1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AliasSetTracker.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/PatternMatch.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
69 using namespace llvm::PatternMatch
;
71 #define DEBUG_TYPE "loop-accesses"
73 static cl::opt
<unsigned, true>
74 VectorizationFactor("force-vector-width", cl::Hidden
,
75 cl::desc("Sets the SIMD width. Zero is autoselect."),
76 cl::location(VectorizerParams::VectorizationFactor
));
77 unsigned VectorizerParams::VectorizationFactor
;
79 static cl::opt
<unsigned, true>
80 VectorizationInterleave("force-vector-interleave", cl::Hidden
,
81 cl::desc("Sets the vectorization interleave count. "
82 "Zero is autoselect."),
84 VectorizerParams::VectorizationInterleave
));
85 unsigned VectorizerParams::VectorizationInterleave
;
87 static cl::opt
<unsigned, true> RuntimeMemoryCheckThreshold(
88 "runtime-memory-check-threshold", cl::Hidden
,
89 cl::desc("When performing memory disambiguation checks at runtime do not "
90 "generate more than this number of comparisons (default = 8)."),
91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold
), cl::init(8));
92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold
;
94 /// The maximum iterations used to merge memory checks
95 static cl::opt
<unsigned> MemoryCheckMergeThreshold(
96 "memory-check-merge-threshold", cl::Hidden
,
97 cl::desc("Maximum number of comparisons done when trying to merge "
98 "runtime memory checks. (default = 100)"),
101 /// Maximum SIMD width.
102 const unsigned VectorizerParams::MaxVectorWidth
= 64;
104 /// We collect dependences up to this threshold.
105 static cl::opt
<unsigned>
106 MaxDependences("max-dependences", cl::Hidden
,
107 cl::desc("Maximum number of dependences collected by "
108 "loop-access analysis (default = 100)"),
111 /// This enables versioning on the strides of symbolically striding memory
112 /// accesses in code like the following.
113 /// for (i = 0; i < N; ++i)
114 /// A[i * Stride1] += B[i * Stride2] ...
116 /// Will be roughly translated to
117 /// if (Stride1 == 1 && Stride2 == 1) {
118 /// for (i = 0; i < N; i+=4)
122 static cl::opt
<bool> EnableMemAccessVersioning(
123 "enable-mem-access-versioning", cl::init(true), cl::Hidden
,
124 cl::desc("Enable symbolic stride memory access versioning"));
126 /// Enable store-to-load forwarding conflict detection. This option can
127 /// be disabled for correctness testing.
128 static cl::opt
<bool> EnableForwardingConflictDetection(
129 "store-to-load-forwarding-conflict-detection", cl::Hidden
,
130 cl::desc("Enable conflict detection in loop-access analysis"),
133 static cl::opt
<unsigned> MaxForkedSCEVDepth(
134 "max-forked-scev-depth", cl::Hidden
,
135 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
138 static cl::opt
<bool> SpeculateUnitStride(
139 "laa-speculate-unit-stride", cl::Hidden
,
140 cl::desc("Speculate that non-constant strides are unit in LAA"),
143 static cl::opt
<bool, true> HoistRuntimeChecks(
144 "hoist-runtime-checks", cl::Hidden
,
146 "Hoist inner loop runtime memory checks to outer loop if possible"),
147 cl::location(VectorizerParams::HoistRuntimeChecks
), cl::init(true));
148 bool VectorizerParams::HoistRuntimeChecks
;
150 bool VectorizerParams::isInterleaveForced() {
151 return ::VectorizationInterleave
.getNumOccurrences() > 0;
154 const SCEV
*llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution
&PSE
,
155 const DenseMap
<Value
*, const SCEV
*> &PtrToStride
,
157 const SCEV
*OrigSCEV
= PSE
.getSCEV(Ptr
);
159 // If there is an entry in the map return the SCEV of the pointer with the
160 // symbolic stride replaced by one.
161 DenseMap
<Value
*, const SCEV
*>::const_iterator SI
= PtrToStride
.find(Ptr
);
162 if (SI
== PtrToStride
.end())
163 // For a non-symbolic stride, just return the original expression.
166 const SCEV
*StrideSCEV
= SI
->second
;
167 // Note: This assert is both overly strong and overly weak. The actual
168 // invariant here is that StrideSCEV should be loop invariant. The only
169 // such invariant strides we happen to speculate right now are unknowns
170 // and thus this is a reasonable proxy of the actual invariant.
171 assert(isa
<SCEVUnknown
>(StrideSCEV
) && "shouldn't be in map");
173 ScalarEvolution
*SE
= PSE
.getSE();
174 const SCEV
*CT
= SE
->getOne(StrideSCEV
->getType());
175 PSE
.addPredicate(*SE
->getEqualPredicate(StrideSCEV
, CT
));
176 const SCEV
*Expr
= PSE
.getSCEV(Ptr
);
178 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
179 << " by: " << *Expr
<< "\n");
183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
184 unsigned Index
, const RuntimePointerChecking
&RtCheck
)
185 : High(RtCheck
.Pointers
[Index
].End
), Low(RtCheck
.Pointers
[Index
].Start
),
186 AddressSpace(RtCheck
.Pointers
[Index
]
187 .PointerValue
->getType()
188 ->getPointerAddressSpace()),
189 NeedsFreeze(RtCheck
.Pointers
[Index
].NeedsFreeze
) {
190 Members
.push_back(Index
);
193 std::pair
<const SCEV
*, const SCEV
*> llvm::getStartAndEndForAccess(
194 const Loop
*Lp
, const SCEV
*PtrExpr
, Type
*AccessTy
, const SCEV
*MaxBECount
,
196 DenseMap
<std::pair
<const SCEV
*, Type
*>,
197 std::pair
<const SCEV
*, const SCEV
*>> *PointerBounds
) {
198 std::pair
<const SCEV
*, const SCEV
*> *PtrBoundsPair
;
200 auto [Iter
, Ins
] = PointerBounds
->insert(
201 {{PtrExpr
, AccessTy
},
202 {SE
->getCouldNotCompute(), SE
->getCouldNotCompute()}});
205 PtrBoundsPair
= &Iter
->second
;
211 if (SE
->isLoopInvariant(PtrExpr
, Lp
)) {
212 ScStart
= ScEnd
= PtrExpr
;
213 } else if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PtrExpr
)) {
214 ScStart
= AR
->getStart();
215 ScEnd
= AR
->evaluateAtIteration(MaxBECount
, *SE
);
216 const SCEV
*Step
= AR
->getStepRecurrence(*SE
);
218 // For expressions with negative step, the upper bound is ScStart and the
219 // lower bound is ScEnd.
220 if (const auto *CStep
= dyn_cast
<SCEVConstant
>(Step
)) {
221 if (CStep
->getValue()->isNegative())
222 std::swap(ScStart
, ScEnd
);
224 // Fallback case: the step is not constant, but we can still
225 // get the upper and lower bounds of the interval by using min/max
227 ScStart
= SE
->getUMinExpr(ScStart
, ScEnd
);
228 ScEnd
= SE
->getUMaxExpr(AR
->getStart(), ScEnd
);
231 return {SE
->getCouldNotCompute(), SE
->getCouldNotCompute()};
233 assert(SE
->isLoopInvariant(ScStart
, Lp
) && "ScStart needs to be invariant");
234 assert(SE
->isLoopInvariant(ScEnd
, Lp
) && "ScEnd needs to be invariant");
236 // Add the size of the pointed element to ScEnd.
237 auto &DL
= Lp
->getHeader()->getDataLayout();
238 Type
*IdxTy
= DL
.getIndexType(PtrExpr
->getType());
239 const SCEV
*EltSizeSCEV
= SE
->getStoreSizeOfExpr(IdxTy
, AccessTy
);
240 ScEnd
= SE
->getAddExpr(ScEnd
, EltSizeSCEV
);
242 std::pair
<const SCEV
*, const SCEV
*> Res
= {ScStart
, ScEnd
};
244 *PtrBoundsPair
= Res
;
248 /// Calculate Start and End points of memory access using
249 /// getStartAndEndForAccess.
250 void RuntimePointerChecking::insert(Loop
*Lp
, Value
*Ptr
, const SCEV
*PtrExpr
,
251 Type
*AccessTy
, bool WritePtr
,
252 unsigned DepSetId
, unsigned ASId
,
253 PredicatedScalarEvolution
&PSE
,
255 const SCEV
*MaxBECount
= PSE
.getSymbolicMaxBackedgeTakenCount();
256 const auto &[ScStart
, ScEnd
] = getStartAndEndForAccess(
257 Lp
, PtrExpr
, AccessTy
, MaxBECount
, PSE
.getSE(), &DC
.getPointerBounds());
258 assert(!isa
<SCEVCouldNotCompute
>(ScStart
) &&
259 !isa
<SCEVCouldNotCompute
>(ScEnd
) &&
260 "must be able to compute both start and end expressions");
261 Pointers
.emplace_back(Ptr
, ScStart
, ScEnd
, WritePtr
, DepSetId
, ASId
, PtrExpr
,
265 bool RuntimePointerChecking::tryToCreateDiffCheck(
266 const RuntimeCheckingPtrGroup
&CGI
, const RuntimeCheckingPtrGroup
&CGJ
) {
267 // If either group contains multiple different pointers, bail out.
268 // TODO: Support multiple pointers by using the minimum or maximum pointer,
269 // depending on src & sink.
270 if (CGI
.Members
.size() != 1 || CGJ
.Members
.size() != 1)
273 const PointerInfo
*Src
= &Pointers
[CGI
.Members
[0]];
274 const PointerInfo
*Sink
= &Pointers
[CGJ
.Members
[0]];
276 // If either pointer is read and written, multiple checks may be needed. Bail
278 if (!DC
.getOrderForAccess(Src
->PointerValue
, !Src
->IsWritePtr
).empty() ||
279 !DC
.getOrderForAccess(Sink
->PointerValue
, !Sink
->IsWritePtr
).empty())
282 ArrayRef
<unsigned> AccSrc
=
283 DC
.getOrderForAccess(Src
->PointerValue
, Src
->IsWritePtr
);
284 ArrayRef
<unsigned> AccSink
=
285 DC
.getOrderForAccess(Sink
->PointerValue
, Sink
->IsWritePtr
);
286 // If either pointer is accessed multiple times, there may not be a clear
287 // src/sink relation. Bail out for now.
288 if (AccSrc
.size() != 1 || AccSink
.size() != 1)
291 // If the sink is accessed before src, swap src/sink.
292 if (AccSink
[0] < AccSrc
[0])
293 std::swap(Src
, Sink
);
295 auto *SrcAR
= dyn_cast
<SCEVAddRecExpr
>(Src
->Expr
);
296 auto *SinkAR
= dyn_cast
<SCEVAddRecExpr
>(Sink
->Expr
);
297 if (!SrcAR
|| !SinkAR
|| SrcAR
->getLoop() != DC
.getInnermostLoop() ||
298 SinkAR
->getLoop() != DC
.getInnermostLoop())
301 SmallVector
<Instruction
*, 4> SrcInsts
=
302 DC
.getInstructionsForAccess(Src
->PointerValue
, Src
->IsWritePtr
);
303 SmallVector
<Instruction
*, 4> SinkInsts
=
304 DC
.getInstructionsForAccess(Sink
->PointerValue
, Sink
->IsWritePtr
);
305 Type
*SrcTy
= getLoadStoreType(SrcInsts
[0]);
306 Type
*DstTy
= getLoadStoreType(SinkInsts
[0]);
307 if (isa
<ScalableVectorType
>(SrcTy
) || isa
<ScalableVectorType
>(DstTy
))
310 const DataLayout
&DL
=
311 SinkAR
->getLoop()->getHeader()->getDataLayout();
313 std::max(DL
.getTypeAllocSize(SrcTy
), DL
.getTypeAllocSize(DstTy
));
315 // Only matching constant steps matching the AllocSize are supported at the
316 // moment. This simplifies the difference computation. Can be extended in the
318 auto *Step
= dyn_cast
<SCEVConstant
>(SinkAR
->getStepRecurrence(*SE
));
319 if (!Step
|| Step
!= SrcAR
->getStepRecurrence(*SE
) ||
320 Step
->getAPInt().abs() != AllocSize
)
324 IntegerType::get(Src
->PointerValue
->getContext(),
325 DL
.getPointerSizeInBits(CGI
.AddressSpace
));
327 // When counting down, the dependence distance needs to be swapped.
328 if (Step
->getValue()->isNegative())
329 std::swap(SinkAR
, SrcAR
);
331 const SCEV
*SinkStartInt
= SE
->getPtrToIntExpr(SinkAR
->getStart(), IntTy
);
332 const SCEV
*SrcStartInt
= SE
->getPtrToIntExpr(SrcAR
->getStart(), IntTy
);
333 if (isa
<SCEVCouldNotCompute
>(SinkStartInt
) ||
334 isa
<SCEVCouldNotCompute
>(SrcStartInt
))
337 const Loop
*InnerLoop
= SrcAR
->getLoop();
338 // If the start values for both Src and Sink also vary according to an outer
339 // loop, then it's probably better to avoid creating diff checks because
340 // they may not be hoisted. We should instead let llvm::addRuntimeChecks
341 // do the expanded full range overlap checks, which can be hoisted.
342 if (HoistRuntimeChecks
&& InnerLoop
->getParentLoop() &&
343 isa
<SCEVAddRecExpr
>(SinkStartInt
) && isa
<SCEVAddRecExpr
>(SrcStartInt
)) {
344 auto *SrcStartAR
= cast
<SCEVAddRecExpr
>(SrcStartInt
);
345 auto *SinkStartAR
= cast
<SCEVAddRecExpr
>(SinkStartInt
);
346 const Loop
*StartARLoop
= SrcStartAR
->getLoop();
347 if (StartARLoop
== SinkStartAR
->getLoop() &&
348 StartARLoop
== InnerLoop
->getParentLoop() &&
349 // If the diff check would already be loop invariant (due to the
350 // recurrences being the same), then we prefer to keep the diff checks
351 // because they are cheaper.
352 SrcStartAR
->getStepRecurrence(*SE
) !=
353 SinkStartAR
->getStepRecurrence(*SE
)) {
354 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
355 "cannot be hoisted out of the outer loop\n");
360 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
361 << "SrcStart: " << *SrcStartInt
<< '\n'
362 << "SinkStartInt: " << *SinkStartInt
<< '\n');
363 DiffChecks
.emplace_back(SrcStartInt
, SinkStartInt
, AllocSize
,
364 Src
->NeedsFreeze
|| Sink
->NeedsFreeze
);
368 SmallVector
<RuntimePointerCheck
, 4> RuntimePointerChecking::generateChecks() {
369 SmallVector
<RuntimePointerCheck
, 4> Checks
;
371 for (unsigned I
= 0; I
< CheckingGroups
.size(); ++I
) {
372 for (unsigned J
= I
+ 1; J
< CheckingGroups
.size(); ++J
) {
373 const RuntimeCheckingPtrGroup
&CGI
= CheckingGroups
[I
];
374 const RuntimeCheckingPtrGroup
&CGJ
= CheckingGroups
[J
];
376 if (needsChecking(CGI
, CGJ
)) {
377 CanUseDiffCheck
= CanUseDiffCheck
&& tryToCreateDiffCheck(CGI
, CGJ
);
378 Checks
.emplace_back(&CGI
, &CGJ
);
385 void RuntimePointerChecking::generateChecks(
386 MemoryDepChecker::DepCandidates
&DepCands
, bool UseDependencies
) {
387 assert(Checks
.empty() && "Checks is not empty");
388 groupChecks(DepCands
, UseDependencies
);
389 Checks
= generateChecks();
392 bool RuntimePointerChecking::needsChecking(
393 const RuntimeCheckingPtrGroup
&M
, const RuntimeCheckingPtrGroup
&N
) const {
394 for (const auto &I
: M
.Members
)
395 for (const auto &J
: N
.Members
)
396 if (needsChecking(I
, J
))
401 /// Compare \p I and \p J and return the minimum.
402 /// Return nullptr in case we couldn't find an answer.
403 static const SCEV
*getMinFromExprs(const SCEV
*I
, const SCEV
*J
,
404 ScalarEvolution
*SE
) {
405 std::optional
<APInt
> Diff
= SE
->computeConstantDifference(J
, I
);
408 return Diff
->isNegative() ? J
: I
;
411 bool RuntimeCheckingPtrGroup::addPointer(
412 unsigned Index
, const RuntimePointerChecking
&RtCheck
) {
414 Index
, RtCheck
.Pointers
[Index
].Start
, RtCheck
.Pointers
[Index
].End
,
415 RtCheck
.Pointers
[Index
].PointerValue
->getType()->getPointerAddressSpace(),
416 RtCheck
.Pointers
[Index
].NeedsFreeze
, *RtCheck
.SE
);
419 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index
, const SCEV
*Start
,
420 const SCEV
*End
, unsigned AS
,
422 ScalarEvolution
&SE
) {
423 assert(AddressSpace
== AS
&&
424 "all pointers in a checking group must be in the same address space");
426 // Compare the starts and ends with the known minimum and maximum
427 // of this set. We need to know how we compare against the min/max
428 // of the set in order to be able to emit memchecks.
429 const SCEV
*Min0
= getMinFromExprs(Start
, Low
, &SE
);
433 const SCEV
*Min1
= getMinFromExprs(End
, High
, &SE
);
437 // Update the low bound expression if we've found a new min value.
441 // Update the high bound expression if we've found a new max value.
445 Members
.push_back(Index
);
446 this->NeedsFreeze
|= NeedsFreeze
;
450 void RuntimePointerChecking::groupChecks(
451 MemoryDepChecker::DepCandidates
&DepCands
, bool UseDependencies
) {
452 // We build the groups from dependency candidates equivalence classes
454 // - We know that pointers in the same equivalence class share
455 // the same underlying object and therefore there is a chance
456 // that we can compare pointers
457 // - We wouldn't be able to merge two pointers for which we need
458 // to emit a memcheck. The classes in DepCands are already
459 // conveniently built such that no two pointers in the same
460 // class need checking against each other.
462 // We use the following (greedy) algorithm to construct the groups
463 // For every pointer in the equivalence class:
464 // For each existing group:
465 // - if the difference between this pointer and the min/max bounds
466 // of the group is a constant, then make the pointer part of the
467 // group and update the min/max bounds of that group as required.
469 CheckingGroups
.clear();
471 // If we need to check two pointers to the same underlying object
472 // with a non-constant difference, we shouldn't perform any pointer
473 // grouping with those pointers. This is because we can easily get
474 // into cases where the resulting check would return false, even when
475 // the accesses are safe.
477 // The following example shows this:
478 // for (i = 0; i < 1000; ++i)
479 // a[5000 + i * m] = a[i] + a[i + 9000]
481 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
482 // (0, 10000) which is always false. However, if m is 1, there is no
483 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
484 // us to perform an accurate check in this case.
486 // The above case requires that we have an UnknownDependence between
487 // accesses to the same underlying object. This cannot happen unless
488 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
489 // is also false. In this case we will use the fallback path and create
490 // separate checking groups for all pointers.
492 // If we don't have the dependency partitions, construct a new
493 // checking pointer group for each pointer. This is also required
494 // for correctness, because in this case we can have checking between
495 // pointers to the same underlying object.
496 if (!UseDependencies
) {
497 for (unsigned I
= 0; I
< Pointers
.size(); ++I
)
498 CheckingGroups
.emplace_back(I
, *this);
502 unsigned TotalComparisons
= 0;
504 DenseMap
<Value
*, SmallVector
<unsigned>> PositionMap
;
505 for (unsigned Index
= 0; Index
< Pointers
.size(); ++Index
)
506 PositionMap
[Pointers
[Index
].PointerValue
].push_back(Index
);
508 // We need to keep track of what pointers we've already seen so we
509 // don't process them twice.
510 SmallSet
<unsigned, 2> Seen
;
512 // Go through all equivalence classes, get the "pointer check groups"
513 // and add them to the overall solution. We use the order in which accesses
514 // appear in 'Pointers' to enforce determinism.
515 for (unsigned I
= 0; I
< Pointers
.size(); ++I
) {
516 // We've seen this pointer before, and therefore already processed
517 // its equivalence class.
521 MemoryDepChecker::MemAccessInfo
Access(Pointers
[I
].PointerValue
,
522 Pointers
[I
].IsWritePtr
);
524 SmallVector
<RuntimeCheckingPtrGroup
, 2> Groups
;
525 auto LeaderI
= DepCands
.findValue(DepCands
.getLeaderValue(Access
));
527 // Because DepCands is constructed by visiting accesses in the order in
528 // which they appear in alias sets (which is deterministic) and the
529 // iteration order within an equivalence class member is only dependent on
530 // the order in which unions and insertions are performed on the
531 // equivalence class, the iteration order is deterministic.
532 for (auto MI
= DepCands
.member_begin(LeaderI
), ME
= DepCands
.member_end();
534 auto PointerI
= PositionMap
.find(MI
->getPointer());
535 assert(PointerI
!= PositionMap
.end() &&
536 "pointer in equivalence class not found in PositionMap");
537 for (unsigned Pointer
: PointerI
->second
) {
539 // Mark this pointer as seen.
540 Seen
.insert(Pointer
);
542 // Go through all the existing sets and see if we can find one
543 // which can include this pointer.
544 for (RuntimeCheckingPtrGroup
&Group
: Groups
) {
545 // Don't perform more than a certain amount of comparisons.
546 // This should limit the cost of grouping the pointers to something
547 // reasonable. If we do end up hitting this threshold, the algorithm
548 // will create separate groups for all remaining pointers.
549 if (TotalComparisons
> MemoryCheckMergeThreshold
)
554 if (Group
.addPointer(Pointer
, *this)) {
561 // We couldn't add this pointer to any existing set or the threshold
562 // for the number of comparisons has been reached. Create a new group
563 // to hold the current pointer.
564 Groups
.emplace_back(Pointer
, *this);
568 // We've computed the grouped checks for this partition.
569 // Save the results and continue with the next one.
570 llvm::copy(Groups
, std::back_inserter(CheckingGroups
));
574 bool RuntimePointerChecking::arePointersInSamePartition(
575 const SmallVectorImpl
<int> &PtrToPartition
, unsigned PtrIdx1
,
577 return (PtrToPartition
[PtrIdx1
] != -1 &&
578 PtrToPartition
[PtrIdx1
] == PtrToPartition
[PtrIdx2
]);
581 bool RuntimePointerChecking::needsChecking(unsigned I
, unsigned J
) const {
582 const PointerInfo
&PointerI
= Pointers
[I
];
583 const PointerInfo
&PointerJ
= Pointers
[J
];
585 // No need to check if two readonly pointers intersect.
586 if (!PointerI
.IsWritePtr
&& !PointerJ
.IsWritePtr
)
589 // Only need to check pointers between two different dependency sets.
590 if (PointerI
.DependencySetId
== PointerJ
.DependencySetId
)
593 // Only need to check pointers in the same alias set.
594 return PointerI
.AliasSetId
== PointerJ
.AliasSetId
;
597 void RuntimePointerChecking::printChecks(
598 raw_ostream
&OS
, const SmallVectorImpl
<RuntimePointerCheck
> &Checks
,
599 unsigned Depth
) const {
601 for (const auto &[Check1
, Check2
] : Checks
) {
602 const auto &First
= Check1
->Members
, &Second
= Check2
->Members
;
604 OS
.indent(Depth
) << "Check " << N
++ << ":\n";
606 OS
.indent(Depth
+ 2) << "Comparing group (" << Check1
<< "):\n";
607 for (unsigned K
: First
)
608 OS
.indent(Depth
+ 2) << *Pointers
[K
].PointerValue
<< "\n";
610 OS
.indent(Depth
+ 2) << "Against group (" << Check2
<< "):\n";
611 for (unsigned K
: Second
)
612 OS
.indent(Depth
+ 2) << *Pointers
[K
].PointerValue
<< "\n";
616 void RuntimePointerChecking::print(raw_ostream
&OS
, unsigned Depth
) const {
618 OS
.indent(Depth
) << "Run-time memory checks:\n";
619 printChecks(OS
, Checks
, Depth
);
621 OS
.indent(Depth
) << "Grouped accesses:\n";
622 for (const auto &CG
: CheckingGroups
) {
623 OS
.indent(Depth
+ 2) << "Group " << &CG
<< ":\n";
624 OS
.indent(Depth
+ 4) << "(Low: " << *CG
.Low
<< " High: " << *CG
.High
626 for (unsigned Member
: CG
.Members
) {
627 OS
.indent(Depth
+ 6) << "Member: " << *Pointers
[Member
].Expr
<< "\n";
634 /// Analyses memory accesses in a loop.
636 /// Checks whether run time pointer checks are needed and builds sets for data
637 /// dependence checking.
638 class AccessAnalysis
{
640 /// Read or write access location.
641 typedef PointerIntPair
<Value
*, 1, bool> MemAccessInfo
;
642 typedef SmallVector
<MemAccessInfo
, 8> MemAccessInfoList
;
644 AccessAnalysis(const Loop
*TheLoop
, AAResults
*AA
, const LoopInfo
*LI
,
645 MemoryDepChecker::DepCandidates
&DA
,
646 PredicatedScalarEvolution
&PSE
,
647 SmallPtrSetImpl
<MDNode
*> &LoopAliasScopes
)
648 : TheLoop(TheLoop
), BAA(*AA
), AST(BAA
), LI(LI
), DepCands(DA
), PSE(PSE
),
649 LoopAliasScopes(LoopAliasScopes
) {
650 // We're analyzing dependences across loop iterations.
651 BAA
.enableCrossIterationMode();
654 /// Register a load and whether it is only read from.
655 void addLoad(const MemoryLocation
&Loc
, Type
*AccessTy
, bool IsReadOnly
) {
656 Value
*Ptr
= const_cast<Value
*>(Loc
.Ptr
);
657 AST
.add(adjustLoc(Loc
));
658 Accesses
[MemAccessInfo(Ptr
, false)].insert(AccessTy
);
660 ReadOnlyPtr
.insert(Ptr
);
663 /// Register a store.
664 void addStore(const MemoryLocation
&Loc
, Type
*AccessTy
) {
665 Value
*Ptr
= const_cast<Value
*>(Loc
.Ptr
);
666 AST
.add(adjustLoc(Loc
));
667 Accesses
[MemAccessInfo(Ptr
, true)].insert(AccessTy
);
670 /// Check if we can emit a run-time no-alias check for \p Access.
672 /// Returns true if we can emit a run-time no alias check for \p Access.
673 /// If we can check this access, this also adds it to a dependence set and
674 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
675 /// we will attempt to use additional run-time checks in order to get
676 /// the bounds of the pointer.
677 bool createCheckForAccess(RuntimePointerChecking
&RtCheck
,
678 MemAccessInfo Access
, Type
*AccessTy
,
679 const DenseMap
<Value
*, const SCEV
*> &Strides
,
680 DenseMap
<Value
*, unsigned> &DepSetId
,
681 Loop
*TheLoop
, unsigned &RunningDepId
,
682 unsigned ASId
, bool ShouldCheckStride
, bool Assume
);
684 /// Check whether we can check the pointers at runtime for
685 /// non-intersection.
687 /// Returns true if we need no check or if we do and we can generate them
688 /// (i.e. the pointers have computable bounds).
689 bool canCheckPtrAtRT(RuntimePointerChecking
&RtCheck
, ScalarEvolution
*SE
,
690 Loop
*TheLoop
, const DenseMap
<Value
*, const SCEV
*> &Strides
,
691 Value
*&UncomputablePtr
, bool ShouldCheckWrap
= false);
693 /// Goes over all memory accesses, checks whether a RT check is needed
694 /// and builds sets of dependent accesses.
695 void buildDependenceSets() {
696 processMemAccesses();
699 /// Initial processing of memory accesses determined that we need to
700 /// perform dependency checking.
702 /// Note that this can later be cleared if we retry memcheck analysis without
703 /// dependency checking (i.e. FoundNonConstantDistanceDependence).
704 bool isDependencyCheckNeeded() const { return !CheckDeps
.empty(); }
706 /// We decided that no dependence analysis would be used. Reset the state.
707 void resetDepChecks(MemoryDepChecker
&DepChecker
) {
709 DepChecker
.clearDependences();
712 const MemAccessInfoList
&getDependenciesToCheck() const { return CheckDeps
; }
715 typedef MapVector
<MemAccessInfo
, SmallSetVector
<Type
*, 1>> PtrAccessMap
;
717 /// Adjust the MemoryLocation so that it represents accesses to this
718 /// location across all iterations, rather than a single one.
719 MemoryLocation
adjustLoc(MemoryLocation Loc
) const {
720 // The accessed location varies within the loop, but remains within the
721 // underlying object.
722 Loc
.Size
= LocationSize::beforeOrAfterPointer();
723 Loc
.AATags
.Scope
= adjustAliasScopeList(Loc
.AATags
.Scope
);
724 Loc
.AATags
.NoAlias
= adjustAliasScopeList(Loc
.AATags
.NoAlias
);
728 /// Drop alias scopes that are only valid within a single loop iteration.
729 MDNode
*adjustAliasScopeList(MDNode
*ScopeList
) const {
733 // For the sake of simplicity, drop the whole scope list if any scope is
735 if (any_of(ScopeList
->operands(), [&](Metadata
*Scope
) {
736 return LoopAliasScopes
.contains(cast
<MDNode
>(Scope
));
743 /// Go over all memory access and check whether runtime pointer checks
744 /// are needed and build sets of dependency check candidates.
745 void processMemAccesses();
747 /// Map of all accesses. Values are the types used to access memory pointed to
749 PtrAccessMap Accesses
;
751 /// The loop being checked.
754 /// List of accesses that need a further dependence check.
755 MemAccessInfoList CheckDeps
;
757 /// Set of pointers that are read only.
758 SmallPtrSet
<Value
*, 16> ReadOnlyPtr
;
760 /// Batched alias analysis results.
763 /// An alias set tracker to partition the access set by underlying object and
764 //intrinsic property (such as TBAA metadata).
767 /// The LoopInfo of the loop being checked.
770 /// Sets of potentially dependent accesses - members of one set share an
771 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
772 /// dependence check.
773 MemoryDepChecker::DepCandidates
&DepCands
;
775 /// Initial processing of memory accesses determined that we may need
776 /// to add memchecks. Perform the analysis to determine the necessary checks.
778 /// Note that, this is different from isDependencyCheckNeeded. When we retry
779 /// memcheck analysis without dependency checking
780 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
781 /// cleared while this remains set if we have potentially dependent accesses.
782 bool IsRTCheckAnalysisNeeded
= false;
784 /// The SCEV predicate containing all the SCEV-related assumptions.
785 PredicatedScalarEvolution
&PSE
;
787 DenseMap
<Value
*, SmallVector
<const Value
*, 16>> UnderlyingObjects
;
789 /// Alias scopes that are declared inside the loop, and as such not valid
790 /// across iterations.
791 SmallPtrSetImpl
<MDNode
*> &LoopAliasScopes
;
794 } // end anonymous namespace
796 /// Check whether a pointer can participate in a runtime bounds check.
797 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
798 /// by adding run-time checks (overflow checks) if necessary.
799 static bool hasComputableBounds(PredicatedScalarEvolution
&PSE
, Value
*Ptr
,
800 const SCEV
*PtrScev
, Loop
*L
, bool Assume
) {
801 // The bounds for loop-invariant pointer is trivial.
802 if (PSE
.getSE()->isLoopInvariant(PtrScev
, L
))
805 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(PtrScev
);
808 AR
= PSE
.getAsAddRec(Ptr
);
813 return AR
->isAffine();
816 /// Check whether a pointer address cannot wrap.
817 static bool isNoWrap(PredicatedScalarEvolution
&PSE
,
818 const DenseMap
<Value
*, const SCEV
*> &Strides
, Value
*Ptr
,
819 Type
*AccessTy
, Loop
*L
, bool Assume
) {
820 const SCEV
*PtrScev
= PSE
.getSCEV(Ptr
);
821 if (PSE
.getSE()->isLoopInvariant(PtrScev
, L
))
824 return getPtrStride(PSE
, AccessTy
, Ptr
, L
, Strides
, Assume
).has_value() ||
825 PSE
.hasNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
);
828 static void visitPointers(Value
*StartPtr
, const Loop
&InnermostLoop
,
829 function_ref
<void(Value
*)> AddPointer
) {
830 SmallPtrSet
<Value
*, 8> Visited
;
831 SmallVector
<Value
*> WorkList
;
832 WorkList
.push_back(StartPtr
);
834 while (!WorkList
.empty()) {
835 Value
*Ptr
= WorkList
.pop_back_val();
836 if (!Visited
.insert(Ptr
).second
)
838 auto *PN
= dyn_cast
<PHINode
>(Ptr
);
839 // SCEV does not look through non-header PHIs inside the loop. Such phis
840 // can be analyzed by adding separate accesses for each incoming pointer
842 if (PN
&& InnermostLoop
.contains(PN
->getParent()) &&
843 PN
->getParent() != InnermostLoop
.getHeader()) {
844 for (const Use
&Inc
: PN
->incoming_values())
845 WorkList
.push_back(Inc
);
851 // Walk back through the IR for a pointer, looking for a select like the
854 // %offset = select i1 %cmp, i64 %a, i64 %b
855 // %addr = getelementptr double, double* %base, i64 %offset
856 // %ld = load double, double* %addr, align 8
858 // We won't be able to form a single SCEVAddRecExpr from this since the
859 // address for each loop iteration depends on %cmp. We could potentially
860 // produce multiple valid SCEVAddRecExprs, though, and check all of them for
861 // memory safety/aliasing if needed.
863 // If we encounter some IR we don't yet handle, or something obviously fine
864 // like a constant, then we just add the SCEV for that term to the list passed
865 // in by the caller. If we have a node that may potentially yield a valid
866 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
867 // ourselves before adding to the list.
868 static void findForkedSCEVs(
869 ScalarEvolution
*SE
, const Loop
*L
, Value
*Ptr
,
870 SmallVectorImpl
<PointerIntPair
<const SCEV
*, 1, bool>> &ScevList
,
872 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
873 // we've exceeded our limit on recursion, just return whatever we have
874 // regardless of whether it can be used for a forked pointer or not, along
875 // with an indication of whether it might be a poison or undef value.
876 const SCEV
*Scev
= SE
->getSCEV(Ptr
);
877 if (isa
<SCEVAddRecExpr
>(Scev
) || L
->isLoopInvariant(Ptr
) ||
878 !isa
<Instruction
>(Ptr
) || Depth
== 0) {
879 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(Ptr
));
885 auto UndefPoisonCheck
= [](PointerIntPair
<const SCEV
*, 1, bool> S
) {
889 auto GetBinOpExpr
= [&SE
](unsigned Opcode
, const SCEV
*L
, const SCEV
*R
) {
891 case Instruction::Add
:
892 return SE
->getAddExpr(L
, R
);
893 case Instruction::Sub
:
894 return SE
->getMinusSCEV(L
, R
);
896 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
900 Instruction
*I
= cast
<Instruction
>(Ptr
);
901 unsigned Opcode
= I
->getOpcode();
903 case Instruction::GetElementPtr
: {
904 auto *GEP
= cast
<GetElementPtrInst
>(I
);
905 Type
*SourceTy
= GEP
->getSourceElementType();
906 // We only handle base + single offset GEPs here for now.
907 // Not dealing with preexisting gathers yet, so no vectors.
908 if (I
->getNumOperands() != 2 || SourceTy
->isVectorTy()) {
909 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(GEP
));
912 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>, 2> BaseScevs
;
913 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>, 2> OffsetScevs
;
914 findForkedSCEVs(SE
, L
, I
->getOperand(0), BaseScevs
, Depth
);
915 findForkedSCEVs(SE
, L
, I
->getOperand(1), OffsetScevs
, Depth
);
917 // See if we need to freeze our fork...
918 bool NeedsFreeze
= any_of(BaseScevs
, UndefPoisonCheck
) ||
919 any_of(OffsetScevs
, UndefPoisonCheck
);
921 // Check that we only have a single fork, on either the base or the offset.
922 // Copy the SCEV across for the one without a fork in order to generate
923 // the full SCEV for both sides of the GEP.
924 if (OffsetScevs
.size() == 2 && BaseScevs
.size() == 1)
925 BaseScevs
.push_back(BaseScevs
[0]);
926 else if (BaseScevs
.size() == 2 && OffsetScevs
.size() == 1)
927 OffsetScevs
.push_back(OffsetScevs
[0]);
929 ScevList
.emplace_back(Scev
, NeedsFreeze
);
933 // Find the pointer type we need to extend to.
934 Type
*IntPtrTy
= SE
->getEffectiveSCEVType(
935 SE
->getSCEV(GEP
->getPointerOperand())->getType());
937 // Find the size of the type being pointed to. We only have a single
938 // index term (guarded above) so we don't need to index into arrays or
939 // structures, just get the size of the scalar value.
940 const SCEV
*Size
= SE
->getSizeOfExpr(IntPtrTy
, SourceTy
);
942 // Scale up the offsets by the size of the type, then add to the bases.
943 const SCEV
*Scaled1
= SE
->getMulExpr(
944 Size
, SE
->getTruncateOrSignExtend(get
<0>(OffsetScevs
[0]), IntPtrTy
));
945 const SCEV
*Scaled2
= SE
->getMulExpr(
946 Size
, SE
->getTruncateOrSignExtend(get
<0>(OffsetScevs
[1]), IntPtrTy
));
947 ScevList
.emplace_back(SE
->getAddExpr(get
<0>(BaseScevs
[0]), Scaled1
),
949 ScevList
.emplace_back(SE
->getAddExpr(get
<0>(BaseScevs
[1]), Scaled2
),
953 case Instruction::Select
: {
954 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>, 2> ChildScevs
;
955 // A select means we've found a forked pointer, but we currently only
956 // support a single select per pointer so if there's another behind this
957 // then we just bail out and return the generic SCEV.
958 findForkedSCEVs(SE
, L
, I
->getOperand(1), ChildScevs
, Depth
);
959 findForkedSCEVs(SE
, L
, I
->getOperand(2), ChildScevs
, Depth
);
960 if (ChildScevs
.size() == 2) {
961 ScevList
.push_back(ChildScevs
[0]);
962 ScevList
.push_back(ChildScevs
[1]);
964 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(Ptr
));
967 case Instruction::PHI
: {
968 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>, 2> ChildScevs
;
969 // A phi means we've found a forked pointer, but we currently only
970 // support a single phi per pointer so if there's another behind this
971 // then we just bail out and return the generic SCEV.
972 if (I
->getNumOperands() == 2) {
973 findForkedSCEVs(SE
, L
, I
->getOperand(0), ChildScevs
, Depth
);
974 findForkedSCEVs(SE
, L
, I
->getOperand(1), ChildScevs
, Depth
);
976 if (ChildScevs
.size() == 2) {
977 ScevList
.push_back(ChildScevs
[0]);
978 ScevList
.push_back(ChildScevs
[1]);
980 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(Ptr
));
983 case Instruction::Add
:
984 case Instruction::Sub
: {
985 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>> LScevs
;
986 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>> RScevs
;
987 findForkedSCEVs(SE
, L
, I
->getOperand(0), LScevs
, Depth
);
988 findForkedSCEVs(SE
, L
, I
->getOperand(1), RScevs
, Depth
);
990 // See if we need to freeze our fork...
992 any_of(LScevs
, UndefPoisonCheck
) || any_of(RScevs
, UndefPoisonCheck
);
994 // Check that we only have a single fork, on either the left or right side.
995 // Copy the SCEV across for the one without a fork in order to generate
996 // the full SCEV for both sides of the BinOp.
997 if (LScevs
.size() == 2 && RScevs
.size() == 1)
998 RScevs
.push_back(RScevs
[0]);
999 else if (RScevs
.size() == 2 && LScevs
.size() == 1)
1000 LScevs
.push_back(LScevs
[0]);
1002 ScevList
.emplace_back(Scev
, NeedsFreeze
);
1006 ScevList
.emplace_back(
1007 GetBinOpExpr(Opcode
, get
<0>(LScevs
[0]), get
<0>(RScevs
[0])),
1009 ScevList
.emplace_back(
1010 GetBinOpExpr(Opcode
, get
<0>(LScevs
[1]), get
<0>(RScevs
[1])),
1015 // Just return the current SCEV if we haven't handled the instruction yet.
1016 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I
<< "\n");
1017 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(Ptr
));
1022 static SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>>
1023 findForkedPointer(PredicatedScalarEvolution
&PSE
,
1024 const DenseMap
<Value
*, const SCEV
*> &StridesMap
, Value
*Ptr
,
1026 ScalarEvolution
*SE
= PSE
.getSE();
1027 assert(SE
->isSCEVable(Ptr
->getType()) && "Value is not SCEVable!");
1028 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>> Scevs
;
1029 findForkedSCEVs(SE
, L
, Ptr
, Scevs
, MaxForkedSCEVDepth
);
1031 // For now, we will only accept a forked pointer with two possible SCEVs
1032 // that are either SCEVAddRecExprs or loop invariant.
1033 if (Scevs
.size() == 2 &&
1034 (isa
<SCEVAddRecExpr
>(get
<0>(Scevs
[0])) ||
1035 SE
->isLoopInvariant(get
<0>(Scevs
[0]), L
)) &&
1036 (isa
<SCEVAddRecExpr
>(get
<0>(Scevs
[1])) ||
1037 SE
->isLoopInvariant(get
<0>(Scevs
[1]), L
))) {
1038 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr
<< "\n");
1039 LLVM_DEBUG(dbgs() << "\t(1) " << *get
<0>(Scevs
[0]) << "\n");
1040 LLVM_DEBUG(dbgs() << "\t(2) " << *get
<0>(Scevs
[1]) << "\n");
1044 return {{replaceSymbolicStrideSCEV(PSE
, StridesMap
, Ptr
), false}};
1047 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking
&RtCheck
,
1048 MemAccessInfo Access
, Type
*AccessTy
,
1049 const DenseMap
<Value
*, const SCEV
*> &StridesMap
,
1050 DenseMap
<Value
*, unsigned> &DepSetId
,
1051 Loop
*TheLoop
, unsigned &RunningDepId
,
1052 unsigned ASId
, bool ShouldCheckWrap
,
1054 Value
*Ptr
= Access
.getPointer();
1056 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>> TranslatedPtrs
=
1057 findForkedPointer(PSE
, StridesMap
, Ptr
, TheLoop
);
1059 for (const auto &P
: TranslatedPtrs
) {
1060 const SCEV
*PtrExpr
= get
<0>(P
);
1061 if (!hasComputableBounds(PSE
, Ptr
, PtrExpr
, TheLoop
, Assume
))
1064 // When we run after a failing dependency check we have to make sure
1065 // we don't have wrapping pointers.
1066 if (ShouldCheckWrap
) {
1067 // Skip wrap checking when translating pointers.
1068 if (TranslatedPtrs
.size() > 1)
1071 if (!isNoWrap(PSE
, StridesMap
, Ptr
, AccessTy
, TheLoop
, Assume
))
1074 // If there's only one option for Ptr, look it up after bounds and wrap
1075 // checking, because assumptions might have been added to PSE.
1076 if (TranslatedPtrs
.size() == 1)
1077 TranslatedPtrs
[0] = {replaceSymbolicStrideSCEV(PSE
, StridesMap
, Ptr
),
1081 for (auto [PtrExpr
, NeedsFreeze
] : TranslatedPtrs
) {
1082 // The id of the dependence set.
1085 if (isDependencyCheckNeeded()) {
1086 Value
*Leader
= DepCands
.getLeaderValue(Access
).getPointer();
1087 unsigned &LeaderId
= DepSetId
[Leader
];
1089 LeaderId
= RunningDepId
++;
1092 // Each access has its own dependence set.
1093 DepId
= RunningDepId
++;
1095 bool IsWrite
= Access
.getInt();
1096 RtCheck
.insert(TheLoop
, Ptr
, PtrExpr
, AccessTy
, IsWrite
, DepId
, ASId
, PSE
,
1098 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr
<< '\n');
1104 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking
&RtCheck
,
1105 ScalarEvolution
*SE
, Loop
*TheLoop
,
1106 const DenseMap
<Value
*, const SCEV
*> &StridesMap
,
1107 Value
*&UncomputablePtr
, bool ShouldCheckWrap
) {
1108 // Find pointers with computable bounds. We are going to use this information
1109 // to place a runtime bound check.
1110 bool CanDoRT
= true;
1112 bool MayNeedRTCheck
= false;
1113 if (!IsRTCheckAnalysisNeeded
) return true;
1115 bool IsDepCheckNeeded
= isDependencyCheckNeeded();
1117 // We assign a consecutive id to access from different alias sets.
1118 // Accesses between different groups doesn't need to be checked.
1120 for (const auto &AS
: AST
) {
1121 int NumReadPtrChecks
= 0;
1122 int NumWritePtrChecks
= 0;
1123 bool CanDoAliasSetRT
= true;
1125 auto ASPointers
= AS
.getPointers();
1127 // We assign consecutive id to access from different dependence sets.
1128 // Accesses within the same set don't need a runtime check.
1129 unsigned RunningDepId
= 1;
1130 DenseMap
<Value
*, unsigned> DepSetId
;
1132 SmallVector
<std::pair
<MemAccessInfo
, Type
*>, 4> Retries
;
1134 // First, count how many write and read accesses are in the alias set. Also
1135 // collect MemAccessInfos for later.
1136 SmallVector
<MemAccessInfo
, 4> AccessInfos
;
1137 for (const Value
*ConstPtr
: ASPointers
) {
1138 Value
*Ptr
= const_cast<Value
*>(ConstPtr
);
1139 bool IsWrite
= Accesses
.count(MemAccessInfo(Ptr
, true));
1141 ++NumWritePtrChecks
;
1144 AccessInfos
.emplace_back(Ptr
, IsWrite
);
1147 // We do not need runtime checks for this alias set, if there are no writes
1148 // or a single write and no reads.
1149 if (NumWritePtrChecks
== 0 ||
1150 (NumWritePtrChecks
== 1 && NumReadPtrChecks
== 0)) {
1151 assert((ASPointers
.size() <= 1 ||
1153 [this](const Value
*Ptr
) {
1154 MemAccessInfo
AccessWrite(const_cast<Value
*>(Ptr
),
1156 return DepCands
.findValue(AccessWrite
) == DepCands
.end();
1158 "Can only skip updating CanDoRT below, if all entries in AS "
1159 "are reads or there is at most 1 entry");
1163 for (auto &Access
: AccessInfos
) {
1164 for (const auto &AccessTy
: Accesses
[Access
]) {
1165 if (!createCheckForAccess(RtCheck
, Access
, AccessTy
, StridesMap
,
1166 DepSetId
, TheLoop
, RunningDepId
, ASId
,
1167 ShouldCheckWrap
, false)) {
1168 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1169 << *Access
.getPointer() << '\n');
1170 Retries
.emplace_back(Access
, AccessTy
);
1171 CanDoAliasSetRT
= false;
1176 // Note that this function computes CanDoRT and MayNeedRTCheck
1177 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1178 // we have a pointer for which we couldn't find the bounds but we don't
1179 // actually need to emit any checks so it does not matter.
1181 // We need runtime checks for this alias set, if there are at least 2
1182 // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1183 // any bound checks (because in that case the number of dependence sets is
1185 bool NeedsAliasSetRTCheck
= RunningDepId
> 2 || !Retries
.empty();
1187 // We need to perform run-time alias checks, but some pointers had bounds
1188 // that couldn't be checked.
1189 if (NeedsAliasSetRTCheck
&& !CanDoAliasSetRT
) {
1190 // Reset the CanDoSetRt flag and retry all accesses that have failed.
1191 // We know that we need these checks, so we can now be more aggressive
1192 // and add further checks if required (overflow checks).
1193 CanDoAliasSetRT
= true;
1194 for (const auto &[Access
, AccessTy
] : Retries
) {
1195 if (!createCheckForAccess(RtCheck
, Access
, AccessTy
, StridesMap
,
1196 DepSetId
, TheLoop
, RunningDepId
, ASId
,
1197 ShouldCheckWrap
, /*Assume=*/true)) {
1198 CanDoAliasSetRT
= false;
1199 UncomputablePtr
= Access
.getPointer();
1205 CanDoRT
&= CanDoAliasSetRT
;
1206 MayNeedRTCheck
|= NeedsAliasSetRTCheck
;
1210 // If the pointers that we would use for the bounds comparison have different
1211 // address spaces, assume the values aren't directly comparable, so we can't
1212 // use them for the runtime check. We also have to assume they could
1213 // overlap. In the future there should be metadata for whether address spaces
1215 unsigned NumPointers
= RtCheck
.Pointers
.size();
1216 for (unsigned i
= 0; i
< NumPointers
; ++i
) {
1217 for (unsigned j
= i
+ 1; j
< NumPointers
; ++j
) {
1218 // Only need to check pointers between two different dependency sets.
1219 if (RtCheck
.Pointers
[i
].DependencySetId
==
1220 RtCheck
.Pointers
[j
].DependencySetId
)
1222 // Only need to check pointers in the same alias set.
1223 if (RtCheck
.Pointers
[i
].AliasSetId
!= RtCheck
.Pointers
[j
].AliasSetId
)
1226 Value
*PtrI
= RtCheck
.Pointers
[i
].PointerValue
;
1227 Value
*PtrJ
= RtCheck
.Pointers
[j
].PointerValue
;
1229 unsigned ASi
= PtrI
->getType()->getPointerAddressSpace();
1230 unsigned ASj
= PtrJ
->getType()->getPointerAddressSpace();
1233 dbgs() << "LAA: Runtime check would require comparison between"
1234 " different address spaces\n");
1240 if (MayNeedRTCheck
&& CanDoRT
)
1241 RtCheck
.generateChecks(DepCands
, IsDepCheckNeeded
);
1243 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck
.getNumberOfChecks()
1244 << " pointer comparisons.\n");
1246 // If we can do run-time checks, but there are no checks, no runtime checks
1247 // are needed. This can happen when all pointers point to the same underlying
1248 // object for example.
1249 RtCheck
.Need
= CanDoRT
? RtCheck
.getNumberOfChecks() != 0 : MayNeedRTCheck
;
1251 bool CanDoRTIfNeeded
= !RtCheck
.Need
|| CanDoRT
;
1252 if (!CanDoRTIfNeeded
)
1254 return CanDoRTIfNeeded
;
1257 void AccessAnalysis::processMemAccesses() {
1258 // We process the set twice: first we process read-write pointers, last we
1259 // process read-only pointers. This allows us to skip dependence tests for
1260 // read-only pointers.
1262 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1263 LLVM_DEBUG(dbgs() << " AST: "; AST
.dump());
1264 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses
.size() << "):\n");
1266 for (const auto &[A
, _
] : Accesses
)
1267 dbgs() << "\t" << *A
.getPointer() << " ("
1268 << (A
.getInt() ? "write"
1269 : (ReadOnlyPtr
.count(A
.getPointer()) ? "read-only"
1274 // The AliasSetTracker has nicely partitioned our pointers by metadata
1275 // compatibility and potential for underlying-object overlap. As a result, we
1276 // only need to check for potential pointer dependencies within each alias
1278 for (const auto &AS
: AST
) {
1279 // Note that both the alias-set tracker and the alias sets themselves used
1280 // ordered collections internally and so the iteration order here is
1282 auto ASPointers
= AS
.getPointers();
1284 bool SetHasWrite
= false;
1286 // Map of pointers to last access encountered.
1287 typedef DenseMap
<const Value
*, MemAccessInfo
> UnderlyingObjToAccessMap
;
1288 UnderlyingObjToAccessMap ObjToLastAccess
;
1290 // Set of access to check after all writes have been processed.
1291 PtrAccessMap DeferredAccesses
;
1293 // Iterate over each alias set twice, once to process read/write pointers,
1294 // and then to process read-only pointers.
1295 for (int SetIteration
= 0; SetIteration
< 2; ++SetIteration
) {
1296 bool UseDeferred
= SetIteration
> 0;
1297 PtrAccessMap
&S
= UseDeferred
? DeferredAccesses
: Accesses
;
1299 for (const Value
*ConstPtr
: ASPointers
) {
1300 Value
*Ptr
= const_cast<Value
*>(ConstPtr
);
1302 // For a single memory access in AliasSetTracker, Accesses may contain
1303 // both read and write, and they both need to be handled for CheckDeps.
1304 for (const auto &[AC
, _
] : S
) {
1305 if (AC
.getPointer() != Ptr
)
1308 bool IsWrite
= AC
.getInt();
1310 // If we're using the deferred access set, then it contains only
1312 bool IsReadOnlyPtr
= ReadOnlyPtr
.count(Ptr
) && !IsWrite
;
1313 if (UseDeferred
&& !IsReadOnlyPtr
)
1315 // Otherwise, the pointer must be in the PtrAccessSet, either as a
1317 assert(((IsReadOnlyPtr
&& UseDeferred
) || IsWrite
||
1318 S
.count(MemAccessInfo(Ptr
, false))) &&
1319 "Alias-set pointer not in the access set?");
1321 MemAccessInfo
Access(Ptr
, IsWrite
);
1322 DepCands
.insert(Access
);
1324 // Memorize read-only pointers for later processing and skip them in
1325 // the first round (they need to be checked after we have seen all
1326 // write pointers). Note: we also mark pointer that are not
1327 // consecutive as "read-only" pointers (so that we check
1328 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1329 if (!UseDeferred
&& IsReadOnlyPtr
) {
1330 // We only use the pointer keys, the types vector values don't
1332 DeferredAccesses
.insert({Access
, {}});
1336 // If this is a write - check other reads and writes for conflicts. If
1337 // this is a read only check other writes for conflicts (but only if
1338 // there is no other write to the ptr - this is an optimization to
1339 // catch "a[i] = a[i] + " without having to do a dependence check).
1340 if ((IsWrite
|| IsReadOnlyPtr
) && SetHasWrite
) {
1341 CheckDeps
.push_back(Access
);
1342 IsRTCheckAnalysisNeeded
= true;
1348 // Create sets of pointers connected by a shared alias set and
1349 // underlying object.
1350 typedef SmallVector
<const Value
*, 16> ValueVector
;
1351 ValueVector TempObjects
;
1353 UnderlyingObjects
[Ptr
] = {};
1354 SmallVector
<const Value
*, 16> &UOs
= UnderlyingObjects
[Ptr
];
1355 ::getUnderlyingObjects(Ptr
, UOs
, LI
);
1357 << "Underlying objects for pointer " << *Ptr
<< "\n");
1358 for (const Value
*UnderlyingObj
: UOs
) {
1359 // nullptr never alias, don't join sets for pointer that have "null"
1360 // in their UnderlyingObjects list.
1361 if (isa
<ConstantPointerNull
>(UnderlyingObj
) &&
1362 !NullPointerIsDefined(
1363 TheLoop
->getHeader()->getParent(),
1364 UnderlyingObj
->getType()->getPointerAddressSpace()))
1367 UnderlyingObjToAccessMap::iterator Prev
=
1368 ObjToLastAccess
.find(UnderlyingObj
);
1369 if (Prev
!= ObjToLastAccess
.end())
1370 DepCands
.unionSets(Access
, Prev
->second
);
1372 ObjToLastAccess
[UnderlyingObj
] = Access
;
1373 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj
<< "\n");
1381 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1382 /// i.e. monotonically increasing/decreasing.
1383 static bool isNoWrapAddRec(Value
*Ptr
, const SCEVAddRecExpr
*AR
,
1384 PredicatedScalarEvolution
&PSE
, const Loop
*L
) {
1386 // FIXME: This should probably only return true for NUW.
1387 if (AR
->getNoWrapFlags(SCEV::NoWrapMask
))
1390 if (PSE
.hasNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
))
1393 // Scalar evolution does not propagate the non-wrapping flags to values that
1394 // are derived from a non-wrapping induction variable because non-wrapping
1395 // could be flow-sensitive.
1397 // Look through the potentially overflowing instruction to try to prove
1398 // non-wrapping for the *specific* value of Ptr.
1400 // The arithmetic implied by an nusw GEP can't overflow.
1401 const auto *GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
1402 if (!GEP
|| !GEP
->hasNoUnsignedSignedWrap())
1405 // Make sure there is only one non-const index and analyze that.
1406 Value
*NonConstIndex
= nullptr;
1407 for (Value
*Index
: GEP
->indices())
1408 if (!isa
<ConstantInt
>(Index
)) {
1411 NonConstIndex
= Index
;
1414 // The recurrence is on the pointer, ignore for now.
1417 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
1418 // AddRec using a NSW operation.
1419 if (auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(NonConstIndex
))
1420 if (OBO
->hasNoSignedWrap() &&
1421 // Assume constant for other the operand so that the AddRec can be
1423 isa
<ConstantInt
>(OBO
->getOperand(1))) {
1424 const SCEV
*OpScev
= PSE
.getSCEV(OBO
->getOperand(0));
1426 if (auto *OpAR
= dyn_cast
<SCEVAddRecExpr
>(OpScev
))
1427 return OpAR
->getLoop() == L
&& OpAR
->getNoWrapFlags(SCEV::FlagNSW
);
1433 /// Check whether the access through \p Ptr has a constant stride.
1434 std::optional
<int64_t>
1435 llvm::getPtrStride(PredicatedScalarEvolution
&PSE
, Type
*AccessTy
, Value
*Ptr
,
1437 const DenseMap
<Value
*, const SCEV
*> &StridesMap
,
1438 bool Assume
, bool ShouldCheckWrap
) {
1439 const SCEV
*PtrScev
= replaceSymbolicStrideSCEV(PSE
, StridesMap
, Ptr
);
1440 if (PSE
.getSE()->isLoopInvariant(PtrScev
, Lp
))
1443 Type
*Ty
= Ptr
->getType();
1444 assert(Ty
->isPointerTy() && "Unexpected non-ptr");
1445 if (isa
<ScalableVectorType
>(AccessTy
)) {
1446 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1448 return std::nullopt
;
1451 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(PtrScev
);
1453 AR
= PSE
.getAsAddRec(Ptr
);
1456 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1457 << " SCEV: " << *PtrScev
<< "\n");
1458 return std::nullopt
;
1461 // The access function must stride over the innermost loop.
1462 if (Lp
!= AR
->getLoop()) {
1463 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1464 << *Ptr
<< " SCEV: " << *AR
<< "\n");
1465 return std::nullopt
;
1468 // Check the step is constant.
1469 const SCEV
*Step
= AR
->getStepRecurrence(*PSE
.getSE());
1471 // Calculate the pointer stride and check if it is constant.
1472 const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Step
);
1474 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1475 << " SCEV: " << *AR
<< "\n");
1476 return std::nullopt
;
1479 const auto &DL
= Lp
->getHeader()->getDataLayout();
1480 TypeSize AllocSize
= DL
.getTypeAllocSize(AccessTy
);
1481 int64_t Size
= AllocSize
.getFixedValue();
1482 const APInt
&APStepVal
= C
->getAPInt();
1484 // Huge step value - give up.
1485 if (APStepVal
.getBitWidth() > 64)
1486 return std::nullopt
;
1488 int64_t StepVal
= APStepVal
.getSExtValue();
1491 int64_t Stride
= StepVal
/ Size
;
1492 int64_t Rem
= StepVal
% Size
;
1494 return std::nullopt
;
1496 if (!ShouldCheckWrap
)
1499 // The address calculation must not wrap. Otherwise, a dependence could be
1501 if (isNoWrapAddRec(Ptr
, AR
, PSE
, Lp
))
1504 // An nusw getelementptr that is an AddRec cannot wrap. If it would wrap,
1505 // the distance between the previously accessed location and the wrapped
1506 // location will be larger than half the pointer index type space. In that
1507 // case, the GEP would be poison and any memory access dependent on it would
1508 // be immediate UB when executed.
1509 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
1510 GEP
&& GEP
->hasNoUnsignedSignedWrap())
1513 // If the null pointer is undefined, then a access sequence which would
1514 // otherwise access it can be assumed not to unsigned wrap. Note that this
1515 // assumes the object in memory is aligned to the natural alignment.
1516 unsigned AddrSpace
= Ty
->getPointerAddressSpace();
1517 if (!NullPointerIsDefined(Lp
->getHeader()->getParent(), AddrSpace
) &&
1518 (Stride
== 1 || Stride
== -1))
1522 PSE
.setNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
);
1523 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1524 << "LAA: Pointer: " << *Ptr
<< "\n"
1525 << "LAA: SCEV: " << *AR
<< "\n"
1526 << "LAA: Added an overflow assumption\n");
1530 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1531 << *Ptr
<< " SCEV: " << *AR
<< "\n");
1532 return std::nullopt
;
1535 std::optional
<int> llvm::getPointersDiff(Type
*ElemTyA
, Value
*PtrA
,
1536 Type
*ElemTyB
, Value
*PtrB
,
1537 const DataLayout
&DL
,
1538 ScalarEvolution
&SE
, bool StrictCheck
,
1540 assert(PtrA
&& PtrB
&& "Expected non-nullptr pointers.");
1542 // Make sure that A and B are different pointers.
1546 // Make sure that the element types are the same if required.
1547 if (CheckType
&& ElemTyA
!= ElemTyB
)
1548 return std::nullopt
;
1550 unsigned ASA
= PtrA
->getType()->getPointerAddressSpace();
1551 unsigned ASB
= PtrB
->getType()->getPointerAddressSpace();
1553 // Check that the address spaces match.
1555 return std::nullopt
;
1556 unsigned IdxWidth
= DL
.getIndexSizeInBits(ASA
);
1558 APInt
OffsetA(IdxWidth
, 0), OffsetB(IdxWidth
, 0);
1559 const Value
*PtrA1
= PtrA
->stripAndAccumulateConstantOffsets(
1560 DL
, OffsetA
, /*AllowNonInbounds=*/true);
1561 const Value
*PtrB1
= PtrB
->stripAndAccumulateConstantOffsets(
1562 DL
, OffsetB
, /*AllowNonInbounds=*/true);
1565 if (PtrA1
== PtrB1
) {
1566 // Retrieve the address space again as pointer stripping now tracks through
1568 ASA
= cast
<PointerType
>(PtrA1
->getType())->getAddressSpace();
1569 ASB
= cast
<PointerType
>(PtrB1
->getType())->getAddressSpace();
1570 // Check that the address spaces match and that the pointers are valid.
1572 return std::nullopt
;
1574 IdxWidth
= DL
.getIndexSizeInBits(ASA
);
1575 OffsetA
= OffsetA
.sextOrTrunc(IdxWidth
);
1576 OffsetB
= OffsetB
.sextOrTrunc(IdxWidth
);
1579 Val
= OffsetB
.getSExtValue();
1581 // Otherwise compute the distance with SCEV between the base pointers.
1582 const SCEV
*PtrSCEVA
= SE
.getSCEV(PtrA
);
1583 const SCEV
*PtrSCEVB
= SE
.getSCEV(PtrB
);
1584 std::optional
<APInt
> Diff
=
1585 SE
.computeConstantDifference(PtrSCEVB
, PtrSCEVA
);
1587 return std::nullopt
;
1588 Val
= Diff
->getSExtValue();
1590 int Size
= DL
.getTypeStoreSize(ElemTyA
);
1591 int Dist
= Val
/ Size
;
1593 // Ensure that the calculated distance matches the type-based one after all
1594 // the bitcasts removal in the provided pointers.
1595 if (!StrictCheck
|| Dist
* Size
== Val
)
1597 return std::nullopt
;
1600 bool llvm::sortPtrAccesses(ArrayRef
<Value
*> VL
, Type
*ElemTy
,
1601 const DataLayout
&DL
, ScalarEvolution
&SE
,
1602 SmallVectorImpl
<unsigned> &SortedIndices
) {
1603 assert(llvm::all_of(
1604 VL
, [](const Value
*V
) { return V
->getType()->isPointerTy(); }) &&
1605 "Expected list of pointer operands.");
1606 // Walk over the pointers, and map each of them to an offset relative to
1607 // first pointer in the array.
1608 Value
*Ptr0
= VL
[0];
1610 using DistOrdPair
= std::pair
<int64_t, int>;
1611 auto Compare
= llvm::less_first();
1612 std::set
<DistOrdPair
, decltype(Compare
)> Offsets(Compare
);
1613 Offsets
.emplace(0, 0);
1614 bool IsConsecutive
= true;
1615 for (auto [Idx
, Ptr
] : drop_begin(enumerate(VL
))) {
1616 std::optional
<int> Diff
= getPointersDiff(ElemTy
, Ptr0
, ElemTy
, Ptr
, DL
, SE
,
1617 /*StrictCheck=*/true);
1621 // Check if the pointer with the same offset is found.
1622 int64_t Offset
= *Diff
;
1623 auto [It
, IsInserted
] = Offsets
.emplace(Offset
, Idx
);
1626 // Consecutive order if the inserted element is the last one.
1627 IsConsecutive
&= std::next(It
) == Offsets
.end();
1629 SortedIndices
.clear();
1630 if (!IsConsecutive
) {
1631 // Fill SortedIndices array only if it is non-consecutive.
1632 SortedIndices
.resize(VL
.size());
1633 for (auto [Idx
, Off
] : enumerate(Offsets
))
1634 SortedIndices
[Idx
] = Off
.second
;
1639 /// Returns true if the memory operations \p A and \p B are consecutive.
1640 bool llvm::isConsecutiveAccess(Value
*A
, Value
*B
, const DataLayout
&DL
,
1641 ScalarEvolution
&SE
, bool CheckType
) {
1642 Value
*PtrA
= getLoadStorePointerOperand(A
);
1643 Value
*PtrB
= getLoadStorePointerOperand(B
);
1646 Type
*ElemTyA
= getLoadStoreType(A
);
1647 Type
*ElemTyB
= getLoadStoreType(B
);
1648 std::optional
<int> Diff
=
1649 getPointersDiff(ElemTyA
, PtrA
, ElemTyB
, PtrB
, DL
, SE
,
1650 /*StrictCheck=*/true, CheckType
);
1651 return Diff
&& *Diff
== 1;
1654 void MemoryDepChecker::addAccess(StoreInst
*SI
) {
1655 visitPointers(SI
->getPointerOperand(), *InnermostLoop
,
1656 [this, SI
](Value
*Ptr
) {
1657 Accesses
[MemAccessInfo(Ptr
, true)].push_back(AccessIdx
);
1658 InstMap
.push_back(SI
);
1663 void MemoryDepChecker::addAccess(LoadInst
*LI
) {
1664 visitPointers(LI
->getPointerOperand(), *InnermostLoop
,
1665 [this, LI
](Value
*Ptr
) {
1666 Accesses
[MemAccessInfo(Ptr
, false)].push_back(AccessIdx
);
1667 InstMap
.push_back(LI
);
1672 MemoryDepChecker::VectorizationSafetyStatus
1673 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type
) {
1677 case BackwardVectorizable
:
1678 return VectorizationSafetyStatus::Safe
;
1681 return VectorizationSafetyStatus::PossiblySafeWithRtChecks
;
1682 case ForwardButPreventsForwarding
:
1684 case BackwardVectorizableButPreventsForwarding
:
1685 case IndirectUnsafe
:
1686 return VectorizationSafetyStatus::Unsafe
;
1688 llvm_unreachable("unexpected DepType!");
1691 bool MemoryDepChecker::Dependence::isBackward() const {
1695 case ForwardButPreventsForwarding
:
1697 case IndirectUnsafe
:
1700 case BackwardVectorizable
:
1702 case BackwardVectorizableButPreventsForwarding
:
1705 llvm_unreachable("unexpected DepType!");
1708 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1709 return isBackward() || Type
== Unknown
|| Type
== IndirectUnsafe
;
1712 bool MemoryDepChecker::Dependence::isForward() const {
1715 case ForwardButPreventsForwarding
:
1720 case BackwardVectorizable
:
1722 case BackwardVectorizableButPreventsForwarding
:
1723 case IndirectUnsafe
:
1726 llvm_unreachable("unexpected DepType!");
1729 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance
,
1730 uint64_t TypeByteSize
) {
1731 // If loads occur at a distance that is not a multiple of a feasible vector
1732 // factor store-load forwarding does not take place.
1733 // Positive dependences might cause troubles because vectorizing them might
1734 // prevent store-load forwarding making vectorized code run a lot slower.
1735 // a[i] = a[i-3] ^ a[i-8];
1736 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1737 // hence on your typical architecture store-load forwarding does not take
1738 // place. Vectorizing in such cases does not make sense.
1739 // Store-load forwarding distance.
1741 // After this many iterations store-to-load forwarding conflicts should not
1742 // cause any slowdowns.
1743 const uint64_t NumItersForStoreLoadThroughMemory
= 8 * TypeByteSize
;
1744 // Maximum vector factor.
1745 uint64_t MaxVFWithoutSLForwardIssues
= std::min(
1746 VectorizerParams::MaxVectorWidth
* TypeByteSize
, MinDepDistBytes
);
1748 // Compute the smallest VF at which the store and load would be misaligned.
1749 for (uint64_t VF
= 2 * TypeByteSize
; VF
<= MaxVFWithoutSLForwardIssues
;
1751 // If the number of vector iteration between the store and the load are
1752 // small we could incur conflicts.
1753 if (Distance
% VF
&& Distance
/ VF
< NumItersForStoreLoadThroughMemory
) {
1754 MaxVFWithoutSLForwardIssues
= (VF
>> 1);
1759 if (MaxVFWithoutSLForwardIssues
< 2 * TypeByteSize
) {
1761 dbgs() << "LAA: Distance " << Distance
1762 << " that could cause a store-load forwarding conflict\n");
1766 if (MaxVFWithoutSLForwardIssues
< MinDepDistBytes
&&
1767 MaxVFWithoutSLForwardIssues
!=
1768 VectorizerParams::MaxVectorWidth
* TypeByteSize
)
1769 MinDepDistBytes
= MaxVFWithoutSLForwardIssues
;
1773 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S
) {
1778 /// Given a dependence-distance \p Dist between two
1779 /// memory accesses, that have strides in the same direction whose absolute
1780 /// value of the maximum stride is given in \p MaxStride, and that have the same
1781 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is
1782 /// \p MaxBTC, check if it is possible to prove statically that the dependence
1783 /// distance is larger than the range that the accesses will travel through the
1784 /// execution of the loop. If so, return true; false otherwise. This is useful
1785 /// for example in loops such as the following (PR31098):
1786 /// for (i = 0; i < D; ++i) {
1790 static bool isSafeDependenceDistance(const DataLayout
&DL
, ScalarEvolution
&SE
,
1791 const SCEV
&MaxBTC
, const SCEV
&Dist
,
1793 uint64_t TypeByteSize
) {
1795 // If we can prove that
1796 // (**) |Dist| > MaxBTC * Step
1797 // where Step is the absolute stride of the memory accesses in bytes,
1798 // then there is no dependence.
1801 // We basically want to check if the absolute distance (|Dist/Step|)
1802 // is >= the loop iteration count (or > MaxBTC).
1803 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1804 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1805 // that the dependence distance is >= VF; This is checked elsewhere.
1806 // But in some cases we can prune dependence distances early, and
1807 // even before selecting the VF, and without a runtime test, by comparing
1808 // the distance against the loop iteration count. Since the vectorized code
1809 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1810 // also guarantees that distance >= VF.
1812 const uint64_t ByteStride
= MaxStride
* TypeByteSize
;
1813 const SCEV
*Step
= SE
.getConstant(MaxBTC
.getType(), ByteStride
);
1814 const SCEV
*Product
= SE
.getMulExpr(&MaxBTC
, Step
);
1816 const SCEV
*CastedDist
= &Dist
;
1817 const SCEV
*CastedProduct
= Product
;
1818 uint64_t DistTypeSizeBits
= DL
.getTypeSizeInBits(Dist
.getType());
1819 uint64_t ProductTypeSizeBits
= DL
.getTypeSizeInBits(Product
->getType());
1821 // The dependence distance can be positive/negative, so we sign extend Dist;
1822 // The multiplication of the absolute stride in bytes and the
1823 // backedgeTakenCount is non-negative, so we zero extend Product.
1824 if (DistTypeSizeBits
> ProductTypeSizeBits
)
1825 CastedProduct
= SE
.getZeroExtendExpr(Product
, Dist
.getType());
1827 CastedDist
= SE
.getNoopOrSignExtend(&Dist
, Product
->getType());
1829 // Is Dist - (MaxBTC * Step) > 0 ?
1830 // (If so, then we have proven (**) because |Dist| >= Dist)
1831 const SCEV
*Minus
= SE
.getMinusSCEV(CastedDist
, CastedProduct
);
1832 if (SE
.isKnownPositive(Minus
))
1835 // Second try: Is -Dist - (MaxBTC * Step) > 0 ?
1836 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1837 const SCEV
*NegDist
= SE
.getNegativeSCEV(CastedDist
);
1838 Minus
= SE
.getMinusSCEV(NegDist
, CastedProduct
);
1839 return SE
.isKnownPositive(Minus
);
1842 /// Check the dependence for two accesses with the same stride \p Stride.
1843 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1846 /// \returns true if they are independent.
1847 static bool areStridedAccessesIndependent(uint64_t Distance
, uint64_t Stride
,
1848 uint64_t TypeByteSize
) {
1849 assert(Stride
> 1 && "The stride must be greater than 1");
1850 assert(TypeByteSize
> 0 && "The type size in byte must be non-zero");
1851 assert(Distance
> 0 && "The distance must be non-zero");
1853 // Skip if the distance is not multiple of type byte size.
1854 if (Distance
% TypeByteSize
)
1857 uint64_t ScaledDist
= Distance
/ TypeByteSize
;
1859 // No dependence if the scaled distance is not multiple of the stride.
1861 // for (i = 0; i < 1024 ; i += 4)
1862 // A[i+2] = A[i] + 1;
1864 // Two accesses in memory (scaled distance is 2, stride is 4):
1865 // | A[0] | | | | A[4] | | | |
1866 // | | | A[2] | | | | A[6] | |
1869 // for (i = 0; i < 1024 ; i += 3)
1870 // A[i+4] = A[i] + 1;
1872 // Two accesses in memory (scaled distance is 4, stride is 3):
1873 // | A[0] | | | A[3] | | | A[6] | | |
1874 // | | | | | A[4] | | | A[7] | |
1875 return ScaledDist
% Stride
;
1878 std::variant
<MemoryDepChecker::Dependence::DepType
,
1879 MemoryDepChecker::DepDistanceStrideAndSizeInfo
>
1880 MemoryDepChecker::getDependenceDistanceStrideAndSize(
1881 const AccessAnalysis::MemAccessInfo
&A
, Instruction
*AInst
,
1882 const AccessAnalysis::MemAccessInfo
&B
, Instruction
*BInst
) {
1883 const auto &DL
= InnermostLoop
->getHeader()->getDataLayout();
1884 auto &SE
= *PSE
.getSE();
1885 const auto &[APtr
, AIsWrite
] = A
;
1886 const auto &[BPtr
, BIsWrite
] = B
;
1888 // Two reads are independent.
1889 if (!AIsWrite
&& !BIsWrite
)
1890 return MemoryDepChecker::Dependence::NoDep
;
1892 Type
*ATy
= getLoadStoreType(AInst
);
1893 Type
*BTy
= getLoadStoreType(BInst
);
1895 // We cannot check pointers in different address spaces.
1896 if (APtr
->getType()->getPointerAddressSpace() !=
1897 BPtr
->getType()->getPointerAddressSpace())
1898 return MemoryDepChecker::Dependence::Unknown
;
1900 std::optional
<int64_t> StrideAPtr
=
1901 getPtrStride(PSE
, ATy
, APtr
, InnermostLoop
, SymbolicStrides
, true, true);
1902 std::optional
<int64_t> StrideBPtr
=
1903 getPtrStride(PSE
, BTy
, BPtr
, InnermostLoop
, SymbolicStrides
, true, true);
1905 const SCEV
*Src
= PSE
.getSCEV(APtr
);
1906 const SCEV
*Sink
= PSE
.getSCEV(BPtr
);
1908 // If the induction step is negative we have to invert source and sink of the
1909 // dependence when measuring the distance between them. We should not swap
1910 // AIsWrite with BIsWrite, as their uses expect them in program order.
1911 if (StrideAPtr
&& *StrideAPtr
< 0) {
1912 std::swap(Src
, Sink
);
1913 std::swap(AInst
, BInst
);
1914 std::swap(ATy
, BTy
);
1915 std::swap(StrideAPtr
, StrideBPtr
);
1918 const SCEV
*Dist
= SE
.getMinusSCEV(Sink
, Src
);
1920 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src
<< "Sink Scev: " << *Sink
1922 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst
<< " to " << *BInst
1923 << ": " << *Dist
<< "\n");
1925 // Check if we can prove that Sink only accesses memory after Src's end or
1926 // vice versa. At the moment this is limited to cases where either source or
1927 // sink are loop invariant to avoid compile-time increases. This is not
1928 // required for correctness.
1929 if (SE
.isLoopInvariant(Src
, InnermostLoop
) ||
1930 SE
.isLoopInvariant(Sink
, InnermostLoop
)) {
1931 const SCEV
*MaxBECount
= PSE
.getSymbolicMaxBackedgeTakenCount();
1932 const auto &[SrcStart_
, SrcEnd_
] = getStartAndEndForAccess(
1933 InnermostLoop
, Src
, ATy
, MaxBECount
, PSE
.getSE(), &PointerBounds
);
1934 const auto &[SinkStart_
, SinkEnd_
] = getStartAndEndForAccess(
1935 InnermostLoop
, Sink
, BTy
, MaxBECount
, PSE
.getSE(), &PointerBounds
);
1936 if (!isa
<SCEVCouldNotCompute
>(SrcStart_
) &&
1937 !isa
<SCEVCouldNotCompute
>(SrcEnd_
) &&
1938 !isa
<SCEVCouldNotCompute
>(SinkStart_
) &&
1939 !isa
<SCEVCouldNotCompute
>(SinkEnd_
)) {
1942 ScalarEvolution::LoopGuards::collect(InnermostLoop
, SE
));
1943 auto SrcEnd
= SE
.applyLoopGuards(SrcEnd_
, *LoopGuards
);
1944 auto SinkStart
= SE
.applyLoopGuards(SinkStart_
, *LoopGuards
);
1945 if (SE
.isKnownPredicate(CmpInst::ICMP_ULE
, SrcEnd
, SinkStart
))
1946 return MemoryDepChecker::Dependence::NoDep
;
1948 auto SinkEnd
= SE
.applyLoopGuards(SinkEnd_
, *LoopGuards
);
1949 auto SrcStart
= SE
.applyLoopGuards(SrcStart_
, *LoopGuards
);
1950 if (SE
.isKnownPredicate(CmpInst::ICMP_ULE
, SinkEnd
, SrcStart
))
1951 return MemoryDepChecker::Dependence::NoDep
;
1955 // Need accesses with constant strides and the same direction for further
1956 // dependence analysis. We don't want to vectorize "A[B[i]] += ..." and
1957 // similar code or pointer arithmetic that could wrap in the address space.
1959 // If either Src or Sink are not strided (i.e. not a non-wrapping AddRec) and
1960 // not loop-invariant (stride will be 0 in that case), we cannot analyze the
1961 // dependence further and also cannot generate runtime checks.
1962 if (!StrideAPtr
|| !StrideBPtr
) {
1963 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1964 return MemoryDepChecker::Dependence::IndirectUnsafe
;
1967 int64_t StrideAPtrInt
= *StrideAPtr
;
1968 int64_t StrideBPtrInt
= *StrideBPtr
;
1969 LLVM_DEBUG(dbgs() << "LAA: Src induction step: " << StrideAPtrInt
1970 << " Sink induction step: " << StrideBPtrInt
<< "\n");
1971 // At least Src or Sink are loop invariant and the other is strided or
1972 // invariant. We can generate a runtime check to disambiguate the accesses.
1973 if (!StrideAPtrInt
|| !StrideBPtrInt
)
1974 return MemoryDepChecker::Dependence::Unknown
;
1976 // Both Src and Sink have a constant stride, check if they are in the same
1978 if ((StrideAPtrInt
> 0) != (StrideBPtrInt
> 0)) {
1980 dbgs() << "Pointer access with strides in different directions\n");
1981 return MemoryDepChecker::Dependence::Unknown
;
1984 uint64_t TypeByteSize
= DL
.getTypeAllocSize(ATy
);
1986 DL
.getTypeStoreSizeInBits(ATy
) == DL
.getTypeStoreSizeInBits(BTy
);
1990 StrideAPtrInt
= std::abs(StrideAPtrInt
);
1991 StrideBPtrInt
= std::abs(StrideBPtrInt
);
1993 uint64_t MaxStride
= std::max(StrideAPtrInt
, StrideBPtrInt
);
1995 std::optional
<uint64_t> CommonStride
;
1996 if (StrideAPtrInt
== StrideBPtrInt
)
1997 CommonStride
= StrideAPtrInt
;
1999 // TODO: Historically, we don't retry with runtime checks unless the
2000 // (unscaled) strides are the same. Fix this once the condition for runtime
2001 // checks in isDependent is fixed.
2002 bool ShouldRetryWithRuntimeCheck
= CommonStride
.has_value();
2004 return DepDistanceStrideAndSizeInfo(Dist
, MaxStride
, CommonStride
,
2005 ShouldRetryWithRuntimeCheck
, TypeByteSize
,
2006 AIsWrite
, BIsWrite
);
2009 MemoryDepChecker::Dependence::DepType
2010 MemoryDepChecker::isDependent(const MemAccessInfo
&A
, unsigned AIdx
,
2011 const MemAccessInfo
&B
, unsigned BIdx
) {
2012 assert(AIdx
< BIdx
&& "Must pass arguments in program order");
2014 // Get the dependence distance, stride, type size and what access writes for
2015 // the dependence between A and B.
2017 getDependenceDistanceStrideAndSize(A
, InstMap
[AIdx
], B
, InstMap
[BIdx
]);
2018 if (std::holds_alternative
<Dependence::DepType
>(Res
))
2019 return std::get
<Dependence::DepType
>(Res
);
2021 auto &[Dist
, MaxStride
, CommonStride
, ShouldRetryWithRuntimeCheck
,
2022 TypeByteSize
, AIsWrite
, BIsWrite
] =
2023 std::get
<DepDistanceStrideAndSizeInfo
>(Res
);
2024 bool HasSameSize
= TypeByteSize
> 0;
2026 if (isa
<SCEVCouldNotCompute
>(Dist
)) {
2027 // TODO: Relax requirement that there is a common unscaled stride to retry
2028 // with non-constant distance dependencies.
2029 FoundNonConstantDistanceDependence
|= ShouldRetryWithRuntimeCheck
;
2030 LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n");
2031 return Dependence::Unknown
;
2034 ScalarEvolution
&SE
= *PSE
.getSE();
2035 auto &DL
= InnermostLoop
->getHeader()->getDataLayout();
2037 // If the distance between the acecsses is larger than their maximum absolute
2038 // stride multiplied by the symbolic maximum backedge taken count (which is an
2039 // upper bound of the number of iterations), the accesses are independet, i.e.
2040 // they are far enough appart that accesses won't access the same location
2041 // across all loop ierations.
2042 if (HasSameSize
&& isSafeDependenceDistance(
2043 DL
, SE
, *(PSE
.getSymbolicMaxBackedgeTakenCount()),
2044 *Dist
, MaxStride
, TypeByteSize
))
2045 return Dependence::NoDep
;
2047 const SCEVConstant
*ConstDist
= dyn_cast
<SCEVConstant
>(Dist
);
2049 // Attempt to prove strided accesses independent.
2051 uint64_t Distance
= ConstDist
->getAPInt().abs().getZExtValue();
2053 // If the distance between accesses and their strides are known constants,
2054 // check whether the accesses interlace each other.
2055 if (Distance
> 0 && CommonStride
&& CommonStride
> 1 && HasSameSize
&&
2056 areStridedAccessesIndependent(Distance
, *CommonStride
, TypeByteSize
)) {
2057 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
2058 return Dependence::NoDep
;
2063 ScalarEvolution::LoopGuards::collect(InnermostLoop
, SE
));
2064 Dist
= SE
.applyLoopGuards(Dist
, *LoopGuards
);
2067 // Negative distances are not plausible dependencies.
2068 if (SE
.isKnownNonPositive(Dist
)) {
2069 if (SE
.isKnownNonNegative(Dist
)) {
2071 // Write to the same location with the same size.
2072 return Dependence::Forward
;
2074 LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but "
2075 "different type sizes\n");
2076 return Dependence::Unknown
;
2079 bool IsTrueDataDependence
= (AIsWrite
&& !BIsWrite
);
2080 // Check if the first access writes to a location that is read in a later
2081 // iteration, where the distance between them is not a multiple of a vector
2082 // factor and relatively small.
2084 // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to
2085 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a
2086 // forward dependency will allow vectorization using any width.
2088 if (IsTrueDataDependence
&& EnableForwardingConflictDetection
) {
2090 // TODO: FoundNonConstantDistanceDependence is used as a necessary
2091 // condition to consider retrying with runtime checks. Historically, we
2092 // did not set it when strides were different but there is no inherent
2094 FoundNonConstantDistanceDependence
|= ShouldRetryWithRuntimeCheck
;
2095 return Dependence::Unknown
;
2098 couldPreventStoreLoadForward(
2099 ConstDist
->getAPInt().abs().getZExtValue(), TypeByteSize
)) {
2101 dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
2102 return Dependence::ForwardButPreventsForwarding
;
2106 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
2107 return Dependence::Forward
;
2110 int64_t MinDistance
= SE
.getSignedRangeMin(Dist
).getSExtValue();
2111 // Below we only handle strictly positive distances.
2112 if (MinDistance
<= 0) {
2113 FoundNonConstantDistanceDependence
|= ShouldRetryWithRuntimeCheck
;
2114 return Dependence::Unknown
;
2118 // Previously this case would be treated as Unknown, possibly setting
2119 // FoundNonConstantDistanceDependence to force re-trying with runtime
2120 // checks. Until the TODO below is addressed, set it here to preserve
2121 // original behavior w.r.t. re-trying with runtime checks.
2122 // TODO: FoundNonConstantDistanceDependence is used as a necessary
2123 // condition to consider retrying with runtime checks. Historically, we
2124 // did not set it when strides were different but there is no inherent
2126 FoundNonConstantDistanceDependence
|= ShouldRetryWithRuntimeCheck
;
2130 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
2131 "different type sizes\n");
2132 return Dependence::Unknown
;
2136 return Dependence::Unknown
;
2138 // Bail out early if passed-in parameters make vectorization not feasible.
2139 unsigned ForcedFactor
= (VectorizerParams::VectorizationFactor
?
2140 VectorizerParams::VectorizationFactor
: 1);
2141 unsigned ForcedUnroll
= (VectorizerParams::VectorizationInterleave
?
2142 VectorizerParams::VectorizationInterleave
: 1);
2143 // The minimum number of iterations for a vectorized/unrolled version.
2144 unsigned MinNumIter
= std::max(ForcedFactor
* ForcedUnroll
, 2U);
2146 // It's not vectorizable if the distance is smaller than the minimum distance
2147 // needed for a vectroized/unrolled version. Vectorizing one iteration in
2148 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
2149 // TypeByteSize (No need to plus the last gap distance).
2151 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2153 // int *B = (int *)((char *)A + 14);
2154 // for (i = 0 ; i < 1024 ; i += 2)
2158 // Two accesses in memory (stride is 2):
2159 // | A[0] | | A[2] | | A[4] | | A[6] | |
2160 // | B[0] | | B[2] | | B[4] |
2162 // MinDistance needs for vectorizing iterations except the last iteration:
2163 // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4.
2164 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2166 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2167 // 12, which is less than distance.
2169 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2170 // the minimum distance needed is 28, which is greater than distance. It is
2171 // not safe to do vectorization.
2173 // We know that Dist is positive, but it may not be constant. Use the signed
2174 // minimum for computations below, as this ensures we compute the closest
2175 // possible dependence distance.
2176 uint64_t MinDistanceNeeded
=
2177 TypeByteSize
* *CommonStride
* (MinNumIter
- 1) + TypeByteSize
;
2178 if (MinDistanceNeeded
> static_cast<uint64_t>(MinDistance
)) {
2180 // For non-constant distances, we checked the lower bound of the
2181 // dependence distance and the distance may be larger at runtime (and safe
2182 // for vectorization). Classify it as Unknown, so we re-try with runtime
2184 return Dependence::Unknown
;
2186 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance "
2187 << MinDistance
<< '\n');
2188 return Dependence::Backward
;
2191 // Unsafe if the minimum distance needed is greater than smallest dependence
2192 // distance distance.
2193 if (MinDistanceNeeded
> MinDepDistBytes
) {
2194 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2195 << MinDistanceNeeded
<< " size in bytes\n");
2196 return Dependence::Backward
;
2199 // Positive distance bigger than max vectorization factor.
2200 // FIXME: Should use max factor instead of max distance in bytes, which could
2201 // not handle different types.
2202 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2203 // void foo (int *A, char *B) {
2204 // for (unsigned i = 0; i < 1024; i++) {
2205 // A[i+2] = A[i] + 1;
2206 // B[i+2] = B[i] + 1;
2210 // This case is currently unsafe according to the max safe distance. If we
2211 // analyze the two accesses on array B, the max safe dependence distance
2212 // is 2. Then we analyze the accesses on array A, the minimum distance needed
2213 // is 8, which is less than 2 and forbidden vectorization, But actually
2214 // both A and B could be vectorized by 2 iterations.
2216 std::min(static_cast<uint64_t>(MinDistance
), MinDepDistBytes
);
2218 bool IsTrueDataDependence
= (!AIsWrite
&& BIsWrite
);
2219 uint64_t MinDepDistBytesOld
= MinDepDistBytes
;
2220 if (IsTrueDataDependence
&& EnableForwardingConflictDetection
&& ConstDist
&&
2221 couldPreventStoreLoadForward(MinDistance
, TypeByteSize
)) {
2222 // Sanity check that we didn't update MinDepDistBytes when calling
2223 // couldPreventStoreLoadForward
2224 assert(MinDepDistBytes
== MinDepDistBytesOld
&&
2225 "An update to MinDepDistBytes requires an update to "
2226 "MaxSafeVectorWidthInBits");
2227 (void)MinDepDistBytesOld
;
2228 return Dependence::BackwardVectorizableButPreventsForwarding
;
2231 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
2232 // since there is a backwards dependency.
2233 uint64_t MaxVF
= MinDepDistBytes
/ (TypeByteSize
* *CommonStride
);
2234 LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance
2235 << " with max VF = " << MaxVF
<< '\n');
2237 uint64_t MaxVFInBits
= MaxVF
* TypeByteSize
* 8;
2238 if (!ConstDist
&& MaxVFInBits
< MaxTargetVectorWidthInBits
) {
2239 // For non-constant distances, we checked the lower bound of the dependence
2240 // distance and the distance may be larger at runtime (and safe for
2241 // vectorization). Classify it as Unknown, so we re-try with runtime checks.
2242 return Dependence::Unknown
;
2245 MaxSafeVectorWidthInBits
= std::min(MaxSafeVectorWidthInBits
, MaxVFInBits
);
2246 return Dependence::BackwardVectorizable
;
2249 bool MemoryDepChecker::areDepsSafe(const DepCandidates
&AccessSets
,
2250 const MemAccessInfoList
&CheckDeps
) {
2252 MinDepDistBytes
= -1;
2253 SmallPtrSet
<MemAccessInfo
, 8> Visited
;
2254 for (MemAccessInfo CurAccess
: CheckDeps
) {
2255 if (Visited
.count(CurAccess
))
2258 // Get the relevant memory access set.
2259 EquivalenceClasses
<MemAccessInfo
>::iterator I
=
2260 AccessSets
.findValue(AccessSets
.getLeaderValue(CurAccess
));
2262 // Check accesses within this set.
2263 EquivalenceClasses
<MemAccessInfo
>::member_iterator AI
=
2264 AccessSets
.member_begin(I
);
2265 EquivalenceClasses
<MemAccessInfo
>::member_iterator AE
=
2266 AccessSets
.member_end();
2268 // Check every access pair.
2270 Visited
.insert(*AI
);
2271 bool AIIsWrite
= AI
->getInt();
2272 // Check loads only against next equivalent class, but stores also against
2273 // other stores in the same equivalence class - to the same address.
2274 EquivalenceClasses
<MemAccessInfo
>::member_iterator OI
=
2275 (AIIsWrite
? AI
: std::next(AI
));
2277 // Check every accessing instruction pair in program order.
2278 for (std::vector
<unsigned>::iterator I1
= Accesses
[*AI
].begin(),
2279 I1E
= Accesses
[*AI
].end(); I1
!= I1E
; ++I1
)
2280 // Scan all accesses of another equivalence class, but only the next
2281 // accesses of the same equivalent class.
2282 for (std::vector
<unsigned>::iterator
2283 I2
= (OI
== AI
? std::next(I1
) : Accesses
[*OI
].begin()),
2284 I2E
= (OI
== AI
? I1E
: Accesses
[*OI
].end());
2286 auto A
= std::make_pair(&*AI
, *I1
);
2287 auto B
= std::make_pair(&*OI
, *I2
);
2293 Dependence::DepType Type
=
2294 isDependent(*A
.first
, A
.second
, *B
.first
, B
.second
);
2295 mergeInStatus(Dependence::isSafeForVectorization(Type
));
2297 // Gather dependences unless we accumulated MaxDependences
2298 // dependences. In that case return as soon as we find the first
2299 // unsafe dependence. This puts a limit on this quadratic
2301 if (RecordDependences
) {
2302 if (Type
!= Dependence::NoDep
)
2303 Dependences
.emplace_back(A
.second
, B
.second
, Type
);
2305 if (Dependences
.size() >= MaxDependences
) {
2306 RecordDependences
= false;
2307 Dependences
.clear();
2309 << "Too many dependences, stopped recording\n");
2312 if (!RecordDependences
&& !isSafeForVectorization())
2321 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences
.size() << "\n");
2322 return isSafeForVectorization();
2325 SmallVector
<Instruction
*, 4>
2326 MemoryDepChecker::getInstructionsForAccess(Value
*Ptr
, bool IsWrite
) const {
2327 MemAccessInfo
Access(Ptr
, IsWrite
);
2328 auto &IndexVector
= Accesses
.find(Access
)->second
;
2330 SmallVector
<Instruction
*, 4> Insts
;
2331 transform(IndexVector
,
2332 std::back_inserter(Insts
),
2333 [&](unsigned Idx
) { return this->InstMap
[Idx
]; });
2337 const char *MemoryDepChecker::Dependence::DepName
[] = {
2342 "ForwardButPreventsForwarding",
2344 "BackwardVectorizable",
2345 "BackwardVectorizableButPreventsForwarding"};
2347 void MemoryDepChecker::Dependence::print(
2348 raw_ostream
&OS
, unsigned Depth
,
2349 const SmallVectorImpl
<Instruction
*> &Instrs
) const {
2350 OS
.indent(Depth
) << DepName
[Type
] << ":\n";
2351 OS
.indent(Depth
+ 2) << *Instrs
[Source
] << " -> \n";
2352 OS
.indent(Depth
+ 2) << *Instrs
[Destination
] << "\n";
2355 bool LoopAccessInfo::canAnalyzeLoop() {
2356 // We need to have a loop header.
2357 LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '"
2358 << TheLoop
->getHeader()->getParent()->getName() << "' from "
2359 << TheLoop
->getLocStr() << "\n");
2361 // We can only analyze innermost loops.
2362 if (!TheLoop
->isInnermost()) {
2363 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2364 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2368 // We must have a single backedge.
2369 if (TheLoop
->getNumBackEdges() != 1) {
2371 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2372 recordAnalysis("CFGNotUnderstood")
2373 << "loop control flow is not understood by analyzer";
2377 // ScalarEvolution needs to be able to find the symbolic max backedge taken
2378 // count, which is an upper bound on the number of loop iterations. The loop
2379 // may execute fewer iterations, if it exits via an uncountable exit.
2380 const SCEV
*ExitCount
= PSE
->getSymbolicMaxBackedgeTakenCount();
2381 if (isa
<SCEVCouldNotCompute
>(ExitCount
)) {
2382 recordAnalysis("CantComputeNumberOfIterations")
2383 << "could not determine number of loop iterations";
2384 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2388 LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: "
2389 << TheLoop
->getHeader()->getName() << "\n");
2393 bool LoopAccessInfo::analyzeLoop(AAResults
*AA
, const LoopInfo
*LI
,
2394 const TargetLibraryInfo
*TLI
,
2395 DominatorTree
*DT
) {
2396 // Holds the Load and Store instructions.
2397 SmallVector
<LoadInst
*, 16> Loads
;
2398 SmallVector
<StoreInst
*, 16> Stores
;
2399 SmallPtrSet
<MDNode
*, 8> LoopAliasScopes
;
2401 // Holds all the different accesses in the loop.
2402 unsigned NumReads
= 0;
2403 unsigned NumReadWrites
= 0;
2405 bool HasComplexMemInst
= false;
2407 // A runtime check is only legal to insert if there are no convergent calls.
2408 HasConvergentOp
= false;
2410 PtrRtChecking
->Pointers
.clear();
2411 PtrRtChecking
->Need
= false;
2413 const bool IsAnnotatedParallel
= TheLoop
->isAnnotatedParallel();
2415 const bool EnableMemAccessVersioningOfLoop
=
2416 EnableMemAccessVersioning
&&
2417 !TheLoop
->getHeader()->getParent()->hasOptSize();
2419 // Traverse blocks in fixed RPOT order, regardless of their storage in the
2420 // loop info, as it may be arbitrary.
2421 LoopBlocksRPO
RPOT(TheLoop
);
2423 for (BasicBlock
*BB
: RPOT
) {
2424 // Scan the BB and collect legal loads and stores. Also detect any
2425 // convergent instructions.
2426 for (Instruction
&I
: *BB
) {
2427 if (auto *Call
= dyn_cast
<CallBase
>(&I
)) {
2428 if (Call
->isConvergent())
2429 HasConvergentOp
= true;
2432 // With both a non-vectorizable memory instruction and a convergent
2433 // operation, found in this loop, no reason to continue the search.
2434 if (HasComplexMemInst
&& HasConvergentOp
)
2437 // Avoid hitting recordAnalysis multiple times.
2438 if (HasComplexMemInst
)
2441 // Record alias scopes defined inside the loop.
2442 if (auto *Decl
= dyn_cast
<NoAliasScopeDeclInst
>(&I
))
2443 for (Metadata
*Op
: Decl
->getScopeList()->operands())
2444 LoopAliasScopes
.insert(cast
<MDNode
>(Op
));
2446 // Many math library functions read the rounding mode. We will only
2447 // vectorize a loop if it contains known function calls that don't set
2448 // the flag. Therefore, it is safe to ignore this read from memory.
2449 auto *Call
= dyn_cast
<CallInst
>(&I
);
2450 if (Call
&& getVectorIntrinsicIDForCall(Call
, TLI
))
2453 // If this is a load, save it. If this instruction can read from memory
2454 // but is not a load, we only allow it if it's a call to a function with a
2455 // vector mapping and no pointer arguments.
2456 if (I
.mayReadFromMemory()) {
2457 auto hasPointerArgs
= [](CallBase
*CB
) {
2458 return any_of(CB
->args(), [](Value
const *Arg
) {
2459 return Arg
->getType()->isPointerTy();
2463 // If the function has an explicit vectorized counterpart, and does not
2464 // take output/input pointers, we can safely assume that it can be
2466 if (Call
&& !Call
->isNoBuiltin() && Call
->getCalledFunction() &&
2467 !hasPointerArgs(Call
) && !VFDatabase::getMappings(*Call
).empty())
2470 auto *Ld
= dyn_cast
<LoadInst
>(&I
);
2472 recordAnalysis("CantVectorizeInstruction", Ld
)
2473 << "instruction cannot be vectorized";
2474 HasComplexMemInst
= true;
2477 if (!Ld
->isSimple() && !IsAnnotatedParallel
) {
2478 recordAnalysis("NonSimpleLoad", Ld
)
2479 << "read with atomic ordering or volatile read";
2480 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2481 HasComplexMemInst
= true;
2485 Loads
.push_back(Ld
);
2486 DepChecker
->addAccess(Ld
);
2487 if (EnableMemAccessVersioningOfLoop
)
2488 collectStridedAccess(Ld
);
2492 // Save 'store' instructions. Abort if other instructions write to memory.
2493 if (I
.mayWriteToMemory()) {
2494 auto *St
= dyn_cast
<StoreInst
>(&I
);
2496 recordAnalysis("CantVectorizeInstruction", St
)
2497 << "instruction cannot be vectorized";
2498 HasComplexMemInst
= true;
2501 if (!St
->isSimple() && !IsAnnotatedParallel
) {
2502 recordAnalysis("NonSimpleStore", St
)
2503 << "write with atomic ordering or volatile write";
2504 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2505 HasComplexMemInst
= true;
2509 Stores
.push_back(St
);
2510 DepChecker
->addAccess(St
);
2511 if (EnableMemAccessVersioningOfLoop
)
2512 collectStridedAccess(St
);
2517 if (HasComplexMemInst
)
2520 // Now we have two lists that hold the loads and the stores.
2521 // Next, we find the pointers that they use.
2523 // Check if we see any stores. If there are no stores, then we don't
2524 // care if the pointers are *restrict*.
2525 if (!Stores
.size()) {
2526 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2530 MemoryDepChecker::DepCandidates DependentAccesses
;
2531 AccessAnalysis
Accesses(TheLoop
, AA
, LI
, DependentAccesses
, *PSE
,
2534 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2535 // multiple times on the same object. If the ptr is accessed twice, once
2536 // for read and once for write, it will only appear once (on the write
2537 // list). This is okay, since we are going to check for conflicts between
2538 // writes and between reads and writes, but not between reads and reads.
2539 SmallSet
<std::pair
<Value
*, Type
*>, 16> Seen
;
2541 // Record uniform store addresses to identify if we have multiple stores
2542 // to the same address.
2543 SmallPtrSet
<Value
*, 16> UniformStores
;
2545 for (StoreInst
*ST
: Stores
) {
2546 Value
*Ptr
= ST
->getPointerOperand();
2548 if (isInvariant(Ptr
)) {
2549 // Record store instructions to loop invariant addresses
2550 StoresToInvariantAddresses
.push_back(ST
);
2551 HasStoreStoreDependenceInvolvingLoopInvariantAddress
|=
2552 !UniformStores
.insert(Ptr
).second
;
2555 // If we did *not* see this pointer before, insert it to the read-write
2556 // list. At this phase it is only a 'write' list.
2557 Type
*AccessTy
= getLoadStoreType(ST
);
2558 if (Seen
.insert({Ptr
, AccessTy
}).second
) {
2561 MemoryLocation Loc
= MemoryLocation::get(ST
);
2562 // The TBAA metadata could have a control dependency on the predication
2563 // condition, so we cannot rely on it when determining whether or not we
2564 // need runtime pointer checks.
2565 if (blockNeedsPredication(ST
->getParent(), TheLoop
, DT
))
2566 Loc
.AATags
.TBAA
= nullptr;
2568 visitPointers(const_cast<Value
*>(Loc
.Ptr
), *TheLoop
,
2569 [&Accesses
, AccessTy
, Loc
](Value
*Ptr
) {
2570 MemoryLocation NewLoc
= Loc
.getWithNewPtr(Ptr
);
2571 Accesses
.addStore(NewLoc
, AccessTy
);
2576 if (IsAnnotatedParallel
) {
2578 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2583 for (LoadInst
*LD
: Loads
) {
2584 Value
*Ptr
= LD
->getPointerOperand();
2585 // If we did *not* see this pointer before, insert it to the
2586 // read list. If we *did* see it before, then it is already in
2587 // the read-write list. This allows us to vectorize expressions
2588 // such as A[i] += x; Because the address of A[i] is a read-write
2589 // pointer. This only works if the index of A[i] is consecutive.
2590 // If the address of i is unknown (for example A[B[i]]) then we may
2591 // read a few words, modify, and write a few words, and some of the
2592 // words may be written to the same address.
2593 bool IsReadOnlyPtr
= false;
2594 Type
*AccessTy
= getLoadStoreType(LD
);
2595 if (Seen
.insert({Ptr
, AccessTy
}).second
||
2596 !getPtrStride(*PSE
, AccessTy
, Ptr
, TheLoop
, SymbolicStrides
)) {
2598 IsReadOnlyPtr
= true;
2601 // See if there is an unsafe dependency between a load to a uniform address and
2602 // store to the same uniform address.
2603 if (UniformStores
.count(Ptr
)) {
2604 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2605 "load and uniform store to the same address!\n");
2606 HasLoadStoreDependenceInvolvingLoopInvariantAddress
= true;
2609 MemoryLocation Loc
= MemoryLocation::get(LD
);
2610 // The TBAA metadata could have a control dependency on the predication
2611 // condition, so we cannot rely on it when determining whether or not we
2612 // need runtime pointer checks.
2613 if (blockNeedsPredication(LD
->getParent(), TheLoop
, DT
))
2614 Loc
.AATags
.TBAA
= nullptr;
2616 visitPointers(const_cast<Value
*>(Loc
.Ptr
), *TheLoop
,
2617 [&Accesses
, AccessTy
, Loc
, IsReadOnlyPtr
](Value
*Ptr
) {
2618 MemoryLocation NewLoc
= Loc
.getWithNewPtr(Ptr
);
2619 Accesses
.addLoad(NewLoc
, AccessTy
, IsReadOnlyPtr
);
2623 // If we write (or read-write) to a single destination and there are no
2624 // other reads in this loop then is it safe to vectorize.
2625 if (NumReadWrites
== 1 && NumReads
== 0) {
2626 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2630 // Build dependence sets and check whether we need a runtime pointer bounds
2632 Accesses
.buildDependenceSets();
2634 // Find pointers with computable bounds. We are going to use this information
2635 // to place a runtime bound check.
2636 Value
*UncomputablePtr
= nullptr;
2637 bool CanDoRTIfNeeded
=
2638 Accesses
.canCheckPtrAtRT(*PtrRtChecking
, PSE
->getSE(), TheLoop
,
2639 SymbolicStrides
, UncomputablePtr
, false);
2640 if (!CanDoRTIfNeeded
) {
2641 const auto *I
= dyn_cast_or_null
<Instruction
>(UncomputablePtr
);
2642 recordAnalysis("CantIdentifyArrayBounds", I
)
2643 << "cannot identify array bounds";
2644 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2645 << "the array bounds.\n");
2650 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2652 bool DepsAreSafe
= true;
2653 if (Accesses
.isDependencyCheckNeeded()) {
2654 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2655 DepsAreSafe
= DepChecker
->areDepsSafe(DependentAccesses
,
2656 Accesses
.getDependenciesToCheck());
2658 if (!DepsAreSafe
&& DepChecker
->shouldRetryWithRuntimeCheck()) {
2659 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2661 // Clear the dependency checks. We assume they are not needed.
2662 Accesses
.resetDepChecks(*DepChecker
);
2664 PtrRtChecking
->reset();
2665 PtrRtChecking
->Need
= true;
2667 auto *SE
= PSE
->getSE();
2668 UncomputablePtr
= nullptr;
2669 CanDoRTIfNeeded
= Accesses
.canCheckPtrAtRT(
2670 *PtrRtChecking
, SE
, TheLoop
, SymbolicStrides
, UncomputablePtr
, true);
2672 // Check that we found the bounds for the pointer.
2673 if (!CanDoRTIfNeeded
) {
2674 auto *I
= dyn_cast_or_null
<Instruction
>(UncomputablePtr
);
2675 recordAnalysis("CantCheckMemDepsAtRunTime", I
)
2676 << "cannot check memory dependencies at runtime";
2677 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2684 if (HasConvergentOp
) {
2685 recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2686 << "cannot add control dependency to convergent operation";
2687 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2688 "would be needed with a convergent operation\n");
2694 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
2695 << (PtrRtChecking
->Need
? "" : " don't")
2696 << " need runtime memory checks.\n");
2700 emitUnsafeDependenceRemark();
2704 void LoopAccessInfo::emitUnsafeDependenceRemark() {
2705 const auto *Deps
= getDepChecker().getDependences();
2709 llvm::find_if(*Deps
, [](const MemoryDepChecker::Dependence
&D
) {
2710 return MemoryDepChecker::Dependence::isSafeForVectorization(D
.Type
) !=
2711 MemoryDepChecker::VectorizationSafetyStatus::Safe
;
2713 if (Found
== Deps
->end())
2715 MemoryDepChecker::Dependence Dep
= *Found
;
2717 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2719 // Emit remark for first unsafe dependence
2720 bool HasForcedDistribution
= false;
2721 std::optional
<const MDOperand
*> Value
=
2722 findStringMetadataForLoop(TheLoop
, "llvm.loop.distribute.enable");
2724 const MDOperand
*Op
= *Value
;
2725 assert(Op
&& mdconst::hasa
<ConstantInt
>(*Op
) && "invalid metadata");
2726 HasForcedDistribution
= mdconst::extract
<ConstantInt
>(*Op
)->getZExtValue();
2729 const std::string Info
=
2730 HasForcedDistribution
2731 ? "unsafe dependent memory operations in loop."
2732 : "unsafe dependent memory operations in loop. Use "
2733 "#pragma clang loop distribute(enable) to allow loop distribution "
2734 "to attempt to isolate the offending operations into a separate "
2736 OptimizationRemarkAnalysis
&R
=
2737 recordAnalysis("UnsafeDep", Dep
.getDestination(getDepChecker())) << Info
;
2740 case MemoryDepChecker::Dependence::NoDep
:
2741 case MemoryDepChecker::Dependence::Forward
:
2742 case MemoryDepChecker::Dependence::BackwardVectorizable
:
2743 llvm_unreachable("Unexpected dependence");
2744 case MemoryDepChecker::Dependence::Backward
:
2745 R
<< "\nBackward loop carried data dependence.";
2747 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding
:
2748 R
<< "\nForward loop carried data dependence that prevents "
2749 "store-to-load forwarding.";
2751 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding
:
2752 R
<< "\nBackward loop carried data dependence that prevents "
2753 "store-to-load forwarding.";
2755 case MemoryDepChecker::Dependence::IndirectUnsafe
:
2756 R
<< "\nUnsafe indirect dependence.";
2758 case MemoryDepChecker::Dependence::Unknown
:
2759 R
<< "\nUnknown data dependence.";
2763 if (Instruction
*I
= Dep
.getSource(getDepChecker())) {
2764 DebugLoc SourceLoc
= I
->getDebugLoc();
2765 if (auto *DD
= dyn_cast_or_null
<Instruction
>(getPointerOperand(I
)))
2766 SourceLoc
= DD
->getDebugLoc();
2768 R
<< " Memory location is the same as accessed at "
2769 << ore::NV("Location", SourceLoc
);
2773 bool LoopAccessInfo::blockNeedsPredication(BasicBlock
*BB
, Loop
*TheLoop
,
2774 DominatorTree
*DT
) {
2775 assert(TheLoop
->contains(BB
) && "Unknown block used");
2777 // Blocks that do not dominate the latch need predication.
2778 const BasicBlock
*Latch
= TheLoop
->getLoopLatch();
2779 return !DT
->dominates(BB
, Latch
);
2782 OptimizationRemarkAnalysis
&
2783 LoopAccessInfo::recordAnalysis(StringRef RemarkName
, const Instruction
*I
) {
2784 assert(!Report
&& "Multiple reports generated");
2786 const Value
*CodeRegion
= TheLoop
->getHeader();
2787 DebugLoc DL
= TheLoop
->getStartLoc();
2790 CodeRegion
= I
->getParent();
2791 // If there is no debug location attached to the instruction, revert back to
2792 // using the loop's.
2793 if (I
->getDebugLoc())
2794 DL
= I
->getDebugLoc();
2797 Report
= std::make_unique
<OptimizationRemarkAnalysis
>(DEBUG_TYPE
, RemarkName
, DL
,
2802 bool LoopAccessInfo::isInvariant(Value
*V
) const {
2803 auto *SE
= PSE
->getSE();
2804 // TODO: Is this really what we want? Even without FP SCEV, we may want some
2805 // trivially loop-invariant FP values to be considered invariant.
2806 if (!SE
->isSCEVable(V
->getType()))
2808 const SCEV
*S
= SE
->getSCEV(V
);
2809 return SE
->isLoopInvariant(S
, TheLoop
);
2812 /// Find the operand of the GEP that should be checked for consecutive
2813 /// stores. This ignores trailing indices that have no effect on the final
2815 static unsigned getGEPInductionOperand(const GetElementPtrInst
*Gep
) {
2816 const DataLayout
&DL
= Gep
->getDataLayout();
2817 unsigned LastOperand
= Gep
->getNumOperands() - 1;
2818 TypeSize GEPAllocSize
= DL
.getTypeAllocSize(Gep
->getResultElementType());
2820 // Walk backwards and try to peel off zeros.
2821 while (LastOperand
> 1 && match(Gep
->getOperand(LastOperand
), m_Zero())) {
2822 // Find the type we're currently indexing into.
2823 gep_type_iterator GEPTI
= gep_type_begin(Gep
);
2824 std::advance(GEPTI
, LastOperand
- 2);
2826 // If it's a type with the same allocation size as the result of the GEP we
2827 // can peel off the zero index.
2828 TypeSize ElemSize
= GEPTI
.isStruct()
2829 ? DL
.getTypeAllocSize(GEPTI
.getIndexedType())
2830 : GEPTI
.getSequentialElementStride(DL
);
2831 if (ElemSize
!= GEPAllocSize
)
2839 /// If the argument is a GEP, then returns the operand identified by
2840 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
2841 /// operand, it returns that instead.
2842 static Value
*stripGetElementPtr(Value
*Ptr
, ScalarEvolution
*SE
, Loop
*Lp
) {
2843 auto *GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
2847 unsigned InductionOperand
= getGEPInductionOperand(GEP
);
2849 // Check that all of the gep indices are uniform except for our induction
2851 for (unsigned I
= 0, E
= GEP
->getNumOperands(); I
!= E
; ++I
)
2852 if (I
!= InductionOperand
&&
2853 !SE
->isLoopInvariant(SE
->getSCEV(GEP
->getOperand(I
)), Lp
))
2855 return GEP
->getOperand(InductionOperand
);
2858 /// Get the stride of a pointer access in a loop. Looks for symbolic
2859 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2860 static const SCEV
*getStrideFromPointer(Value
*Ptr
, ScalarEvolution
*SE
, Loop
*Lp
) {
2861 auto *PtrTy
= dyn_cast
<PointerType
>(Ptr
->getType());
2865 // Try to remove a gep instruction to make the pointer (actually index at this
2866 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2867 // pointer, otherwise, we are analyzing the index.
2868 Value
*OrigPtr
= Ptr
;
2870 Ptr
= stripGetElementPtr(Ptr
, SE
, Lp
);
2871 const SCEV
*V
= SE
->getSCEV(Ptr
);
2875 while (auto *C
= dyn_cast
<SCEVIntegralCastExpr
>(V
))
2876 V
= C
->getOperand();
2878 auto *S
= dyn_cast
<SCEVAddRecExpr
>(V
);
2882 // If the pointer is invariant then there is no stride and it makes no
2883 // sense to add it here.
2884 if (Lp
!= S
->getLoop())
2887 V
= S
->getStepRecurrence(*SE
);
2889 // Strip off the size of access multiplication if we are still analyzing the
2891 if (OrigPtr
== Ptr
) {
2892 if (auto *M
= dyn_cast
<SCEVMulExpr
>(V
)) {
2893 auto *StepConst
= dyn_cast
<SCEVConstant
>(M
->getOperand(0));
2897 auto StepVal
= StepConst
->getAPInt().trySExtValue();
2898 // Bail out on a non-unit pointer access size.
2899 if (!StepVal
|| StepVal
!= 1)
2902 V
= M
->getOperand(1);
2906 // Note that the restriction after this loop invariant check are only
2907 // profitability restrictions.
2908 if (!SE
->isLoopInvariant(V
, Lp
))
2911 // Look for the loop invariant symbolic value.
2912 if (isa
<SCEVUnknown
>(V
))
2915 if (auto *C
= dyn_cast
<SCEVIntegralCastExpr
>(V
))
2916 if (isa
<SCEVUnknown
>(C
->getOperand()))
2922 void LoopAccessInfo::collectStridedAccess(Value
*MemAccess
) {
2923 Value
*Ptr
= getLoadStorePointerOperand(MemAccess
);
2927 // Note: getStrideFromPointer is a *profitability* heuristic. We
2928 // could broaden the scope of values returned here - to anything
2929 // which happens to be loop invariant and contributes to the
2930 // computation of an interesting IV - but we chose not to as we
2931 // don't have a cost model here, and broadening the scope exposes
2932 // far too many unprofitable cases.
2933 const SCEV
*StrideExpr
= getStrideFromPointer(Ptr
, PSE
->getSE(), TheLoop
);
2937 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2939 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr
<< " Stride: " << *StrideExpr
<< "\n");
2941 if (!SpeculateUnitStride
) {
2942 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n");
2946 // Avoid adding the "Stride == 1" predicate when we know that
2947 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2948 // or zero iteration loop, as Trip-Count <= Stride == 1.
2950 // TODO: We are currently not making a very informed decision on when it is
2951 // beneficial to apply stride versioning. It might make more sense that the
2952 // users of this analysis (such as the vectorizer) will trigger it, based on
2953 // their specific cost considerations; For example, in cases where stride
2954 // versioning does not help resolving memory accesses/dependences, the
2955 // vectorizer should evaluate the cost of the runtime test, and the benefit
2956 // of various possible stride specializations, considering the alternatives
2957 // of using gather/scatters (if available).
2959 const SCEV
*MaxBTC
= PSE
->getSymbolicMaxBackedgeTakenCount();
2961 // Match the types so we can compare the stride and the MaxBTC.
2962 // The Stride can be positive/negative, so we sign extend Stride;
2963 // The backedgeTakenCount is non-negative, so we zero extend MaxBTC.
2964 const DataLayout
&DL
= TheLoop
->getHeader()->getDataLayout();
2965 uint64_t StrideTypeSizeBits
= DL
.getTypeSizeInBits(StrideExpr
->getType());
2966 uint64_t BETypeSizeBits
= DL
.getTypeSizeInBits(MaxBTC
->getType());
2967 const SCEV
*CastedStride
= StrideExpr
;
2968 const SCEV
*CastedBECount
= MaxBTC
;
2969 ScalarEvolution
*SE
= PSE
->getSE();
2970 if (BETypeSizeBits
>= StrideTypeSizeBits
)
2971 CastedStride
= SE
->getNoopOrSignExtend(StrideExpr
, MaxBTC
->getType());
2973 CastedBECount
= SE
->getZeroExtendExpr(MaxBTC
, StrideExpr
->getType());
2974 const SCEV
*StrideMinusBETaken
= SE
->getMinusSCEV(CastedStride
, CastedBECount
);
2975 // Since TripCount == BackEdgeTakenCount + 1, checking:
2976 // "Stride >= TripCount" is equivalent to checking:
2977 // Stride - MaxBTC> 0
2978 if (SE
->isKnownPositive(StrideMinusBETaken
)) {
2980 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2981 "Stride==1 predicate will imply that the loop executes "
2985 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
2987 // Strip back off the integer cast, and check that our result is a
2988 // SCEVUnknown as we expect.
2989 const SCEV
*StrideBase
= StrideExpr
;
2990 if (const auto *C
= dyn_cast
<SCEVIntegralCastExpr
>(StrideBase
))
2991 StrideBase
= C
->getOperand();
2992 SymbolicStrides
[Ptr
] = cast
<SCEVUnknown
>(StrideBase
);
2995 LoopAccessInfo::LoopAccessInfo(Loop
*L
, ScalarEvolution
*SE
,
2996 const TargetTransformInfo
*TTI
,
2997 const TargetLibraryInfo
*TLI
, AAResults
*AA
,
2998 DominatorTree
*DT
, LoopInfo
*LI
)
2999 : PSE(std::make_unique
<PredicatedScalarEvolution
>(*SE
, *L
)),
3000 PtrRtChecking(nullptr), TheLoop(L
) {
3001 unsigned MaxTargetVectorWidthInBits
= std::numeric_limits
<unsigned>::max();
3003 TypeSize FixedWidth
=
3004 TTI
->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector
);
3005 if (FixedWidth
.isNonZero()) {
3006 // Scale the vector width by 2 as rough estimate to also consider
3008 MaxTargetVectorWidthInBits
= FixedWidth
.getFixedValue() * 2;
3011 TypeSize ScalableWidth
=
3012 TTI
->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector
);
3013 if (ScalableWidth
.isNonZero())
3014 MaxTargetVectorWidthInBits
= std::numeric_limits
<unsigned>::max();
3016 DepChecker
= std::make_unique
<MemoryDepChecker
>(*PSE
, L
, SymbolicStrides
,
3017 MaxTargetVectorWidthInBits
);
3018 PtrRtChecking
= std::make_unique
<RuntimePointerChecking
>(*DepChecker
, SE
);
3019 if (canAnalyzeLoop())
3020 CanVecMem
= analyzeLoop(AA
, LI
, TLI
, DT
);
3023 void LoopAccessInfo::print(raw_ostream
&OS
, unsigned Depth
) const {
3025 OS
.indent(Depth
) << "Memory dependences are safe";
3026 const MemoryDepChecker
&DC
= getDepChecker();
3027 if (!DC
.isSafeForAnyVectorWidth())
3028 OS
<< " with a maximum safe vector width of "
3029 << DC
.getMaxSafeVectorWidthInBits() << " bits";
3030 if (PtrRtChecking
->Need
)
3031 OS
<< " with run-time checks";
3035 if (HasConvergentOp
)
3036 OS
.indent(Depth
) << "Has convergent operation in loop\n";
3039 OS
.indent(Depth
) << "Report: " << Report
->getMsg() << "\n";
3041 if (auto *Dependences
= DepChecker
->getDependences()) {
3042 OS
.indent(Depth
) << "Dependences:\n";
3043 for (const auto &Dep
: *Dependences
) {
3044 Dep
.print(OS
, Depth
+ 2, DepChecker
->getMemoryInstructions());
3048 OS
.indent(Depth
) << "Too many dependences, not recorded\n";
3050 // List the pair of accesses need run-time checks to prove independence.
3051 PtrRtChecking
->print(OS
, Depth
);
3055 << "Non vectorizable stores to invariant address were "
3056 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress
||
3057 HasLoadStoreDependenceInvolvingLoopInvariantAddress
3060 << "found in loop.\n";
3062 OS
.indent(Depth
) << "SCEV assumptions:\n";
3063 PSE
->getPredicate().print(OS
, Depth
);
3067 OS
.indent(Depth
) << "Expressions re-written:\n";
3068 PSE
->print(OS
, Depth
);
3071 const LoopAccessInfo
&LoopAccessInfoManager::getInfo(Loop
&L
) {
3072 const auto &[It
, Inserted
] = LoopAccessInfoMap
.insert({&L
, nullptr});
3076 std::make_unique
<LoopAccessInfo
>(&L
, &SE
, TTI
, TLI
, &AA
, &DT
, &LI
);
3080 void LoopAccessInfoManager::clear() {
3081 SmallVector
<Loop
*> ToRemove
;
3082 // Collect LoopAccessInfo entries that may keep references to IR outside the
3083 // analyzed loop or SCEVs that may have been modified or invalidated. At the
3084 // moment, that is loops requiring memory or SCEV runtime checks, as those cache
3085 // SCEVs, e.g. for pointer expressions.
3086 for (const auto &[L
, LAI
] : LoopAccessInfoMap
) {
3087 if (LAI
->getRuntimePointerChecking()->getChecks().empty() &&
3088 LAI
->getPSE().getPredicate().isAlwaysTrue())
3090 ToRemove
.push_back(L
);
3093 for (Loop
*L
: ToRemove
)
3094 LoopAccessInfoMap
.erase(L
);
3097 bool LoopAccessInfoManager::invalidate(
3098 Function
&F
, const PreservedAnalyses
&PA
,
3099 FunctionAnalysisManager::Invalidator
&Inv
) {
3100 // Check whether our analysis is preserved.
3101 auto PAC
= PA
.getChecker
<LoopAccessAnalysis
>();
3102 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<Function
>>())
3103 // If not, give up now.
3106 // Check whether the analyses we depend on became invalid for any reason.
3107 // Skip checking TargetLibraryAnalysis as it is immutable and can't become
3109 return Inv
.invalidate
<AAManager
>(F
, PA
) ||
3110 Inv
.invalidate
<ScalarEvolutionAnalysis
>(F
, PA
) ||
3111 Inv
.invalidate
<LoopAnalysis
>(F
, PA
) ||
3112 Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
);
3115 LoopAccessInfoManager
LoopAccessAnalysis::run(Function
&F
,
3116 FunctionAnalysisManager
&FAM
) {
3117 auto &SE
= FAM
.getResult
<ScalarEvolutionAnalysis
>(F
);
3118 auto &AA
= FAM
.getResult
<AAManager
>(F
);
3119 auto &DT
= FAM
.getResult
<DominatorTreeAnalysis
>(F
);
3120 auto &LI
= FAM
.getResult
<LoopAnalysis
>(F
);
3121 auto &TTI
= FAM
.getResult
<TargetIRAnalysis
>(F
);
3122 auto &TLI
= FAM
.getResult
<TargetLibraryAnalysis
>(F
);
3123 return LoopAccessInfoManager(SE
, AA
, DT
, LI
, &TTI
, &TLI
);
3126 AnalysisKey
LoopAccessAnalysis::Key
;