get<1>(S);
889 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
890 switch (Opcode) {
891 case Instruction::Add:
892 return SE->getAddExpr(L, R);
893 case Instruction::Sub:
894 return SE->getMinusSCEV(L, R);
895 default:
896 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
900 Instruction *I = cast<Instruction>(Ptr);
901 unsigned Opcode = I->getOpcode();
902 switch (Opcode) {
903 case Instruction::GetElementPtr: {
904 auto *GEP = cast<GetElementPtrInst>(I);
905 Type *SourceTy = GEP->getSourceElementType();
906 // We only handle base + single offset GEPs here for now.
907 // Not dealing with preexisting gathers yet, so no vectors.
908 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
909 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
910 break;
912 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
913 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
914 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
915 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
917 // See if we need to freeze our fork...
918 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
919 any_of(OffsetScevs, UndefPoisonCheck);
921 // Check that we only have a single fork, on either the base or the offset.
922 // Copy the SCEV across for the one without a fork in order to generate
923 // the full SCEV for both sides of the GEP.
924 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
925 BaseScevs.push_back(BaseScevs[0]);
926 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
927 OffsetScevs.push_back(OffsetScevs[0]);
928 else {
929 ScevList.emplace_back(Scev, NeedsFreeze);
930 break;
933 // Find the pointer type we need to extend to.
934 Type *IntPtrTy = SE->getEffectiveSCEVType(
935 SE->getSCEV(GEP->getPointerOperand())->getType());
937 // Find the size of the type being pointed to. We only have a single
938 // index term (guarded above) so we don't need to index into arrays or
939 // structures, just get the size of the scalar value.
940 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
942 // Scale up the offsets by the size of the type, then add to the bases.
943 const SCEV *Scaled1 = SE->getMulExpr(
944 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
945 const SCEV *Scaled2 = SE->getMulExpr(
946 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
947 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
948 NeedsFreeze);
949 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
950 NeedsFreeze);
951 break;
953 case Instruction::Select: {
954 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
955 // A select means we've found a forked pointer, but we currently only
956 // support a single select per pointer so if there's another behind this
957 // then we just bail out and return the generic SCEV.
958 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
959 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
960 if (ChildScevs.size() == 2) {
961 ScevList.push_back(ChildScevs[0]);
962 ScevList.push_back(ChildScevs[1]);
963 } else
964 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
965 break;
967 case Instruction::PHI: {
968 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
969 // A phi means we've found a forked pointer, but we currently only
970 // support a single phi per pointer so if there's another behind this
971 // then we just bail out and return the generic SCEV.
972 if (I->getNumOperands() == 2) {
973 findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth);
974 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
976 if (ChildScevs.size() == 2) {
977 ScevList.push_back(ChildScevs[0]);
978 ScevList.push_back(ChildScevs[1]);
979 } else
980 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
981 break;
983 case Instruction::Add:
984 case Instruction::Sub: {
985 SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
986 SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
987 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
988 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
990 // See if we need to freeze our fork...
991 bool NeedsFreeze =
992 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
994 // Check that we only have a single fork, on either the left or right side.
995 // Copy the SCEV across for the one without a fork in order to generate
996 // the full SCEV for both sides of the BinOp.
997 if (LScevs.size() == 2 && RScevs.size() == 1)
998 RScevs.push_back(RScevs[0]);
999 else if (RScevs.size() == 2 && LScevs.size() == 1)
1000 LScevs.push_back(LScevs[0]);
1001 else {
1002 ScevList.emplace_back(Scev, NeedsFreeze);
1003 break;
1006 ScevList.emplace_back(
1007 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
1008 NeedsFreeze);
1009 ScevList.emplace_back(
1010 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
1011 NeedsFreeze);
1012 break;
1014 default:
1015 // Just return the current SCEV if we haven't handled the instruction yet.
1016 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
1017 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1018 break;
1022 static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
1023 findForkedPointer(PredicatedScalarEvolution &PSE,
1024 const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr,
1025 const Loop *L) {
1026 ScalarEvolution *SE = PSE.getSE();
1027 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
1028 SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
1029 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
1031 // For now, we will only accept a forked pointer with two possible SCEVs
1032 // that are either SCEVAddRecExprs or loop invariant.
1033 if (Scevs.size() == 2 &&
1034 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
1035 SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
1036 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
1037 SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
1038 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
1039 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
1040 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
1041 return Scevs;
1044 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
1047 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
1048 MemAccessInfo Access, Type *AccessTy,
1049 const DenseMap<Value *, const SCEV *> &StridesMap,
1050 DenseMap<Value *, unsigned> &DepSetId,
1051 Loop *TheLoop, unsigned &RunningDepId,
1052 unsigned ASId, bool ShouldCheckWrap,
1053 bool Assume) {
1054 Value *Ptr = Access.getPointer();
1056 SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
1057 findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
1059 for (const auto &P : TranslatedPtrs) {
1060 const SCEV *PtrExpr = get<0>(P);
1061 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
1062 return false;
1064 // When we run after a failing dependency check we have to make sure
1065 // we don't have wrapping pointers.
1066 if (ShouldCheckWrap) {
1067 // Skip wrap checking when translating pointers.
1068 if (TranslatedPtrs.size() > 1)
1069 return false;
1071 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop, Assume))
1072 return false;
1074 // If there's only one option for Ptr, look it up after bounds and wrap
1075 // checking, because assumptions might have been added to PSE.
1076 if (TranslatedPtrs.size() == 1)
1077 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
1078 false};
1081 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1082 // The id of the dependence set.
1083 unsigned DepId;
1085 if (isDependencyCheckNeeded()) {
1086 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1087 unsigned &LeaderId = DepSetId[Leader];
1088 if (!LeaderId)
1089 LeaderId = RunningDepId++;
1090 DepId = LeaderId;
1091 } else
1092 // Each access has its own dependence set.
1093 DepId = RunningDepId++;
1095 bool IsWrite = Access.getInt();
1096 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1097 NeedsFreeze);
1098 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
1101 return true;
1104 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
1105 ScalarEvolution *SE, Loop *TheLoop,
1106 const DenseMap<Value *, const SCEV *> &StridesMap,
1107 Value *&UncomputablePtr, bool ShouldCheckWrap) {
1108 // Find pointers with computable bounds. We are going to use this information
1109 // to place a runtime bound check.
1110 bool CanDoRT = true;
1112 bool MayNeedRTCheck = false;
1113 if (!IsRTCheckAnalysisNeeded) return true;
1115 bool IsDepCheckNeeded = isDependencyCheckNeeded();
1117 // We assign a consecutive id to access from different alias sets.
1118 // Accesses between different groups doesn't need to be checked.
1119 unsigned ASId = 0;
1120 for (const auto &AS : AST) {
1121 int NumReadPtrChecks = 0;
1122 int NumWritePtrChecks = 0;
1123 bool CanDoAliasSetRT = true;
1124 ++ASId;
1125 auto ASPointers = AS.getPointers();
1127 // We assign consecutive id to access from different dependence sets.
1128 // Accesses within the same set don't need a runtime check.
1129 unsigned RunningDepId = 1;
1130 DenseMap<Value *, unsigned> DepSetId;
1132 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;
1134 // First, count how many write and read accesses are in the alias set. Also
1135 // collect MemAccessInfos for later.
1136 SmallVector<MemAccessInfo, 4> AccessInfos;
1137 for (const Value *ConstPtr : ASPointers) {
1138 Value *Ptr = const_cast<Value *>(ConstPtr);
1139 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
1140 if (IsWrite)
1141 ++NumWritePtrChecks;
1142 else
1143 ++NumReadPtrChecks;
1144 AccessInfos.emplace_back(Ptr, IsWrite);
1147 // We do not need runtime checks for this alias set, if there are no writes
1148 // or a single write and no reads.
1149 if (NumWritePtrChecks == 0 ||
1150 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1151 assert((ASPointers.size() <= 1 ||
1152 all_of(ASPointers,
1153 [this](const Value *Ptr) {
1154 MemAccessInfo AccessWrite(const_cast<Value *>(Ptr),
1155 true);
1156 return DepCands.findValue(AccessWrite) == DepCands.end();
1157 })) &&
1158 "Can only skip updating CanDoRT below, if all entries in AS "
1159 "are reads or there is at most 1 entry");
1160 continue;
1163 for (auto &Access : AccessInfos) {
1164 for (const auto &AccessTy : Accesses[Access]) {
1165 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1166 DepSetId, TheLoop, RunningDepId, ASId,
1167 ShouldCheckWrap, false)) {
1168 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1169 << *Access.getPointer() << '\n');
1170 Retries.emplace_back(Access, AccessTy);
1171 CanDoAliasSetRT = false;
1176 // Note that this function computes CanDoRT and MayNeedRTCheck
1177 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1178 // we have a pointer for which we couldn't find the bounds but we don't
1179 // actually need to emit any checks so it does not matter.
1181 // We need runtime checks for this alias set, if there are at least 2
1182 // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1183 // any bound checks (because in that case the number of dependence sets is
1184 // incomplete).
1185 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1187 // We need to perform run-time alias checks, but some pointers had bounds
1188 // that couldn't be checked.
1189 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1190 // Reset the CanDoSetRt flag and retry all accesses that have failed.
1191 // We know that we need these checks, so we can now be more aggressive
1192 // and add further checks if required (overflow checks).
1193 CanDoAliasSetRT = true;
1194 for (const auto &[Access, AccessTy] : Retries) {
1195 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1196 DepSetId, TheLoop, RunningDepId, ASId,
1197 ShouldCheckWrap, /*Assume=*/true)) {
1198 CanDoAliasSetRT = false;
1199 UncomputablePtr = Access.getPointer();
1200 break;
1205 CanDoRT &= CanDoAliasSetRT;
1206 MayNeedRTCheck |= NeedsAliasSetRTCheck;
1207 ++ASId;
1210 // If the pointers that we would use for the bounds comparison have different
1211 // address spaces, assume the values aren't directly comparable, so we can't
1212 // use them for the runtime check. We also have to assume they could
1213 // overlap. In the future there should be metadata for whether address spaces
1214 // are disjoint.
1215 unsigned NumPointers = RtCheck.Pointers.size();
1216 for (unsigned i = 0; i < NumPointers; ++i) {
1217 for (unsigned j = i + 1; j < NumPointers; ++j) {
1218 // Only need to check pointers between two different dependency sets.
1219 if (RtCheck.Pointers[i].DependencySetId ==
1220 RtCheck.Pointers[j].DependencySetId)
1221 continue;
1222 // Only need to check pointers in the same alias set.
1223 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1224 continue;
1226 Value *PtrI = RtCheck.Pointers[i].PointerValue;
1227 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1229 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1230 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1231 if (ASi != ASj) {
1232 LLVM_DEBUG(
1233 dbgs() << "LAA: Runtime check would require comparison between"
1234 " different address spaces\n");
1235 return false;
1240 if (MayNeedRTCheck && CanDoRT)
1241 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1243 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1244 << " pointer comparisons.\n");
1246 // If we can do run-time checks, but there are no checks, no runtime checks
1247 // are needed. This can happen when all pointers point to the same underlying
1248 // object for example.
1249 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1251 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1252 if (!CanDoRTIfNeeded)
1253 RtCheck.reset();
1254 return CanDoRTIfNeeded;
1257 void AccessAnalysis::processMemAccesses() {
1258 // We process the set twice: first we process read-write pointers, last we
1259 // process read-only pointers. This allows us to skip dependence tests for
1260 // read-only pointers.
1262 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1263 LLVM_DEBUG(dbgs() << " AST: "; AST.dump());
1264 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
1265 LLVM_DEBUG({
1266 for (const auto &[A, _] : Accesses)
1267 dbgs() << "\t" << *A.getPointer() << " ("
1268 << (A.getInt() ? "write"
1269 : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
1270 : "read"))
1271 << ")\n";
1274 // The AliasSetTracker has nicely partitioned our pointers by metadata
1275 // compatibility and potential for underlying-object overlap. As a result, we
1276 // only need to check for potential pointer dependencies within each alias
1277 // set.
1278 for (const auto &AS : AST) {
1279 // Note that both the alias-set tracker and the alias sets themselves used
1280 // ordered collections internally and so the iteration order here is
1281 // deterministic.
1282 auto ASPointers = AS.getPointers();
1284 bool SetHasWrite = false;
1286 // Map of pointers to last access encountered.
1287 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
1288 UnderlyingObjToAccessMap ObjToLastAccess;
1290 // Set of access to check after all writes have been processed.
1291 PtrAccessMap DeferredAccesses;
1293 // Iterate over each alias set twice, once to process read/write pointers,
1294 // and then to process read-only pointers.
1295 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1296 bool UseDeferred = SetIteration > 0;
1297 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1299 for (const Value *ConstPtr : ASPointers) {
1300 Value *Ptr = const_cast<Value *>(ConstPtr);
1302 // For a single memory access in AliasSetTracker, Accesses may contain
1303 // both read and write, and they both need to be handled for CheckDeps.
1304 for (const auto &[AC, _] : S) {
1305 if (AC.getPointer() != Ptr)
1306 continue;
1308 bool IsWrite = AC.getInt();
1310 // If we're using the deferred access set, then it contains only
1311 // reads.
1312 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
1313 if (UseDeferred && !IsReadOnlyPtr)
1314 continue;
1315 // Otherwise, the pointer must be in the PtrAccessSet, either as a
1316 // read or a write.
1317 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1318 S.count(MemAccessInfo(Ptr, false))) &&
1319 "Alias-set pointer not in the access set?");
1321 MemAccessInfo Access(Ptr, IsWrite);
1322 DepCands.insert(Access);
1324 // Memorize read-only pointers for later processing and skip them in
1325 // the first round (they need to be checked after we have seen all
1326 // write pointers). Note: we also mark pointer that are not
1327 // consecutive as "read-only" pointers (so that we check
1328 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1329 if (!UseDeferred && IsReadOnlyPtr) {
1330 // We only use the pointer keys, the types vector values don't
1331 // matter.
1332 DeferredAccesses.insert({Access, {}});
1333 continue;
1336 // If this is a write - check other reads and writes for conflicts. If
1337 // this is a read only check other writes for conflicts (but only if
1338 // there is no other write to the ptr - this is an optimization to
1339 // catch "a[i] = a[i] + " without having to do a dependence check).
1340 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1341 CheckDeps.push_back(Access);
1342 IsRTCheckAnalysisNeeded = true;
1345 if (IsWrite)
1346 SetHasWrite = true;
1348 // Create sets of pointers connected by a shared alias set and
1349 // underlying object.
1350 typedef SmallVector<const Value *, 16> ValueVector;
1351 ValueVector TempObjects;
1353 UnderlyingObjects[Ptr] = {};
1354 SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr];
1355 ::getUnderlyingObjects(Ptr, UOs, LI);
1356 LLVM_DEBUG(dbgs()
1357 << "Underlying objects for pointer " << *Ptr << "\n");
1358 for (const Value *UnderlyingObj : UOs) {
1359 // nullptr never alias, don't join sets for pointer that have "null"
1360 // in their UnderlyingObjects list.
1361 if (isa<ConstantPointerNull>(UnderlyingObj) &&
1362 !NullPointerIsDefined(
1363 TheLoop->getHeader()->getParent(),
1364 UnderlyingObj->getType()->getPointerAddressSpace()))
1365 continue;
1367 UnderlyingObjToAccessMap::iterator Prev =
1368 ObjToLastAccess.find(UnderlyingObj);
1369 if (Prev != ObjToLastAccess.end())
1370 DepCands.unionSets(Access, Prev->second);
1372 ObjToLastAccess[UnderlyingObj] = Access;
1373 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
1381 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1382 /// i.e. monotonically increasing/decreasing.
1383 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1384 PredicatedScalarEvolution &PSE, const Loop *L) {
1386 // FIXME: This should probably only return true for NUW.
1387 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1388 return true;
1390 if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
1391 return true;
1393 // Scalar evolution does not propagate the non-wrapping flags to values that
1394 // are derived from a non-wrapping induction variable because non-wrapping
1395 // could be flow-sensitive.
1397 // Look through the potentially overflowing instruction to try to prove
1398 // non-wrapping for the *specific* value of Ptr.
1400 // The arithmetic implied by an nusw GEP can't overflow.
1401 const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1402 if (!GEP || !GEP->hasNoUnsignedSignedWrap())
1403 return false;
1405 // Make sure there is only one non-const index and analyze that.
1406 Value *NonConstIndex = nullptr;
1407 for (Value *Index : GEP->indices())
1408 if (!isa<ConstantInt>(Index)) {
1409 if (NonConstIndex)
1410 return false;
1411 NonConstIndex = Index;
1413 if (!NonConstIndex)
1414 // The recurrence is on the pointer, ignore for now.
1415 return false;
1417 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
1418 // AddRec using a NSW operation.
1419 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1420 if (OBO->hasNoSignedWrap() &&
1421 // Assume constant for other the operand so that the AddRec can be
1422 // easily found.
1423 isa<ConstantInt>(OBO->getOperand(1))) {
1424 const SCEV *OpScev = PSE.getSCEV(OBO->getOperand(0));
1426 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1427 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1430 return false;
1433 /// Check whether the access through \p Ptr has a constant stride.
1434 std::optional<int64_t>
1435 llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
1436 const Loop *Lp,
1437 const DenseMap<Value *, const SCEV *> &StridesMap,
1438 bool Assume, bool ShouldCheckWrap) {
1439 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1440 if (PSE.getSE()->isLoopInvariant(PtrScev, Lp))
1441 return 0;
1443 Type *Ty = Ptr->getType();
1444 assert(Ty->isPointerTy() && "Unexpected non-ptr");
1445 if (isa<ScalableVectorType>(AccessTy)) {
1446 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1447 << "\n");
1448 return std::nullopt;
1451 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1452 if (Assume && !AR)
1453 AR = PSE.getAsAddRec(Ptr);
1455 if (!AR) {
1456 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1457 << " SCEV: " << *PtrScev << "\n");
1458 return std::nullopt;
1461 // The access function must stride over the innermost loop.
1462 if (Lp != AR->getLoop()) {
1463 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1464 << *Ptr << " SCEV: " << *AR << "\n");
1465 return std::nullopt;
1468 // Check the step is constant.
1469 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1471 // Calculate the pointer stride and check if it is constant.
1472 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1473 if (!C) {
1474 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1475 << " SCEV: " << *AR << "\n");
1476 return std::nullopt;
1479 const auto &DL = Lp->getHeader()->getDataLayout();
1480 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1481 int64_t Size = AllocSize.getFixedValue();
1482 const APInt &APStepVal = C->getAPInt();
1484 // Huge step value - give up.
1485 if (APStepVal.getBitWidth() > 64)
1486 return std::nullopt;
1488 int64_t StepVal = APStepVal.getSExtValue();
1490 // Strided access.
1491 int64_t Stride = StepVal / Size;
1492 int64_t Rem = StepVal % Size;
1493 if (Rem)
1494 return std::nullopt;
1496 if (!ShouldCheckWrap)
1497 return Stride;
1499 // The address calculation must not wrap. Otherwise, a dependence could be
1500 // inverted.
1501 if (isNoWrapAddRec(Ptr, AR, PSE, Lp))
1502 return Stride;
1504 // An nusw getelementptr that is an AddRec cannot wrap. If it would wrap,
1505 // the distance between the previously accessed location and the wrapped
1506 // location will be larger than half the pointer index type space. In that
1507 // case, the GEP would be poison and any memory access dependent on it would
1508 // be immediate UB when executed.
1509 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1510 GEP && GEP->hasNoUnsignedSignedWrap())
1511 return Stride;
1513 // If the null pointer is undefined, then a access sequence which would
1514 // otherwise access it can be assumed not to unsigned wrap. Note that this
1515 // assumes the object in memory is aligned to the natural alignment.
1516 unsigned AddrSpace = Ty->getPointerAddressSpace();
1517 if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) &&
1518 (Stride == 1 || Stride == -1))
1519 return Stride;
1521 if (Assume) {
1522 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1523 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1524 << "LAA: Pointer: " << *Ptr << "\n"
1525 << "LAA: SCEV: " << *AR << "\n"
1526 << "LAA: Added an overflow assumption\n");
1527 return Stride;
1529 LLVM_DEBUG(
1530 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1531 << *Ptr << " SCEV: " << *AR << "\n");
1532 return std::nullopt;
1535 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1536 Type *ElemTyB, Value *PtrB,
1537 const DataLayout &DL,
1538 ScalarEvolution &SE, bool StrictCheck,
1539 bool CheckType) {
1540 assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1542 // Make sure that A and B are different pointers.
1543 if (PtrA == PtrB)
1544 return 0;
1546 // Make sure that the element types are the same if required.
1547 if (CheckType && ElemTyA != ElemTyB)
1548 return std::nullopt;
1550 unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1551 unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1553 // Check that the address spaces match.
1554 if (ASA != ASB)
1555 return std::nullopt;
1556 unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1558 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1559 const Value *PtrA1 = PtrA->stripAndAccumulateConstantOffsets(
1560 DL, OffsetA, /*AllowNonInbounds=*/true);
1561 const Value *PtrB1 = PtrB->stripAndAccumulateConstantOffsets(
1562 DL, OffsetB, /*AllowNonInbounds=*/true);
1564 int Val;
1565 if (PtrA1 == PtrB1) {
1566 // Retrieve the address space again as pointer stripping now tracks through
1567 // `addrspacecast`.
1568 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1569 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1570 // Check that the address spaces match and that the pointers are valid.
1571 if (ASA != ASB)
1572 return std::nullopt;
1574 IdxWidth = DL.getIndexSizeInBits(ASA);
1575 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1576 OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1578 OffsetB -= OffsetA;
1579 Val = OffsetB.getSExtValue();
1580 } else {
1581 // Otherwise compute the distance with SCEV between the base pointers.
1582 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1583 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1584 std::optional<APInt> Diff =
1585 SE.computeConstantDifference(PtrSCEVB, PtrSCEVA);
1586 if (!Diff)
1587 return std::nullopt;
1588 Val = Diff->getSExtValue();
1590 int Size = DL.getTypeStoreSize(ElemTyA);
1591 int Dist = Val / Size;
1593 // Ensure that the calculated distance matches the type-based one after all
1594 // the bitcasts removal in the provided pointers.
1595 if (!StrictCheck || Dist * Size == Val)
1596 return Dist;
1597 return std::nullopt;
1600 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1601 const DataLayout &DL, ScalarEvolution &SE,
1602 SmallVectorImpl<unsigned> &SortedIndices) {
1603 assert(llvm::all_of(
1604 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1605 "Expected list of pointer operands.");
1606 // Walk over the pointers, and map each of them to an offset relative to
1607 // first pointer in the array.
1608 Value *Ptr0 = VL[0];
1610 using DistOrdPair = std::pair<int64_t, int>;
1611 auto Compare = llvm::less_first();
1612 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1613 Offsets.emplace(0, 0);
1614 bool IsConsecutive = true;
1615 for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) {
1616 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1617 /*StrictCheck=*/true);
1618 if (!Diff)
1619 return false;
1621 // Check if the pointer with the same offset is found.
1622 int64_t Offset = *Diff;
1623 auto [It, IsInserted] = Offsets.emplace(Offset, Idx);
1624 if (!IsInserted)
1625 return false;
1626 // Consecutive order if the inserted element is the last one.
1627 IsConsecutive &= std::next(It) == Offsets.end();
1629 SortedIndices.clear();
1630 if (!IsConsecutive) {
1631 // Fill SortedIndices array only if it is non-consecutive.
1632 SortedIndices.resize(VL.size());
1633 for (auto [Idx, Off] : enumerate(Offsets))
1634 SortedIndices[Idx] = Off.second;
1636 return true;
1639 /// Returns true if the memory operations \p A and \p B are consecutive.
1640 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1641 ScalarEvolution &SE, bool CheckType) {
1642 Value *PtrA = getLoadStorePointerOperand(A);
1643 Value *PtrB = getLoadStorePointerOperand(B);
1644 if (!PtrA || !PtrB)
1645 return false;
1646 Type *ElemTyA = getLoadStoreType(A);
1647 Type *ElemTyB = getLoadStoreType(B);
1648 std::optional<int> Diff =
1649 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1650 /*StrictCheck=*/true, CheckType);
1651 return Diff && *Diff == 1;
1654 void MemoryDepChecker::addAccess(StoreInst *SI) {
1655 visitPointers(SI->getPointerOperand(), *InnermostLoop,
1656 [this, SI](Value *Ptr) {
1657 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1658 InstMap.push_back(SI);
1659 ++AccessIdx;
1663 void MemoryDepChecker::addAccess(LoadInst *LI) {
1664 visitPointers(LI->getPointerOperand(), *InnermostLoop,
1665 [this, LI](Value *Ptr) {
1666 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1667 InstMap.push_back(LI);
1668 ++AccessIdx;
1672 MemoryDepChecker::VectorizationSafetyStatus
1673 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1674 switch (Type) {
1675 case NoDep:
1676 case Forward:
1677 case BackwardVectorizable:
1678 return VectorizationSafetyStatus::Safe;
1680 case Unknown:
1681 return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1682 case ForwardButPreventsForwarding:
1683 case Backward:
1684 case BackwardVectorizableButPreventsForwarding:
1685 case IndirectUnsafe:
1686 return VectorizationSafetyStatus::Unsafe;
1688 llvm_unreachable("unexpected DepType!");
1691 bool MemoryDepChecker::Dependence::isBackward() const {
1692 switch (Type) {
1693 case NoDep:
1694 case Forward:
1695 case ForwardButPreventsForwarding:
1696 case Unknown:
1697 case IndirectUnsafe:
1698 return false;
1700 case BackwardVectorizable:
1701 case Backward:
1702 case BackwardVectorizableButPreventsForwarding:
1703 return true;
1705 llvm_unreachable("unexpected DepType!");
1708 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1709 return isBackward() || Type == Unknown || Type == IndirectUnsafe;
1712 bool MemoryDepChecker::Dependence::isForward() const {
1713 switch (Type) {
1714 case Forward:
1715 case ForwardButPreventsForwarding:
1716 return true;
1718 case NoDep:
1719 case Unknown:
1720 case BackwardVectorizable:
1721 case Backward:
1722 case BackwardVectorizableButPreventsForwarding:
1723 case IndirectUnsafe:
1724 return false;
1726 llvm_unreachable("unexpected DepType!");
1729 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1730 uint64_t TypeByteSize) {
1731 // If loads occur at a distance that is not a multiple of a feasible vector
1732 // factor store-load forwarding does not take place.
1733 // Positive dependences might cause troubles because vectorizing them might
1734 // prevent store-load forwarding making vectorized code run a lot slower.
1735 // a[i] = a[i-3] ^ a[i-8];
1736 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1737 // hence on your typical architecture store-load forwarding does not take
1738 // place. Vectorizing in such cases does not make sense.
1739 // Store-load forwarding distance.
1741 // After this many iterations store-to-load forwarding conflicts should not
1742 // cause any slowdowns.
1743 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1744 // Maximum vector factor.
1745 uint64_t MaxVFWithoutSLForwardIssues = std::min(
1746 VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);
1748 // Compute the smallest VF at which the store and load would be misaligned.
1749 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1750 VF *= 2) {
1751 // If the number of vector iteration between the store and the load are
1752 // small we could incur conflicts.
1753 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1754 MaxVFWithoutSLForwardIssues = (VF >> 1);
1755 break;
1759 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1760 LLVM_DEBUG(
1761 dbgs() << "LAA: Distance " << Distance
1762 << " that could cause a store-load forwarding conflict\n");
1763 return true;
1766 if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
1767 MaxVFWithoutSLForwardIssues !=
1768 VectorizerParams::MaxVectorWidth * TypeByteSize)
1769 MinDepDistBytes = MaxVFWithoutSLForwardIssues;
1770 return false;
1773 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1774 if (Status < S)
1775 Status = S;
1778 /// Given a dependence-distance \p Dist between two
1779 /// memory accesses, that have strides in the same direction whose absolute
1780 /// value of the maximum stride is given in \p MaxStride, and that have the same
1781 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is
1782 /// \p MaxBTC, check if it is possible to prove statically that the dependence
1783 /// distance is larger than the range that the accesses will travel through the
1784 /// execution of the loop. If so, return true; false otherwise. This is useful
1785 /// for example in loops such as the following (PR31098):
1786 /// for (i = 0; i < D; ++i) {
1787 /// = out[i];
1788 /// out[i+D] =
1789 /// }
1790 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1791 const SCEV &MaxBTC, const SCEV &Dist,
1792 uint64_t MaxStride,
1793 uint64_t TypeByteSize) {
1795 // If we can prove that
1796 // (**) |Dist| > MaxBTC * Step
1797 // where Step is the absolute stride of the memory accesses in bytes,
1798 // then there is no dependence.
1800 // Rationale:
1801 // We basically want to check if the absolute distance (|Dist/Step|)
1802 // is >= the loop iteration count (or > MaxBTC).
1803 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1804 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1805 // that the dependence distance is >= VF; This is checked elsewhere.
1806 // But in some cases we can prune dependence distances early, and
1807 // even before selecting the VF, and without a runtime test, by comparing
1808 // the distance against the loop iteration count. Since the vectorized code
1809 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1810 // also guarantees that distance >= VF.
1812 const uint64_t ByteStride = MaxStride * TypeByteSize;
1813 const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride);
1814 const SCEV *Product = SE.getMulExpr(&MaxBTC, Step);
1816 const SCEV *CastedDist = &Dist;
1817 const SCEV *CastedProduct = Product;
1818 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1819 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1821 // The dependence distance can be positive/negative, so we sign extend Dist;
1822 // The multiplication of the absolute stride in bytes and the
1823 // backedgeTakenCount is non-negative, so we zero extend Product.
1824 if (DistTypeSizeBits > ProductTypeSizeBits)
1825 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1826 else
1827 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1829 // Is Dist - (MaxBTC * Step) > 0 ?
1830 // (If so, then we have proven (**) because |Dist| >= Dist)
1831 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1832 if (SE.isKnownPositive(Minus))
1833 return true;
1835 // Second try: Is -Dist - (MaxBTC * Step) > 0 ?
1836 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1837 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1838 Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1839 return SE.isKnownPositive(Minus);
1842 /// Check the dependence for two accesses with the same stride \p Stride.
1843 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1844 /// bytes.
1846 /// \returns true if they are independent.
1847 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1848 uint64_t TypeByteSize) {
1849 assert(Stride > 1 && "The stride must be greater than 1");
1850 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1851 assert(Distance > 0 && "The distance must be non-zero");
1853 // Skip if the distance is not multiple of type byte size.
1854 if (Distance % TypeByteSize)
1855 return false;
1857 uint64_t ScaledDist = Distance / TypeByteSize;
1859 // No dependence if the scaled distance is not multiple of the stride.
1860 // E.g.
1861 // for (i = 0; i < 1024 ; i += 4)
1862 // A[i+2] = A[i] + 1;
1864 // Two accesses in memory (scaled distance is 2, stride is 4):
1865 // | A[0] | | | | A[4] | | | |
1866 // | | | A[2] | | | | A[6] | |
1868 // E.g.
1869 // for (i = 0; i < 1024 ; i += 3)
1870 // A[i+4] = A[i] + 1;
1872 // Two accesses in memory (scaled distance is 4, stride is 3):
1873 // | A[0] | | | A[3] | | | A[6] | | |
1874 // | | | | | A[4] | | | A[7] | |
1875 return ScaledDist % Stride;
1878 std::variant<MemoryDepChecker::Dependence::DepType,
1879 MemoryDepChecker::DepDistanceStrideAndSizeInfo>
1880 MemoryDepChecker::getDependenceDistanceStrideAndSize(
1881 const AccessAnalysis::MemAccessInfo &A, Instruction *AInst,
1882 const AccessAnalysis::MemAccessInfo &B, Instruction *BInst) {
1883 const auto &DL = InnermostLoop->getHeader()->getDataLayout();
1884 auto &SE = *PSE.getSE();
1885 const auto &[APtr, AIsWrite] = A;
1886 const auto &[BPtr, BIsWrite] = B;
1888 // Two reads are independent.
1889 if (!AIsWrite && !BIsWrite)
1890 return MemoryDepChecker::Dependence::NoDep;
1892 Type *ATy = getLoadStoreType(AInst);
1893 Type *BTy = getLoadStoreType(BInst);
1895 // We cannot check pointers in different address spaces.
1896 if (APtr->getType()->getPointerAddressSpace() !=
1897 BPtr->getType()->getPointerAddressSpace())
1898 return MemoryDepChecker::Dependence::Unknown;
1900 std::optional<int64_t> StrideAPtr =
1901 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true, true);
1902 std::optional<int64_t> StrideBPtr =
1903 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true, true);
1905 const SCEV *Src = PSE.getSCEV(APtr);
1906 const SCEV *Sink = PSE.getSCEV(BPtr);
1908 // If the induction step is negative we have to invert source and sink of the
1909 // dependence when measuring the distance between them. We should not swap
1910 // AIsWrite with BIsWrite, as their uses expect them in program order.
1911 if (StrideAPtr && *StrideAPtr < 0) {
1912 std::swap(Src, Sink);
1913 std::swap(AInst, BInst);
1914 std::swap(ATy, BTy);
1915 std::swap(StrideAPtr, StrideBPtr);
1918 const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
1920 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1921 << "\n");
1922 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst
1923 << ": " << *Dist << "\n");
1925 // Check if we can prove that Sink only accesses memory after Src's end or
1926 // vice versa. At the moment this is limited to cases where either source or
1927 // sink are loop invariant to avoid compile-time increases. This is not
1928 // required for correctness.
1929 if (SE.isLoopInvariant(Src, InnermostLoop) ||
1930 SE.isLoopInvariant(Sink, InnermostLoop)) {
1931 const SCEV *MaxBECount = PSE.getSymbolicMaxBackedgeTakenCount();
1932 const auto &[SrcStart_, SrcEnd_] = getStartAndEndForAccess(
1933 InnermostLoop, Src, ATy, MaxBECount, PSE.getSE(), &PointerBounds);
1934 const auto &[SinkStart_, SinkEnd_] = getStartAndEndForAccess(
1935 InnermostLoop, Sink, BTy, MaxBECount, PSE.getSE(), &PointerBounds);
1936 if (!isa<SCEVCouldNotCompute>(SrcStart_) &&
1937 !isa<SCEVCouldNotCompute>(SrcEnd_) &&
1938 !isa<SCEVCouldNotCompute>(SinkStart_) &&
1939 !isa<SCEVCouldNotCompute>(SinkEnd_)) {
1940 if (!LoopGuards)
1941 LoopGuards.emplace(
1942 ScalarEvolution::LoopGuards::collect(InnermostLoop, SE));
1943 auto SrcEnd = SE.applyLoopGuards(SrcEnd_, *LoopGuards);
1944 auto SinkStart = SE.applyLoopGuards(SinkStart_, *LoopGuards);
1945 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart))
1946 return MemoryDepChecker::Dependence::NoDep;
1948 auto SinkEnd = SE.applyLoopGuards(SinkEnd_, *LoopGuards);
1949 auto SrcStart = SE.applyLoopGuards(SrcStart_, *LoopGuards);
1950 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart))
1951 return MemoryDepChecker::Dependence::NoDep;
1955 // Need accesses with constant strides and the same direction for further
1956 // dependence analysis. We don't want to vectorize "A[B[i]] += ..." and
1957 // similar code or pointer arithmetic that could wrap in the address space.
1959 // If either Src or Sink are not strided (i.e. not a non-wrapping AddRec) and
1960 // not loop-invariant (stride will be 0 in that case), we cannot analyze the
1961 // dependence further and also cannot generate runtime checks.
1962 if (!StrideAPtr || !StrideBPtr) {
1963 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1964 return MemoryDepChecker::Dependence::IndirectUnsafe;
1967 int64_t StrideAPtrInt = *StrideAPtr;
1968 int64_t StrideBPtrInt = *StrideBPtr;
1969 LLVM_DEBUG(dbgs() << "LAA: Src induction step: " << StrideAPtrInt
1970 << " Sink induction step: " << StrideBPtrInt << "\n");
1971 // At least Src or Sink are loop invariant and the other is strided or
1972 // invariant. We can generate a runtime check to disambiguate the accesses.
1973 if (!StrideAPtrInt || !StrideBPtrInt)
1974 return MemoryDepChecker::Dependence::Unknown;
1976 // Both Src and Sink have a constant stride, check if they are in the same
1977 // direction.
1978 if ((StrideAPtrInt > 0) != (StrideBPtrInt > 0)) {
1979 LLVM_DEBUG(
1980 dbgs() << "Pointer access with strides in different directions\n");
1981 return MemoryDepChecker::Dependence::Unknown;
1984 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1985 bool HasSameSize =
1986 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
1987 if (!HasSameSize)
1988 TypeByteSize = 0;
1990 StrideAPtrInt = std::abs(StrideAPtrInt);
1991 StrideBPtrInt = std::abs(StrideBPtrInt);
1993 uint64_t MaxStride = std::max(StrideAPtrInt, StrideBPtrInt);
1995 std::optional<uint64_t> CommonStride;
1996 if (StrideAPtrInt == StrideBPtrInt)
1997 CommonStride = StrideAPtrInt;
1999 // TODO: Historically, we don't retry with runtime checks unless the
2000 // (unscaled) strides are the same. Fix this once the condition for runtime
2001 // checks in isDependent is fixed.
2002 bool ShouldRetryWithRuntimeCheck = CommonStride.has_value();
2004 return DepDistanceStrideAndSizeInfo(Dist, MaxStride, CommonStride,
2005 ShouldRetryWithRuntimeCheck, TypeByteSize,
2006 AIsWrite, BIsWrite);
2009 MemoryDepChecker::Dependence::DepType
2010 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
2011 const MemAccessInfo &B, unsigned BIdx) {
2012 assert(AIdx < BIdx && "Must pass arguments in program order");
2014 // Get the dependence distance, stride, type size and what access writes for
2015 // the dependence between A and B.
2016 auto Res =
2017 getDependenceDistanceStrideAndSize(A, InstMap[AIdx], B, InstMap[BIdx]);
2018 if (std::holds_alternative<Dependence::DepType>(Res))
2019 return std::get<Dependence::DepType>(Res);
2021 auto &[Dist, MaxStride, CommonStride, ShouldRetryWithRuntimeCheck,
2022 TypeByteSize, AIsWrite, BIsWrite] =
2023 std::get<DepDistanceStrideAndSizeInfo>(Res);
2024 bool HasSameSize = TypeByteSize > 0;
2026 if (isa<SCEVCouldNotCompute>(Dist)) {
2027 // TODO: Relax requirement that there is a common unscaled stride to retry
2028 // with non-constant distance dependencies.
2029 FoundNonConstantDistanceDependence |= ShouldRetryWithRuntimeCheck;
2030 LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n");
2031 return Dependence::Unknown;
2034 ScalarEvolution &SE = *PSE.getSE();
2035 auto &DL = InnermostLoop->getHeader()->getDataLayout();
2037 // If the distance between the acecsses is larger than their maximum absolute
2038 // stride multiplied by the symbolic maximum backedge taken count (which is an
2039 // upper bound of the number of iterations), the accesses are independet, i.e.
2040 // they are far enough appart that accesses won't access the same location
2041 // across all loop ierations.
2042 if (HasSameSize && isSafeDependenceDistance(
2043 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()),
2044 *Dist, MaxStride, TypeByteSize))
2045 return Dependence::NoDep;
2047 const SCEVConstant *ConstDist = dyn_cast<SCEVConstant>(Dist);
2049 // Attempt to prove strided accesses independent.
2050 if (ConstDist) {
2051 uint64_t Distance = ConstDist->getAPInt().abs().getZExtValue();
2053 // If the distance between accesses and their strides are known constants,
2054 // check whether the accesses interlace each other.
2055 if (Distance > 0 && CommonStride && CommonStride > 1 && HasSameSize &&
2056 areStridedAccessesIndependent(Distance, *CommonStride, TypeByteSize)) {
2057 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
2058 return Dependence::NoDep;
2060 } else {
2061 if (!LoopGuards)
2062 LoopGuards.emplace(
2063 ScalarEvolution::LoopGuards::collect(InnermostLoop, SE));
2064 Dist = SE.applyLoopGuards(Dist, *LoopGuards);
2067 // Negative distances are not plausible dependencies.
2068 if (SE.isKnownNonPositive(Dist)) {
2069 if (SE.isKnownNonNegative(Dist)) {
2070 if (HasSameSize) {
2071 // Write to the same location with the same size.
2072 return Dependence::Forward;
2074 LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but "
2075 "different type sizes\n");
2076 return Dependence::Unknown;
2079 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2080 // Check if the first access writes to a location that is read in a later
2081 // iteration, where the distance between them is not a multiple of a vector
2082 // factor and relatively small.
2084 // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to
2085 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a
2086 // forward dependency will allow vectorization using any width.
2088 if (IsTrueDataDependence && EnableForwardingConflictDetection) {
2089 if (!ConstDist) {
2090 // TODO: FoundNonConstantDistanceDependence is used as a necessary
2091 // condition to consider retrying with runtime checks. Historically, we
2092 // did not set it when strides were different but there is no inherent
2093 // reason to.
2094 FoundNonConstantDistanceDependence |= ShouldRetryWithRuntimeCheck;
2095 return Dependence::Unknown;
2097 if (!HasSameSize ||
2098 couldPreventStoreLoadForward(
2099 ConstDist->getAPInt().abs().getZExtValue(), TypeByteSize)) {
2100 LLVM_DEBUG(
2101 dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
2102 return Dependence::ForwardButPreventsForwarding;
2106 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
2107 return Dependence::Forward;
2110 int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue();
2111 // Below we only handle strictly positive distances.
2112 if (MinDistance <= 0) {
2113 FoundNonConstantDistanceDependence |= ShouldRetryWithRuntimeCheck;
2114 return Dependence::Unknown;
2117 if (!ConstDist) {
2118 // Previously this case would be treated as Unknown, possibly setting
2119 // FoundNonConstantDistanceDependence to force re-trying with runtime
2120 // checks. Until the TODO below is addressed, set it here to preserve
2121 // original behavior w.r.t. re-trying with runtime checks.
2122 // TODO: FoundNonConstantDistanceDependence is used as a necessary
2123 // condition to consider retrying with runtime checks. Historically, we
2124 // did not set it when strides were different but there is no inherent
2125 // reason to.
2126 FoundNonConstantDistanceDependence |= ShouldRetryWithRuntimeCheck;
2129 if (!HasSameSize) {
2130 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
2131 "different type sizes\n");
2132 return Dependence::Unknown;
2135 if (!CommonStride)
2136 return Dependence::Unknown;
2138 // Bail out early if passed-in parameters make vectorization not feasible.
2139 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
2140 VectorizerParams::VectorizationFactor : 1);
2141 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
2142 VectorizerParams::VectorizationInterleave : 1);
2143 // The minimum number of iterations for a vectorized/unrolled version.
2144 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2146 // It's not vectorizable if the distance is smaller than the minimum distance
2147 // needed for a vectroized/unrolled version. Vectorizing one iteration in
2148 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
2149 // TypeByteSize (No need to plus the last gap distance).
2151 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2152 // foo(int *A) {
2153 // int *B = (int *)((char *)A + 14);
2154 // for (i = 0 ; i < 1024 ; i += 2)
2155 // B[i] = A[i] + 1;
2156 // }
2158 // Two accesses in memory (stride is 2):
2159 // | A[0] | | A[2] | | A[4] | | A[6] | |
2160 // | B[0] | | B[2] | | B[4] |
2162 // MinDistance needs for vectorizing iterations except the last iteration:
2163 // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4.
2164 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2166 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2167 // 12, which is less than distance.
2169 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2170 // the minimum distance needed is 28, which is greater than distance. It is
2171 // not safe to do vectorization.
2173 // We know that Dist is positive, but it may not be constant. Use the signed
2174 // minimum for computations below, as this ensures we compute the closest
2175 // possible dependence distance.
2176 uint64_t MinDistanceNeeded =
2177 TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize;
2178 if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) {
2179 if (!ConstDist) {
2180 // For non-constant distances, we checked the lower bound of the
2181 // dependence distance and the distance may be larger at runtime (and safe
2182 // for vectorization). Classify it as Unknown, so we re-try with runtime
2183 // checks.
2184 return Dependence::Unknown;
2186 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance "
2187 << MinDistance << '\n');
2188 return Dependence::Backward;
2191 // Unsafe if the minimum distance needed is greater than smallest dependence
2192 // distance distance.
2193 if (MinDistanceNeeded > MinDepDistBytes) {
2194 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2195 << MinDistanceNeeded << " size in bytes\n");
2196 return Dependence::Backward;
2199 // Positive distance bigger than max vectorization factor.
2200 // FIXME: Should use max factor instead of max distance in bytes, which could
2201 // not handle different types.
2202 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2203 // void foo (int *A, char *B) {
2204 // for (unsigned i = 0; i < 1024; i++) {
2205 // A[i+2] = A[i] + 1;
2206 // B[i+2] = B[i] + 1;
2207 // }
2208 // }
2210 // This case is currently unsafe according to the max safe distance. If we
2211 // analyze the two accesses on array B, the max safe dependence distance
2212 // is 2. Then we analyze the accesses on array A, the minimum distance needed
2213 // is 8, which is less than 2 and forbidden vectorization, But actually
2214 // both A and B could be vectorized by 2 iterations.
2215 MinDepDistBytes =
2216 std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes);
2218 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2219 uint64_t MinDepDistBytesOld = MinDepDistBytes;
2220 if (IsTrueDataDependence && EnableForwardingConflictDetection && ConstDist &&
2221 couldPreventStoreLoadForward(MinDistance, TypeByteSize)) {
2222 // Sanity check that we didn't update MinDepDistBytes when calling
2223 // couldPreventStoreLoadForward
2224 assert(MinDepDistBytes == MinDepDistBytesOld &&
2225 "An update to MinDepDistBytes requires an update to "
2226 "MaxSafeVectorWidthInBits");
2227 (void)MinDepDistBytesOld;
2228 return Dependence::BackwardVectorizableButPreventsForwarding;
2231 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
2232 // since there is a backwards dependency.
2233 uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride);
2234 LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance
2235 << " with max VF = " << MaxVF << '\n');
2237 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2238 if (!ConstDist && MaxVFInBits < MaxTargetVectorWidthInBits) {
2239 // For non-constant distances, we checked the lower bound of the dependence
2240 // distance and the distance may be larger at runtime (and safe for
2241 // vectorization). Classify it as Unknown, so we re-try with runtime checks.
2242 return Dependence::Unknown;
2245 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2246 return Dependence::BackwardVectorizable;
2249 bool MemoryDepChecker::areDepsSafe(const DepCandidates &AccessSets,
2250 const MemAccessInfoList &CheckDeps) {
2252 MinDepDistBytes = -1;
2253 SmallPtrSet<MemAccessInfo, 8> Visited;
2254 for (MemAccessInfo CurAccess : CheckDeps) {
2255 if (Visited.count(CurAccess))
2256 continue;
2258 // Get the relevant memory access set.
2259 EquivalenceClasses<MemAccessInfo>::iterator I =
2260 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
2262 // Check accesses within this set.
2263 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
2264 AccessSets.member_begin(I);
2265 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
2266 AccessSets.member_end();
2268 // Check every access pair.
2269 while (AI != AE) {
2270 Visited.insert(*AI);
2271 bool AIIsWrite = AI->getInt();
2272 // Check loads only against next equivalent class, but stores also against
2273 // other stores in the same equivalence class - to the same address.
2274 EquivalenceClasses<MemAccessInfo>::member_iterator OI =
2275 (AIIsWrite ? AI : std::next(AI));
2276 while (OI != AE) {
2277 // Check every accessing instruction pair in program order.
2278 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2279 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
2280 // Scan all accesses of another equivalence class, but only the next
2281 // accesses of the same equivalent class.
2282 for (std::vector<unsigned>::iterator
2283 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2284 I2E = (OI == AI ? I1E : Accesses[*OI].end());
2285 I2 != I2E; ++I2) {
2286 auto A = std::make_pair(&*AI, *I1);
2287 auto B = std::make_pair(&*OI, *I2);
2289 assert(*I1 != *I2);
2290 if (*I1 > *I2)
2291 std::swap(A, B);
2293 Dependence::DepType Type =
2294 isDependent(*A.first, A.second, *B.first, B.second);
2295 mergeInStatus(Dependence::isSafeForVectorization(Type));
2297 // Gather dependences unless we accumulated MaxDependences
2298 // dependences. In that case return as soon as we find the first
2299 // unsafe dependence. This puts a limit on this quadratic
2300 // algorithm.
2301 if (RecordDependences) {
2302 if (Type != Dependence::NoDep)
2303 Dependences.emplace_back(A.second, B.second, Type);
2305 if (Dependences.size() >= MaxDependences) {
2306 RecordDependences = false;
2307 Dependences.clear();
2308 LLVM_DEBUG(dbgs()
2309 << "Too many dependences, stopped recording\n");
2312 if (!RecordDependences && !isSafeForVectorization())
2313 return false;
2315 ++OI;
2317 ++AI;
2321 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2322 return isSafeForVectorization();
2325 SmallVector<Instruction *, 4>
2326 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool IsWrite) const {
2327 MemAccessInfo Access(Ptr, IsWrite);
2328 auto &IndexVector = Accesses.find(Access)->second;
2330 SmallVector<Instruction *, 4> Insts;
2331 transform(IndexVector,
2332 std::back_inserter(Insts),
2333 [&](unsigned Idx) { return this->InstMap[Idx]; });
2334 return Insts;
2337 const char *MemoryDepChecker::Dependence::DepName[] = {
2338 "NoDep",
2339 "Unknown",
2340 "IndirectUnsafe",
2341 "Forward",
2342 "ForwardButPreventsForwarding",
2343 "Backward",
2344 "BackwardVectorizable",
2345 "BackwardVectorizableButPreventsForwarding"};
2347 void MemoryDepChecker::Dependence::print(
2348 raw_ostream &OS, unsigned Depth,
2349 const SmallVectorImpl<Instruction *> &Instrs) const {
2350 OS.indent(Depth) << DepName[Type] << ":\n";
2351 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2352 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2355 bool LoopAccessInfo::canAnalyzeLoop() {
2356 // We need to have a loop header.
2357 LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '"
2358 << TheLoop->getHeader()->getParent()->getName() << "' from "
2359 << TheLoop->getLocStr() << "\n");
2361 // We can only analyze innermost loops.
2362 if (!TheLoop->isInnermost()) {
2363 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2364 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2365 return false;
2368 // We must have a single backedge.
2369 if (TheLoop->getNumBackEdges() != 1) {
2370 LLVM_DEBUG(
2371 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2372 recordAnalysis("CFGNotUnderstood")
2373 << "loop control flow is not understood by analyzer";
2374 return false;
2377 // ScalarEvolution needs to be able to find the symbolic max backedge taken
2378 // count, which is an upper bound on the number of loop iterations. The loop
2379 // may execute fewer iterations, if it exits via an uncountable exit.
2380 const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount();
2381 if (isa<SCEVCouldNotCompute>(ExitCount)) {
2382 recordAnalysis("CantComputeNumberOfIterations")
2383 << "could not determine number of loop iterations";
2384 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2385 return false;
2388 LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: "
2389 << TheLoop->getHeader()->getName() << "\n");
2390 return true;
2393 bool LoopAccessInfo::analyzeLoop(AAResults *AA, const LoopInfo *LI,
2394 const TargetLibraryInfo *TLI,
2395 DominatorTree *DT) {
2396 // Holds the Load and Store instructions.
2397 SmallVector<LoadInst *, 16> Loads;
2398 SmallVector<StoreInst *, 16> Stores;
2399 SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2401 // Holds all the different accesses in the loop.
2402 unsigned NumReads = 0;
2403 unsigned NumReadWrites = 0;
2405 bool HasComplexMemInst = false;
2407 // A runtime check is only legal to insert if there are no convergent calls.
2408 HasConvergentOp = false;
2410 PtrRtChecking->Pointers.clear();
2411 PtrRtChecking->Need = false;
2413 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2415 const bool EnableMemAccessVersioningOfLoop =
2416 EnableMemAccessVersioning &&
2417 !TheLoop->getHeader()->getParent()->hasOptSize();
2419 // Traverse blocks in fixed RPOT order, regardless of their storage in the
2420 // loop info, as it may be arbitrary.
2421 LoopBlocksRPO RPOT(TheLoop);
2422 RPOT.perform(LI);
2423 for (BasicBlock *BB : RPOT) {
2424 // Scan the BB and collect legal loads and stores. Also detect any
2425 // convergent instructions.
2426 for (Instruction &I : *BB) {
2427 if (auto *Call = dyn_cast<CallBase>(&I)) {
2428 if (Call->isConvergent())
2429 HasConvergentOp = true;
2432 // With both a non-vectorizable memory instruction and a convergent
2433 // operation, found in this loop, no reason to continue the search.
2434 if (HasComplexMemInst && HasConvergentOp)
2435 return false;
2437 // Avoid hitting recordAnalysis multiple times.
2438 if (HasComplexMemInst)
2439 continue;
2441 // Record alias scopes defined inside the loop.
2442 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
2443 for (Metadata *Op : Decl->getScopeList()->operands())
2444 LoopAliasScopes.insert(cast<MDNode>(Op));
2446 // Many math library functions read the rounding mode. We will only
2447 // vectorize a loop if it contains known function calls that don't set
2448 // the flag. Therefore, it is safe to ignore this read from memory.
2449 auto *Call = dyn_cast<CallInst>(&I);
2450 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
2451 continue;
2453 // If this is a load, save it. If this instruction can read from memory
2454 // but is not a load, we only allow it if it's a call to a function with a
2455 // vector mapping and no pointer arguments.
2456 if (I.mayReadFromMemory()) {
2457 auto hasPointerArgs = [](CallBase *CB) {
2458 return any_of(CB->args(), [](Value const *Arg) {
2459 return Arg->getType()->isPointerTy();
2463 // If the function has an explicit vectorized counterpart, and does not
2464 // take output/input pointers, we can safely assume that it can be
2465 // vectorized.
2466 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2467 !hasPointerArgs(Call) && !VFDatabase::getMappings(*Call).empty())
2468 continue;
2470 auto *Ld = dyn_cast<LoadInst>(&I);
2471 if (!Ld) {
2472 recordAnalysis("CantVectorizeInstruction", Ld)
2473 << "instruction cannot be vectorized";
2474 HasComplexMemInst = true;
2475 continue;
2477 if (!Ld->isSimple() && !IsAnnotatedParallel) {
2478 recordAnalysis("NonSimpleLoad", Ld)
2479 << "read with atomic ordering or volatile read";
2480 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2481 HasComplexMemInst = true;
2482 continue;
2484 NumLoads++;
2485 Loads.push_back(Ld);
2486 DepChecker->addAccess(Ld);
2487 if (EnableMemAccessVersioningOfLoop)
2488 collectStridedAccess(Ld);
2489 continue;
2492 // Save 'store' instructions. Abort if other instructions write to memory.
2493 if (I.mayWriteToMemory()) {
2494 auto *St = dyn_cast<StoreInst>(&I);
2495 if (!St) {
2496 recordAnalysis("CantVectorizeInstruction", St)
2497 << "instruction cannot be vectorized";
2498 HasComplexMemInst = true;
2499 continue;
2501 if (!St->isSimple() && !IsAnnotatedParallel) {
2502 recordAnalysis("NonSimpleStore", St)
2503 << "write with atomic ordering or volatile write";
2504 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2505 HasComplexMemInst = true;
2506 continue;
2508 NumStores++;
2509 Stores.push_back(St);
2510 DepChecker->addAccess(St);
2511 if (EnableMemAccessVersioningOfLoop)
2512 collectStridedAccess(St);
2514 } // Next instr.
2515 } // Next block.
2517 if (HasComplexMemInst)
2518 return false;
2520 // Now we have two lists that hold the loads and the stores.
2521 // Next, we find the pointers that they use.
2523 // Check if we see any stores. If there are no stores, then we don't
2524 // care if the pointers are *restrict*.
2525 if (!Stores.size()) {
2526 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2527 return true;
2530 MemoryDepChecker::DepCandidates DependentAccesses;
2531 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE,
2532 LoopAliasScopes);
2534 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2535 // multiple times on the same object. If the ptr is accessed twice, once
2536 // for read and once for write, it will only appear once (on the write
2537 // list). This is okay, since we are going to check for conflicts between
2538 // writes and between reads and writes, but not between reads and reads.
2539 SmallSet<std::pair<Value *, Type *>, 16> Seen;
2541 // Record uniform store addresses to identify if we have multiple stores
2542 // to the same address.
2543 SmallPtrSet<Value *, 16> UniformStores;
2545 for (StoreInst *ST : Stores) {
2546 Value *Ptr = ST->getPointerOperand();
2548 if (isInvariant(Ptr)) {
2549 // Record store instructions to loop invariant addresses
2550 StoresToInvariantAddresses.push_back(ST);
2551 HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2552 !UniformStores.insert(Ptr).second;
2555 // If we did *not* see this pointer before, insert it to the read-write
2556 // list. At this phase it is only a 'write' list.
2557 Type *AccessTy = getLoadStoreType(ST);
2558 if (Seen.insert({Ptr, AccessTy}).second) {
2559 ++NumReadWrites;
2561 MemoryLocation Loc = MemoryLocation::get(ST);
2562 // The TBAA metadata could have a control dependency on the predication
2563 // condition, so we cannot rely on it when determining whether or not we
2564 // need runtime pointer checks.
2565 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2566 Loc.AATags.TBAA = nullptr;
2568 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2569 [&Accesses, AccessTy, Loc](Value *Ptr) {
2570 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2571 Accesses.addStore(NewLoc, AccessTy);
2576 if (IsAnnotatedParallel) {
2577 LLVM_DEBUG(
2578 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2579 << "checks.\n");
2580 return true;
2583 for (LoadInst *LD : Loads) {
2584 Value *Ptr = LD->getPointerOperand();
2585 // If we did *not* see this pointer before, insert it to the
2586 // read list. If we *did* see it before, then it is already in
2587 // the read-write list. This allows us to vectorize expressions
2588 // such as A[i] += x; Because the address of A[i] is a read-write
2589 // pointer. This only works if the index of A[i] is consecutive.
2590 // If the address of i is unknown (for example A[B[i]]) then we may
2591 // read a few words, modify, and write a few words, and some of the
2592 // words may be written to the same address.
2593 bool IsReadOnlyPtr = false;
2594 Type *AccessTy = getLoadStoreType(LD);
2595 if (Seen.insert({Ptr, AccessTy}).second ||
2596 !getPtrStride(*PSE, AccessTy, Ptr, TheLoop, SymbolicStrides)) {
2597 ++NumReads;
2598 IsReadOnlyPtr = true;
2601 // See if there is an unsafe dependency between a load to a uniform address and
2602 // store to the same uniform address.
2603 if (UniformStores.count(Ptr)) {
2604 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2605 "load and uniform store to the same address!\n");
2606 HasLoadStoreDependenceInvolvingLoopInvariantAddress = true;
2609 MemoryLocation Loc = MemoryLocation::get(LD);
2610 // The TBAA metadata could have a control dependency on the predication
2611 // condition, so we cannot rely on it when determining whether or not we
2612 // need runtime pointer checks.
2613 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2614 Loc.AATags.TBAA = nullptr;
2616 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2617 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2618 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2619 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2623 // If we write (or read-write) to a single destination and there are no
2624 // other reads in this loop then is it safe to vectorize.
2625 if (NumReadWrites == 1 && NumReads == 0) {
2626 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2627 return true;
2630 // Build dependence sets and check whether we need a runtime pointer bounds
2631 // check.
2632 Accesses.buildDependenceSets();
2634 // Find pointers with computable bounds. We are going to use this information
2635 // to place a runtime bound check.
2636 Value *UncomputablePtr = nullptr;
2637 bool CanDoRTIfNeeded =
2638 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
2639 SymbolicStrides, UncomputablePtr, false);
2640 if (!CanDoRTIfNeeded) {
2641 const auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2642 recordAnalysis("CantIdentifyArrayBounds", I)
2643 << "cannot identify array bounds";
2644 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2645 << "the array bounds.\n");
2646 return false;
2649 LLVM_DEBUG(
2650 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2652 bool DepsAreSafe = true;
2653 if (Accesses.isDependencyCheckNeeded()) {
2654 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2655 DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses,
2656 Accesses.getDependenciesToCheck());
2658 if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) {
2659 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2661 // Clear the dependency checks. We assume they are not needed.
2662 Accesses.resetDepChecks(*DepChecker);
2664 PtrRtChecking->reset();
2665 PtrRtChecking->Need = true;
2667 auto *SE = PSE->getSE();
2668 UncomputablePtr = nullptr;
2669 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2670 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
2672 // Check that we found the bounds for the pointer.
2673 if (!CanDoRTIfNeeded) {
2674 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2675 recordAnalysis("CantCheckMemDepsAtRunTime", I)
2676 << "cannot check memory dependencies at runtime";
2677 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2678 return false;
2680 DepsAreSafe = true;
2684 if (HasConvergentOp) {
2685 recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2686 << "cannot add control dependency to convergent operation";
2687 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2688 "would be needed with a convergent operation\n");
2689 return false;
2692 if (DepsAreSafe) {
2693 LLVM_DEBUG(
2694 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
2695 << (PtrRtChecking->Need ? "" : " don't")
2696 << " need runtime memory checks.\n");
2697 return true;
2700 emitUnsafeDependenceRemark();
2701 return false;
2704 void LoopAccessInfo::emitUnsafeDependenceRemark() {
2705 const auto *Deps = getDepChecker().getDependences();
2706 if (!Deps)
2707 return;
2708 const auto *Found =
2709 llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2710 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
2711 MemoryDepChecker::VectorizationSafetyStatus::Safe;
2713 if (Found == Deps->end())
2714 return;
2715 MemoryDepChecker::Dependence Dep = *Found;
2717 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2719 // Emit remark for first unsafe dependence
2720 bool HasForcedDistribution = false;
2721 std::optional<const MDOperand *> Value =
2722 findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable");
2723 if (Value) {
2724 const MDOperand *Op = *Value;
2725 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
2726 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
2729 const std::string Info =
2730 HasForcedDistribution
2731 ? "unsafe dependent memory operations in loop."
2732 : "unsafe dependent memory operations in loop. Use "
2733 "#pragma clang loop distribute(enable) to allow loop distribution "
2734 "to attempt to isolate the offending operations into a separate "
2735 "loop";
2736 OptimizationRemarkAnalysis &R =
2737 recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info;
2739 switch (Dep.Type) {
2740 case MemoryDepChecker::Dependence::NoDep:
2741 case MemoryDepChecker::Dependence::Forward:
2742 case MemoryDepChecker::Dependence::BackwardVectorizable:
2743 llvm_unreachable("Unexpected dependence");
2744 case MemoryDepChecker::Dependence::Backward:
2745 R << "\nBackward loop carried data dependence.";
2746 break;
2747 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
2748 R << "\nForward loop carried data dependence that prevents "
2749 "store-to-load forwarding.";
2750 break;
2751 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
2752 R << "\nBackward loop carried data dependence that prevents "
2753 "store-to-load forwarding.";
2754 break;
2755 case MemoryDepChecker::Dependence::IndirectUnsafe:
2756 R << "\nUnsafe indirect dependence.";
2757 break;
2758 case MemoryDepChecker::Dependence::Unknown:
2759 R << "\nUnknown data dependence.";
2760 break;
2763 if (Instruction *I = Dep.getSource(getDepChecker())) {
2764 DebugLoc SourceLoc = I->getDebugLoc();
2765 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
2766 SourceLoc = DD->getDebugLoc();
2767 if (SourceLoc)
2768 R << " Memory location is the same as accessed at "
2769 << ore::NV("Location", SourceLoc);
2773 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2774 DominatorTree *DT) {
2775 assert(TheLoop->contains(BB) && "Unknown block used");
2777 // Blocks that do not dominate the latch need predication.
2778 const BasicBlock *Latch = TheLoop->getLoopLatch();
2779 return !DT->dominates(BB, Latch);
2782 OptimizationRemarkAnalysis &
2783 LoopAccessInfo::recordAnalysis(StringRef RemarkName, const Instruction *I) {
2784 assert(!Report && "Multiple reports generated");
2786 const Value *CodeRegion = TheLoop->getHeader();
2787 DebugLoc DL = TheLoop->getStartLoc();
2789 if (I) {
2790 CodeRegion = I->getParent();
2791 // If there is no debug location attached to the instruction, revert back to
2792 // using the loop's.
2793 if (I->getDebugLoc())
2794 DL = I->getDebugLoc();
2797 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2798 CodeRegion);
2799 return *Report;
2802 bool LoopAccessInfo::isInvariant(Value *V) const {
2803 auto *SE = PSE->getSE();
2804 // TODO: Is this really what we want? Even without FP SCEV, we may want some
2805 // trivially loop-invariant FP values to be considered invariant.
2806 if (!SE->isSCEVable(V->getType()))
2807 return false;
2808 const SCEV *S = SE->getSCEV(V);
2809 return SE->isLoopInvariant(S, TheLoop);
2812 /// Find the operand of the GEP that should be checked for consecutive
2813 /// stores. This ignores trailing indices that have no effect on the final
2814 /// pointer.
2815 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
2816 const DataLayout &DL = Gep->getDataLayout();
2817 unsigned LastOperand = Gep->getNumOperands() - 1;
2818 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
2820 // Walk backwards and try to peel off zeros.
2821 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
2822 // Find the type we're currently indexing into.
2823 gep_type_iterator GEPTI = gep_type_begin(Gep);
2824 std::advance(GEPTI, LastOperand - 2);
2826 // If it's a type with the same allocation size as the result of the GEP we
2827 // can peel off the zero index.
2828 TypeSize ElemSize = GEPTI.isStruct()
2829 ? DL.getTypeAllocSize(GEPTI.getIndexedType())
2830 : GEPTI.getSequentialElementStride(DL);
2831 if (ElemSize != GEPAllocSize)
2832 break;
2833 --LastOperand;
2836 return LastOperand;
2839 /// If the argument is a GEP, then returns the operand identified by
2840 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
2841 /// operand, it returns that instead.
2842 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2843 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2844 if (!GEP)
2845 return Ptr;
2847 unsigned InductionOperand = getGEPInductionOperand(GEP);
2849 // Check that all of the gep indices are uniform except for our induction
2850 // operand.
2851 for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I)
2852 if (I != InductionOperand &&
2853 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp))
2854 return Ptr;
2855 return GEP->getOperand(InductionOperand);
2858 /// Get the stride of a pointer access in a loop. Looks for symbolic
2859 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2860 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2861 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2862 if (!PtrTy)
2863 return nullptr;
2865 // Try to remove a gep instruction to make the pointer (actually index at this
2866 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2867 // pointer, otherwise, we are analyzing the index.
2868 Value *OrigPtr = Ptr;
2870 Ptr = stripGetElementPtr(Ptr, SE, Lp);
2871 const SCEV *V = SE->getSCEV(Ptr);
2873 if (Ptr != OrigPtr)
2874 // Strip off casts.
2875 while (auto *C = dyn_cast<SCEVIntegralCastExpr>(V))
2876 V = C->getOperand();
2878 auto *S = dyn_cast<SCEVAddRecExpr>(V);
2879 if (!S)
2880 return nullptr;
2882 // If the pointer is invariant then there is no stride and it makes no
2883 // sense to add it here.
2884 if (Lp != S->getLoop())
2885 return nullptr;
2887 V = S->getStepRecurrence(*SE);
2889 // Strip off the size of access multiplication if we are still analyzing the
2890 // pointer.
2891 if (OrigPtr == Ptr) {
2892 if (auto *M = dyn_cast<SCEVMulExpr>(V)) {
2893 auto *StepConst = dyn_cast<SCEVConstant>(M->getOperand(0));
2894 if (!StepConst)
2895 return nullptr;
2897 auto StepVal = StepConst->getAPInt().trySExtValue();
2898 // Bail out on a non-unit pointer access size.
2899 if (!StepVal || StepVal != 1)
2900 return nullptr;
2902 V = M->getOperand(1);
2906 // Note that the restriction after this loop invariant check are only
2907 // profitability restrictions.
2908 if (!SE->isLoopInvariant(V, Lp))
2909 return nullptr;
2911 // Look for the loop invariant symbolic value.
2912 if (isa<SCEVUnknown>(V))
2913 return V;
2915 if (auto *C = dyn_cast<SCEVIntegralCastExpr>(V))
2916 if (isa<SCEVUnknown>(C->getOperand()))
2917 return V;
2919 return nullptr;
2922 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2923 Value *Ptr = getLoadStorePointerOperand(MemAccess);
2924 if (!Ptr)
2925 return;
2927 // Note: getStrideFromPointer is a *profitability* heuristic. We
2928 // could broaden the scope of values returned here - to anything
2929 // which happens to be loop invariant and contributes to the
2930 // computation of an interesting IV - but we chose not to as we
2931 // don't have a cost model here, and broadening the scope exposes
2932 // far too many unprofitable cases.
2933 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2934 if (!StrideExpr)
2935 return;
2937 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2938 "versioning:");
2939 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n");
2941 if (!SpeculateUnitStride) {
2942 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n");
2943 return;
2946 // Avoid adding the "Stride == 1" predicate when we know that
2947 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2948 // or zero iteration loop, as Trip-Count <= Stride == 1.
2950 // TODO: We are currently not making a very informed decision on when it is
2951 // beneficial to apply stride versioning. It might make more sense that the
2952 // users of this analysis (such as the vectorizer) will trigger it, based on
2953 // their specific cost considerations; For example, in cases where stride
2954 // versioning does not help resolving memory accesses/dependences, the
2955 // vectorizer should evaluate the cost of the runtime test, and the benefit
2956 // of various possible stride specializations, considering the alternatives
2957 // of using gather/scatters (if available).
2959 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
2961 // Match the types so we can compare the stride and the MaxBTC.
2962 // The Stride can be positive/negative, so we sign extend Stride;
2963 // The backedgeTakenCount is non-negative, so we zero extend MaxBTC.
2964 const DataLayout &DL = TheLoop->getHeader()->getDataLayout();
2965 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
2966 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType());
2967 const SCEV *CastedStride = StrideExpr;
2968 const SCEV *CastedBECount = MaxBTC;
2969 ScalarEvolution *SE = PSE->getSE();
2970 if (BETypeSizeBits >= StrideTypeSizeBits)
2971 CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType());
2972 else
2973 CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType());
2974 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2975 // Since TripCount == BackEdgeTakenCount + 1, checking:
2976 // "Stride >= TripCount" is equivalent to checking:
2977 // Stride - MaxBTC> 0
2978 if (SE->isKnownPositive(StrideMinusBETaken)) {
2979 LLVM_DEBUG(
2980 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2981 "Stride==1 predicate will imply that the loop executes "
2982 "at most once.\n");
2983 return;
2985 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
2987 // Strip back off the integer cast, and check that our result is a
2988 // SCEVUnknown as we expect.
2989 const SCEV *StrideBase = StrideExpr;
2990 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
2991 StrideBase = C->getOperand();
2992 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase);
2995 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2996 const TargetTransformInfo *TTI,
2997 const TargetLibraryInfo *TLI, AAResults *AA,
2998 DominatorTree *DT, LoopInfo *LI)
2999 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
3000 PtrRtChecking(nullptr), TheLoop(L) {
3001 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3002 if (TTI) {
3003 TypeSize FixedWidth =
3004 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
3005 if (FixedWidth.isNonZero()) {
3006 // Scale the vector width by 2 as rough estimate to also consider
3007 // interleaving.
3008 MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2;
3011 TypeSize ScalableWidth =
3012 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector);
3013 if (ScalableWidth.isNonZero())
3014 MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3016 DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides,
3017 MaxTargetVectorWidthInBits);
3018 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
3019 if (canAnalyzeLoop())
3020 CanVecMem = analyzeLoop(AA, LI, TLI, DT);
3023 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
3024 if (CanVecMem) {
3025 OS.indent(Depth) << "Memory dependences are safe";
3026 const MemoryDepChecker &DC = getDepChecker();
3027 if (!DC.isSafeForAnyVectorWidth())
3028 OS << " with a maximum safe vector width of "
3029 << DC.getMaxSafeVectorWidthInBits() << " bits";
3030 if (PtrRtChecking->Need)
3031 OS << " with run-time checks";
3032 OS << "\n";
3035 if (HasConvergentOp)
3036 OS.indent(Depth) << "Has convergent operation in loop\n";
3038 if (Report)
3039 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
3041 if (auto *Dependences = DepChecker->getDependences()) {
3042 OS.indent(Depth) << "Dependences:\n";
3043 for (const auto &Dep : *Dependences) {
3044 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
3045 OS << "\n";
3047 } else
3048 OS.indent(Depth) << "Too many dependences, not recorded\n";
3050 // List the pair of accesses need run-time checks to prove independence.
3051 PtrRtChecking->print(OS, Depth);
3052 OS << "\n";
3054 OS.indent(Depth)
3055 << "Non vectorizable stores to invariant address were "
3056 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3057 HasLoadStoreDependenceInvolvingLoopInvariantAddress
3058 ? ""
3059 : "not ")
3060 << "found in loop.\n";
3062 OS.indent(Depth) << "SCEV assumptions:\n";
3063 PSE->getPredicate().print(OS, Depth);
3065 OS << "\n";
3067 OS.indent(Depth) << "Expressions re-written:\n";
3068 PSE->print(OS, Depth);
3071 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
3072 const auto &[It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr});
3074 if (Inserted)
3075 It->second =
3076 std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI);
3078 return *It->second;
3080 void LoopAccessInfoManager::clear() {
3081 SmallVector<Loop *> ToRemove;
3082 // Collect LoopAccessInfo entries that may keep references to IR outside the
3083 // analyzed loop or SCEVs that may have been modified or invalidated. At the
3084 // moment, that is loops requiring memory or SCEV runtime checks, as those cache
3085 // SCEVs, e.g. for pointer expressions.
3086 for (const auto &[L, LAI] : LoopAccessInfoMap) {
3087 if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3088 LAI->getPSE().getPredicate().isAlwaysTrue())
3089 continue;
3090 ToRemove.push_back(L);
3093 for (Loop *L : ToRemove)
3094 LoopAccessInfoMap.erase(L);
3097 bool LoopAccessInfoManager::invalidate(
3098 Function &F, const PreservedAnalyses &PA,
3099 FunctionAnalysisManager::Invalidator &Inv) {
3100 // Check whether our analysis is preserved.
3101 auto PAC = PA.getChecker<LoopAccessAnalysis>();
3102 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3103 // If not, give up now.
3104 return true;
3106 // Check whether the analyses we depend on became invalid for any reason.
3107 // Skip checking TargetLibraryAnalysis as it is immutable and can't become
3108 // invalid.
3109 return Inv.invalidate<AAManager>(F, PA) ||
3110 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3111 Inv.invalidate<LoopAnalysis>(F, PA) ||
3112 Inv.invalidate<DominatorTreeAnalysis>(F, PA);
3115 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
3116 FunctionAnalysisManager &FAM) {
3117 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
3118 auto &AA = FAM.getResult<AAManager>(F);
3119 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
3120 auto &LI = FAM.getResult<LoopAnalysis>(F);
3121 auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
3122 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
3123 return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI);
3126 AnalysisKey LoopAccessAnalysis::Key;