1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * All basic blocks should only end with terminator insts, not contain them
27 // * The entry node to a function must not have predecessors
28 // * All Instructions must be embedded into a basic block
29 // * Functions cannot take a void-typed parameter
30 // * Verify that a function's argument list agrees with it's declared type.
31 // * It is illegal to specify a name for a void value.
32 // * It is illegal to have a internal global value with no initializer
33 // * It is illegal to have a ret instruction that returns a value that does not
34 // agree with the function return value type.
35 // * Function call argument types match the function prototype
36 // * A landing pad is defined by a landingpad instruction, and can be jumped to
37 // only by the unwind edge of an invoke instruction.
38 // * A landingpad instruction must be the first non-PHI instruction in the
40 // * Landingpad instructions must be in a function with a personality function.
41 // * Convergence control intrinsics are introduced in ConvergentOperations.rst.
42 // The applied restrictions are too numerous to list here.
43 // * The convergence entry intrinsic and the loop heart must be the first
44 // non-PHI instruction in their respective block. This does not conflict with
45 // the landing pads, since these two kinds cannot occur in the same block.
46 // * All other things that are tested by asserts spread about the code...
48 //===----------------------------------------------------------------------===//
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/ADT/APFloat.h"
52 #include "llvm/ADT/APInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/DenseMap.h"
55 #include "llvm/ADT/MapVector.h"
56 #include "llvm/ADT/STLExtras.h"
57 #include "llvm/ADT/SmallPtrSet.h"
58 #include "llvm/ADT/SmallSet.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/StringExtras.h"
61 #include "llvm/ADT/StringRef.h"
62 #include "llvm/ADT/Twine.h"
63 #include "llvm/BinaryFormat/Dwarf.h"
64 #include "llvm/IR/Argument.h"
65 #include "llvm/IR/AttributeMask.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallingConv.h"
70 #include "llvm/IR/Comdat.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/ConstantRangeList.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/ConvergenceVerifier.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DebugInfo.h"
78 #include "llvm/IR/DebugInfoMetadata.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Dominators.h"
82 #include "llvm/IR/EHPersonalities.h"
83 #include "llvm/IR/Function.h"
84 #include "llvm/IR/GCStrategy.h"
85 #include "llvm/IR/GlobalAlias.h"
86 #include "llvm/IR/GlobalValue.h"
87 #include "llvm/IR/GlobalVariable.h"
88 #include "llvm/IR/InlineAsm.h"
89 #include "llvm/IR/InstVisitor.h"
90 #include "llvm/IR/InstrTypes.h"
91 #include "llvm/IR/Instruction.h"
92 #include "llvm/IR/Instructions.h"
93 #include "llvm/IR/IntrinsicInst.h"
94 #include "llvm/IR/Intrinsics.h"
95 #include "llvm/IR/IntrinsicsAArch64.h"
96 #include "llvm/IR/IntrinsicsAMDGPU.h"
97 #include "llvm/IR/IntrinsicsARM.h"
98 #include "llvm/IR/IntrinsicsNVPTX.h"
99 #include "llvm/IR/IntrinsicsWebAssembly.h"
100 #include "llvm/IR/LLVMContext.h"
101 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
102 #include "llvm/IR/Metadata.h"
103 #include "llvm/IR/Module.h"
104 #include "llvm/IR/ModuleSlotTracker.h"
105 #include "llvm/IR/PassManager.h"
106 #include "llvm/IR/ProfDataUtils.h"
107 #include "llvm/IR/Statepoint.h"
108 #include "llvm/IR/Type.h"
109 #include "llvm/IR/Use.h"
110 #include "llvm/IR/User.h"
111 #include "llvm/IR/VFABIDemangler.h"
112 #include "llvm/IR/Value.h"
113 #include "llvm/InitializePasses.h"
114 #include "llvm/Pass.h"
115 #include "llvm/Support/AMDGPUAddrSpace.h"
116 #include "llvm/Support/AtomicOrdering.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/ErrorHandling.h"
120 #include "llvm/Support/MathExtras.h"
121 #include "llvm/Support/ModRef.h"
122 #include "llvm/Support/raw_ostream.h"
131 using namespace llvm
;
133 static cl::opt
<bool> VerifyNoAliasScopeDomination(
134 "verify-noalias-scope-decl-dom", cl::Hidden
, cl::init(false),
135 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
136 "scopes are not dominating"));
140 struct VerifierSupport
{
143 ModuleSlotTracker MST
;
145 const DataLayout
&DL
;
146 LLVMContext
&Context
;
148 /// Track the brokenness of the module while recursively visiting.
150 /// Broken debug info can be "recovered" from by stripping the debug info.
151 bool BrokenDebugInfo
= false;
152 /// Whether to treat broken debug info as an error.
153 bool TreatBrokenDebugInfoAsError
= true;
155 explicit VerifierSupport(raw_ostream
*OS
, const Module
&M
)
156 : OS(OS
), M(M
), MST(&M
), TT(Triple::normalize(M
.getTargetTriple())),
157 DL(M
.getDataLayout()), Context(M
.getContext()) {}
160 void Write(const Module
*M
) {
161 *OS
<< "; ModuleID = '" << M
->getModuleIdentifier() << "'\n";
164 void Write(const Value
*V
) {
169 void Write(const Value
&V
) {
170 if (isa
<Instruction
>(V
)) {
174 V
.printAsOperand(*OS
, true, MST
);
179 void Write(const DbgRecord
*DR
) {
181 DR
->print(*OS
, MST
, false);
186 void Write(DbgVariableRecord::LocationType Type
) {
188 case DbgVariableRecord::LocationType::Value
:
191 case DbgVariableRecord::LocationType::Declare
:
194 case DbgVariableRecord::LocationType::Assign
:
197 case DbgVariableRecord::LocationType::End
:
200 case DbgVariableRecord::LocationType::Any
:
206 void Write(const Metadata
*MD
) {
209 MD
->print(*OS
, MST
, &M
);
213 template <class T
> void Write(const MDTupleTypedArrayWrapper
<T
> &MD
) {
217 void Write(const NamedMDNode
*NMD
) {
220 NMD
->print(*OS
, MST
);
224 void Write(Type
*T
) {
230 void Write(const Comdat
*C
) {
236 void Write(const APInt
*AI
) {
242 void Write(const unsigned i
) { *OS
<< i
<< '\n'; }
244 // NOLINTNEXTLINE(readability-identifier-naming)
245 void Write(const Attribute
*A
) {
248 *OS
<< A
->getAsString() << '\n';
251 // NOLINTNEXTLINE(readability-identifier-naming)
252 void Write(const AttributeSet
*AS
) {
255 *OS
<< AS
->getAsString() << '\n';
258 // NOLINTNEXTLINE(readability-identifier-naming)
259 void Write(const AttributeList
*AL
) {
265 void Write(Printable P
) { *OS
<< P
<< '\n'; }
267 template <typename T
> void Write(ArrayRef
<T
> Vs
) {
268 for (const T
&V
: Vs
)
272 template <typename T1
, typename
... Ts
>
273 void WriteTs(const T1
&V1
, const Ts
&... Vs
) {
278 template <typename
... Ts
> void WriteTs() {}
281 /// A check failed, so printout out the condition and the message.
283 /// This provides a nice place to put a breakpoint if you want to see why
284 /// something is not correct.
285 void CheckFailed(const Twine
&Message
) {
287 *OS
<< Message
<< '\n';
291 /// A check failed (with values to print).
293 /// This calls the Message-only version so that the above is easier to set a
295 template <typename T1
, typename
... Ts
>
296 void CheckFailed(const Twine
&Message
, const T1
&V1
, const Ts
&... Vs
) {
297 CheckFailed(Message
);
302 /// A debug info check failed.
303 void DebugInfoCheckFailed(const Twine
&Message
) {
305 *OS
<< Message
<< '\n';
306 Broken
|= TreatBrokenDebugInfoAsError
;
307 BrokenDebugInfo
= true;
310 /// A debug info check failed (with values to print).
311 template <typename T1
, typename
... Ts
>
312 void DebugInfoCheckFailed(const Twine
&Message
, const T1
&V1
,
314 DebugInfoCheckFailed(Message
);
324 class Verifier
: public InstVisitor
<Verifier
>, VerifierSupport
{
325 friend class InstVisitor
<Verifier
>;
328 /// When verifying a basic block, keep track of all of the
329 /// instructions we have seen so far.
331 /// This allows us to do efficient dominance checks for the case when an
332 /// instruction has an operand that is an instruction in the same block.
333 SmallPtrSet
<Instruction
*, 16> InstsInThisBlock
;
335 /// Keep track of the metadata nodes that have been checked already.
336 SmallPtrSet
<const Metadata
*, 32> MDNodes
;
338 /// Keep track which DISubprogram is attached to which function.
339 DenseMap
<const DISubprogram
*, const Function
*> DISubprogramAttachments
;
341 /// Track all DICompileUnits visited.
342 SmallPtrSet
<const Metadata
*, 2> CUVisited
;
344 /// The result type for a landingpad.
345 Type
*LandingPadResultTy
;
347 /// Whether we've seen a call to @llvm.localescape in this function
351 /// Whether the current function has a DISubprogram attached to it.
352 bool HasDebugInfo
= false;
354 /// Stores the count of how many objects were passed to llvm.localescape for a
355 /// given function and the largest index passed to llvm.localrecover.
356 DenseMap
<Function
*, std::pair
<unsigned, unsigned>> FrameEscapeInfo
;
358 // Maps catchswitches and cleanuppads that unwind to siblings to the
359 // terminators that indicate the unwind, used to detect cycles therein.
360 MapVector
<Instruction
*, Instruction
*> SiblingFuncletInfo
;
362 /// Cache which blocks are in which funclet, if an EH funclet personality is
363 /// in use. Otherwise empty.
364 DenseMap
<BasicBlock
*, ColorVector
> BlockEHFuncletColors
;
366 /// Cache of constants visited in search of ConstantExprs.
367 SmallPtrSet
<const Constant
*, 32> ConstantExprVisited
;
369 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
370 SmallVector
<const Function
*, 4> DeoptimizeDeclarations
;
372 /// Cache of attribute lists verified.
373 SmallPtrSet
<const void *, 32> AttributeListsVisited
;
375 // Verify that this GlobalValue is only used in this module.
376 // This map is used to avoid visiting uses twice. We can arrive at a user
377 // twice, if they have multiple operands. In particular for very large
378 // constant expressions, we can arrive at a particular user many times.
379 SmallPtrSet
<const Value
*, 32> GlobalValueVisited
;
381 // Keeps track of duplicate function argument debug info.
382 SmallVector
<const DILocalVariable
*, 16> DebugFnArgs
;
384 TBAAVerifier TBAAVerifyHelper
;
385 ConvergenceVerifier ConvergenceVerifyHelper
;
387 SmallVector
<IntrinsicInst
*, 4> NoAliasScopeDecls
;
389 void checkAtomicMemAccessSize(Type
*Ty
, const Instruction
*I
);
392 explicit Verifier(raw_ostream
*OS
, bool ShouldTreatBrokenDebugInfoAsError
,
394 : VerifierSupport(OS
, M
), LandingPadResultTy(nullptr),
395 SawFrameEscape(false), TBAAVerifyHelper(this) {
396 TreatBrokenDebugInfoAsError
= ShouldTreatBrokenDebugInfoAsError
;
399 bool hasBrokenDebugInfo() const { return BrokenDebugInfo
; }
401 bool verify(const Function
&F
) {
402 assert(F
.getParent() == &M
&&
403 "An instance of this class only works with a specific module!");
405 // First ensure the function is well-enough formed to compute dominance
406 // information, and directly compute a dominance tree. We don't rely on the
407 // pass manager to provide this as it isolates us from a potentially
408 // out-of-date dominator tree and makes it significantly more complex to run
409 // this code outside of a pass manager.
410 // FIXME: It's really gross that we have to cast away constness here.
412 DT
.recalculate(const_cast<Function
&>(F
));
414 for (const BasicBlock
&BB
: F
) {
415 if (!BB
.empty() && BB
.back().isTerminator())
419 *OS
<< "Basic Block in function '" << F
.getName()
420 << "' does not have terminator!\n";
421 BB
.printAsOperand(*OS
, true, MST
);
427 auto FailureCB
= [this](const Twine
&Message
) {
428 this->CheckFailed(Message
);
430 ConvergenceVerifyHelper
.initialize(OS
, FailureCB
, F
);
433 // FIXME: We strip const here because the inst visitor strips const.
434 visit(const_cast<Function
&>(F
));
435 verifySiblingFuncletUnwinds();
437 if (ConvergenceVerifyHelper
.sawTokens())
438 ConvergenceVerifyHelper
.verify(DT
);
440 InstsInThisBlock
.clear();
442 LandingPadResultTy
= nullptr;
443 SawFrameEscape
= false;
444 SiblingFuncletInfo
.clear();
445 verifyNoAliasScopeDecl();
446 NoAliasScopeDecls
.clear();
451 /// Verify the module that this instance of \c Verifier was initialized with.
455 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
456 for (const Function
&F
: M
)
457 if (F
.getIntrinsicID() == Intrinsic::experimental_deoptimize
)
458 DeoptimizeDeclarations
.push_back(&F
);
460 // Now that we've visited every function, verify that we never asked to
461 // recover a frame index that wasn't escaped.
462 verifyFrameRecoverIndices();
463 for (const GlobalVariable
&GV
: M
.globals())
464 visitGlobalVariable(GV
);
466 for (const GlobalAlias
&GA
: M
.aliases())
467 visitGlobalAlias(GA
);
469 for (const GlobalIFunc
&GI
: M
.ifuncs())
470 visitGlobalIFunc(GI
);
472 for (const NamedMDNode
&NMD
: M
.named_metadata())
473 visitNamedMDNode(NMD
);
475 for (const StringMapEntry
<Comdat
> &SMEC
: M
.getComdatSymbolTable())
476 visitComdat(SMEC
.getValue());
480 visitModuleCommandLines();
482 verifyCompileUnits();
484 verifyDeoptimizeCallingConvs();
485 DISubprogramAttachments
.clear();
490 /// Whether a metadata node is allowed to be, or contain, a DILocation.
491 enum class AreDebugLocsAllowed
{ No
, Yes
};
493 /// Metadata that should be treated as a range, with slightly different
495 enum class RangeLikeMetadataKind
{
497 AbsoluteSymbol
, // MD_absolute_symbol
498 NoaliasAddrspace
// MD_noalias_addrspace
501 // Verification methods...
502 void visitGlobalValue(const GlobalValue
&GV
);
503 void visitGlobalVariable(const GlobalVariable
&GV
);
504 void visitGlobalAlias(const GlobalAlias
&GA
);
505 void visitGlobalIFunc(const GlobalIFunc
&GI
);
506 void visitAliaseeSubExpr(const GlobalAlias
&A
, const Constant
&C
);
507 void visitAliaseeSubExpr(SmallPtrSetImpl
<const GlobalAlias
*> &Visited
,
508 const GlobalAlias
&A
, const Constant
&C
);
509 void visitNamedMDNode(const NamedMDNode
&NMD
);
510 void visitMDNode(const MDNode
&MD
, AreDebugLocsAllowed AllowLocs
);
511 void visitMetadataAsValue(const MetadataAsValue
&MD
, Function
*F
);
512 void visitValueAsMetadata(const ValueAsMetadata
&MD
, Function
*F
);
513 void visitDIArgList(const DIArgList
&AL
, Function
*F
);
514 void visitComdat(const Comdat
&C
);
515 void visitModuleIdents();
516 void visitModuleCommandLines();
517 void visitModuleFlags();
518 void visitModuleFlag(const MDNode
*Op
,
519 DenseMap
<const MDString
*, const MDNode
*> &SeenIDs
,
520 SmallVectorImpl
<const MDNode
*> &Requirements
);
521 void visitModuleFlagCGProfileEntry(const MDOperand
&MDO
);
522 void visitFunction(const Function
&F
);
523 void visitBasicBlock(BasicBlock
&BB
);
524 void verifyRangeLikeMetadata(const Value
&V
, const MDNode
*Range
, Type
*Ty
,
525 RangeLikeMetadataKind Kind
);
526 void visitRangeMetadata(Instruction
&I
, MDNode
*Range
, Type
*Ty
);
527 void visitNoaliasAddrspaceMetadata(Instruction
&I
, MDNode
*Range
, Type
*Ty
);
528 void visitDereferenceableMetadata(Instruction
&I
, MDNode
*MD
);
529 void visitProfMetadata(Instruction
&I
, MDNode
*MD
);
530 void visitCallStackMetadata(MDNode
*MD
);
531 void visitMemProfMetadata(Instruction
&I
, MDNode
*MD
);
532 void visitCallsiteMetadata(Instruction
&I
, MDNode
*MD
);
533 void visitDIAssignIDMetadata(Instruction
&I
, MDNode
*MD
);
534 void visitMMRAMetadata(Instruction
&I
, MDNode
*MD
);
535 void visitAnnotationMetadata(MDNode
*Annotation
);
536 void visitAliasScopeMetadata(const MDNode
*MD
);
537 void visitAliasScopeListMetadata(const MDNode
*MD
);
538 void visitAccessGroupMetadata(const MDNode
*MD
);
540 template <class Ty
> bool isValidMetadataArray(const MDTuple
&N
);
541 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
542 #include "llvm/IR/Metadata.def"
543 void visitDIScope(const DIScope
&N
);
544 void visitDIVariable(const DIVariable
&N
);
545 void visitDILexicalBlockBase(const DILexicalBlockBase
&N
);
546 void visitDITemplateParameter(const DITemplateParameter
&N
);
548 void visitTemplateParams(const MDNode
&N
, const Metadata
&RawParams
);
550 void visit(DbgLabelRecord
&DLR
);
551 void visit(DbgVariableRecord
&DVR
);
552 // InstVisitor overrides...
553 using InstVisitor
<Verifier
>::visit
;
554 void visitDbgRecords(Instruction
&I
);
555 void visit(Instruction
&I
);
557 void visitTruncInst(TruncInst
&I
);
558 void visitZExtInst(ZExtInst
&I
);
559 void visitSExtInst(SExtInst
&I
);
560 void visitFPTruncInst(FPTruncInst
&I
);
561 void visitFPExtInst(FPExtInst
&I
);
562 void visitFPToUIInst(FPToUIInst
&I
);
563 void visitFPToSIInst(FPToSIInst
&I
);
564 void visitUIToFPInst(UIToFPInst
&I
);
565 void visitSIToFPInst(SIToFPInst
&I
);
566 void visitIntToPtrInst(IntToPtrInst
&I
);
567 void visitPtrToIntInst(PtrToIntInst
&I
);
568 void visitBitCastInst(BitCastInst
&I
);
569 void visitAddrSpaceCastInst(AddrSpaceCastInst
&I
);
570 void visitPHINode(PHINode
&PN
);
571 void visitCallBase(CallBase
&Call
);
572 void visitUnaryOperator(UnaryOperator
&U
);
573 void visitBinaryOperator(BinaryOperator
&B
);
574 void visitICmpInst(ICmpInst
&IC
);
575 void visitFCmpInst(FCmpInst
&FC
);
576 void visitExtractElementInst(ExtractElementInst
&EI
);
577 void visitInsertElementInst(InsertElementInst
&EI
);
578 void visitShuffleVectorInst(ShuffleVectorInst
&EI
);
579 void visitVAArgInst(VAArgInst
&VAA
) { visitInstruction(VAA
); }
580 void visitCallInst(CallInst
&CI
);
581 void visitInvokeInst(InvokeInst
&II
);
582 void visitGetElementPtrInst(GetElementPtrInst
&GEP
);
583 void visitLoadInst(LoadInst
&LI
);
584 void visitStoreInst(StoreInst
&SI
);
585 void verifyDominatesUse(Instruction
&I
, unsigned i
);
586 void visitInstruction(Instruction
&I
);
587 void visitTerminator(Instruction
&I
);
588 void visitBranchInst(BranchInst
&BI
);
589 void visitReturnInst(ReturnInst
&RI
);
590 void visitSwitchInst(SwitchInst
&SI
);
591 void visitIndirectBrInst(IndirectBrInst
&BI
);
592 void visitCallBrInst(CallBrInst
&CBI
);
593 void visitSelectInst(SelectInst
&SI
);
594 void visitUserOp1(Instruction
&I
);
595 void visitUserOp2(Instruction
&I
) { visitUserOp1(I
); }
596 void visitIntrinsicCall(Intrinsic::ID ID
, CallBase
&Call
);
597 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic
&FPI
);
598 void visitVPIntrinsic(VPIntrinsic
&VPI
);
599 void visitDbgIntrinsic(StringRef Kind
, DbgVariableIntrinsic
&DII
);
600 void visitDbgLabelIntrinsic(StringRef Kind
, DbgLabelInst
&DLI
);
601 void visitAtomicCmpXchgInst(AtomicCmpXchgInst
&CXI
);
602 void visitAtomicRMWInst(AtomicRMWInst
&RMWI
);
603 void visitFenceInst(FenceInst
&FI
);
604 void visitAllocaInst(AllocaInst
&AI
);
605 void visitExtractValueInst(ExtractValueInst
&EVI
);
606 void visitInsertValueInst(InsertValueInst
&IVI
);
607 void visitEHPadPredecessors(Instruction
&I
);
608 void visitLandingPadInst(LandingPadInst
&LPI
);
609 void visitResumeInst(ResumeInst
&RI
);
610 void visitCatchPadInst(CatchPadInst
&CPI
);
611 void visitCatchReturnInst(CatchReturnInst
&CatchReturn
);
612 void visitCleanupPadInst(CleanupPadInst
&CPI
);
613 void visitFuncletPadInst(FuncletPadInst
&FPI
);
614 void visitCatchSwitchInst(CatchSwitchInst
&CatchSwitch
);
615 void visitCleanupReturnInst(CleanupReturnInst
&CRI
);
617 void verifySwiftErrorCall(CallBase
&Call
, const Value
*SwiftErrorVal
);
618 void verifySwiftErrorValue(const Value
*SwiftErrorVal
);
619 void verifyTailCCMustTailAttrs(const AttrBuilder
&Attrs
, StringRef Context
);
620 void verifyMustTailCall(CallInst
&CI
);
621 bool verifyAttributeCount(AttributeList Attrs
, unsigned Params
);
622 void verifyAttributeTypes(AttributeSet Attrs
, const Value
*V
);
623 void verifyParameterAttrs(AttributeSet Attrs
, Type
*Ty
, const Value
*V
);
624 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs
, StringRef Attr
,
626 void verifyFunctionAttrs(FunctionType
*FT
, AttributeList Attrs
,
627 const Value
*V
, bool IsIntrinsic
, bool IsInlineAsm
);
628 void verifyFunctionMetadata(ArrayRef
<std::pair
<unsigned, MDNode
*>> MDs
);
630 void visitConstantExprsRecursively(const Constant
*EntryC
);
631 void visitConstantExpr(const ConstantExpr
*CE
);
632 void visitConstantPtrAuth(const ConstantPtrAuth
*CPA
);
633 void verifyInlineAsmCall(const CallBase
&Call
);
634 void verifyStatepoint(const CallBase
&Call
);
635 void verifyFrameRecoverIndices();
636 void verifySiblingFuncletUnwinds();
638 void verifyFragmentExpression(const DbgVariableIntrinsic
&I
);
639 void verifyFragmentExpression(const DbgVariableRecord
&I
);
640 template <typename ValueOrMetadata
>
641 void verifyFragmentExpression(const DIVariable
&V
,
642 DIExpression::FragmentInfo Fragment
,
643 ValueOrMetadata
*Desc
);
644 void verifyFnArgs(const DbgVariableIntrinsic
&I
);
645 void verifyFnArgs(const DbgVariableRecord
&DVR
);
646 void verifyNotEntryValue(const DbgVariableIntrinsic
&I
);
647 void verifyNotEntryValue(const DbgVariableRecord
&I
);
649 /// Module-level debug info verification...
650 void verifyCompileUnits();
652 /// Module-level verification that all @llvm.experimental.deoptimize
653 /// declarations share the same calling convention.
654 void verifyDeoptimizeCallingConvs();
656 void verifyAttachedCallBundle(const CallBase
&Call
,
657 const OperandBundleUse
&BU
);
659 /// Verify the llvm.experimental.noalias.scope.decl declarations
660 void verifyNoAliasScopeDecl();
663 } // end anonymous namespace
665 /// We know that cond should be true, if not print an error message.
666 #define Check(C, ...) \
669 CheckFailed(__VA_ARGS__); \
674 /// We know that a debug info condition should be true, if not print
675 /// an error message.
676 #define CheckDI(C, ...) \
679 DebugInfoCheckFailed(__VA_ARGS__); \
684 void Verifier::visitDbgRecords(Instruction
&I
) {
687 CheckDI(I
.DebugMarker
->MarkedInstr
== &I
,
688 "Instruction has invalid DebugMarker", &I
);
689 CheckDI(!isa
<PHINode
>(&I
) || !I
.hasDbgRecords(),
690 "PHI Node must not have any attached DbgRecords", &I
);
691 for (DbgRecord
&DR
: I
.getDbgRecordRange()) {
692 CheckDI(DR
.getMarker() == I
.DebugMarker
,
693 "DbgRecord had invalid DebugMarker", &I
, &DR
);
695 dyn_cast_or_null
<DILocation
>(DR
.getDebugLoc().getAsMDNode()))
696 visitMDNode(*Loc
, AreDebugLocsAllowed::Yes
);
697 if (auto *DVR
= dyn_cast
<DbgVariableRecord
>(&DR
)) {
699 // These have to appear after `visit` for consistency with existing
700 // intrinsic behaviour.
701 verifyFragmentExpression(*DVR
);
702 verifyNotEntryValue(*DVR
);
703 } else if (auto *DLR
= dyn_cast
<DbgLabelRecord
>(&DR
)) {
709 void Verifier::visit(Instruction
&I
) {
711 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
712 Check(I
.getOperand(i
) != nullptr, "Operand is null", &I
);
713 InstVisitor
<Verifier
>::visit(I
);
716 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
717 static void forEachUser(const Value
*User
,
718 SmallPtrSet
<const Value
*, 32> &Visited
,
719 llvm::function_ref
<bool(const Value
*)> Callback
) {
720 if (!Visited
.insert(User
).second
)
723 SmallVector
<const Value
*> WorkList
;
724 append_range(WorkList
, User
->materialized_users());
725 while (!WorkList
.empty()) {
726 const Value
*Cur
= WorkList
.pop_back_val();
727 if (!Visited
.insert(Cur
).second
)
730 append_range(WorkList
, Cur
->materialized_users());
734 void Verifier::visitGlobalValue(const GlobalValue
&GV
) {
735 Check(!GV
.isDeclaration() || GV
.hasValidDeclarationLinkage(),
736 "Global is external, but doesn't have external or weak linkage!", &GV
);
738 if (const GlobalObject
*GO
= dyn_cast
<GlobalObject
>(&GV
)) {
740 if (MaybeAlign A
= GO
->getAlign()) {
741 Check(A
->value() <= Value::MaximumAlignment
,
742 "huge alignment values are unsupported", GO
);
745 if (const MDNode
*Associated
=
746 GO
->getMetadata(LLVMContext::MD_associated
)) {
747 Check(Associated
->getNumOperands() == 1,
748 "associated metadata must have one operand", &GV
, Associated
);
749 const Metadata
*Op
= Associated
->getOperand(0).get();
750 Check(Op
, "associated metadata must have a global value", GO
, Associated
);
752 const auto *VM
= dyn_cast_or_null
<ValueAsMetadata
>(Op
);
753 Check(VM
, "associated metadata must be ValueAsMetadata", GO
, Associated
);
755 Check(isa
<PointerType
>(VM
->getValue()->getType()),
756 "associated value must be pointer typed", GV
, Associated
);
758 const Value
*Stripped
= VM
->getValue()->stripPointerCastsAndAliases();
759 Check(isa
<GlobalObject
>(Stripped
) || isa
<Constant
>(Stripped
),
760 "associated metadata must point to a GlobalObject", GO
, Stripped
);
761 Check(Stripped
!= GO
,
762 "global values should not associate to themselves", GO
,
767 // FIXME: Why is getMetadata on GlobalValue protected?
768 if (const MDNode
*AbsoluteSymbol
=
769 GO
->getMetadata(LLVMContext::MD_absolute_symbol
)) {
770 verifyRangeLikeMetadata(*GO
, AbsoluteSymbol
,
771 DL
.getIntPtrType(GO
->getType()),
772 RangeLikeMetadataKind::AbsoluteSymbol
);
776 Check(!GV
.hasAppendingLinkage() || isa
<GlobalVariable
>(GV
),
777 "Only global variables can have appending linkage!", &GV
);
779 if (GV
.hasAppendingLinkage()) {
780 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(&GV
);
781 Check(GVar
&& GVar
->getValueType()->isArrayTy(),
782 "Only global arrays can have appending linkage!", GVar
);
785 if (GV
.isDeclarationForLinker())
786 Check(!GV
.hasComdat(), "Declaration may not be in a Comdat!", &GV
);
788 if (GV
.hasDLLExportStorageClass()) {
789 Check(!GV
.hasHiddenVisibility(),
790 "dllexport GlobalValue must have default or protected visibility",
793 if (GV
.hasDLLImportStorageClass()) {
794 Check(GV
.hasDefaultVisibility(),
795 "dllimport GlobalValue must have default visibility", &GV
);
796 Check(!GV
.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
799 Check((GV
.isDeclaration() &&
800 (GV
.hasExternalLinkage() || GV
.hasExternalWeakLinkage())) ||
801 GV
.hasAvailableExternallyLinkage(),
802 "Global is marked as dllimport, but not external", &GV
);
805 if (GV
.isImplicitDSOLocal())
806 Check(GV
.isDSOLocal(),
807 "GlobalValue with local linkage or non-default "
808 "visibility must be dso_local!",
812 Check(!GV
.hasSection(), "tagged GlobalValue must not be in section.", &GV
);
815 forEachUser(&GV
, GlobalValueVisited
, [&](const Value
*V
) -> bool {
816 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
817 if (!I
->getParent() || !I
->getParent()->getParent())
818 CheckFailed("Global is referenced by parentless instruction!", &GV
, &M
,
820 else if (I
->getParent()->getParent()->getParent() != &M
)
821 CheckFailed("Global is referenced in a different module!", &GV
, &M
, I
,
822 I
->getParent()->getParent(),
823 I
->getParent()->getParent()->getParent());
825 } else if (const Function
*F
= dyn_cast
<Function
>(V
)) {
826 if (F
->getParent() != &M
)
827 CheckFailed("Global is used by function in a different module", &GV
, &M
,
835 void Verifier::visitGlobalVariable(const GlobalVariable
&GV
) {
836 Type
*GVType
= GV
.getValueType();
838 if (GV
.hasInitializer()) {
839 Check(GV
.getInitializer()->getType() == GVType
,
840 "Global variable initializer type does not match global "
843 // If the global has common linkage, it must have a zero initializer and
844 // cannot be constant.
845 if (GV
.hasCommonLinkage()) {
846 Check(GV
.getInitializer()->isNullValue(),
847 "'common' global must have a zero initializer!", &GV
);
848 Check(!GV
.isConstant(), "'common' global may not be marked constant!",
850 Check(!GV
.hasComdat(), "'common' global may not be in a Comdat!", &GV
);
854 if (GV
.hasName() && (GV
.getName() == "llvm.global_ctors" ||
855 GV
.getName() == "llvm.global_dtors")) {
856 Check(!GV
.hasInitializer() || GV
.hasAppendingLinkage(),
857 "invalid linkage for intrinsic global variable", &GV
);
858 Check(GV
.materialized_use_empty(),
859 "invalid uses of intrinsic global variable", &GV
);
861 // Don't worry about emitting an error for it not being an array,
862 // visitGlobalValue will complain on appending non-array.
863 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(GVType
)) {
864 StructType
*STy
= dyn_cast
<StructType
>(ATy
->getElementType());
865 PointerType
*FuncPtrTy
=
866 PointerType::get(Context
, DL
.getProgramAddressSpace());
867 Check(STy
&& (STy
->getNumElements() == 2 || STy
->getNumElements() == 3) &&
868 STy
->getTypeAtIndex(0u)->isIntegerTy(32) &&
869 STy
->getTypeAtIndex(1) == FuncPtrTy
,
870 "wrong type for intrinsic global variable", &GV
);
871 Check(STy
->getNumElements() == 3,
872 "the third field of the element type is mandatory, "
873 "specify ptr null to migrate from the obsoleted 2-field form");
874 Type
*ETy
= STy
->getTypeAtIndex(2);
875 Check(ETy
->isPointerTy(), "wrong type for intrinsic global variable",
880 if (GV
.hasName() && (GV
.getName() == "llvm.used" ||
881 GV
.getName() == "llvm.compiler.used")) {
882 Check(!GV
.hasInitializer() || GV
.hasAppendingLinkage(),
883 "invalid linkage for intrinsic global variable", &GV
);
884 Check(GV
.materialized_use_empty(),
885 "invalid uses of intrinsic global variable", &GV
);
887 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(GVType
)) {
888 PointerType
*PTy
= dyn_cast
<PointerType
>(ATy
->getElementType());
889 Check(PTy
, "wrong type for intrinsic global variable", &GV
);
890 if (GV
.hasInitializer()) {
891 const Constant
*Init
= GV
.getInitializer();
892 const ConstantArray
*InitArray
= dyn_cast
<ConstantArray
>(Init
);
893 Check(InitArray
, "wrong initalizer for intrinsic global variable",
895 for (Value
*Op
: InitArray
->operands()) {
896 Value
*V
= Op
->stripPointerCasts();
897 Check(isa
<GlobalVariable
>(V
) || isa
<Function
>(V
) ||
899 Twine("invalid ") + GV
.getName() + " member", V
);
901 Twine("members of ") + GV
.getName() + " must be named", V
);
907 // Visit any debug info attachments.
908 SmallVector
<MDNode
*, 1> MDs
;
909 GV
.getMetadata(LLVMContext::MD_dbg
, MDs
);
910 for (auto *MD
: MDs
) {
911 if (auto *GVE
= dyn_cast
<DIGlobalVariableExpression
>(MD
))
912 visitDIGlobalVariableExpression(*GVE
);
914 CheckDI(false, "!dbg attachment of global variable must be a "
915 "DIGlobalVariableExpression");
918 // Scalable vectors cannot be global variables, since we don't know
920 Check(!GVType
->isScalableTy(), "Globals cannot contain scalable types", &GV
);
922 // Check if it is or contains a target extension type that disallows being
924 Check(!GVType
->containsNonGlobalTargetExtType(),
925 "Global @" + GV
.getName() + " has illegal target extension type",
928 if (!GV
.hasInitializer()) {
929 visitGlobalValue(GV
);
933 // Walk any aggregate initializers looking for bitcasts between address spaces
934 visitConstantExprsRecursively(GV
.getInitializer());
936 visitGlobalValue(GV
);
939 void Verifier::visitAliaseeSubExpr(const GlobalAlias
&GA
, const Constant
&C
) {
940 SmallPtrSet
<const GlobalAlias
*, 4> Visited
;
942 visitAliaseeSubExpr(Visited
, GA
, C
);
945 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl
<const GlobalAlias
*> &Visited
,
946 const GlobalAlias
&GA
, const Constant
&C
) {
947 if (GA
.hasAvailableExternallyLinkage()) {
948 Check(isa
<GlobalValue
>(C
) &&
949 cast
<GlobalValue
>(C
).hasAvailableExternallyLinkage(),
950 "available_externally alias must point to available_externally "
954 if (const auto *GV
= dyn_cast
<GlobalValue
>(&C
)) {
955 if (!GA
.hasAvailableExternallyLinkage()) {
956 Check(!GV
->isDeclarationForLinker(), "Alias must point to a definition",
960 if (const auto *GA2
= dyn_cast
<GlobalAlias
>(GV
)) {
961 Check(Visited
.insert(GA2
).second
, "Aliases cannot form a cycle", &GA
);
963 Check(!GA2
->isInterposable(),
964 "Alias cannot point to an interposable alias", &GA
);
966 // Only continue verifying subexpressions of GlobalAliases.
967 // Do not recurse into global initializers.
972 if (const auto *CE
= dyn_cast
<ConstantExpr
>(&C
))
973 visitConstantExprsRecursively(CE
);
975 for (const Use
&U
: C
.operands()) {
977 if (const auto *GA2
= dyn_cast
<GlobalAlias
>(V
))
978 visitAliaseeSubExpr(Visited
, GA
, *GA2
->getAliasee());
979 else if (const auto *C2
= dyn_cast
<Constant
>(V
))
980 visitAliaseeSubExpr(Visited
, GA
, *C2
);
984 void Verifier::visitGlobalAlias(const GlobalAlias
&GA
) {
985 Check(GlobalAlias::isValidLinkage(GA
.getLinkage()),
986 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
987 "weak_odr, external, or available_externally linkage!",
989 const Constant
*Aliasee
= GA
.getAliasee();
990 Check(Aliasee
, "Aliasee cannot be NULL!", &GA
);
991 Check(GA
.getType() == Aliasee
->getType(),
992 "Alias and aliasee types should match!", &GA
);
994 Check(isa
<GlobalValue
>(Aliasee
) || isa
<ConstantExpr
>(Aliasee
),
995 "Aliasee should be either GlobalValue or ConstantExpr", &GA
);
997 visitAliaseeSubExpr(GA
, *Aliasee
);
999 visitGlobalValue(GA
);
1002 void Verifier::visitGlobalIFunc(const GlobalIFunc
&GI
) {
1003 Check(GlobalIFunc::isValidLinkage(GI
.getLinkage()),
1004 "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
1005 "weak_odr, or external linkage!",
1007 // Pierce through ConstantExprs and GlobalAliases and check that the resolver
1008 // is a Function definition.
1009 const Function
*Resolver
= GI
.getResolverFunction();
1010 Check(Resolver
, "IFunc must have a Function resolver", &GI
);
1011 Check(!Resolver
->isDeclarationForLinker(),
1012 "IFunc resolver must be a definition", &GI
);
1014 // Check that the immediate resolver operand (prior to any bitcasts) has the
1016 const Type
*ResolverTy
= GI
.getResolver()->getType();
1018 Check(isa
<PointerType
>(Resolver
->getFunctionType()->getReturnType()),
1019 "IFunc resolver must return a pointer", &GI
);
1021 Check(ResolverTy
== PointerType::get(Context
, GI
.getAddressSpace()),
1022 "IFunc resolver has incorrect type", &GI
);
1025 void Verifier::visitNamedMDNode(const NamedMDNode
&NMD
) {
1026 // There used to be various other llvm.dbg.* nodes, but we don't support
1027 // upgrading them and we want to reserve the namespace for future uses.
1028 if (NMD
.getName().starts_with("llvm.dbg."))
1029 CheckDI(NMD
.getName() == "llvm.dbg.cu",
1030 "unrecognized named metadata node in the llvm.dbg namespace", &NMD
);
1031 for (const MDNode
*MD
: NMD
.operands()) {
1032 if (NMD
.getName() == "llvm.dbg.cu")
1033 CheckDI(MD
&& isa
<DICompileUnit
>(MD
), "invalid compile unit", &NMD
, MD
);
1038 visitMDNode(*MD
, AreDebugLocsAllowed::Yes
);
1042 void Verifier::visitMDNode(const MDNode
&MD
, AreDebugLocsAllowed AllowLocs
) {
1043 // Only visit each node once. Metadata can be mutually recursive, so this
1044 // avoids infinite recursion here, as well as being an optimization.
1045 if (!MDNodes
.insert(&MD
).second
)
1048 Check(&MD
.getContext() == &Context
,
1049 "MDNode context does not match Module context!", &MD
);
1051 switch (MD
.getMetadataID()) {
1053 llvm_unreachable("Invalid MDNode subclass");
1054 case Metadata::MDTupleKind
:
1056 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
1057 case Metadata::CLASS##Kind: \
1058 visit##CLASS(cast<CLASS>(MD)); \
1060 #include "llvm/IR/Metadata.def"
1063 for (const Metadata
*Op
: MD
.operands()) {
1066 Check(!isa
<LocalAsMetadata
>(Op
), "Invalid operand for global metadata!",
1068 CheckDI(!isa
<DILocation
>(Op
) || AllowLocs
== AreDebugLocsAllowed::Yes
,
1069 "DILocation not allowed within this metadata node", &MD
, Op
);
1070 if (auto *N
= dyn_cast
<MDNode
>(Op
)) {
1071 visitMDNode(*N
, AllowLocs
);
1074 if (auto *V
= dyn_cast
<ValueAsMetadata
>(Op
)) {
1075 visitValueAsMetadata(*V
, nullptr);
1080 // Check these last, so we diagnose problems in operands first.
1081 Check(!MD
.isTemporary(), "Expected no forward declarations!", &MD
);
1082 Check(MD
.isResolved(), "All nodes should be resolved!", &MD
);
1085 void Verifier::visitValueAsMetadata(const ValueAsMetadata
&MD
, Function
*F
) {
1086 Check(MD
.getValue(), "Expected valid value", &MD
);
1087 Check(!MD
.getValue()->getType()->isMetadataTy(),
1088 "Unexpected metadata round-trip through values", &MD
, MD
.getValue());
1090 auto *L
= dyn_cast
<LocalAsMetadata
>(&MD
);
1094 Check(F
, "function-local metadata used outside a function", L
);
1096 // If this was an instruction, bb, or argument, verify that it is in the
1097 // function that we expect.
1098 Function
*ActualF
= nullptr;
1099 if (Instruction
*I
= dyn_cast
<Instruction
>(L
->getValue())) {
1100 Check(I
->getParent(), "function-local metadata not in basic block", L
, I
);
1101 ActualF
= I
->getParent()->getParent();
1102 } else if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(L
->getValue()))
1103 ActualF
= BB
->getParent();
1104 else if (Argument
*A
= dyn_cast
<Argument
>(L
->getValue()))
1105 ActualF
= A
->getParent();
1106 assert(ActualF
&& "Unimplemented function local metadata case!");
1108 Check(ActualF
== F
, "function-local metadata used in wrong function", L
);
1111 void Verifier::visitDIArgList(const DIArgList
&AL
, Function
*F
) {
1112 for (const ValueAsMetadata
*VAM
: AL
.getArgs())
1113 visitValueAsMetadata(*VAM
, F
);
1116 void Verifier::visitMetadataAsValue(const MetadataAsValue
&MDV
, Function
*F
) {
1117 Metadata
*MD
= MDV
.getMetadata();
1118 if (auto *N
= dyn_cast
<MDNode
>(MD
)) {
1119 visitMDNode(*N
, AreDebugLocsAllowed::No
);
1123 // Only visit each node once. Metadata can be mutually recursive, so this
1124 // avoids infinite recursion here, as well as being an optimization.
1125 if (!MDNodes
.insert(MD
).second
)
1128 if (auto *V
= dyn_cast
<ValueAsMetadata
>(MD
))
1129 visitValueAsMetadata(*V
, F
);
1131 if (auto *AL
= dyn_cast
<DIArgList
>(MD
))
1132 visitDIArgList(*AL
, F
);
1135 static bool isType(const Metadata
*MD
) { return !MD
|| isa
<DIType
>(MD
); }
1136 static bool isScope(const Metadata
*MD
) { return !MD
|| isa
<DIScope
>(MD
); }
1137 static bool isDINode(const Metadata
*MD
) { return !MD
|| isa
<DINode
>(MD
); }
1139 void Verifier::visitDILocation(const DILocation
&N
) {
1140 CheckDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1141 "location requires a valid scope", &N
, N
.getRawScope());
1142 if (auto *IA
= N
.getRawInlinedAt())
1143 CheckDI(isa
<DILocation
>(IA
), "inlined-at should be a location", &N
, IA
);
1144 if (auto *SP
= dyn_cast
<DISubprogram
>(N
.getRawScope()))
1145 CheckDI(SP
->isDefinition(), "scope points into the type hierarchy", &N
);
1148 void Verifier::visitGenericDINode(const GenericDINode
&N
) {
1149 CheckDI(N
.getTag(), "invalid tag", &N
);
1152 void Verifier::visitDIScope(const DIScope
&N
) {
1153 if (auto *F
= N
.getRawFile())
1154 CheckDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1157 void Verifier::visitDISubrange(const DISubrange
&N
) {
1158 CheckDI(N
.getTag() == dwarf::DW_TAG_subrange_type
, "invalid tag", &N
);
1159 CheckDI(!N
.getRawCountNode() || !N
.getRawUpperBound(),
1160 "Subrange can have any one of count or upperBound", &N
);
1161 auto *CBound
= N
.getRawCountNode();
1162 CheckDI(!CBound
|| isa
<ConstantAsMetadata
>(CBound
) ||
1163 isa
<DIVariable
>(CBound
) || isa
<DIExpression
>(CBound
),
1164 "Count must be signed constant or DIVariable or DIExpression", &N
);
1165 auto Count
= N
.getCount();
1166 CheckDI(!Count
|| !isa
<ConstantInt
*>(Count
) ||
1167 cast
<ConstantInt
*>(Count
)->getSExtValue() >= -1,
1168 "invalid subrange count", &N
);
1169 auto *LBound
= N
.getRawLowerBound();
1170 CheckDI(!LBound
|| isa
<ConstantAsMetadata
>(LBound
) ||
1171 isa
<DIVariable
>(LBound
) || isa
<DIExpression
>(LBound
),
1172 "LowerBound must be signed constant or DIVariable or DIExpression",
1174 auto *UBound
= N
.getRawUpperBound();
1175 CheckDI(!UBound
|| isa
<ConstantAsMetadata
>(UBound
) ||
1176 isa
<DIVariable
>(UBound
) || isa
<DIExpression
>(UBound
),
1177 "UpperBound must be signed constant or DIVariable or DIExpression",
1179 auto *Stride
= N
.getRawStride();
1180 CheckDI(!Stride
|| isa
<ConstantAsMetadata
>(Stride
) ||
1181 isa
<DIVariable
>(Stride
) || isa
<DIExpression
>(Stride
),
1182 "Stride must be signed constant or DIVariable or DIExpression", &N
);
1185 void Verifier::visitDIGenericSubrange(const DIGenericSubrange
&N
) {
1186 CheckDI(N
.getTag() == dwarf::DW_TAG_generic_subrange
, "invalid tag", &N
);
1187 CheckDI(!N
.getRawCountNode() || !N
.getRawUpperBound(),
1188 "GenericSubrange can have any one of count or upperBound", &N
);
1189 auto *CBound
= N
.getRawCountNode();
1190 CheckDI(!CBound
|| isa
<DIVariable
>(CBound
) || isa
<DIExpression
>(CBound
),
1191 "Count must be signed constant or DIVariable or DIExpression", &N
);
1192 auto *LBound
= N
.getRawLowerBound();
1193 CheckDI(LBound
, "GenericSubrange must contain lowerBound", &N
);
1194 CheckDI(isa
<DIVariable
>(LBound
) || isa
<DIExpression
>(LBound
),
1195 "LowerBound must be signed constant or DIVariable or DIExpression",
1197 auto *UBound
= N
.getRawUpperBound();
1198 CheckDI(!UBound
|| isa
<DIVariable
>(UBound
) || isa
<DIExpression
>(UBound
),
1199 "UpperBound must be signed constant or DIVariable or DIExpression",
1201 auto *Stride
= N
.getRawStride();
1202 CheckDI(Stride
, "GenericSubrange must contain stride", &N
);
1203 CheckDI(isa
<DIVariable
>(Stride
) || isa
<DIExpression
>(Stride
),
1204 "Stride must be signed constant or DIVariable or DIExpression", &N
);
1207 void Verifier::visitDIEnumerator(const DIEnumerator
&N
) {
1208 CheckDI(N
.getTag() == dwarf::DW_TAG_enumerator
, "invalid tag", &N
);
1211 void Verifier::visitDIBasicType(const DIBasicType
&N
) {
1212 CheckDI(N
.getTag() == dwarf::DW_TAG_base_type
||
1213 N
.getTag() == dwarf::DW_TAG_unspecified_type
||
1214 N
.getTag() == dwarf::DW_TAG_string_type
,
1218 void Verifier::visitDIStringType(const DIStringType
&N
) {
1219 CheckDI(N
.getTag() == dwarf::DW_TAG_string_type
, "invalid tag", &N
);
1220 CheckDI(!(N
.isBigEndian() && N
.isLittleEndian()), "has conflicting flags",
1224 void Verifier::visitDIDerivedType(const DIDerivedType
&N
) {
1225 // Common scope checks.
1228 CheckDI(N
.getTag() == dwarf::DW_TAG_typedef
||
1229 N
.getTag() == dwarf::DW_TAG_pointer_type
||
1230 N
.getTag() == dwarf::DW_TAG_ptr_to_member_type
||
1231 N
.getTag() == dwarf::DW_TAG_reference_type
||
1232 N
.getTag() == dwarf::DW_TAG_rvalue_reference_type
||
1233 N
.getTag() == dwarf::DW_TAG_const_type
||
1234 N
.getTag() == dwarf::DW_TAG_immutable_type
||
1235 N
.getTag() == dwarf::DW_TAG_volatile_type
||
1236 N
.getTag() == dwarf::DW_TAG_restrict_type
||
1237 N
.getTag() == dwarf::DW_TAG_atomic_type
||
1238 N
.getTag() == dwarf::DW_TAG_LLVM_ptrauth_type
||
1239 N
.getTag() == dwarf::DW_TAG_member
||
1240 (N
.getTag() == dwarf::DW_TAG_variable
&& N
.isStaticMember()) ||
1241 N
.getTag() == dwarf::DW_TAG_inheritance
||
1242 N
.getTag() == dwarf::DW_TAG_friend
||
1243 N
.getTag() == dwarf::DW_TAG_set_type
||
1244 N
.getTag() == dwarf::DW_TAG_template_alias
,
1246 if (N
.getTag() == dwarf::DW_TAG_ptr_to_member_type
) {
1247 CheckDI(isType(N
.getRawExtraData()), "invalid pointer to member type", &N
,
1248 N
.getRawExtraData());
1251 if (N
.getTag() == dwarf::DW_TAG_set_type
) {
1252 if (auto *T
= N
.getRawBaseType()) {
1253 auto *Enum
= dyn_cast_or_null
<DICompositeType
>(T
);
1254 auto *Basic
= dyn_cast_or_null
<DIBasicType
>(T
);
1256 (Enum
&& Enum
->getTag() == dwarf::DW_TAG_enumeration_type
) ||
1257 (Basic
&& (Basic
->getEncoding() == dwarf::DW_ATE_unsigned
||
1258 Basic
->getEncoding() == dwarf::DW_ATE_signed
||
1259 Basic
->getEncoding() == dwarf::DW_ATE_unsigned_char
||
1260 Basic
->getEncoding() == dwarf::DW_ATE_signed_char
||
1261 Basic
->getEncoding() == dwarf::DW_ATE_boolean
)),
1262 "invalid set base type", &N
, T
);
1266 CheckDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
1267 CheckDI(isType(N
.getRawBaseType()), "invalid base type", &N
,
1268 N
.getRawBaseType());
1270 if (N
.getDWARFAddressSpace()) {
1271 CheckDI(N
.getTag() == dwarf::DW_TAG_pointer_type
||
1272 N
.getTag() == dwarf::DW_TAG_reference_type
||
1273 N
.getTag() == dwarf::DW_TAG_rvalue_reference_type
,
1274 "DWARF address space only applies to pointer or reference types",
1279 /// Detect mutually exclusive flags.
1280 static bool hasConflictingReferenceFlags(unsigned Flags
) {
1281 return ((Flags
& DINode::FlagLValueReference
) &&
1282 (Flags
& DINode::FlagRValueReference
)) ||
1283 ((Flags
& DINode::FlagTypePassByValue
) &&
1284 (Flags
& DINode::FlagTypePassByReference
));
1287 void Verifier::visitTemplateParams(const MDNode
&N
, const Metadata
&RawParams
) {
1288 auto *Params
= dyn_cast
<MDTuple
>(&RawParams
);
1289 CheckDI(Params
, "invalid template params", &N
, &RawParams
);
1290 for (Metadata
*Op
: Params
->operands()) {
1291 CheckDI(Op
&& isa
<DITemplateParameter
>(Op
), "invalid template parameter",
1296 void Verifier::visitDICompositeType(const DICompositeType
&N
) {
1297 // Common scope checks.
1300 CheckDI(N
.getTag() == dwarf::DW_TAG_array_type
||
1301 N
.getTag() == dwarf::DW_TAG_structure_type
||
1302 N
.getTag() == dwarf::DW_TAG_union_type
||
1303 N
.getTag() == dwarf::DW_TAG_enumeration_type
||
1304 N
.getTag() == dwarf::DW_TAG_class_type
||
1305 N
.getTag() == dwarf::DW_TAG_variant_part
||
1306 N
.getTag() == dwarf::DW_TAG_namelist
,
1309 CheckDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
1310 CheckDI(isType(N
.getRawBaseType()), "invalid base type", &N
,
1311 N
.getRawBaseType());
1313 CheckDI(!N
.getRawElements() || isa
<MDTuple
>(N
.getRawElements()),
1314 "invalid composite elements", &N
, N
.getRawElements());
1315 CheckDI(isType(N
.getRawVTableHolder()), "invalid vtable holder", &N
,
1316 N
.getRawVTableHolder());
1317 CheckDI(!hasConflictingReferenceFlags(N
.getFlags()),
1318 "invalid reference flags", &N
);
1319 unsigned DIBlockByRefStruct
= 1 << 4;
1320 CheckDI((N
.getFlags() & DIBlockByRefStruct
) == 0,
1321 "DIBlockByRefStruct on DICompositeType is no longer supported", &N
);
1322 CheckDI(llvm::all_of(N
.getElements(), [](const DINode
*N
) { return N
; }),
1323 "DISubprogram contains null entry in `elements` field", &N
);
1326 const DINodeArray Elements
= N
.getElements();
1327 CheckDI(Elements
.size() == 1 &&
1328 Elements
[0]->getTag() == dwarf::DW_TAG_subrange_type
,
1329 "invalid vector, expected one element of type subrange", &N
);
1332 if (auto *Params
= N
.getRawTemplateParams())
1333 visitTemplateParams(N
, *Params
);
1335 if (auto *D
= N
.getRawDiscriminator()) {
1336 CheckDI(isa
<DIDerivedType
>(D
) && N
.getTag() == dwarf::DW_TAG_variant_part
,
1337 "discriminator can only appear on variant part");
1340 if (N
.getRawDataLocation()) {
1341 CheckDI(N
.getTag() == dwarf::DW_TAG_array_type
,
1342 "dataLocation can only appear in array type");
1345 if (N
.getRawAssociated()) {
1346 CheckDI(N
.getTag() == dwarf::DW_TAG_array_type
,
1347 "associated can only appear in array type");
1350 if (N
.getRawAllocated()) {
1351 CheckDI(N
.getTag() == dwarf::DW_TAG_array_type
,
1352 "allocated can only appear in array type");
1355 if (N
.getRawRank()) {
1356 CheckDI(N
.getTag() == dwarf::DW_TAG_array_type
,
1357 "rank can only appear in array type");
1360 if (N
.getTag() == dwarf::DW_TAG_array_type
) {
1361 CheckDI(N
.getRawBaseType(), "array types must have a base type", &N
);
1365 void Verifier::visitDISubroutineType(const DISubroutineType
&N
) {
1366 CheckDI(N
.getTag() == dwarf::DW_TAG_subroutine_type
, "invalid tag", &N
);
1367 if (auto *Types
= N
.getRawTypeArray()) {
1368 CheckDI(isa
<MDTuple
>(Types
), "invalid composite elements", &N
, Types
);
1369 for (Metadata
*Ty
: N
.getTypeArray()->operands()) {
1370 CheckDI(isType(Ty
), "invalid subroutine type ref", &N
, Types
, Ty
);
1373 CheckDI(!hasConflictingReferenceFlags(N
.getFlags()),
1374 "invalid reference flags", &N
);
1377 void Verifier::visitDIFile(const DIFile
&N
) {
1378 CheckDI(N
.getTag() == dwarf::DW_TAG_file_type
, "invalid tag", &N
);
1379 std::optional
<DIFile::ChecksumInfo
<StringRef
>> Checksum
= N
.getChecksum();
1381 CheckDI(Checksum
->Kind
<= DIFile::ChecksumKind::CSK_Last
,
1382 "invalid checksum kind", &N
);
1384 switch (Checksum
->Kind
) {
1385 case DIFile::CSK_MD5
:
1388 case DIFile::CSK_SHA1
:
1391 case DIFile::CSK_SHA256
:
1395 CheckDI(Checksum
->Value
.size() == Size
, "invalid checksum length", &N
);
1396 CheckDI(Checksum
->Value
.find_if_not(llvm::isHexDigit
) == StringRef::npos
,
1397 "invalid checksum", &N
);
1401 void Verifier::visitDICompileUnit(const DICompileUnit
&N
) {
1402 CheckDI(N
.isDistinct(), "compile units must be distinct", &N
);
1403 CheckDI(N
.getTag() == dwarf::DW_TAG_compile_unit
, "invalid tag", &N
);
1405 // Don't bother verifying the compilation directory or producer string
1406 // as those could be empty.
1407 CheckDI(N
.getRawFile() && isa
<DIFile
>(N
.getRawFile()), "invalid file", &N
,
1409 CheckDI(!N
.getFile()->getFilename().empty(), "invalid filename", &N
,
1412 CheckDI((N
.getEmissionKind() <= DICompileUnit::LastEmissionKind
),
1413 "invalid emission kind", &N
);
1415 if (auto *Array
= N
.getRawEnumTypes()) {
1416 CheckDI(isa
<MDTuple
>(Array
), "invalid enum list", &N
, Array
);
1417 for (Metadata
*Op
: N
.getEnumTypes()->operands()) {
1418 auto *Enum
= dyn_cast_or_null
<DICompositeType
>(Op
);
1419 CheckDI(Enum
&& Enum
->getTag() == dwarf::DW_TAG_enumeration_type
,
1420 "invalid enum type", &N
, N
.getEnumTypes(), Op
);
1423 if (auto *Array
= N
.getRawRetainedTypes()) {
1424 CheckDI(isa
<MDTuple
>(Array
), "invalid retained type list", &N
, Array
);
1425 for (Metadata
*Op
: N
.getRetainedTypes()->operands()) {
1427 Op
&& (isa
<DIType
>(Op
) || (isa
<DISubprogram
>(Op
) &&
1428 !cast
<DISubprogram
>(Op
)->isDefinition())),
1429 "invalid retained type", &N
, Op
);
1432 if (auto *Array
= N
.getRawGlobalVariables()) {
1433 CheckDI(isa
<MDTuple
>(Array
), "invalid global variable list", &N
, Array
);
1434 for (Metadata
*Op
: N
.getGlobalVariables()->operands()) {
1435 CheckDI(Op
&& (isa
<DIGlobalVariableExpression
>(Op
)),
1436 "invalid global variable ref", &N
, Op
);
1439 if (auto *Array
= N
.getRawImportedEntities()) {
1440 CheckDI(isa
<MDTuple
>(Array
), "invalid imported entity list", &N
, Array
);
1441 for (Metadata
*Op
: N
.getImportedEntities()->operands()) {
1442 CheckDI(Op
&& isa
<DIImportedEntity
>(Op
), "invalid imported entity ref",
1446 if (auto *Array
= N
.getRawMacros()) {
1447 CheckDI(isa
<MDTuple
>(Array
), "invalid macro list", &N
, Array
);
1448 for (Metadata
*Op
: N
.getMacros()->operands()) {
1449 CheckDI(Op
&& isa
<DIMacroNode
>(Op
), "invalid macro ref", &N
, Op
);
1452 CUVisited
.insert(&N
);
1455 void Verifier::visitDISubprogram(const DISubprogram
&N
) {
1456 CheckDI(N
.getTag() == dwarf::DW_TAG_subprogram
, "invalid tag", &N
);
1457 CheckDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
1458 if (auto *F
= N
.getRawFile())
1459 CheckDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1461 CheckDI(N
.getLine() == 0, "line specified with no file", &N
, N
.getLine());
1462 if (auto *T
= N
.getRawType())
1463 CheckDI(isa
<DISubroutineType
>(T
), "invalid subroutine type", &N
, T
);
1464 CheckDI(isType(N
.getRawContainingType()), "invalid containing type", &N
,
1465 N
.getRawContainingType());
1466 if (auto *Params
= N
.getRawTemplateParams())
1467 visitTemplateParams(N
, *Params
);
1468 if (auto *S
= N
.getRawDeclaration())
1469 CheckDI(isa
<DISubprogram
>(S
) && !cast
<DISubprogram
>(S
)->isDefinition(),
1470 "invalid subprogram declaration", &N
, S
);
1471 if (auto *RawNode
= N
.getRawRetainedNodes()) {
1472 auto *Node
= dyn_cast
<MDTuple
>(RawNode
);
1473 CheckDI(Node
, "invalid retained nodes list", &N
, RawNode
);
1474 for (Metadata
*Op
: Node
->operands()) {
1475 CheckDI(Op
&& (isa
<DILocalVariable
>(Op
) || isa
<DILabel
>(Op
) ||
1476 isa
<DIImportedEntity
>(Op
)),
1477 "invalid retained nodes, expected DILocalVariable, DILabel or "
1482 CheckDI(!hasConflictingReferenceFlags(N
.getFlags()),
1483 "invalid reference flags", &N
);
1485 auto *Unit
= N
.getRawUnit();
1486 if (N
.isDefinition()) {
1487 // Subprogram definitions (not part of the type hierarchy).
1488 CheckDI(N
.isDistinct(), "subprogram definitions must be distinct", &N
);
1489 CheckDI(Unit
, "subprogram definitions must have a compile unit", &N
);
1490 CheckDI(isa
<DICompileUnit
>(Unit
), "invalid unit type", &N
, Unit
);
1491 // There's no good way to cross the CU boundary to insert a nested
1492 // DISubprogram definition in one CU into a type defined in another CU.
1493 auto *CT
= dyn_cast_or_null
<DICompositeType
>(N
.getRawScope());
1494 if (CT
&& CT
->getRawIdentifier() &&
1495 M
.getContext().isODRUniquingDebugTypes())
1496 CheckDI(N
.getDeclaration(),
1497 "definition subprograms cannot be nested within DICompositeType "
1498 "when enabling ODR",
1501 // Subprogram declarations (part of the type hierarchy).
1502 CheckDI(!Unit
, "subprogram declarations must not have a compile unit", &N
);
1503 CheckDI(!N
.getRawDeclaration(),
1504 "subprogram declaration must not have a declaration field");
1507 if (auto *RawThrownTypes
= N
.getRawThrownTypes()) {
1508 auto *ThrownTypes
= dyn_cast
<MDTuple
>(RawThrownTypes
);
1509 CheckDI(ThrownTypes
, "invalid thrown types list", &N
, RawThrownTypes
);
1510 for (Metadata
*Op
: ThrownTypes
->operands())
1511 CheckDI(Op
&& isa
<DIType
>(Op
), "invalid thrown type", &N
, ThrownTypes
,
1515 if (N
.areAllCallsDescribed())
1516 CheckDI(N
.isDefinition(),
1517 "DIFlagAllCallsDescribed must be attached to a definition");
1520 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase
&N
) {
1521 CheckDI(N
.getTag() == dwarf::DW_TAG_lexical_block
, "invalid tag", &N
);
1522 CheckDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1523 "invalid local scope", &N
, N
.getRawScope());
1524 if (auto *SP
= dyn_cast
<DISubprogram
>(N
.getRawScope()))
1525 CheckDI(SP
->isDefinition(), "scope points into the type hierarchy", &N
);
1528 void Verifier::visitDILexicalBlock(const DILexicalBlock
&N
) {
1529 visitDILexicalBlockBase(N
);
1531 CheckDI(N
.getLine() || !N
.getColumn(),
1532 "cannot have column info without line info", &N
);
1535 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile
&N
) {
1536 visitDILexicalBlockBase(N
);
1539 void Verifier::visitDICommonBlock(const DICommonBlock
&N
) {
1540 CheckDI(N
.getTag() == dwarf::DW_TAG_common_block
, "invalid tag", &N
);
1541 if (auto *S
= N
.getRawScope())
1542 CheckDI(isa
<DIScope
>(S
), "invalid scope ref", &N
, S
);
1543 if (auto *S
= N
.getRawDecl())
1544 CheckDI(isa
<DIGlobalVariable
>(S
), "invalid declaration", &N
, S
);
1547 void Verifier::visitDINamespace(const DINamespace
&N
) {
1548 CheckDI(N
.getTag() == dwarf::DW_TAG_namespace
, "invalid tag", &N
);
1549 if (auto *S
= N
.getRawScope())
1550 CheckDI(isa
<DIScope
>(S
), "invalid scope ref", &N
, S
);
1553 void Verifier::visitDIMacro(const DIMacro
&N
) {
1554 CheckDI(N
.getMacinfoType() == dwarf::DW_MACINFO_define
||
1555 N
.getMacinfoType() == dwarf::DW_MACINFO_undef
,
1556 "invalid macinfo type", &N
);
1557 CheckDI(!N
.getName().empty(), "anonymous macro", &N
);
1558 if (!N
.getValue().empty()) {
1559 assert(N
.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1563 void Verifier::visitDIMacroFile(const DIMacroFile
&N
) {
1564 CheckDI(N
.getMacinfoType() == dwarf::DW_MACINFO_start_file
,
1565 "invalid macinfo type", &N
);
1566 if (auto *F
= N
.getRawFile())
1567 CheckDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1569 if (auto *Array
= N
.getRawElements()) {
1570 CheckDI(isa
<MDTuple
>(Array
), "invalid macro list", &N
, Array
);
1571 for (Metadata
*Op
: N
.getElements()->operands()) {
1572 CheckDI(Op
&& isa
<DIMacroNode
>(Op
), "invalid macro ref", &N
, Op
);
1577 void Verifier::visitDIModule(const DIModule
&N
) {
1578 CheckDI(N
.getTag() == dwarf::DW_TAG_module
, "invalid tag", &N
);
1579 CheckDI(!N
.getName().empty(), "anonymous module", &N
);
1582 void Verifier::visitDITemplateParameter(const DITemplateParameter
&N
) {
1583 CheckDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1586 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter
&N
) {
1587 visitDITemplateParameter(N
);
1589 CheckDI(N
.getTag() == dwarf::DW_TAG_template_type_parameter
, "invalid tag",
1593 void Verifier::visitDITemplateValueParameter(
1594 const DITemplateValueParameter
&N
) {
1595 visitDITemplateParameter(N
);
1597 CheckDI(N
.getTag() == dwarf::DW_TAG_template_value_parameter
||
1598 N
.getTag() == dwarf::DW_TAG_GNU_template_template_param
||
1599 N
.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack
,
1603 void Verifier::visitDIVariable(const DIVariable
&N
) {
1604 if (auto *S
= N
.getRawScope())
1605 CheckDI(isa
<DIScope
>(S
), "invalid scope", &N
, S
);
1606 if (auto *F
= N
.getRawFile())
1607 CheckDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1610 void Verifier::visitDIGlobalVariable(const DIGlobalVariable
&N
) {
1611 // Checks common to all variables.
1614 CheckDI(N
.getTag() == dwarf::DW_TAG_variable
, "invalid tag", &N
);
1615 CheckDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1616 // Check only if the global variable is not an extern
1617 if (N
.isDefinition())
1618 CheckDI(N
.getType(), "missing global variable type", &N
);
1619 if (auto *Member
= N
.getRawStaticDataMemberDeclaration()) {
1620 CheckDI(isa
<DIDerivedType
>(Member
),
1621 "invalid static data member declaration", &N
, Member
);
1625 void Verifier::visitDILocalVariable(const DILocalVariable
&N
) {
1626 // Checks common to all variables.
1629 CheckDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1630 CheckDI(N
.getTag() == dwarf::DW_TAG_variable
, "invalid tag", &N
);
1631 CheckDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1632 "local variable requires a valid scope", &N
, N
.getRawScope());
1633 if (auto Ty
= N
.getType())
1634 CheckDI(!isa
<DISubroutineType
>(Ty
), "invalid type", &N
, N
.getType());
1637 void Verifier::visitDIAssignID(const DIAssignID
&N
) {
1638 CheckDI(!N
.getNumOperands(), "DIAssignID has no arguments", &N
);
1639 CheckDI(N
.isDistinct(), "DIAssignID must be distinct", &N
);
1642 void Verifier::visitDILabel(const DILabel
&N
) {
1643 if (auto *S
= N
.getRawScope())
1644 CheckDI(isa
<DIScope
>(S
), "invalid scope", &N
, S
);
1645 if (auto *F
= N
.getRawFile())
1646 CheckDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1648 CheckDI(N
.getTag() == dwarf::DW_TAG_label
, "invalid tag", &N
);
1649 CheckDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1650 "label requires a valid scope", &N
, N
.getRawScope());
1653 void Verifier::visitDIExpression(const DIExpression
&N
) {
1654 CheckDI(N
.isValid(), "invalid expression", &N
);
1657 void Verifier::visitDIGlobalVariableExpression(
1658 const DIGlobalVariableExpression
&GVE
) {
1659 CheckDI(GVE
.getVariable(), "missing variable");
1660 if (auto *Var
= GVE
.getVariable())
1661 visitDIGlobalVariable(*Var
);
1662 if (auto *Expr
= GVE
.getExpression()) {
1663 visitDIExpression(*Expr
);
1664 if (auto Fragment
= Expr
->getFragmentInfo())
1665 verifyFragmentExpression(*GVE
.getVariable(), *Fragment
, &GVE
);
1669 void Verifier::visitDIObjCProperty(const DIObjCProperty
&N
) {
1670 CheckDI(N
.getTag() == dwarf::DW_TAG_APPLE_property
, "invalid tag", &N
);
1671 if (auto *T
= N
.getRawType())
1672 CheckDI(isType(T
), "invalid type ref", &N
, T
);
1673 if (auto *F
= N
.getRawFile())
1674 CheckDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1677 void Verifier::visitDIImportedEntity(const DIImportedEntity
&N
) {
1678 CheckDI(N
.getTag() == dwarf::DW_TAG_imported_module
||
1679 N
.getTag() == dwarf::DW_TAG_imported_declaration
,
1681 if (auto *S
= N
.getRawScope())
1682 CheckDI(isa
<DIScope
>(S
), "invalid scope for imported entity", &N
, S
);
1683 CheckDI(isDINode(N
.getRawEntity()), "invalid imported entity", &N
,
1687 void Verifier::visitComdat(const Comdat
&C
) {
1688 // In COFF the Module is invalid if the GlobalValue has private linkage.
1689 // Entities with private linkage don't have entries in the symbol table.
1690 if (TT
.isOSBinFormatCOFF())
1691 if (const GlobalValue
*GV
= M
.getNamedValue(C
.getName()))
1692 Check(!GV
->hasPrivateLinkage(), "comdat global value has private linkage",
1696 void Verifier::visitModuleIdents() {
1697 const NamedMDNode
*Idents
= M
.getNamedMetadata("llvm.ident");
1701 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1702 // Scan each llvm.ident entry and make sure that this requirement is met.
1703 for (const MDNode
*N
: Idents
->operands()) {
1704 Check(N
->getNumOperands() == 1,
1705 "incorrect number of operands in llvm.ident metadata", N
);
1706 Check(dyn_cast_or_null
<MDString
>(N
->getOperand(0)),
1707 ("invalid value for llvm.ident metadata entry operand"
1708 "(the operand should be a string)"),
1713 void Verifier::visitModuleCommandLines() {
1714 const NamedMDNode
*CommandLines
= M
.getNamedMetadata("llvm.commandline");
1718 // llvm.commandline takes a list of metadata entry. Each entry has only one
1719 // string. Scan each llvm.commandline entry and make sure that this
1720 // requirement is met.
1721 for (const MDNode
*N
: CommandLines
->operands()) {
1722 Check(N
->getNumOperands() == 1,
1723 "incorrect number of operands in llvm.commandline metadata", N
);
1724 Check(dyn_cast_or_null
<MDString
>(N
->getOperand(0)),
1725 ("invalid value for llvm.commandline metadata entry operand"
1726 "(the operand should be a string)"),
1731 void Verifier::visitModuleFlags() {
1732 const NamedMDNode
*Flags
= M
.getModuleFlagsMetadata();
1735 // Scan each flag, and track the flags and requirements.
1736 DenseMap
<const MDString
*, const MDNode
*> SeenIDs
;
1737 SmallVector
<const MDNode
*, 16> Requirements
;
1738 uint64_t PAuthABIPlatform
= -1;
1739 uint64_t PAuthABIVersion
= -1;
1740 for (const MDNode
*MDN
: Flags
->operands()) {
1741 visitModuleFlag(MDN
, SeenIDs
, Requirements
);
1742 if (MDN
->getNumOperands() != 3)
1744 if (const auto *FlagName
= dyn_cast_or_null
<MDString
>(MDN
->getOperand(1))) {
1745 if (FlagName
->getString() == "aarch64-elf-pauthabi-platform") {
1746 if (const auto *PAP
=
1747 mdconst::dyn_extract_or_null
<ConstantInt
>(MDN
->getOperand(2)))
1748 PAuthABIPlatform
= PAP
->getZExtValue();
1749 } else if (FlagName
->getString() == "aarch64-elf-pauthabi-version") {
1750 if (const auto *PAV
=
1751 mdconst::dyn_extract_or_null
<ConstantInt
>(MDN
->getOperand(2)))
1752 PAuthABIVersion
= PAV
->getZExtValue();
1757 if ((PAuthABIPlatform
== uint64_t(-1)) != (PAuthABIVersion
== uint64_t(-1)))
1758 CheckFailed("either both or no 'aarch64-elf-pauthabi-platform' and "
1759 "'aarch64-elf-pauthabi-version' module flags must be present");
1761 // Validate that the requirements in the module are valid.
1762 for (const MDNode
*Requirement
: Requirements
) {
1763 const MDString
*Flag
= cast
<MDString
>(Requirement
->getOperand(0));
1764 const Metadata
*ReqValue
= Requirement
->getOperand(1);
1766 const MDNode
*Op
= SeenIDs
.lookup(Flag
);
1768 CheckFailed("invalid requirement on flag, flag is not present in module",
1773 if (Op
->getOperand(2) != ReqValue
) {
1774 CheckFailed(("invalid requirement on flag, "
1775 "flag does not have the required value"),
1783 Verifier::visitModuleFlag(const MDNode
*Op
,
1784 DenseMap
<const MDString
*, const MDNode
*> &SeenIDs
,
1785 SmallVectorImpl
<const MDNode
*> &Requirements
) {
1786 // Each module flag should have three arguments, the merge behavior (a
1787 // constant int), the flag ID (an MDString), and the value.
1788 Check(Op
->getNumOperands() == 3,
1789 "incorrect number of operands in module flag", Op
);
1790 Module::ModFlagBehavior MFB
;
1791 if (!Module::isValidModFlagBehavior(Op
->getOperand(0), MFB
)) {
1792 Check(mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(0)),
1793 "invalid behavior operand in module flag (expected constant integer)",
1796 "invalid behavior operand in module flag (unexpected constant)",
1799 MDString
*ID
= dyn_cast_or_null
<MDString
>(Op
->getOperand(1));
1800 Check(ID
, "invalid ID operand in module flag (expected metadata string)",
1803 // Check the values for behaviors with additional requirements.
1806 case Module::Warning
:
1807 case Module::Override
:
1808 // These behavior types accept any value.
1812 auto *V
= mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(2));
1813 Check(V
&& V
->getValue().isNonNegative(),
1814 "invalid value for 'min' module flag (expected constant non-negative "
1821 Check(mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(2)),
1822 "invalid value for 'max' module flag (expected constant integer)",
1827 case Module::Require
: {
1828 // The value should itself be an MDNode with two operands, a flag ID (an
1829 // MDString), and a value.
1830 MDNode
*Value
= dyn_cast
<MDNode
>(Op
->getOperand(2));
1831 Check(Value
&& Value
->getNumOperands() == 2,
1832 "invalid value for 'require' module flag (expected metadata pair)",
1834 Check(isa
<MDString
>(Value
->getOperand(0)),
1835 ("invalid value for 'require' module flag "
1836 "(first value operand should be a string)"),
1837 Value
->getOperand(0));
1839 // Append it to the list of requirements, to check once all module flags are
1841 Requirements
.push_back(Value
);
1845 case Module::Append
:
1846 case Module::AppendUnique
: {
1847 // These behavior types require the operand be an MDNode.
1848 Check(isa
<MDNode
>(Op
->getOperand(2)),
1849 "invalid value for 'append'-type module flag "
1850 "(expected a metadata node)",
1856 // Unless this is a "requires" flag, check the ID is unique.
1857 if (MFB
!= Module::Require
) {
1858 bool Inserted
= SeenIDs
.insert(std::make_pair(ID
, Op
)).second
;
1860 "module flag identifiers must be unique (or of 'require' type)", ID
);
1863 if (ID
->getString() == "wchar_size") {
1865 = mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(2));
1866 Check(Value
, "wchar_size metadata requires constant integer argument");
1869 if (ID
->getString() == "Linker Options") {
1870 // If the llvm.linker.options named metadata exists, we assume that the
1871 // bitcode reader has upgraded the module flag. Otherwise the flag might
1872 // have been created by a client directly.
1873 Check(M
.getNamedMetadata("llvm.linker.options"),
1874 "'Linker Options' named metadata no longer supported");
1877 if (ID
->getString() == "SemanticInterposition") {
1878 ConstantInt
*Value
=
1879 mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(2));
1881 "SemanticInterposition metadata requires constant integer argument");
1884 if (ID
->getString() == "CG Profile") {
1885 for (const MDOperand
&MDO
: cast
<MDNode
>(Op
->getOperand(2))->operands())
1886 visitModuleFlagCGProfileEntry(MDO
);
1890 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand
&MDO
) {
1891 auto CheckFunction
= [&](const MDOperand
&FuncMDO
) {
1894 auto F
= dyn_cast
<ValueAsMetadata
>(FuncMDO
);
1895 Check(F
&& isa
<Function
>(F
->getValue()->stripPointerCasts()),
1896 "expected a Function or null", FuncMDO
);
1898 auto Node
= dyn_cast_or_null
<MDNode
>(MDO
);
1899 Check(Node
&& Node
->getNumOperands() == 3, "expected a MDNode triple", MDO
);
1900 CheckFunction(Node
->getOperand(0));
1901 CheckFunction(Node
->getOperand(1));
1902 auto Count
= dyn_cast_or_null
<ConstantAsMetadata
>(Node
->getOperand(2));
1903 Check(Count
&& Count
->getType()->isIntegerTy(),
1904 "expected an integer constant", Node
->getOperand(2));
1907 void Verifier::verifyAttributeTypes(AttributeSet Attrs
, const Value
*V
) {
1908 for (Attribute A
: Attrs
) {
1910 if (A
.isStringAttribute()) {
1911 #define GET_ATTR_NAMES
1912 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1913 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
1914 if (A.getKindAsString() == #DISPLAY_NAME) { \
1915 auto V = A.getValueAsString(); \
1916 if (!(V.empty() || V == "true" || V == "false")) \
1917 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
1921 #include "llvm/IR/Attributes.inc"
1925 if (A
.isIntAttribute() != Attribute::isIntAttrKind(A
.getKindAsEnum())) {
1926 CheckFailed("Attribute '" + A
.getAsString() + "' should have an Argument",
1933 // VerifyParameterAttrs - Check the given attributes for an argument or return
1934 // value of the specified type. The value V is printed in error messages.
1935 void Verifier::verifyParameterAttrs(AttributeSet Attrs
, Type
*Ty
,
1937 if (!Attrs
.hasAttributes())
1940 verifyAttributeTypes(Attrs
, V
);
1942 for (Attribute Attr
: Attrs
)
1943 Check(Attr
.isStringAttribute() ||
1944 Attribute::canUseAsParamAttr(Attr
.getKindAsEnum()),
1945 "Attribute '" + Attr
.getAsString() + "' does not apply to parameters",
1948 if (Attrs
.hasAttribute(Attribute::ImmArg
)) {
1949 Check(Attrs
.getNumAttributes() == 1,
1950 "Attribute 'immarg' is incompatible with other attributes", V
);
1953 // Check for mutually incompatible attributes. Only inreg is compatible with
1955 unsigned AttrCount
= 0;
1956 AttrCount
+= Attrs
.hasAttribute(Attribute::ByVal
);
1957 AttrCount
+= Attrs
.hasAttribute(Attribute::InAlloca
);
1958 AttrCount
+= Attrs
.hasAttribute(Attribute::Preallocated
);
1959 AttrCount
+= Attrs
.hasAttribute(Attribute::StructRet
) ||
1960 Attrs
.hasAttribute(Attribute::InReg
);
1961 AttrCount
+= Attrs
.hasAttribute(Attribute::Nest
);
1962 AttrCount
+= Attrs
.hasAttribute(Attribute::ByRef
);
1963 Check(AttrCount
<= 1,
1964 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1965 "'byref', and 'sret' are incompatible!",
1968 Check(!(Attrs
.hasAttribute(Attribute::InAlloca
) &&
1969 Attrs
.hasAttribute(Attribute::ReadOnly
)),
1971 "'inalloca and readonly' are incompatible!",
1974 Check(!(Attrs
.hasAttribute(Attribute::StructRet
) &&
1975 Attrs
.hasAttribute(Attribute::Returned
)),
1977 "'sret and returned' are incompatible!",
1980 Check(!(Attrs
.hasAttribute(Attribute::ZExt
) &&
1981 Attrs
.hasAttribute(Attribute::SExt
)),
1983 "'zeroext and signext' are incompatible!",
1986 Check(!(Attrs
.hasAttribute(Attribute::ReadNone
) &&
1987 Attrs
.hasAttribute(Attribute::ReadOnly
)),
1989 "'readnone and readonly' are incompatible!",
1992 Check(!(Attrs
.hasAttribute(Attribute::ReadNone
) &&
1993 Attrs
.hasAttribute(Attribute::WriteOnly
)),
1995 "'readnone and writeonly' are incompatible!",
1998 Check(!(Attrs
.hasAttribute(Attribute::ReadOnly
) &&
1999 Attrs
.hasAttribute(Attribute::WriteOnly
)),
2001 "'readonly and writeonly' are incompatible!",
2004 Check(!(Attrs
.hasAttribute(Attribute::NoInline
) &&
2005 Attrs
.hasAttribute(Attribute::AlwaysInline
)),
2007 "'noinline and alwaysinline' are incompatible!",
2010 Check(!(Attrs
.hasAttribute(Attribute::Writable
) &&
2011 Attrs
.hasAttribute(Attribute::ReadNone
)),
2012 "Attributes writable and readnone are incompatible!", V
);
2014 Check(!(Attrs
.hasAttribute(Attribute::Writable
) &&
2015 Attrs
.hasAttribute(Attribute::ReadOnly
)),
2016 "Attributes writable and readonly are incompatible!", V
);
2018 AttributeMask IncompatibleAttrs
= AttributeFuncs::typeIncompatible(Ty
, Attrs
);
2019 for (Attribute Attr
: Attrs
) {
2020 if (!Attr
.isStringAttribute() &&
2021 IncompatibleAttrs
.contains(Attr
.getKindAsEnum())) {
2022 CheckFailed("Attribute '" + Attr
.getAsString() +
2023 "' applied to incompatible type!", V
);
2028 if (isa
<PointerType
>(Ty
)) {
2029 if (Attrs
.hasAttribute(Attribute::Alignment
)) {
2030 Align AttrAlign
= Attrs
.getAlignment().valueOrOne();
2031 Check(AttrAlign
.value() <= Value::MaximumAlignment
,
2032 "huge alignment values are unsupported", V
);
2034 if (Attrs
.hasAttribute(Attribute::ByVal
)) {
2035 Type
*ByValTy
= Attrs
.getByValType();
2036 SmallPtrSet
<Type
*, 4> Visited
;
2037 Check(ByValTy
->isSized(&Visited
),
2038 "Attribute 'byval' does not support unsized types!", V
);
2039 // Check if it is or contains a target extension type that disallows being
2040 // used on the stack.
2041 Check(!ByValTy
->containsNonLocalTargetExtType(),
2042 "'byval' argument has illegal target extension type", V
);
2043 Check(DL
.getTypeAllocSize(ByValTy
).getKnownMinValue() < (1ULL << 32),
2044 "huge 'byval' arguments are unsupported", V
);
2046 if (Attrs
.hasAttribute(Attribute::ByRef
)) {
2047 SmallPtrSet
<Type
*, 4> Visited
;
2048 Check(Attrs
.getByRefType()->isSized(&Visited
),
2049 "Attribute 'byref' does not support unsized types!", V
);
2050 Check(DL
.getTypeAllocSize(Attrs
.getByRefType()).getKnownMinValue() <
2052 "huge 'byref' arguments are unsupported", V
);
2054 if (Attrs
.hasAttribute(Attribute::InAlloca
)) {
2055 SmallPtrSet
<Type
*, 4> Visited
;
2056 Check(Attrs
.getInAllocaType()->isSized(&Visited
),
2057 "Attribute 'inalloca' does not support unsized types!", V
);
2058 Check(DL
.getTypeAllocSize(Attrs
.getInAllocaType()).getKnownMinValue() <
2060 "huge 'inalloca' arguments are unsupported", V
);
2062 if (Attrs
.hasAttribute(Attribute::Preallocated
)) {
2063 SmallPtrSet
<Type
*, 4> Visited
;
2064 Check(Attrs
.getPreallocatedType()->isSized(&Visited
),
2065 "Attribute 'preallocated' does not support unsized types!", V
);
2067 DL
.getTypeAllocSize(Attrs
.getPreallocatedType()).getKnownMinValue() <
2069 "huge 'preallocated' arguments are unsupported", V
);
2073 if (Attrs
.hasAttribute(Attribute::Initializes
)) {
2074 auto Inits
= Attrs
.getAttribute(Attribute::Initializes
).getInitializes();
2075 Check(!Inits
.empty(), "Attribute 'initializes' does not support empty list",
2077 Check(ConstantRangeList::isOrderedRanges(Inits
),
2078 "Attribute 'initializes' does not support unordered ranges", V
);
2081 if (Attrs
.hasAttribute(Attribute::NoFPClass
)) {
2082 uint64_t Val
= Attrs
.getAttribute(Attribute::NoFPClass
).getValueAsInt();
2083 Check(Val
!= 0, "Attribute 'nofpclass' must have at least one test bit set",
2085 Check((Val
& ~static_cast<unsigned>(fcAllFlags
)) == 0,
2086 "Invalid value for 'nofpclass' test mask", V
);
2088 if (Attrs
.hasAttribute(Attribute::Range
)) {
2089 const ConstantRange
&CR
=
2090 Attrs
.getAttribute(Attribute::Range
).getValueAsConstantRange();
2091 Check(Ty
->isIntOrIntVectorTy(CR
.getBitWidth()),
2092 "Range bit width must match type bit width!", V
);
2096 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs
, StringRef Attr
,
2098 if (Attrs
.hasFnAttr(Attr
)) {
2099 StringRef S
= Attrs
.getFnAttr(Attr
).getValueAsString();
2101 if (S
.getAsInteger(10, N
))
2102 CheckFailed("\"" + Attr
+ "\" takes an unsigned integer: " + S
, V
);
2106 // Check parameter attributes against a function type.
2107 // The value V is printed in error messages.
2108 void Verifier::verifyFunctionAttrs(FunctionType
*FT
, AttributeList Attrs
,
2109 const Value
*V
, bool IsIntrinsic
,
2111 if (Attrs
.isEmpty())
2114 if (AttributeListsVisited
.insert(Attrs
.getRawPointer()).second
) {
2115 Check(Attrs
.hasParentContext(Context
),
2116 "Attribute list does not match Module context!", &Attrs
, V
);
2117 for (const auto &AttrSet
: Attrs
) {
2118 Check(!AttrSet
.hasAttributes() || AttrSet
.hasParentContext(Context
),
2119 "Attribute set does not match Module context!", &AttrSet
, V
);
2120 for (const auto &A
: AttrSet
) {
2121 Check(A
.hasParentContext(Context
),
2122 "Attribute does not match Module context!", &A
, V
);
2127 bool SawNest
= false;
2128 bool SawReturned
= false;
2129 bool SawSRet
= false;
2130 bool SawSwiftSelf
= false;
2131 bool SawSwiftAsync
= false;
2132 bool SawSwiftError
= false;
2134 // Verify return value attributes.
2135 AttributeSet RetAttrs
= Attrs
.getRetAttrs();
2136 for (Attribute RetAttr
: RetAttrs
)
2137 Check(RetAttr
.isStringAttribute() ||
2138 Attribute::canUseAsRetAttr(RetAttr
.getKindAsEnum()),
2139 "Attribute '" + RetAttr
.getAsString() +
2140 "' does not apply to function return values",
2143 unsigned MaxParameterWidth
= 0;
2144 auto GetMaxParameterWidth
= [&MaxParameterWidth
](Type
*Ty
) {
2145 if (Ty
->isVectorTy()) {
2146 if (auto *VT
= dyn_cast
<FixedVectorType
>(Ty
)) {
2147 unsigned Size
= VT
->getPrimitiveSizeInBits().getFixedValue();
2148 if (Size
> MaxParameterWidth
)
2149 MaxParameterWidth
= Size
;
2153 GetMaxParameterWidth(FT
->getReturnType());
2154 verifyParameterAttrs(RetAttrs
, FT
->getReturnType(), V
);
2156 // Verify parameter attributes.
2157 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
2158 Type
*Ty
= FT
->getParamType(i
);
2159 AttributeSet ArgAttrs
= Attrs
.getParamAttrs(i
);
2162 Check(!ArgAttrs
.hasAttribute(Attribute::ImmArg
),
2163 "immarg attribute only applies to intrinsics", V
);
2165 Check(!ArgAttrs
.hasAttribute(Attribute::ElementType
),
2166 "Attribute 'elementtype' can only be applied to intrinsics"
2171 verifyParameterAttrs(ArgAttrs
, Ty
, V
);
2172 GetMaxParameterWidth(Ty
);
2174 if (ArgAttrs
.hasAttribute(Attribute::Nest
)) {
2175 Check(!SawNest
, "More than one parameter has attribute nest!", V
);
2179 if (ArgAttrs
.hasAttribute(Attribute::Returned
)) {
2180 Check(!SawReturned
, "More than one parameter has attribute returned!", V
);
2181 Check(Ty
->canLosslesslyBitCastTo(FT
->getReturnType()),
2182 "Incompatible argument and return types for 'returned' attribute",
2187 if (ArgAttrs
.hasAttribute(Attribute::StructRet
)) {
2188 Check(!SawSRet
, "Cannot have multiple 'sret' parameters!", V
);
2189 Check(i
== 0 || i
== 1,
2190 "Attribute 'sret' is not on first or second parameter!", V
);
2194 if (ArgAttrs
.hasAttribute(Attribute::SwiftSelf
)) {
2195 Check(!SawSwiftSelf
, "Cannot have multiple 'swiftself' parameters!", V
);
2196 SawSwiftSelf
= true;
2199 if (ArgAttrs
.hasAttribute(Attribute::SwiftAsync
)) {
2200 Check(!SawSwiftAsync
, "Cannot have multiple 'swiftasync' parameters!", V
);
2201 SawSwiftAsync
= true;
2204 if (ArgAttrs
.hasAttribute(Attribute::SwiftError
)) {
2205 Check(!SawSwiftError
, "Cannot have multiple 'swifterror' parameters!", V
);
2206 SawSwiftError
= true;
2209 if (ArgAttrs
.hasAttribute(Attribute::InAlloca
)) {
2210 Check(i
== FT
->getNumParams() - 1,
2211 "inalloca isn't on the last parameter!", V
);
2215 if (!Attrs
.hasFnAttrs())
2218 verifyAttributeTypes(Attrs
.getFnAttrs(), V
);
2219 for (Attribute FnAttr
: Attrs
.getFnAttrs())
2220 Check(FnAttr
.isStringAttribute() ||
2221 Attribute::canUseAsFnAttr(FnAttr
.getKindAsEnum()),
2222 "Attribute '" + FnAttr
.getAsString() +
2223 "' does not apply to functions!",
2226 Check(!(Attrs
.hasFnAttr(Attribute::NoInline
) &&
2227 Attrs
.hasFnAttr(Attribute::AlwaysInline
)),
2228 "Attributes 'noinline and alwaysinline' are incompatible!", V
);
2230 if (Attrs
.hasFnAttr(Attribute::OptimizeNone
)) {
2231 Check(Attrs
.hasFnAttr(Attribute::NoInline
),
2232 "Attribute 'optnone' requires 'noinline'!", V
);
2234 Check(!Attrs
.hasFnAttr(Attribute::OptimizeForSize
),
2235 "Attributes 'optsize and optnone' are incompatible!", V
);
2237 Check(!Attrs
.hasFnAttr(Attribute::MinSize
),
2238 "Attributes 'minsize and optnone' are incompatible!", V
);
2240 Check(!Attrs
.hasFnAttr(Attribute::OptimizeForDebugging
),
2241 "Attributes 'optdebug and optnone' are incompatible!", V
);
2244 Check(!(Attrs
.hasFnAttr(Attribute::SanitizeRealtime
) &&
2245 Attrs
.hasFnAttr(Attribute::SanitizeRealtimeBlocking
)),
2247 "'sanitize_realtime and sanitize_realtime_blocking' are incompatible!",
2250 if (Attrs
.hasFnAttr(Attribute::OptimizeForDebugging
)) {
2251 Check(!Attrs
.hasFnAttr(Attribute::OptimizeForSize
),
2252 "Attributes 'optsize and optdebug' are incompatible!", V
);
2254 Check(!Attrs
.hasFnAttr(Attribute::MinSize
),
2255 "Attributes 'minsize and optdebug' are incompatible!", V
);
2258 Check(!Attrs
.hasAttrSomewhere(Attribute::Writable
) ||
2259 isModSet(Attrs
.getMemoryEffects().getModRef(IRMemLocation::ArgMem
)),
2260 "Attribute writable and memory without argmem: write are incompatible!",
2263 if (Attrs
.hasFnAttr("aarch64_pstate_sm_enabled")) {
2264 Check(!Attrs
.hasFnAttr("aarch64_pstate_sm_compatible"),
2265 "Attributes 'aarch64_pstate_sm_enabled and "
2266 "aarch64_pstate_sm_compatible' are incompatible!",
2270 Check((Attrs
.hasFnAttr("aarch64_new_za") + Attrs
.hasFnAttr("aarch64_in_za") +
2271 Attrs
.hasFnAttr("aarch64_inout_za") +
2272 Attrs
.hasFnAttr("aarch64_out_za") +
2273 Attrs
.hasFnAttr("aarch64_preserves_za") +
2274 Attrs
.hasFnAttr("aarch64_za_state_agnostic")) <= 1,
2275 "Attributes 'aarch64_new_za', 'aarch64_in_za', 'aarch64_out_za', "
2276 "'aarch64_inout_za', 'aarch64_preserves_za' and "
2277 "'aarch64_za_state_agnostic' are mutually exclusive",
2280 Check((Attrs
.hasFnAttr("aarch64_new_zt0") +
2281 Attrs
.hasFnAttr("aarch64_in_zt0") +
2282 Attrs
.hasFnAttr("aarch64_inout_zt0") +
2283 Attrs
.hasFnAttr("aarch64_out_zt0") +
2284 Attrs
.hasFnAttr("aarch64_preserves_zt0") +
2285 Attrs
.hasFnAttr("aarch64_za_state_agnostic")) <= 1,
2286 "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', "
2287 "'aarch64_inout_zt0', 'aarch64_preserves_zt0' and "
2288 "'aarch64_za_state_agnostic' are mutually exclusive",
2291 if (Attrs
.hasFnAttr(Attribute::JumpTable
)) {
2292 const GlobalValue
*GV
= cast
<GlobalValue
>(V
);
2293 Check(GV
->hasGlobalUnnamedAddr(),
2294 "Attribute 'jumptable' requires 'unnamed_addr'", V
);
2297 if (auto Args
= Attrs
.getFnAttrs().getAllocSizeArgs()) {
2298 auto CheckParam
= [&](StringRef Name
, unsigned ParamNo
) {
2299 if (ParamNo
>= FT
->getNumParams()) {
2300 CheckFailed("'allocsize' " + Name
+ " argument is out of bounds", V
);
2304 if (!FT
->getParamType(ParamNo
)->isIntegerTy()) {
2305 CheckFailed("'allocsize' " + Name
+
2306 " argument must refer to an integer parameter",
2314 if (!CheckParam("element size", Args
->first
))
2317 if (Args
->second
&& !CheckParam("number of elements", *Args
->second
))
2321 if (Attrs
.hasFnAttr(Attribute::AllocKind
)) {
2322 AllocFnKind K
= Attrs
.getAllocKind();
2324 K
& (AllocFnKind::Alloc
| AllocFnKind::Realloc
| AllocFnKind::Free
);
2326 {AllocFnKind::Alloc
, AllocFnKind::Realloc
, AllocFnKind::Free
},
2329 "'allockind()' requires exactly one of alloc, realloc, and free");
2330 if ((Type
== AllocFnKind::Free
) &&
2331 ((K
& (AllocFnKind::Uninitialized
| AllocFnKind::Zeroed
|
2332 AllocFnKind::Aligned
)) != AllocFnKind::Unknown
))
2333 CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2334 "or aligned modifiers.");
2335 AllocFnKind ZeroedUninit
= AllocFnKind::Uninitialized
| AllocFnKind::Zeroed
;
2336 if ((K
& ZeroedUninit
) == ZeroedUninit
)
2337 CheckFailed("'allockind()' can't be both zeroed and uninitialized");
2340 if (Attrs
.hasFnAttr(Attribute::VScaleRange
)) {
2341 unsigned VScaleMin
= Attrs
.getFnAttrs().getVScaleRangeMin();
2343 CheckFailed("'vscale_range' minimum must be greater than 0", V
);
2344 else if (!isPowerOf2_32(VScaleMin
))
2345 CheckFailed("'vscale_range' minimum must be power-of-two value", V
);
2346 std::optional
<unsigned> VScaleMax
= Attrs
.getFnAttrs().getVScaleRangeMax();
2347 if (VScaleMax
&& VScaleMin
> VScaleMax
)
2348 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V
);
2349 else if (VScaleMax
&& !isPowerOf2_32(*VScaleMax
))
2350 CheckFailed("'vscale_range' maximum must be power-of-two value", V
);
2353 if (Attrs
.hasFnAttr("frame-pointer")) {
2354 StringRef FP
= Attrs
.getFnAttr("frame-pointer").getValueAsString();
2355 if (FP
!= "all" && FP
!= "non-leaf" && FP
!= "none" && FP
!= "reserved")
2356 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP
, V
);
2359 // Check EVEX512 feature.
2360 if (MaxParameterWidth
>= 512 && Attrs
.hasFnAttr("target-features") &&
2362 StringRef TF
= Attrs
.getFnAttr("target-features").getValueAsString();
2363 Check(!TF
.contains("+avx512f") || !TF
.contains("-evex512"),
2364 "512-bit vector arguments require 'evex512' for AVX512", V
);
2367 checkUnsignedBaseTenFuncAttr(Attrs
, "patchable-function-prefix", V
);
2368 checkUnsignedBaseTenFuncAttr(Attrs
, "patchable-function-entry", V
);
2369 checkUnsignedBaseTenFuncAttr(Attrs
, "warn-stack-size", V
);
2371 if (auto A
= Attrs
.getFnAttr("sign-return-address"); A
.isValid()) {
2372 StringRef S
= A
.getValueAsString();
2373 if (S
!= "none" && S
!= "all" && S
!= "non-leaf")
2374 CheckFailed("invalid value for 'sign-return-address' attribute: " + S
, V
);
2377 if (auto A
= Attrs
.getFnAttr("sign-return-address-key"); A
.isValid()) {
2378 StringRef S
= A
.getValueAsString();
2379 if (S
!= "a_key" && S
!= "b_key")
2380 CheckFailed("invalid value for 'sign-return-address-key' attribute: " + S
,
2382 if (auto AA
= Attrs
.getFnAttr("sign-return-address"); !AA
.isValid()) {
2384 "'sign-return-address-key' present without `sign-return-address`");
2388 if (auto A
= Attrs
.getFnAttr("branch-target-enforcement"); A
.isValid()) {
2389 StringRef S
= A
.getValueAsString();
2390 if (S
!= "" && S
!= "true" && S
!= "false")
2392 "invalid value for 'branch-target-enforcement' attribute: " + S
, V
);
2395 if (auto A
= Attrs
.getFnAttr("branch-protection-pauth-lr"); A
.isValid()) {
2396 StringRef S
= A
.getValueAsString();
2397 if (S
!= "" && S
!= "true" && S
!= "false")
2399 "invalid value for 'branch-protection-pauth-lr' attribute: " + S
, V
);
2402 if (auto A
= Attrs
.getFnAttr("guarded-control-stack"); A
.isValid()) {
2403 StringRef S
= A
.getValueAsString();
2404 if (S
!= "" && S
!= "true" && S
!= "false")
2405 CheckFailed("invalid value for 'guarded-control-stack' attribute: " + S
,
2409 if (auto A
= Attrs
.getFnAttr("vector-function-abi-variant"); A
.isValid()) {
2410 StringRef S
= A
.getValueAsString();
2411 const std::optional
<VFInfo
> Info
= VFABI::tryDemangleForVFABI(S
, FT
);
2413 CheckFailed("invalid name for a VFABI variant: " + S
, V
);
2416 if (auto A
= Attrs
.getFnAttr("denormal-fp-math"); A
.isValid()) {
2417 StringRef S
= A
.getValueAsString();
2418 if (!parseDenormalFPAttribute(S
).isValid())
2419 CheckFailed("invalid value for 'denormal-fp-math' attribute: " + S
, V
);
2422 if (auto A
= Attrs
.getFnAttr("denormal-fp-math-f32"); A
.isValid()) {
2423 StringRef S
= A
.getValueAsString();
2424 if (!parseDenormalFPAttribute(S
).isValid())
2425 CheckFailed("invalid value for 'denormal-fp-math-f32' attribute: " + S
,
2430 void Verifier::verifyFunctionMetadata(
2431 ArrayRef
<std::pair
<unsigned, MDNode
*>> MDs
) {
2432 for (const auto &Pair
: MDs
) {
2433 if (Pair
.first
== LLVMContext::MD_prof
) {
2434 MDNode
*MD
= Pair
.second
;
2435 Check(MD
->getNumOperands() >= 2,
2436 "!prof annotations should have no less than 2 operands", MD
);
2438 // Check first operand.
2439 Check(MD
->getOperand(0) != nullptr, "first operand should not be null",
2441 Check(isa
<MDString
>(MD
->getOperand(0)),
2442 "expected string with name of the !prof annotation", MD
);
2443 MDString
*MDS
= cast
<MDString
>(MD
->getOperand(0));
2444 StringRef ProfName
= MDS
->getString();
2445 Check(ProfName
== "function_entry_count" ||
2446 ProfName
== "synthetic_function_entry_count",
2447 "first operand should be 'function_entry_count'"
2448 " or 'synthetic_function_entry_count'",
2451 // Check second operand.
2452 Check(MD
->getOperand(1) != nullptr, "second operand should not be null",
2454 Check(isa
<ConstantAsMetadata
>(MD
->getOperand(1)),
2455 "expected integer argument to function_entry_count", MD
);
2456 } else if (Pair
.first
== LLVMContext::MD_kcfi_type
) {
2457 MDNode
*MD
= Pair
.second
;
2458 Check(MD
->getNumOperands() == 1,
2459 "!kcfi_type must have exactly one operand", MD
);
2460 Check(MD
->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
2462 Check(isa
<ConstantAsMetadata
>(MD
->getOperand(0)),
2463 "expected a constant operand for !kcfi_type", MD
);
2464 Constant
*C
= cast
<ConstantAsMetadata
>(MD
->getOperand(0))->getValue();
2465 Check(isa
<ConstantInt
>(C
) && isa
<IntegerType
>(C
->getType()),
2466 "expected a constant integer operand for !kcfi_type", MD
);
2467 Check(cast
<ConstantInt
>(C
)->getBitWidth() == 32,
2468 "expected a 32-bit integer constant operand for !kcfi_type", MD
);
2473 void Verifier::visitConstantExprsRecursively(const Constant
*EntryC
) {
2474 if (!ConstantExprVisited
.insert(EntryC
).second
)
2477 SmallVector
<const Constant
*, 16> Stack
;
2478 Stack
.push_back(EntryC
);
2480 while (!Stack
.empty()) {
2481 const Constant
*C
= Stack
.pop_back_val();
2483 // Check this constant expression.
2484 if (const auto *CE
= dyn_cast
<ConstantExpr
>(C
))
2485 visitConstantExpr(CE
);
2487 if (const auto *CPA
= dyn_cast
<ConstantPtrAuth
>(C
))
2488 visitConstantPtrAuth(CPA
);
2490 if (const auto *GV
= dyn_cast
<GlobalValue
>(C
)) {
2491 // Global Values get visited separately, but we do need to make sure
2492 // that the global value is in the correct module
2493 Check(GV
->getParent() == &M
, "Referencing global in another module!",
2494 EntryC
, &M
, GV
, GV
->getParent());
2498 // Visit all sub-expressions.
2499 for (const Use
&U
: C
->operands()) {
2500 const auto *OpC
= dyn_cast
<Constant
>(U
);
2503 if (!ConstantExprVisited
.insert(OpC
).second
)
2505 Stack
.push_back(OpC
);
2510 void Verifier::visitConstantExpr(const ConstantExpr
*CE
) {
2511 if (CE
->getOpcode() == Instruction::BitCast
)
2512 Check(CastInst::castIsValid(Instruction::BitCast
, CE
->getOperand(0),
2514 "Invalid bitcast", CE
);
2517 void Verifier::visitConstantPtrAuth(const ConstantPtrAuth
*CPA
) {
2518 Check(CPA
->getPointer()->getType()->isPointerTy(),
2519 "signed ptrauth constant base pointer must have pointer type");
2521 Check(CPA
->getType() == CPA
->getPointer()->getType(),
2522 "signed ptrauth constant must have same type as its base pointer");
2524 Check(CPA
->getKey()->getBitWidth() == 32,
2525 "signed ptrauth constant key must be i32 constant integer");
2527 Check(CPA
->getAddrDiscriminator()->getType()->isPointerTy(),
2528 "signed ptrauth constant address discriminator must be a pointer");
2530 Check(CPA
->getDiscriminator()->getBitWidth() == 64,
2531 "signed ptrauth constant discriminator must be i64 constant integer");
2534 bool Verifier::verifyAttributeCount(AttributeList Attrs
, unsigned Params
) {
2535 // There shouldn't be more attribute sets than there are parameters plus the
2536 // function and return value.
2537 return Attrs
.getNumAttrSets() <= Params
+ 2;
2540 void Verifier::verifyInlineAsmCall(const CallBase
&Call
) {
2541 const InlineAsm
*IA
= cast
<InlineAsm
>(Call
.getCalledOperand());
2543 unsigned LabelNo
= 0;
2544 for (const InlineAsm::ConstraintInfo
&CI
: IA
->ParseConstraints()) {
2545 if (CI
.Type
== InlineAsm::isLabel
) {
2550 // Only deal with constraints that correspond to call arguments.
2554 if (CI
.isIndirect
) {
2555 const Value
*Arg
= Call
.getArgOperand(ArgNo
);
2556 Check(Arg
->getType()->isPointerTy(),
2557 "Operand for indirect constraint must have pointer type", &Call
);
2559 Check(Call
.getParamElementType(ArgNo
),
2560 "Operand for indirect constraint must have elementtype attribute",
2563 Check(!Call
.paramHasAttr(ArgNo
, Attribute::ElementType
),
2564 "Elementtype attribute can only be applied for indirect "
2572 if (auto *CallBr
= dyn_cast
<CallBrInst
>(&Call
)) {
2573 Check(LabelNo
== CallBr
->getNumIndirectDests(),
2574 "Number of label constraints does not match number of callbr dests",
2577 Check(LabelNo
== 0, "Label constraints can only be used with callbr",
2582 /// Verify that statepoint intrinsic is well formed.
2583 void Verifier::verifyStatepoint(const CallBase
&Call
) {
2584 assert(Call
.getCalledFunction() &&
2585 Call
.getCalledFunction()->getIntrinsicID() ==
2586 Intrinsic::experimental_gc_statepoint
);
2588 Check(!Call
.doesNotAccessMemory() && !Call
.onlyReadsMemory() &&
2589 !Call
.onlyAccessesArgMemory(),
2590 "gc.statepoint must read and write all memory to preserve "
2591 "reordering restrictions required by safepoint semantics",
2594 const int64_t NumPatchBytes
=
2595 cast
<ConstantInt
>(Call
.getArgOperand(1))->getSExtValue();
2596 assert(isInt
<32>(NumPatchBytes
) && "NumPatchBytesV is an i32!");
2597 Check(NumPatchBytes
>= 0,
2598 "gc.statepoint number of patchable bytes must be "
2602 Type
*TargetElemType
= Call
.getParamElementType(2);
2603 Check(TargetElemType
,
2604 "gc.statepoint callee argument must have elementtype attribute", Call
);
2605 FunctionType
*TargetFuncType
= dyn_cast
<FunctionType
>(TargetElemType
);
2606 Check(TargetFuncType
,
2607 "gc.statepoint callee elementtype must be function type", Call
);
2609 const int NumCallArgs
= cast
<ConstantInt
>(Call
.getArgOperand(3))->getZExtValue();
2610 Check(NumCallArgs
>= 0,
2611 "gc.statepoint number of arguments to underlying call "
2614 const int NumParams
= (int)TargetFuncType
->getNumParams();
2615 if (TargetFuncType
->isVarArg()) {
2616 Check(NumCallArgs
>= NumParams
,
2617 "gc.statepoint mismatch in number of vararg call args", Call
);
2619 // TODO: Remove this limitation
2620 Check(TargetFuncType
->getReturnType()->isVoidTy(),
2621 "gc.statepoint doesn't support wrapping non-void "
2622 "vararg functions yet",
2625 Check(NumCallArgs
== NumParams
,
2626 "gc.statepoint mismatch in number of call args", Call
);
2628 const uint64_t Flags
2629 = cast
<ConstantInt
>(Call
.getArgOperand(4))->getZExtValue();
2630 Check((Flags
& ~(uint64_t)StatepointFlags::MaskAll
) == 0,
2631 "unknown flag used in gc.statepoint flags argument", Call
);
2633 // Verify that the types of the call parameter arguments match
2634 // the type of the wrapped callee.
2635 AttributeList Attrs
= Call
.getAttributes();
2636 for (int i
= 0; i
< NumParams
; i
++) {
2637 Type
*ParamType
= TargetFuncType
->getParamType(i
);
2638 Type
*ArgType
= Call
.getArgOperand(5 + i
)->getType();
2639 Check(ArgType
== ParamType
,
2640 "gc.statepoint call argument does not match wrapped "
2644 if (TargetFuncType
->isVarArg()) {
2645 AttributeSet ArgAttrs
= Attrs
.getParamAttrs(5 + i
);
2646 Check(!ArgAttrs
.hasAttribute(Attribute::StructRet
),
2647 "Attribute 'sret' cannot be used for vararg call arguments!", Call
);
2651 const int EndCallArgsInx
= 4 + NumCallArgs
;
2653 const Value
*NumTransitionArgsV
= Call
.getArgOperand(EndCallArgsInx
+ 1);
2654 Check(isa
<ConstantInt
>(NumTransitionArgsV
),
2655 "gc.statepoint number of transition arguments "
2656 "must be constant integer",
2658 const int NumTransitionArgs
=
2659 cast
<ConstantInt
>(NumTransitionArgsV
)->getZExtValue();
2660 Check(NumTransitionArgs
== 0,
2661 "gc.statepoint w/inline transition bundle is deprecated", Call
);
2662 const int EndTransitionArgsInx
= EndCallArgsInx
+ 1 + NumTransitionArgs
;
2664 const Value
*NumDeoptArgsV
= Call
.getArgOperand(EndTransitionArgsInx
+ 1);
2665 Check(isa
<ConstantInt
>(NumDeoptArgsV
),
2666 "gc.statepoint number of deoptimization arguments "
2667 "must be constant integer",
2669 const int NumDeoptArgs
= cast
<ConstantInt
>(NumDeoptArgsV
)->getZExtValue();
2670 Check(NumDeoptArgs
== 0,
2671 "gc.statepoint w/inline deopt operands is deprecated", Call
);
2673 const int ExpectedNumArgs
= 7 + NumCallArgs
;
2674 Check(ExpectedNumArgs
== (int)Call
.arg_size(),
2675 "gc.statepoint too many arguments", Call
);
2677 // Check that the only uses of this gc.statepoint are gc.result or
2678 // gc.relocate calls which are tied to this statepoint and thus part
2679 // of the same statepoint sequence
2680 for (const User
*U
: Call
.users()) {
2681 const CallInst
*UserCall
= dyn_cast
<const CallInst
>(U
);
2682 Check(UserCall
, "illegal use of statepoint token", Call
, U
);
2685 Check(isa
<GCRelocateInst
>(UserCall
) || isa
<GCResultInst
>(UserCall
),
2686 "gc.result or gc.relocate are the only value uses "
2687 "of a gc.statepoint",
2689 if (isa
<GCResultInst
>(UserCall
)) {
2690 Check(UserCall
->getArgOperand(0) == &Call
,
2691 "gc.result connected to wrong gc.statepoint", Call
, UserCall
);
2692 } else if (isa
<GCRelocateInst
>(Call
)) {
2693 Check(UserCall
->getArgOperand(0) == &Call
,
2694 "gc.relocate connected to wrong gc.statepoint", Call
, UserCall
);
2698 // Note: It is legal for a single derived pointer to be listed multiple
2699 // times. It's non-optimal, but it is legal. It can also happen after
2700 // insertion if we strip a bitcast away.
2701 // Note: It is really tempting to check that each base is relocated and
2702 // that a derived pointer is never reused as a base pointer. This turns
2703 // out to be problematic since optimizations run after safepoint insertion
2704 // can recognize equality properties that the insertion logic doesn't know
2705 // about. See example statepoint.ll in the verifier subdirectory
2708 void Verifier::verifyFrameRecoverIndices() {
2709 for (auto &Counts
: FrameEscapeInfo
) {
2710 Function
*F
= Counts
.first
;
2711 unsigned EscapedObjectCount
= Counts
.second
.first
;
2712 unsigned MaxRecoveredIndex
= Counts
.second
.second
;
2713 Check(MaxRecoveredIndex
<= EscapedObjectCount
,
2714 "all indices passed to llvm.localrecover must be less than the "
2715 "number of arguments passed to llvm.localescape in the parent "
2721 static Instruction
*getSuccPad(Instruction
*Terminator
) {
2722 BasicBlock
*UnwindDest
;
2723 if (auto *II
= dyn_cast
<InvokeInst
>(Terminator
))
2724 UnwindDest
= II
->getUnwindDest();
2725 else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(Terminator
))
2726 UnwindDest
= CSI
->getUnwindDest();
2728 UnwindDest
= cast
<CleanupReturnInst
>(Terminator
)->getUnwindDest();
2729 return &*UnwindDest
->getFirstNonPHIIt();
2732 void Verifier::verifySiblingFuncletUnwinds() {
2733 SmallPtrSet
<Instruction
*, 8> Visited
;
2734 SmallPtrSet
<Instruction
*, 8> Active
;
2735 for (const auto &Pair
: SiblingFuncletInfo
) {
2736 Instruction
*PredPad
= Pair
.first
;
2737 if (Visited
.count(PredPad
))
2739 Active
.insert(PredPad
);
2740 Instruction
*Terminator
= Pair
.second
;
2742 Instruction
*SuccPad
= getSuccPad(Terminator
);
2743 if (Active
.count(SuccPad
)) {
2744 // Found a cycle; report error
2745 Instruction
*CyclePad
= SuccPad
;
2746 SmallVector
<Instruction
*, 8> CycleNodes
;
2748 CycleNodes
.push_back(CyclePad
);
2749 Instruction
*CycleTerminator
= SiblingFuncletInfo
[CyclePad
];
2750 if (CycleTerminator
!= CyclePad
)
2751 CycleNodes
.push_back(CycleTerminator
);
2752 CyclePad
= getSuccPad(CycleTerminator
);
2753 } while (CyclePad
!= SuccPad
);
2754 Check(false, "EH pads can't handle each other's exceptions",
2755 ArrayRef
<Instruction
*>(CycleNodes
));
2757 // Don't re-walk a node we've already checked
2758 if (!Visited
.insert(SuccPad
).second
)
2760 // Walk to this successor if it has a map entry.
2762 auto TermI
= SiblingFuncletInfo
.find(PredPad
);
2763 if (TermI
== SiblingFuncletInfo
.end())
2765 Terminator
= TermI
->second
;
2766 Active
.insert(PredPad
);
2768 // Each node only has one successor, so we've walked all the active
2769 // nodes' successors.
2774 // visitFunction - Verify that a function is ok.
2776 void Verifier::visitFunction(const Function
&F
) {
2777 visitGlobalValue(F
);
2779 // Check function arguments.
2780 FunctionType
*FT
= F
.getFunctionType();
2781 unsigned NumArgs
= F
.arg_size();
2783 Check(&Context
== &F
.getContext(),
2784 "Function context does not match Module context!", &F
);
2786 Check(!F
.hasCommonLinkage(), "Functions may not have common linkage", &F
);
2787 Check(FT
->getNumParams() == NumArgs
,
2788 "# formal arguments must match # of arguments for function type!", &F
,
2790 Check(F
.getReturnType()->isFirstClassType() ||
2791 F
.getReturnType()->isVoidTy() || F
.getReturnType()->isStructTy(),
2792 "Functions cannot return aggregate values!", &F
);
2794 Check(!F
.hasStructRetAttr() || F
.getReturnType()->isVoidTy(),
2795 "Invalid struct return type!", &F
);
2797 AttributeList Attrs
= F
.getAttributes();
2799 Check(verifyAttributeCount(Attrs
, FT
->getNumParams()),
2800 "Attribute after last parameter!", &F
);
2802 CheckDI(F
.IsNewDbgInfoFormat
== F
.getParent()->IsNewDbgInfoFormat
,
2803 "Function debug format should match parent module", &F
,
2804 F
.IsNewDbgInfoFormat
, F
.getParent(),
2805 F
.getParent()->IsNewDbgInfoFormat
);
2807 bool IsIntrinsic
= F
.isIntrinsic();
2809 // Check function attributes.
2810 verifyFunctionAttrs(FT
, Attrs
, &F
, IsIntrinsic
, /* IsInlineAsm */ false);
2812 // On function declarations/definitions, we do not support the builtin
2813 // attribute. We do not check this in VerifyFunctionAttrs since that is
2814 // checking for Attributes that can/can not ever be on functions.
2815 Check(!Attrs
.hasFnAttr(Attribute::Builtin
),
2816 "Attribute 'builtin' can only be applied to a callsite.", &F
);
2818 Check(!Attrs
.hasAttrSomewhere(Attribute::ElementType
),
2819 "Attribute 'elementtype' can only be applied to a callsite.", &F
);
2821 if (Attrs
.hasFnAttr(Attribute::Naked
))
2822 for (const Argument
&Arg
: F
.args())
2823 Check(Arg
.use_empty(), "cannot use argument of naked function", &Arg
);
2825 // Check that this function meets the restrictions on this calling convention.
2826 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2827 // restrictions can be lifted.
2828 switch (F
.getCallingConv()) {
2830 case CallingConv::C
:
2832 case CallingConv::X86_INTR
: {
2833 Check(F
.arg_empty() || Attrs
.hasParamAttr(0, Attribute::ByVal
),
2834 "Calling convention parameter requires byval", &F
);
2837 case CallingConv::AMDGPU_KERNEL
:
2838 case CallingConv::SPIR_KERNEL
:
2839 case CallingConv::AMDGPU_CS_Chain
:
2840 case CallingConv::AMDGPU_CS_ChainPreserve
:
2841 Check(F
.getReturnType()->isVoidTy(),
2842 "Calling convention requires void return type", &F
);
2844 case CallingConv::AMDGPU_VS
:
2845 case CallingConv::AMDGPU_HS
:
2846 case CallingConv::AMDGPU_GS
:
2847 case CallingConv::AMDGPU_PS
:
2848 case CallingConv::AMDGPU_CS
:
2849 Check(!F
.hasStructRetAttr(), "Calling convention does not allow sret", &F
);
2850 if (F
.getCallingConv() != CallingConv::SPIR_KERNEL
) {
2851 const unsigned StackAS
= DL
.getAllocaAddrSpace();
2853 for (const Argument
&Arg
: F
.args()) {
2854 Check(!Attrs
.hasParamAttr(i
, Attribute::ByVal
),
2855 "Calling convention disallows byval", &F
);
2856 Check(!Attrs
.hasParamAttr(i
, Attribute::Preallocated
),
2857 "Calling convention disallows preallocated", &F
);
2858 Check(!Attrs
.hasParamAttr(i
, Attribute::InAlloca
),
2859 "Calling convention disallows inalloca", &F
);
2861 if (Attrs
.hasParamAttr(i
, Attribute::ByRef
)) {
2862 // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2864 Check(Arg
.getType()->getPointerAddressSpace() != StackAS
,
2865 "Calling convention disallows stack byref", &F
);
2873 case CallingConv::Fast
:
2874 case CallingConv::Cold
:
2875 case CallingConv::Intel_OCL_BI
:
2876 case CallingConv::PTX_Kernel
:
2877 case CallingConv::PTX_Device
:
2878 Check(!F
.isVarArg(),
2879 "Calling convention does not support varargs or "
2880 "perfect forwarding!",
2885 // Check that the argument values match the function type for this function...
2887 for (const Argument
&Arg
: F
.args()) {
2888 Check(Arg
.getType() == FT
->getParamType(i
),
2889 "Argument value does not match function argument type!", &Arg
,
2890 FT
->getParamType(i
));
2891 Check(Arg
.getType()->isFirstClassType(),
2892 "Function arguments must have first-class types!", &Arg
);
2894 Check(!Arg
.getType()->isMetadataTy(),
2895 "Function takes metadata but isn't an intrinsic", &Arg
, &F
);
2896 Check(!Arg
.getType()->isTokenTy(),
2897 "Function takes token but isn't an intrinsic", &Arg
, &F
);
2898 Check(!Arg
.getType()->isX86_AMXTy(),
2899 "Function takes x86_amx but isn't an intrinsic", &Arg
, &F
);
2902 // Check that swifterror argument is only used by loads and stores.
2903 if (Attrs
.hasParamAttr(i
, Attribute::SwiftError
)) {
2904 verifySwiftErrorValue(&Arg
);
2910 Check(!F
.getReturnType()->isTokenTy(),
2911 "Function returns a token but isn't an intrinsic", &F
);
2912 Check(!F
.getReturnType()->isX86_AMXTy(),
2913 "Function returns a x86_amx but isn't an intrinsic", &F
);
2916 // Get the function metadata attachments.
2917 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
2918 F
.getAllMetadata(MDs
);
2919 assert(F
.hasMetadata() != MDs
.empty() && "Bit out-of-sync");
2920 verifyFunctionMetadata(MDs
);
2922 // Check validity of the personality function
2923 if (F
.hasPersonalityFn()) {
2924 auto *Per
= dyn_cast
<Function
>(F
.getPersonalityFn()->stripPointerCasts());
2926 Check(Per
->getParent() == F
.getParent(),
2927 "Referencing personality function in another module!", &F
,
2928 F
.getParent(), Per
, Per
->getParent());
2931 // EH funclet coloring can be expensive, recompute on-demand
2932 BlockEHFuncletColors
.clear();
2934 if (F
.isMaterializable()) {
2935 // Function has a body somewhere we can't see.
2936 Check(MDs
.empty(), "unmaterialized function cannot have metadata", &F
,
2937 MDs
.empty() ? nullptr : MDs
.front().second
);
2938 } else if (F
.isDeclaration()) {
2939 for (const auto &I
: MDs
) {
2940 // This is used for call site debug information.
2941 CheckDI(I
.first
!= LLVMContext::MD_dbg
||
2942 !cast
<DISubprogram
>(I
.second
)->isDistinct(),
2943 "function declaration may only have a unique !dbg attachment",
2945 Check(I
.first
!= LLVMContext::MD_prof
,
2946 "function declaration may not have a !prof attachment", &F
);
2948 // Verify the metadata itself.
2949 visitMDNode(*I
.second
, AreDebugLocsAllowed::Yes
);
2951 Check(!F
.hasPersonalityFn(),
2952 "Function declaration shouldn't have a personality routine", &F
);
2954 // Verify that this function (which has a body) is not named "llvm.*". It
2955 // is not legal to define intrinsics.
2956 Check(!IsIntrinsic
, "llvm intrinsics cannot be defined!", &F
);
2958 // Check the entry node
2959 const BasicBlock
*Entry
= &F
.getEntryBlock();
2960 Check(pred_empty(Entry
),
2961 "Entry block to function must not have predecessors!", Entry
);
2963 // The address of the entry block cannot be taken, unless it is dead.
2964 if (Entry
->hasAddressTaken()) {
2965 Check(!BlockAddress::lookup(Entry
)->isConstantUsed(),
2966 "blockaddress may not be used with the entry block!", Entry
);
2969 unsigned NumDebugAttachments
= 0, NumProfAttachments
= 0,
2970 NumKCFIAttachments
= 0;
2971 // Visit metadata attachments.
2972 for (const auto &I
: MDs
) {
2973 // Verify that the attachment is legal.
2974 auto AllowLocs
= AreDebugLocsAllowed::No
;
2978 case LLVMContext::MD_dbg
: {
2979 ++NumDebugAttachments
;
2980 CheckDI(NumDebugAttachments
== 1,
2981 "function must have a single !dbg attachment", &F
, I
.second
);
2982 CheckDI(isa
<DISubprogram
>(I
.second
),
2983 "function !dbg attachment must be a subprogram", &F
, I
.second
);
2984 CheckDI(cast
<DISubprogram
>(I
.second
)->isDistinct(),
2985 "function definition may only have a distinct !dbg attachment",
2988 auto *SP
= cast
<DISubprogram
>(I
.second
);
2989 const Function
*&AttachedTo
= DISubprogramAttachments
[SP
];
2990 CheckDI(!AttachedTo
|| AttachedTo
== &F
,
2991 "DISubprogram attached to more than one function", SP
, &F
);
2993 AllowLocs
= AreDebugLocsAllowed::Yes
;
2996 case LLVMContext::MD_prof
:
2997 ++NumProfAttachments
;
2998 Check(NumProfAttachments
== 1,
2999 "function must have a single !prof attachment", &F
, I
.second
);
3001 case LLVMContext::MD_kcfi_type
:
3002 ++NumKCFIAttachments
;
3003 Check(NumKCFIAttachments
== 1,
3004 "function must have a single !kcfi_type attachment", &F
,
3009 // Verify the metadata itself.
3010 visitMDNode(*I
.second
, AllowLocs
);
3014 // If this function is actually an intrinsic, verify that it is only used in
3015 // direct call/invokes, never having its "address taken".
3016 // Only do this if the module is materialized, otherwise we don't have all the
3018 if (F
.isIntrinsic() && F
.getParent()->isMaterialized()) {
3020 if (F
.hasAddressTaken(&U
, false, true, false,
3021 /*IgnoreARCAttachedCall=*/true))
3022 Check(false, "Invalid user of intrinsic instruction!", U
);
3025 // Check intrinsics' signatures.
3026 switch (F
.getIntrinsicID()) {
3027 case Intrinsic::experimental_gc_get_pointer_base
: {
3028 FunctionType
*FT
= F
.getFunctionType();
3029 Check(FT
->getNumParams() == 1, "wrong number of parameters", F
);
3030 Check(isa
<PointerType
>(F
.getReturnType()),
3031 "gc.get.pointer.base must return a pointer", F
);
3032 Check(FT
->getParamType(0) == F
.getReturnType(),
3033 "gc.get.pointer.base operand and result must be of the same type", F
);
3036 case Intrinsic::experimental_gc_get_pointer_offset
: {
3037 FunctionType
*FT
= F
.getFunctionType();
3038 Check(FT
->getNumParams() == 1, "wrong number of parameters", F
);
3039 Check(isa
<PointerType
>(FT
->getParamType(0)),
3040 "gc.get.pointer.offset operand must be a pointer", F
);
3041 Check(F
.getReturnType()->isIntegerTy(),
3042 "gc.get.pointer.offset must return integer", F
);
3047 auto *N
= F
.getSubprogram();
3048 HasDebugInfo
= (N
!= nullptr);
3052 // Check that all !dbg attachments lead to back to N.
3054 // FIXME: Check this incrementally while visiting !dbg attachments.
3055 // FIXME: Only check when N is the canonical subprogram for F.
3056 SmallPtrSet
<const MDNode
*, 32> Seen
;
3057 auto VisitDebugLoc
= [&](const Instruction
&I
, const MDNode
*Node
) {
3058 // Be careful about using DILocation here since we might be dealing with
3059 // broken code (this is the Verifier after all).
3060 const DILocation
*DL
= dyn_cast_or_null
<DILocation
>(Node
);
3063 if (!Seen
.insert(DL
).second
)
3066 Metadata
*Parent
= DL
->getRawScope();
3067 CheckDI(Parent
&& isa
<DILocalScope
>(Parent
),
3068 "DILocation's scope must be a DILocalScope", N
, &F
, &I
, DL
, Parent
);
3070 DILocalScope
*Scope
= DL
->getInlinedAtScope();
3071 Check(Scope
, "Failed to find DILocalScope", DL
);
3073 if (!Seen
.insert(Scope
).second
)
3076 DISubprogram
*SP
= Scope
->getSubprogram();
3078 // Scope and SP could be the same MDNode and we don't want to skip
3079 // validation in that case
3080 if (SP
&& ((Scope
!= SP
) && !Seen
.insert(SP
).second
))
3083 CheckDI(SP
->describes(&F
),
3084 "!dbg attachment points at wrong subprogram for function", N
, &F
,
3088 for (auto &I
: BB
) {
3089 VisitDebugLoc(I
, I
.getDebugLoc().getAsMDNode());
3090 // The llvm.loop annotations also contain two DILocations.
3091 if (auto MD
= I
.getMetadata(LLVMContext::MD_loop
))
3092 for (unsigned i
= 1; i
< MD
->getNumOperands(); ++i
)
3093 VisitDebugLoc(I
, dyn_cast_or_null
<MDNode
>(MD
->getOperand(i
)));
3094 if (BrokenDebugInfo
)
3099 // verifyBasicBlock - Verify that a basic block is well formed...
3101 void Verifier::visitBasicBlock(BasicBlock
&BB
) {
3102 InstsInThisBlock
.clear();
3103 ConvergenceVerifyHelper
.visit(BB
);
3105 // Ensure that basic blocks have terminators!
3106 Check(BB
.getTerminator(), "Basic Block does not have terminator!", &BB
);
3108 // Check constraints that this basic block imposes on all of the PHI nodes in
3110 if (isa
<PHINode
>(BB
.front())) {
3111 SmallVector
<BasicBlock
*, 8> Preds(predecessors(&BB
));
3112 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> Values
;
3114 for (const PHINode
&PN
: BB
.phis()) {
3115 Check(PN
.getNumIncomingValues() == Preds
.size(),
3116 "PHINode should have one entry for each predecessor of its "
3117 "parent basic block!",
3120 // Get and sort all incoming values in the PHI node...
3122 Values
.reserve(PN
.getNumIncomingValues());
3123 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
3125 std::make_pair(PN
.getIncomingBlock(i
), PN
.getIncomingValue(i
)));
3128 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
) {
3129 // Check to make sure that if there is more than one entry for a
3130 // particular basic block in this PHI node, that the incoming values are
3133 Check(i
== 0 || Values
[i
].first
!= Values
[i
- 1].first
||
3134 Values
[i
].second
== Values
[i
- 1].second
,
3135 "PHI node has multiple entries for the same basic block with "
3136 "different incoming values!",
3137 &PN
, Values
[i
].first
, Values
[i
].second
, Values
[i
- 1].second
);
3139 // Check to make sure that the predecessors and PHI node entries are
3141 Check(Values
[i
].first
== Preds
[i
],
3142 "PHI node entries do not match predecessors!", &PN
,
3143 Values
[i
].first
, Preds
[i
]);
3148 // Check that all instructions have their parent pointers set up correctly.
3151 Check(I
.getParent() == &BB
, "Instruction has bogus parent pointer!");
3154 CheckDI(BB
.IsNewDbgInfoFormat
== BB
.getParent()->IsNewDbgInfoFormat
,
3155 "BB debug format should match parent function", &BB
,
3156 BB
.IsNewDbgInfoFormat
, BB
.getParent(),
3157 BB
.getParent()->IsNewDbgInfoFormat
);
3159 // Confirm that no issues arise from the debug program.
3160 if (BB
.IsNewDbgInfoFormat
)
3161 CheckDI(!BB
.getTrailingDbgRecords(), "Basic Block has trailing DbgRecords!",
3165 void Verifier::visitTerminator(Instruction
&I
) {
3166 // Ensure that terminators only exist at the end of the basic block.
3167 Check(&I
== I
.getParent()->getTerminator(),
3168 "Terminator found in the middle of a basic block!", I
.getParent());
3169 visitInstruction(I
);
3172 void Verifier::visitBranchInst(BranchInst
&BI
) {
3173 if (BI
.isConditional()) {
3174 Check(BI
.getCondition()->getType()->isIntegerTy(1),
3175 "Branch condition is not 'i1' type!", &BI
, BI
.getCondition());
3177 visitTerminator(BI
);
3180 void Verifier::visitReturnInst(ReturnInst
&RI
) {
3181 Function
*F
= RI
.getParent()->getParent();
3182 unsigned N
= RI
.getNumOperands();
3183 if (F
->getReturnType()->isVoidTy())
3185 "Found return instr that returns non-void in Function of void "
3187 &RI
, F
->getReturnType());
3189 Check(N
== 1 && F
->getReturnType() == RI
.getOperand(0)->getType(),
3190 "Function return type does not match operand "
3191 "type of return inst!",
3192 &RI
, F
->getReturnType());
3194 // Check to make sure that the return value has necessary properties for
3196 visitTerminator(RI
);
3199 void Verifier::visitSwitchInst(SwitchInst
&SI
) {
3200 Check(SI
.getType()->isVoidTy(), "Switch must have void result type!", &SI
);
3201 // Check to make sure that all of the constants in the switch instruction
3202 // have the same type as the switched-on value.
3203 Type
*SwitchTy
= SI
.getCondition()->getType();
3204 SmallPtrSet
<ConstantInt
*, 32> Constants
;
3205 for (auto &Case
: SI
.cases()) {
3206 Check(isa
<ConstantInt
>(SI
.getOperand(Case
.getCaseIndex() * 2 + 2)),
3207 "Case value is not a constant integer.", &SI
);
3208 Check(Case
.getCaseValue()->getType() == SwitchTy
,
3209 "Switch constants must all be same type as switch value!", &SI
);
3210 Check(Constants
.insert(Case
.getCaseValue()).second
,
3211 "Duplicate integer as switch case", &SI
, Case
.getCaseValue());
3214 visitTerminator(SI
);
3217 void Verifier::visitIndirectBrInst(IndirectBrInst
&BI
) {
3218 Check(BI
.getAddress()->getType()->isPointerTy(),
3219 "Indirectbr operand must have pointer type!", &BI
);
3220 for (unsigned i
= 0, e
= BI
.getNumDestinations(); i
!= e
; ++i
)
3221 Check(BI
.getDestination(i
)->getType()->isLabelTy(),
3222 "Indirectbr destinations must all have pointer type!", &BI
);
3224 visitTerminator(BI
);
3227 void Verifier::visitCallBrInst(CallBrInst
&CBI
) {
3228 Check(CBI
.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI
);
3229 const InlineAsm
*IA
= cast
<InlineAsm
>(CBI
.getCalledOperand());
3230 Check(!IA
->canThrow(), "Unwinding from Callbr is not allowed");
3232 verifyInlineAsmCall(CBI
);
3233 visitTerminator(CBI
);
3236 void Verifier::visitSelectInst(SelectInst
&SI
) {
3237 Check(!SelectInst::areInvalidOperands(SI
.getOperand(0), SI
.getOperand(1),
3239 "Invalid operands for select instruction!", &SI
);
3241 Check(SI
.getTrueValue()->getType() == SI
.getType(),
3242 "Select values must have same type as select instruction!", &SI
);
3243 visitInstruction(SI
);
3246 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
3247 /// a pass, if any exist, it's an error.
3249 void Verifier::visitUserOp1(Instruction
&I
) {
3250 Check(false, "User-defined operators should not live outside of a pass!", &I
);
3253 void Verifier::visitTruncInst(TruncInst
&I
) {
3254 // Get the source and destination types
3255 Type
*SrcTy
= I
.getOperand(0)->getType();
3256 Type
*DestTy
= I
.getType();
3258 // Get the size of the types in bits, we'll need this later
3259 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
3260 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
3262 Check(SrcTy
->isIntOrIntVectorTy(), "Trunc only operates on integer", &I
);
3263 Check(DestTy
->isIntOrIntVectorTy(), "Trunc only produces integer", &I
);
3264 Check(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
3265 "trunc source and destination must both be a vector or neither", &I
);
3266 Check(SrcBitSize
> DestBitSize
, "DestTy too big for Trunc", &I
);
3268 visitInstruction(I
);
3271 void Verifier::visitZExtInst(ZExtInst
&I
) {
3272 // Get the source and destination types
3273 Type
*SrcTy
= I
.getOperand(0)->getType();
3274 Type
*DestTy
= I
.getType();
3276 // Get the size of the types in bits, we'll need this later
3277 Check(SrcTy
->isIntOrIntVectorTy(), "ZExt only operates on integer", &I
);
3278 Check(DestTy
->isIntOrIntVectorTy(), "ZExt only produces an integer", &I
);
3279 Check(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
3280 "zext source and destination must both be a vector or neither", &I
);
3281 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
3282 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
3284 Check(SrcBitSize
< DestBitSize
, "Type too small for ZExt", &I
);
3286 visitInstruction(I
);
3289 void Verifier::visitSExtInst(SExtInst
&I
) {
3290 // Get the source and destination types
3291 Type
*SrcTy
= I
.getOperand(0)->getType();
3292 Type
*DestTy
= I
.getType();
3294 // Get the size of the types in bits, we'll need this later
3295 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
3296 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
3298 Check(SrcTy
->isIntOrIntVectorTy(), "SExt only operates on integer", &I
);
3299 Check(DestTy
->isIntOrIntVectorTy(), "SExt only produces an integer", &I
);
3300 Check(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
3301 "sext source and destination must both be a vector or neither", &I
);
3302 Check(SrcBitSize
< DestBitSize
, "Type too small for SExt", &I
);
3304 visitInstruction(I
);
3307 void Verifier::visitFPTruncInst(FPTruncInst
&I
) {
3308 // Get the source and destination types
3309 Type
*SrcTy
= I
.getOperand(0)->getType();
3310 Type
*DestTy
= I
.getType();
3311 // Get the size of the types in bits, we'll need this later
3312 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
3313 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
3315 Check(SrcTy
->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I
);
3316 Check(DestTy
->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I
);
3317 Check(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
3318 "fptrunc source and destination must both be a vector or neither", &I
);
3319 Check(SrcBitSize
> DestBitSize
, "DestTy too big for FPTrunc", &I
);
3321 visitInstruction(I
);
3324 void Verifier::visitFPExtInst(FPExtInst
&I
) {
3325 // Get the source and destination types
3326 Type
*SrcTy
= I
.getOperand(0)->getType();
3327 Type
*DestTy
= I
.getType();
3329 // Get the size of the types in bits, we'll need this later
3330 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
3331 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
3333 Check(SrcTy
->isFPOrFPVectorTy(), "FPExt only operates on FP", &I
);
3334 Check(DestTy
->isFPOrFPVectorTy(), "FPExt only produces an FP", &I
);
3335 Check(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
3336 "fpext source and destination must both be a vector or neither", &I
);
3337 Check(SrcBitSize
< DestBitSize
, "DestTy too small for FPExt", &I
);
3339 visitInstruction(I
);
3342 void Verifier::visitUIToFPInst(UIToFPInst
&I
) {
3343 // Get the source and destination types
3344 Type
*SrcTy
= I
.getOperand(0)->getType();
3345 Type
*DestTy
= I
.getType();
3347 bool SrcVec
= SrcTy
->isVectorTy();
3348 bool DstVec
= DestTy
->isVectorTy();
3350 Check(SrcVec
== DstVec
,
3351 "UIToFP source and dest must both be vector or scalar", &I
);
3352 Check(SrcTy
->isIntOrIntVectorTy(),
3353 "UIToFP source must be integer or integer vector", &I
);
3354 Check(DestTy
->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
3357 if (SrcVec
&& DstVec
)
3358 Check(cast
<VectorType
>(SrcTy
)->getElementCount() ==
3359 cast
<VectorType
>(DestTy
)->getElementCount(),
3360 "UIToFP source and dest vector length mismatch", &I
);
3362 visitInstruction(I
);
3365 void Verifier::visitSIToFPInst(SIToFPInst
&I
) {
3366 // Get the source and destination types
3367 Type
*SrcTy
= I
.getOperand(0)->getType();
3368 Type
*DestTy
= I
.getType();
3370 bool SrcVec
= SrcTy
->isVectorTy();
3371 bool DstVec
= DestTy
->isVectorTy();
3373 Check(SrcVec
== DstVec
,
3374 "SIToFP source and dest must both be vector or scalar", &I
);
3375 Check(SrcTy
->isIntOrIntVectorTy(),
3376 "SIToFP source must be integer or integer vector", &I
);
3377 Check(DestTy
->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3380 if (SrcVec
&& DstVec
)
3381 Check(cast
<VectorType
>(SrcTy
)->getElementCount() ==
3382 cast
<VectorType
>(DestTy
)->getElementCount(),
3383 "SIToFP source and dest vector length mismatch", &I
);
3385 visitInstruction(I
);
3388 void Verifier::visitFPToUIInst(FPToUIInst
&I
) {
3389 // Get the source and destination types
3390 Type
*SrcTy
= I
.getOperand(0)->getType();
3391 Type
*DestTy
= I
.getType();
3393 bool SrcVec
= SrcTy
->isVectorTy();
3394 bool DstVec
= DestTy
->isVectorTy();
3396 Check(SrcVec
== DstVec
,
3397 "FPToUI source and dest must both be vector or scalar", &I
);
3398 Check(SrcTy
->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I
);
3399 Check(DestTy
->isIntOrIntVectorTy(),
3400 "FPToUI result must be integer or integer vector", &I
);
3402 if (SrcVec
&& DstVec
)
3403 Check(cast
<VectorType
>(SrcTy
)->getElementCount() ==
3404 cast
<VectorType
>(DestTy
)->getElementCount(),
3405 "FPToUI source and dest vector length mismatch", &I
);
3407 visitInstruction(I
);
3410 void Verifier::visitFPToSIInst(FPToSIInst
&I
) {
3411 // Get the source and destination types
3412 Type
*SrcTy
= I
.getOperand(0)->getType();
3413 Type
*DestTy
= I
.getType();
3415 bool SrcVec
= SrcTy
->isVectorTy();
3416 bool DstVec
= DestTy
->isVectorTy();
3418 Check(SrcVec
== DstVec
,
3419 "FPToSI source and dest must both be vector or scalar", &I
);
3420 Check(SrcTy
->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I
);
3421 Check(DestTy
->isIntOrIntVectorTy(),
3422 "FPToSI result must be integer or integer vector", &I
);
3424 if (SrcVec
&& DstVec
)
3425 Check(cast
<VectorType
>(SrcTy
)->getElementCount() ==
3426 cast
<VectorType
>(DestTy
)->getElementCount(),
3427 "FPToSI source and dest vector length mismatch", &I
);
3429 visitInstruction(I
);
3432 void Verifier::visitPtrToIntInst(PtrToIntInst
&I
) {
3433 // Get the source and destination types
3434 Type
*SrcTy
= I
.getOperand(0)->getType();
3435 Type
*DestTy
= I
.getType();
3437 Check(SrcTy
->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I
);
3439 Check(DestTy
->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I
);
3440 Check(SrcTy
->isVectorTy() == DestTy
->isVectorTy(), "PtrToInt type mismatch",
3443 if (SrcTy
->isVectorTy()) {
3444 auto *VSrc
= cast
<VectorType
>(SrcTy
);
3445 auto *VDest
= cast
<VectorType
>(DestTy
);
3446 Check(VSrc
->getElementCount() == VDest
->getElementCount(),
3447 "PtrToInt Vector width mismatch", &I
);
3450 visitInstruction(I
);
3453 void Verifier::visitIntToPtrInst(IntToPtrInst
&I
) {
3454 // Get the source and destination types
3455 Type
*SrcTy
= I
.getOperand(0)->getType();
3456 Type
*DestTy
= I
.getType();
3458 Check(SrcTy
->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I
);
3459 Check(DestTy
->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I
);
3461 Check(SrcTy
->isVectorTy() == DestTy
->isVectorTy(), "IntToPtr type mismatch",
3463 if (SrcTy
->isVectorTy()) {
3464 auto *VSrc
= cast
<VectorType
>(SrcTy
);
3465 auto *VDest
= cast
<VectorType
>(DestTy
);
3466 Check(VSrc
->getElementCount() == VDest
->getElementCount(),
3467 "IntToPtr Vector width mismatch", &I
);
3469 visitInstruction(I
);
3472 void Verifier::visitBitCastInst(BitCastInst
&I
) {
3474 CastInst::castIsValid(Instruction::BitCast
, I
.getOperand(0), I
.getType()),
3475 "Invalid bitcast", &I
);
3476 visitInstruction(I
);
3479 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst
&I
) {
3480 Type
*SrcTy
= I
.getOperand(0)->getType();
3481 Type
*DestTy
= I
.getType();
3483 Check(SrcTy
->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3485 Check(DestTy
->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3487 Check(SrcTy
->getPointerAddressSpace() != DestTy
->getPointerAddressSpace(),
3488 "AddrSpaceCast must be between different address spaces", &I
);
3489 if (auto *SrcVTy
= dyn_cast
<VectorType
>(SrcTy
))
3490 Check(SrcVTy
->getElementCount() ==
3491 cast
<VectorType
>(DestTy
)->getElementCount(),
3492 "AddrSpaceCast vector pointer number of elements mismatch", &I
);
3493 visitInstruction(I
);
3496 /// visitPHINode - Ensure that a PHI node is well formed.
3498 void Verifier::visitPHINode(PHINode
&PN
) {
3499 // Ensure that the PHI nodes are all grouped together at the top of the block.
3500 // This can be tested by checking whether the instruction before this is
3501 // either nonexistent (because this is begin()) or is a PHI node. If not,
3502 // then there is some other instruction before a PHI.
3503 Check(&PN
== &PN
.getParent()->front() ||
3504 isa
<PHINode
>(--BasicBlock::iterator(&PN
)),
3505 "PHI nodes not grouped at top of basic block!", &PN
, PN
.getParent());
3507 // Check that a PHI doesn't yield a Token.
3508 Check(!PN
.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3510 // Check that all of the values of the PHI node have the same type as the
3512 for (Value
*IncValue
: PN
.incoming_values()) {
3513 Check(PN
.getType() == IncValue
->getType(),
3514 "PHI node operands are not the same type as the result!", &PN
);
3517 // All other PHI node constraints are checked in the visitBasicBlock method.
3519 visitInstruction(PN
);
3522 void Verifier::visitCallBase(CallBase
&Call
) {
3523 Check(Call
.getCalledOperand()->getType()->isPointerTy(),
3524 "Called function must be a pointer!", Call
);
3525 FunctionType
*FTy
= Call
.getFunctionType();
3527 // Verify that the correct number of arguments are being passed
3528 if (FTy
->isVarArg())
3529 Check(Call
.arg_size() >= FTy
->getNumParams(),
3530 "Called function requires more parameters than were provided!", Call
);
3532 Check(Call
.arg_size() == FTy
->getNumParams(),
3533 "Incorrect number of arguments passed to called function!", Call
);
3535 // Verify that all arguments to the call match the function type.
3536 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
3537 Check(Call
.getArgOperand(i
)->getType() == FTy
->getParamType(i
),
3538 "Call parameter type does not match function signature!",
3539 Call
.getArgOperand(i
), FTy
->getParamType(i
), Call
);
3541 AttributeList Attrs
= Call
.getAttributes();
3543 Check(verifyAttributeCount(Attrs
, Call
.arg_size()),
3544 "Attribute after last parameter!", Call
);
3547 dyn_cast
<Function
>(Call
.getCalledOperand()->stripPointerCasts());
3548 bool IsIntrinsic
= Callee
&& Callee
->isIntrinsic();
3550 Check(Callee
->getValueType() == FTy
,
3551 "Intrinsic called with incompatible signature", Call
);
3553 // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling
3555 auto CC
= Call
.getCallingConv();
3556 Check(CC
!= CallingConv::AMDGPU_CS_Chain
&&
3557 CC
!= CallingConv::AMDGPU_CS_ChainPreserve
,
3558 "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions "
3559 "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.",
3562 // Disallow passing/returning values with alignment higher than we can
3564 // FIXME: Consider making DataLayout cap the alignment, so this isn't
3566 auto VerifyTypeAlign
= [&](Type
*Ty
, const Twine
&Message
) {
3569 Align ABIAlign
= DL
.getABITypeAlign(Ty
);
3570 Check(ABIAlign
.value() <= Value::MaximumAlignment
,
3571 "Incorrect alignment of " + Message
+ " to called function!", Call
);
3575 VerifyTypeAlign(FTy
->getReturnType(), "return type");
3576 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
) {
3577 Type
*Ty
= FTy
->getParamType(i
);
3578 VerifyTypeAlign(Ty
, "argument passed");
3582 if (Attrs
.hasFnAttr(Attribute::Speculatable
)) {
3583 // Don't allow speculatable on call sites, unless the underlying function
3584 // declaration is also speculatable.
3585 Check(Callee
&& Callee
->isSpeculatable(),
3586 "speculatable attribute may not apply to call sites", Call
);
3589 if (Attrs
.hasFnAttr(Attribute::Preallocated
)) {
3590 Check(Call
.getCalledFunction()->getIntrinsicID() ==
3591 Intrinsic::call_preallocated_arg
,
3592 "preallocated as a call site attribute can only be on "
3593 "llvm.call.preallocated.arg");
3596 // Verify call attributes.
3597 verifyFunctionAttrs(FTy
, Attrs
, &Call
, IsIntrinsic
, Call
.isInlineAsm());
3599 // Conservatively check the inalloca argument.
3600 // We have a bug if we can find that there is an underlying alloca without
3602 if (Call
.hasInAllocaArgument()) {
3603 Value
*InAllocaArg
= Call
.getArgOperand(FTy
->getNumParams() - 1);
3604 if (auto AI
= dyn_cast
<AllocaInst
>(InAllocaArg
->stripInBoundsOffsets()))
3605 Check(AI
->isUsedWithInAlloca(),
3606 "inalloca argument for call has mismatched alloca", AI
, Call
);
3609 // For each argument of the callsite, if it has the swifterror argument,
3610 // make sure the underlying alloca/parameter it comes from has a swifterror as
3612 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
) {
3613 if (Call
.paramHasAttr(i
, Attribute::SwiftError
)) {
3614 Value
*SwiftErrorArg
= Call
.getArgOperand(i
);
3615 if (auto AI
= dyn_cast
<AllocaInst
>(SwiftErrorArg
->stripInBoundsOffsets())) {
3616 Check(AI
->isSwiftError(),
3617 "swifterror argument for call has mismatched alloca", AI
, Call
);
3620 auto ArgI
= dyn_cast
<Argument
>(SwiftErrorArg
);
3621 Check(ArgI
, "swifterror argument should come from an alloca or parameter",
3622 SwiftErrorArg
, Call
);
3623 Check(ArgI
->hasSwiftErrorAttr(),
3624 "swifterror argument for call has mismatched parameter", ArgI
,
3628 if (Attrs
.hasParamAttr(i
, Attribute::ImmArg
)) {
3629 // Don't allow immarg on call sites, unless the underlying declaration
3630 // also has the matching immarg.
3631 Check(Callee
&& Callee
->hasParamAttribute(i
, Attribute::ImmArg
),
3632 "immarg may not apply only to call sites", Call
.getArgOperand(i
),
3636 if (Call
.paramHasAttr(i
, Attribute::ImmArg
)) {
3637 Value
*ArgVal
= Call
.getArgOperand(i
);
3638 Check(isa
<ConstantInt
>(ArgVal
) || isa
<ConstantFP
>(ArgVal
),
3639 "immarg operand has non-immediate parameter", ArgVal
, Call
);
3642 if (Call
.paramHasAttr(i
, Attribute::Preallocated
)) {
3643 Value
*ArgVal
= Call
.getArgOperand(i
);
3645 Call
.countOperandBundlesOfType(LLVMContext::OB_preallocated
) != 0;
3646 bool isMustTail
= Call
.isMustTailCall();
3647 Check(hasOB
!= isMustTail
,
3648 "preallocated operand either requires a preallocated bundle or "
3649 "the call to be musttail (but not both)",
3654 if (FTy
->isVarArg()) {
3655 // FIXME? is 'nest' even legal here?
3656 bool SawNest
= false;
3657 bool SawReturned
= false;
3659 for (unsigned Idx
= 0; Idx
< FTy
->getNumParams(); ++Idx
) {
3660 if (Attrs
.hasParamAttr(Idx
, Attribute::Nest
))
3662 if (Attrs
.hasParamAttr(Idx
, Attribute::Returned
))
3666 // Check attributes on the varargs part.
3667 for (unsigned Idx
= FTy
->getNumParams(); Idx
< Call
.arg_size(); ++Idx
) {
3668 Type
*Ty
= Call
.getArgOperand(Idx
)->getType();
3669 AttributeSet ArgAttrs
= Attrs
.getParamAttrs(Idx
);
3670 verifyParameterAttrs(ArgAttrs
, Ty
, &Call
);
3672 if (ArgAttrs
.hasAttribute(Attribute::Nest
)) {
3673 Check(!SawNest
, "More than one parameter has attribute nest!", Call
);
3677 if (ArgAttrs
.hasAttribute(Attribute::Returned
)) {
3678 Check(!SawReturned
, "More than one parameter has attribute returned!",
3680 Check(Ty
->canLosslesslyBitCastTo(FTy
->getReturnType()),
3681 "Incompatible argument and return types for 'returned' "
3687 // Statepoint intrinsic is vararg but the wrapped function may be not.
3688 // Allow sret here and check the wrapped function in verifyStatepoint.
3689 if (!Call
.getCalledFunction() ||
3690 Call
.getCalledFunction()->getIntrinsicID() !=
3691 Intrinsic::experimental_gc_statepoint
)
3692 Check(!ArgAttrs
.hasAttribute(Attribute::StructRet
),
3693 "Attribute 'sret' cannot be used for vararg call arguments!",
3696 if (ArgAttrs
.hasAttribute(Attribute::InAlloca
))
3697 Check(Idx
== Call
.arg_size() - 1,
3698 "inalloca isn't on the last argument!", Call
);
3702 // Verify that there's no metadata unless it's a direct call to an intrinsic.
3704 for (Type
*ParamTy
: FTy
->params()) {
3705 Check(!ParamTy
->isMetadataTy(),
3706 "Function has metadata parameter but isn't an intrinsic", Call
);
3707 Check(!ParamTy
->isTokenTy(),
3708 "Function has token parameter but isn't an intrinsic", Call
);
3712 // Verify that indirect calls don't return tokens.
3713 if (!Call
.getCalledFunction()) {
3714 Check(!FTy
->getReturnType()->isTokenTy(),
3715 "Return type cannot be token for indirect call!");
3716 Check(!FTy
->getReturnType()->isX86_AMXTy(),
3717 "Return type cannot be x86_amx for indirect call!");
3720 if (Function
*F
= Call
.getCalledFunction())
3721 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
3722 visitIntrinsicCall(ID
, Call
);
3724 // Verify that a callsite has at most one "deopt", at most one "funclet", at
3725 // most one "gc-transition", at most one "cfguardtarget", at most one
3726 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3727 bool FoundDeoptBundle
= false, FoundFuncletBundle
= false,
3728 FoundGCTransitionBundle
= false, FoundCFGuardTargetBundle
= false,
3729 FoundPreallocatedBundle
= false, FoundGCLiveBundle
= false,
3730 FoundPtrauthBundle
= false, FoundKCFIBundle
= false,
3731 FoundAttachedCallBundle
= false;
3732 for (unsigned i
= 0, e
= Call
.getNumOperandBundles(); i
< e
; ++i
) {
3733 OperandBundleUse BU
= Call
.getOperandBundleAt(i
);
3734 uint32_t Tag
= BU
.getTagID();
3735 if (Tag
== LLVMContext::OB_deopt
) {
3736 Check(!FoundDeoptBundle
, "Multiple deopt operand bundles", Call
);
3737 FoundDeoptBundle
= true;
3738 } else if (Tag
== LLVMContext::OB_gc_transition
) {
3739 Check(!FoundGCTransitionBundle
, "Multiple gc-transition operand bundles",
3741 FoundGCTransitionBundle
= true;
3742 } else if (Tag
== LLVMContext::OB_funclet
) {
3743 Check(!FoundFuncletBundle
, "Multiple funclet operand bundles", Call
);
3744 FoundFuncletBundle
= true;
3745 Check(BU
.Inputs
.size() == 1,
3746 "Expected exactly one funclet bundle operand", Call
);
3747 Check(isa
<FuncletPadInst
>(BU
.Inputs
.front()),
3748 "Funclet bundle operands should correspond to a FuncletPadInst",
3750 } else if (Tag
== LLVMContext::OB_cfguardtarget
) {
3751 Check(!FoundCFGuardTargetBundle
, "Multiple CFGuardTarget operand bundles",
3753 FoundCFGuardTargetBundle
= true;
3754 Check(BU
.Inputs
.size() == 1,
3755 "Expected exactly one cfguardtarget bundle operand", Call
);
3756 } else if (Tag
== LLVMContext::OB_ptrauth
) {
3757 Check(!FoundPtrauthBundle
, "Multiple ptrauth operand bundles", Call
);
3758 FoundPtrauthBundle
= true;
3759 Check(BU
.Inputs
.size() == 2,
3760 "Expected exactly two ptrauth bundle operands", Call
);
3761 Check(isa
<ConstantInt
>(BU
.Inputs
[0]) &&
3762 BU
.Inputs
[0]->getType()->isIntegerTy(32),
3763 "Ptrauth bundle key operand must be an i32 constant", Call
);
3764 Check(BU
.Inputs
[1]->getType()->isIntegerTy(64),
3765 "Ptrauth bundle discriminator operand must be an i64", Call
);
3766 } else if (Tag
== LLVMContext::OB_kcfi
) {
3767 Check(!FoundKCFIBundle
, "Multiple kcfi operand bundles", Call
);
3768 FoundKCFIBundle
= true;
3769 Check(BU
.Inputs
.size() == 1, "Expected exactly one kcfi bundle operand",
3771 Check(isa
<ConstantInt
>(BU
.Inputs
[0]) &&
3772 BU
.Inputs
[0]->getType()->isIntegerTy(32),
3773 "Kcfi bundle operand must be an i32 constant", Call
);
3774 } else if (Tag
== LLVMContext::OB_preallocated
) {
3775 Check(!FoundPreallocatedBundle
, "Multiple preallocated operand bundles",
3777 FoundPreallocatedBundle
= true;
3778 Check(BU
.Inputs
.size() == 1,
3779 "Expected exactly one preallocated bundle operand", Call
);
3780 auto Input
= dyn_cast
<IntrinsicInst
>(BU
.Inputs
.front());
3782 Input
->getIntrinsicID() == Intrinsic::call_preallocated_setup
,
3783 "\"preallocated\" argument must be a token from "
3784 "llvm.call.preallocated.setup",
3786 } else if (Tag
== LLVMContext::OB_gc_live
) {
3787 Check(!FoundGCLiveBundle
, "Multiple gc-live operand bundles", Call
);
3788 FoundGCLiveBundle
= true;
3789 } else if (Tag
== LLVMContext::OB_clang_arc_attachedcall
) {
3790 Check(!FoundAttachedCallBundle
,
3791 "Multiple \"clang.arc.attachedcall\" operand bundles", Call
);
3792 FoundAttachedCallBundle
= true;
3793 verifyAttachedCallBundle(Call
, BU
);
3797 // Verify that callee and callsite agree on whether to use pointer auth.
3798 Check(!(Call
.getCalledFunction() && FoundPtrauthBundle
),
3799 "Direct call cannot have a ptrauth bundle", Call
);
3801 // Verify that each inlinable callsite of a debug-info-bearing function in a
3802 // debug-info-bearing function has a debug location attached to it. Failure to
3803 // do so causes assertion failures when the inliner sets up inline scope info
3804 // (Interposable functions are not inlinable, neither are functions without
3806 if (Call
.getFunction()->getSubprogram() && Call
.getCalledFunction() &&
3807 !Call
.getCalledFunction()->isInterposable() &&
3808 !Call
.getCalledFunction()->isDeclaration() &&
3809 Call
.getCalledFunction()->getSubprogram())
3810 CheckDI(Call
.getDebugLoc(),
3811 "inlinable function call in a function with "
3812 "debug info must have a !dbg location",
3815 if (Call
.isInlineAsm())
3816 verifyInlineAsmCall(Call
);
3818 ConvergenceVerifyHelper
.visit(Call
);
3820 visitInstruction(Call
);
3823 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder
&Attrs
,
3824 StringRef Context
) {
3825 Check(!Attrs
.contains(Attribute::InAlloca
),
3826 Twine("inalloca attribute not allowed in ") + Context
);
3827 Check(!Attrs
.contains(Attribute::InReg
),
3828 Twine("inreg attribute not allowed in ") + Context
);
3829 Check(!Attrs
.contains(Attribute::SwiftError
),
3830 Twine("swifterror attribute not allowed in ") + Context
);
3831 Check(!Attrs
.contains(Attribute::Preallocated
),
3832 Twine("preallocated attribute not allowed in ") + Context
);
3833 Check(!Attrs
.contains(Attribute::ByRef
),
3834 Twine("byref attribute not allowed in ") + Context
);
3837 /// Two types are "congruent" if they are identical, or if they are both pointer
3838 /// types with different pointee types and the same address space.
3839 static bool isTypeCongruent(Type
*L
, Type
*R
) {
3842 PointerType
*PL
= dyn_cast
<PointerType
>(L
);
3843 PointerType
*PR
= dyn_cast
<PointerType
>(R
);
3846 return PL
->getAddressSpace() == PR
->getAddressSpace();
3849 static AttrBuilder
getParameterABIAttributes(LLVMContext
& C
, unsigned I
, AttributeList Attrs
) {
3850 static const Attribute::AttrKind ABIAttrs
[] = {
3851 Attribute::StructRet
, Attribute::ByVal
, Attribute::InAlloca
,
3852 Attribute::InReg
, Attribute::StackAlignment
, Attribute::SwiftSelf
,
3853 Attribute::SwiftAsync
, Attribute::SwiftError
, Attribute::Preallocated
,
3855 AttrBuilder
Copy(C
);
3856 for (auto AK
: ABIAttrs
) {
3857 Attribute Attr
= Attrs
.getParamAttrs(I
).getAttribute(AK
);
3859 Copy
.addAttribute(Attr
);
3862 // `align` is ABI-affecting only in combination with `byval` or `byref`.
3863 if (Attrs
.hasParamAttr(I
, Attribute::Alignment
) &&
3864 (Attrs
.hasParamAttr(I
, Attribute::ByVal
) ||
3865 Attrs
.hasParamAttr(I
, Attribute::ByRef
)))
3866 Copy
.addAlignmentAttr(Attrs
.getParamAlignment(I
));
3870 void Verifier::verifyMustTailCall(CallInst
&CI
) {
3871 Check(!CI
.isInlineAsm(), "cannot use musttail call with inline asm", &CI
);
3873 Function
*F
= CI
.getParent()->getParent();
3874 FunctionType
*CallerTy
= F
->getFunctionType();
3875 FunctionType
*CalleeTy
= CI
.getFunctionType();
3876 Check(CallerTy
->isVarArg() == CalleeTy
->isVarArg(),
3877 "cannot guarantee tail call due to mismatched varargs", &CI
);
3878 Check(isTypeCongruent(CallerTy
->getReturnType(), CalleeTy
->getReturnType()),
3879 "cannot guarantee tail call due to mismatched return types", &CI
);
3881 // - The calling conventions of the caller and callee must match.
3882 Check(F
->getCallingConv() == CI
.getCallingConv(),
3883 "cannot guarantee tail call due to mismatched calling conv", &CI
);
3885 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3886 // or a pointer bitcast followed by a ret instruction.
3887 // - The ret instruction must return the (possibly bitcasted) value
3888 // produced by the call or void.
3889 Value
*RetVal
= &CI
;
3890 Instruction
*Next
= CI
.getNextNode();
3892 // Handle the optional bitcast.
3893 if (BitCastInst
*BI
= dyn_cast_or_null
<BitCastInst
>(Next
)) {
3894 Check(BI
->getOperand(0) == RetVal
,
3895 "bitcast following musttail call must use the call", BI
);
3897 Next
= BI
->getNextNode();
3900 // Check the return.
3901 ReturnInst
*Ret
= dyn_cast_or_null
<ReturnInst
>(Next
);
3902 Check(Ret
, "musttail call must precede a ret with an optional bitcast", &CI
);
3903 Check(!Ret
->getReturnValue() || Ret
->getReturnValue() == RetVal
||
3904 isa
<UndefValue
>(Ret
->getReturnValue()),
3905 "musttail call result must be returned", Ret
);
3907 AttributeList CallerAttrs
= F
->getAttributes();
3908 AttributeList CalleeAttrs
= CI
.getAttributes();
3909 if (CI
.getCallingConv() == CallingConv::SwiftTail
||
3910 CI
.getCallingConv() == CallingConv::Tail
) {
3912 CI
.getCallingConv() == CallingConv::Tail
? "tailcc" : "swifttailcc";
3914 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3915 // are allowed in swifttailcc call
3916 for (unsigned I
= 0, E
= CallerTy
->getNumParams(); I
!= E
; ++I
) {
3917 AttrBuilder ABIAttrs
= getParameterABIAttributes(F
->getContext(), I
, CallerAttrs
);
3918 SmallString
<32> Context
{CCName
, StringRef(" musttail caller")};
3919 verifyTailCCMustTailAttrs(ABIAttrs
, Context
);
3921 for (unsigned I
= 0, E
= CalleeTy
->getNumParams(); I
!= E
; ++I
) {
3922 AttrBuilder ABIAttrs
= getParameterABIAttributes(F
->getContext(), I
, CalleeAttrs
);
3923 SmallString
<32> Context
{CCName
, StringRef(" musttail callee")};
3924 verifyTailCCMustTailAttrs(ABIAttrs
, Context
);
3926 // - Varargs functions are not allowed
3927 Check(!CallerTy
->isVarArg(), Twine("cannot guarantee ") + CCName
+
3928 " tail call for varargs function");
3932 // - The caller and callee prototypes must match. Pointer types of
3933 // parameters or return types may differ in pointee type, but not
3935 if (!CI
.getCalledFunction() || !CI
.getCalledFunction()->isIntrinsic()) {
3936 Check(CallerTy
->getNumParams() == CalleeTy
->getNumParams(),
3937 "cannot guarantee tail call due to mismatched parameter counts", &CI
);
3938 for (unsigned I
= 0, E
= CallerTy
->getNumParams(); I
!= E
; ++I
) {
3940 isTypeCongruent(CallerTy
->getParamType(I
), CalleeTy
->getParamType(I
)),
3941 "cannot guarantee tail call due to mismatched parameter types", &CI
);
3945 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3946 // returned, preallocated, and inalloca, must match.
3947 for (unsigned I
= 0, E
= CallerTy
->getNumParams(); I
!= E
; ++I
) {
3948 AttrBuilder CallerABIAttrs
= getParameterABIAttributes(F
->getContext(), I
, CallerAttrs
);
3949 AttrBuilder CalleeABIAttrs
= getParameterABIAttributes(F
->getContext(), I
, CalleeAttrs
);
3950 Check(CallerABIAttrs
== CalleeABIAttrs
,
3951 "cannot guarantee tail call due to mismatched ABI impacting "
3952 "function attributes",
3953 &CI
, CI
.getOperand(I
));
3957 void Verifier::visitCallInst(CallInst
&CI
) {
3960 if (CI
.isMustTailCall())
3961 verifyMustTailCall(CI
);
3964 void Verifier::visitInvokeInst(InvokeInst
&II
) {
3967 // Verify that the first non-PHI instruction of the unwind destination is an
3968 // exception handling instruction.
3970 II
.getUnwindDest()->isEHPad(),
3971 "The unwind destination does not have an exception handling instruction!",
3974 visitTerminator(II
);
3977 /// visitUnaryOperator - Check the argument to the unary operator.
3979 void Verifier::visitUnaryOperator(UnaryOperator
&U
) {
3980 Check(U
.getType() == U
.getOperand(0)->getType(),
3981 "Unary operators must have same type for"
3982 "operands and result!",
3985 switch (U
.getOpcode()) {
3986 // Check that floating-point arithmetic operators are only used with
3987 // floating-point operands.
3988 case Instruction::FNeg
:
3989 Check(U
.getType()->isFPOrFPVectorTy(),
3990 "FNeg operator only works with float types!", &U
);
3993 llvm_unreachable("Unknown UnaryOperator opcode!");
3996 visitInstruction(U
);
3999 /// visitBinaryOperator - Check that both arguments to the binary operator are
4000 /// of the same type!
4002 void Verifier::visitBinaryOperator(BinaryOperator
&B
) {
4003 Check(B
.getOperand(0)->getType() == B
.getOperand(1)->getType(),
4004 "Both operands to a binary operator are not of the same type!", &B
);
4006 switch (B
.getOpcode()) {
4007 // Check that integer arithmetic operators are only used with
4008 // integral operands.
4009 case Instruction::Add
:
4010 case Instruction::Sub
:
4011 case Instruction::Mul
:
4012 case Instruction::SDiv
:
4013 case Instruction::UDiv
:
4014 case Instruction::SRem
:
4015 case Instruction::URem
:
4016 Check(B
.getType()->isIntOrIntVectorTy(),
4017 "Integer arithmetic operators only work with integral types!", &B
);
4018 Check(B
.getType() == B
.getOperand(0)->getType(),
4019 "Integer arithmetic operators must have same type "
4020 "for operands and result!",
4023 // Check that floating-point arithmetic operators are only used with
4024 // floating-point operands.
4025 case Instruction::FAdd
:
4026 case Instruction::FSub
:
4027 case Instruction::FMul
:
4028 case Instruction::FDiv
:
4029 case Instruction::FRem
:
4030 Check(B
.getType()->isFPOrFPVectorTy(),
4031 "Floating-point arithmetic operators only work with "
4032 "floating-point types!",
4034 Check(B
.getType() == B
.getOperand(0)->getType(),
4035 "Floating-point arithmetic operators must have same type "
4036 "for operands and result!",
4039 // Check that logical operators are only used with integral operands.
4040 case Instruction::And
:
4041 case Instruction::Or
:
4042 case Instruction::Xor
:
4043 Check(B
.getType()->isIntOrIntVectorTy(),
4044 "Logical operators only work with integral types!", &B
);
4045 Check(B
.getType() == B
.getOperand(0)->getType(),
4046 "Logical operators must have same type for operands and result!", &B
);
4048 case Instruction::Shl
:
4049 case Instruction::LShr
:
4050 case Instruction::AShr
:
4051 Check(B
.getType()->isIntOrIntVectorTy(),
4052 "Shifts only work with integral types!", &B
);
4053 Check(B
.getType() == B
.getOperand(0)->getType(),
4054 "Shift return type must be same as operands!", &B
);
4057 llvm_unreachable("Unknown BinaryOperator opcode!");
4060 visitInstruction(B
);
4063 void Verifier::visitICmpInst(ICmpInst
&IC
) {
4064 // Check that the operands are the same type
4065 Type
*Op0Ty
= IC
.getOperand(0)->getType();
4066 Type
*Op1Ty
= IC
.getOperand(1)->getType();
4067 Check(Op0Ty
== Op1Ty
,
4068 "Both operands to ICmp instruction are not of the same type!", &IC
);
4069 // Check that the operands are the right type
4070 Check(Op0Ty
->isIntOrIntVectorTy() || Op0Ty
->isPtrOrPtrVectorTy(),
4071 "Invalid operand types for ICmp instruction", &IC
);
4072 // Check that the predicate is valid.
4073 Check(IC
.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC
);
4075 visitInstruction(IC
);
4078 void Verifier::visitFCmpInst(FCmpInst
&FC
) {
4079 // Check that the operands are the same type
4080 Type
*Op0Ty
= FC
.getOperand(0)->getType();
4081 Type
*Op1Ty
= FC
.getOperand(1)->getType();
4082 Check(Op0Ty
== Op1Ty
,
4083 "Both operands to FCmp instruction are not of the same type!", &FC
);
4084 // Check that the operands are the right type
4085 Check(Op0Ty
->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
4087 // Check that the predicate is valid.
4088 Check(FC
.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC
);
4090 visitInstruction(FC
);
4093 void Verifier::visitExtractElementInst(ExtractElementInst
&EI
) {
4094 Check(ExtractElementInst::isValidOperands(EI
.getOperand(0), EI
.getOperand(1)),
4095 "Invalid extractelement operands!", &EI
);
4096 visitInstruction(EI
);
4099 void Verifier::visitInsertElementInst(InsertElementInst
&IE
) {
4100 Check(InsertElementInst::isValidOperands(IE
.getOperand(0), IE
.getOperand(1),
4102 "Invalid insertelement operands!", &IE
);
4103 visitInstruction(IE
);
4106 void Verifier::visitShuffleVectorInst(ShuffleVectorInst
&SV
) {
4107 Check(ShuffleVectorInst::isValidOperands(SV
.getOperand(0), SV
.getOperand(1),
4108 SV
.getShuffleMask()),
4109 "Invalid shufflevector operands!", &SV
);
4110 visitInstruction(SV
);
4113 void Verifier::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
4114 Type
*TargetTy
= GEP
.getPointerOperandType()->getScalarType();
4116 Check(isa
<PointerType
>(TargetTy
),
4117 "GEP base pointer is not a vector or a vector of pointers", &GEP
);
4118 Check(GEP
.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP
);
4120 if (auto *STy
= dyn_cast
<StructType
>(GEP
.getSourceElementType())) {
4121 Check(!STy
->isScalableTy(),
4122 "getelementptr cannot target structure that contains scalable vector"
4127 SmallVector
<Value
*, 16> Idxs(GEP
.indices());
4129 all_of(Idxs
, [](Value
*V
) { return V
->getType()->isIntOrIntVectorTy(); }),
4130 "GEP indexes must be integers", &GEP
);
4132 GetElementPtrInst::getIndexedType(GEP
.getSourceElementType(), Idxs
);
4133 Check(ElTy
, "Invalid indices for GEP pointer type!", &GEP
);
4135 PointerType
*PtrTy
= dyn_cast
<PointerType
>(GEP
.getType()->getScalarType());
4137 Check(PtrTy
&& GEP
.getResultElementType() == ElTy
,
4138 "GEP is not of right type for indices!", &GEP
, ElTy
);
4140 if (auto *GEPVTy
= dyn_cast
<VectorType
>(GEP
.getType())) {
4141 // Additional checks for vector GEPs.
4142 ElementCount GEPWidth
= GEPVTy
->getElementCount();
4143 if (GEP
.getPointerOperandType()->isVectorTy())
4146 cast
<VectorType
>(GEP
.getPointerOperandType())->getElementCount(),
4147 "Vector GEP result width doesn't match operand's", &GEP
);
4148 for (Value
*Idx
: Idxs
) {
4149 Type
*IndexTy
= Idx
->getType();
4150 if (auto *IndexVTy
= dyn_cast
<VectorType
>(IndexTy
)) {
4151 ElementCount IndexWidth
= IndexVTy
->getElementCount();
4152 Check(IndexWidth
== GEPWidth
, "Invalid GEP index vector width", &GEP
);
4154 Check(IndexTy
->isIntOrIntVectorTy(),
4155 "All GEP indices should be of integer type");
4159 Check(GEP
.getAddressSpace() == PtrTy
->getAddressSpace(),
4160 "GEP address space doesn't match type", &GEP
);
4162 visitInstruction(GEP
);
4165 static bool isContiguous(const ConstantRange
&A
, const ConstantRange
&B
) {
4166 return A
.getUpper() == B
.getLower() || A
.getLower() == B
.getUpper();
4169 /// Verify !range and !absolute_symbol metadata. These have the same
4170 /// restrictions, except !absolute_symbol allows the full set.
4171 void Verifier::verifyRangeLikeMetadata(const Value
&I
, const MDNode
*Range
,
4172 Type
*Ty
, RangeLikeMetadataKind Kind
) {
4173 unsigned NumOperands
= Range
->getNumOperands();
4174 Check(NumOperands
% 2 == 0, "Unfinished range!", Range
);
4175 unsigned NumRanges
= NumOperands
/ 2;
4176 Check(NumRanges
>= 1, "It should have at least one range!", Range
);
4178 ConstantRange
LastRange(1, true); // Dummy initial value
4179 for (unsigned i
= 0; i
< NumRanges
; ++i
) {
4181 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(2 * i
));
4182 Check(Low
, "The lower limit must be an integer!", Low
);
4184 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(2 * i
+ 1));
4185 Check(High
, "The upper limit must be an integer!", High
);
4187 Check(High
->getType() == Low
->getType(), "Range pair types must match!",
4190 if (Kind
== RangeLikeMetadataKind::NoaliasAddrspace
) {
4191 Check(High
->getType()->isIntegerTy(32),
4192 "noalias.addrspace type must be i32!", &I
);
4194 Check(High
->getType() == Ty
->getScalarType(),
4195 "Range types must match instruction type!", &I
);
4198 APInt HighV
= High
->getValue();
4199 APInt LowV
= Low
->getValue();
4201 // ConstantRange asserts if the ranges are the same except for the min/max
4202 // value. Leave the cases it tolerates for the empty range error below.
4203 Check(LowV
!= HighV
|| LowV
.isMaxValue() || LowV
.isMinValue(),
4204 "The upper and lower limits cannot be the same value", &I
);
4206 ConstantRange
CurRange(LowV
, HighV
);
4207 Check(!CurRange
.isEmptySet() &&
4208 (Kind
== RangeLikeMetadataKind::AbsoluteSymbol
||
4209 !CurRange
.isFullSet()),
4210 "Range must not be empty!", Range
);
4212 Check(CurRange
.intersectWith(LastRange
).isEmptySet(),
4213 "Intervals are overlapping", Range
);
4214 Check(LowV
.sgt(LastRange
.getLower()), "Intervals are not in order",
4216 Check(!isContiguous(CurRange
, LastRange
), "Intervals are contiguous",
4219 LastRange
= ConstantRange(LowV
, HighV
);
4221 if (NumRanges
> 2) {
4223 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(0))->getValue();
4225 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(1))->getValue();
4226 ConstantRange
FirstRange(FirstLow
, FirstHigh
);
4227 Check(FirstRange
.intersectWith(LastRange
).isEmptySet(),
4228 "Intervals are overlapping", Range
);
4229 Check(!isContiguous(FirstRange
, LastRange
), "Intervals are contiguous",
4234 void Verifier::visitRangeMetadata(Instruction
&I
, MDNode
*Range
, Type
*Ty
) {
4235 assert(Range
&& Range
== I
.getMetadata(LLVMContext::MD_range
) &&
4236 "precondition violation");
4237 verifyRangeLikeMetadata(I
, Range
, Ty
, RangeLikeMetadataKind::Range
);
4240 void Verifier::visitNoaliasAddrspaceMetadata(Instruction
&I
, MDNode
*Range
,
4242 assert(Range
&& Range
== I
.getMetadata(LLVMContext::MD_noalias_addrspace
) &&
4243 "precondition violation");
4244 verifyRangeLikeMetadata(I
, Range
, Ty
,
4245 RangeLikeMetadataKind::NoaliasAddrspace
);
4248 void Verifier::checkAtomicMemAccessSize(Type
*Ty
, const Instruction
*I
) {
4249 unsigned Size
= DL
.getTypeSizeInBits(Ty
);
4250 Check(Size
>= 8, "atomic memory access' size must be byte-sized", Ty
, I
);
4251 Check(!(Size
& (Size
- 1)),
4252 "atomic memory access' operand must have a power-of-two size", Ty
, I
);
4255 void Verifier::visitLoadInst(LoadInst
&LI
) {
4256 PointerType
*PTy
= dyn_cast
<PointerType
>(LI
.getOperand(0)->getType());
4257 Check(PTy
, "Load operand must be a pointer.", &LI
);
4258 Type
*ElTy
= LI
.getType();
4259 if (MaybeAlign A
= LI
.getAlign()) {
4260 Check(A
->value() <= Value::MaximumAlignment
,
4261 "huge alignment values are unsupported", &LI
);
4263 Check(ElTy
->isSized(), "loading unsized types is not allowed", &LI
);
4264 if (LI
.isAtomic()) {
4265 Check(LI
.getOrdering() != AtomicOrdering::Release
&&
4266 LI
.getOrdering() != AtomicOrdering::AcquireRelease
,
4267 "Load cannot have Release ordering", &LI
);
4268 Check(ElTy
->isIntOrPtrTy() || ElTy
->isFloatingPointTy(),
4269 "atomic load operand must have integer, pointer, or floating point "
4272 checkAtomicMemAccessSize(ElTy
, &LI
);
4274 Check(LI
.getSyncScopeID() == SyncScope::System
,
4275 "Non-atomic load cannot have SynchronizationScope specified", &LI
);
4278 visitInstruction(LI
);
4281 void Verifier::visitStoreInst(StoreInst
&SI
) {
4282 PointerType
*PTy
= dyn_cast
<PointerType
>(SI
.getOperand(1)->getType());
4283 Check(PTy
, "Store operand must be a pointer.", &SI
);
4284 Type
*ElTy
= SI
.getOperand(0)->getType();
4285 if (MaybeAlign A
= SI
.getAlign()) {
4286 Check(A
->value() <= Value::MaximumAlignment
,
4287 "huge alignment values are unsupported", &SI
);
4289 Check(ElTy
->isSized(), "storing unsized types is not allowed", &SI
);
4290 if (SI
.isAtomic()) {
4291 Check(SI
.getOrdering() != AtomicOrdering::Acquire
&&
4292 SI
.getOrdering() != AtomicOrdering::AcquireRelease
,
4293 "Store cannot have Acquire ordering", &SI
);
4294 Check(ElTy
->isIntOrPtrTy() || ElTy
->isFloatingPointTy(),
4295 "atomic store operand must have integer, pointer, or floating point "
4298 checkAtomicMemAccessSize(ElTy
, &SI
);
4300 Check(SI
.getSyncScopeID() == SyncScope::System
,
4301 "Non-atomic store cannot have SynchronizationScope specified", &SI
);
4303 visitInstruction(SI
);
4306 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
4307 void Verifier::verifySwiftErrorCall(CallBase
&Call
,
4308 const Value
*SwiftErrorVal
) {
4309 for (const auto &I
: llvm::enumerate(Call
.args())) {
4310 if (I
.value() == SwiftErrorVal
) {
4311 Check(Call
.paramHasAttr(I
.index(), Attribute::SwiftError
),
4312 "swifterror value when used in a callsite should be marked "
4313 "with swifterror attribute",
4314 SwiftErrorVal
, Call
);
4319 void Verifier::verifySwiftErrorValue(const Value
*SwiftErrorVal
) {
4320 // Check that swifterror value is only used by loads, stores, or as
4321 // a swifterror argument.
4322 for (const User
*U
: SwiftErrorVal
->users()) {
4323 Check(isa
<LoadInst
>(U
) || isa
<StoreInst
>(U
) || isa
<CallInst
>(U
) ||
4325 "swifterror value can only be loaded and stored from, or "
4326 "as a swifterror argument!",
4328 // If it is used by a store, check it is the second operand.
4329 if (auto StoreI
= dyn_cast
<StoreInst
>(U
))
4330 Check(StoreI
->getOperand(1) == SwiftErrorVal
,
4331 "swifterror value should be the second operand when used "
4334 if (auto *Call
= dyn_cast
<CallBase
>(U
))
4335 verifySwiftErrorCall(*const_cast<CallBase
*>(Call
), SwiftErrorVal
);
4339 void Verifier::visitAllocaInst(AllocaInst
&AI
) {
4340 Type
*Ty
= AI
.getAllocatedType();
4341 SmallPtrSet
<Type
*, 4> Visited
;
4342 Check(Ty
->isSized(&Visited
), "Cannot allocate unsized type", &AI
);
4343 // Check if it's a target extension type that disallows being used on the
4345 Check(!Ty
->containsNonLocalTargetExtType(),
4346 "Alloca has illegal target extension type", &AI
);
4347 Check(AI
.getArraySize()->getType()->isIntegerTy(),
4348 "Alloca array size must have integer type", &AI
);
4349 if (MaybeAlign A
= AI
.getAlign()) {
4350 Check(A
->value() <= Value::MaximumAlignment
,
4351 "huge alignment values are unsupported", &AI
);
4354 if (AI
.isSwiftError()) {
4355 Check(Ty
->isPointerTy(), "swifterror alloca must have pointer type", &AI
);
4356 Check(!AI
.isArrayAllocation(),
4357 "swifterror alloca must not be array allocation", &AI
);
4358 verifySwiftErrorValue(&AI
);
4361 visitInstruction(AI
);
4364 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst
&CXI
) {
4365 Type
*ElTy
= CXI
.getOperand(1)->getType();
4366 Check(ElTy
->isIntOrPtrTy(),
4367 "cmpxchg operand must have integer or pointer type", ElTy
, &CXI
);
4368 checkAtomicMemAccessSize(ElTy
, &CXI
);
4369 visitInstruction(CXI
);
4372 void Verifier::visitAtomicRMWInst(AtomicRMWInst
&RMWI
) {
4373 Check(RMWI
.getOrdering() != AtomicOrdering::Unordered
,
4374 "atomicrmw instructions cannot be unordered.", &RMWI
);
4375 auto Op
= RMWI
.getOperation();
4376 Type
*ElTy
= RMWI
.getOperand(1)->getType();
4377 if (Op
== AtomicRMWInst::Xchg
) {
4378 Check(ElTy
->isIntegerTy() || ElTy
->isFloatingPointTy() ||
4379 ElTy
->isPointerTy(),
4380 "atomicrmw " + AtomicRMWInst::getOperationName(Op
) +
4381 " operand must have integer or floating point type!",
4383 } else if (AtomicRMWInst::isFPOperation(Op
)) {
4384 Check(ElTy
->isFPOrFPVectorTy() && !isa
<ScalableVectorType
>(ElTy
),
4385 "atomicrmw " + AtomicRMWInst::getOperationName(Op
) +
4386 " operand must have floating-point or fixed vector of floating-point "
4390 Check(ElTy
->isIntegerTy(),
4391 "atomicrmw " + AtomicRMWInst::getOperationName(Op
) +
4392 " operand must have integer type!",
4395 checkAtomicMemAccessSize(ElTy
, &RMWI
);
4396 Check(AtomicRMWInst::FIRST_BINOP
<= Op
&& Op
<= AtomicRMWInst::LAST_BINOP
,
4397 "Invalid binary operation!", &RMWI
);
4398 visitInstruction(RMWI
);
4401 void Verifier::visitFenceInst(FenceInst
&FI
) {
4402 const AtomicOrdering Ordering
= FI
.getOrdering();
4403 Check(Ordering
== AtomicOrdering::Acquire
||
4404 Ordering
== AtomicOrdering::Release
||
4405 Ordering
== AtomicOrdering::AcquireRelease
||
4406 Ordering
== AtomicOrdering::SequentiallyConsistent
,
4407 "fence instructions may only have acquire, release, acq_rel, or "
4408 "seq_cst ordering.",
4410 visitInstruction(FI
);
4413 void Verifier::visitExtractValueInst(ExtractValueInst
&EVI
) {
4414 Check(ExtractValueInst::getIndexedType(EVI
.getAggregateOperand()->getType(),
4415 EVI
.getIndices()) == EVI
.getType(),
4416 "Invalid ExtractValueInst operands!", &EVI
);
4418 visitInstruction(EVI
);
4421 void Verifier::visitInsertValueInst(InsertValueInst
&IVI
) {
4422 Check(ExtractValueInst::getIndexedType(IVI
.getAggregateOperand()->getType(),
4423 IVI
.getIndices()) ==
4424 IVI
.getOperand(1)->getType(),
4425 "Invalid InsertValueInst operands!", &IVI
);
4427 visitInstruction(IVI
);
4430 static Value
*getParentPad(Value
*EHPad
) {
4431 if (auto *FPI
= dyn_cast
<FuncletPadInst
>(EHPad
))
4432 return FPI
->getParentPad();
4434 return cast
<CatchSwitchInst
>(EHPad
)->getParentPad();
4437 void Verifier::visitEHPadPredecessors(Instruction
&I
) {
4438 assert(I
.isEHPad());
4440 BasicBlock
*BB
= I
.getParent();
4441 Function
*F
= BB
->getParent();
4443 Check(BB
!= &F
->getEntryBlock(), "EH pad cannot be in entry block.", &I
);
4445 if (auto *LPI
= dyn_cast
<LandingPadInst
>(&I
)) {
4446 // The landingpad instruction defines its parent as a landing pad block. The
4447 // landing pad block may be branched to only by the unwind edge of an
4449 for (BasicBlock
*PredBB
: predecessors(BB
)) {
4450 const auto *II
= dyn_cast
<InvokeInst
>(PredBB
->getTerminator());
4451 Check(II
&& II
->getUnwindDest() == BB
&& II
->getNormalDest() != BB
,
4452 "Block containing LandingPadInst must be jumped to "
4453 "only by the unwind edge of an invoke.",
4458 if (auto *CPI
= dyn_cast
<CatchPadInst
>(&I
)) {
4459 if (!pred_empty(BB
))
4460 Check(BB
->getUniquePredecessor() == CPI
->getCatchSwitch()->getParent(),
4461 "Block containg CatchPadInst must be jumped to "
4462 "only by its catchswitch.",
4464 Check(BB
!= CPI
->getCatchSwitch()->getUnwindDest(),
4465 "Catchswitch cannot unwind to one of its catchpads",
4466 CPI
->getCatchSwitch(), CPI
);
4470 // Verify that each pred has a legal terminator with a legal to/from EH
4471 // pad relationship.
4472 Instruction
*ToPad
= &I
;
4473 Value
*ToPadParent
= getParentPad(ToPad
);
4474 for (BasicBlock
*PredBB
: predecessors(BB
)) {
4475 Instruction
*TI
= PredBB
->getTerminator();
4477 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
4478 Check(II
->getUnwindDest() == BB
&& II
->getNormalDest() != BB
,
4479 "EH pad must be jumped to via an unwind edge", ToPad
, II
);
4481 dyn_cast
<Function
>(II
->getCalledOperand()->stripPointerCasts());
4482 if (CalledFn
&& CalledFn
->isIntrinsic() && II
->doesNotThrow() &&
4483 !IntrinsicInst::mayLowerToFunctionCall(CalledFn
->getIntrinsicID()))
4485 if (auto Bundle
= II
->getOperandBundle(LLVMContext::OB_funclet
))
4486 FromPad
= Bundle
->Inputs
[0];
4488 FromPad
= ConstantTokenNone::get(II
->getContext());
4489 } else if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
)) {
4490 FromPad
= CRI
->getOperand(0);
4491 Check(FromPad
!= ToPadParent
, "A cleanupret must exit its cleanup", CRI
);
4492 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(TI
)) {
4495 Check(false, "EH pad must be jumped to via an unwind edge", ToPad
, TI
);
4498 // The edge may exit from zero or more nested pads.
4499 SmallSet
<Value
*, 8> Seen
;
4500 for (;; FromPad
= getParentPad(FromPad
)) {
4501 Check(FromPad
!= ToPad
,
4502 "EH pad cannot handle exceptions raised within it", FromPad
, TI
);
4503 if (FromPad
== ToPadParent
) {
4504 // This is a legal unwind edge.
4507 Check(!isa
<ConstantTokenNone
>(FromPad
),
4508 "A single unwind edge may only enter one EH pad", TI
);
4509 Check(Seen
.insert(FromPad
).second
, "EH pad jumps through a cycle of pads",
4512 // This will be diagnosed on the corresponding instruction already. We
4513 // need the extra check here to make sure getParentPad() works.
4514 Check(isa
<FuncletPadInst
>(FromPad
) || isa
<CatchSwitchInst
>(FromPad
),
4515 "Parent pad must be catchpad/cleanuppad/catchswitch", TI
);
4520 void Verifier::visitLandingPadInst(LandingPadInst
&LPI
) {
4521 // The landingpad instruction is ill-formed if it doesn't have any clauses and
4523 Check(LPI
.getNumClauses() > 0 || LPI
.isCleanup(),
4524 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI
);
4526 visitEHPadPredecessors(LPI
);
4528 if (!LandingPadResultTy
)
4529 LandingPadResultTy
= LPI
.getType();
4531 Check(LandingPadResultTy
== LPI
.getType(),
4532 "The landingpad instruction should have a consistent result type "
4533 "inside a function.",
4536 Function
*F
= LPI
.getParent()->getParent();
4537 Check(F
->hasPersonalityFn(),
4538 "LandingPadInst needs to be in a function with a personality.", &LPI
);
4540 // The landingpad instruction must be the first non-PHI instruction in the
4542 Check(LPI
.getParent()->getLandingPadInst() == &LPI
,
4543 "LandingPadInst not the first non-PHI instruction in the block.", &LPI
);
4545 for (unsigned i
= 0, e
= LPI
.getNumClauses(); i
< e
; ++i
) {
4546 Constant
*Clause
= LPI
.getClause(i
);
4547 if (LPI
.isCatch(i
)) {
4548 Check(isa
<PointerType
>(Clause
->getType()),
4549 "Catch operand does not have pointer type!", &LPI
);
4551 Check(LPI
.isFilter(i
), "Clause is neither catch nor filter!", &LPI
);
4552 Check(isa
<ConstantArray
>(Clause
) || isa
<ConstantAggregateZero
>(Clause
),
4553 "Filter operand is not an array of constants!", &LPI
);
4557 visitInstruction(LPI
);
4560 void Verifier::visitResumeInst(ResumeInst
&RI
) {
4561 Check(RI
.getFunction()->hasPersonalityFn(),
4562 "ResumeInst needs to be in a function with a personality.", &RI
);
4564 if (!LandingPadResultTy
)
4565 LandingPadResultTy
= RI
.getValue()->getType();
4567 Check(LandingPadResultTy
== RI
.getValue()->getType(),
4568 "The resume instruction should have a consistent result type "
4569 "inside a function.",
4572 visitTerminator(RI
);
4575 void Verifier::visitCatchPadInst(CatchPadInst
&CPI
) {
4576 BasicBlock
*BB
= CPI
.getParent();
4578 Function
*F
= BB
->getParent();
4579 Check(F
->hasPersonalityFn(),
4580 "CatchPadInst needs to be in a function with a personality.", &CPI
);
4582 Check(isa
<CatchSwitchInst
>(CPI
.getParentPad()),
4583 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4584 CPI
.getParentPad());
4586 // The catchpad instruction must be the first non-PHI instruction in the
4588 Check(&*BB
->getFirstNonPHIIt() == &CPI
,
4589 "CatchPadInst not the first non-PHI instruction in the block.", &CPI
);
4591 visitEHPadPredecessors(CPI
);
4592 visitFuncletPadInst(CPI
);
4595 void Verifier::visitCatchReturnInst(CatchReturnInst
&CatchReturn
) {
4596 Check(isa
<CatchPadInst
>(CatchReturn
.getOperand(0)),
4597 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn
,
4598 CatchReturn
.getOperand(0));
4600 visitTerminator(CatchReturn
);
4603 void Verifier::visitCleanupPadInst(CleanupPadInst
&CPI
) {
4604 BasicBlock
*BB
= CPI
.getParent();
4606 Function
*F
= BB
->getParent();
4607 Check(F
->hasPersonalityFn(),
4608 "CleanupPadInst needs to be in a function with a personality.", &CPI
);
4610 // The cleanuppad instruction must be the first non-PHI instruction in the
4612 Check(&*BB
->getFirstNonPHIIt() == &CPI
,
4613 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI
);
4615 auto *ParentPad
= CPI
.getParentPad();
4616 Check(isa
<ConstantTokenNone
>(ParentPad
) || isa
<FuncletPadInst
>(ParentPad
),
4617 "CleanupPadInst has an invalid parent.", &CPI
);
4619 visitEHPadPredecessors(CPI
);
4620 visitFuncletPadInst(CPI
);
4623 void Verifier::visitFuncletPadInst(FuncletPadInst
&FPI
) {
4624 User
*FirstUser
= nullptr;
4625 Value
*FirstUnwindPad
= nullptr;
4626 SmallVector
<FuncletPadInst
*, 8> Worklist({&FPI
});
4627 SmallSet
<FuncletPadInst
*, 8> Seen
;
4629 while (!Worklist
.empty()) {
4630 FuncletPadInst
*CurrentPad
= Worklist
.pop_back_val();
4631 Check(Seen
.insert(CurrentPad
).second
,
4632 "FuncletPadInst must not be nested within itself", CurrentPad
);
4633 Value
*UnresolvedAncestorPad
= nullptr;
4634 for (User
*U
: CurrentPad
->users()) {
4635 BasicBlock
*UnwindDest
;
4636 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(U
)) {
4637 UnwindDest
= CRI
->getUnwindDest();
4638 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(U
)) {
4639 // We allow catchswitch unwind to caller to nest
4640 // within an outer pad that unwinds somewhere else,
4641 // because catchswitch doesn't have a nounwind variant.
4642 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4643 if (CSI
->unwindsToCaller())
4645 UnwindDest
= CSI
->getUnwindDest();
4646 } else if (auto *II
= dyn_cast
<InvokeInst
>(U
)) {
4647 UnwindDest
= II
->getUnwindDest();
4648 } else if (isa
<CallInst
>(U
)) {
4649 // Calls which don't unwind may be found inside funclet
4650 // pads that unwind somewhere else. We don't *require*
4651 // such calls to be annotated nounwind.
4653 } else if (auto *CPI
= dyn_cast
<CleanupPadInst
>(U
)) {
4654 // The unwind dest for a cleanup can only be found by
4655 // recursive search. Add it to the worklist, and we'll
4656 // search for its first use that determines where it unwinds.
4657 Worklist
.push_back(CPI
);
4660 Check(isa
<CatchReturnInst
>(U
), "Bogus funclet pad use", U
);
4667 UnwindPad
= &*UnwindDest
->getFirstNonPHIIt();
4668 if (!cast
<Instruction
>(UnwindPad
)->isEHPad())
4670 Value
*UnwindParent
= getParentPad(UnwindPad
);
4671 // Ignore unwind edges that don't exit CurrentPad.
4672 if (UnwindParent
== CurrentPad
)
4674 // Determine whether the original funclet pad is exited,
4675 // and if we are scanning nested pads determine how many
4676 // of them are exited so we can stop searching their
4678 Value
*ExitedPad
= CurrentPad
;
4681 if (ExitedPad
== &FPI
) {
4683 // Now we can resolve any ancestors of CurrentPad up to
4684 // FPI, but not including FPI since we need to make sure
4685 // to check all direct users of FPI for consistency.
4686 UnresolvedAncestorPad
= &FPI
;
4689 Value
*ExitedParent
= getParentPad(ExitedPad
);
4690 if (ExitedParent
== UnwindParent
) {
4691 // ExitedPad is the ancestor-most pad which this unwind
4692 // edge exits, so we can resolve up to it, meaning that
4693 // ExitedParent is the first ancestor still unresolved.
4694 UnresolvedAncestorPad
= ExitedParent
;
4697 ExitedPad
= ExitedParent
;
4698 } while (!isa
<ConstantTokenNone
>(ExitedPad
));
4700 // Unwinding to caller exits all pads.
4701 UnwindPad
= ConstantTokenNone::get(FPI
.getContext());
4703 UnresolvedAncestorPad
= &FPI
;
4707 // This unwind edge exits FPI. Make sure it agrees with other
4710 Check(UnwindPad
== FirstUnwindPad
,
4711 "Unwind edges out of a funclet "
4712 "pad must have the same unwind "
4714 &FPI
, U
, FirstUser
);
4717 FirstUnwindPad
= UnwindPad
;
4718 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4719 if (isa
<CleanupPadInst
>(&FPI
) && !isa
<ConstantTokenNone
>(UnwindPad
) &&
4720 getParentPad(UnwindPad
) == getParentPad(&FPI
))
4721 SiblingFuncletInfo
[&FPI
] = cast
<Instruction
>(U
);
4724 // Make sure we visit all uses of FPI, but for nested pads stop as
4725 // soon as we know where they unwind to.
4726 if (CurrentPad
!= &FPI
)
4729 if (UnresolvedAncestorPad
) {
4730 if (CurrentPad
== UnresolvedAncestorPad
) {
4731 // When CurrentPad is FPI itself, we don't mark it as resolved even if
4732 // we've found an unwind edge that exits it, because we need to verify
4733 // all direct uses of FPI.
4734 assert(CurrentPad
== &FPI
);
4737 // Pop off the worklist any nested pads that we've found an unwind
4738 // destination for. The pads on the worklist are the uncles,
4739 // great-uncles, etc. of CurrentPad. We've found an unwind destination
4740 // for all ancestors of CurrentPad up to but not including
4741 // UnresolvedAncestorPad.
4742 Value
*ResolvedPad
= CurrentPad
;
4743 while (!Worklist
.empty()) {
4744 Value
*UnclePad
= Worklist
.back();
4745 Value
*AncestorPad
= getParentPad(UnclePad
);
4746 // Walk ResolvedPad up the ancestor list until we either find the
4747 // uncle's parent or the last resolved ancestor.
4748 while (ResolvedPad
!= AncestorPad
) {
4749 Value
*ResolvedParent
= getParentPad(ResolvedPad
);
4750 if (ResolvedParent
== UnresolvedAncestorPad
) {
4753 ResolvedPad
= ResolvedParent
;
4755 // If the resolved ancestor search didn't find the uncle's parent,
4756 // then the uncle is not yet resolved.
4757 if (ResolvedPad
!= AncestorPad
)
4759 // This uncle is resolved, so pop it from the worklist.
4760 Worklist
.pop_back();
4765 if (FirstUnwindPad
) {
4766 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FPI
.getParentPad())) {
4767 BasicBlock
*SwitchUnwindDest
= CatchSwitch
->getUnwindDest();
4768 Value
*SwitchUnwindPad
;
4769 if (SwitchUnwindDest
)
4770 SwitchUnwindPad
= &*SwitchUnwindDest
->getFirstNonPHIIt();
4772 SwitchUnwindPad
= ConstantTokenNone::get(FPI
.getContext());
4773 Check(SwitchUnwindPad
== FirstUnwindPad
,
4774 "Unwind edges out of a catch must have the same unwind dest as "
4775 "the parent catchswitch",
4776 &FPI
, FirstUser
, CatchSwitch
);
4780 visitInstruction(FPI
);
4783 void Verifier::visitCatchSwitchInst(CatchSwitchInst
&CatchSwitch
) {
4784 BasicBlock
*BB
= CatchSwitch
.getParent();
4786 Function
*F
= BB
->getParent();
4787 Check(F
->hasPersonalityFn(),
4788 "CatchSwitchInst needs to be in a function with a personality.",
4791 // The catchswitch instruction must be the first non-PHI instruction in the
4793 Check(&*BB
->getFirstNonPHIIt() == &CatchSwitch
,
4794 "CatchSwitchInst not the first non-PHI instruction in the block.",
4797 auto *ParentPad
= CatchSwitch
.getParentPad();
4798 Check(isa
<ConstantTokenNone
>(ParentPad
) || isa
<FuncletPadInst
>(ParentPad
),
4799 "CatchSwitchInst has an invalid parent.", ParentPad
);
4801 if (BasicBlock
*UnwindDest
= CatchSwitch
.getUnwindDest()) {
4802 BasicBlock::iterator I
= UnwindDest
->getFirstNonPHIIt();
4803 Check(I
->isEHPad() && !isa
<LandingPadInst
>(I
),
4804 "CatchSwitchInst must unwind to an EH block which is not a "
4808 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4809 if (getParentPad(&*I
) == ParentPad
)
4810 SiblingFuncletInfo
[&CatchSwitch
] = &CatchSwitch
;
4813 Check(CatchSwitch
.getNumHandlers() != 0,
4814 "CatchSwitchInst cannot have empty handler list", &CatchSwitch
);
4816 for (BasicBlock
*Handler
: CatchSwitch
.handlers()) {
4817 Check(isa
<CatchPadInst
>(Handler
->getFirstNonPHIIt()),
4818 "CatchSwitchInst handlers must be catchpads", &CatchSwitch
, Handler
);
4821 visitEHPadPredecessors(CatchSwitch
);
4822 visitTerminator(CatchSwitch
);
4825 void Verifier::visitCleanupReturnInst(CleanupReturnInst
&CRI
) {
4826 Check(isa
<CleanupPadInst
>(CRI
.getOperand(0)),
4827 "CleanupReturnInst needs to be provided a CleanupPad", &CRI
,
4830 if (BasicBlock
*UnwindDest
= CRI
.getUnwindDest()) {
4831 BasicBlock::iterator I
= UnwindDest
->getFirstNonPHIIt();
4832 Check(I
->isEHPad() && !isa
<LandingPadInst
>(I
),
4833 "CleanupReturnInst must unwind to an EH block which is not a "
4838 visitTerminator(CRI
);
4841 void Verifier::verifyDominatesUse(Instruction
&I
, unsigned i
) {
4842 Instruction
*Op
= cast
<Instruction
>(I
.getOperand(i
));
4843 // If the we have an invalid invoke, don't try to compute the dominance.
4844 // We already reject it in the invoke specific checks and the dominance
4845 // computation doesn't handle multiple edges.
4846 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Op
)) {
4847 if (II
->getNormalDest() == II
->getUnwindDest())
4851 // Quick check whether the def has already been encountered in the same block.
4852 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4853 // uses are defined to happen on the incoming edge, not at the instruction.
4855 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4856 // wrapping an SSA value, assert that we've already encountered it. See
4857 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4858 if (!isa
<PHINode
>(I
) && InstsInThisBlock
.count(Op
))
4861 const Use
&U
= I
.getOperandUse(i
);
4862 Check(DT
.dominates(Op
, U
), "Instruction does not dominate all uses!", Op
, &I
);
4865 void Verifier::visitDereferenceableMetadata(Instruction
& I
, MDNode
* MD
) {
4866 Check(I
.getType()->isPointerTy(),
4867 "dereferenceable, dereferenceable_or_null "
4868 "apply only to pointer types",
4870 Check((isa
<LoadInst
>(I
) || isa
<IntToPtrInst
>(I
)),
4871 "dereferenceable, dereferenceable_or_null apply only to load"
4872 " and inttoptr instructions, use attributes for calls or invokes",
4874 Check(MD
->getNumOperands() == 1,
4875 "dereferenceable, dereferenceable_or_null "
4876 "take one operand!",
4878 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(0));
4879 Check(CI
&& CI
->getType()->isIntegerTy(64),
4881 "dereferenceable_or_null metadata value must be an i64!",
4885 void Verifier::visitProfMetadata(Instruction
&I
, MDNode
*MD
) {
4886 Check(MD
->getNumOperands() >= 2,
4887 "!prof annotations should have no less than 2 operands", MD
);
4889 // Check first operand.
4890 Check(MD
->getOperand(0) != nullptr, "first operand should not be null", MD
);
4891 Check(isa
<MDString
>(MD
->getOperand(0)),
4892 "expected string with name of the !prof annotation", MD
);
4893 MDString
*MDS
= cast
<MDString
>(MD
->getOperand(0));
4894 StringRef ProfName
= MDS
->getString();
4896 // Check consistency of !prof branch_weights metadata.
4897 if (ProfName
== "branch_weights") {
4898 unsigned NumBranchWeights
= getNumBranchWeights(*MD
);
4899 if (isa
<InvokeInst
>(&I
)) {
4900 Check(NumBranchWeights
== 1 || NumBranchWeights
== 2,
4901 "Wrong number of InvokeInst branch_weights operands", MD
);
4903 unsigned ExpectedNumOperands
= 0;
4904 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(&I
))
4905 ExpectedNumOperands
= BI
->getNumSuccessors();
4906 else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(&I
))
4907 ExpectedNumOperands
= SI
->getNumSuccessors();
4908 else if (isa
<CallInst
>(&I
))
4909 ExpectedNumOperands
= 1;
4910 else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(&I
))
4911 ExpectedNumOperands
= IBI
->getNumDestinations();
4912 else if (isa
<SelectInst
>(&I
))
4913 ExpectedNumOperands
= 2;
4914 else if (CallBrInst
*CI
= dyn_cast
<CallBrInst
>(&I
))
4915 ExpectedNumOperands
= CI
->getNumSuccessors();
4917 CheckFailed("!prof branch_weights are not allowed for this instruction",
4920 Check(NumBranchWeights
== ExpectedNumOperands
, "Wrong number of operands",
4923 for (unsigned i
= getBranchWeightOffset(MD
); i
< MD
->getNumOperands();
4925 auto &MDO
= MD
->getOperand(i
);
4926 Check(MDO
, "second operand should not be null", MD
);
4927 Check(mdconst::dyn_extract
<ConstantInt
>(MDO
),
4928 "!prof brunch_weights operand is not a const int");
4933 void Verifier::visitDIAssignIDMetadata(Instruction
&I
, MDNode
*MD
) {
4934 assert(I
.hasMetadata(LLVMContext::MD_DIAssignID
));
4935 bool ExpectedInstTy
=
4936 isa
<AllocaInst
>(I
) || isa
<StoreInst
>(I
) || isa
<MemIntrinsic
>(I
);
4937 CheckDI(ExpectedInstTy
, "!DIAssignID attached to unexpected instruction kind",
4939 // Iterate over the MetadataAsValue uses of the DIAssignID - these should
4940 // only be found as DbgAssignIntrinsic operands.
4941 if (auto *AsValue
= MetadataAsValue::getIfExists(Context
, MD
)) {
4942 for (auto *User
: AsValue
->users()) {
4943 CheckDI(isa
<DbgAssignIntrinsic
>(User
),
4944 "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
4946 // All of the dbg.assign intrinsics should be in the same function as I.
4947 if (auto *DAI
= dyn_cast
<DbgAssignIntrinsic
>(User
))
4948 CheckDI(DAI
->getFunction() == I
.getFunction(),
4949 "dbg.assign not in same function as inst", DAI
, &I
);
4952 for (DbgVariableRecord
*DVR
:
4953 cast
<DIAssignID
>(MD
)->getAllDbgVariableRecordUsers()) {
4954 CheckDI(DVR
->isDbgAssign(),
4955 "!DIAssignID should only be used by Assign DVRs.", MD
, DVR
);
4956 CheckDI(DVR
->getFunction() == I
.getFunction(),
4957 "DVRAssign not in same function as inst", DVR
, &I
);
4961 void Verifier::visitMMRAMetadata(Instruction
&I
, MDNode
*MD
) {
4962 Check(canInstructionHaveMMRAs(I
),
4963 "!mmra metadata attached to unexpected instruction kind", I
, MD
);
4965 // MMRA Metadata should either be a tag, e.g. !{!"foo", !"bar"}, or a
4966 // list of tags such as !2 in the following example:
4967 // !0 = !{!"a", !"b"}
4968 // !1 = !{!"c", !"d"}
4970 if (MMRAMetadata::isTagMD(MD
))
4973 Check(isa
<MDTuple
>(MD
), "!mmra expected to be a metadata tuple", I
, MD
);
4974 for (const MDOperand
&MDOp
: MD
->operands())
4975 Check(MMRAMetadata::isTagMD(MDOp
.get()),
4976 "!mmra metadata tuple operand is not an MMRA tag", I
, MDOp
.get());
4979 void Verifier::visitCallStackMetadata(MDNode
*MD
) {
4980 // Call stack metadata should consist of a list of at least 1 constant int
4981 // (representing a hash of the location).
4982 Check(MD
->getNumOperands() >= 1,
4983 "call stack metadata should have at least 1 operand", MD
);
4985 for (const auto &Op
: MD
->operands())
4986 Check(mdconst::dyn_extract_or_null
<ConstantInt
>(Op
),
4987 "call stack metadata operand should be constant integer", Op
);
4990 void Verifier::visitMemProfMetadata(Instruction
&I
, MDNode
*MD
) {
4991 Check(isa
<CallBase
>(I
), "!memprof metadata should only exist on calls", &I
);
4992 Check(MD
->getNumOperands() >= 1,
4993 "!memprof annotations should have at least 1 metadata operand "
4998 for (auto &MIBOp
: MD
->operands()) {
4999 MDNode
*MIB
= dyn_cast
<MDNode
>(MIBOp
);
5000 // The first operand of an MIB should be the call stack metadata.
5001 // There rest of the operands should be MDString tags, and there should be
5003 Check(MIB
->getNumOperands() >= 2,
5004 "Each !memprof MemInfoBlock should have at least 2 operands", MIB
);
5006 // Check call stack metadata (first operand).
5007 Check(MIB
->getOperand(0) != nullptr,
5008 "!memprof MemInfoBlock first operand should not be null", MIB
);
5009 Check(isa
<MDNode
>(MIB
->getOperand(0)),
5010 "!memprof MemInfoBlock first operand should be an MDNode", MIB
);
5011 MDNode
*StackMD
= dyn_cast
<MDNode
>(MIB
->getOperand(0));
5012 visitCallStackMetadata(StackMD
);
5014 // The next set of 1 or more operands should be MDString.
5016 for (; I
< MIB
->getNumOperands(); ++I
) {
5017 if (!isa
<MDString
>(MIB
->getOperand(I
))) {
5019 "!memprof MemInfoBlock second operand should be an MDString",
5025 // Any remaining should be MDNode that are pairs of integers
5026 for (; I
< MIB
->getNumOperands(); ++I
) {
5027 MDNode
*OpNode
= dyn_cast
<MDNode
>(MIB
->getOperand(I
));
5028 Check(OpNode
, "Not all !memprof MemInfoBlock operands 2 to N are MDNode",
5030 Check(OpNode
->getNumOperands() == 2,
5031 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with 2 "
5034 // Check that all of Op's operands are ConstantInt.
5035 Check(llvm::all_of(OpNode
->operands(),
5036 [](const MDOperand
&Op
) {
5037 return mdconst::hasa
<ConstantInt
>(Op
);
5039 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with "
5040 "ConstantInt operands",
5046 void Verifier::visitCallsiteMetadata(Instruction
&I
, MDNode
*MD
) {
5047 Check(isa
<CallBase
>(I
), "!callsite metadata should only exist on calls", &I
);
5048 // Verify the partial callstack annotated from memprof profiles. This callsite
5049 // is a part of a profiled allocation callstack.
5050 visitCallStackMetadata(MD
);
5053 void Verifier::visitAnnotationMetadata(MDNode
*Annotation
) {
5054 Check(isa
<MDTuple
>(Annotation
), "annotation must be a tuple");
5055 Check(Annotation
->getNumOperands() >= 1,
5056 "annotation must have at least one operand");
5057 for (const MDOperand
&Op
: Annotation
->operands()) {
5058 bool TupleOfStrings
=
5059 isa
<MDTuple
>(Op
.get()) &&
5060 all_of(cast
<MDTuple
>(Op
)->operands(), [](auto &Annotation
) {
5061 return isa
<MDString
>(Annotation
.get());
5063 Check(isa
<MDString
>(Op
.get()) || TupleOfStrings
,
5064 "operands must be a string or a tuple of strings");
5068 void Verifier::visitAliasScopeMetadata(const MDNode
*MD
) {
5069 unsigned NumOps
= MD
->getNumOperands();
5070 Check(NumOps
>= 2 && NumOps
<= 3, "scope must have two or three operands",
5072 Check(MD
->getOperand(0).get() == MD
|| isa
<MDString
>(MD
->getOperand(0)),
5073 "first scope operand must be self-referential or string", MD
);
5075 Check(isa
<MDString
>(MD
->getOperand(2)),
5076 "third scope operand must be string (if used)", MD
);
5078 MDNode
*Domain
= dyn_cast
<MDNode
>(MD
->getOperand(1));
5079 Check(Domain
!= nullptr, "second scope operand must be MDNode", MD
);
5081 unsigned NumDomainOps
= Domain
->getNumOperands();
5082 Check(NumDomainOps
>= 1 && NumDomainOps
<= 2,
5083 "domain must have one or two operands", Domain
);
5084 Check(Domain
->getOperand(0).get() == Domain
||
5085 isa
<MDString
>(Domain
->getOperand(0)),
5086 "first domain operand must be self-referential or string", Domain
);
5087 if (NumDomainOps
== 2)
5088 Check(isa
<MDString
>(Domain
->getOperand(1)),
5089 "second domain operand must be string (if used)", Domain
);
5092 void Verifier::visitAliasScopeListMetadata(const MDNode
*MD
) {
5093 for (const MDOperand
&Op
: MD
->operands()) {
5094 const MDNode
*OpMD
= dyn_cast
<MDNode
>(Op
);
5095 Check(OpMD
!= nullptr, "scope list must consist of MDNodes", MD
);
5096 visitAliasScopeMetadata(OpMD
);
5100 void Verifier::visitAccessGroupMetadata(const MDNode
*MD
) {
5101 auto IsValidAccessScope
= [](const MDNode
*MD
) {
5102 return MD
->getNumOperands() == 0 && MD
->isDistinct();
5105 // It must be either an access scope itself...
5106 if (IsValidAccessScope(MD
))
5109 // ...or a list of access scopes.
5110 for (const MDOperand
&Op
: MD
->operands()) {
5111 const MDNode
*OpMD
= dyn_cast
<MDNode
>(Op
);
5112 Check(OpMD
!= nullptr, "Access scope list must consist of MDNodes", MD
);
5113 Check(IsValidAccessScope(OpMD
),
5114 "Access scope list contains invalid access scope", MD
);
5118 /// verifyInstruction - Verify that an instruction is well formed.
5120 void Verifier::visitInstruction(Instruction
&I
) {
5121 BasicBlock
*BB
= I
.getParent();
5122 Check(BB
, "Instruction not embedded in basic block!", &I
);
5124 if (!isa
<PHINode
>(I
)) { // Check that non-phi nodes are not self referential
5125 for (User
*U
: I
.users()) {
5126 Check(U
!= (User
*)&I
|| !DT
.isReachableFromEntry(BB
),
5127 "Only PHI nodes may reference their own value!", &I
);
5131 // Check that void typed values don't have names
5132 Check(!I
.getType()->isVoidTy() || !I
.hasName(),
5133 "Instruction has a name, but provides a void value!", &I
);
5135 // Check that the return value of the instruction is either void or a legal
5137 Check(I
.getType()->isVoidTy() || I
.getType()->isFirstClassType(),
5138 "Instruction returns a non-scalar type!", &I
);
5140 // Check that the instruction doesn't produce metadata. Calls are already
5141 // checked against the callee type.
5142 Check(!I
.getType()->isMetadataTy() || isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
5143 "Invalid use of metadata!", &I
);
5145 // Check that all uses of the instruction, if they are instructions
5146 // themselves, actually have parent basic blocks. If the use is not an
5147 // instruction, it is an error!
5148 for (Use
&U
: I
.uses()) {
5149 if (Instruction
*Used
= dyn_cast
<Instruction
>(U
.getUser()))
5150 Check(Used
->getParent() != nullptr,
5151 "Instruction referencing"
5152 " instruction not embedded in a basic block!",
5155 CheckFailed("Use of instruction is not an instruction!", U
);
5160 // Get a pointer to the call base of the instruction if it is some form of
5162 const CallBase
*CBI
= dyn_cast
<CallBase
>(&I
);
5164 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
5165 Check(I
.getOperand(i
) != nullptr, "Instruction has null operand!", &I
);
5167 // Check to make sure that only first-class-values are operands to
5169 if (!I
.getOperand(i
)->getType()->isFirstClassType()) {
5170 Check(false, "Instruction operands must be first-class values!", &I
);
5173 if (Function
*F
= dyn_cast
<Function
>(I
.getOperand(i
))) {
5174 // This code checks whether the function is used as the operand of a
5175 // clang_arc_attachedcall operand bundle.
5176 auto IsAttachedCallOperand
= [](Function
*F
, const CallBase
*CBI
,
5178 return CBI
&& CBI
->isOperandBundleOfType(
5179 LLVMContext::OB_clang_arc_attachedcall
, Idx
);
5182 // Check to make sure that the "address of" an intrinsic function is never
5183 // taken. Ignore cases where the address of the intrinsic function is used
5184 // as the argument of operand bundle "clang.arc.attachedcall" as those
5185 // cases are handled in verifyAttachedCallBundle.
5186 Check((!F
->isIntrinsic() ||
5187 (CBI
&& &CBI
->getCalledOperandUse() == &I
.getOperandUse(i
)) ||
5188 IsAttachedCallOperand(F
, CBI
, i
)),
5189 "Cannot take the address of an intrinsic!", &I
);
5190 Check(!F
->isIntrinsic() || isa
<CallInst
>(I
) ||
5191 F
->getIntrinsicID() == Intrinsic::donothing
||
5192 F
->getIntrinsicID() == Intrinsic::seh_try_begin
||
5193 F
->getIntrinsicID() == Intrinsic::seh_try_end
||
5194 F
->getIntrinsicID() == Intrinsic::seh_scope_begin
||
5195 F
->getIntrinsicID() == Intrinsic::seh_scope_end
||
5196 F
->getIntrinsicID() == Intrinsic::coro_resume
||
5197 F
->getIntrinsicID() == Intrinsic::coro_destroy
||
5198 F
->getIntrinsicID() == Intrinsic::coro_await_suspend_void
||
5199 F
->getIntrinsicID() == Intrinsic::coro_await_suspend_bool
||
5200 F
->getIntrinsicID() == Intrinsic::coro_await_suspend_handle
||
5201 F
->getIntrinsicID() ==
5202 Intrinsic::experimental_patchpoint_void
||
5203 F
->getIntrinsicID() == Intrinsic::experimental_patchpoint
||
5204 F
->getIntrinsicID() == Intrinsic::fake_use
||
5205 F
->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
||
5206 F
->getIntrinsicID() == Intrinsic::wasm_rethrow
||
5207 IsAttachedCallOperand(F
, CBI
, i
),
5208 "Cannot invoke an intrinsic other than donothing, patchpoint, "
5209 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
5211 Check(F
->getParent() == &M
, "Referencing function in another module!", &I
,
5212 &M
, F
, F
->getParent());
5213 } else if (BasicBlock
*OpBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
))) {
5214 Check(OpBB
->getParent() == BB
->getParent(),
5215 "Referring to a basic block in another function!", &I
);
5216 } else if (Argument
*OpArg
= dyn_cast
<Argument
>(I
.getOperand(i
))) {
5217 Check(OpArg
->getParent() == BB
->getParent(),
5218 "Referring to an argument in another function!", &I
);
5219 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(I
.getOperand(i
))) {
5220 Check(GV
->getParent() == &M
, "Referencing global in another module!", &I
,
5221 &M
, GV
, GV
->getParent());
5222 } else if (Instruction
*OpInst
= dyn_cast
<Instruction
>(I
.getOperand(i
))) {
5223 Check(OpInst
->getFunction() == BB
->getParent(),
5224 "Referring to an instruction in another function!", &I
);
5225 verifyDominatesUse(I
, i
);
5226 } else if (isa
<InlineAsm
>(I
.getOperand(i
))) {
5227 Check(CBI
&& &CBI
->getCalledOperandUse() == &I
.getOperandUse(i
),
5228 "Cannot take the address of an inline asm!", &I
);
5229 } else if (auto *CPA
= dyn_cast
<ConstantPtrAuth
>(I
.getOperand(i
))) {
5230 visitConstantExprsRecursively(CPA
);
5231 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(I
.getOperand(i
))) {
5232 if (CE
->getType()->isPtrOrPtrVectorTy()) {
5233 // If we have a ConstantExpr pointer, we need to see if it came from an
5235 visitConstantExprsRecursively(CE
);
5240 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_fpmath
)) {
5241 Check(I
.getType()->isFPOrFPVectorTy(),
5242 "fpmath requires a floating point result!", &I
);
5243 Check(MD
->getNumOperands() == 1, "fpmath takes one operand!", &I
);
5244 if (ConstantFP
*CFP0
=
5245 mdconst::dyn_extract_or_null
<ConstantFP
>(MD
->getOperand(0))) {
5246 const APFloat
&Accuracy
= CFP0
->getValueAPF();
5247 Check(&Accuracy
.getSemantics() == &APFloat::IEEEsingle(),
5248 "fpmath accuracy must have float type", &I
);
5249 Check(Accuracy
.isFiniteNonZero() && !Accuracy
.isNegative(),
5250 "fpmath accuracy not a positive number!", &I
);
5252 Check(false, "invalid fpmath accuracy!", &I
);
5256 if (MDNode
*Range
= I
.getMetadata(LLVMContext::MD_range
)) {
5257 Check(isa
<LoadInst
>(I
) || isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
5258 "Ranges are only for loads, calls and invokes!", &I
);
5259 visitRangeMetadata(I
, Range
, I
.getType());
5262 if (MDNode
*Range
= I
.getMetadata(LLVMContext::MD_noalias_addrspace
)) {
5263 Check(isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
) || isa
<AtomicRMWInst
>(I
) ||
5264 isa
<AtomicCmpXchgInst
>(I
) || isa
<CallInst
>(I
),
5265 "noalias.addrspace are only for memory operations!", &I
);
5266 visitNoaliasAddrspaceMetadata(I
, Range
, I
.getType());
5269 if (I
.hasMetadata(LLVMContext::MD_invariant_group
)) {
5270 Check(isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
),
5271 "invariant.group metadata is only for loads and stores", &I
);
5274 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_nonnull
)) {
5275 Check(I
.getType()->isPointerTy(), "nonnull applies only to pointer types",
5277 Check(isa
<LoadInst
>(I
),
5278 "nonnull applies only to load instructions, use attributes"
5279 " for calls or invokes",
5281 Check(MD
->getNumOperands() == 0, "nonnull metadata must be empty", &I
);
5284 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_dereferenceable
))
5285 visitDereferenceableMetadata(I
, MD
);
5287 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_dereferenceable_or_null
))
5288 visitDereferenceableMetadata(I
, MD
);
5290 if (MDNode
*TBAA
= I
.getMetadata(LLVMContext::MD_tbaa
))
5291 TBAAVerifyHelper
.visitTBAAMetadata(I
, TBAA
);
5293 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_noalias
))
5294 visitAliasScopeListMetadata(MD
);
5295 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_alias_scope
))
5296 visitAliasScopeListMetadata(MD
);
5298 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_access_group
))
5299 visitAccessGroupMetadata(MD
);
5301 if (MDNode
*AlignMD
= I
.getMetadata(LLVMContext::MD_align
)) {
5302 Check(I
.getType()->isPointerTy(), "align applies only to pointer types",
5304 Check(isa
<LoadInst
>(I
),
5305 "align applies only to load instructions, "
5306 "use attributes for calls or invokes",
5308 Check(AlignMD
->getNumOperands() == 1, "align takes one operand!", &I
);
5309 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(AlignMD
->getOperand(0));
5310 Check(CI
&& CI
->getType()->isIntegerTy(64),
5311 "align metadata value must be an i64!", &I
);
5312 uint64_t Align
= CI
->getZExtValue();
5313 Check(isPowerOf2_64(Align
), "align metadata value must be a power of 2!",
5315 Check(Align
<= Value::MaximumAlignment
,
5316 "alignment is larger that implementation defined limit", &I
);
5319 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_prof
))
5320 visitProfMetadata(I
, MD
);
5322 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_memprof
))
5323 visitMemProfMetadata(I
, MD
);
5325 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_callsite
))
5326 visitCallsiteMetadata(I
, MD
);
5328 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_DIAssignID
))
5329 visitDIAssignIDMetadata(I
, MD
);
5331 if (MDNode
*MMRA
= I
.getMetadata(LLVMContext::MD_mmra
))
5332 visitMMRAMetadata(I
, MMRA
);
5334 if (MDNode
*Annotation
= I
.getMetadata(LLVMContext::MD_annotation
))
5335 visitAnnotationMetadata(Annotation
);
5337 if (MDNode
*N
= I
.getDebugLoc().getAsMDNode()) {
5338 CheckDI(isa
<DILocation
>(N
), "invalid !dbg metadata attachment", &I
, N
);
5339 visitMDNode(*N
, AreDebugLocsAllowed::Yes
);
5342 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&I
)) {
5343 verifyFragmentExpression(*DII
);
5344 verifyNotEntryValue(*DII
);
5347 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
5348 I
.getAllMetadata(MDs
);
5349 for (auto Attachment
: MDs
) {
5350 unsigned Kind
= Attachment
.first
;
5352 (Kind
== LLVMContext::MD_dbg
|| Kind
== LLVMContext::MD_loop
)
5353 ? AreDebugLocsAllowed::Yes
5354 : AreDebugLocsAllowed::No
;
5355 visitMDNode(*Attachment
.second
, AllowLocs
);
5358 InstsInThisBlock
.insert(&I
);
5361 /// Allow intrinsics to be verified in different ways.
5362 void Verifier::visitIntrinsicCall(Intrinsic::ID ID
, CallBase
&Call
) {
5363 Function
*IF
= Call
.getCalledFunction();
5364 Check(IF
->isDeclaration(), "Intrinsic functions should never be defined!",
5367 // Verify that the intrinsic prototype lines up with what the .td files
5369 FunctionType
*IFTy
= IF
->getFunctionType();
5370 bool IsVarArg
= IFTy
->isVarArg();
5372 SmallVector
<Intrinsic::IITDescriptor
, 8> Table
;
5373 getIntrinsicInfoTableEntries(ID
, Table
);
5374 ArrayRef
<Intrinsic::IITDescriptor
> TableRef
= Table
;
5376 // Walk the descriptors to extract overloaded types.
5377 SmallVector
<Type
*, 4> ArgTys
;
5378 Intrinsic::MatchIntrinsicTypesResult Res
=
5379 Intrinsic::matchIntrinsicSignature(IFTy
, TableRef
, ArgTys
);
5380 Check(Res
!= Intrinsic::MatchIntrinsicTypes_NoMatchRet
,
5381 "Intrinsic has incorrect return type!", IF
);
5382 Check(Res
!= Intrinsic::MatchIntrinsicTypes_NoMatchArg
,
5383 "Intrinsic has incorrect argument type!", IF
);
5385 // Verify if the intrinsic call matches the vararg property.
5387 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg
, TableRef
),
5388 "Intrinsic was not defined with variable arguments!", IF
);
5390 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg
, TableRef
),
5391 "Callsite was not defined with variable arguments!", IF
);
5393 // All descriptors should be absorbed by now.
5394 Check(TableRef
.empty(), "Intrinsic has too few arguments!", IF
);
5396 // Now that we have the intrinsic ID and the actual argument types (and we
5397 // know they are legal for the intrinsic!) get the intrinsic name through the
5398 // usual means. This allows us to verify the mangling of argument types into
5400 const std::string ExpectedName
=
5401 Intrinsic::getName(ID
, ArgTys
, IF
->getParent(), IFTy
);
5402 Check(ExpectedName
== IF
->getName(),
5403 "Intrinsic name not mangled correctly for type arguments! "
5408 // If the intrinsic takes MDNode arguments, verify that they are either global
5409 // or are local to *this* function.
5410 for (Value
*V
: Call
.args()) {
5411 if (auto *MD
= dyn_cast
<MetadataAsValue
>(V
))
5412 visitMetadataAsValue(*MD
, Call
.getCaller());
5413 if (auto *Const
= dyn_cast
<Constant
>(V
))
5414 Check(!Const
->getType()->isX86_AMXTy(),
5415 "const x86_amx is not allowed in argument!");
5421 case Intrinsic::assume
: {
5422 for (auto &Elem
: Call
.bundle_op_infos()) {
5423 unsigned ArgCount
= Elem
.End
- Elem
.Begin
;
5424 // Separate storage assumptions are special insofar as they're the only
5425 // operand bundles allowed on assumes that aren't parameter attributes.
5426 if (Elem
.Tag
->getKey() == "separate_storage") {
5427 Check(ArgCount
== 2,
5428 "separate_storage assumptions should have 2 arguments", Call
);
5429 Check(Call
.getOperand(Elem
.Begin
)->getType()->isPointerTy() &&
5430 Call
.getOperand(Elem
.Begin
+ 1)->getType()->isPointerTy(),
5431 "arguments to separate_storage assumptions should be pointers",
5435 Check(Elem
.Tag
->getKey() == "ignore" ||
5436 Attribute::isExistingAttribute(Elem
.Tag
->getKey()),
5437 "tags must be valid attribute names", Call
);
5438 Attribute::AttrKind Kind
=
5439 Attribute::getAttrKindFromName(Elem
.Tag
->getKey());
5440 if (Kind
== Attribute::Alignment
) {
5441 Check(ArgCount
<= 3 && ArgCount
>= 2,
5442 "alignment assumptions should have 2 or 3 arguments", Call
);
5443 Check(Call
.getOperand(Elem
.Begin
)->getType()->isPointerTy(),
5444 "first argument should be a pointer", Call
);
5445 Check(Call
.getOperand(Elem
.Begin
+ 1)->getType()->isIntegerTy(),
5446 "second argument should be an integer", Call
);
5448 Check(Call
.getOperand(Elem
.Begin
+ 2)->getType()->isIntegerTy(),
5449 "third argument should be an integer if present", Call
);
5452 Check(ArgCount
<= 2, "too many arguments", Call
);
5453 if (Kind
== Attribute::None
)
5455 if (Attribute::isIntAttrKind(Kind
)) {
5456 Check(ArgCount
== 2, "this attribute should have 2 arguments", Call
);
5457 Check(isa
<ConstantInt
>(Call
.getOperand(Elem
.Begin
+ 1)),
5458 "the second argument should be a constant integral value", Call
);
5459 } else if (Attribute::canUseAsParamAttr(Kind
)) {
5460 Check((ArgCount
) == 1, "this attribute should have one argument", Call
);
5461 } else if (Attribute::canUseAsFnAttr(Kind
)) {
5462 Check((ArgCount
) == 0, "this attribute has no argument", Call
);
5467 case Intrinsic::ucmp
:
5468 case Intrinsic::scmp
: {
5469 Type
*SrcTy
= Call
.getOperand(0)->getType();
5470 Type
*DestTy
= Call
.getType();
5472 Check(DestTy
->getScalarSizeInBits() >= 2,
5473 "result type must be at least 2 bits wide", Call
);
5475 bool IsDestTypeVector
= DestTy
->isVectorTy();
5476 Check(SrcTy
->isVectorTy() == IsDestTypeVector
,
5477 "ucmp/scmp argument and result types must both be either vector or "
5480 if (IsDestTypeVector
) {
5481 auto SrcVecLen
= cast
<VectorType
>(SrcTy
)->getElementCount();
5482 auto DestVecLen
= cast
<VectorType
>(DestTy
)->getElementCount();
5483 Check(SrcVecLen
== DestVecLen
,
5484 "return type and arguments must have the same number of "
5490 case Intrinsic::coro_id
: {
5491 auto *InfoArg
= Call
.getArgOperand(3)->stripPointerCasts();
5492 if (isa
<ConstantPointerNull
>(InfoArg
))
5494 auto *GV
= dyn_cast
<GlobalVariable
>(InfoArg
);
5495 Check(GV
&& GV
->isConstant() && GV
->hasDefinitiveInitializer(),
5496 "info argument of llvm.coro.id must refer to an initialized "
5498 Constant
*Init
= GV
->getInitializer();
5499 Check(isa
<ConstantStruct
>(Init
) || isa
<ConstantArray
>(Init
),
5500 "info argument of llvm.coro.id must refer to either a struct or "
5504 case Intrinsic::is_fpclass
: {
5505 const ConstantInt
*TestMask
= cast
<ConstantInt
>(Call
.getOperand(1));
5506 Check((TestMask
->getZExtValue() & ~static_cast<unsigned>(fcAllFlags
)) == 0,
5507 "unsupported bits for llvm.is.fpclass test mask");
5510 case Intrinsic::fptrunc_round
: {
5511 // Check the rounding mode
5512 Metadata
*MD
= nullptr;
5513 auto *MAV
= dyn_cast
<MetadataAsValue
>(Call
.getOperand(1));
5515 MD
= MAV
->getMetadata();
5517 Check(MD
!= nullptr, "missing rounding mode argument", Call
);
5519 Check(isa
<MDString
>(MD
),
5520 ("invalid value for llvm.fptrunc.round metadata operand"
5521 " (the operand should be a string)"),
5524 std::optional
<RoundingMode
> RoundMode
=
5525 convertStrToRoundingMode(cast
<MDString
>(MD
)->getString());
5526 Check(RoundMode
&& *RoundMode
!= RoundingMode::Dynamic
,
5527 "unsupported rounding mode argument", Call
);
5530 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5531 #include "llvm/IR/VPIntrinsics.def"
5532 #undef BEGIN_REGISTER_VP_INTRINSIC
5533 visitVPIntrinsic(cast
<VPIntrinsic
>(Call
));
5535 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
5536 case Intrinsic::INTRINSIC:
5537 #include "llvm/IR/ConstrainedOps.def"
5539 visitConstrainedFPIntrinsic(cast
<ConstrainedFPIntrinsic
>(Call
));
5541 case Intrinsic::dbg_declare
: // llvm.dbg.declare
5542 Check(isa
<MetadataAsValue
>(Call
.getArgOperand(0)),
5543 "invalid llvm.dbg.declare intrinsic call 1", Call
);
5544 visitDbgIntrinsic("declare", cast
<DbgVariableIntrinsic
>(Call
));
5546 case Intrinsic::dbg_value
: // llvm.dbg.value
5547 visitDbgIntrinsic("value", cast
<DbgVariableIntrinsic
>(Call
));
5549 case Intrinsic::dbg_assign
: // llvm.dbg.assign
5550 visitDbgIntrinsic("assign", cast
<DbgVariableIntrinsic
>(Call
));
5552 case Intrinsic::dbg_label
: // llvm.dbg.label
5553 visitDbgLabelIntrinsic("label", cast
<DbgLabelInst
>(Call
));
5555 case Intrinsic::memcpy
:
5556 case Intrinsic::memcpy_inline
:
5557 case Intrinsic::memmove
:
5558 case Intrinsic::memset
:
5559 case Intrinsic::memset_inline
:
5560 case Intrinsic::experimental_memset_pattern
: {
5563 case Intrinsic::memcpy_element_unordered_atomic
:
5564 case Intrinsic::memmove_element_unordered_atomic
:
5565 case Intrinsic::memset_element_unordered_atomic
: {
5566 const auto *AMI
= cast
<AtomicMemIntrinsic
>(&Call
);
5568 ConstantInt
*ElementSizeCI
=
5569 cast
<ConstantInt
>(AMI
->getRawElementSizeInBytes());
5570 const APInt
&ElementSizeVal
= ElementSizeCI
->getValue();
5571 Check(ElementSizeVal
.isPowerOf2(),
5572 "element size of the element-wise atomic memory intrinsic "
5573 "must be a power of 2",
5576 auto IsValidAlignment
= [&](MaybeAlign Alignment
) {
5577 return Alignment
&& ElementSizeVal
.ule(Alignment
->value());
5579 Check(IsValidAlignment(AMI
->getDestAlign()),
5580 "incorrect alignment of the destination argument", Call
);
5581 if (const auto *AMT
= dyn_cast
<AtomicMemTransferInst
>(AMI
)) {
5582 Check(IsValidAlignment(AMT
->getSourceAlign()),
5583 "incorrect alignment of the source argument", Call
);
5587 case Intrinsic::call_preallocated_setup
: {
5588 auto *NumArgs
= dyn_cast
<ConstantInt
>(Call
.getArgOperand(0));
5589 Check(NumArgs
!= nullptr,
5590 "llvm.call.preallocated.setup argument must be a constant");
5591 bool FoundCall
= false;
5592 for (User
*U
: Call
.users()) {
5593 auto *UseCall
= dyn_cast
<CallBase
>(U
);
5594 Check(UseCall
!= nullptr,
5595 "Uses of llvm.call.preallocated.setup must be calls");
5596 const Function
*Fn
= UseCall
->getCalledFunction();
5597 if (Fn
&& Fn
->getIntrinsicID() == Intrinsic::call_preallocated_arg
) {
5598 auto *AllocArgIndex
= dyn_cast
<ConstantInt
>(UseCall
->getArgOperand(1));
5599 Check(AllocArgIndex
!= nullptr,
5600 "llvm.call.preallocated.alloc arg index must be a constant");
5601 auto AllocArgIndexInt
= AllocArgIndex
->getValue();
5602 Check(AllocArgIndexInt
.sge(0) &&
5603 AllocArgIndexInt
.slt(NumArgs
->getValue()),
5604 "llvm.call.preallocated.alloc arg index must be between 0 and "
5606 "llvm.call.preallocated.setup's argument count");
5607 } else if (Fn
&& Fn
->getIntrinsicID() ==
5608 Intrinsic::call_preallocated_teardown
) {
5611 Check(!FoundCall
, "Can have at most one call corresponding to a "
5612 "llvm.call.preallocated.setup");
5614 size_t NumPreallocatedArgs
= 0;
5615 for (unsigned i
= 0; i
< UseCall
->arg_size(); i
++) {
5616 if (UseCall
->paramHasAttr(i
, Attribute::Preallocated
)) {
5617 ++NumPreallocatedArgs
;
5620 Check(NumPreallocatedArgs
!= 0,
5621 "cannot use preallocated intrinsics on a call without "
5622 "preallocated arguments");
5623 Check(NumArgs
->equalsInt(NumPreallocatedArgs
),
5624 "llvm.call.preallocated.setup arg size must be equal to number "
5625 "of preallocated arguments "
5628 // getOperandBundle() cannot be called if more than one of the operand
5629 // bundle exists. There is already a check elsewhere for this, so skip
5630 // here if we see more than one.
5631 if (UseCall
->countOperandBundlesOfType(LLVMContext::OB_preallocated
) >
5635 auto PreallocatedBundle
=
5636 UseCall
->getOperandBundle(LLVMContext::OB_preallocated
);
5637 Check(PreallocatedBundle
,
5638 "Use of llvm.call.preallocated.setup outside intrinsics "
5639 "must be in \"preallocated\" operand bundle");
5640 Check(PreallocatedBundle
->Inputs
.front().get() == &Call
,
5641 "preallocated bundle must have token from corresponding "
5642 "llvm.call.preallocated.setup");
5647 case Intrinsic::call_preallocated_arg
: {
5648 auto *Token
= dyn_cast
<CallBase
>(Call
.getArgOperand(0));
5649 Check(Token
&& Token
->getCalledFunction()->getIntrinsicID() ==
5650 Intrinsic::call_preallocated_setup
,
5651 "llvm.call.preallocated.arg token argument must be a "
5652 "llvm.call.preallocated.setup");
5653 Check(Call
.hasFnAttr(Attribute::Preallocated
),
5654 "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5655 "call site attribute");
5658 case Intrinsic::call_preallocated_teardown
: {
5659 auto *Token
= dyn_cast
<CallBase
>(Call
.getArgOperand(0));
5660 Check(Token
&& Token
->getCalledFunction()->getIntrinsicID() ==
5661 Intrinsic::call_preallocated_setup
,
5662 "llvm.call.preallocated.teardown token argument must be a "
5663 "llvm.call.preallocated.setup");
5666 case Intrinsic::gcroot
:
5667 case Intrinsic::gcwrite
:
5668 case Intrinsic::gcread
:
5669 if (ID
== Intrinsic::gcroot
) {
5671 dyn_cast
<AllocaInst
>(Call
.getArgOperand(0)->stripPointerCasts());
5672 Check(AI
, "llvm.gcroot parameter #1 must be an alloca.", Call
);
5673 Check(isa
<Constant
>(Call
.getArgOperand(1)),
5674 "llvm.gcroot parameter #2 must be a constant.", Call
);
5675 if (!AI
->getAllocatedType()->isPointerTy()) {
5676 Check(!isa
<ConstantPointerNull
>(Call
.getArgOperand(1)),
5677 "llvm.gcroot parameter #1 must either be a pointer alloca, "
5678 "or argument #2 must be a non-null constant.",
5683 Check(Call
.getParent()->getParent()->hasGC(),
5684 "Enclosing function does not use GC.", Call
);
5686 case Intrinsic::init_trampoline
:
5687 Check(isa
<Function
>(Call
.getArgOperand(1)->stripPointerCasts()),
5688 "llvm.init_trampoline parameter #2 must resolve to a function.",
5691 case Intrinsic::prefetch
:
5692 Check(cast
<ConstantInt
>(Call
.getArgOperand(1))->getZExtValue() < 2,
5693 "rw argument to llvm.prefetch must be 0-1", Call
);
5694 Check(cast
<ConstantInt
>(Call
.getArgOperand(2))->getZExtValue() < 4,
5695 "locality argument to llvm.prefetch must be 0-3", Call
);
5696 Check(cast
<ConstantInt
>(Call
.getArgOperand(3))->getZExtValue() < 2,
5697 "cache type argument to llvm.prefetch must be 0-1", Call
);
5699 case Intrinsic::stackprotector
:
5700 Check(isa
<AllocaInst
>(Call
.getArgOperand(1)->stripPointerCasts()),
5701 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call
);
5703 case Intrinsic::localescape
: {
5704 BasicBlock
*BB
= Call
.getParent();
5705 Check(BB
->isEntryBlock(), "llvm.localescape used outside of entry block",
5707 Check(!SawFrameEscape
, "multiple calls to llvm.localescape in one function",
5709 for (Value
*Arg
: Call
.args()) {
5710 if (isa
<ConstantPointerNull
>(Arg
))
5711 continue; // Null values are allowed as placeholders.
5712 auto *AI
= dyn_cast
<AllocaInst
>(Arg
->stripPointerCasts());
5713 Check(AI
&& AI
->isStaticAlloca(),
5714 "llvm.localescape only accepts static allocas", Call
);
5716 FrameEscapeInfo
[BB
->getParent()].first
= Call
.arg_size();
5717 SawFrameEscape
= true;
5720 case Intrinsic::localrecover
: {
5721 Value
*FnArg
= Call
.getArgOperand(0)->stripPointerCasts();
5722 Function
*Fn
= dyn_cast
<Function
>(FnArg
);
5723 Check(Fn
&& !Fn
->isDeclaration(),
5724 "llvm.localrecover first "
5725 "argument must be function defined in this module",
5727 auto *IdxArg
= cast
<ConstantInt
>(Call
.getArgOperand(2));
5728 auto &Entry
= FrameEscapeInfo
[Fn
];
5729 Entry
.second
= unsigned(
5730 std::max(uint64_t(Entry
.second
), IdxArg
->getLimitedValue(~0U) + 1));
5734 case Intrinsic::experimental_gc_statepoint
:
5735 if (auto *CI
= dyn_cast
<CallInst
>(&Call
))
5736 Check(!CI
->isInlineAsm(),
5737 "gc.statepoint support for inline assembly unimplemented", CI
);
5738 Check(Call
.getParent()->getParent()->hasGC(),
5739 "Enclosing function does not use GC.", Call
);
5741 verifyStatepoint(Call
);
5743 case Intrinsic::experimental_gc_result
: {
5744 Check(Call
.getParent()->getParent()->hasGC(),
5745 "Enclosing function does not use GC.", Call
);
5747 auto *Statepoint
= Call
.getArgOperand(0);
5748 if (isa
<UndefValue
>(Statepoint
))
5751 // Are we tied to a statepoint properly?
5752 const auto *StatepointCall
= dyn_cast
<CallBase
>(Statepoint
);
5753 const Function
*StatepointFn
=
5754 StatepointCall
? StatepointCall
->getCalledFunction() : nullptr;
5755 Check(StatepointFn
&& StatepointFn
->isDeclaration() &&
5756 StatepointFn
->getIntrinsicID() ==
5757 Intrinsic::experimental_gc_statepoint
,
5758 "gc.result operand #1 must be from a statepoint", Call
,
5759 Call
.getArgOperand(0));
5761 // Check that result type matches wrapped callee.
5762 auto *TargetFuncType
=
5763 cast
<FunctionType
>(StatepointCall
->getParamElementType(2));
5764 Check(Call
.getType() == TargetFuncType
->getReturnType(),
5765 "gc.result result type does not match wrapped callee", Call
);
5768 case Intrinsic::experimental_gc_relocate
: {
5769 Check(Call
.arg_size() == 3, "wrong number of arguments", Call
);
5771 Check(isa
<PointerType
>(Call
.getType()->getScalarType()),
5772 "gc.relocate must return a pointer or a vector of pointers", Call
);
5774 // Check that this relocate is correctly tied to the statepoint
5776 // This is case for relocate on the unwinding path of an invoke statepoint
5777 if (LandingPadInst
*LandingPad
=
5778 dyn_cast
<LandingPadInst
>(Call
.getArgOperand(0))) {
5780 const BasicBlock
*InvokeBB
=
5781 LandingPad
->getParent()->getUniquePredecessor();
5783 // Landingpad relocates should have only one predecessor with invoke
5784 // statepoint terminator
5785 Check(InvokeBB
, "safepoints should have unique landingpads",
5786 LandingPad
->getParent());
5787 Check(InvokeBB
->getTerminator(), "safepoint block should be well formed",
5789 Check(isa
<GCStatepointInst
>(InvokeBB
->getTerminator()),
5790 "gc relocate should be linked to a statepoint", InvokeBB
);
5792 // In all other cases relocate should be tied to the statepoint directly.
5793 // This covers relocates on a normal return path of invoke statepoint and
5794 // relocates of a call statepoint.
5795 auto *Token
= Call
.getArgOperand(0);
5796 Check(isa
<GCStatepointInst
>(Token
) || isa
<UndefValue
>(Token
),
5797 "gc relocate is incorrectly tied to the statepoint", Call
, Token
);
5800 // Verify rest of the relocate arguments.
5801 const Value
&StatepointCall
= *cast
<GCRelocateInst
>(Call
).getStatepoint();
5803 // Both the base and derived must be piped through the safepoint.
5804 Value
*Base
= Call
.getArgOperand(1);
5805 Check(isa
<ConstantInt
>(Base
),
5806 "gc.relocate operand #2 must be integer offset", Call
);
5808 Value
*Derived
= Call
.getArgOperand(2);
5809 Check(isa
<ConstantInt
>(Derived
),
5810 "gc.relocate operand #3 must be integer offset", Call
);
5812 const uint64_t BaseIndex
= cast
<ConstantInt
>(Base
)->getZExtValue();
5813 const uint64_t DerivedIndex
= cast
<ConstantInt
>(Derived
)->getZExtValue();
5816 if (isa
<UndefValue
>(StatepointCall
))
5818 if (auto Opt
= cast
<GCStatepointInst
>(StatepointCall
)
5819 .getOperandBundle(LLVMContext::OB_gc_live
)) {
5820 Check(BaseIndex
< Opt
->Inputs
.size(),
5821 "gc.relocate: statepoint base index out of bounds", Call
);
5822 Check(DerivedIndex
< Opt
->Inputs
.size(),
5823 "gc.relocate: statepoint derived index out of bounds", Call
);
5826 // Relocated value must be either a pointer type or vector-of-pointer type,
5827 // but gc_relocate does not need to return the same pointer type as the
5828 // relocated pointer. It can be casted to the correct type later if it's
5829 // desired. However, they must have the same address space and 'vectorness'
5830 GCRelocateInst
&Relocate
= cast
<GCRelocateInst
>(Call
);
5831 auto *ResultType
= Call
.getType();
5832 auto *DerivedType
= Relocate
.getDerivedPtr()->getType();
5833 auto *BaseType
= Relocate
.getBasePtr()->getType();
5835 Check(BaseType
->isPtrOrPtrVectorTy(),
5836 "gc.relocate: relocated value must be a pointer", Call
);
5837 Check(DerivedType
->isPtrOrPtrVectorTy(),
5838 "gc.relocate: relocated value must be a pointer", Call
);
5840 Check(ResultType
->isVectorTy() == DerivedType
->isVectorTy(),
5841 "gc.relocate: vector relocates to vector and pointer to pointer",
5844 ResultType
->getPointerAddressSpace() ==
5845 DerivedType
->getPointerAddressSpace(),
5846 "gc.relocate: relocating a pointer shouldn't change its address space",
5849 auto GC
= llvm::getGCStrategy(Relocate
.getFunction()->getGC());
5850 Check(GC
, "gc.relocate: calling function must have GCStrategy",
5851 Call
.getFunction());
5853 auto isGCPtr
= [&GC
](Type
*PTy
) {
5854 return GC
->isGCManagedPointer(PTy
->getScalarType()).value_or(true);
5856 Check(isGCPtr(ResultType
), "gc.relocate: must return gc pointer", Call
);
5857 Check(isGCPtr(BaseType
),
5858 "gc.relocate: relocated value must be a gc pointer", Call
);
5859 Check(isGCPtr(DerivedType
),
5860 "gc.relocate: relocated value must be a gc pointer", Call
);
5864 case Intrinsic::experimental_patchpoint
: {
5865 if (Call
.getCallingConv() == CallingConv::AnyReg
) {
5866 Check(Call
.getType()->isSingleValueType(),
5867 "patchpoint: invalid return type used with anyregcc", Call
);
5871 case Intrinsic::eh_exceptioncode
:
5872 case Intrinsic::eh_exceptionpointer
: {
5873 Check(isa
<CatchPadInst
>(Call
.getArgOperand(0)),
5874 "eh.exceptionpointer argument must be a catchpad", Call
);
5877 case Intrinsic::get_active_lane_mask
: {
5878 Check(Call
.getType()->isVectorTy(),
5879 "get_active_lane_mask: must return a "
5882 auto *ElemTy
= Call
.getType()->getScalarType();
5883 Check(ElemTy
->isIntegerTy(1),
5884 "get_active_lane_mask: element type is not "
5889 case Intrinsic::experimental_get_vector_length
: {
5890 ConstantInt
*VF
= cast
<ConstantInt
>(Call
.getArgOperand(1));
5891 Check(!VF
->isNegative() && !VF
->isZero(),
5892 "get_vector_length: VF must be positive", Call
);
5895 case Intrinsic::masked_load
: {
5896 Check(Call
.getType()->isVectorTy(), "masked_load: must return a vector",
5899 ConstantInt
*Alignment
= cast
<ConstantInt
>(Call
.getArgOperand(1));
5900 Value
*Mask
= Call
.getArgOperand(2);
5901 Value
*PassThru
= Call
.getArgOperand(3);
5902 Check(Mask
->getType()->isVectorTy(), "masked_load: mask must be vector",
5904 Check(Alignment
->getValue().isPowerOf2(),
5905 "masked_load: alignment must be a power of 2", Call
);
5906 Check(PassThru
->getType() == Call
.getType(),
5907 "masked_load: pass through and return type must match", Call
);
5908 Check(cast
<VectorType
>(Mask
->getType())->getElementCount() ==
5909 cast
<VectorType
>(Call
.getType())->getElementCount(),
5910 "masked_load: vector mask must be same length as return", Call
);
5913 case Intrinsic::masked_store
: {
5914 Value
*Val
= Call
.getArgOperand(0);
5915 ConstantInt
*Alignment
= cast
<ConstantInt
>(Call
.getArgOperand(2));
5916 Value
*Mask
= Call
.getArgOperand(3);
5917 Check(Mask
->getType()->isVectorTy(), "masked_store: mask must be vector",
5919 Check(Alignment
->getValue().isPowerOf2(),
5920 "masked_store: alignment must be a power of 2", Call
);
5921 Check(cast
<VectorType
>(Mask
->getType())->getElementCount() ==
5922 cast
<VectorType
>(Val
->getType())->getElementCount(),
5923 "masked_store: vector mask must be same length as value", Call
);
5927 case Intrinsic::masked_gather
: {
5928 const APInt
&Alignment
=
5929 cast
<ConstantInt
>(Call
.getArgOperand(1))->getValue();
5930 Check(Alignment
.isZero() || Alignment
.isPowerOf2(),
5931 "masked_gather: alignment must be 0 or a power of 2", Call
);
5934 case Intrinsic::masked_scatter
: {
5935 const APInt
&Alignment
=
5936 cast
<ConstantInt
>(Call
.getArgOperand(2))->getValue();
5937 Check(Alignment
.isZero() || Alignment
.isPowerOf2(),
5938 "masked_scatter: alignment must be 0 or a power of 2", Call
);
5942 case Intrinsic::experimental_guard
: {
5943 Check(isa
<CallInst
>(Call
), "experimental_guard cannot be invoked", Call
);
5944 Check(Call
.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1,
5945 "experimental_guard must have exactly one "
5946 "\"deopt\" operand bundle");
5950 case Intrinsic::experimental_deoptimize
: {
5951 Check(isa
<CallInst
>(Call
), "experimental_deoptimize cannot be invoked",
5953 Check(Call
.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1,
5954 "experimental_deoptimize must have exactly one "
5955 "\"deopt\" operand bundle");
5956 Check(Call
.getType() == Call
.getFunction()->getReturnType(),
5957 "experimental_deoptimize return type must match caller return type");
5959 if (isa
<CallInst
>(Call
)) {
5960 auto *RI
= dyn_cast
<ReturnInst
>(Call
.getNextNode());
5962 "calls to experimental_deoptimize must be followed by a return");
5964 if (!Call
.getType()->isVoidTy() && RI
)
5965 Check(RI
->getReturnValue() == &Call
,
5966 "calls to experimental_deoptimize must be followed by a return "
5967 "of the value computed by experimental_deoptimize");
5972 case Intrinsic::vastart
: {
5973 Check(Call
.getFunction()->isVarArg(),
5974 "va_start called in a non-varargs function");
5977 case Intrinsic::vector_reduce_and
:
5978 case Intrinsic::vector_reduce_or
:
5979 case Intrinsic::vector_reduce_xor
:
5980 case Intrinsic::vector_reduce_add
:
5981 case Intrinsic::vector_reduce_mul
:
5982 case Intrinsic::vector_reduce_smax
:
5983 case Intrinsic::vector_reduce_smin
:
5984 case Intrinsic::vector_reduce_umax
:
5985 case Intrinsic::vector_reduce_umin
: {
5986 Type
*ArgTy
= Call
.getArgOperand(0)->getType();
5987 Check(ArgTy
->isIntOrIntVectorTy() && ArgTy
->isVectorTy(),
5988 "Intrinsic has incorrect argument type!");
5991 case Intrinsic::vector_reduce_fmax
:
5992 case Intrinsic::vector_reduce_fmin
: {
5993 Type
*ArgTy
= Call
.getArgOperand(0)->getType();
5994 Check(ArgTy
->isFPOrFPVectorTy() && ArgTy
->isVectorTy(),
5995 "Intrinsic has incorrect argument type!");
5998 case Intrinsic::vector_reduce_fadd
:
5999 case Intrinsic::vector_reduce_fmul
: {
6000 // Unlike the other reductions, the first argument is a start value. The
6001 // second argument is the vector to be reduced.
6002 Type
*ArgTy
= Call
.getArgOperand(1)->getType();
6003 Check(ArgTy
->isFPOrFPVectorTy() && ArgTy
->isVectorTy(),
6004 "Intrinsic has incorrect argument type!");
6007 case Intrinsic::smul_fix
:
6008 case Intrinsic::smul_fix_sat
:
6009 case Intrinsic::umul_fix
:
6010 case Intrinsic::umul_fix_sat
:
6011 case Intrinsic::sdiv_fix
:
6012 case Intrinsic::sdiv_fix_sat
:
6013 case Intrinsic::udiv_fix
:
6014 case Intrinsic::udiv_fix_sat
: {
6015 Value
*Op1
= Call
.getArgOperand(0);
6016 Value
*Op2
= Call
.getArgOperand(1);
6017 Check(Op1
->getType()->isIntOrIntVectorTy(),
6018 "first operand of [us][mul|div]_fix[_sat] must be an int type or "
6020 Check(Op2
->getType()->isIntOrIntVectorTy(),
6021 "second operand of [us][mul|div]_fix[_sat] must be an int type or "
6024 auto *Op3
= cast
<ConstantInt
>(Call
.getArgOperand(2));
6025 Check(Op3
->getType()->isIntegerTy(),
6026 "third operand of [us][mul|div]_fix[_sat] must be an int type");
6027 Check(Op3
->getBitWidth() <= 32,
6028 "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits");
6030 if (ID
== Intrinsic::smul_fix
|| ID
== Intrinsic::smul_fix_sat
||
6031 ID
== Intrinsic::sdiv_fix
|| ID
== Intrinsic::sdiv_fix_sat
) {
6032 Check(Op3
->getZExtValue() < Op1
->getType()->getScalarSizeInBits(),
6033 "the scale of s[mul|div]_fix[_sat] must be less than the width of "
6036 Check(Op3
->getZExtValue() <= Op1
->getType()->getScalarSizeInBits(),
6037 "the scale of u[mul|div]_fix[_sat] must be less than or equal "
6038 "to the width of the operands");
6042 case Intrinsic::lrint
:
6043 case Intrinsic::llrint
:
6044 case Intrinsic::lround
:
6045 case Intrinsic::llround
: {
6046 Type
*ValTy
= Call
.getArgOperand(0)->getType();
6047 Type
*ResultTy
= Call
.getType();
6048 auto *VTy
= dyn_cast
<VectorType
>(ValTy
);
6049 auto *RTy
= dyn_cast
<VectorType
>(ResultTy
);
6050 Check(ValTy
->isFPOrFPVectorTy() && ResultTy
->isIntOrIntVectorTy(),
6051 ExpectedName
+ ": argument must be floating-point or vector "
6052 "of floating-points, and result must be integer or "
6053 "vector of integers",
6055 Check(ValTy
->isVectorTy() == ResultTy
->isVectorTy(),
6056 ExpectedName
+ ": argument and result disagree on vector use", &Call
);
6058 Check(VTy
->getElementCount() == RTy
->getElementCount(),
6059 ExpectedName
+ ": argument must be same length as result", &Call
);
6063 case Intrinsic::bswap
: {
6064 Type
*Ty
= Call
.getType();
6065 unsigned Size
= Ty
->getScalarSizeInBits();
6066 Check(Size
% 16 == 0, "bswap must be an even number of bytes", &Call
);
6069 case Intrinsic::invariant_start
: {
6070 ConstantInt
*InvariantSize
= dyn_cast
<ConstantInt
>(Call
.getArgOperand(0));
6071 Check(InvariantSize
&&
6072 (!InvariantSize
->isNegative() || InvariantSize
->isMinusOne()),
6073 "invariant_start parameter must be -1, 0 or a positive number",
6077 case Intrinsic::matrix_multiply
:
6078 case Intrinsic::matrix_transpose
:
6079 case Intrinsic::matrix_column_major_load
:
6080 case Intrinsic::matrix_column_major_store
: {
6081 Function
*IF
= Call
.getCalledFunction();
6082 ConstantInt
*Stride
= nullptr;
6083 ConstantInt
*NumRows
;
6084 ConstantInt
*NumColumns
;
6085 VectorType
*ResultTy
;
6086 Type
*Op0ElemTy
= nullptr;
6087 Type
*Op1ElemTy
= nullptr;
6089 case Intrinsic::matrix_multiply
: {
6090 NumRows
= cast
<ConstantInt
>(Call
.getArgOperand(2));
6091 ConstantInt
*N
= cast
<ConstantInt
>(Call
.getArgOperand(3));
6092 NumColumns
= cast
<ConstantInt
>(Call
.getArgOperand(4));
6093 Check(cast
<FixedVectorType
>(Call
.getArgOperand(0)->getType())
6094 ->getNumElements() ==
6095 NumRows
->getZExtValue() * N
->getZExtValue(),
6096 "First argument of a matrix operation does not match specified "
6098 Check(cast
<FixedVectorType
>(Call
.getArgOperand(1)->getType())
6099 ->getNumElements() ==
6100 N
->getZExtValue() * NumColumns
->getZExtValue(),
6101 "Second argument of a matrix operation does not match specified "
6104 ResultTy
= cast
<VectorType
>(Call
.getType());
6106 cast
<VectorType
>(Call
.getArgOperand(0)->getType())->getElementType();
6108 cast
<VectorType
>(Call
.getArgOperand(1)->getType())->getElementType();
6111 case Intrinsic::matrix_transpose
:
6112 NumRows
= cast
<ConstantInt
>(Call
.getArgOperand(1));
6113 NumColumns
= cast
<ConstantInt
>(Call
.getArgOperand(2));
6114 ResultTy
= cast
<VectorType
>(Call
.getType());
6116 cast
<VectorType
>(Call
.getArgOperand(0)->getType())->getElementType();
6118 case Intrinsic::matrix_column_major_load
: {
6119 Stride
= dyn_cast
<ConstantInt
>(Call
.getArgOperand(1));
6120 NumRows
= cast
<ConstantInt
>(Call
.getArgOperand(3));
6121 NumColumns
= cast
<ConstantInt
>(Call
.getArgOperand(4));
6122 ResultTy
= cast
<VectorType
>(Call
.getType());
6125 case Intrinsic::matrix_column_major_store
: {
6126 Stride
= dyn_cast
<ConstantInt
>(Call
.getArgOperand(2));
6127 NumRows
= cast
<ConstantInt
>(Call
.getArgOperand(4));
6128 NumColumns
= cast
<ConstantInt
>(Call
.getArgOperand(5));
6129 ResultTy
= cast
<VectorType
>(Call
.getArgOperand(0)->getType());
6131 cast
<VectorType
>(Call
.getArgOperand(0)->getType())->getElementType();
6135 llvm_unreachable("unexpected intrinsic");
6138 Check(ResultTy
->getElementType()->isIntegerTy() ||
6139 ResultTy
->getElementType()->isFloatingPointTy(),
6140 "Result type must be an integer or floating-point type!", IF
);
6143 Check(ResultTy
->getElementType() == Op0ElemTy
,
6144 "Vector element type mismatch of the result and first operand "
6149 Check(ResultTy
->getElementType() == Op1ElemTy
,
6150 "Vector element type mismatch of the result and second operand "
6154 Check(cast
<FixedVectorType
>(ResultTy
)->getNumElements() ==
6155 NumRows
->getZExtValue() * NumColumns
->getZExtValue(),
6156 "Result of a matrix operation does not fit in the returned vector!");
6159 Check(Stride
->getZExtValue() >= NumRows
->getZExtValue(),
6160 "Stride must be greater or equal than the number of rows!", IF
);
6164 case Intrinsic::vector_splice
: {
6165 VectorType
*VecTy
= cast
<VectorType
>(Call
.getType());
6166 int64_t Idx
= cast
<ConstantInt
>(Call
.getArgOperand(2))->getSExtValue();
6167 int64_t KnownMinNumElements
= VecTy
->getElementCount().getKnownMinValue();
6168 if (Call
.getParent() && Call
.getParent()->getParent()) {
6169 AttributeList Attrs
= Call
.getParent()->getParent()->getAttributes();
6170 if (Attrs
.hasFnAttr(Attribute::VScaleRange
))
6171 KnownMinNumElements
*= Attrs
.getFnAttrs().getVScaleRangeMin();
6173 Check((Idx
< 0 && std::abs(Idx
) <= KnownMinNumElements
) ||
6174 (Idx
>= 0 && Idx
< KnownMinNumElements
),
6175 "The splice index exceeds the range [-VL, VL-1] where VL is the "
6176 "known minimum number of elements in the vector. For scalable "
6177 "vectors the minimum number of elements is determined from "
6182 case Intrinsic::stepvector
: {
6183 VectorType
*VecTy
= dyn_cast
<VectorType
>(Call
.getType());
6184 Check(VecTy
&& VecTy
->getScalarType()->isIntegerTy() &&
6185 VecTy
->getScalarSizeInBits() >= 8,
6186 "stepvector only supported for vectors of integers "
6187 "with a bitwidth of at least 8.",
6191 case Intrinsic::experimental_vector_match
: {
6192 Value
*Op1
= Call
.getArgOperand(0);
6193 Value
*Op2
= Call
.getArgOperand(1);
6194 Value
*Mask
= Call
.getArgOperand(2);
6196 VectorType
*Op1Ty
= dyn_cast
<VectorType
>(Op1
->getType());
6197 VectorType
*Op2Ty
= dyn_cast
<VectorType
>(Op2
->getType());
6198 VectorType
*MaskTy
= dyn_cast
<VectorType
>(Mask
->getType());
6200 Check(Op1Ty
&& Op2Ty
&& MaskTy
, "Operands must be vectors.", &Call
);
6201 Check(isa
<FixedVectorType
>(Op2Ty
),
6202 "Second operand must be a fixed length vector.", &Call
);
6203 Check(Op1Ty
->getElementType()->isIntegerTy(),
6204 "First operand must be a vector of integers.", &Call
);
6205 Check(Op1Ty
->getElementType() == Op2Ty
->getElementType(),
6206 "First two operands must have the same element type.", &Call
);
6207 Check(Op1Ty
->getElementCount() == MaskTy
->getElementCount(),
6208 "First operand and mask must have the same number of elements.",
6210 Check(MaskTy
->getElementType()->isIntegerTy(1),
6211 "Mask must be a vector of i1's.", &Call
);
6212 Check(Call
.getType() == MaskTy
, "Return type must match the mask type.",
6216 case Intrinsic::vector_insert
: {
6217 Value
*Vec
= Call
.getArgOperand(0);
6218 Value
*SubVec
= Call
.getArgOperand(1);
6219 Value
*Idx
= Call
.getArgOperand(2);
6220 unsigned IdxN
= cast
<ConstantInt
>(Idx
)->getZExtValue();
6222 VectorType
*VecTy
= cast
<VectorType
>(Vec
->getType());
6223 VectorType
*SubVecTy
= cast
<VectorType
>(SubVec
->getType());
6225 ElementCount VecEC
= VecTy
->getElementCount();
6226 ElementCount SubVecEC
= SubVecTy
->getElementCount();
6227 Check(VecTy
->getElementType() == SubVecTy
->getElementType(),
6228 "vector_insert parameters must have the same element "
6231 Check(IdxN
% SubVecEC
.getKnownMinValue() == 0,
6232 "vector_insert index must be a constant multiple of "
6233 "the subvector's known minimum vector length.");
6235 // If this insertion is not the 'mixed' case where a fixed vector is
6236 // inserted into a scalable vector, ensure that the insertion of the
6237 // subvector does not overrun the parent vector.
6238 if (VecEC
.isScalable() == SubVecEC
.isScalable()) {
6239 Check(IdxN
< VecEC
.getKnownMinValue() &&
6240 IdxN
+ SubVecEC
.getKnownMinValue() <= VecEC
.getKnownMinValue(),
6241 "subvector operand of vector_insert would overrun the "
6242 "vector being inserted into.");
6246 case Intrinsic::vector_extract
: {
6247 Value
*Vec
= Call
.getArgOperand(0);
6248 Value
*Idx
= Call
.getArgOperand(1);
6249 unsigned IdxN
= cast
<ConstantInt
>(Idx
)->getZExtValue();
6251 VectorType
*ResultTy
= cast
<VectorType
>(Call
.getType());
6252 VectorType
*VecTy
= cast
<VectorType
>(Vec
->getType());
6254 ElementCount VecEC
= VecTy
->getElementCount();
6255 ElementCount ResultEC
= ResultTy
->getElementCount();
6257 Check(ResultTy
->getElementType() == VecTy
->getElementType(),
6258 "vector_extract result must have the same element "
6259 "type as the input vector.",
6261 Check(IdxN
% ResultEC
.getKnownMinValue() == 0,
6262 "vector_extract index must be a constant multiple of "
6263 "the result type's known minimum vector length.");
6265 // If this extraction is not the 'mixed' case where a fixed vector is
6266 // extracted from a scalable vector, ensure that the extraction does not
6267 // overrun the parent vector.
6268 if (VecEC
.isScalable() == ResultEC
.isScalable()) {
6269 Check(IdxN
< VecEC
.getKnownMinValue() &&
6270 IdxN
+ ResultEC
.getKnownMinValue() <= VecEC
.getKnownMinValue(),
6271 "vector_extract would overrun.");
6275 case Intrinsic::experimental_vector_partial_reduce_add
: {
6276 VectorType
*AccTy
= cast
<VectorType
>(Call
.getArgOperand(0)->getType());
6277 VectorType
*VecTy
= cast
<VectorType
>(Call
.getArgOperand(1)->getType());
6279 unsigned VecWidth
= VecTy
->getElementCount().getKnownMinValue();
6280 unsigned AccWidth
= AccTy
->getElementCount().getKnownMinValue();
6282 Check((VecWidth
% AccWidth
) == 0,
6283 "Invalid vector widths for partial "
6284 "reduction. The width of the input vector "
6285 "must be a positive integer multiple of "
6286 "the width of the accumulator vector.");
6289 case Intrinsic::experimental_noalias_scope_decl
: {
6290 NoAliasScopeDecls
.push_back(cast
<IntrinsicInst
>(&Call
));
6293 case Intrinsic::preserve_array_access_index
:
6294 case Intrinsic::preserve_struct_access_index
:
6295 case Intrinsic::aarch64_ldaxr
:
6296 case Intrinsic::aarch64_ldxr
:
6297 case Intrinsic::arm_ldaex
:
6298 case Intrinsic::arm_ldrex
: {
6299 Type
*ElemTy
= Call
.getParamElementType(0);
6300 Check(ElemTy
, "Intrinsic requires elementtype attribute on first argument.",
6304 case Intrinsic::aarch64_stlxr
:
6305 case Intrinsic::aarch64_stxr
:
6306 case Intrinsic::arm_stlex
:
6307 case Intrinsic::arm_strex
: {
6308 Type
*ElemTy
= Call
.getAttributes().getParamElementType(1);
6310 "Intrinsic requires elementtype attribute on second argument.",
6314 case Intrinsic::aarch64_prefetch
: {
6315 Check(cast
<ConstantInt
>(Call
.getArgOperand(1))->getZExtValue() < 2,
6316 "write argument to llvm.aarch64.prefetch must be 0 or 1", Call
);
6317 Check(cast
<ConstantInt
>(Call
.getArgOperand(2))->getZExtValue() < 4,
6318 "target argument to llvm.aarch64.prefetch must be 0-3", Call
);
6319 Check(cast
<ConstantInt
>(Call
.getArgOperand(3))->getZExtValue() < 2,
6320 "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call
);
6321 Check(cast
<ConstantInt
>(Call
.getArgOperand(4))->getZExtValue() < 2,
6322 "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call
);
6325 case Intrinsic::callbr_landingpad
: {
6326 const auto *CBR
= dyn_cast
<CallBrInst
>(Call
.getOperand(0));
6327 Check(CBR
, "intrinstic requires callbr operand", &Call
);
6331 const BasicBlock
*LandingPadBB
= Call
.getParent();
6332 const BasicBlock
*PredBB
= LandingPadBB
->getUniquePredecessor();
6334 CheckFailed("Intrinsic in block must have 1 unique predecessor", &Call
);
6337 if (!isa
<CallBrInst
>(PredBB
->getTerminator())) {
6338 CheckFailed("Intrinsic must have corresponding callbr in predecessor",
6342 Check(llvm::is_contained(CBR
->getIndirectDests(), LandingPadBB
),
6343 "Intrinsic's corresponding callbr must have intrinsic's parent basic "
6344 "block in indirect destination list",
6346 const Instruction
&First
= *LandingPadBB
->begin();
6347 Check(&First
== &Call
, "No other instructions may proceed intrinsic",
6351 case Intrinsic::amdgcn_cs_chain
: {
6352 auto CallerCC
= Call
.getCaller()->getCallingConv();
6354 case CallingConv::AMDGPU_CS
:
6355 case CallingConv::AMDGPU_CS_Chain
:
6356 case CallingConv::AMDGPU_CS_ChainPreserve
:
6359 CheckFailed("Intrinsic can only be used from functions with the "
6360 "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6361 "calling conventions",
6366 Check(Call
.paramHasAttr(2, Attribute::InReg
),
6367 "SGPR arguments must have the `inreg` attribute", &Call
);
6368 Check(!Call
.paramHasAttr(3, Attribute::InReg
),
6369 "VGPR arguments must not have the `inreg` attribute", &Call
);
6372 case Intrinsic::amdgcn_set_inactive_chain_arg
: {
6373 auto CallerCC
= Call
.getCaller()->getCallingConv();
6375 case CallingConv::AMDGPU_CS_Chain
:
6376 case CallingConv::AMDGPU_CS_ChainPreserve
:
6379 CheckFailed("Intrinsic can only be used from functions with the "
6380 "amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6381 "calling conventions",
6386 unsigned InactiveIdx
= 1;
6387 Check(!Call
.paramHasAttr(InactiveIdx
, Attribute::InReg
),
6388 "Value for inactive lanes must not have the `inreg` attribute",
6390 Check(isa
<Argument
>(Call
.getArgOperand(InactiveIdx
)),
6391 "Value for inactive lanes must be a function argument", &Call
);
6392 Check(!cast
<Argument
>(Call
.getArgOperand(InactiveIdx
))->hasInRegAttr(),
6393 "Value for inactive lanes must be a VGPR function argument", &Call
);
6396 case Intrinsic::amdgcn_s_prefetch_data
: {
6398 AMDGPU::isFlatGlobalAddrSpace(
6399 Call
.getArgOperand(0)->getType()->getPointerAddressSpace()),
6400 "llvm.amdgcn.s.prefetch.data only supports global or constant memory");
6403 case Intrinsic::amdgcn_mfma_scale_f32_16x16x128_f8f6f4
:
6404 case Intrinsic::amdgcn_mfma_scale_f32_32x32x64_f8f6f4
: {
6405 Value
*Src0
= Call
.getArgOperand(0);
6406 Value
*Src1
= Call
.getArgOperand(1);
6408 uint64_t CBSZ
= cast
<ConstantInt
>(Call
.getArgOperand(3))->getZExtValue();
6409 uint64_t BLGP
= cast
<ConstantInt
>(Call
.getArgOperand(4))->getZExtValue();
6410 Check(CBSZ
<= 4, "invalid value for cbsz format", Call
,
6411 Call
.getArgOperand(3));
6412 Check(BLGP
<= 4, "invalid value for blgp format", Call
,
6413 Call
.getArgOperand(4));
6415 // AMDGPU::MFMAScaleFormats values
6416 auto getFormatNumRegs
= [](unsigned FormatVal
) {
6417 switch (FormatVal
) {
6427 llvm_unreachable("invalid format value");
6431 auto isValidSrcASrcBVector
= [](FixedVectorType
*Ty
) {
6432 if (!Ty
|| !Ty
->getElementType()->isIntegerTy(32))
6434 unsigned NumElts
= Ty
->getNumElements();
6435 return NumElts
== 4 || NumElts
== 6 || NumElts
== 8;
6438 auto *Src0Ty
= dyn_cast
<FixedVectorType
>(Src0
->getType());
6439 auto *Src1Ty
= dyn_cast
<FixedVectorType
>(Src1
->getType());
6440 Check(isValidSrcASrcBVector(Src0Ty
),
6441 "operand 0 must be 4, 6 or 8 element i32 vector", &Call
, Src0
);
6442 Check(isValidSrcASrcBVector(Src1Ty
),
6443 "operand 1 must be 4, 6 or 8 element i32 vector", &Call
, Src1
);
6445 // Permit excess registers for the format.
6446 Check(Src0Ty
->getNumElements() >= getFormatNumRegs(CBSZ
),
6447 "invalid vector type for format", &Call
, Src0
, Call
.getArgOperand(3));
6448 Check(Src1Ty
->getNumElements() >= getFormatNumRegs(BLGP
),
6449 "invalid vector type for format", &Call
, Src1
, Call
.getArgOperand(5));
6452 case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32
:
6453 case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32
: {
6454 Value
*V
= Call
.getArgOperand(0);
6455 unsigned RegCount
= cast
<ConstantInt
>(V
)->getZExtValue();
6456 Check(RegCount
% 8 == 0,
6457 "reg_count argument to nvvm.setmaxnreg must be in multiples of 8");
6458 Check((RegCount
>= 24 && RegCount
<= 256),
6459 "reg_count argument to nvvm.setmaxnreg must be within [24, 256]");
6462 case Intrinsic::experimental_convergence_entry
:
6463 case Intrinsic::experimental_convergence_anchor
:
6465 case Intrinsic::experimental_convergence_loop
:
6467 case Intrinsic::ptrmask
: {
6468 Type
*Ty0
= Call
.getArgOperand(0)->getType();
6469 Type
*Ty1
= Call
.getArgOperand(1)->getType();
6470 Check(Ty0
->isPtrOrPtrVectorTy(),
6471 "llvm.ptrmask intrinsic first argument must be pointer or vector "
6475 Ty0
->isVectorTy() == Ty1
->isVectorTy(),
6476 "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
6478 if (Ty0
->isVectorTy())
6479 Check(cast
<VectorType
>(Ty0
)->getElementCount() ==
6480 cast
<VectorType
>(Ty1
)->getElementCount(),
6481 "llvm.ptrmask intrinsic arguments must have the same number of "
6484 Check(DL
.getIndexTypeSizeInBits(Ty0
) == Ty1
->getScalarSizeInBits(),
6485 "llvm.ptrmask intrinsic second argument bitwidth must match "
6486 "pointer index type size of first argument",
6490 case Intrinsic::threadlocal_address
: {
6491 const Value
&Arg0
= *Call
.getArgOperand(0);
6492 Check(isa
<GlobalValue
>(Arg0
),
6493 "llvm.threadlocal.address first argument must be a GlobalValue");
6494 Check(cast
<GlobalValue
>(Arg0
).isThreadLocal(),
6495 "llvm.threadlocal.address operand isThreadLocal() must be true");
6498 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_cta
:
6499 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_cluster
:
6500 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_gpu
:
6501 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_sys
: {
6502 unsigned size
= cast
<ConstantInt
>(Call
.getArgOperand(1))->getZExtValue();
6503 Check(size
== 128, " The only supported value for size operand is 128");
6508 // Verify that there aren't any unmediated control transfers between funclets.
6509 if (IntrinsicInst::mayLowerToFunctionCall(ID
)) {
6510 Function
*F
= Call
.getParent()->getParent();
6511 if (F
->hasPersonalityFn() &&
6512 isScopedEHPersonality(classifyEHPersonality(F
->getPersonalityFn()))) {
6513 // Run EH funclet coloring on-demand and cache results for other intrinsic
6514 // calls in this function
6515 if (BlockEHFuncletColors
.empty())
6516 BlockEHFuncletColors
= colorEHFunclets(*F
);
6518 // Check for catch-/cleanup-pad in first funclet block
6519 bool InEHFunclet
= false;
6520 BasicBlock
*CallBB
= Call
.getParent();
6521 const ColorVector
&CV
= BlockEHFuncletColors
.find(CallBB
)->second
;
6522 assert(CV
.size() > 0 && "Uncolored block");
6523 for (BasicBlock
*ColorFirstBB
: CV
)
6524 if (auto It
= ColorFirstBB
->getFirstNonPHIIt();
6525 It
!= ColorFirstBB
->end())
6526 if (dyn_cast_or_null
<FuncletPadInst
>(&*It
))
6529 // Check for funclet operand bundle
6530 bool HasToken
= false;
6531 for (unsigned I
= 0, E
= Call
.getNumOperandBundles(); I
!= E
; ++I
)
6532 if (Call
.getOperandBundleAt(I
).getTagID() == LLVMContext::OB_funclet
)
6535 // This would cause silent code truncation in WinEHPrepare
6537 Check(HasToken
, "Missing funclet token on intrinsic call", &Call
);
6542 /// Carefully grab the subprogram from a local scope.
6544 /// This carefully grabs the subprogram from a local scope, avoiding the
6545 /// built-in assertions that would typically fire.
6546 static DISubprogram
*getSubprogram(Metadata
*LocalScope
) {
6550 if (auto *SP
= dyn_cast
<DISubprogram
>(LocalScope
))
6553 if (auto *LB
= dyn_cast
<DILexicalBlockBase
>(LocalScope
))
6554 return getSubprogram(LB
->getRawScope());
6556 // Just return null; broken scope chains are checked elsewhere.
6557 assert(!isa
<DILocalScope
>(LocalScope
) && "Unknown type of local scope");
6561 void Verifier::visit(DbgLabelRecord
&DLR
) {
6562 CheckDI(isa
<DILabel
>(DLR
.getRawLabel()),
6563 "invalid #dbg_label intrinsic variable", &DLR
, DLR
.getRawLabel());
6565 // Ignore broken !dbg attachments; they're checked elsewhere.
6566 if (MDNode
*N
= DLR
.getDebugLoc().getAsMDNode())
6567 if (!isa
<DILocation
>(N
))
6570 BasicBlock
*BB
= DLR
.getParent();
6571 Function
*F
= BB
? BB
->getParent() : nullptr;
6573 // The scopes for variables and !dbg attachments must agree.
6574 DILabel
*Label
= DLR
.getLabel();
6575 DILocation
*Loc
= DLR
.getDebugLoc();
6576 CheckDI(Loc
, "#dbg_label record requires a !dbg attachment", &DLR
, BB
, F
);
6578 DISubprogram
*LabelSP
= getSubprogram(Label
->getRawScope());
6579 DISubprogram
*LocSP
= getSubprogram(Loc
->getRawScope());
6580 if (!LabelSP
|| !LocSP
)
6583 CheckDI(LabelSP
== LocSP
,
6584 "mismatched subprogram between #dbg_label label and !dbg attachment",
6585 &DLR
, BB
, F
, Label
, Label
->getScope()->getSubprogram(), Loc
,
6586 Loc
->getScope()->getSubprogram());
6589 void Verifier::visit(DbgVariableRecord
&DVR
) {
6590 BasicBlock
*BB
= DVR
.getParent();
6591 Function
*F
= BB
->getParent();
6593 CheckDI(DVR
.getType() == DbgVariableRecord::LocationType::Value
||
6594 DVR
.getType() == DbgVariableRecord::LocationType::Declare
||
6595 DVR
.getType() == DbgVariableRecord::LocationType::Assign
,
6596 "invalid #dbg record type", &DVR
, DVR
.getType());
6598 // The location for a DbgVariableRecord must be either a ValueAsMetadata,
6599 // DIArgList, or an empty MDNode (which is a legacy representation for an
6600 // "undef" location).
6601 auto *MD
= DVR
.getRawLocation();
6602 CheckDI(MD
&& (isa
<ValueAsMetadata
>(MD
) || isa
<DIArgList
>(MD
) ||
6603 (isa
<MDNode
>(MD
) && !cast
<MDNode
>(MD
)->getNumOperands())),
6604 "invalid #dbg record address/value", &DVR
, MD
);
6605 if (auto *VAM
= dyn_cast
<ValueAsMetadata
>(MD
))
6606 visitValueAsMetadata(*VAM
, F
);
6607 else if (auto *AL
= dyn_cast
<DIArgList
>(MD
))
6608 visitDIArgList(*AL
, F
);
6610 CheckDI(isa_and_nonnull
<DILocalVariable
>(DVR
.getRawVariable()),
6611 "invalid #dbg record variable", &DVR
, DVR
.getRawVariable());
6612 visitMDNode(*DVR
.getRawVariable(), AreDebugLocsAllowed::No
);
6614 CheckDI(isa_and_nonnull
<DIExpression
>(DVR
.getRawExpression()),
6615 "invalid #dbg record expression", &DVR
, DVR
.getRawExpression());
6616 visitMDNode(*DVR
.getExpression(), AreDebugLocsAllowed::No
);
6618 if (DVR
.isDbgAssign()) {
6619 CheckDI(isa_and_nonnull
<DIAssignID
>(DVR
.getRawAssignID()),
6620 "invalid #dbg_assign DIAssignID", &DVR
, DVR
.getRawAssignID());
6621 visitMDNode(*cast
<DIAssignID
>(DVR
.getRawAssignID()),
6622 AreDebugLocsAllowed::No
);
6624 const auto *RawAddr
= DVR
.getRawAddress();
6625 // Similarly to the location above, the address for an assign
6626 // DbgVariableRecord must be a ValueAsMetadata or an empty MDNode, which
6627 // represents an undef address.
6629 isa
<ValueAsMetadata
>(RawAddr
) ||
6630 (isa
<MDNode
>(RawAddr
) && !cast
<MDNode
>(RawAddr
)->getNumOperands()),
6631 "invalid #dbg_assign address", &DVR
, DVR
.getRawAddress());
6632 if (auto *VAM
= dyn_cast
<ValueAsMetadata
>(RawAddr
))
6633 visitValueAsMetadata(*VAM
, F
);
6635 CheckDI(isa_and_nonnull
<DIExpression
>(DVR
.getRawAddressExpression()),
6636 "invalid #dbg_assign address expression", &DVR
,
6637 DVR
.getRawAddressExpression());
6638 visitMDNode(*DVR
.getAddressExpression(), AreDebugLocsAllowed::No
);
6640 // All of the linked instructions should be in the same function as DVR.
6641 for (Instruction
*I
: at::getAssignmentInsts(&DVR
))
6642 CheckDI(DVR
.getFunction() == I
->getFunction(),
6643 "inst not in same function as #dbg_assign", I
, &DVR
);
6646 // This check is redundant with one in visitLocalVariable().
6647 DILocalVariable
*Var
= DVR
.getVariable();
6648 CheckDI(isType(Var
->getRawType()), "invalid type ref", Var
,
6651 auto *DLNode
= DVR
.getDebugLoc().getAsMDNode();
6652 CheckDI(isa_and_nonnull
<DILocation
>(DLNode
), "invalid #dbg record DILocation",
6654 DILocation
*Loc
= DVR
.getDebugLoc();
6656 // The scopes for variables and !dbg attachments must agree.
6657 DISubprogram
*VarSP
= getSubprogram(Var
->getRawScope());
6658 DISubprogram
*LocSP
= getSubprogram(Loc
->getRawScope());
6659 if (!VarSP
|| !LocSP
)
6660 return; // Broken scope chains are checked elsewhere.
6662 CheckDI(VarSP
== LocSP
,
6663 "mismatched subprogram between #dbg record variable and DILocation",
6664 &DVR
, BB
, F
, Var
, Var
->getScope()->getSubprogram(), Loc
,
6665 Loc
->getScope()->getSubprogram());
6670 void Verifier::visitVPIntrinsic(VPIntrinsic
&VPI
) {
6671 if (auto *VPCast
= dyn_cast
<VPCastIntrinsic
>(&VPI
)) {
6672 auto *RetTy
= cast
<VectorType
>(VPCast
->getType());
6673 auto *ValTy
= cast
<VectorType
>(VPCast
->getOperand(0)->getType());
6674 Check(RetTy
->getElementCount() == ValTy
->getElementCount(),
6675 "VP cast intrinsic first argument and result vector lengths must be "
6679 switch (VPCast
->getIntrinsicID()) {
6681 llvm_unreachable("Unknown VP cast intrinsic");
6682 case Intrinsic::vp_trunc
:
6683 Check(RetTy
->isIntOrIntVectorTy() && ValTy
->isIntOrIntVectorTy(),
6684 "llvm.vp.trunc intrinsic first argument and result element type "
6687 Check(RetTy
->getScalarSizeInBits() < ValTy
->getScalarSizeInBits(),
6688 "llvm.vp.trunc intrinsic the bit size of first argument must be "
6689 "larger than the bit size of the return type",
6692 case Intrinsic::vp_zext
:
6693 case Intrinsic::vp_sext
:
6694 Check(RetTy
->isIntOrIntVectorTy() && ValTy
->isIntOrIntVectorTy(),
6695 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
6696 "element type must be integer",
6698 Check(RetTy
->getScalarSizeInBits() > ValTy
->getScalarSizeInBits(),
6699 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
6700 "argument must be smaller than the bit size of the return type",
6703 case Intrinsic::vp_fptoui
:
6704 case Intrinsic::vp_fptosi
:
6705 case Intrinsic::vp_lrint
:
6706 case Intrinsic::vp_llrint
:
6708 RetTy
->isIntOrIntVectorTy() && ValTy
->isFPOrFPVectorTy(),
6709 "llvm.vp.fptoui, llvm.vp.fptosi, llvm.vp.lrint or llvm.vp.llrint" "intrinsic first argument element "
6710 "type must be floating-point and result element type must be integer",
6713 case Intrinsic::vp_uitofp
:
6714 case Intrinsic::vp_sitofp
:
6716 RetTy
->isFPOrFPVectorTy() && ValTy
->isIntOrIntVectorTy(),
6717 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
6718 "type must be integer and result element type must be floating-point",
6721 case Intrinsic::vp_fptrunc
:
6722 Check(RetTy
->isFPOrFPVectorTy() && ValTy
->isFPOrFPVectorTy(),
6723 "llvm.vp.fptrunc intrinsic first argument and result element type "
6724 "must be floating-point",
6726 Check(RetTy
->getScalarSizeInBits() < ValTy
->getScalarSizeInBits(),
6727 "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
6728 "larger than the bit size of the return type",
6731 case Intrinsic::vp_fpext
:
6732 Check(RetTy
->isFPOrFPVectorTy() && ValTy
->isFPOrFPVectorTy(),
6733 "llvm.vp.fpext intrinsic first argument and result element type "
6734 "must be floating-point",
6736 Check(RetTy
->getScalarSizeInBits() > ValTy
->getScalarSizeInBits(),
6737 "llvm.vp.fpext intrinsic the bit size of first argument must be "
6738 "smaller than the bit size of the return type",
6741 case Intrinsic::vp_ptrtoint
:
6742 Check(RetTy
->isIntOrIntVectorTy() && ValTy
->isPtrOrPtrVectorTy(),
6743 "llvm.vp.ptrtoint intrinsic first argument element type must be "
6744 "pointer and result element type must be integer",
6747 case Intrinsic::vp_inttoptr
:
6748 Check(RetTy
->isPtrOrPtrVectorTy() && ValTy
->isIntOrIntVectorTy(),
6749 "llvm.vp.inttoptr intrinsic first argument element type must be "
6750 "integer and result element type must be pointer",
6755 if (VPI
.getIntrinsicID() == Intrinsic::vp_fcmp
) {
6756 auto Pred
= cast
<VPCmpIntrinsic
>(&VPI
)->getPredicate();
6757 Check(CmpInst::isFPPredicate(Pred
),
6758 "invalid predicate for VP FP comparison intrinsic", &VPI
);
6760 if (VPI
.getIntrinsicID() == Intrinsic::vp_icmp
) {
6761 auto Pred
= cast
<VPCmpIntrinsic
>(&VPI
)->getPredicate();
6762 Check(CmpInst::isIntPredicate(Pred
),
6763 "invalid predicate for VP integer comparison intrinsic", &VPI
);
6765 if (VPI
.getIntrinsicID() == Intrinsic::vp_is_fpclass
) {
6766 auto TestMask
= cast
<ConstantInt
>(VPI
.getOperand(1));
6767 Check((TestMask
->getZExtValue() & ~static_cast<unsigned>(fcAllFlags
)) == 0,
6768 "unsupported bits for llvm.vp.is.fpclass test mask");
6772 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic
&FPI
) {
6773 unsigned NumOperands
= FPI
.getNonMetadataArgCount();
6774 bool HasRoundingMD
=
6775 Intrinsic::hasConstrainedFPRoundingModeOperand(FPI
.getIntrinsicID());
6777 // Add the expected number of metadata operands.
6778 NumOperands
+= (1 + HasRoundingMD
);
6780 // Compare intrinsics carry an extra predicate metadata operand.
6781 if (isa
<ConstrainedFPCmpIntrinsic
>(FPI
))
6783 Check((FPI
.arg_size() == NumOperands
),
6784 "invalid arguments for constrained FP intrinsic", &FPI
);
6786 switch (FPI
.getIntrinsicID()) {
6787 case Intrinsic::experimental_constrained_lrint
:
6788 case Intrinsic::experimental_constrained_llrint
: {
6789 Type
*ValTy
= FPI
.getArgOperand(0)->getType();
6790 Type
*ResultTy
= FPI
.getType();
6791 Check(!ValTy
->isVectorTy() && !ResultTy
->isVectorTy(),
6792 "Intrinsic does not support vectors", &FPI
);
6796 case Intrinsic::experimental_constrained_lround
:
6797 case Intrinsic::experimental_constrained_llround
: {
6798 Type
*ValTy
= FPI
.getArgOperand(0)->getType();
6799 Type
*ResultTy
= FPI
.getType();
6800 Check(!ValTy
->isVectorTy() && !ResultTy
->isVectorTy(),
6801 "Intrinsic does not support vectors", &FPI
);
6805 case Intrinsic::experimental_constrained_fcmp
:
6806 case Intrinsic::experimental_constrained_fcmps
: {
6807 auto Pred
= cast
<ConstrainedFPCmpIntrinsic
>(&FPI
)->getPredicate();
6808 Check(CmpInst::isFPPredicate(Pred
),
6809 "invalid predicate for constrained FP comparison intrinsic", &FPI
);
6813 case Intrinsic::experimental_constrained_fptosi
:
6814 case Intrinsic::experimental_constrained_fptoui
: {
6815 Value
*Operand
= FPI
.getArgOperand(0);
6817 Check(Operand
->getType()->isFPOrFPVectorTy(),
6818 "Intrinsic first argument must be floating point", &FPI
);
6819 if (auto *OperandT
= dyn_cast
<VectorType
>(Operand
->getType())) {
6820 SrcEC
= cast
<VectorType
>(OperandT
)->getElementCount();
6824 Check(SrcEC
.isNonZero() == Operand
->getType()->isVectorTy(),
6825 "Intrinsic first argument and result disagree on vector use", &FPI
);
6826 Check(Operand
->getType()->isIntOrIntVectorTy(),
6827 "Intrinsic result must be an integer", &FPI
);
6828 if (auto *OperandT
= dyn_cast
<VectorType
>(Operand
->getType())) {
6829 Check(SrcEC
== cast
<VectorType
>(OperandT
)->getElementCount(),
6830 "Intrinsic first argument and result vector lengths must be equal",
6836 case Intrinsic::experimental_constrained_sitofp
:
6837 case Intrinsic::experimental_constrained_uitofp
: {
6838 Value
*Operand
= FPI
.getArgOperand(0);
6840 Check(Operand
->getType()->isIntOrIntVectorTy(),
6841 "Intrinsic first argument must be integer", &FPI
);
6842 if (auto *OperandT
= dyn_cast
<VectorType
>(Operand
->getType())) {
6843 SrcEC
= cast
<VectorType
>(OperandT
)->getElementCount();
6847 Check(SrcEC
.isNonZero() == Operand
->getType()->isVectorTy(),
6848 "Intrinsic first argument and result disagree on vector use", &FPI
);
6849 Check(Operand
->getType()->isFPOrFPVectorTy(),
6850 "Intrinsic result must be a floating point", &FPI
);
6851 if (auto *OperandT
= dyn_cast
<VectorType
>(Operand
->getType())) {
6852 Check(SrcEC
== cast
<VectorType
>(OperandT
)->getElementCount(),
6853 "Intrinsic first argument and result vector lengths must be equal",
6859 case Intrinsic::experimental_constrained_fptrunc
:
6860 case Intrinsic::experimental_constrained_fpext
: {
6861 Value
*Operand
= FPI
.getArgOperand(0);
6862 Type
*OperandTy
= Operand
->getType();
6863 Value
*Result
= &FPI
;
6864 Type
*ResultTy
= Result
->getType();
6865 Check(OperandTy
->isFPOrFPVectorTy(),
6866 "Intrinsic first argument must be FP or FP vector", &FPI
);
6867 Check(ResultTy
->isFPOrFPVectorTy(),
6868 "Intrinsic result must be FP or FP vector", &FPI
);
6869 Check(OperandTy
->isVectorTy() == ResultTy
->isVectorTy(),
6870 "Intrinsic first argument and result disagree on vector use", &FPI
);
6871 if (OperandTy
->isVectorTy()) {
6872 Check(cast
<VectorType
>(OperandTy
)->getElementCount() ==
6873 cast
<VectorType
>(ResultTy
)->getElementCount(),
6874 "Intrinsic first argument and result vector lengths must be equal",
6877 if (FPI
.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc
) {
6878 Check(OperandTy
->getScalarSizeInBits() > ResultTy
->getScalarSizeInBits(),
6879 "Intrinsic first argument's type must be larger than result type",
6882 Check(OperandTy
->getScalarSizeInBits() < ResultTy
->getScalarSizeInBits(),
6883 "Intrinsic first argument's type must be smaller than result type",
6893 // If a non-metadata argument is passed in a metadata slot then the
6894 // error will be caught earlier when the incorrect argument doesn't
6895 // match the specification in the intrinsic call table. Thus, no
6896 // argument type check is needed here.
6898 Check(FPI
.getExceptionBehavior().has_value(),
6899 "invalid exception behavior argument", &FPI
);
6900 if (HasRoundingMD
) {
6901 Check(FPI
.getRoundingMode().has_value(), "invalid rounding mode argument",
6906 void Verifier::visitDbgIntrinsic(StringRef Kind
, DbgVariableIntrinsic
&DII
) {
6907 auto *MD
= DII
.getRawLocation();
6908 CheckDI(isa
<ValueAsMetadata
>(MD
) || isa
<DIArgList
>(MD
) ||
6909 (isa
<MDNode
>(MD
) && !cast
<MDNode
>(MD
)->getNumOperands()),
6910 "invalid llvm.dbg." + Kind
+ " intrinsic address/value", &DII
, MD
);
6911 CheckDI(isa
<DILocalVariable
>(DII
.getRawVariable()),
6912 "invalid llvm.dbg." + Kind
+ " intrinsic variable", &DII
,
6913 DII
.getRawVariable());
6914 CheckDI(isa
<DIExpression
>(DII
.getRawExpression()),
6915 "invalid llvm.dbg." + Kind
+ " intrinsic expression", &DII
,
6916 DII
.getRawExpression());
6918 if (auto *DAI
= dyn_cast
<DbgAssignIntrinsic
>(&DII
)) {
6919 CheckDI(isa
<DIAssignID
>(DAI
->getRawAssignID()),
6920 "invalid llvm.dbg.assign intrinsic DIAssignID", &DII
,
6921 DAI
->getRawAssignID());
6922 const auto *RawAddr
= DAI
->getRawAddress();
6924 isa
<ValueAsMetadata
>(RawAddr
) ||
6925 (isa
<MDNode
>(RawAddr
) && !cast
<MDNode
>(RawAddr
)->getNumOperands()),
6926 "invalid llvm.dbg.assign intrinsic address", &DII
,
6927 DAI
->getRawAddress());
6928 CheckDI(isa
<DIExpression
>(DAI
->getRawAddressExpression()),
6929 "invalid llvm.dbg.assign intrinsic address expression", &DII
,
6930 DAI
->getRawAddressExpression());
6931 // All of the linked instructions should be in the same function as DII.
6932 for (Instruction
*I
: at::getAssignmentInsts(DAI
))
6933 CheckDI(DAI
->getFunction() == I
->getFunction(),
6934 "inst not in same function as dbg.assign", I
, DAI
);
6937 // Ignore broken !dbg attachments; they're checked elsewhere.
6938 if (MDNode
*N
= DII
.getDebugLoc().getAsMDNode())
6939 if (!isa
<DILocation
>(N
))
6942 BasicBlock
*BB
= DII
.getParent();
6943 Function
*F
= BB
? BB
->getParent() : nullptr;
6945 // The scopes for variables and !dbg attachments must agree.
6946 DILocalVariable
*Var
= DII
.getVariable();
6947 DILocation
*Loc
= DII
.getDebugLoc();
6948 CheckDI(Loc
, "llvm.dbg." + Kind
+ " intrinsic requires a !dbg attachment",
6951 DISubprogram
*VarSP
= getSubprogram(Var
->getRawScope());
6952 DISubprogram
*LocSP
= getSubprogram(Loc
->getRawScope());
6953 if (!VarSP
|| !LocSP
)
6954 return; // Broken scope chains are checked elsewhere.
6956 CheckDI(VarSP
== LocSP
,
6957 "mismatched subprogram between llvm.dbg." + Kind
+
6958 " variable and !dbg attachment",
6959 &DII
, BB
, F
, Var
, Var
->getScope()->getSubprogram(), Loc
,
6960 Loc
->getScope()->getSubprogram());
6962 // This check is redundant with one in visitLocalVariable().
6963 CheckDI(isType(Var
->getRawType()), "invalid type ref", Var
,
6968 void Verifier::visitDbgLabelIntrinsic(StringRef Kind
, DbgLabelInst
&DLI
) {
6969 CheckDI(isa
<DILabel
>(DLI
.getRawLabel()),
6970 "invalid llvm.dbg." + Kind
+ " intrinsic variable", &DLI
,
6973 // Ignore broken !dbg attachments; they're checked elsewhere.
6974 if (MDNode
*N
= DLI
.getDebugLoc().getAsMDNode())
6975 if (!isa
<DILocation
>(N
))
6978 BasicBlock
*BB
= DLI
.getParent();
6979 Function
*F
= BB
? BB
->getParent() : nullptr;
6981 // The scopes for variables and !dbg attachments must agree.
6982 DILabel
*Label
= DLI
.getLabel();
6983 DILocation
*Loc
= DLI
.getDebugLoc();
6984 Check(Loc
, "llvm.dbg." + Kind
+ " intrinsic requires a !dbg attachment", &DLI
,
6987 DISubprogram
*LabelSP
= getSubprogram(Label
->getRawScope());
6988 DISubprogram
*LocSP
= getSubprogram(Loc
->getRawScope());
6989 if (!LabelSP
|| !LocSP
)
6992 CheckDI(LabelSP
== LocSP
,
6993 "mismatched subprogram between llvm.dbg." + Kind
+
6994 " label and !dbg attachment",
6995 &DLI
, BB
, F
, Label
, Label
->getScope()->getSubprogram(), Loc
,
6996 Loc
->getScope()->getSubprogram());
6999 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic
&I
) {
7000 DILocalVariable
*V
= dyn_cast_or_null
<DILocalVariable
>(I
.getRawVariable());
7001 DIExpression
*E
= dyn_cast_or_null
<DIExpression
>(I
.getRawExpression());
7003 // We don't know whether this intrinsic verified correctly.
7004 if (!V
|| !E
|| !E
->isValid())
7007 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
7008 auto Fragment
= E
->getFragmentInfo();
7012 // The frontend helps out GDB by emitting the members of local anonymous
7013 // unions as artificial local variables with shared storage. When SROA splits
7014 // the storage for artificial local variables that are smaller than the entire
7015 // union, the overhang piece will be outside of the allotted space for the
7016 // variable and this check fails.
7017 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
7018 if (V
->isArtificial())
7021 verifyFragmentExpression(*V
, *Fragment
, &I
);
7023 void Verifier::verifyFragmentExpression(const DbgVariableRecord
&DVR
) {
7024 DILocalVariable
*V
= dyn_cast_or_null
<DILocalVariable
>(DVR
.getRawVariable());
7025 DIExpression
*E
= dyn_cast_or_null
<DIExpression
>(DVR
.getRawExpression());
7027 // We don't know whether this intrinsic verified correctly.
7028 if (!V
|| !E
|| !E
->isValid())
7031 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
7032 auto Fragment
= E
->getFragmentInfo();
7036 // The frontend helps out GDB by emitting the members of local anonymous
7037 // unions as artificial local variables with shared storage. When SROA splits
7038 // the storage for artificial local variables that are smaller than the entire
7039 // union, the overhang piece will be outside of the allotted space for the
7040 // variable and this check fails.
7041 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
7042 if (V
->isArtificial())
7045 verifyFragmentExpression(*V
, *Fragment
, &DVR
);
7048 template <typename ValueOrMetadata
>
7049 void Verifier::verifyFragmentExpression(const DIVariable
&V
,
7050 DIExpression::FragmentInfo Fragment
,
7051 ValueOrMetadata
*Desc
) {
7052 // If there's no size, the type is broken, but that should be checked
7054 auto VarSize
= V
.getSizeInBits();
7058 unsigned FragSize
= Fragment
.SizeInBits
;
7059 unsigned FragOffset
= Fragment
.OffsetInBits
;
7060 CheckDI(FragSize
+ FragOffset
<= *VarSize
,
7061 "fragment is larger than or outside of variable", Desc
, &V
);
7062 CheckDI(FragSize
!= *VarSize
, "fragment covers entire variable", Desc
, &V
);
7065 void Verifier::verifyFnArgs(const DbgVariableIntrinsic
&I
) {
7066 // This function does not take the scope of noninlined function arguments into
7067 // account. Don't run it if current function is nodebug, because it may
7068 // contain inlined debug intrinsics.
7072 // For performance reasons only check non-inlined ones.
7073 if (I
.getDebugLoc()->getInlinedAt())
7076 DILocalVariable
*Var
= I
.getVariable();
7077 CheckDI(Var
, "dbg intrinsic without variable");
7079 unsigned ArgNo
= Var
->getArg();
7083 // Verify there are no duplicate function argument debug info entries.
7084 // These will cause hard-to-debug assertions in the DWARF backend.
7085 if (DebugFnArgs
.size() < ArgNo
)
7086 DebugFnArgs
.resize(ArgNo
, nullptr);
7088 auto *Prev
= DebugFnArgs
[ArgNo
- 1];
7089 DebugFnArgs
[ArgNo
- 1] = Var
;
7090 CheckDI(!Prev
|| (Prev
== Var
), "conflicting debug info for argument", &I
,
7093 void Verifier::verifyFnArgs(const DbgVariableRecord
&DVR
) {
7094 // This function does not take the scope of noninlined function arguments into
7095 // account. Don't run it if current function is nodebug, because it may
7096 // contain inlined debug intrinsics.
7100 // For performance reasons only check non-inlined ones.
7101 if (DVR
.getDebugLoc()->getInlinedAt())
7104 DILocalVariable
*Var
= DVR
.getVariable();
7105 CheckDI(Var
, "#dbg record without variable");
7107 unsigned ArgNo
= Var
->getArg();
7111 // Verify there are no duplicate function argument debug info entries.
7112 // These will cause hard-to-debug assertions in the DWARF backend.
7113 if (DebugFnArgs
.size() < ArgNo
)
7114 DebugFnArgs
.resize(ArgNo
, nullptr);
7116 auto *Prev
= DebugFnArgs
[ArgNo
- 1];
7117 DebugFnArgs
[ArgNo
- 1] = Var
;
7118 CheckDI(!Prev
|| (Prev
== Var
), "conflicting debug info for argument", &DVR
,
7122 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic
&I
) {
7123 DIExpression
*E
= dyn_cast_or_null
<DIExpression
>(I
.getRawExpression());
7125 // We don't know whether this intrinsic verified correctly.
7126 if (!E
|| !E
->isValid())
7129 if (isa
<ValueAsMetadata
>(I
.getRawLocation())) {
7130 Value
*VarValue
= I
.getVariableLocationOp(0);
7131 if (isa
<UndefValue
>(VarValue
) || isa
<PoisonValue
>(VarValue
))
7133 // We allow EntryValues for swift async arguments, as they have an
7134 // ABI-guarantee to be turned into a specific register.
7135 if (auto *ArgLoc
= dyn_cast_or_null
<Argument
>(VarValue
);
7136 ArgLoc
&& ArgLoc
->hasAttribute(Attribute::SwiftAsync
))
7140 CheckDI(!E
->isEntryValue(),
7141 "Entry values are only allowed in MIR unless they target a "
7142 "swiftasync Argument",
7145 void Verifier::verifyNotEntryValue(const DbgVariableRecord
&DVR
) {
7146 DIExpression
*E
= dyn_cast_or_null
<DIExpression
>(DVR
.getRawExpression());
7148 // We don't know whether this intrinsic verified correctly.
7149 if (!E
|| !E
->isValid())
7152 if (isa
<ValueAsMetadata
>(DVR
.getRawLocation())) {
7153 Value
*VarValue
= DVR
.getVariableLocationOp(0);
7154 if (isa
<UndefValue
>(VarValue
) || isa
<PoisonValue
>(VarValue
))
7156 // We allow EntryValues for swift async arguments, as they have an
7157 // ABI-guarantee to be turned into a specific register.
7158 if (auto *ArgLoc
= dyn_cast_or_null
<Argument
>(VarValue
);
7159 ArgLoc
&& ArgLoc
->hasAttribute(Attribute::SwiftAsync
))
7163 CheckDI(!E
->isEntryValue(),
7164 "Entry values are only allowed in MIR unless they target a "
7165 "swiftasync Argument",
7169 void Verifier::verifyCompileUnits() {
7170 // When more than one Module is imported into the same context, such as during
7171 // an LTO build before linking the modules, ODR type uniquing may cause types
7172 // to point to a different CU. This check does not make sense in this case.
7173 if (M
.getContext().isODRUniquingDebugTypes())
7175 auto *CUs
= M
.getNamedMetadata("llvm.dbg.cu");
7176 SmallPtrSet
<const Metadata
*, 2> Listed
;
7178 Listed
.insert(CUs
->op_begin(), CUs
->op_end());
7179 for (const auto *CU
: CUVisited
)
7180 CheckDI(Listed
.count(CU
), "DICompileUnit not listed in llvm.dbg.cu", CU
);
7184 void Verifier::verifyDeoptimizeCallingConvs() {
7185 if (DeoptimizeDeclarations
.empty())
7188 const Function
*First
= DeoptimizeDeclarations
[0];
7189 for (const auto *F
: ArrayRef(DeoptimizeDeclarations
).slice(1)) {
7190 Check(First
->getCallingConv() == F
->getCallingConv(),
7191 "All llvm.experimental.deoptimize declarations must have the same "
7192 "calling convention",
7197 void Verifier::verifyAttachedCallBundle(const CallBase
&Call
,
7198 const OperandBundleUse
&BU
) {
7199 FunctionType
*FTy
= Call
.getFunctionType();
7201 Check((FTy
->getReturnType()->isPointerTy() ||
7202 (Call
.doesNotReturn() && FTy
->getReturnType()->isVoidTy())),
7203 "a call with operand bundle \"clang.arc.attachedcall\" must call a "
7204 "function returning a pointer or a non-returning function that has a "
7208 Check(BU
.Inputs
.size() == 1 && isa
<Function
>(BU
.Inputs
.front()),
7209 "operand bundle \"clang.arc.attachedcall\" requires one function as "
7213 auto *Fn
= cast
<Function
>(BU
.Inputs
.front());
7214 Intrinsic::ID IID
= Fn
->getIntrinsicID();
7217 Check((IID
== Intrinsic::objc_retainAutoreleasedReturnValue
||
7218 IID
== Intrinsic::objc_unsafeClaimAutoreleasedReturnValue
),
7219 "invalid function argument", Call
);
7221 StringRef FnName
= Fn
->getName();
7222 Check((FnName
== "objc_retainAutoreleasedReturnValue" ||
7223 FnName
== "objc_unsafeClaimAutoreleasedReturnValue"),
7224 "invalid function argument", Call
);
7228 void Verifier::verifyNoAliasScopeDecl() {
7229 if (NoAliasScopeDecls
.empty())
7232 // only a single scope must be declared at a time.
7233 for (auto *II
: NoAliasScopeDecls
) {
7234 assert(II
->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl
&&
7235 "Not a llvm.experimental.noalias.scope.decl ?");
7236 const auto *ScopeListMV
= dyn_cast
<MetadataAsValue
>(
7237 II
->getOperand(Intrinsic::NoAliasScopeDeclScopeArg
));
7238 Check(ScopeListMV
!= nullptr,
7239 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
7243 const auto *ScopeListMD
= dyn_cast
<MDNode
>(ScopeListMV
->getMetadata());
7244 Check(ScopeListMD
!= nullptr, "!id.scope.list must point to an MDNode", II
);
7245 Check(ScopeListMD
->getNumOperands() == 1,
7246 "!id.scope.list must point to a list with a single scope", II
);
7247 visitAliasScopeListMetadata(ScopeListMD
);
7250 // Only check the domination rule when requested. Once all passes have been
7251 // adapted this option can go away.
7252 if (!VerifyNoAliasScopeDomination
)
7255 // Now sort the intrinsics based on the scope MDNode so that declarations of
7256 // the same scopes are next to each other.
7257 auto GetScope
= [](IntrinsicInst
*II
) {
7258 const auto *ScopeListMV
= cast
<MetadataAsValue
>(
7259 II
->getOperand(Intrinsic::NoAliasScopeDeclScopeArg
));
7260 return &cast
<MDNode
>(ScopeListMV
->getMetadata())->getOperand(0);
7263 // We are sorting on MDNode pointers here. For valid input IR this is ok.
7264 // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
7265 auto Compare
= [GetScope
](IntrinsicInst
*Lhs
, IntrinsicInst
*Rhs
) {
7266 return GetScope(Lhs
) < GetScope(Rhs
);
7269 llvm::sort(NoAliasScopeDecls
, Compare
);
7271 // Go over the intrinsics and check that for the same scope, they are not
7272 // dominating each other.
7273 auto ItCurrent
= NoAliasScopeDecls
.begin();
7274 while (ItCurrent
!= NoAliasScopeDecls
.end()) {
7275 auto CurScope
= GetScope(*ItCurrent
);
7276 auto ItNext
= ItCurrent
;
7279 } while (ItNext
!= NoAliasScopeDecls
.end() &&
7280 GetScope(*ItNext
) == CurScope
);
7282 // [ItCurrent, ItNext) represents the declarations for the same scope.
7283 // Ensure they are not dominating each other.. but only if it is not too
7285 if (ItNext
- ItCurrent
< 32)
7286 for (auto *I
: llvm::make_range(ItCurrent
, ItNext
))
7287 for (auto *J
: llvm::make_range(ItCurrent
, ItNext
))
7289 Check(!DT
.dominates(I
, J
),
7290 "llvm.experimental.noalias.scope.decl dominates another one "
7291 "with the same scope",
7297 //===----------------------------------------------------------------------===//
7298 // Implement the public interfaces to this file...
7299 //===----------------------------------------------------------------------===//
7301 bool llvm::verifyFunction(const Function
&f
, raw_ostream
*OS
) {
7302 Function
&F
= const_cast<Function
&>(f
);
7304 // Don't use a raw_null_ostream. Printing IR is expensive.
7305 Verifier
V(OS
, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f
.getParent());
7307 // Note that this function's return value is inverted from what you would
7308 // expect of a function called "verify".
7309 return !V
.verify(F
);
7312 bool llvm::verifyModule(const Module
&M
, raw_ostream
*OS
,
7313 bool *BrokenDebugInfo
) {
7314 // Don't use a raw_null_ostream. Printing IR is expensive.
7315 Verifier
V(OS
, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo
, M
);
7317 bool Broken
= false;
7318 for (const Function
&F
: M
)
7319 Broken
|= !V
.verify(F
);
7321 Broken
|= !V
.verify();
7322 if (BrokenDebugInfo
)
7323 *BrokenDebugInfo
= V
.hasBrokenDebugInfo();
7324 // Note that this function's return value is inverted from what you would
7325 // expect of a function called "verify".
7331 struct VerifierLegacyPass
: public FunctionPass
{
7334 std::unique_ptr
<Verifier
> V
;
7335 bool FatalErrors
= true;
7337 VerifierLegacyPass() : FunctionPass(ID
) {
7338 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
7340 explicit VerifierLegacyPass(bool FatalErrors
)
7342 FatalErrors(FatalErrors
) {
7343 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
7346 bool doInitialization(Module
&M
) override
{
7347 V
= std::make_unique
<Verifier
>(
7348 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M
);
7352 bool runOnFunction(Function
&F
) override
{
7353 if (!V
->verify(F
) && FatalErrors
) {
7354 errs() << "in function " << F
.getName() << '\n';
7355 report_fatal_error("Broken function found, compilation aborted!");
7360 bool doFinalization(Module
&M
) override
{
7361 bool HasErrors
= false;
7362 for (Function
&F
: M
)
7363 if (F
.isDeclaration())
7364 HasErrors
|= !V
->verify(F
);
7366 HasErrors
|= !V
->verify();
7367 if (FatalErrors
&& (HasErrors
|| V
->hasBrokenDebugInfo()))
7368 report_fatal_error("Broken module found, compilation aborted!");
7372 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
7373 AU
.setPreservesAll();
7377 } // end anonymous namespace
7379 /// Helper to issue failure from the TBAA verification
7380 template <typename
... Tys
> void TBAAVerifier::CheckFailed(Tys
&&... Args
) {
7382 return Diagnostic
->CheckFailed(Args
...);
7385 #define CheckTBAA(C, ...) \
7388 CheckFailed(__VA_ARGS__); \
7393 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
7394 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
7395 /// struct-type node describing an aggregate data structure (like a struct).
7396 TBAAVerifier::TBAABaseNodeSummary
7397 TBAAVerifier::verifyTBAABaseNode(Instruction
&I
, const MDNode
*BaseNode
,
7399 if (BaseNode
->getNumOperands() < 2) {
7400 CheckFailed("Base nodes must have at least two operands", &I
, BaseNode
);
7404 auto Itr
= TBAABaseNodes
.find(BaseNode
);
7405 if (Itr
!= TBAABaseNodes
.end())
7408 auto Result
= verifyTBAABaseNodeImpl(I
, BaseNode
, IsNewFormat
);
7409 auto InsertResult
= TBAABaseNodes
.insert({BaseNode
, Result
});
7411 assert(InsertResult
.second
&& "We just checked!");
7415 TBAAVerifier::TBAABaseNodeSummary
7416 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction
&I
, const MDNode
*BaseNode
,
7418 const TBAAVerifier::TBAABaseNodeSummary InvalidNode
= {true, ~0u};
7420 if (BaseNode
->getNumOperands() == 2) {
7421 // Scalar nodes can only be accessed at offset 0.
7422 return isValidScalarTBAANode(BaseNode
)
7423 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
7428 if (BaseNode
->getNumOperands() % 3 != 0) {
7429 CheckFailed("Access tag nodes must have the number of operands that is a "
7430 "multiple of 3!", BaseNode
);
7434 if (BaseNode
->getNumOperands() % 2 != 1) {
7435 CheckFailed("Struct tag nodes must have an odd number of operands!",
7441 // Check the type size field.
7443 auto *TypeSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
7444 BaseNode
->getOperand(1));
7445 if (!TypeSizeNode
) {
7446 CheckFailed("Type size nodes must be constants!", &I
, BaseNode
);
7451 // Check the type name field. In the new format it can be anything.
7452 if (!IsNewFormat
&& !isa
<MDString
>(BaseNode
->getOperand(0))) {
7453 CheckFailed("Struct tag nodes have a string as their first operand",
7458 bool Failed
= false;
7460 std::optional
<APInt
> PrevOffset
;
7461 unsigned BitWidth
= ~0u;
7463 // We've already checked that BaseNode is not a degenerate root node with one
7464 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
7465 unsigned FirstFieldOpNo
= IsNewFormat
? 3 : 1;
7466 unsigned NumOpsPerField
= IsNewFormat
? 3 : 2;
7467 for (unsigned Idx
= FirstFieldOpNo
; Idx
< BaseNode
->getNumOperands();
7468 Idx
+= NumOpsPerField
) {
7469 const MDOperand
&FieldTy
= BaseNode
->getOperand(Idx
);
7470 const MDOperand
&FieldOffset
= BaseNode
->getOperand(Idx
+ 1);
7471 if (!isa
<MDNode
>(FieldTy
)) {
7472 CheckFailed("Incorrect field entry in struct type node!", &I
, BaseNode
);
7477 auto *OffsetEntryCI
=
7478 mdconst::dyn_extract_or_null
<ConstantInt
>(FieldOffset
);
7479 if (!OffsetEntryCI
) {
7480 CheckFailed("Offset entries must be constants!", &I
, BaseNode
);
7485 if (BitWidth
== ~0u)
7486 BitWidth
= OffsetEntryCI
->getBitWidth();
7488 if (OffsetEntryCI
->getBitWidth() != BitWidth
) {
7490 "Bitwidth between the offsets and struct type entries must match", &I
,
7496 // NB! As far as I can tell, we generate a non-strictly increasing offset
7497 // sequence only from structs that have zero size bit fields. When
7498 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
7499 // pick the field lexically the latest in struct type metadata node. This
7500 // mirrors the actual behavior of the alias analysis implementation.
7502 !PrevOffset
|| PrevOffset
->ule(OffsetEntryCI
->getValue());
7505 CheckFailed("Offsets must be increasing!", &I
, BaseNode
);
7509 PrevOffset
= OffsetEntryCI
->getValue();
7512 auto *MemberSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
7513 BaseNode
->getOperand(Idx
+ 2));
7514 if (!MemberSizeNode
) {
7515 CheckFailed("Member size entries must be constants!", &I
, BaseNode
);
7522 return Failed
? InvalidNode
7523 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth
);
7526 static bool IsRootTBAANode(const MDNode
*MD
) {
7527 return MD
->getNumOperands() < 2;
7530 static bool IsScalarTBAANodeImpl(const MDNode
*MD
,
7531 SmallPtrSetImpl
<const MDNode
*> &Visited
) {
7532 if (MD
->getNumOperands() != 2 && MD
->getNumOperands() != 3)
7535 if (!isa
<MDString
>(MD
->getOperand(0)))
7538 if (MD
->getNumOperands() == 3) {
7539 auto *Offset
= mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(2));
7540 if (!(Offset
&& Offset
->isZero() && isa
<MDString
>(MD
->getOperand(0))))
7544 auto *Parent
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(1));
7545 return Parent
&& Visited
.insert(Parent
).second
&&
7546 (IsRootTBAANode(Parent
) || IsScalarTBAANodeImpl(Parent
, Visited
));
7549 bool TBAAVerifier::isValidScalarTBAANode(const MDNode
*MD
) {
7550 auto ResultIt
= TBAAScalarNodes
.find(MD
);
7551 if (ResultIt
!= TBAAScalarNodes
.end())
7552 return ResultIt
->second
;
7554 SmallPtrSet
<const MDNode
*, 4> Visited
;
7555 bool Result
= IsScalarTBAANodeImpl(MD
, Visited
);
7556 auto InsertResult
= TBAAScalarNodes
.insert({MD
, Result
});
7558 assert(InsertResult
.second
&& "Just checked!");
7563 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
7564 /// Offset in place to be the offset within the field node returned.
7566 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
7567 MDNode
*TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction
&I
,
7568 const MDNode
*BaseNode
,
7571 assert(BaseNode
->getNumOperands() >= 2 && "Invalid base node!");
7573 // Scalar nodes have only one possible "field" -- their parent in the access
7574 // hierarchy. Offset must be zero at this point, but our caller is supposed
7576 if (BaseNode
->getNumOperands() == 2)
7577 return cast
<MDNode
>(BaseNode
->getOperand(1));
7579 unsigned FirstFieldOpNo
= IsNewFormat
? 3 : 1;
7580 unsigned NumOpsPerField
= IsNewFormat
? 3 : 2;
7581 for (unsigned Idx
= FirstFieldOpNo
; Idx
< BaseNode
->getNumOperands();
7582 Idx
+= NumOpsPerField
) {
7583 auto *OffsetEntryCI
=
7584 mdconst::extract
<ConstantInt
>(BaseNode
->getOperand(Idx
+ 1));
7585 if (OffsetEntryCI
->getValue().ugt(Offset
)) {
7586 if (Idx
== FirstFieldOpNo
) {
7587 CheckFailed("Could not find TBAA parent in struct type node", &I
,
7592 unsigned PrevIdx
= Idx
- NumOpsPerField
;
7593 auto *PrevOffsetEntryCI
=
7594 mdconst::extract
<ConstantInt
>(BaseNode
->getOperand(PrevIdx
+ 1));
7595 Offset
-= PrevOffsetEntryCI
->getValue();
7596 return cast
<MDNode
>(BaseNode
->getOperand(PrevIdx
));
7600 unsigned LastIdx
= BaseNode
->getNumOperands() - NumOpsPerField
;
7601 auto *LastOffsetEntryCI
= mdconst::extract
<ConstantInt
>(
7602 BaseNode
->getOperand(LastIdx
+ 1));
7603 Offset
-= LastOffsetEntryCI
->getValue();
7604 return cast
<MDNode
>(BaseNode
->getOperand(LastIdx
));
7607 static bool isNewFormatTBAATypeNode(llvm::MDNode
*Type
) {
7608 if (!Type
|| Type
->getNumOperands() < 3)
7611 // In the new format type nodes shall have a reference to the parent type as
7612 // its first operand.
7613 return isa_and_nonnull
<MDNode
>(Type
->getOperand(0));
7616 bool TBAAVerifier::visitTBAAMetadata(Instruction
&I
, const MDNode
*MD
) {
7617 CheckTBAA(MD
->getNumOperands() > 0, "TBAA metadata cannot have 0 operands",
7620 CheckTBAA(isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
) || isa
<CallInst
>(I
) ||
7621 isa
<VAArgInst
>(I
) || isa
<AtomicRMWInst
>(I
) ||
7622 isa
<AtomicCmpXchgInst
>(I
),
7623 "This instruction shall not have a TBAA access tag!", &I
);
7625 bool IsStructPathTBAA
=
7626 isa
<MDNode
>(MD
->getOperand(0)) && MD
->getNumOperands() >= 3;
7628 CheckTBAA(IsStructPathTBAA
,
7629 "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
7632 MDNode
*BaseNode
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(0));
7633 MDNode
*AccessType
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(1));
7635 bool IsNewFormat
= isNewFormatTBAATypeNode(AccessType
);
7638 CheckTBAA(MD
->getNumOperands() == 4 || MD
->getNumOperands() == 5,
7639 "Access tag metadata must have either 4 or 5 operands", &I
, MD
);
7641 CheckTBAA(MD
->getNumOperands() < 5,
7642 "Struct tag metadata must have either 3 or 4 operands", &I
, MD
);
7645 // Check the access size field.
7647 auto *AccessSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
7649 CheckTBAA(AccessSizeNode
, "Access size field must be a constant", &I
, MD
);
7652 // Check the immutability flag.
7653 unsigned ImmutabilityFlagOpNo
= IsNewFormat
? 4 : 3;
7654 if (MD
->getNumOperands() == ImmutabilityFlagOpNo
+ 1) {
7655 auto *IsImmutableCI
= mdconst::dyn_extract_or_null
<ConstantInt
>(
7656 MD
->getOperand(ImmutabilityFlagOpNo
));
7657 CheckTBAA(IsImmutableCI
,
7658 "Immutability tag on struct tag metadata must be a constant", &I
,
7661 IsImmutableCI
->isZero() || IsImmutableCI
->isOne(),
7662 "Immutability part of the struct tag metadata must be either 0 or 1",
7666 CheckTBAA(BaseNode
&& AccessType
,
7667 "Malformed struct tag metadata: base and access-type "
7668 "should be non-null and point to Metadata nodes",
7669 &I
, MD
, BaseNode
, AccessType
);
7672 CheckTBAA(isValidScalarTBAANode(AccessType
),
7673 "Access type node must be a valid scalar type", &I
, MD
,
7677 auto *OffsetCI
= mdconst::dyn_extract_or_null
<ConstantInt
>(MD
->getOperand(2));
7678 CheckTBAA(OffsetCI
, "Offset must be constant integer", &I
, MD
);
7680 APInt Offset
= OffsetCI
->getValue();
7681 bool SeenAccessTypeInPath
= false;
7683 SmallPtrSet
<MDNode
*, 4> StructPath
;
7685 for (/* empty */; BaseNode
&& !IsRootTBAANode(BaseNode
);
7686 BaseNode
= getFieldNodeFromTBAABaseNode(I
, BaseNode
, Offset
,
7688 if (!StructPath
.insert(BaseNode
).second
) {
7689 CheckFailed("Cycle detected in struct path", &I
, MD
);
7694 unsigned BaseNodeBitWidth
;
7695 std::tie(Invalid
, BaseNodeBitWidth
) = verifyTBAABaseNode(I
, BaseNode
,
7698 // If the base node is invalid in itself, then we've already printed all the
7699 // errors we wanted to print.
7703 SeenAccessTypeInPath
|= BaseNode
== AccessType
;
7705 if (isValidScalarTBAANode(BaseNode
) || BaseNode
== AccessType
)
7706 CheckTBAA(Offset
== 0, "Offset not zero at the point of scalar access",
7709 CheckTBAA(BaseNodeBitWidth
== Offset
.getBitWidth() ||
7710 (BaseNodeBitWidth
== 0 && Offset
== 0) ||
7711 (IsNewFormat
&& BaseNodeBitWidth
== ~0u),
7712 "Access bit-width not the same as description bit-width", &I
, MD
,
7713 BaseNodeBitWidth
, Offset
.getBitWidth());
7715 if (IsNewFormat
&& SeenAccessTypeInPath
)
7719 CheckTBAA(SeenAccessTypeInPath
, "Did not see access type in access path!", &I
,
7724 char VerifierLegacyPass::ID
= 0;
7725 INITIALIZE_PASS(VerifierLegacyPass
, "verify", "Module Verifier", false, false)
7727 FunctionPass
*llvm::createVerifierPass(bool FatalErrors
) {
7728 return new VerifierLegacyPass(FatalErrors
);
7731 AnalysisKey
VerifierAnalysis::Key
;
7732 VerifierAnalysis::Result
VerifierAnalysis::run(Module
&M
,
7733 ModuleAnalysisManager
&) {
7735 Res
.IRBroken
= llvm::verifyModule(M
, &dbgs(), &Res
.DebugInfoBroken
);
7739 VerifierAnalysis::Result
VerifierAnalysis::run(Function
&F
,
7740 FunctionAnalysisManager
&) {
7741 return { llvm::verifyFunction(F
, &dbgs()), false };
7744 PreservedAnalyses
VerifierPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
7745 auto Res
= AM
.getResult
<VerifierAnalysis
>(M
);
7746 if (FatalErrors
&& (Res
.IRBroken
|| Res
.DebugInfoBroken
))
7747 report_fatal_error("Broken module found, compilation aborted!");
7749 return PreservedAnalyses::all();
7752 PreservedAnalyses
VerifierPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
7753 auto res
= AM
.getResult
<VerifierAnalysis
>(F
);
7754 if (res
.IRBroken
&& FatalErrors
)
7755 report_fatal_error("Broken function found, compilation aborted!");
7757 return PreservedAnalyses::all();