[clang][bytecode][NFC] Only get expr when checking for UB (#125397)
[llvm-project.git] / llvm / lib / IR / Verifier.cpp
blob8432779c107dec3b3000b89a7a8a34a908d9de9c
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * All basic blocks should only end with terminator insts, not contain them
27 // * The entry node to a function must not have predecessors
28 // * All Instructions must be embedded into a basic block
29 // * Functions cannot take a void-typed parameter
30 // * Verify that a function's argument list agrees with it's declared type.
31 // * It is illegal to specify a name for a void value.
32 // * It is illegal to have a internal global value with no initializer
33 // * It is illegal to have a ret instruction that returns a value that does not
34 // agree with the function return value type.
35 // * Function call argument types match the function prototype
36 // * A landing pad is defined by a landingpad instruction, and can be jumped to
37 // only by the unwind edge of an invoke instruction.
38 // * A landingpad instruction must be the first non-PHI instruction in the
39 // block.
40 // * Landingpad instructions must be in a function with a personality function.
41 // * Convergence control intrinsics are introduced in ConvergentOperations.rst.
42 // The applied restrictions are too numerous to list here.
43 // * The convergence entry intrinsic and the loop heart must be the first
44 // non-PHI instruction in their respective block. This does not conflict with
45 // the landing pads, since these two kinds cannot occur in the same block.
46 // * All other things that are tested by asserts spread about the code...
48 //===----------------------------------------------------------------------===//
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/ADT/APFloat.h"
52 #include "llvm/ADT/APInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/DenseMap.h"
55 #include "llvm/ADT/MapVector.h"
56 #include "llvm/ADT/STLExtras.h"
57 #include "llvm/ADT/SmallPtrSet.h"
58 #include "llvm/ADT/SmallSet.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/StringExtras.h"
61 #include "llvm/ADT/StringRef.h"
62 #include "llvm/ADT/Twine.h"
63 #include "llvm/BinaryFormat/Dwarf.h"
64 #include "llvm/IR/Argument.h"
65 #include "llvm/IR/AttributeMask.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallingConv.h"
70 #include "llvm/IR/Comdat.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/ConstantRangeList.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/ConvergenceVerifier.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DebugInfo.h"
78 #include "llvm/IR/DebugInfoMetadata.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Dominators.h"
82 #include "llvm/IR/EHPersonalities.h"
83 #include "llvm/IR/Function.h"
84 #include "llvm/IR/GCStrategy.h"
85 #include "llvm/IR/GlobalAlias.h"
86 #include "llvm/IR/GlobalValue.h"
87 #include "llvm/IR/GlobalVariable.h"
88 #include "llvm/IR/InlineAsm.h"
89 #include "llvm/IR/InstVisitor.h"
90 #include "llvm/IR/InstrTypes.h"
91 #include "llvm/IR/Instruction.h"
92 #include "llvm/IR/Instructions.h"
93 #include "llvm/IR/IntrinsicInst.h"
94 #include "llvm/IR/Intrinsics.h"
95 #include "llvm/IR/IntrinsicsAArch64.h"
96 #include "llvm/IR/IntrinsicsAMDGPU.h"
97 #include "llvm/IR/IntrinsicsARM.h"
98 #include "llvm/IR/IntrinsicsNVPTX.h"
99 #include "llvm/IR/IntrinsicsWebAssembly.h"
100 #include "llvm/IR/LLVMContext.h"
101 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
102 #include "llvm/IR/Metadata.h"
103 #include "llvm/IR/Module.h"
104 #include "llvm/IR/ModuleSlotTracker.h"
105 #include "llvm/IR/PassManager.h"
106 #include "llvm/IR/ProfDataUtils.h"
107 #include "llvm/IR/Statepoint.h"
108 #include "llvm/IR/Type.h"
109 #include "llvm/IR/Use.h"
110 #include "llvm/IR/User.h"
111 #include "llvm/IR/VFABIDemangler.h"
112 #include "llvm/IR/Value.h"
113 #include "llvm/InitializePasses.h"
114 #include "llvm/Pass.h"
115 #include "llvm/Support/AMDGPUAddrSpace.h"
116 #include "llvm/Support/AtomicOrdering.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/ErrorHandling.h"
120 #include "llvm/Support/MathExtras.h"
121 #include "llvm/Support/ModRef.h"
122 #include "llvm/Support/raw_ostream.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <cstdint>
126 #include <memory>
127 #include <optional>
128 #include <string>
129 #include <utility>
131 using namespace llvm;
133 static cl::opt<bool> VerifyNoAliasScopeDomination(
134 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
135 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
136 "scopes are not dominating"));
138 namespace llvm {
140 struct VerifierSupport {
141 raw_ostream *OS;
142 const Module &M;
143 ModuleSlotTracker MST;
144 Triple TT;
145 const DataLayout &DL;
146 LLVMContext &Context;
148 /// Track the brokenness of the module while recursively visiting.
149 bool Broken = false;
150 /// Broken debug info can be "recovered" from by stripping the debug info.
151 bool BrokenDebugInfo = false;
152 /// Whether to treat broken debug info as an error.
153 bool TreatBrokenDebugInfoAsError = true;
155 explicit VerifierSupport(raw_ostream *OS, const Module &M)
156 : OS(OS), M(M), MST(&M), TT(Triple::normalize(M.getTargetTriple())),
157 DL(M.getDataLayout()), Context(M.getContext()) {}
159 private:
160 void Write(const Module *M) {
161 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
164 void Write(const Value *V) {
165 if (V)
166 Write(*V);
169 void Write(const Value &V) {
170 if (isa<Instruction>(V)) {
171 V.print(*OS, MST);
172 *OS << '\n';
173 } else {
174 V.printAsOperand(*OS, true, MST);
175 *OS << '\n';
179 void Write(const DbgRecord *DR) {
180 if (DR) {
181 DR->print(*OS, MST, false);
182 *OS << '\n';
186 void Write(DbgVariableRecord::LocationType Type) {
187 switch (Type) {
188 case DbgVariableRecord::LocationType::Value:
189 *OS << "value";
190 break;
191 case DbgVariableRecord::LocationType::Declare:
192 *OS << "declare";
193 break;
194 case DbgVariableRecord::LocationType::Assign:
195 *OS << "assign";
196 break;
197 case DbgVariableRecord::LocationType::End:
198 *OS << "end";
199 break;
200 case DbgVariableRecord::LocationType::Any:
201 *OS << "any";
202 break;
206 void Write(const Metadata *MD) {
207 if (!MD)
208 return;
209 MD->print(*OS, MST, &M);
210 *OS << '\n';
213 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
214 Write(MD.get());
217 void Write(const NamedMDNode *NMD) {
218 if (!NMD)
219 return;
220 NMD->print(*OS, MST);
221 *OS << '\n';
224 void Write(Type *T) {
225 if (!T)
226 return;
227 *OS << ' ' << *T;
230 void Write(const Comdat *C) {
231 if (!C)
232 return;
233 *OS << *C;
236 void Write(const APInt *AI) {
237 if (!AI)
238 return;
239 *OS << *AI << '\n';
242 void Write(const unsigned i) { *OS << i << '\n'; }
244 // NOLINTNEXTLINE(readability-identifier-naming)
245 void Write(const Attribute *A) {
246 if (!A)
247 return;
248 *OS << A->getAsString() << '\n';
251 // NOLINTNEXTLINE(readability-identifier-naming)
252 void Write(const AttributeSet *AS) {
253 if (!AS)
254 return;
255 *OS << AS->getAsString() << '\n';
258 // NOLINTNEXTLINE(readability-identifier-naming)
259 void Write(const AttributeList *AL) {
260 if (!AL)
261 return;
262 AL->print(*OS);
265 void Write(Printable P) { *OS << P << '\n'; }
267 template <typename T> void Write(ArrayRef<T> Vs) {
268 for (const T &V : Vs)
269 Write(V);
272 template <typename T1, typename... Ts>
273 void WriteTs(const T1 &V1, const Ts &... Vs) {
274 Write(V1);
275 WriteTs(Vs...);
278 template <typename... Ts> void WriteTs() {}
280 public:
281 /// A check failed, so printout out the condition and the message.
283 /// This provides a nice place to put a breakpoint if you want to see why
284 /// something is not correct.
285 void CheckFailed(const Twine &Message) {
286 if (OS)
287 *OS << Message << '\n';
288 Broken = true;
291 /// A check failed (with values to print).
293 /// This calls the Message-only version so that the above is easier to set a
294 /// breakpoint on.
295 template <typename T1, typename... Ts>
296 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
297 CheckFailed(Message);
298 if (OS)
299 WriteTs(V1, Vs...);
302 /// A debug info check failed.
303 void DebugInfoCheckFailed(const Twine &Message) {
304 if (OS)
305 *OS << Message << '\n';
306 Broken |= TreatBrokenDebugInfoAsError;
307 BrokenDebugInfo = true;
310 /// A debug info check failed (with values to print).
311 template <typename T1, typename... Ts>
312 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
313 const Ts &... Vs) {
314 DebugInfoCheckFailed(Message);
315 if (OS)
316 WriteTs(V1, Vs...);
320 } // namespace llvm
322 namespace {
324 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
325 friend class InstVisitor<Verifier>;
326 DominatorTree DT;
328 /// When verifying a basic block, keep track of all of the
329 /// instructions we have seen so far.
331 /// This allows us to do efficient dominance checks for the case when an
332 /// instruction has an operand that is an instruction in the same block.
333 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
335 /// Keep track of the metadata nodes that have been checked already.
336 SmallPtrSet<const Metadata *, 32> MDNodes;
338 /// Keep track which DISubprogram is attached to which function.
339 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
341 /// Track all DICompileUnits visited.
342 SmallPtrSet<const Metadata *, 2> CUVisited;
344 /// The result type for a landingpad.
345 Type *LandingPadResultTy;
347 /// Whether we've seen a call to @llvm.localescape in this function
348 /// already.
349 bool SawFrameEscape;
351 /// Whether the current function has a DISubprogram attached to it.
352 bool HasDebugInfo = false;
354 /// Stores the count of how many objects were passed to llvm.localescape for a
355 /// given function and the largest index passed to llvm.localrecover.
356 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
358 // Maps catchswitches and cleanuppads that unwind to siblings to the
359 // terminators that indicate the unwind, used to detect cycles therein.
360 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
362 /// Cache which blocks are in which funclet, if an EH funclet personality is
363 /// in use. Otherwise empty.
364 DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors;
366 /// Cache of constants visited in search of ConstantExprs.
367 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
369 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
370 SmallVector<const Function *, 4> DeoptimizeDeclarations;
372 /// Cache of attribute lists verified.
373 SmallPtrSet<const void *, 32> AttributeListsVisited;
375 // Verify that this GlobalValue is only used in this module.
376 // This map is used to avoid visiting uses twice. We can arrive at a user
377 // twice, if they have multiple operands. In particular for very large
378 // constant expressions, we can arrive at a particular user many times.
379 SmallPtrSet<const Value *, 32> GlobalValueVisited;
381 // Keeps track of duplicate function argument debug info.
382 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
384 TBAAVerifier TBAAVerifyHelper;
385 ConvergenceVerifier ConvergenceVerifyHelper;
387 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
389 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
391 public:
392 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
393 const Module &M)
394 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
395 SawFrameEscape(false), TBAAVerifyHelper(this) {
396 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
399 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
401 bool verify(const Function &F) {
402 assert(F.getParent() == &M &&
403 "An instance of this class only works with a specific module!");
405 // First ensure the function is well-enough formed to compute dominance
406 // information, and directly compute a dominance tree. We don't rely on the
407 // pass manager to provide this as it isolates us from a potentially
408 // out-of-date dominator tree and makes it significantly more complex to run
409 // this code outside of a pass manager.
410 // FIXME: It's really gross that we have to cast away constness here.
411 if (!F.empty())
412 DT.recalculate(const_cast<Function &>(F));
414 for (const BasicBlock &BB : F) {
415 if (!BB.empty() && BB.back().isTerminator())
416 continue;
418 if (OS) {
419 *OS << "Basic Block in function '" << F.getName()
420 << "' does not have terminator!\n";
421 BB.printAsOperand(*OS, true, MST);
422 *OS << "\n";
424 return false;
427 auto FailureCB = [this](const Twine &Message) {
428 this->CheckFailed(Message);
430 ConvergenceVerifyHelper.initialize(OS, FailureCB, F);
432 Broken = false;
433 // FIXME: We strip const here because the inst visitor strips const.
434 visit(const_cast<Function &>(F));
435 verifySiblingFuncletUnwinds();
437 if (ConvergenceVerifyHelper.sawTokens())
438 ConvergenceVerifyHelper.verify(DT);
440 InstsInThisBlock.clear();
441 DebugFnArgs.clear();
442 LandingPadResultTy = nullptr;
443 SawFrameEscape = false;
444 SiblingFuncletInfo.clear();
445 verifyNoAliasScopeDecl();
446 NoAliasScopeDecls.clear();
448 return !Broken;
451 /// Verify the module that this instance of \c Verifier was initialized with.
452 bool verify() {
453 Broken = false;
455 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
456 for (const Function &F : M)
457 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
458 DeoptimizeDeclarations.push_back(&F);
460 // Now that we've visited every function, verify that we never asked to
461 // recover a frame index that wasn't escaped.
462 verifyFrameRecoverIndices();
463 for (const GlobalVariable &GV : M.globals())
464 visitGlobalVariable(GV);
466 for (const GlobalAlias &GA : M.aliases())
467 visitGlobalAlias(GA);
469 for (const GlobalIFunc &GI : M.ifuncs())
470 visitGlobalIFunc(GI);
472 for (const NamedMDNode &NMD : M.named_metadata())
473 visitNamedMDNode(NMD);
475 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
476 visitComdat(SMEC.getValue());
478 visitModuleFlags();
479 visitModuleIdents();
480 visitModuleCommandLines();
482 verifyCompileUnits();
484 verifyDeoptimizeCallingConvs();
485 DISubprogramAttachments.clear();
486 return !Broken;
489 private:
490 /// Whether a metadata node is allowed to be, or contain, a DILocation.
491 enum class AreDebugLocsAllowed { No, Yes };
493 /// Metadata that should be treated as a range, with slightly different
494 /// requirements.
495 enum class RangeLikeMetadataKind {
496 Range, // MD_range
497 AbsoluteSymbol, // MD_absolute_symbol
498 NoaliasAddrspace // MD_noalias_addrspace
501 // Verification methods...
502 void visitGlobalValue(const GlobalValue &GV);
503 void visitGlobalVariable(const GlobalVariable &GV);
504 void visitGlobalAlias(const GlobalAlias &GA);
505 void visitGlobalIFunc(const GlobalIFunc &GI);
506 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
507 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
508 const GlobalAlias &A, const Constant &C);
509 void visitNamedMDNode(const NamedMDNode &NMD);
510 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
511 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
512 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
513 void visitDIArgList(const DIArgList &AL, Function *F);
514 void visitComdat(const Comdat &C);
515 void visitModuleIdents();
516 void visitModuleCommandLines();
517 void visitModuleFlags();
518 void visitModuleFlag(const MDNode *Op,
519 DenseMap<const MDString *, const MDNode *> &SeenIDs,
520 SmallVectorImpl<const MDNode *> &Requirements);
521 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
522 void visitFunction(const Function &F);
523 void visitBasicBlock(BasicBlock &BB);
524 void verifyRangeLikeMetadata(const Value &V, const MDNode *Range, Type *Ty,
525 RangeLikeMetadataKind Kind);
526 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
527 void visitNoaliasAddrspaceMetadata(Instruction &I, MDNode *Range, Type *Ty);
528 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
529 void visitProfMetadata(Instruction &I, MDNode *MD);
530 void visitCallStackMetadata(MDNode *MD);
531 void visitMemProfMetadata(Instruction &I, MDNode *MD);
532 void visitCallsiteMetadata(Instruction &I, MDNode *MD);
533 void visitDIAssignIDMetadata(Instruction &I, MDNode *MD);
534 void visitMMRAMetadata(Instruction &I, MDNode *MD);
535 void visitAnnotationMetadata(MDNode *Annotation);
536 void visitAliasScopeMetadata(const MDNode *MD);
537 void visitAliasScopeListMetadata(const MDNode *MD);
538 void visitAccessGroupMetadata(const MDNode *MD);
540 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
541 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
542 #include "llvm/IR/Metadata.def"
543 void visitDIScope(const DIScope &N);
544 void visitDIVariable(const DIVariable &N);
545 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
546 void visitDITemplateParameter(const DITemplateParameter &N);
548 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
550 void visit(DbgLabelRecord &DLR);
551 void visit(DbgVariableRecord &DVR);
552 // InstVisitor overrides...
553 using InstVisitor<Verifier>::visit;
554 void visitDbgRecords(Instruction &I);
555 void visit(Instruction &I);
557 void visitTruncInst(TruncInst &I);
558 void visitZExtInst(ZExtInst &I);
559 void visitSExtInst(SExtInst &I);
560 void visitFPTruncInst(FPTruncInst &I);
561 void visitFPExtInst(FPExtInst &I);
562 void visitFPToUIInst(FPToUIInst &I);
563 void visitFPToSIInst(FPToSIInst &I);
564 void visitUIToFPInst(UIToFPInst &I);
565 void visitSIToFPInst(SIToFPInst &I);
566 void visitIntToPtrInst(IntToPtrInst &I);
567 void visitPtrToIntInst(PtrToIntInst &I);
568 void visitBitCastInst(BitCastInst &I);
569 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
570 void visitPHINode(PHINode &PN);
571 void visitCallBase(CallBase &Call);
572 void visitUnaryOperator(UnaryOperator &U);
573 void visitBinaryOperator(BinaryOperator &B);
574 void visitICmpInst(ICmpInst &IC);
575 void visitFCmpInst(FCmpInst &FC);
576 void visitExtractElementInst(ExtractElementInst &EI);
577 void visitInsertElementInst(InsertElementInst &EI);
578 void visitShuffleVectorInst(ShuffleVectorInst &EI);
579 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
580 void visitCallInst(CallInst &CI);
581 void visitInvokeInst(InvokeInst &II);
582 void visitGetElementPtrInst(GetElementPtrInst &GEP);
583 void visitLoadInst(LoadInst &LI);
584 void visitStoreInst(StoreInst &SI);
585 void verifyDominatesUse(Instruction &I, unsigned i);
586 void visitInstruction(Instruction &I);
587 void visitTerminator(Instruction &I);
588 void visitBranchInst(BranchInst &BI);
589 void visitReturnInst(ReturnInst &RI);
590 void visitSwitchInst(SwitchInst &SI);
591 void visitIndirectBrInst(IndirectBrInst &BI);
592 void visitCallBrInst(CallBrInst &CBI);
593 void visitSelectInst(SelectInst &SI);
594 void visitUserOp1(Instruction &I);
595 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
596 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
597 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
598 void visitVPIntrinsic(VPIntrinsic &VPI);
599 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
600 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
601 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
602 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
603 void visitFenceInst(FenceInst &FI);
604 void visitAllocaInst(AllocaInst &AI);
605 void visitExtractValueInst(ExtractValueInst &EVI);
606 void visitInsertValueInst(InsertValueInst &IVI);
607 void visitEHPadPredecessors(Instruction &I);
608 void visitLandingPadInst(LandingPadInst &LPI);
609 void visitResumeInst(ResumeInst &RI);
610 void visitCatchPadInst(CatchPadInst &CPI);
611 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
612 void visitCleanupPadInst(CleanupPadInst &CPI);
613 void visitFuncletPadInst(FuncletPadInst &FPI);
614 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
615 void visitCleanupReturnInst(CleanupReturnInst &CRI);
617 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
618 void verifySwiftErrorValue(const Value *SwiftErrorVal);
619 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
620 void verifyMustTailCall(CallInst &CI);
621 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
622 void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
623 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
624 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
625 const Value *V);
626 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
627 const Value *V, bool IsIntrinsic, bool IsInlineAsm);
628 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
630 void visitConstantExprsRecursively(const Constant *EntryC);
631 void visitConstantExpr(const ConstantExpr *CE);
632 void visitConstantPtrAuth(const ConstantPtrAuth *CPA);
633 void verifyInlineAsmCall(const CallBase &Call);
634 void verifyStatepoint(const CallBase &Call);
635 void verifyFrameRecoverIndices();
636 void verifySiblingFuncletUnwinds();
638 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
639 void verifyFragmentExpression(const DbgVariableRecord &I);
640 template <typename ValueOrMetadata>
641 void verifyFragmentExpression(const DIVariable &V,
642 DIExpression::FragmentInfo Fragment,
643 ValueOrMetadata *Desc);
644 void verifyFnArgs(const DbgVariableIntrinsic &I);
645 void verifyFnArgs(const DbgVariableRecord &DVR);
646 void verifyNotEntryValue(const DbgVariableIntrinsic &I);
647 void verifyNotEntryValue(const DbgVariableRecord &I);
649 /// Module-level debug info verification...
650 void verifyCompileUnits();
652 /// Module-level verification that all @llvm.experimental.deoptimize
653 /// declarations share the same calling convention.
654 void verifyDeoptimizeCallingConvs();
656 void verifyAttachedCallBundle(const CallBase &Call,
657 const OperandBundleUse &BU);
659 /// Verify the llvm.experimental.noalias.scope.decl declarations
660 void verifyNoAliasScopeDecl();
663 } // end anonymous namespace
665 /// We know that cond should be true, if not print an error message.
666 #define Check(C, ...) \
667 do { \
668 if (!(C)) { \
669 CheckFailed(__VA_ARGS__); \
670 return; \
672 } while (false)
674 /// We know that a debug info condition should be true, if not print
675 /// an error message.
676 #define CheckDI(C, ...) \
677 do { \
678 if (!(C)) { \
679 DebugInfoCheckFailed(__VA_ARGS__); \
680 return; \
682 } while (false)
684 void Verifier::visitDbgRecords(Instruction &I) {
685 if (!I.DebugMarker)
686 return;
687 CheckDI(I.DebugMarker->MarkedInstr == &I,
688 "Instruction has invalid DebugMarker", &I);
689 CheckDI(!isa<PHINode>(&I) || !I.hasDbgRecords(),
690 "PHI Node must not have any attached DbgRecords", &I);
691 for (DbgRecord &DR : I.getDbgRecordRange()) {
692 CheckDI(DR.getMarker() == I.DebugMarker,
693 "DbgRecord had invalid DebugMarker", &I, &DR);
694 if (auto *Loc =
695 dyn_cast_or_null<DILocation>(DR.getDebugLoc().getAsMDNode()))
696 visitMDNode(*Loc, AreDebugLocsAllowed::Yes);
697 if (auto *DVR = dyn_cast<DbgVariableRecord>(&DR)) {
698 visit(*DVR);
699 // These have to appear after `visit` for consistency with existing
700 // intrinsic behaviour.
701 verifyFragmentExpression(*DVR);
702 verifyNotEntryValue(*DVR);
703 } else if (auto *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
704 visit(*DLR);
709 void Verifier::visit(Instruction &I) {
710 visitDbgRecords(I);
711 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
712 Check(I.getOperand(i) != nullptr, "Operand is null", &I);
713 InstVisitor<Verifier>::visit(I);
716 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
717 static void forEachUser(const Value *User,
718 SmallPtrSet<const Value *, 32> &Visited,
719 llvm::function_ref<bool(const Value *)> Callback) {
720 if (!Visited.insert(User).second)
721 return;
723 SmallVector<const Value *> WorkList;
724 append_range(WorkList, User->materialized_users());
725 while (!WorkList.empty()) {
726 const Value *Cur = WorkList.pop_back_val();
727 if (!Visited.insert(Cur).second)
728 continue;
729 if (Callback(Cur))
730 append_range(WorkList, Cur->materialized_users());
734 void Verifier::visitGlobalValue(const GlobalValue &GV) {
735 Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
736 "Global is external, but doesn't have external or weak linkage!", &GV);
738 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
740 if (MaybeAlign A = GO->getAlign()) {
741 Check(A->value() <= Value::MaximumAlignment,
742 "huge alignment values are unsupported", GO);
745 if (const MDNode *Associated =
746 GO->getMetadata(LLVMContext::MD_associated)) {
747 Check(Associated->getNumOperands() == 1,
748 "associated metadata must have one operand", &GV, Associated);
749 const Metadata *Op = Associated->getOperand(0).get();
750 Check(Op, "associated metadata must have a global value", GO, Associated);
752 const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Op);
753 Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated);
754 if (VM) {
755 Check(isa<PointerType>(VM->getValue()->getType()),
756 "associated value must be pointer typed", GV, Associated);
758 const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
759 Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped),
760 "associated metadata must point to a GlobalObject", GO, Stripped);
761 Check(Stripped != GO,
762 "global values should not associate to themselves", GO,
763 Associated);
767 // FIXME: Why is getMetadata on GlobalValue protected?
768 if (const MDNode *AbsoluteSymbol =
769 GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
770 verifyRangeLikeMetadata(*GO, AbsoluteSymbol,
771 DL.getIntPtrType(GO->getType()),
772 RangeLikeMetadataKind::AbsoluteSymbol);
776 Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
777 "Only global variables can have appending linkage!", &GV);
779 if (GV.hasAppendingLinkage()) {
780 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
781 Check(GVar && GVar->getValueType()->isArrayTy(),
782 "Only global arrays can have appending linkage!", GVar);
785 if (GV.isDeclarationForLinker())
786 Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
788 if (GV.hasDLLExportStorageClass()) {
789 Check(!GV.hasHiddenVisibility(),
790 "dllexport GlobalValue must have default or protected visibility",
791 &GV);
793 if (GV.hasDLLImportStorageClass()) {
794 Check(GV.hasDefaultVisibility(),
795 "dllimport GlobalValue must have default visibility", &GV);
796 Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
797 &GV);
799 Check((GV.isDeclaration() &&
800 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
801 GV.hasAvailableExternallyLinkage(),
802 "Global is marked as dllimport, but not external", &GV);
805 if (GV.isImplicitDSOLocal())
806 Check(GV.isDSOLocal(),
807 "GlobalValue with local linkage or non-default "
808 "visibility must be dso_local!",
809 &GV);
811 if (GV.isTagged()) {
812 Check(!GV.hasSection(), "tagged GlobalValue must not be in section.", &GV);
815 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
816 if (const Instruction *I = dyn_cast<Instruction>(V)) {
817 if (!I->getParent() || !I->getParent()->getParent())
818 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
820 else if (I->getParent()->getParent()->getParent() != &M)
821 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
822 I->getParent()->getParent(),
823 I->getParent()->getParent()->getParent());
824 return false;
825 } else if (const Function *F = dyn_cast<Function>(V)) {
826 if (F->getParent() != &M)
827 CheckFailed("Global is used by function in a different module", &GV, &M,
828 F, F->getParent());
829 return false;
831 return true;
835 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
836 Type *GVType = GV.getValueType();
838 if (GV.hasInitializer()) {
839 Check(GV.getInitializer()->getType() == GVType,
840 "Global variable initializer type does not match global "
841 "variable type!",
842 &GV);
843 // If the global has common linkage, it must have a zero initializer and
844 // cannot be constant.
845 if (GV.hasCommonLinkage()) {
846 Check(GV.getInitializer()->isNullValue(),
847 "'common' global must have a zero initializer!", &GV);
848 Check(!GV.isConstant(), "'common' global may not be marked constant!",
849 &GV);
850 Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
854 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
855 GV.getName() == "llvm.global_dtors")) {
856 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
857 "invalid linkage for intrinsic global variable", &GV);
858 Check(GV.materialized_use_empty(),
859 "invalid uses of intrinsic global variable", &GV);
861 // Don't worry about emitting an error for it not being an array,
862 // visitGlobalValue will complain on appending non-array.
863 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
864 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
865 PointerType *FuncPtrTy =
866 PointerType::get(Context, DL.getProgramAddressSpace());
867 Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
868 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
869 STy->getTypeAtIndex(1) == FuncPtrTy,
870 "wrong type for intrinsic global variable", &GV);
871 Check(STy->getNumElements() == 3,
872 "the third field of the element type is mandatory, "
873 "specify ptr null to migrate from the obsoleted 2-field form");
874 Type *ETy = STy->getTypeAtIndex(2);
875 Check(ETy->isPointerTy(), "wrong type for intrinsic global variable",
876 &GV);
880 if (GV.hasName() && (GV.getName() == "llvm.used" ||
881 GV.getName() == "llvm.compiler.used")) {
882 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
883 "invalid linkage for intrinsic global variable", &GV);
884 Check(GV.materialized_use_empty(),
885 "invalid uses of intrinsic global variable", &GV);
887 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
888 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
889 Check(PTy, "wrong type for intrinsic global variable", &GV);
890 if (GV.hasInitializer()) {
891 const Constant *Init = GV.getInitializer();
892 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
893 Check(InitArray, "wrong initalizer for intrinsic global variable",
894 Init);
895 for (Value *Op : InitArray->operands()) {
896 Value *V = Op->stripPointerCasts();
897 Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
898 isa<GlobalAlias>(V),
899 Twine("invalid ") + GV.getName() + " member", V);
900 Check(V->hasName(),
901 Twine("members of ") + GV.getName() + " must be named", V);
907 // Visit any debug info attachments.
908 SmallVector<MDNode *, 1> MDs;
909 GV.getMetadata(LLVMContext::MD_dbg, MDs);
910 for (auto *MD : MDs) {
911 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
912 visitDIGlobalVariableExpression(*GVE);
913 else
914 CheckDI(false, "!dbg attachment of global variable must be a "
915 "DIGlobalVariableExpression");
918 // Scalable vectors cannot be global variables, since we don't know
919 // the runtime size.
920 Check(!GVType->isScalableTy(), "Globals cannot contain scalable types", &GV);
922 // Check if it is or contains a target extension type that disallows being
923 // used as a global.
924 Check(!GVType->containsNonGlobalTargetExtType(),
925 "Global @" + GV.getName() + " has illegal target extension type",
926 GVType);
928 if (!GV.hasInitializer()) {
929 visitGlobalValue(GV);
930 return;
933 // Walk any aggregate initializers looking for bitcasts between address spaces
934 visitConstantExprsRecursively(GV.getInitializer());
936 visitGlobalValue(GV);
939 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
940 SmallPtrSet<const GlobalAlias*, 4> Visited;
941 Visited.insert(&GA);
942 visitAliaseeSubExpr(Visited, GA, C);
945 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
946 const GlobalAlias &GA, const Constant &C) {
947 if (GA.hasAvailableExternallyLinkage()) {
948 Check(isa<GlobalValue>(C) &&
949 cast<GlobalValue>(C).hasAvailableExternallyLinkage(),
950 "available_externally alias must point to available_externally "
951 "global value",
952 &GA);
954 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
955 if (!GA.hasAvailableExternallyLinkage()) {
956 Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
957 &GA);
960 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
961 Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
963 Check(!GA2->isInterposable(),
964 "Alias cannot point to an interposable alias", &GA);
965 } else {
966 // Only continue verifying subexpressions of GlobalAliases.
967 // Do not recurse into global initializers.
968 return;
972 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
973 visitConstantExprsRecursively(CE);
975 for (const Use &U : C.operands()) {
976 Value *V = &*U;
977 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
978 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
979 else if (const auto *C2 = dyn_cast<Constant>(V))
980 visitAliaseeSubExpr(Visited, GA, *C2);
984 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
985 Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
986 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
987 "weak_odr, external, or available_externally linkage!",
988 &GA);
989 const Constant *Aliasee = GA.getAliasee();
990 Check(Aliasee, "Aliasee cannot be NULL!", &GA);
991 Check(GA.getType() == Aliasee->getType(),
992 "Alias and aliasee types should match!", &GA);
994 Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
995 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
997 visitAliaseeSubExpr(GA, *Aliasee);
999 visitGlobalValue(GA);
1002 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
1003 Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
1004 "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
1005 "weak_odr, or external linkage!",
1006 &GI);
1007 // Pierce through ConstantExprs and GlobalAliases and check that the resolver
1008 // is a Function definition.
1009 const Function *Resolver = GI.getResolverFunction();
1010 Check(Resolver, "IFunc must have a Function resolver", &GI);
1011 Check(!Resolver->isDeclarationForLinker(),
1012 "IFunc resolver must be a definition", &GI);
1014 // Check that the immediate resolver operand (prior to any bitcasts) has the
1015 // correct type.
1016 const Type *ResolverTy = GI.getResolver()->getType();
1018 Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()),
1019 "IFunc resolver must return a pointer", &GI);
1021 Check(ResolverTy == PointerType::get(Context, GI.getAddressSpace()),
1022 "IFunc resolver has incorrect type", &GI);
1025 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
1026 // There used to be various other llvm.dbg.* nodes, but we don't support
1027 // upgrading them and we want to reserve the namespace for future uses.
1028 if (NMD.getName().starts_with("llvm.dbg."))
1029 CheckDI(NMD.getName() == "llvm.dbg.cu",
1030 "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
1031 for (const MDNode *MD : NMD.operands()) {
1032 if (NMD.getName() == "llvm.dbg.cu")
1033 CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
1035 if (!MD)
1036 continue;
1038 visitMDNode(*MD, AreDebugLocsAllowed::Yes);
1042 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
1043 // Only visit each node once. Metadata can be mutually recursive, so this
1044 // avoids infinite recursion here, as well as being an optimization.
1045 if (!MDNodes.insert(&MD).second)
1046 return;
1048 Check(&MD.getContext() == &Context,
1049 "MDNode context does not match Module context!", &MD);
1051 switch (MD.getMetadataID()) {
1052 default:
1053 llvm_unreachable("Invalid MDNode subclass");
1054 case Metadata::MDTupleKind:
1055 break;
1056 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
1057 case Metadata::CLASS##Kind: \
1058 visit##CLASS(cast<CLASS>(MD)); \
1059 break;
1060 #include "llvm/IR/Metadata.def"
1063 for (const Metadata *Op : MD.operands()) {
1064 if (!Op)
1065 continue;
1066 Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
1067 &MD, Op);
1068 CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
1069 "DILocation not allowed within this metadata node", &MD, Op);
1070 if (auto *N = dyn_cast<MDNode>(Op)) {
1071 visitMDNode(*N, AllowLocs);
1072 continue;
1074 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
1075 visitValueAsMetadata(*V, nullptr);
1076 continue;
1080 // Check these last, so we diagnose problems in operands first.
1081 Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
1082 Check(MD.isResolved(), "All nodes should be resolved!", &MD);
1085 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
1086 Check(MD.getValue(), "Expected valid value", &MD);
1087 Check(!MD.getValue()->getType()->isMetadataTy(),
1088 "Unexpected metadata round-trip through values", &MD, MD.getValue());
1090 auto *L = dyn_cast<LocalAsMetadata>(&MD);
1091 if (!L)
1092 return;
1094 Check(F, "function-local metadata used outside a function", L);
1096 // If this was an instruction, bb, or argument, verify that it is in the
1097 // function that we expect.
1098 Function *ActualF = nullptr;
1099 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
1100 Check(I->getParent(), "function-local metadata not in basic block", L, I);
1101 ActualF = I->getParent()->getParent();
1102 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
1103 ActualF = BB->getParent();
1104 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
1105 ActualF = A->getParent();
1106 assert(ActualF && "Unimplemented function local metadata case!");
1108 Check(ActualF == F, "function-local metadata used in wrong function", L);
1111 void Verifier::visitDIArgList(const DIArgList &AL, Function *F) {
1112 for (const ValueAsMetadata *VAM : AL.getArgs())
1113 visitValueAsMetadata(*VAM, F);
1116 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
1117 Metadata *MD = MDV.getMetadata();
1118 if (auto *N = dyn_cast<MDNode>(MD)) {
1119 visitMDNode(*N, AreDebugLocsAllowed::No);
1120 return;
1123 // Only visit each node once. Metadata can be mutually recursive, so this
1124 // avoids infinite recursion here, as well as being an optimization.
1125 if (!MDNodes.insert(MD).second)
1126 return;
1128 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
1129 visitValueAsMetadata(*V, F);
1131 if (auto *AL = dyn_cast<DIArgList>(MD))
1132 visitDIArgList(*AL, F);
1135 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
1136 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
1137 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
1139 void Verifier::visitDILocation(const DILocation &N) {
1140 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1141 "location requires a valid scope", &N, N.getRawScope());
1142 if (auto *IA = N.getRawInlinedAt())
1143 CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
1144 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1145 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1148 void Verifier::visitGenericDINode(const GenericDINode &N) {
1149 CheckDI(N.getTag(), "invalid tag", &N);
1152 void Verifier::visitDIScope(const DIScope &N) {
1153 if (auto *F = N.getRawFile())
1154 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1157 void Verifier::visitDISubrange(const DISubrange &N) {
1158 CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1159 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1160 "Subrange can have any one of count or upperBound", &N);
1161 auto *CBound = N.getRawCountNode();
1162 CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1163 isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1164 "Count must be signed constant or DIVariable or DIExpression", &N);
1165 auto Count = N.getCount();
1166 CheckDI(!Count || !isa<ConstantInt *>(Count) ||
1167 cast<ConstantInt *>(Count)->getSExtValue() >= -1,
1168 "invalid subrange count", &N);
1169 auto *LBound = N.getRawLowerBound();
1170 CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1171 isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1172 "LowerBound must be signed constant or DIVariable or DIExpression",
1173 &N);
1174 auto *UBound = N.getRawUpperBound();
1175 CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1176 isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1177 "UpperBound must be signed constant or DIVariable or DIExpression",
1178 &N);
1179 auto *Stride = N.getRawStride();
1180 CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1181 isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1182 "Stride must be signed constant or DIVariable or DIExpression", &N);
1185 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1186 CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1187 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1188 "GenericSubrange can have any one of count or upperBound", &N);
1189 auto *CBound = N.getRawCountNode();
1190 CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1191 "Count must be signed constant or DIVariable or DIExpression", &N);
1192 auto *LBound = N.getRawLowerBound();
1193 CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1194 CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1195 "LowerBound must be signed constant or DIVariable or DIExpression",
1196 &N);
1197 auto *UBound = N.getRawUpperBound();
1198 CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1199 "UpperBound must be signed constant or DIVariable or DIExpression",
1200 &N);
1201 auto *Stride = N.getRawStride();
1202 CheckDI(Stride, "GenericSubrange must contain stride", &N);
1203 CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1204 "Stride must be signed constant or DIVariable or DIExpression", &N);
1207 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1208 CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1211 void Verifier::visitDIBasicType(const DIBasicType &N) {
1212 CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1213 N.getTag() == dwarf::DW_TAG_unspecified_type ||
1214 N.getTag() == dwarf::DW_TAG_string_type,
1215 "invalid tag", &N);
1218 void Verifier::visitDIStringType(const DIStringType &N) {
1219 CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1220 CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1221 &N);
1224 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1225 // Common scope checks.
1226 visitDIScope(N);
1228 CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1229 N.getTag() == dwarf::DW_TAG_pointer_type ||
1230 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1231 N.getTag() == dwarf::DW_TAG_reference_type ||
1232 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1233 N.getTag() == dwarf::DW_TAG_const_type ||
1234 N.getTag() == dwarf::DW_TAG_immutable_type ||
1235 N.getTag() == dwarf::DW_TAG_volatile_type ||
1236 N.getTag() == dwarf::DW_TAG_restrict_type ||
1237 N.getTag() == dwarf::DW_TAG_atomic_type ||
1238 N.getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ||
1239 N.getTag() == dwarf::DW_TAG_member ||
1240 (N.getTag() == dwarf::DW_TAG_variable && N.isStaticMember()) ||
1241 N.getTag() == dwarf::DW_TAG_inheritance ||
1242 N.getTag() == dwarf::DW_TAG_friend ||
1243 N.getTag() == dwarf::DW_TAG_set_type ||
1244 N.getTag() == dwarf::DW_TAG_template_alias,
1245 "invalid tag", &N);
1246 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1247 CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1248 N.getRawExtraData());
1251 if (N.getTag() == dwarf::DW_TAG_set_type) {
1252 if (auto *T = N.getRawBaseType()) {
1253 auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1254 auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1255 CheckDI(
1256 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1257 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1258 Basic->getEncoding() == dwarf::DW_ATE_signed ||
1259 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1260 Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1261 Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1262 "invalid set base type", &N, T);
1266 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1267 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1268 N.getRawBaseType());
1270 if (N.getDWARFAddressSpace()) {
1271 CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1272 N.getTag() == dwarf::DW_TAG_reference_type ||
1273 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1274 "DWARF address space only applies to pointer or reference types",
1275 &N);
1279 /// Detect mutually exclusive flags.
1280 static bool hasConflictingReferenceFlags(unsigned Flags) {
1281 return ((Flags & DINode::FlagLValueReference) &&
1282 (Flags & DINode::FlagRValueReference)) ||
1283 ((Flags & DINode::FlagTypePassByValue) &&
1284 (Flags & DINode::FlagTypePassByReference));
1287 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1288 auto *Params = dyn_cast<MDTuple>(&RawParams);
1289 CheckDI(Params, "invalid template params", &N, &RawParams);
1290 for (Metadata *Op : Params->operands()) {
1291 CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1292 &N, Params, Op);
1296 void Verifier::visitDICompositeType(const DICompositeType &N) {
1297 // Common scope checks.
1298 visitDIScope(N);
1300 CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1301 N.getTag() == dwarf::DW_TAG_structure_type ||
1302 N.getTag() == dwarf::DW_TAG_union_type ||
1303 N.getTag() == dwarf::DW_TAG_enumeration_type ||
1304 N.getTag() == dwarf::DW_TAG_class_type ||
1305 N.getTag() == dwarf::DW_TAG_variant_part ||
1306 N.getTag() == dwarf::DW_TAG_namelist,
1307 "invalid tag", &N);
1309 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1310 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1311 N.getRawBaseType());
1313 CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1314 "invalid composite elements", &N, N.getRawElements());
1315 CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1316 N.getRawVTableHolder());
1317 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1318 "invalid reference flags", &N);
1319 unsigned DIBlockByRefStruct = 1 << 4;
1320 CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1321 "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1322 CheckDI(llvm::all_of(N.getElements(), [](const DINode *N) { return N; }),
1323 "DISubprogram contains null entry in `elements` field", &N);
1325 if (N.isVector()) {
1326 const DINodeArray Elements = N.getElements();
1327 CheckDI(Elements.size() == 1 &&
1328 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1329 "invalid vector, expected one element of type subrange", &N);
1332 if (auto *Params = N.getRawTemplateParams())
1333 visitTemplateParams(N, *Params);
1335 if (auto *D = N.getRawDiscriminator()) {
1336 CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1337 "discriminator can only appear on variant part");
1340 if (N.getRawDataLocation()) {
1341 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1342 "dataLocation can only appear in array type");
1345 if (N.getRawAssociated()) {
1346 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1347 "associated can only appear in array type");
1350 if (N.getRawAllocated()) {
1351 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1352 "allocated can only appear in array type");
1355 if (N.getRawRank()) {
1356 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1357 "rank can only appear in array type");
1360 if (N.getTag() == dwarf::DW_TAG_array_type) {
1361 CheckDI(N.getRawBaseType(), "array types must have a base type", &N);
1365 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1366 CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1367 if (auto *Types = N.getRawTypeArray()) {
1368 CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1369 for (Metadata *Ty : N.getTypeArray()->operands()) {
1370 CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1373 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1374 "invalid reference flags", &N);
1377 void Verifier::visitDIFile(const DIFile &N) {
1378 CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1379 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1380 if (Checksum) {
1381 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1382 "invalid checksum kind", &N);
1383 size_t Size;
1384 switch (Checksum->Kind) {
1385 case DIFile::CSK_MD5:
1386 Size = 32;
1387 break;
1388 case DIFile::CSK_SHA1:
1389 Size = 40;
1390 break;
1391 case DIFile::CSK_SHA256:
1392 Size = 64;
1393 break;
1395 CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1396 CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1397 "invalid checksum", &N);
1401 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1402 CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1403 CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1405 // Don't bother verifying the compilation directory or producer string
1406 // as those could be empty.
1407 CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1408 N.getRawFile());
1409 CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1410 N.getFile());
1412 CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1413 "invalid emission kind", &N);
1415 if (auto *Array = N.getRawEnumTypes()) {
1416 CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1417 for (Metadata *Op : N.getEnumTypes()->operands()) {
1418 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1419 CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1420 "invalid enum type", &N, N.getEnumTypes(), Op);
1423 if (auto *Array = N.getRawRetainedTypes()) {
1424 CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1425 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1426 CheckDI(
1427 Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1428 !cast<DISubprogram>(Op)->isDefinition())),
1429 "invalid retained type", &N, Op);
1432 if (auto *Array = N.getRawGlobalVariables()) {
1433 CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1434 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1435 CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1436 "invalid global variable ref", &N, Op);
1439 if (auto *Array = N.getRawImportedEntities()) {
1440 CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1441 for (Metadata *Op : N.getImportedEntities()->operands()) {
1442 CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1443 &N, Op);
1446 if (auto *Array = N.getRawMacros()) {
1447 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1448 for (Metadata *Op : N.getMacros()->operands()) {
1449 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1452 CUVisited.insert(&N);
1455 void Verifier::visitDISubprogram(const DISubprogram &N) {
1456 CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1457 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1458 if (auto *F = N.getRawFile())
1459 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1460 else
1461 CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1462 if (auto *T = N.getRawType())
1463 CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1464 CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1465 N.getRawContainingType());
1466 if (auto *Params = N.getRawTemplateParams())
1467 visitTemplateParams(N, *Params);
1468 if (auto *S = N.getRawDeclaration())
1469 CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1470 "invalid subprogram declaration", &N, S);
1471 if (auto *RawNode = N.getRawRetainedNodes()) {
1472 auto *Node = dyn_cast<MDTuple>(RawNode);
1473 CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1474 for (Metadata *Op : Node->operands()) {
1475 CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) ||
1476 isa<DIImportedEntity>(Op)),
1477 "invalid retained nodes, expected DILocalVariable, DILabel or "
1478 "DIImportedEntity",
1479 &N, Node, Op);
1482 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1483 "invalid reference flags", &N);
1485 auto *Unit = N.getRawUnit();
1486 if (N.isDefinition()) {
1487 // Subprogram definitions (not part of the type hierarchy).
1488 CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1489 CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1490 CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1491 // There's no good way to cross the CU boundary to insert a nested
1492 // DISubprogram definition in one CU into a type defined in another CU.
1493 auto *CT = dyn_cast_or_null<DICompositeType>(N.getRawScope());
1494 if (CT && CT->getRawIdentifier() &&
1495 M.getContext().isODRUniquingDebugTypes())
1496 CheckDI(N.getDeclaration(),
1497 "definition subprograms cannot be nested within DICompositeType "
1498 "when enabling ODR",
1499 &N);
1500 } else {
1501 // Subprogram declarations (part of the type hierarchy).
1502 CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1503 CheckDI(!N.getRawDeclaration(),
1504 "subprogram declaration must not have a declaration field");
1507 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1508 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1509 CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1510 for (Metadata *Op : ThrownTypes->operands())
1511 CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1512 Op);
1515 if (N.areAllCallsDescribed())
1516 CheckDI(N.isDefinition(),
1517 "DIFlagAllCallsDescribed must be attached to a definition");
1520 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1521 CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1522 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1523 "invalid local scope", &N, N.getRawScope());
1524 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1525 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1528 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1529 visitDILexicalBlockBase(N);
1531 CheckDI(N.getLine() || !N.getColumn(),
1532 "cannot have column info without line info", &N);
1535 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1536 visitDILexicalBlockBase(N);
1539 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1540 CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1541 if (auto *S = N.getRawScope())
1542 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1543 if (auto *S = N.getRawDecl())
1544 CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1547 void Verifier::visitDINamespace(const DINamespace &N) {
1548 CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1549 if (auto *S = N.getRawScope())
1550 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1553 void Verifier::visitDIMacro(const DIMacro &N) {
1554 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1555 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1556 "invalid macinfo type", &N);
1557 CheckDI(!N.getName().empty(), "anonymous macro", &N);
1558 if (!N.getValue().empty()) {
1559 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1563 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1564 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1565 "invalid macinfo type", &N);
1566 if (auto *F = N.getRawFile())
1567 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1569 if (auto *Array = N.getRawElements()) {
1570 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1571 for (Metadata *Op : N.getElements()->operands()) {
1572 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1577 void Verifier::visitDIModule(const DIModule &N) {
1578 CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1579 CheckDI(!N.getName().empty(), "anonymous module", &N);
1582 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1583 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1586 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1587 visitDITemplateParameter(N);
1589 CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1590 &N);
1593 void Verifier::visitDITemplateValueParameter(
1594 const DITemplateValueParameter &N) {
1595 visitDITemplateParameter(N);
1597 CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1598 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1599 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1600 "invalid tag", &N);
1603 void Verifier::visitDIVariable(const DIVariable &N) {
1604 if (auto *S = N.getRawScope())
1605 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1606 if (auto *F = N.getRawFile())
1607 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1610 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1611 // Checks common to all variables.
1612 visitDIVariable(N);
1614 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1615 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1616 // Check only if the global variable is not an extern
1617 if (N.isDefinition())
1618 CheckDI(N.getType(), "missing global variable type", &N);
1619 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1620 CheckDI(isa<DIDerivedType>(Member),
1621 "invalid static data member declaration", &N, Member);
1625 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1626 // Checks common to all variables.
1627 visitDIVariable(N);
1629 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1630 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1631 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1632 "local variable requires a valid scope", &N, N.getRawScope());
1633 if (auto Ty = N.getType())
1634 CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1637 void Verifier::visitDIAssignID(const DIAssignID &N) {
1638 CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N);
1639 CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N);
1642 void Verifier::visitDILabel(const DILabel &N) {
1643 if (auto *S = N.getRawScope())
1644 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1645 if (auto *F = N.getRawFile())
1646 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1648 CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1649 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1650 "label requires a valid scope", &N, N.getRawScope());
1653 void Verifier::visitDIExpression(const DIExpression &N) {
1654 CheckDI(N.isValid(), "invalid expression", &N);
1657 void Verifier::visitDIGlobalVariableExpression(
1658 const DIGlobalVariableExpression &GVE) {
1659 CheckDI(GVE.getVariable(), "missing variable");
1660 if (auto *Var = GVE.getVariable())
1661 visitDIGlobalVariable(*Var);
1662 if (auto *Expr = GVE.getExpression()) {
1663 visitDIExpression(*Expr);
1664 if (auto Fragment = Expr->getFragmentInfo())
1665 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1669 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1670 CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1671 if (auto *T = N.getRawType())
1672 CheckDI(isType(T), "invalid type ref", &N, T);
1673 if (auto *F = N.getRawFile())
1674 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1677 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1678 CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1679 N.getTag() == dwarf::DW_TAG_imported_declaration,
1680 "invalid tag", &N);
1681 if (auto *S = N.getRawScope())
1682 CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1683 CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1684 N.getRawEntity());
1687 void Verifier::visitComdat(const Comdat &C) {
1688 // In COFF the Module is invalid if the GlobalValue has private linkage.
1689 // Entities with private linkage don't have entries in the symbol table.
1690 if (TT.isOSBinFormatCOFF())
1691 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1692 Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1693 GV);
1696 void Verifier::visitModuleIdents() {
1697 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1698 if (!Idents)
1699 return;
1701 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1702 // Scan each llvm.ident entry and make sure that this requirement is met.
1703 for (const MDNode *N : Idents->operands()) {
1704 Check(N->getNumOperands() == 1,
1705 "incorrect number of operands in llvm.ident metadata", N);
1706 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1707 ("invalid value for llvm.ident metadata entry operand"
1708 "(the operand should be a string)"),
1709 N->getOperand(0));
1713 void Verifier::visitModuleCommandLines() {
1714 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1715 if (!CommandLines)
1716 return;
1718 // llvm.commandline takes a list of metadata entry. Each entry has only one
1719 // string. Scan each llvm.commandline entry and make sure that this
1720 // requirement is met.
1721 for (const MDNode *N : CommandLines->operands()) {
1722 Check(N->getNumOperands() == 1,
1723 "incorrect number of operands in llvm.commandline metadata", N);
1724 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1725 ("invalid value for llvm.commandline metadata entry operand"
1726 "(the operand should be a string)"),
1727 N->getOperand(0));
1731 void Verifier::visitModuleFlags() {
1732 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1733 if (!Flags) return;
1735 // Scan each flag, and track the flags and requirements.
1736 DenseMap<const MDString*, const MDNode*> SeenIDs;
1737 SmallVector<const MDNode*, 16> Requirements;
1738 uint64_t PAuthABIPlatform = -1;
1739 uint64_t PAuthABIVersion = -1;
1740 for (const MDNode *MDN : Flags->operands()) {
1741 visitModuleFlag(MDN, SeenIDs, Requirements);
1742 if (MDN->getNumOperands() != 3)
1743 continue;
1744 if (const auto *FlagName = dyn_cast_or_null<MDString>(MDN->getOperand(1))) {
1745 if (FlagName->getString() == "aarch64-elf-pauthabi-platform") {
1746 if (const auto *PAP =
1747 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2)))
1748 PAuthABIPlatform = PAP->getZExtValue();
1749 } else if (FlagName->getString() == "aarch64-elf-pauthabi-version") {
1750 if (const auto *PAV =
1751 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2)))
1752 PAuthABIVersion = PAV->getZExtValue();
1757 if ((PAuthABIPlatform == uint64_t(-1)) != (PAuthABIVersion == uint64_t(-1)))
1758 CheckFailed("either both or no 'aarch64-elf-pauthabi-platform' and "
1759 "'aarch64-elf-pauthabi-version' module flags must be present");
1761 // Validate that the requirements in the module are valid.
1762 for (const MDNode *Requirement : Requirements) {
1763 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1764 const Metadata *ReqValue = Requirement->getOperand(1);
1766 const MDNode *Op = SeenIDs.lookup(Flag);
1767 if (!Op) {
1768 CheckFailed("invalid requirement on flag, flag is not present in module",
1769 Flag);
1770 continue;
1773 if (Op->getOperand(2) != ReqValue) {
1774 CheckFailed(("invalid requirement on flag, "
1775 "flag does not have the required value"),
1776 Flag);
1777 continue;
1782 void
1783 Verifier::visitModuleFlag(const MDNode *Op,
1784 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1785 SmallVectorImpl<const MDNode *> &Requirements) {
1786 // Each module flag should have three arguments, the merge behavior (a
1787 // constant int), the flag ID (an MDString), and the value.
1788 Check(Op->getNumOperands() == 3,
1789 "incorrect number of operands in module flag", Op);
1790 Module::ModFlagBehavior MFB;
1791 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1792 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1793 "invalid behavior operand in module flag (expected constant integer)",
1794 Op->getOperand(0));
1795 Check(false,
1796 "invalid behavior operand in module flag (unexpected constant)",
1797 Op->getOperand(0));
1799 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1800 Check(ID, "invalid ID operand in module flag (expected metadata string)",
1801 Op->getOperand(1));
1803 // Check the values for behaviors with additional requirements.
1804 switch (MFB) {
1805 case Module::Error:
1806 case Module::Warning:
1807 case Module::Override:
1808 // These behavior types accept any value.
1809 break;
1811 case Module::Min: {
1812 auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1813 Check(V && V->getValue().isNonNegative(),
1814 "invalid value for 'min' module flag (expected constant non-negative "
1815 "integer)",
1816 Op->getOperand(2));
1817 break;
1820 case Module::Max: {
1821 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1822 "invalid value for 'max' module flag (expected constant integer)",
1823 Op->getOperand(2));
1824 break;
1827 case Module::Require: {
1828 // The value should itself be an MDNode with two operands, a flag ID (an
1829 // MDString), and a value.
1830 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1831 Check(Value && Value->getNumOperands() == 2,
1832 "invalid value for 'require' module flag (expected metadata pair)",
1833 Op->getOperand(2));
1834 Check(isa<MDString>(Value->getOperand(0)),
1835 ("invalid value for 'require' module flag "
1836 "(first value operand should be a string)"),
1837 Value->getOperand(0));
1839 // Append it to the list of requirements, to check once all module flags are
1840 // scanned.
1841 Requirements.push_back(Value);
1842 break;
1845 case Module::Append:
1846 case Module::AppendUnique: {
1847 // These behavior types require the operand be an MDNode.
1848 Check(isa<MDNode>(Op->getOperand(2)),
1849 "invalid value for 'append'-type module flag "
1850 "(expected a metadata node)",
1851 Op->getOperand(2));
1852 break;
1856 // Unless this is a "requires" flag, check the ID is unique.
1857 if (MFB != Module::Require) {
1858 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1859 Check(Inserted,
1860 "module flag identifiers must be unique (or of 'require' type)", ID);
1863 if (ID->getString() == "wchar_size") {
1864 ConstantInt *Value
1865 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1866 Check(Value, "wchar_size metadata requires constant integer argument");
1869 if (ID->getString() == "Linker Options") {
1870 // If the llvm.linker.options named metadata exists, we assume that the
1871 // bitcode reader has upgraded the module flag. Otherwise the flag might
1872 // have been created by a client directly.
1873 Check(M.getNamedMetadata("llvm.linker.options"),
1874 "'Linker Options' named metadata no longer supported");
1877 if (ID->getString() == "SemanticInterposition") {
1878 ConstantInt *Value =
1879 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1880 Check(Value,
1881 "SemanticInterposition metadata requires constant integer argument");
1884 if (ID->getString() == "CG Profile") {
1885 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1886 visitModuleFlagCGProfileEntry(MDO);
1890 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1891 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1892 if (!FuncMDO)
1893 return;
1894 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1895 Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1896 "expected a Function or null", FuncMDO);
1898 auto Node = dyn_cast_or_null<MDNode>(MDO);
1899 Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1900 CheckFunction(Node->getOperand(0));
1901 CheckFunction(Node->getOperand(1));
1902 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1903 Check(Count && Count->getType()->isIntegerTy(),
1904 "expected an integer constant", Node->getOperand(2));
1907 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1908 for (Attribute A : Attrs) {
1910 if (A.isStringAttribute()) {
1911 #define GET_ATTR_NAMES
1912 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1913 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
1914 if (A.getKindAsString() == #DISPLAY_NAME) { \
1915 auto V = A.getValueAsString(); \
1916 if (!(V.empty() || V == "true" || V == "false")) \
1917 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
1918 ""); \
1921 #include "llvm/IR/Attributes.inc"
1922 continue;
1925 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1926 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1928 return;
1933 // VerifyParameterAttrs - Check the given attributes for an argument or return
1934 // value of the specified type. The value V is printed in error messages.
1935 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1936 const Value *V) {
1937 if (!Attrs.hasAttributes())
1938 return;
1940 verifyAttributeTypes(Attrs, V);
1942 for (Attribute Attr : Attrs)
1943 Check(Attr.isStringAttribute() ||
1944 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1945 "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1948 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1949 Check(Attrs.getNumAttributes() == 1,
1950 "Attribute 'immarg' is incompatible with other attributes", V);
1953 // Check for mutually incompatible attributes. Only inreg is compatible with
1954 // sret.
1955 unsigned AttrCount = 0;
1956 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1957 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1958 AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1959 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1960 Attrs.hasAttribute(Attribute::InReg);
1961 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1962 AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1963 Check(AttrCount <= 1,
1964 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1965 "'byref', and 'sret' are incompatible!",
1968 Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1969 Attrs.hasAttribute(Attribute::ReadOnly)),
1970 "Attributes "
1971 "'inalloca and readonly' are incompatible!",
1974 Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1975 Attrs.hasAttribute(Attribute::Returned)),
1976 "Attributes "
1977 "'sret and returned' are incompatible!",
1980 Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1981 Attrs.hasAttribute(Attribute::SExt)),
1982 "Attributes "
1983 "'zeroext and signext' are incompatible!",
1986 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1987 Attrs.hasAttribute(Attribute::ReadOnly)),
1988 "Attributes "
1989 "'readnone and readonly' are incompatible!",
1992 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1993 Attrs.hasAttribute(Attribute::WriteOnly)),
1994 "Attributes "
1995 "'readnone and writeonly' are incompatible!",
1998 Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1999 Attrs.hasAttribute(Attribute::WriteOnly)),
2000 "Attributes "
2001 "'readonly and writeonly' are incompatible!",
2004 Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
2005 Attrs.hasAttribute(Attribute::AlwaysInline)),
2006 "Attributes "
2007 "'noinline and alwaysinline' are incompatible!",
2010 Check(!(Attrs.hasAttribute(Attribute::Writable) &&
2011 Attrs.hasAttribute(Attribute::ReadNone)),
2012 "Attributes writable and readnone are incompatible!", V);
2014 Check(!(Attrs.hasAttribute(Attribute::Writable) &&
2015 Attrs.hasAttribute(Attribute::ReadOnly)),
2016 "Attributes writable and readonly are incompatible!", V);
2018 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty, Attrs);
2019 for (Attribute Attr : Attrs) {
2020 if (!Attr.isStringAttribute() &&
2021 IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
2022 CheckFailed("Attribute '" + Attr.getAsString() +
2023 "' applied to incompatible type!", V);
2024 return;
2028 if (isa<PointerType>(Ty)) {
2029 if (Attrs.hasAttribute(Attribute::Alignment)) {
2030 Align AttrAlign = Attrs.getAlignment().valueOrOne();
2031 Check(AttrAlign.value() <= Value::MaximumAlignment,
2032 "huge alignment values are unsupported", V);
2034 if (Attrs.hasAttribute(Attribute::ByVal)) {
2035 Type *ByValTy = Attrs.getByValType();
2036 SmallPtrSet<Type *, 4> Visited;
2037 Check(ByValTy->isSized(&Visited),
2038 "Attribute 'byval' does not support unsized types!", V);
2039 // Check if it is or contains a target extension type that disallows being
2040 // used on the stack.
2041 Check(!ByValTy->containsNonLocalTargetExtType(),
2042 "'byval' argument has illegal target extension type", V);
2043 Check(DL.getTypeAllocSize(ByValTy).getKnownMinValue() < (1ULL << 32),
2044 "huge 'byval' arguments are unsupported", V);
2046 if (Attrs.hasAttribute(Attribute::ByRef)) {
2047 SmallPtrSet<Type *, 4> Visited;
2048 Check(Attrs.getByRefType()->isSized(&Visited),
2049 "Attribute 'byref' does not support unsized types!", V);
2050 Check(DL.getTypeAllocSize(Attrs.getByRefType()).getKnownMinValue() <
2051 (1ULL << 32),
2052 "huge 'byref' arguments are unsupported", V);
2054 if (Attrs.hasAttribute(Attribute::InAlloca)) {
2055 SmallPtrSet<Type *, 4> Visited;
2056 Check(Attrs.getInAllocaType()->isSized(&Visited),
2057 "Attribute 'inalloca' does not support unsized types!", V);
2058 Check(DL.getTypeAllocSize(Attrs.getInAllocaType()).getKnownMinValue() <
2059 (1ULL << 32),
2060 "huge 'inalloca' arguments are unsupported", V);
2062 if (Attrs.hasAttribute(Attribute::Preallocated)) {
2063 SmallPtrSet<Type *, 4> Visited;
2064 Check(Attrs.getPreallocatedType()->isSized(&Visited),
2065 "Attribute 'preallocated' does not support unsized types!", V);
2066 Check(
2067 DL.getTypeAllocSize(Attrs.getPreallocatedType()).getKnownMinValue() <
2068 (1ULL << 32),
2069 "huge 'preallocated' arguments are unsupported", V);
2073 if (Attrs.hasAttribute(Attribute::Initializes)) {
2074 auto Inits = Attrs.getAttribute(Attribute::Initializes).getInitializes();
2075 Check(!Inits.empty(), "Attribute 'initializes' does not support empty list",
2077 Check(ConstantRangeList::isOrderedRanges(Inits),
2078 "Attribute 'initializes' does not support unordered ranges", V);
2081 if (Attrs.hasAttribute(Attribute::NoFPClass)) {
2082 uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
2083 Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set",
2085 Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0,
2086 "Invalid value for 'nofpclass' test mask", V);
2088 if (Attrs.hasAttribute(Attribute::Range)) {
2089 const ConstantRange &CR =
2090 Attrs.getAttribute(Attribute::Range).getValueAsConstantRange();
2091 Check(Ty->isIntOrIntVectorTy(CR.getBitWidth()),
2092 "Range bit width must match type bit width!", V);
2096 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
2097 const Value *V) {
2098 if (Attrs.hasFnAttr(Attr)) {
2099 StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
2100 unsigned N;
2101 if (S.getAsInteger(10, N))
2102 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
2106 // Check parameter attributes against a function type.
2107 // The value V is printed in error messages.
2108 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
2109 const Value *V, bool IsIntrinsic,
2110 bool IsInlineAsm) {
2111 if (Attrs.isEmpty())
2112 return;
2114 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
2115 Check(Attrs.hasParentContext(Context),
2116 "Attribute list does not match Module context!", &Attrs, V);
2117 for (const auto &AttrSet : Attrs) {
2118 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
2119 "Attribute set does not match Module context!", &AttrSet, V);
2120 for (const auto &A : AttrSet) {
2121 Check(A.hasParentContext(Context),
2122 "Attribute does not match Module context!", &A, V);
2127 bool SawNest = false;
2128 bool SawReturned = false;
2129 bool SawSRet = false;
2130 bool SawSwiftSelf = false;
2131 bool SawSwiftAsync = false;
2132 bool SawSwiftError = false;
2134 // Verify return value attributes.
2135 AttributeSet RetAttrs = Attrs.getRetAttrs();
2136 for (Attribute RetAttr : RetAttrs)
2137 Check(RetAttr.isStringAttribute() ||
2138 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
2139 "Attribute '" + RetAttr.getAsString() +
2140 "' does not apply to function return values",
2143 unsigned MaxParameterWidth = 0;
2144 auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) {
2145 if (Ty->isVectorTy()) {
2146 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
2147 unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2148 if (Size > MaxParameterWidth)
2149 MaxParameterWidth = Size;
2153 GetMaxParameterWidth(FT->getReturnType());
2154 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
2156 // Verify parameter attributes.
2157 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2158 Type *Ty = FT->getParamType(i);
2159 AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
2161 if (!IsIntrinsic) {
2162 Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
2163 "immarg attribute only applies to intrinsics", V);
2164 if (!IsInlineAsm)
2165 Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
2166 "Attribute 'elementtype' can only be applied to intrinsics"
2167 " and inline asm.",
2171 verifyParameterAttrs(ArgAttrs, Ty, V);
2172 GetMaxParameterWidth(Ty);
2174 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2175 Check(!SawNest, "More than one parameter has attribute nest!", V);
2176 SawNest = true;
2179 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2180 Check(!SawReturned, "More than one parameter has attribute returned!", V);
2181 Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
2182 "Incompatible argument and return types for 'returned' attribute",
2184 SawReturned = true;
2187 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
2188 Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
2189 Check(i == 0 || i == 1,
2190 "Attribute 'sret' is not on first or second parameter!", V);
2191 SawSRet = true;
2194 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
2195 Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
2196 SawSwiftSelf = true;
2199 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
2200 Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
2201 SawSwiftAsync = true;
2204 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
2205 Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
2206 SawSwiftError = true;
2209 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
2210 Check(i == FT->getNumParams() - 1,
2211 "inalloca isn't on the last parameter!", V);
2215 if (!Attrs.hasFnAttrs())
2216 return;
2218 verifyAttributeTypes(Attrs.getFnAttrs(), V);
2219 for (Attribute FnAttr : Attrs.getFnAttrs())
2220 Check(FnAttr.isStringAttribute() ||
2221 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2222 "Attribute '" + FnAttr.getAsString() +
2223 "' does not apply to functions!",
2226 Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2227 Attrs.hasFnAttr(Attribute::AlwaysInline)),
2228 "Attributes 'noinline and alwaysinline' are incompatible!", V);
2230 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2231 Check(Attrs.hasFnAttr(Attribute::NoInline),
2232 "Attribute 'optnone' requires 'noinline'!", V);
2234 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2235 "Attributes 'optsize and optnone' are incompatible!", V);
2237 Check(!Attrs.hasFnAttr(Attribute::MinSize),
2238 "Attributes 'minsize and optnone' are incompatible!", V);
2240 Check(!Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
2241 "Attributes 'optdebug and optnone' are incompatible!", V);
2244 Check(!(Attrs.hasFnAttr(Attribute::SanitizeRealtime) &&
2245 Attrs.hasFnAttr(Attribute::SanitizeRealtimeBlocking)),
2246 "Attributes "
2247 "'sanitize_realtime and sanitize_realtime_blocking' are incompatible!",
2250 if (Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
2251 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2252 "Attributes 'optsize and optdebug' are incompatible!", V);
2254 Check(!Attrs.hasFnAttr(Attribute::MinSize),
2255 "Attributes 'minsize and optdebug' are incompatible!", V);
2258 Check(!Attrs.hasAttrSomewhere(Attribute::Writable) ||
2259 isModSet(Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)),
2260 "Attribute writable and memory without argmem: write are incompatible!",
2263 if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) {
2264 Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"),
2265 "Attributes 'aarch64_pstate_sm_enabled and "
2266 "aarch64_pstate_sm_compatible' are incompatible!",
2270 Check((Attrs.hasFnAttr("aarch64_new_za") + Attrs.hasFnAttr("aarch64_in_za") +
2271 Attrs.hasFnAttr("aarch64_inout_za") +
2272 Attrs.hasFnAttr("aarch64_out_za") +
2273 Attrs.hasFnAttr("aarch64_preserves_za") +
2274 Attrs.hasFnAttr("aarch64_za_state_agnostic")) <= 1,
2275 "Attributes 'aarch64_new_za', 'aarch64_in_za', 'aarch64_out_za', "
2276 "'aarch64_inout_za', 'aarch64_preserves_za' and "
2277 "'aarch64_za_state_agnostic' are mutually exclusive",
2280 Check((Attrs.hasFnAttr("aarch64_new_zt0") +
2281 Attrs.hasFnAttr("aarch64_in_zt0") +
2282 Attrs.hasFnAttr("aarch64_inout_zt0") +
2283 Attrs.hasFnAttr("aarch64_out_zt0") +
2284 Attrs.hasFnAttr("aarch64_preserves_zt0") +
2285 Attrs.hasFnAttr("aarch64_za_state_agnostic")) <= 1,
2286 "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', "
2287 "'aarch64_inout_zt0', 'aarch64_preserves_zt0' and "
2288 "'aarch64_za_state_agnostic' are mutually exclusive",
2291 if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2292 const GlobalValue *GV = cast<GlobalValue>(V);
2293 Check(GV->hasGlobalUnnamedAddr(),
2294 "Attribute 'jumptable' requires 'unnamed_addr'", V);
2297 if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) {
2298 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2299 if (ParamNo >= FT->getNumParams()) {
2300 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2301 return false;
2304 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2305 CheckFailed("'allocsize' " + Name +
2306 " argument must refer to an integer parameter",
2308 return false;
2311 return true;
2314 if (!CheckParam("element size", Args->first))
2315 return;
2317 if (Args->second && !CheckParam("number of elements", *Args->second))
2318 return;
2321 if (Attrs.hasFnAttr(Attribute::AllocKind)) {
2322 AllocFnKind K = Attrs.getAllocKind();
2323 AllocFnKind Type =
2324 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2325 if (!is_contained(
2326 {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2327 Type))
2328 CheckFailed(
2329 "'allockind()' requires exactly one of alloc, realloc, and free");
2330 if ((Type == AllocFnKind::Free) &&
2331 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2332 AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2333 CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2334 "or aligned modifiers.");
2335 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2336 if ((K & ZeroedUninit) == ZeroedUninit)
2337 CheckFailed("'allockind()' can't be both zeroed and uninitialized");
2340 if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2341 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2342 if (VScaleMin == 0)
2343 CheckFailed("'vscale_range' minimum must be greater than 0", V);
2344 else if (!isPowerOf2_32(VScaleMin))
2345 CheckFailed("'vscale_range' minimum must be power-of-two value", V);
2346 std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2347 if (VScaleMax && VScaleMin > VScaleMax)
2348 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2349 else if (VScaleMax && !isPowerOf2_32(*VScaleMax))
2350 CheckFailed("'vscale_range' maximum must be power-of-two value", V);
2353 if (Attrs.hasFnAttr("frame-pointer")) {
2354 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2355 if (FP != "all" && FP != "non-leaf" && FP != "none" && FP != "reserved")
2356 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2359 // Check EVEX512 feature.
2360 if (MaxParameterWidth >= 512 && Attrs.hasFnAttr("target-features") &&
2361 TT.isX86()) {
2362 StringRef TF = Attrs.getFnAttr("target-features").getValueAsString();
2363 Check(!TF.contains("+avx512f") || !TF.contains("-evex512"),
2364 "512-bit vector arguments require 'evex512' for AVX512", V);
2367 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2368 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2369 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2371 if (auto A = Attrs.getFnAttr("sign-return-address"); A.isValid()) {
2372 StringRef S = A.getValueAsString();
2373 if (S != "none" && S != "all" && S != "non-leaf")
2374 CheckFailed("invalid value for 'sign-return-address' attribute: " + S, V);
2377 if (auto A = Attrs.getFnAttr("sign-return-address-key"); A.isValid()) {
2378 StringRef S = A.getValueAsString();
2379 if (S != "a_key" && S != "b_key")
2380 CheckFailed("invalid value for 'sign-return-address-key' attribute: " + S,
2382 if (auto AA = Attrs.getFnAttr("sign-return-address"); !AA.isValid()) {
2383 CheckFailed(
2384 "'sign-return-address-key' present without `sign-return-address`");
2388 if (auto A = Attrs.getFnAttr("branch-target-enforcement"); A.isValid()) {
2389 StringRef S = A.getValueAsString();
2390 if (S != "" && S != "true" && S != "false")
2391 CheckFailed(
2392 "invalid value for 'branch-target-enforcement' attribute: " + S, V);
2395 if (auto A = Attrs.getFnAttr("branch-protection-pauth-lr"); A.isValid()) {
2396 StringRef S = A.getValueAsString();
2397 if (S != "" && S != "true" && S != "false")
2398 CheckFailed(
2399 "invalid value for 'branch-protection-pauth-lr' attribute: " + S, V);
2402 if (auto A = Attrs.getFnAttr("guarded-control-stack"); A.isValid()) {
2403 StringRef S = A.getValueAsString();
2404 if (S != "" && S != "true" && S != "false")
2405 CheckFailed("invalid value for 'guarded-control-stack' attribute: " + S,
2409 if (auto A = Attrs.getFnAttr("vector-function-abi-variant"); A.isValid()) {
2410 StringRef S = A.getValueAsString();
2411 const std::optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, FT);
2412 if (!Info)
2413 CheckFailed("invalid name for a VFABI variant: " + S, V);
2416 if (auto A = Attrs.getFnAttr("denormal-fp-math"); A.isValid()) {
2417 StringRef S = A.getValueAsString();
2418 if (!parseDenormalFPAttribute(S).isValid())
2419 CheckFailed("invalid value for 'denormal-fp-math' attribute: " + S, V);
2422 if (auto A = Attrs.getFnAttr("denormal-fp-math-f32"); A.isValid()) {
2423 StringRef S = A.getValueAsString();
2424 if (!parseDenormalFPAttribute(S).isValid())
2425 CheckFailed("invalid value for 'denormal-fp-math-f32' attribute: " + S,
2430 void Verifier::verifyFunctionMetadata(
2431 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2432 for (const auto &Pair : MDs) {
2433 if (Pair.first == LLVMContext::MD_prof) {
2434 MDNode *MD = Pair.second;
2435 Check(MD->getNumOperands() >= 2,
2436 "!prof annotations should have no less than 2 operands", MD);
2438 // Check first operand.
2439 Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2440 MD);
2441 Check(isa<MDString>(MD->getOperand(0)),
2442 "expected string with name of the !prof annotation", MD);
2443 MDString *MDS = cast<MDString>(MD->getOperand(0));
2444 StringRef ProfName = MDS->getString();
2445 Check(ProfName == "function_entry_count" ||
2446 ProfName == "synthetic_function_entry_count",
2447 "first operand should be 'function_entry_count'"
2448 " or 'synthetic_function_entry_count'",
2449 MD);
2451 // Check second operand.
2452 Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2453 MD);
2454 Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2455 "expected integer argument to function_entry_count", MD);
2456 } else if (Pair.first == LLVMContext::MD_kcfi_type) {
2457 MDNode *MD = Pair.second;
2458 Check(MD->getNumOperands() == 1,
2459 "!kcfi_type must have exactly one operand", MD);
2460 Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
2461 MD);
2462 Check(isa<ConstantAsMetadata>(MD->getOperand(0)),
2463 "expected a constant operand for !kcfi_type", MD);
2464 Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue();
2465 Check(isa<ConstantInt>(C) && isa<IntegerType>(C->getType()),
2466 "expected a constant integer operand for !kcfi_type", MD);
2467 Check(cast<ConstantInt>(C)->getBitWidth() == 32,
2468 "expected a 32-bit integer constant operand for !kcfi_type", MD);
2473 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2474 if (!ConstantExprVisited.insert(EntryC).second)
2475 return;
2477 SmallVector<const Constant *, 16> Stack;
2478 Stack.push_back(EntryC);
2480 while (!Stack.empty()) {
2481 const Constant *C = Stack.pop_back_val();
2483 // Check this constant expression.
2484 if (const auto *CE = dyn_cast<ConstantExpr>(C))
2485 visitConstantExpr(CE);
2487 if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C))
2488 visitConstantPtrAuth(CPA);
2490 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2491 // Global Values get visited separately, but we do need to make sure
2492 // that the global value is in the correct module
2493 Check(GV->getParent() == &M, "Referencing global in another module!",
2494 EntryC, &M, GV, GV->getParent());
2495 continue;
2498 // Visit all sub-expressions.
2499 for (const Use &U : C->operands()) {
2500 const auto *OpC = dyn_cast<Constant>(U);
2501 if (!OpC)
2502 continue;
2503 if (!ConstantExprVisited.insert(OpC).second)
2504 continue;
2505 Stack.push_back(OpC);
2510 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2511 if (CE->getOpcode() == Instruction::BitCast)
2512 Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2513 CE->getType()),
2514 "Invalid bitcast", CE);
2517 void Verifier::visitConstantPtrAuth(const ConstantPtrAuth *CPA) {
2518 Check(CPA->getPointer()->getType()->isPointerTy(),
2519 "signed ptrauth constant base pointer must have pointer type");
2521 Check(CPA->getType() == CPA->getPointer()->getType(),
2522 "signed ptrauth constant must have same type as its base pointer");
2524 Check(CPA->getKey()->getBitWidth() == 32,
2525 "signed ptrauth constant key must be i32 constant integer");
2527 Check(CPA->getAddrDiscriminator()->getType()->isPointerTy(),
2528 "signed ptrauth constant address discriminator must be a pointer");
2530 Check(CPA->getDiscriminator()->getBitWidth() == 64,
2531 "signed ptrauth constant discriminator must be i64 constant integer");
2534 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2535 // There shouldn't be more attribute sets than there are parameters plus the
2536 // function and return value.
2537 return Attrs.getNumAttrSets() <= Params + 2;
2540 void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2541 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2542 unsigned ArgNo = 0;
2543 unsigned LabelNo = 0;
2544 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2545 if (CI.Type == InlineAsm::isLabel) {
2546 ++LabelNo;
2547 continue;
2550 // Only deal with constraints that correspond to call arguments.
2551 if (!CI.hasArg())
2552 continue;
2554 if (CI.isIndirect) {
2555 const Value *Arg = Call.getArgOperand(ArgNo);
2556 Check(Arg->getType()->isPointerTy(),
2557 "Operand for indirect constraint must have pointer type", &Call);
2559 Check(Call.getParamElementType(ArgNo),
2560 "Operand for indirect constraint must have elementtype attribute",
2561 &Call);
2562 } else {
2563 Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2564 "Elementtype attribute can only be applied for indirect "
2565 "constraints",
2566 &Call);
2569 ArgNo++;
2572 if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
2573 Check(LabelNo == CallBr->getNumIndirectDests(),
2574 "Number of label constraints does not match number of callbr dests",
2575 &Call);
2576 } else {
2577 Check(LabelNo == 0, "Label constraints can only be used with callbr",
2578 &Call);
2582 /// Verify that statepoint intrinsic is well formed.
2583 void Verifier::verifyStatepoint(const CallBase &Call) {
2584 assert(Call.getCalledFunction() &&
2585 Call.getCalledFunction()->getIntrinsicID() ==
2586 Intrinsic::experimental_gc_statepoint);
2588 Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2589 !Call.onlyAccessesArgMemory(),
2590 "gc.statepoint must read and write all memory to preserve "
2591 "reordering restrictions required by safepoint semantics",
2592 Call);
2594 const int64_t NumPatchBytes =
2595 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2596 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2597 Check(NumPatchBytes >= 0,
2598 "gc.statepoint number of patchable bytes must be "
2599 "positive",
2600 Call);
2602 Type *TargetElemType = Call.getParamElementType(2);
2603 Check(TargetElemType,
2604 "gc.statepoint callee argument must have elementtype attribute", Call);
2605 FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2606 Check(TargetFuncType,
2607 "gc.statepoint callee elementtype must be function type", Call);
2609 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2610 Check(NumCallArgs >= 0,
2611 "gc.statepoint number of arguments to underlying call "
2612 "must be positive",
2613 Call);
2614 const int NumParams = (int)TargetFuncType->getNumParams();
2615 if (TargetFuncType->isVarArg()) {
2616 Check(NumCallArgs >= NumParams,
2617 "gc.statepoint mismatch in number of vararg call args", Call);
2619 // TODO: Remove this limitation
2620 Check(TargetFuncType->getReturnType()->isVoidTy(),
2621 "gc.statepoint doesn't support wrapping non-void "
2622 "vararg functions yet",
2623 Call);
2624 } else
2625 Check(NumCallArgs == NumParams,
2626 "gc.statepoint mismatch in number of call args", Call);
2628 const uint64_t Flags
2629 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2630 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2631 "unknown flag used in gc.statepoint flags argument", Call);
2633 // Verify that the types of the call parameter arguments match
2634 // the type of the wrapped callee.
2635 AttributeList Attrs = Call.getAttributes();
2636 for (int i = 0; i < NumParams; i++) {
2637 Type *ParamType = TargetFuncType->getParamType(i);
2638 Type *ArgType = Call.getArgOperand(5 + i)->getType();
2639 Check(ArgType == ParamType,
2640 "gc.statepoint call argument does not match wrapped "
2641 "function type",
2642 Call);
2644 if (TargetFuncType->isVarArg()) {
2645 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2646 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2647 "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2651 const int EndCallArgsInx = 4 + NumCallArgs;
2653 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2654 Check(isa<ConstantInt>(NumTransitionArgsV),
2655 "gc.statepoint number of transition arguments "
2656 "must be constant integer",
2657 Call);
2658 const int NumTransitionArgs =
2659 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2660 Check(NumTransitionArgs == 0,
2661 "gc.statepoint w/inline transition bundle is deprecated", Call);
2662 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2664 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2665 Check(isa<ConstantInt>(NumDeoptArgsV),
2666 "gc.statepoint number of deoptimization arguments "
2667 "must be constant integer",
2668 Call);
2669 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2670 Check(NumDeoptArgs == 0,
2671 "gc.statepoint w/inline deopt operands is deprecated", Call);
2673 const int ExpectedNumArgs = 7 + NumCallArgs;
2674 Check(ExpectedNumArgs == (int)Call.arg_size(),
2675 "gc.statepoint too many arguments", Call);
2677 // Check that the only uses of this gc.statepoint are gc.result or
2678 // gc.relocate calls which are tied to this statepoint and thus part
2679 // of the same statepoint sequence
2680 for (const User *U : Call.users()) {
2681 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2682 Check(UserCall, "illegal use of statepoint token", Call, U);
2683 if (!UserCall)
2684 continue;
2685 Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2686 "gc.result or gc.relocate are the only value uses "
2687 "of a gc.statepoint",
2688 Call, U);
2689 if (isa<GCResultInst>(UserCall)) {
2690 Check(UserCall->getArgOperand(0) == &Call,
2691 "gc.result connected to wrong gc.statepoint", Call, UserCall);
2692 } else if (isa<GCRelocateInst>(Call)) {
2693 Check(UserCall->getArgOperand(0) == &Call,
2694 "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2698 // Note: It is legal for a single derived pointer to be listed multiple
2699 // times. It's non-optimal, but it is legal. It can also happen after
2700 // insertion if we strip a bitcast away.
2701 // Note: It is really tempting to check that each base is relocated and
2702 // that a derived pointer is never reused as a base pointer. This turns
2703 // out to be problematic since optimizations run after safepoint insertion
2704 // can recognize equality properties that the insertion logic doesn't know
2705 // about. See example statepoint.ll in the verifier subdirectory
2708 void Verifier::verifyFrameRecoverIndices() {
2709 for (auto &Counts : FrameEscapeInfo) {
2710 Function *F = Counts.first;
2711 unsigned EscapedObjectCount = Counts.second.first;
2712 unsigned MaxRecoveredIndex = Counts.second.second;
2713 Check(MaxRecoveredIndex <= EscapedObjectCount,
2714 "all indices passed to llvm.localrecover must be less than the "
2715 "number of arguments passed to llvm.localescape in the parent "
2716 "function",
2721 static Instruction *getSuccPad(Instruction *Terminator) {
2722 BasicBlock *UnwindDest;
2723 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2724 UnwindDest = II->getUnwindDest();
2725 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2726 UnwindDest = CSI->getUnwindDest();
2727 else
2728 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2729 return &*UnwindDest->getFirstNonPHIIt();
2732 void Verifier::verifySiblingFuncletUnwinds() {
2733 SmallPtrSet<Instruction *, 8> Visited;
2734 SmallPtrSet<Instruction *, 8> Active;
2735 for (const auto &Pair : SiblingFuncletInfo) {
2736 Instruction *PredPad = Pair.first;
2737 if (Visited.count(PredPad))
2738 continue;
2739 Active.insert(PredPad);
2740 Instruction *Terminator = Pair.second;
2741 do {
2742 Instruction *SuccPad = getSuccPad(Terminator);
2743 if (Active.count(SuccPad)) {
2744 // Found a cycle; report error
2745 Instruction *CyclePad = SuccPad;
2746 SmallVector<Instruction *, 8> CycleNodes;
2747 do {
2748 CycleNodes.push_back(CyclePad);
2749 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2750 if (CycleTerminator != CyclePad)
2751 CycleNodes.push_back(CycleTerminator);
2752 CyclePad = getSuccPad(CycleTerminator);
2753 } while (CyclePad != SuccPad);
2754 Check(false, "EH pads can't handle each other's exceptions",
2755 ArrayRef<Instruction *>(CycleNodes));
2757 // Don't re-walk a node we've already checked
2758 if (!Visited.insert(SuccPad).second)
2759 break;
2760 // Walk to this successor if it has a map entry.
2761 PredPad = SuccPad;
2762 auto TermI = SiblingFuncletInfo.find(PredPad);
2763 if (TermI == SiblingFuncletInfo.end())
2764 break;
2765 Terminator = TermI->second;
2766 Active.insert(PredPad);
2767 } while (true);
2768 // Each node only has one successor, so we've walked all the active
2769 // nodes' successors.
2770 Active.clear();
2774 // visitFunction - Verify that a function is ok.
2776 void Verifier::visitFunction(const Function &F) {
2777 visitGlobalValue(F);
2779 // Check function arguments.
2780 FunctionType *FT = F.getFunctionType();
2781 unsigned NumArgs = F.arg_size();
2783 Check(&Context == &F.getContext(),
2784 "Function context does not match Module context!", &F);
2786 Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2787 Check(FT->getNumParams() == NumArgs,
2788 "# formal arguments must match # of arguments for function type!", &F,
2789 FT);
2790 Check(F.getReturnType()->isFirstClassType() ||
2791 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2792 "Functions cannot return aggregate values!", &F);
2794 Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2795 "Invalid struct return type!", &F);
2797 AttributeList Attrs = F.getAttributes();
2799 Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2800 "Attribute after last parameter!", &F);
2802 CheckDI(F.IsNewDbgInfoFormat == F.getParent()->IsNewDbgInfoFormat,
2803 "Function debug format should match parent module", &F,
2804 F.IsNewDbgInfoFormat, F.getParent(),
2805 F.getParent()->IsNewDbgInfoFormat);
2807 bool IsIntrinsic = F.isIntrinsic();
2809 // Check function attributes.
2810 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2812 // On function declarations/definitions, we do not support the builtin
2813 // attribute. We do not check this in VerifyFunctionAttrs since that is
2814 // checking for Attributes that can/can not ever be on functions.
2815 Check(!Attrs.hasFnAttr(Attribute::Builtin),
2816 "Attribute 'builtin' can only be applied to a callsite.", &F);
2818 Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2819 "Attribute 'elementtype' can only be applied to a callsite.", &F);
2821 if (Attrs.hasFnAttr(Attribute::Naked))
2822 for (const Argument &Arg : F.args())
2823 Check(Arg.use_empty(), "cannot use argument of naked function", &Arg);
2825 // Check that this function meets the restrictions on this calling convention.
2826 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2827 // restrictions can be lifted.
2828 switch (F.getCallingConv()) {
2829 default:
2830 case CallingConv::C:
2831 break;
2832 case CallingConv::X86_INTR: {
2833 Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2834 "Calling convention parameter requires byval", &F);
2835 break;
2837 case CallingConv::AMDGPU_KERNEL:
2838 case CallingConv::SPIR_KERNEL:
2839 case CallingConv::AMDGPU_CS_Chain:
2840 case CallingConv::AMDGPU_CS_ChainPreserve:
2841 Check(F.getReturnType()->isVoidTy(),
2842 "Calling convention requires void return type", &F);
2843 [[fallthrough]];
2844 case CallingConv::AMDGPU_VS:
2845 case CallingConv::AMDGPU_HS:
2846 case CallingConv::AMDGPU_GS:
2847 case CallingConv::AMDGPU_PS:
2848 case CallingConv::AMDGPU_CS:
2849 Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2850 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2851 const unsigned StackAS = DL.getAllocaAddrSpace();
2852 unsigned i = 0;
2853 for (const Argument &Arg : F.args()) {
2854 Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2855 "Calling convention disallows byval", &F);
2856 Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2857 "Calling convention disallows preallocated", &F);
2858 Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2859 "Calling convention disallows inalloca", &F);
2861 if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2862 // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2863 // value here.
2864 Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2865 "Calling convention disallows stack byref", &F);
2868 ++i;
2872 [[fallthrough]];
2873 case CallingConv::Fast:
2874 case CallingConv::Cold:
2875 case CallingConv::Intel_OCL_BI:
2876 case CallingConv::PTX_Kernel:
2877 case CallingConv::PTX_Device:
2878 Check(!F.isVarArg(),
2879 "Calling convention does not support varargs or "
2880 "perfect forwarding!",
2881 &F);
2882 break;
2885 // Check that the argument values match the function type for this function...
2886 unsigned i = 0;
2887 for (const Argument &Arg : F.args()) {
2888 Check(Arg.getType() == FT->getParamType(i),
2889 "Argument value does not match function argument type!", &Arg,
2890 FT->getParamType(i));
2891 Check(Arg.getType()->isFirstClassType(),
2892 "Function arguments must have first-class types!", &Arg);
2893 if (!IsIntrinsic) {
2894 Check(!Arg.getType()->isMetadataTy(),
2895 "Function takes metadata but isn't an intrinsic", &Arg, &F);
2896 Check(!Arg.getType()->isTokenTy(),
2897 "Function takes token but isn't an intrinsic", &Arg, &F);
2898 Check(!Arg.getType()->isX86_AMXTy(),
2899 "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2902 // Check that swifterror argument is only used by loads and stores.
2903 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2904 verifySwiftErrorValue(&Arg);
2906 ++i;
2909 if (!IsIntrinsic) {
2910 Check(!F.getReturnType()->isTokenTy(),
2911 "Function returns a token but isn't an intrinsic", &F);
2912 Check(!F.getReturnType()->isX86_AMXTy(),
2913 "Function returns a x86_amx but isn't an intrinsic", &F);
2916 // Get the function metadata attachments.
2917 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2918 F.getAllMetadata(MDs);
2919 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2920 verifyFunctionMetadata(MDs);
2922 // Check validity of the personality function
2923 if (F.hasPersonalityFn()) {
2924 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2925 if (Per)
2926 Check(Per->getParent() == F.getParent(),
2927 "Referencing personality function in another module!", &F,
2928 F.getParent(), Per, Per->getParent());
2931 // EH funclet coloring can be expensive, recompute on-demand
2932 BlockEHFuncletColors.clear();
2934 if (F.isMaterializable()) {
2935 // Function has a body somewhere we can't see.
2936 Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2937 MDs.empty() ? nullptr : MDs.front().second);
2938 } else if (F.isDeclaration()) {
2939 for (const auto &I : MDs) {
2940 // This is used for call site debug information.
2941 CheckDI(I.first != LLVMContext::MD_dbg ||
2942 !cast<DISubprogram>(I.second)->isDistinct(),
2943 "function declaration may only have a unique !dbg attachment",
2944 &F);
2945 Check(I.first != LLVMContext::MD_prof,
2946 "function declaration may not have a !prof attachment", &F);
2948 // Verify the metadata itself.
2949 visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2951 Check(!F.hasPersonalityFn(),
2952 "Function declaration shouldn't have a personality routine", &F);
2953 } else {
2954 // Verify that this function (which has a body) is not named "llvm.*". It
2955 // is not legal to define intrinsics.
2956 Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2958 // Check the entry node
2959 const BasicBlock *Entry = &F.getEntryBlock();
2960 Check(pred_empty(Entry),
2961 "Entry block to function must not have predecessors!", Entry);
2963 // The address of the entry block cannot be taken, unless it is dead.
2964 if (Entry->hasAddressTaken()) {
2965 Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2966 "blockaddress may not be used with the entry block!", Entry);
2969 unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
2970 NumKCFIAttachments = 0;
2971 // Visit metadata attachments.
2972 for (const auto &I : MDs) {
2973 // Verify that the attachment is legal.
2974 auto AllowLocs = AreDebugLocsAllowed::No;
2975 switch (I.first) {
2976 default:
2977 break;
2978 case LLVMContext::MD_dbg: {
2979 ++NumDebugAttachments;
2980 CheckDI(NumDebugAttachments == 1,
2981 "function must have a single !dbg attachment", &F, I.second);
2982 CheckDI(isa<DISubprogram>(I.second),
2983 "function !dbg attachment must be a subprogram", &F, I.second);
2984 CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2985 "function definition may only have a distinct !dbg attachment",
2986 &F);
2988 auto *SP = cast<DISubprogram>(I.second);
2989 const Function *&AttachedTo = DISubprogramAttachments[SP];
2990 CheckDI(!AttachedTo || AttachedTo == &F,
2991 "DISubprogram attached to more than one function", SP, &F);
2992 AttachedTo = &F;
2993 AllowLocs = AreDebugLocsAllowed::Yes;
2994 break;
2996 case LLVMContext::MD_prof:
2997 ++NumProfAttachments;
2998 Check(NumProfAttachments == 1,
2999 "function must have a single !prof attachment", &F, I.second);
3000 break;
3001 case LLVMContext::MD_kcfi_type:
3002 ++NumKCFIAttachments;
3003 Check(NumKCFIAttachments == 1,
3004 "function must have a single !kcfi_type attachment", &F,
3005 I.second);
3006 break;
3009 // Verify the metadata itself.
3010 visitMDNode(*I.second, AllowLocs);
3014 // If this function is actually an intrinsic, verify that it is only used in
3015 // direct call/invokes, never having its "address taken".
3016 // Only do this if the module is materialized, otherwise we don't have all the
3017 // uses.
3018 if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
3019 const User *U;
3020 if (F.hasAddressTaken(&U, false, true, false,
3021 /*IgnoreARCAttachedCall=*/true))
3022 Check(false, "Invalid user of intrinsic instruction!", U);
3025 // Check intrinsics' signatures.
3026 switch (F.getIntrinsicID()) {
3027 case Intrinsic::experimental_gc_get_pointer_base: {
3028 FunctionType *FT = F.getFunctionType();
3029 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
3030 Check(isa<PointerType>(F.getReturnType()),
3031 "gc.get.pointer.base must return a pointer", F);
3032 Check(FT->getParamType(0) == F.getReturnType(),
3033 "gc.get.pointer.base operand and result must be of the same type", F);
3034 break;
3036 case Intrinsic::experimental_gc_get_pointer_offset: {
3037 FunctionType *FT = F.getFunctionType();
3038 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
3039 Check(isa<PointerType>(FT->getParamType(0)),
3040 "gc.get.pointer.offset operand must be a pointer", F);
3041 Check(F.getReturnType()->isIntegerTy(),
3042 "gc.get.pointer.offset must return integer", F);
3043 break;
3047 auto *N = F.getSubprogram();
3048 HasDebugInfo = (N != nullptr);
3049 if (!HasDebugInfo)
3050 return;
3052 // Check that all !dbg attachments lead to back to N.
3054 // FIXME: Check this incrementally while visiting !dbg attachments.
3055 // FIXME: Only check when N is the canonical subprogram for F.
3056 SmallPtrSet<const MDNode *, 32> Seen;
3057 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
3058 // Be careful about using DILocation here since we might be dealing with
3059 // broken code (this is the Verifier after all).
3060 const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
3061 if (!DL)
3062 return;
3063 if (!Seen.insert(DL).second)
3064 return;
3066 Metadata *Parent = DL->getRawScope();
3067 CheckDI(Parent && isa<DILocalScope>(Parent),
3068 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
3070 DILocalScope *Scope = DL->getInlinedAtScope();
3071 Check(Scope, "Failed to find DILocalScope", DL);
3073 if (!Seen.insert(Scope).second)
3074 return;
3076 DISubprogram *SP = Scope->getSubprogram();
3078 // Scope and SP could be the same MDNode and we don't want to skip
3079 // validation in that case
3080 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
3081 return;
3083 CheckDI(SP->describes(&F),
3084 "!dbg attachment points at wrong subprogram for function", N, &F,
3085 &I, DL, Scope, SP);
3087 for (auto &BB : F)
3088 for (auto &I : BB) {
3089 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
3090 // The llvm.loop annotations also contain two DILocations.
3091 if (auto MD = I.getMetadata(LLVMContext::MD_loop))
3092 for (unsigned i = 1; i < MD->getNumOperands(); ++i)
3093 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
3094 if (BrokenDebugInfo)
3095 return;
3099 // verifyBasicBlock - Verify that a basic block is well formed...
3101 void Verifier::visitBasicBlock(BasicBlock &BB) {
3102 InstsInThisBlock.clear();
3103 ConvergenceVerifyHelper.visit(BB);
3105 // Ensure that basic blocks have terminators!
3106 Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
3108 // Check constraints that this basic block imposes on all of the PHI nodes in
3109 // it.
3110 if (isa<PHINode>(BB.front())) {
3111 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
3112 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
3113 llvm::sort(Preds);
3114 for (const PHINode &PN : BB.phis()) {
3115 Check(PN.getNumIncomingValues() == Preds.size(),
3116 "PHINode should have one entry for each predecessor of its "
3117 "parent basic block!",
3118 &PN);
3120 // Get and sort all incoming values in the PHI node...
3121 Values.clear();
3122 Values.reserve(PN.getNumIncomingValues());
3123 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
3124 Values.push_back(
3125 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
3126 llvm::sort(Values);
3128 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
3129 // Check to make sure that if there is more than one entry for a
3130 // particular basic block in this PHI node, that the incoming values are
3131 // all identical.
3133 Check(i == 0 || Values[i].first != Values[i - 1].first ||
3134 Values[i].second == Values[i - 1].second,
3135 "PHI node has multiple entries for the same basic block with "
3136 "different incoming values!",
3137 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
3139 // Check to make sure that the predecessors and PHI node entries are
3140 // matched up.
3141 Check(Values[i].first == Preds[i],
3142 "PHI node entries do not match predecessors!", &PN,
3143 Values[i].first, Preds[i]);
3148 // Check that all instructions have their parent pointers set up correctly.
3149 for (auto &I : BB)
3151 Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
3154 CheckDI(BB.IsNewDbgInfoFormat == BB.getParent()->IsNewDbgInfoFormat,
3155 "BB debug format should match parent function", &BB,
3156 BB.IsNewDbgInfoFormat, BB.getParent(),
3157 BB.getParent()->IsNewDbgInfoFormat);
3159 // Confirm that no issues arise from the debug program.
3160 if (BB.IsNewDbgInfoFormat)
3161 CheckDI(!BB.getTrailingDbgRecords(), "Basic Block has trailing DbgRecords!",
3162 &BB);
3165 void Verifier::visitTerminator(Instruction &I) {
3166 // Ensure that terminators only exist at the end of the basic block.
3167 Check(&I == I.getParent()->getTerminator(),
3168 "Terminator found in the middle of a basic block!", I.getParent());
3169 visitInstruction(I);
3172 void Verifier::visitBranchInst(BranchInst &BI) {
3173 if (BI.isConditional()) {
3174 Check(BI.getCondition()->getType()->isIntegerTy(1),
3175 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
3177 visitTerminator(BI);
3180 void Verifier::visitReturnInst(ReturnInst &RI) {
3181 Function *F = RI.getParent()->getParent();
3182 unsigned N = RI.getNumOperands();
3183 if (F->getReturnType()->isVoidTy())
3184 Check(N == 0,
3185 "Found return instr that returns non-void in Function of void "
3186 "return type!",
3187 &RI, F->getReturnType());
3188 else
3189 Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
3190 "Function return type does not match operand "
3191 "type of return inst!",
3192 &RI, F->getReturnType());
3194 // Check to make sure that the return value has necessary properties for
3195 // terminators...
3196 visitTerminator(RI);
3199 void Verifier::visitSwitchInst(SwitchInst &SI) {
3200 Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
3201 // Check to make sure that all of the constants in the switch instruction
3202 // have the same type as the switched-on value.
3203 Type *SwitchTy = SI.getCondition()->getType();
3204 SmallPtrSet<ConstantInt*, 32> Constants;
3205 for (auto &Case : SI.cases()) {
3206 Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)),
3207 "Case value is not a constant integer.", &SI);
3208 Check(Case.getCaseValue()->getType() == SwitchTy,
3209 "Switch constants must all be same type as switch value!", &SI);
3210 Check(Constants.insert(Case.getCaseValue()).second,
3211 "Duplicate integer as switch case", &SI, Case.getCaseValue());
3214 visitTerminator(SI);
3217 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
3218 Check(BI.getAddress()->getType()->isPointerTy(),
3219 "Indirectbr operand must have pointer type!", &BI);
3220 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
3221 Check(BI.getDestination(i)->getType()->isLabelTy(),
3222 "Indirectbr destinations must all have pointer type!", &BI);
3224 visitTerminator(BI);
3227 void Verifier::visitCallBrInst(CallBrInst &CBI) {
3228 Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
3229 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
3230 Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
3232 verifyInlineAsmCall(CBI);
3233 visitTerminator(CBI);
3236 void Verifier::visitSelectInst(SelectInst &SI) {
3237 Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
3238 SI.getOperand(2)),
3239 "Invalid operands for select instruction!", &SI);
3241 Check(SI.getTrueValue()->getType() == SI.getType(),
3242 "Select values must have same type as select instruction!", &SI);
3243 visitInstruction(SI);
3246 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
3247 /// a pass, if any exist, it's an error.
3249 void Verifier::visitUserOp1(Instruction &I) {
3250 Check(false, "User-defined operators should not live outside of a pass!", &I);
3253 void Verifier::visitTruncInst(TruncInst &I) {
3254 // Get the source and destination types
3255 Type *SrcTy = I.getOperand(0)->getType();
3256 Type *DestTy = I.getType();
3258 // Get the size of the types in bits, we'll need this later
3259 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3260 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3262 Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
3263 Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
3264 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3265 "trunc source and destination must both be a vector or neither", &I);
3266 Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
3268 visitInstruction(I);
3271 void Verifier::visitZExtInst(ZExtInst &I) {
3272 // Get the source and destination types
3273 Type *SrcTy = I.getOperand(0)->getType();
3274 Type *DestTy = I.getType();
3276 // Get the size of the types in bits, we'll need this later
3277 Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
3278 Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
3279 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3280 "zext source and destination must both be a vector or neither", &I);
3281 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3282 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3284 Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
3286 visitInstruction(I);
3289 void Verifier::visitSExtInst(SExtInst &I) {
3290 // Get the source and destination types
3291 Type *SrcTy = I.getOperand(0)->getType();
3292 Type *DestTy = I.getType();
3294 // Get the size of the types in bits, we'll need this later
3295 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3296 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3298 Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
3299 Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
3300 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3301 "sext source and destination must both be a vector or neither", &I);
3302 Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
3304 visitInstruction(I);
3307 void Verifier::visitFPTruncInst(FPTruncInst &I) {
3308 // Get the source and destination types
3309 Type *SrcTy = I.getOperand(0)->getType();
3310 Type *DestTy = I.getType();
3311 // Get the size of the types in bits, we'll need this later
3312 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3313 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3315 Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
3316 Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
3317 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3318 "fptrunc source and destination must both be a vector or neither", &I);
3319 Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
3321 visitInstruction(I);
3324 void Verifier::visitFPExtInst(FPExtInst &I) {
3325 // Get the source and destination types
3326 Type *SrcTy = I.getOperand(0)->getType();
3327 Type *DestTy = I.getType();
3329 // Get the size of the types in bits, we'll need this later
3330 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3331 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3333 Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
3334 Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
3335 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3336 "fpext source and destination must both be a vector or neither", &I);
3337 Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
3339 visitInstruction(I);
3342 void Verifier::visitUIToFPInst(UIToFPInst &I) {
3343 // Get the source and destination types
3344 Type *SrcTy = I.getOperand(0)->getType();
3345 Type *DestTy = I.getType();
3347 bool SrcVec = SrcTy->isVectorTy();
3348 bool DstVec = DestTy->isVectorTy();
3350 Check(SrcVec == DstVec,
3351 "UIToFP source and dest must both be vector or scalar", &I);
3352 Check(SrcTy->isIntOrIntVectorTy(),
3353 "UIToFP source must be integer or integer vector", &I);
3354 Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
3355 &I);
3357 if (SrcVec && DstVec)
3358 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3359 cast<VectorType>(DestTy)->getElementCount(),
3360 "UIToFP source and dest vector length mismatch", &I);
3362 visitInstruction(I);
3365 void Verifier::visitSIToFPInst(SIToFPInst &I) {
3366 // Get the source and destination types
3367 Type *SrcTy = I.getOperand(0)->getType();
3368 Type *DestTy = I.getType();
3370 bool SrcVec = SrcTy->isVectorTy();
3371 bool DstVec = DestTy->isVectorTy();
3373 Check(SrcVec == DstVec,
3374 "SIToFP source and dest must both be vector or scalar", &I);
3375 Check(SrcTy->isIntOrIntVectorTy(),
3376 "SIToFP source must be integer or integer vector", &I);
3377 Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3378 &I);
3380 if (SrcVec && DstVec)
3381 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3382 cast<VectorType>(DestTy)->getElementCount(),
3383 "SIToFP source and dest vector length mismatch", &I);
3385 visitInstruction(I);
3388 void Verifier::visitFPToUIInst(FPToUIInst &I) {
3389 // Get the source and destination types
3390 Type *SrcTy = I.getOperand(0)->getType();
3391 Type *DestTy = I.getType();
3393 bool SrcVec = SrcTy->isVectorTy();
3394 bool DstVec = DestTy->isVectorTy();
3396 Check(SrcVec == DstVec,
3397 "FPToUI source and dest must both be vector or scalar", &I);
3398 Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3399 Check(DestTy->isIntOrIntVectorTy(),
3400 "FPToUI result must be integer or integer vector", &I);
3402 if (SrcVec && DstVec)
3403 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3404 cast<VectorType>(DestTy)->getElementCount(),
3405 "FPToUI source and dest vector length mismatch", &I);
3407 visitInstruction(I);
3410 void Verifier::visitFPToSIInst(FPToSIInst &I) {
3411 // Get the source and destination types
3412 Type *SrcTy = I.getOperand(0)->getType();
3413 Type *DestTy = I.getType();
3415 bool SrcVec = SrcTy->isVectorTy();
3416 bool DstVec = DestTy->isVectorTy();
3418 Check(SrcVec == DstVec,
3419 "FPToSI source and dest must both be vector or scalar", &I);
3420 Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3421 Check(DestTy->isIntOrIntVectorTy(),
3422 "FPToSI result must be integer or integer vector", &I);
3424 if (SrcVec && DstVec)
3425 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3426 cast<VectorType>(DestTy)->getElementCount(),
3427 "FPToSI source and dest vector length mismatch", &I);
3429 visitInstruction(I);
3432 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3433 // Get the source and destination types
3434 Type *SrcTy = I.getOperand(0)->getType();
3435 Type *DestTy = I.getType();
3437 Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3439 Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3440 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3441 &I);
3443 if (SrcTy->isVectorTy()) {
3444 auto *VSrc = cast<VectorType>(SrcTy);
3445 auto *VDest = cast<VectorType>(DestTy);
3446 Check(VSrc->getElementCount() == VDest->getElementCount(),
3447 "PtrToInt Vector width mismatch", &I);
3450 visitInstruction(I);
3453 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3454 // Get the source and destination types
3455 Type *SrcTy = I.getOperand(0)->getType();
3456 Type *DestTy = I.getType();
3458 Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3459 Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3461 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3462 &I);
3463 if (SrcTy->isVectorTy()) {
3464 auto *VSrc = cast<VectorType>(SrcTy);
3465 auto *VDest = cast<VectorType>(DestTy);
3466 Check(VSrc->getElementCount() == VDest->getElementCount(),
3467 "IntToPtr Vector width mismatch", &I);
3469 visitInstruction(I);
3472 void Verifier::visitBitCastInst(BitCastInst &I) {
3473 Check(
3474 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3475 "Invalid bitcast", &I);
3476 visitInstruction(I);
3479 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3480 Type *SrcTy = I.getOperand(0)->getType();
3481 Type *DestTy = I.getType();
3483 Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3484 &I);
3485 Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3486 &I);
3487 Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3488 "AddrSpaceCast must be between different address spaces", &I);
3489 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3490 Check(SrcVTy->getElementCount() ==
3491 cast<VectorType>(DestTy)->getElementCount(),
3492 "AddrSpaceCast vector pointer number of elements mismatch", &I);
3493 visitInstruction(I);
3496 /// visitPHINode - Ensure that a PHI node is well formed.
3498 void Verifier::visitPHINode(PHINode &PN) {
3499 // Ensure that the PHI nodes are all grouped together at the top of the block.
3500 // This can be tested by checking whether the instruction before this is
3501 // either nonexistent (because this is begin()) or is a PHI node. If not,
3502 // then there is some other instruction before a PHI.
3503 Check(&PN == &PN.getParent()->front() ||
3504 isa<PHINode>(--BasicBlock::iterator(&PN)),
3505 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3507 // Check that a PHI doesn't yield a Token.
3508 Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3510 // Check that all of the values of the PHI node have the same type as the
3511 // result.
3512 for (Value *IncValue : PN.incoming_values()) {
3513 Check(PN.getType() == IncValue->getType(),
3514 "PHI node operands are not the same type as the result!", &PN);
3517 // All other PHI node constraints are checked in the visitBasicBlock method.
3519 visitInstruction(PN);
3522 void Verifier::visitCallBase(CallBase &Call) {
3523 Check(Call.getCalledOperand()->getType()->isPointerTy(),
3524 "Called function must be a pointer!", Call);
3525 FunctionType *FTy = Call.getFunctionType();
3527 // Verify that the correct number of arguments are being passed
3528 if (FTy->isVarArg())
3529 Check(Call.arg_size() >= FTy->getNumParams(),
3530 "Called function requires more parameters than were provided!", Call);
3531 else
3532 Check(Call.arg_size() == FTy->getNumParams(),
3533 "Incorrect number of arguments passed to called function!", Call);
3535 // Verify that all arguments to the call match the function type.
3536 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3537 Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3538 "Call parameter type does not match function signature!",
3539 Call.getArgOperand(i), FTy->getParamType(i), Call);
3541 AttributeList Attrs = Call.getAttributes();
3543 Check(verifyAttributeCount(Attrs, Call.arg_size()),
3544 "Attribute after last parameter!", Call);
3546 Function *Callee =
3547 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3548 bool IsIntrinsic = Callee && Callee->isIntrinsic();
3549 if (IsIntrinsic)
3550 Check(Callee->getValueType() == FTy,
3551 "Intrinsic called with incompatible signature", Call);
3553 // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling
3554 // convention.
3555 auto CC = Call.getCallingConv();
3556 Check(CC != CallingConv::AMDGPU_CS_Chain &&
3557 CC != CallingConv::AMDGPU_CS_ChainPreserve,
3558 "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions "
3559 "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.",
3560 Call);
3562 // Disallow passing/returning values with alignment higher than we can
3563 // represent.
3564 // FIXME: Consider making DataLayout cap the alignment, so this isn't
3565 // necessary.
3566 auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3567 if (!Ty->isSized())
3568 return;
3569 Align ABIAlign = DL.getABITypeAlign(Ty);
3570 Check(ABIAlign.value() <= Value::MaximumAlignment,
3571 "Incorrect alignment of " + Message + " to called function!", Call);
3574 if (!IsIntrinsic) {
3575 VerifyTypeAlign(FTy->getReturnType(), "return type");
3576 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3577 Type *Ty = FTy->getParamType(i);
3578 VerifyTypeAlign(Ty, "argument passed");
3582 if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3583 // Don't allow speculatable on call sites, unless the underlying function
3584 // declaration is also speculatable.
3585 Check(Callee && Callee->isSpeculatable(),
3586 "speculatable attribute may not apply to call sites", Call);
3589 if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3590 Check(Call.getCalledFunction()->getIntrinsicID() ==
3591 Intrinsic::call_preallocated_arg,
3592 "preallocated as a call site attribute can only be on "
3593 "llvm.call.preallocated.arg");
3596 // Verify call attributes.
3597 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3599 // Conservatively check the inalloca argument.
3600 // We have a bug if we can find that there is an underlying alloca without
3601 // inalloca.
3602 if (Call.hasInAllocaArgument()) {
3603 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3604 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3605 Check(AI->isUsedWithInAlloca(),
3606 "inalloca argument for call has mismatched alloca", AI, Call);
3609 // For each argument of the callsite, if it has the swifterror argument,
3610 // make sure the underlying alloca/parameter it comes from has a swifterror as
3611 // well.
3612 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3613 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3614 Value *SwiftErrorArg = Call.getArgOperand(i);
3615 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3616 Check(AI->isSwiftError(),
3617 "swifterror argument for call has mismatched alloca", AI, Call);
3618 continue;
3620 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3621 Check(ArgI, "swifterror argument should come from an alloca or parameter",
3622 SwiftErrorArg, Call);
3623 Check(ArgI->hasSwiftErrorAttr(),
3624 "swifterror argument for call has mismatched parameter", ArgI,
3625 Call);
3628 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3629 // Don't allow immarg on call sites, unless the underlying declaration
3630 // also has the matching immarg.
3631 Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3632 "immarg may not apply only to call sites", Call.getArgOperand(i),
3633 Call);
3636 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3637 Value *ArgVal = Call.getArgOperand(i);
3638 Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3639 "immarg operand has non-immediate parameter", ArgVal, Call);
3642 if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3643 Value *ArgVal = Call.getArgOperand(i);
3644 bool hasOB =
3645 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3646 bool isMustTail = Call.isMustTailCall();
3647 Check(hasOB != isMustTail,
3648 "preallocated operand either requires a preallocated bundle or "
3649 "the call to be musttail (but not both)",
3650 ArgVal, Call);
3654 if (FTy->isVarArg()) {
3655 // FIXME? is 'nest' even legal here?
3656 bool SawNest = false;
3657 bool SawReturned = false;
3659 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3660 if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3661 SawNest = true;
3662 if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3663 SawReturned = true;
3666 // Check attributes on the varargs part.
3667 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3668 Type *Ty = Call.getArgOperand(Idx)->getType();
3669 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3670 verifyParameterAttrs(ArgAttrs, Ty, &Call);
3672 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3673 Check(!SawNest, "More than one parameter has attribute nest!", Call);
3674 SawNest = true;
3677 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3678 Check(!SawReturned, "More than one parameter has attribute returned!",
3679 Call);
3680 Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3681 "Incompatible argument and return types for 'returned' "
3682 "attribute",
3683 Call);
3684 SawReturned = true;
3687 // Statepoint intrinsic is vararg but the wrapped function may be not.
3688 // Allow sret here and check the wrapped function in verifyStatepoint.
3689 if (!Call.getCalledFunction() ||
3690 Call.getCalledFunction()->getIntrinsicID() !=
3691 Intrinsic::experimental_gc_statepoint)
3692 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3693 "Attribute 'sret' cannot be used for vararg call arguments!",
3694 Call);
3696 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3697 Check(Idx == Call.arg_size() - 1,
3698 "inalloca isn't on the last argument!", Call);
3702 // Verify that there's no metadata unless it's a direct call to an intrinsic.
3703 if (!IsIntrinsic) {
3704 for (Type *ParamTy : FTy->params()) {
3705 Check(!ParamTy->isMetadataTy(),
3706 "Function has metadata parameter but isn't an intrinsic", Call);
3707 Check(!ParamTy->isTokenTy(),
3708 "Function has token parameter but isn't an intrinsic", Call);
3712 // Verify that indirect calls don't return tokens.
3713 if (!Call.getCalledFunction()) {
3714 Check(!FTy->getReturnType()->isTokenTy(),
3715 "Return type cannot be token for indirect call!");
3716 Check(!FTy->getReturnType()->isX86_AMXTy(),
3717 "Return type cannot be x86_amx for indirect call!");
3720 if (Function *F = Call.getCalledFunction())
3721 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3722 visitIntrinsicCall(ID, Call);
3724 // Verify that a callsite has at most one "deopt", at most one "funclet", at
3725 // most one "gc-transition", at most one "cfguardtarget", at most one
3726 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3727 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3728 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3729 FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3730 FoundPtrauthBundle = false, FoundKCFIBundle = false,
3731 FoundAttachedCallBundle = false;
3732 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3733 OperandBundleUse BU = Call.getOperandBundleAt(i);
3734 uint32_t Tag = BU.getTagID();
3735 if (Tag == LLVMContext::OB_deopt) {
3736 Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3737 FoundDeoptBundle = true;
3738 } else if (Tag == LLVMContext::OB_gc_transition) {
3739 Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3740 Call);
3741 FoundGCTransitionBundle = true;
3742 } else if (Tag == LLVMContext::OB_funclet) {
3743 Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3744 FoundFuncletBundle = true;
3745 Check(BU.Inputs.size() == 1,
3746 "Expected exactly one funclet bundle operand", Call);
3747 Check(isa<FuncletPadInst>(BU.Inputs.front()),
3748 "Funclet bundle operands should correspond to a FuncletPadInst",
3749 Call);
3750 } else if (Tag == LLVMContext::OB_cfguardtarget) {
3751 Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3752 Call);
3753 FoundCFGuardTargetBundle = true;
3754 Check(BU.Inputs.size() == 1,
3755 "Expected exactly one cfguardtarget bundle operand", Call);
3756 } else if (Tag == LLVMContext::OB_ptrauth) {
3757 Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3758 FoundPtrauthBundle = true;
3759 Check(BU.Inputs.size() == 2,
3760 "Expected exactly two ptrauth bundle operands", Call);
3761 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3762 BU.Inputs[0]->getType()->isIntegerTy(32),
3763 "Ptrauth bundle key operand must be an i32 constant", Call);
3764 Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3765 "Ptrauth bundle discriminator operand must be an i64", Call);
3766 } else if (Tag == LLVMContext::OB_kcfi) {
3767 Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call);
3768 FoundKCFIBundle = true;
3769 Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand",
3770 Call);
3771 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3772 BU.Inputs[0]->getType()->isIntegerTy(32),
3773 "Kcfi bundle operand must be an i32 constant", Call);
3774 } else if (Tag == LLVMContext::OB_preallocated) {
3775 Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3776 Call);
3777 FoundPreallocatedBundle = true;
3778 Check(BU.Inputs.size() == 1,
3779 "Expected exactly one preallocated bundle operand", Call);
3780 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3781 Check(Input &&
3782 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3783 "\"preallocated\" argument must be a token from "
3784 "llvm.call.preallocated.setup",
3785 Call);
3786 } else if (Tag == LLVMContext::OB_gc_live) {
3787 Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3788 FoundGCLiveBundle = true;
3789 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3790 Check(!FoundAttachedCallBundle,
3791 "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3792 FoundAttachedCallBundle = true;
3793 verifyAttachedCallBundle(Call, BU);
3797 // Verify that callee and callsite agree on whether to use pointer auth.
3798 Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3799 "Direct call cannot have a ptrauth bundle", Call);
3801 // Verify that each inlinable callsite of a debug-info-bearing function in a
3802 // debug-info-bearing function has a debug location attached to it. Failure to
3803 // do so causes assertion failures when the inliner sets up inline scope info
3804 // (Interposable functions are not inlinable, neither are functions without
3805 // definitions.)
3806 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3807 !Call.getCalledFunction()->isInterposable() &&
3808 !Call.getCalledFunction()->isDeclaration() &&
3809 Call.getCalledFunction()->getSubprogram())
3810 CheckDI(Call.getDebugLoc(),
3811 "inlinable function call in a function with "
3812 "debug info must have a !dbg location",
3813 Call);
3815 if (Call.isInlineAsm())
3816 verifyInlineAsmCall(Call);
3818 ConvergenceVerifyHelper.visit(Call);
3820 visitInstruction(Call);
3823 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3824 StringRef Context) {
3825 Check(!Attrs.contains(Attribute::InAlloca),
3826 Twine("inalloca attribute not allowed in ") + Context);
3827 Check(!Attrs.contains(Attribute::InReg),
3828 Twine("inreg attribute not allowed in ") + Context);
3829 Check(!Attrs.contains(Attribute::SwiftError),
3830 Twine("swifterror attribute not allowed in ") + Context);
3831 Check(!Attrs.contains(Attribute::Preallocated),
3832 Twine("preallocated attribute not allowed in ") + Context);
3833 Check(!Attrs.contains(Attribute::ByRef),
3834 Twine("byref attribute not allowed in ") + Context);
3837 /// Two types are "congruent" if they are identical, or if they are both pointer
3838 /// types with different pointee types and the same address space.
3839 static bool isTypeCongruent(Type *L, Type *R) {
3840 if (L == R)
3841 return true;
3842 PointerType *PL = dyn_cast<PointerType>(L);
3843 PointerType *PR = dyn_cast<PointerType>(R);
3844 if (!PL || !PR)
3845 return false;
3846 return PL->getAddressSpace() == PR->getAddressSpace();
3849 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3850 static const Attribute::AttrKind ABIAttrs[] = {
3851 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3852 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
3853 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
3854 Attribute::ByRef};
3855 AttrBuilder Copy(C);
3856 for (auto AK : ABIAttrs) {
3857 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3858 if (Attr.isValid())
3859 Copy.addAttribute(Attr);
3862 // `align` is ABI-affecting only in combination with `byval` or `byref`.
3863 if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3864 (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3865 Attrs.hasParamAttr(I, Attribute::ByRef)))
3866 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3867 return Copy;
3870 void Verifier::verifyMustTailCall(CallInst &CI) {
3871 Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3873 Function *F = CI.getParent()->getParent();
3874 FunctionType *CallerTy = F->getFunctionType();
3875 FunctionType *CalleeTy = CI.getFunctionType();
3876 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3877 "cannot guarantee tail call due to mismatched varargs", &CI);
3878 Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3879 "cannot guarantee tail call due to mismatched return types", &CI);
3881 // - The calling conventions of the caller and callee must match.
3882 Check(F->getCallingConv() == CI.getCallingConv(),
3883 "cannot guarantee tail call due to mismatched calling conv", &CI);
3885 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3886 // or a pointer bitcast followed by a ret instruction.
3887 // - The ret instruction must return the (possibly bitcasted) value
3888 // produced by the call or void.
3889 Value *RetVal = &CI;
3890 Instruction *Next = CI.getNextNode();
3892 // Handle the optional bitcast.
3893 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3894 Check(BI->getOperand(0) == RetVal,
3895 "bitcast following musttail call must use the call", BI);
3896 RetVal = BI;
3897 Next = BI->getNextNode();
3900 // Check the return.
3901 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3902 Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3903 Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3904 isa<UndefValue>(Ret->getReturnValue()),
3905 "musttail call result must be returned", Ret);
3907 AttributeList CallerAttrs = F->getAttributes();
3908 AttributeList CalleeAttrs = CI.getAttributes();
3909 if (CI.getCallingConv() == CallingConv::SwiftTail ||
3910 CI.getCallingConv() == CallingConv::Tail) {
3911 StringRef CCName =
3912 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3914 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3915 // are allowed in swifttailcc call
3916 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3917 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3918 SmallString<32> Context{CCName, StringRef(" musttail caller")};
3919 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3921 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3922 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3923 SmallString<32> Context{CCName, StringRef(" musttail callee")};
3924 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3926 // - Varargs functions are not allowed
3927 Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3928 " tail call for varargs function");
3929 return;
3932 // - The caller and callee prototypes must match. Pointer types of
3933 // parameters or return types may differ in pointee type, but not
3934 // address space.
3935 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3936 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3937 "cannot guarantee tail call due to mismatched parameter counts", &CI);
3938 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3939 Check(
3940 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3941 "cannot guarantee tail call due to mismatched parameter types", &CI);
3945 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3946 // returned, preallocated, and inalloca, must match.
3947 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3948 AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3949 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3950 Check(CallerABIAttrs == CalleeABIAttrs,
3951 "cannot guarantee tail call due to mismatched ABI impacting "
3952 "function attributes",
3953 &CI, CI.getOperand(I));
3957 void Verifier::visitCallInst(CallInst &CI) {
3958 visitCallBase(CI);
3960 if (CI.isMustTailCall())
3961 verifyMustTailCall(CI);
3964 void Verifier::visitInvokeInst(InvokeInst &II) {
3965 visitCallBase(II);
3967 // Verify that the first non-PHI instruction of the unwind destination is an
3968 // exception handling instruction.
3969 Check(
3970 II.getUnwindDest()->isEHPad(),
3971 "The unwind destination does not have an exception handling instruction!",
3972 &II);
3974 visitTerminator(II);
3977 /// visitUnaryOperator - Check the argument to the unary operator.
3979 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3980 Check(U.getType() == U.getOperand(0)->getType(),
3981 "Unary operators must have same type for"
3982 "operands and result!",
3983 &U);
3985 switch (U.getOpcode()) {
3986 // Check that floating-point arithmetic operators are only used with
3987 // floating-point operands.
3988 case Instruction::FNeg:
3989 Check(U.getType()->isFPOrFPVectorTy(),
3990 "FNeg operator only works with float types!", &U);
3991 break;
3992 default:
3993 llvm_unreachable("Unknown UnaryOperator opcode!");
3996 visitInstruction(U);
3999 /// visitBinaryOperator - Check that both arguments to the binary operator are
4000 /// of the same type!
4002 void Verifier::visitBinaryOperator(BinaryOperator &B) {
4003 Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
4004 "Both operands to a binary operator are not of the same type!", &B);
4006 switch (B.getOpcode()) {
4007 // Check that integer arithmetic operators are only used with
4008 // integral operands.
4009 case Instruction::Add:
4010 case Instruction::Sub:
4011 case Instruction::Mul:
4012 case Instruction::SDiv:
4013 case Instruction::UDiv:
4014 case Instruction::SRem:
4015 case Instruction::URem:
4016 Check(B.getType()->isIntOrIntVectorTy(),
4017 "Integer arithmetic operators only work with integral types!", &B);
4018 Check(B.getType() == B.getOperand(0)->getType(),
4019 "Integer arithmetic operators must have same type "
4020 "for operands and result!",
4021 &B);
4022 break;
4023 // Check that floating-point arithmetic operators are only used with
4024 // floating-point operands.
4025 case Instruction::FAdd:
4026 case Instruction::FSub:
4027 case Instruction::FMul:
4028 case Instruction::FDiv:
4029 case Instruction::FRem:
4030 Check(B.getType()->isFPOrFPVectorTy(),
4031 "Floating-point arithmetic operators only work with "
4032 "floating-point types!",
4033 &B);
4034 Check(B.getType() == B.getOperand(0)->getType(),
4035 "Floating-point arithmetic operators must have same type "
4036 "for operands and result!",
4037 &B);
4038 break;
4039 // Check that logical operators are only used with integral operands.
4040 case Instruction::And:
4041 case Instruction::Or:
4042 case Instruction::Xor:
4043 Check(B.getType()->isIntOrIntVectorTy(),
4044 "Logical operators only work with integral types!", &B);
4045 Check(B.getType() == B.getOperand(0)->getType(),
4046 "Logical operators must have same type for operands and result!", &B);
4047 break;
4048 case Instruction::Shl:
4049 case Instruction::LShr:
4050 case Instruction::AShr:
4051 Check(B.getType()->isIntOrIntVectorTy(),
4052 "Shifts only work with integral types!", &B);
4053 Check(B.getType() == B.getOperand(0)->getType(),
4054 "Shift return type must be same as operands!", &B);
4055 break;
4056 default:
4057 llvm_unreachable("Unknown BinaryOperator opcode!");
4060 visitInstruction(B);
4063 void Verifier::visitICmpInst(ICmpInst &IC) {
4064 // Check that the operands are the same type
4065 Type *Op0Ty = IC.getOperand(0)->getType();
4066 Type *Op1Ty = IC.getOperand(1)->getType();
4067 Check(Op0Ty == Op1Ty,
4068 "Both operands to ICmp instruction are not of the same type!", &IC);
4069 // Check that the operands are the right type
4070 Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
4071 "Invalid operand types for ICmp instruction", &IC);
4072 // Check that the predicate is valid.
4073 Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
4075 visitInstruction(IC);
4078 void Verifier::visitFCmpInst(FCmpInst &FC) {
4079 // Check that the operands are the same type
4080 Type *Op0Ty = FC.getOperand(0)->getType();
4081 Type *Op1Ty = FC.getOperand(1)->getType();
4082 Check(Op0Ty == Op1Ty,
4083 "Both operands to FCmp instruction are not of the same type!", &FC);
4084 // Check that the operands are the right type
4085 Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
4086 &FC);
4087 // Check that the predicate is valid.
4088 Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
4090 visitInstruction(FC);
4093 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
4094 Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
4095 "Invalid extractelement operands!", &EI);
4096 visitInstruction(EI);
4099 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
4100 Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
4101 IE.getOperand(2)),
4102 "Invalid insertelement operands!", &IE);
4103 visitInstruction(IE);
4106 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
4107 Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
4108 SV.getShuffleMask()),
4109 "Invalid shufflevector operands!", &SV);
4110 visitInstruction(SV);
4113 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
4114 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
4116 Check(isa<PointerType>(TargetTy),
4117 "GEP base pointer is not a vector or a vector of pointers", &GEP);
4118 Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
4120 if (auto *STy = dyn_cast<StructType>(GEP.getSourceElementType())) {
4121 Check(!STy->isScalableTy(),
4122 "getelementptr cannot target structure that contains scalable vector"
4123 "type",
4124 &GEP);
4127 SmallVector<Value *, 16> Idxs(GEP.indices());
4128 Check(
4129 all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
4130 "GEP indexes must be integers", &GEP);
4131 Type *ElTy =
4132 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
4133 Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
4135 PointerType *PtrTy = dyn_cast<PointerType>(GEP.getType()->getScalarType());
4137 Check(PtrTy && GEP.getResultElementType() == ElTy,
4138 "GEP is not of right type for indices!", &GEP, ElTy);
4140 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
4141 // Additional checks for vector GEPs.
4142 ElementCount GEPWidth = GEPVTy->getElementCount();
4143 if (GEP.getPointerOperandType()->isVectorTy())
4144 Check(
4145 GEPWidth ==
4146 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
4147 "Vector GEP result width doesn't match operand's", &GEP);
4148 for (Value *Idx : Idxs) {
4149 Type *IndexTy = Idx->getType();
4150 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
4151 ElementCount IndexWidth = IndexVTy->getElementCount();
4152 Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
4154 Check(IndexTy->isIntOrIntVectorTy(),
4155 "All GEP indices should be of integer type");
4159 Check(GEP.getAddressSpace() == PtrTy->getAddressSpace(),
4160 "GEP address space doesn't match type", &GEP);
4162 visitInstruction(GEP);
4165 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
4166 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
4169 /// Verify !range and !absolute_symbol metadata. These have the same
4170 /// restrictions, except !absolute_symbol allows the full set.
4171 void Verifier::verifyRangeLikeMetadata(const Value &I, const MDNode *Range,
4172 Type *Ty, RangeLikeMetadataKind Kind) {
4173 unsigned NumOperands = Range->getNumOperands();
4174 Check(NumOperands % 2 == 0, "Unfinished range!", Range);
4175 unsigned NumRanges = NumOperands / 2;
4176 Check(NumRanges >= 1, "It should have at least one range!", Range);
4178 ConstantRange LastRange(1, true); // Dummy initial value
4179 for (unsigned i = 0; i < NumRanges; ++i) {
4180 ConstantInt *Low =
4181 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
4182 Check(Low, "The lower limit must be an integer!", Low);
4183 ConstantInt *High =
4184 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
4185 Check(High, "The upper limit must be an integer!", High);
4187 Check(High->getType() == Low->getType(), "Range pair types must match!",
4188 &I);
4190 if (Kind == RangeLikeMetadataKind::NoaliasAddrspace) {
4191 Check(High->getType()->isIntegerTy(32),
4192 "noalias.addrspace type must be i32!", &I);
4193 } else {
4194 Check(High->getType() == Ty->getScalarType(),
4195 "Range types must match instruction type!", &I);
4198 APInt HighV = High->getValue();
4199 APInt LowV = Low->getValue();
4201 // ConstantRange asserts if the ranges are the same except for the min/max
4202 // value. Leave the cases it tolerates for the empty range error below.
4203 Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(),
4204 "The upper and lower limits cannot be the same value", &I);
4206 ConstantRange CurRange(LowV, HighV);
4207 Check(!CurRange.isEmptySet() &&
4208 (Kind == RangeLikeMetadataKind::AbsoluteSymbol ||
4209 !CurRange.isFullSet()),
4210 "Range must not be empty!", Range);
4211 if (i != 0) {
4212 Check(CurRange.intersectWith(LastRange).isEmptySet(),
4213 "Intervals are overlapping", Range);
4214 Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
4215 Range);
4216 Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
4217 Range);
4219 LastRange = ConstantRange(LowV, HighV);
4221 if (NumRanges > 2) {
4222 APInt FirstLow =
4223 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
4224 APInt FirstHigh =
4225 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
4226 ConstantRange FirstRange(FirstLow, FirstHigh);
4227 Check(FirstRange.intersectWith(LastRange).isEmptySet(),
4228 "Intervals are overlapping", Range);
4229 Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
4230 Range);
4234 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
4235 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
4236 "precondition violation");
4237 verifyRangeLikeMetadata(I, Range, Ty, RangeLikeMetadataKind::Range);
4240 void Verifier::visitNoaliasAddrspaceMetadata(Instruction &I, MDNode *Range,
4241 Type *Ty) {
4242 assert(Range && Range == I.getMetadata(LLVMContext::MD_noalias_addrspace) &&
4243 "precondition violation");
4244 verifyRangeLikeMetadata(I, Range, Ty,
4245 RangeLikeMetadataKind::NoaliasAddrspace);
4248 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
4249 unsigned Size = DL.getTypeSizeInBits(Ty);
4250 Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
4251 Check(!(Size & (Size - 1)),
4252 "atomic memory access' operand must have a power-of-two size", Ty, I);
4255 void Verifier::visitLoadInst(LoadInst &LI) {
4256 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
4257 Check(PTy, "Load operand must be a pointer.", &LI);
4258 Type *ElTy = LI.getType();
4259 if (MaybeAlign A = LI.getAlign()) {
4260 Check(A->value() <= Value::MaximumAlignment,
4261 "huge alignment values are unsupported", &LI);
4263 Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
4264 if (LI.isAtomic()) {
4265 Check(LI.getOrdering() != AtomicOrdering::Release &&
4266 LI.getOrdering() != AtomicOrdering::AcquireRelease,
4267 "Load cannot have Release ordering", &LI);
4268 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4269 "atomic load operand must have integer, pointer, or floating point "
4270 "type!",
4271 ElTy, &LI);
4272 checkAtomicMemAccessSize(ElTy, &LI);
4273 } else {
4274 Check(LI.getSyncScopeID() == SyncScope::System,
4275 "Non-atomic load cannot have SynchronizationScope specified", &LI);
4278 visitInstruction(LI);
4281 void Verifier::visitStoreInst(StoreInst &SI) {
4282 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
4283 Check(PTy, "Store operand must be a pointer.", &SI);
4284 Type *ElTy = SI.getOperand(0)->getType();
4285 if (MaybeAlign A = SI.getAlign()) {
4286 Check(A->value() <= Value::MaximumAlignment,
4287 "huge alignment values are unsupported", &SI);
4289 Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
4290 if (SI.isAtomic()) {
4291 Check(SI.getOrdering() != AtomicOrdering::Acquire &&
4292 SI.getOrdering() != AtomicOrdering::AcquireRelease,
4293 "Store cannot have Acquire ordering", &SI);
4294 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4295 "atomic store operand must have integer, pointer, or floating point "
4296 "type!",
4297 ElTy, &SI);
4298 checkAtomicMemAccessSize(ElTy, &SI);
4299 } else {
4300 Check(SI.getSyncScopeID() == SyncScope::System,
4301 "Non-atomic store cannot have SynchronizationScope specified", &SI);
4303 visitInstruction(SI);
4306 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
4307 void Verifier::verifySwiftErrorCall(CallBase &Call,
4308 const Value *SwiftErrorVal) {
4309 for (const auto &I : llvm::enumerate(Call.args())) {
4310 if (I.value() == SwiftErrorVal) {
4311 Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
4312 "swifterror value when used in a callsite should be marked "
4313 "with swifterror attribute",
4314 SwiftErrorVal, Call);
4319 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
4320 // Check that swifterror value is only used by loads, stores, or as
4321 // a swifterror argument.
4322 for (const User *U : SwiftErrorVal->users()) {
4323 Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
4324 isa<InvokeInst>(U),
4325 "swifterror value can only be loaded and stored from, or "
4326 "as a swifterror argument!",
4327 SwiftErrorVal, U);
4328 // If it is used by a store, check it is the second operand.
4329 if (auto StoreI = dyn_cast<StoreInst>(U))
4330 Check(StoreI->getOperand(1) == SwiftErrorVal,
4331 "swifterror value should be the second operand when used "
4332 "by stores",
4333 SwiftErrorVal, U);
4334 if (auto *Call = dyn_cast<CallBase>(U))
4335 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
4339 void Verifier::visitAllocaInst(AllocaInst &AI) {
4340 Type *Ty = AI.getAllocatedType();
4341 SmallPtrSet<Type*, 4> Visited;
4342 Check(Ty->isSized(&Visited), "Cannot allocate unsized type", &AI);
4343 // Check if it's a target extension type that disallows being used on the
4344 // stack.
4345 Check(!Ty->containsNonLocalTargetExtType(),
4346 "Alloca has illegal target extension type", &AI);
4347 Check(AI.getArraySize()->getType()->isIntegerTy(),
4348 "Alloca array size must have integer type", &AI);
4349 if (MaybeAlign A = AI.getAlign()) {
4350 Check(A->value() <= Value::MaximumAlignment,
4351 "huge alignment values are unsupported", &AI);
4354 if (AI.isSwiftError()) {
4355 Check(Ty->isPointerTy(), "swifterror alloca must have pointer type", &AI);
4356 Check(!AI.isArrayAllocation(),
4357 "swifterror alloca must not be array allocation", &AI);
4358 verifySwiftErrorValue(&AI);
4361 visitInstruction(AI);
4364 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4365 Type *ElTy = CXI.getOperand(1)->getType();
4366 Check(ElTy->isIntOrPtrTy(),
4367 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4368 checkAtomicMemAccessSize(ElTy, &CXI);
4369 visitInstruction(CXI);
4372 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4373 Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
4374 "atomicrmw instructions cannot be unordered.", &RMWI);
4375 auto Op = RMWI.getOperation();
4376 Type *ElTy = RMWI.getOperand(1)->getType();
4377 if (Op == AtomicRMWInst::Xchg) {
4378 Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
4379 ElTy->isPointerTy(),
4380 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4381 " operand must have integer or floating point type!",
4382 &RMWI, ElTy);
4383 } else if (AtomicRMWInst::isFPOperation(Op)) {
4384 Check(ElTy->isFPOrFPVectorTy() && !isa<ScalableVectorType>(ElTy),
4385 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4386 " operand must have floating-point or fixed vector of floating-point "
4387 "type!",
4388 &RMWI, ElTy);
4389 } else {
4390 Check(ElTy->isIntegerTy(),
4391 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4392 " operand must have integer type!",
4393 &RMWI, ElTy);
4395 checkAtomicMemAccessSize(ElTy, &RMWI);
4396 Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
4397 "Invalid binary operation!", &RMWI);
4398 visitInstruction(RMWI);
4401 void Verifier::visitFenceInst(FenceInst &FI) {
4402 const AtomicOrdering Ordering = FI.getOrdering();
4403 Check(Ordering == AtomicOrdering::Acquire ||
4404 Ordering == AtomicOrdering::Release ||
4405 Ordering == AtomicOrdering::AcquireRelease ||
4406 Ordering == AtomicOrdering::SequentiallyConsistent,
4407 "fence instructions may only have acquire, release, acq_rel, or "
4408 "seq_cst ordering.",
4409 &FI);
4410 visitInstruction(FI);
4413 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4414 Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
4415 EVI.getIndices()) == EVI.getType(),
4416 "Invalid ExtractValueInst operands!", &EVI);
4418 visitInstruction(EVI);
4421 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4422 Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
4423 IVI.getIndices()) ==
4424 IVI.getOperand(1)->getType(),
4425 "Invalid InsertValueInst operands!", &IVI);
4427 visitInstruction(IVI);
4430 static Value *getParentPad(Value *EHPad) {
4431 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
4432 return FPI->getParentPad();
4434 return cast<CatchSwitchInst>(EHPad)->getParentPad();
4437 void Verifier::visitEHPadPredecessors(Instruction &I) {
4438 assert(I.isEHPad());
4440 BasicBlock *BB = I.getParent();
4441 Function *F = BB->getParent();
4443 Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
4445 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
4446 // The landingpad instruction defines its parent as a landing pad block. The
4447 // landing pad block may be branched to only by the unwind edge of an
4448 // invoke.
4449 for (BasicBlock *PredBB : predecessors(BB)) {
4450 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
4451 Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
4452 "Block containing LandingPadInst must be jumped to "
4453 "only by the unwind edge of an invoke.",
4454 LPI);
4456 return;
4458 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
4459 if (!pred_empty(BB))
4460 Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4461 "Block containg CatchPadInst must be jumped to "
4462 "only by its catchswitch.",
4463 CPI);
4464 Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4465 "Catchswitch cannot unwind to one of its catchpads",
4466 CPI->getCatchSwitch(), CPI);
4467 return;
4470 // Verify that each pred has a legal terminator with a legal to/from EH
4471 // pad relationship.
4472 Instruction *ToPad = &I;
4473 Value *ToPadParent = getParentPad(ToPad);
4474 for (BasicBlock *PredBB : predecessors(BB)) {
4475 Instruction *TI = PredBB->getTerminator();
4476 Value *FromPad;
4477 if (auto *II = dyn_cast<InvokeInst>(TI)) {
4478 Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4479 "EH pad must be jumped to via an unwind edge", ToPad, II);
4480 auto *CalledFn =
4481 dyn_cast<Function>(II->getCalledOperand()->stripPointerCasts());
4482 if (CalledFn && CalledFn->isIntrinsic() && II->doesNotThrow() &&
4483 !IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID()))
4484 continue;
4485 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4486 FromPad = Bundle->Inputs[0];
4487 else
4488 FromPad = ConstantTokenNone::get(II->getContext());
4489 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4490 FromPad = CRI->getOperand(0);
4491 Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4492 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4493 FromPad = CSI;
4494 } else {
4495 Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4498 // The edge may exit from zero or more nested pads.
4499 SmallSet<Value *, 8> Seen;
4500 for (;; FromPad = getParentPad(FromPad)) {
4501 Check(FromPad != ToPad,
4502 "EH pad cannot handle exceptions raised within it", FromPad, TI);
4503 if (FromPad == ToPadParent) {
4504 // This is a legal unwind edge.
4505 break;
4507 Check(!isa<ConstantTokenNone>(FromPad),
4508 "A single unwind edge may only enter one EH pad", TI);
4509 Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4510 FromPad);
4512 // This will be diagnosed on the corresponding instruction already. We
4513 // need the extra check here to make sure getParentPad() works.
4514 Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4515 "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4520 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4521 // The landingpad instruction is ill-formed if it doesn't have any clauses and
4522 // isn't a cleanup.
4523 Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4524 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4526 visitEHPadPredecessors(LPI);
4528 if (!LandingPadResultTy)
4529 LandingPadResultTy = LPI.getType();
4530 else
4531 Check(LandingPadResultTy == LPI.getType(),
4532 "The landingpad instruction should have a consistent result type "
4533 "inside a function.",
4534 &LPI);
4536 Function *F = LPI.getParent()->getParent();
4537 Check(F->hasPersonalityFn(),
4538 "LandingPadInst needs to be in a function with a personality.", &LPI);
4540 // The landingpad instruction must be the first non-PHI instruction in the
4541 // block.
4542 Check(LPI.getParent()->getLandingPadInst() == &LPI,
4543 "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4545 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4546 Constant *Clause = LPI.getClause(i);
4547 if (LPI.isCatch(i)) {
4548 Check(isa<PointerType>(Clause->getType()),
4549 "Catch operand does not have pointer type!", &LPI);
4550 } else {
4551 Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4552 Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4553 "Filter operand is not an array of constants!", &LPI);
4557 visitInstruction(LPI);
4560 void Verifier::visitResumeInst(ResumeInst &RI) {
4561 Check(RI.getFunction()->hasPersonalityFn(),
4562 "ResumeInst needs to be in a function with a personality.", &RI);
4564 if (!LandingPadResultTy)
4565 LandingPadResultTy = RI.getValue()->getType();
4566 else
4567 Check(LandingPadResultTy == RI.getValue()->getType(),
4568 "The resume instruction should have a consistent result type "
4569 "inside a function.",
4570 &RI);
4572 visitTerminator(RI);
4575 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4576 BasicBlock *BB = CPI.getParent();
4578 Function *F = BB->getParent();
4579 Check(F->hasPersonalityFn(),
4580 "CatchPadInst needs to be in a function with a personality.", &CPI);
4582 Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4583 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4584 CPI.getParentPad());
4586 // The catchpad instruction must be the first non-PHI instruction in the
4587 // block.
4588 Check(&*BB->getFirstNonPHIIt() == &CPI,
4589 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4591 visitEHPadPredecessors(CPI);
4592 visitFuncletPadInst(CPI);
4595 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4596 Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4597 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4598 CatchReturn.getOperand(0));
4600 visitTerminator(CatchReturn);
4603 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4604 BasicBlock *BB = CPI.getParent();
4606 Function *F = BB->getParent();
4607 Check(F->hasPersonalityFn(),
4608 "CleanupPadInst needs to be in a function with a personality.", &CPI);
4610 // The cleanuppad instruction must be the first non-PHI instruction in the
4611 // block.
4612 Check(&*BB->getFirstNonPHIIt() == &CPI,
4613 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4615 auto *ParentPad = CPI.getParentPad();
4616 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4617 "CleanupPadInst has an invalid parent.", &CPI);
4619 visitEHPadPredecessors(CPI);
4620 visitFuncletPadInst(CPI);
4623 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4624 User *FirstUser = nullptr;
4625 Value *FirstUnwindPad = nullptr;
4626 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4627 SmallSet<FuncletPadInst *, 8> Seen;
4629 while (!Worklist.empty()) {
4630 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4631 Check(Seen.insert(CurrentPad).second,
4632 "FuncletPadInst must not be nested within itself", CurrentPad);
4633 Value *UnresolvedAncestorPad = nullptr;
4634 for (User *U : CurrentPad->users()) {
4635 BasicBlock *UnwindDest;
4636 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4637 UnwindDest = CRI->getUnwindDest();
4638 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4639 // We allow catchswitch unwind to caller to nest
4640 // within an outer pad that unwinds somewhere else,
4641 // because catchswitch doesn't have a nounwind variant.
4642 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4643 if (CSI->unwindsToCaller())
4644 continue;
4645 UnwindDest = CSI->getUnwindDest();
4646 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4647 UnwindDest = II->getUnwindDest();
4648 } else if (isa<CallInst>(U)) {
4649 // Calls which don't unwind may be found inside funclet
4650 // pads that unwind somewhere else. We don't *require*
4651 // such calls to be annotated nounwind.
4652 continue;
4653 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4654 // The unwind dest for a cleanup can only be found by
4655 // recursive search. Add it to the worklist, and we'll
4656 // search for its first use that determines where it unwinds.
4657 Worklist.push_back(CPI);
4658 continue;
4659 } else {
4660 Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4661 continue;
4664 Value *UnwindPad;
4665 bool ExitsFPI;
4666 if (UnwindDest) {
4667 UnwindPad = &*UnwindDest->getFirstNonPHIIt();
4668 if (!cast<Instruction>(UnwindPad)->isEHPad())
4669 continue;
4670 Value *UnwindParent = getParentPad(UnwindPad);
4671 // Ignore unwind edges that don't exit CurrentPad.
4672 if (UnwindParent == CurrentPad)
4673 continue;
4674 // Determine whether the original funclet pad is exited,
4675 // and if we are scanning nested pads determine how many
4676 // of them are exited so we can stop searching their
4677 // children.
4678 Value *ExitedPad = CurrentPad;
4679 ExitsFPI = false;
4680 do {
4681 if (ExitedPad == &FPI) {
4682 ExitsFPI = true;
4683 // Now we can resolve any ancestors of CurrentPad up to
4684 // FPI, but not including FPI since we need to make sure
4685 // to check all direct users of FPI for consistency.
4686 UnresolvedAncestorPad = &FPI;
4687 break;
4689 Value *ExitedParent = getParentPad(ExitedPad);
4690 if (ExitedParent == UnwindParent) {
4691 // ExitedPad is the ancestor-most pad which this unwind
4692 // edge exits, so we can resolve up to it, meaning that
4693 // ExitedParent is the first ancestor still unresolved.
4694 UnresolvedAncestorPad = ExitedParent;
4695 break;
4697 ExitedPad = ExitedParent;
4698 } while (!isa<ConstantTokenNone>(ExitedPad));
4699 } else {
4700 // Unwinding to caller exits all pads.
4701 UnwindPad = ConstantTokenNone::get(FPI.getContext());
4702 ExitsFPI = true;
4703 UnresolvedAncestorPad = &FPI;
4706 if (ExitsFPI) {
4707 // This unwind edge exits FPI. Make sure it agrees with other
4708 // such edges.
4709 if (FirstUser) {
4710 Check(UnwindPad == FirstUnwindPad,
4711 "Unwind edges out of a funclet "
4712 "pad must have the same unwind "
4713 "dest",
4714 &FPI, U, FirstUser);
4715 } else {
4716 FirstUser = U;
4717 FirstUnwindPad = UnwindPad;
4718 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4719 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4720 getParentPad(UnwindPad) == getParentPad(&FPI))
4721 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4724 // Make sure we visit all uses of FPI, but for nested pads stop as
4725 // soon as we know where they unwind to.
4726 if (CurrentPad != &FPI)
4727 break;
4729 if (UnresolvedAncestorPad) {
4730 if (CurrentPad == UnresolvedAncestorPad) {
4731 // When CurrentPad is FPI itself, we don't mark it as resolved even if
4732 // we've found an unwind edge that exits it, because we need to verify
4733 // all direct uses of FPI.
4734 assert(CurrentPad == &FPI);
4735 continue;
4737 // Pop off the worklist any nested pads that we've found an unwind
4738 // destination for. The pads on the worklist are the uncles,
4739 // great-uncles, etc. of CurrentPad. We've found an unwind destination
4740 // for all ancestors of CurrentPad up to but not including
4741 // UnresolvedAncestorPad.
4742 Value *ResolvedPad = CurrentPad;
4743 while (!Worklist.empty()) {
4744 Value *UnclePad = Worklist.back();
4745 Value *AncestorPad = getParentPad(UnclePad);
4746 // Walk ResolvedPad up the ancestor list until we either find the
4747 // uncle's parent or the last resolved ancestor.
4748 while (ResolvedPad != AncestorPad) {
4749 Value *ResolvedParent = getParentPad(ResolvedPad);
4750 if (ResolvedParent == UnresolvedAncestorPad) {
4751 break;
4753 ResolvedPad = ResolvedParent;
4755 // If the resolved ancestor search didn't find the uncle's parent,
4756 // then the uncle is not yet resolved.
4757 if (ResolvedPad != AncestorPad)
4758 break;
4759 // This uncle is resolved, so pop it from the worklist.
4760 Worklist.pop_back();
4765 if (FirstUnwindPad) {
4766 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4767 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4768 Value *SwitchUnwindPad;
4769 if (SwitchUnwindDest)
4770 SwitchUnwindPad = &*SwitchUnwindDest->getFirstNonPHIIt();
4771 else
4772 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4773 Check(SwitchUnwindPad == FirstUnwindPad,
4774 "Unwind edges out of a catch must have the same unwind dest as "
4775 "the parent catchswitch",
4776 &FPI, FirstUser, CatchSwitch);
4780 visitInstruction(FPI);
4783 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4784 BasicBlock *BB = CatchSwitch.getParent();
4786 Function *F = BB->getParent();
4787 Check(F->hasPersonalityFn(),
4788 "CatchSwitchInst needs to be in a function with a personality.",
4789 &CatchSwitch);
4791 // The catchswitch instruction must be the first non-PHI instruction in the
4792 // block.
4793 Check(&*BB->getFirstNonPHIIt() == &CatchSwitch,
4794 "CatchSwitchInst not the first non-PHI instruction in the block.",
4795 &CatchSwitch);
4797 auto *ParentPad = CatchSwitch.getParentPad();
4798 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4799 "CatchSwitchInst has an invalid parent.", ParentPad);
4801 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4802 BasicBlock::iterator I = UnwindDest->getFirstNonPHIIt();
4803 Check(I->isEHPad() && !isa<LandingPadInst>(I),
4804 "CatchSwitchInst must unwind to an EH block which is not a "
4805 "landingpad.",
4806 &CatchSwitch);
4808 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4809 if (getParentPad(&*I) == ParentPad)
4810 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4813 Check(CatchSwitch.getNumHandlers() != 0,
4814 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4816 for (BasicBlock *Handler : CatchSwitch.handlers()) {
4817 Check(isa<CatchPadInst>(Handler->getFirstNonPHIIt()),
4818 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4821 visitEHPadPredecessors(CatchSwitch);
4822 visitTerminator(CatchSwitch);
4825 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4826 Check(isa<CleanupPadInst>(CRI.getOperand(0)),
4827 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4828 CRI.getOperand(0));
4830 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4831 BasicBlock::iterator I = UnwindDest->getFirstNonPHIIt();
4832 Check(I->isEHPad() && !isa<LandingPadInst>(I),
4833 "CleanupReturnInst must unwind to an EH block which is not a "
4834 "landingpad.",
4835 &CRI);
4838 visitTerminator(CRI);
4841 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4842 Instruction *Op = cast<Instruction>(I.getOperand(i));
4843 // If the we have an invalid invoke, don't try to compute the dominance.
4844 // We already reject it in the invoke specific checks and the dominance
4845 // computation doesn't handle multiple edges.
4846 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4847 if (II->getNormalDest() == II->getUnwindDest())
4848 return;
4851 // Quick check whether the def has already been encountered in the same block.
4852 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4853 // uses are defined to happen on the incoming edge, not at the instruction.
4855 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4856 // wrapping an SSA value, assert that we've already encountered it. See
4857 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4858 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4859 return;
4861 const Use &U = I.getOperandUse(i);
4862 Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
4865 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4866 Check(I.getType()->isPointerTy(),
4867 "dereferenceable, dereferenceable_or_null "
4868 "apply only to pointer types",
4869 &I);
4870 Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4871 "dereferenceable, dereferenceable_or_null apply only to load"
4872 " and inttoptr instructions, use attributes for calls or invokes",
4873 &I);
4874 Check(MD->getNumOperands() == 1,
4875 "dereferenceable, dereferenceable_or_null "
4876 "take one operand!",
4877 &I);
4878 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4879 Check(CI && CI->getType()->isIntegerTy(64),
4880 "dereferenceable, "
4881 "dereferenceable_or_null metadata value must be an i64!",
4882 &I);
4885 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4886 Check(MD->getNumOperands() >= 2,
4887 "!prof annotations should have no less than 2 operands", MD);
4889 // Check first operand.
4890 Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4891 Check(isa<MDString>(MD->getOperand(0)),
4892 "expected string with name of the !prof annotation", MD);
4893 MDString *MDS = cast<MDString>(MD->getOperand(0));
4894 StringRef ProfName = MDS->getString();
4896 // Check consistency of !prof branch_weights metadata.
4897 if (ProfName == "branch_weights") {
4898 unsigned NumBranchWeights = getNumBranchWeights(*MD);
4899 if (isa<InvokeInst>(&I)) {
4900 Check(NumBranchWeights == 1 || NumBranchWeights == 2,
4901 "Wrong number of InvokeInst branch_weights operands", MD);
4902 } else {
4903 unsigned ExpectedNumOperands = 0;
4904 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4905 ExpectedNumOperands = BI->getNumSuccessors();
4906 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4907 ExpectedNumOperands = SI->getNumSuccessors();
4908 else if (isa<CallInst>(&I))
4909 ExpectedNumOperands = 1;
4910 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4911 ExpectedNumOperands = IBI->getNumDestinations();
4912 else if (isa<SelectInst>(&I))
4913 ExpectedNumOperands = 2;
4914 else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I))
4915 ExpectedNumOperands = CI->getNumSuccessors();
4916 else
4917 CheckFailed("!prof branch_weights are not allowed for this instruction",
4918 MD);
4920 Check(NumBranchWeights == ExpectedNumOperands, "Wrong number of operands",
4921 MD);
4923 for (unsigned i = getBranchWeightOffset(MD); i < MD->getNumOperands();
4924 ++i) {
4925 auto &MDO = MD->getOperand(i);
4926 Check(MDO, "second operand should not be null", MD);
4927 Check(mdconst::dyn_extract<ConstantInt>(MDO),
4928 "!prof brunch_weights operand is not a const int");
4933 void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) {
4934 assert(I.hasMetadata(LLVMContext::MD_DIAssignID));
4935 bool ExpectedInstTy =
4936 isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I);
4937 CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind",
4938 I, MD);
4939 // Iterate over the MetadataAsValue uses of the DIAssignID - these should
4940 // only be found as DbgAssignIntrinsic operands.
4941 if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) {
4942 for (auto *User : AsValue->users()) {
4943 CheckDI(isa<DbgAssignIntrinsic>(User),
4944 "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
4945 MD, User);
4946 // All of the dbg.assign intrinsics should be in the same function as I.
4947 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User))
4948 CheckDI(DAI->getFunction() == I.getFunction(),
4949 "dbg.assign not in same function as inst", DAI, &I);
4952 for (DbgVariableRecord *DVR :
4953 cast<DIAssignID>(MD)->getAllDbgVariableRecordUsers()) {
4954 CheckDI(DVR->isDbgAssign(),
4955 "!DIAssignID should only be used by Assign DVRs.", MD, DVR);
4956 CheckDI(DVR->getFunction() == I.getFunction(),
4957 "DVRAssign not in same function as inst", DVR, &I);
4961 void Verifier::visitMMRAMetadata(Instruction &I, MDNode *MD) {
4962 Check(canInstructionHaveMMRAs(I),
4963 "!mmra metadata attached to unexpected instruction kind", I, MD);
4965 // MMRA Metadata should either be a tag, e.g. !{!"foo", !"bar"}, or a
4966 // list of tags such as !2 in the following example:
4967 // !0 = !{!"a", !"b"}
4968 // !1 = !{!"c", !"d"}
4969 // !2 = !{!0, !1}
4970 if (MMRAMetadata::isTagMD(MD))
4971 return;
4973 Check(isa<MDTuple>(MD), "!mmra expected to be a metadata tuple", I, MD);
4974 for (const MDOperand &MDOp : MD->operands())
4975 Check(MMRAMetadata::isTagMD(MDOp.get()),
4976 "!mmra metadata tuple operand is not an MMRA tag", I, MDOp.get());
4979 void Verifier::visitCallStackMetadata(MDNode *MD) {
4980 // Call stack metadata should consist of a list of at least 1 constant int
4981 // (representing a hash of the location).
4982 Check(MD->getNumOperands() >= 1,
4983 "call stack metadata should have at least 1 operand", MD);
4985 for (const auto &Op : MD->operands())
4986 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op),
4987 "call stack metadata operand should be constant integer", Op);
4990 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) {
4991 Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I);
4992 Check(MD->getNumOperands() >= 1,
4993 "!memprof annotations should have at least 1 metadata operand "
4994 "(MemInfoBlock)",
4995 MD);
4997 // Check each MIB
4998 for (auto &MIBOp : MD->operands()) {
4999 MDNode *MIB = dyn_cast<MDNode>(MIBOp);
5000 // The first operand of an MIB should be the call stack metadata.
5001 // There rest of the operands should be MDString tags, and there should be
5002 // at least one.
5003 Check(MIB->getNumOperands() >= 2,
5004 "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
5006 // Check call stack metadata (first operand).
5007 Check(MIB->getOperand(0) != nullptr,
5008 "!memprof MemInfoBlock first operand should not be null", MIB);
5009 Check(isa<MDNode>(MIB->getOperand(0)),
5010 "!memprof MemInfoBlock first operand should be an MDNode", MIB);
5011 MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0));
5012 visitCallStackMetadata(StackMD);
5014 // The next set of 1 or more operands should be MDString.
5015 unsigned I = 1;
5016 for (; I < MIB->getNumOperands(); ++I) {
5017 if (!isa<MDString>(MIB->getOperand(I))) {
5018 Check(I > 1,
5019 "!memprof MemInfoBlock second operand should be an MDString",
5020 MIB);
5021 break;
5025 // Any remaining should be MDNode that are pairs of integers
5026 for (; I < MIB->getNumOperands(); ++I) {
5027 MDNode *OpNode = dyn_cast<MDNode>(MIB->getOperand(I));
5028 Check(OpNode, "Not all !memprof MemInfoBlock operands 2 to N are MDNode",
5029 MIB);
5030 Check(OpNode->getNumOperands() == 2,
5031 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with 2 "
5032 "operands",
5033 MIB);
5034 // Check that all of Op's operands are ConstantInt.
5035 Check(llvm::all_of(OpNode->operands(),
5036 [](const MDOperand &Op) {
5037 return mdconst::hasa<ConstantInt>(Op);
5039 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with "
5040 "ConstantInt operands",
5041 MIB);
5046 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) {
5047 Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I);
5048 // Verify the partial callstack annotated from memprof profiles. This callsite
5049 // is a part of a profiled allocation callstack.
5050 visitCallStackMetadata(MD);
5053 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
5054 Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
5055 Check(Annotation->getNumOperands() >= 1,
5056 "annotation must have at least one operand");
5057 for (const MDOperand &Op : Annotation->operands()) {
5058 bool TupleOfStrings =
5059 isa<MDTuple>(Op.get()) &&
5060 all_of(cast<MDTuple>(Op)->operands(), [](auto &Annotation) {
5061 return isa<MDString>(Annotation.get());
5063 Check(isa<MDString>(Op.get()) || TupleOfStrings,
5064 "operands must be a string or a tuple of strings");
5068 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
5069 unsigned NumOps = MD->getNumOperands();
5070 Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
5071 MD);
5072 Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
5073 "first scope operand must be self-referential or string", MD);
5074 if (NumOps == 3)
5075 Check(isa<MDString>(MD->getOperand(2)),
5076 "third scope operand must be string (if used)", MD);
5078 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
5079 Check(Domain != nullptr, "second scope operand must be MDNode", MD);
5081 unsigned NumDomainOps = Domain->getNumOperands();
5082 Check(NumDomainOps >= 1 && NumDomainOps <= 2,
5083 "domain must have one or two operands", Domain);
5084 Check(Domain->getOperand(0).get() == Domain ||
5085 isa<MDString>(Domain->getOperand(0)),
5086 "first domain operand must be self-referential or string", Domain);
5087 if (NumDomainOps == 2)
5088 Check(isa<MDString>(Domain->getOperand(1)),
5089 "second domain operand must be string (if used)", Domain);
5092 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
5093 for (const MDOperand &Op : MD->operands()) {
5094 const MDNode *OpMD = dyn_cast<MDNode>(Op);
5095 Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
5096 visitAliasScopeMetadata(OpMD);
5100 void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
5101 auto IsValidAccessScope = [](const MDNode *MD) {
5102 return MD->getNumOperands() == 0 && MD->isDistinct();
5105 // It must be either an access scope itself...
5106 if (IsValidAccessScope(MD))
5107 return;
5109 // ...or a list of access scopes.
5110 for (const MDOperand &Op : MD->operands()) {
5111 const MDNode *OpMD = dyn_cast<MDNode>(Op);
5112 Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
5113 Check(IsValidAccessScope(OpMD),
5114 "Access scope list contains invalid access scope", MD);
5118 /// verifyInstruction - Verify that an instruction is well formed.
5120 void Verifier::visitInstruction(Instruction &I) {
5121 BasicBlock *BB = I.getParent();
5122 Check(BB, "Instruction not embedded in basic block!", &I);
5124 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
5125 for (User *U : I.users()) {
5126 Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
5127 "Only PHI nodes may reference their own value!", &I);
5131 // Check that void typed values don't have names
5132 Check(!I.getType()->isVoidTy() || !I.hasName(),
5133 "Instruction has a name, but provides a void value!", &I);
5135 // Check that the return value of the instruction is either void or a legal
5136 // value type.
5137 Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
5138 "Instruction returns a non-scalar type!", &I);
5140 // Check that the instruction doesn't produce metadata. Calls are already
5141 // checked against the callee type.
5142 Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
5143 "Invalid use of metadata!", &I);
5145 // Check that all uses of the instruction, if they are instructions
5146 // themselves, actually have parent basic blocks. If the use is not an
5147 // instruction, it is an error!
5148 for (Use &U : I.uses()) {
5149 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
5150 Check(Used->getParent() != nullptr,
5151 "Instruction referencing"
5152 " instruction not embedded in a basic block!",
5153 &I, Used);
5154 else {
5155 CheckFailed("Use of instruction is not an instruction!", U);
5156 return;
5160 // Get a pointer to the call base of the instruction if it is some form of
5161 // call.
5162 const CallBase *CBI = dyn_cast<CallBase>(&I);
5164 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
5165 Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
5167 // Check to make sure that only first-class-values are operands to
5168 // instructions.
5169 if (!I.getOperand(i)->getType()->isFirstClassType()) {
5170 Check(false, "Instruction operands must be first-class values!", &I);
5173 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
5174 // This code checks whether the function is used as the operand of a
5175 // clang_arc_attachedcall operand bundle.
5176 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
5177 int Idx) {
5178 return CBI && CBI->isOperandBundleOfType(
5179 LLVMContext::OB_clang_arc_attachedcall, Idx);
5182 // Check to make sure that the "address of" an intrinsic function is never
5183 // taken. Ignore cases where the address of the intrinsic function is used
5184 // as the argument of operand bundle "clang.arc.attachedcall" as those
5185 // cases are handled in verifyAttachedCallBundle.
5186 Check((!F->isIntrinsic() ||
5187 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
5188 IsAttachedCallOperand(F, CBI, i)),
5189 "Cannot take the address of an intrinsic!", &I);
5190 Check(!F->isIntrinsic() || isa<CallInst>(I) ||
5191 F->getIntrinsicID() == Intrinsic::donothing ||
5192 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
5193 F->getIntrinsicID() == Intrinsic::seh_try_end ||
5194 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
5195 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
5196 F->getIntrinsicID() == Intrinsic::coro_resume ||
5197 F->getIntrinsicID() == Intrinsic::coro_destroy ||
5198 F->getIntrinsicID() == Intrinsic::coro_await_suspend_void ||
5199 F->getIntrinsicID() == Intrinsic::coro_await_suspend_bool ||
5200 F->getIntrinsicID() == Intrinsic::coro_await_suspend_handle ||
5201 F->getIntrinsicID() ==
5202 Intrinsic::experimental_patchpoint_void ||
5203 F->getIntrinsicID() == Intrinsic::experimental_patchpoint ||
5204 F->getIntrinsicID() == Intrinsic::fake_use ||
5205 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
5206 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
5207 IsAttachedCallOperand(F, CBI, i),
5208 "Cannot invoke an intrinsic other than donothing, patchpoint, "
5209 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
5210 &I);
5211 Check(F->getParent() == &M, "Referencing function in another module!", &I,
5212 &M, F, F->getParent());
5213 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
5214 Check(OpBB->getParent() == BB->getParent(),
5215 "Referring to a basic block in another function!", &I);
5216 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
5217 Check(OpArg->getParent() == BB->getParent(),
5218 "Referring to an argument in another function!", &I);
5219 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
5220 Check(GV->getParent() == &M, "Referencing global in another module!", &I,
5221 &M, GV, GV->getParent());
5222 } else if (Instruction *OpInst = dyn_cast<Instruction>(I.getOperand(i))) {
5223 Check(OpInst->getFunction() == BB->getParent(),
5224 "Referring to an instruction in another function!", &I);
5225 verifyDominatesUse(I, i);
5226 } else if (isa<InlineAsm>(I.getOperand(i))) {
5227 Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
5228 "Cannot take the address of an inline asm!", &I);
5229 } else if (auto *CPA = dyn_cast<ConstantPtrAuth>(I.getOperand(i))) {
5230 visitConstantExprsRecursively(CPA);
5231 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
5232 if (CE->getType()->isPtrOrPtrVectorTy()) {
5233 // If we have a ConstantExpr pointer, we need to see if it came from an
5234 // illegal bitcast.
5235 visitConstantExprsRecursively(CE);
5240 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
5241 Check(I.getType()->isFPOrFPVectorTy(),
5242 "fpmath requires a floating point result!", &I);
5243 Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
5244 if (ConstantFP *CFP0 =
5245 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
5246 const APFloat &Accuracy = CFP0->getValueAPF();
5247 Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
5248 "fpmath accuracy must have float type", &I);
5249 Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
5250 "fpmath accuracy not a positive number!", &I);
5251 } else {
5252 Check(false, "invalid fpmath accuracy!", &I);
5256 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
5257 Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
5258 "Ranges are only for loads, calls and invokes!", &I);
5259 visitRangeMetadata(I, Range, I.getType());
5262 if (MDNode *Range = I.getMetadata(LLVMContext::MD_noalias_addrspace)) {
5263 Check(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<AtomicRMWInst>(I) ||
5264 isa<AtomicCmpXchgInst>(I) || isa<CallInst>(I),
5265 "noalias.addrspace are only for memory operations!", &I);
5266 visitNoaliasAddrspaceMetadata(I, Range, I.getType());
5269 if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
5270 Check(isa<LoadInst>(I) || isa<StoreInst>(I),
5271 "invariant.group metadata is only for loads and stores", &I);
5274 if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) {
5275 Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
5276 &I);
5277 Check(isa<LoadInst>(I),
5278 "nonnull applies only to load instructions, use attributes"
5279 " for calls or invokes",
5280 &I);
5281 Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I);
5284 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
5285 visitDereferenceableMetadata(I, MD);
5287 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
5288 visitDereferenceableMetadata(I, MD);
5290 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
5291 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
5293 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
5294 visitAliasScopeListMetadata(MD);
5295 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
5296 visitAliasScopeListMetadata(MD);
5298 if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
5299 visitAccessGroupMetadata(MD);
5301 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
5302 Check(I.getType()->isPointerTy(), "align applies only to pointer types",
5303 &I);
5304 Check(isa<LoadInst>(I),
5305 "align applies only to load instructions, "
5306 "use attributes for calls or invokes",
5307 &I);
5308 Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
5309 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
5310 Check(CI && CI->getType()->isIntegerTy(64),
5311 "align metadata value must be an i64!", &I);
5312 uint64_t Align = CI->getZExtValue();
5313 Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
5314 &I);
5315 Check(Align <= Value::MaximumAlignment,
5316 "alignment is larger that implementation defined limit", &I);
5319 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
5320 visitProfMetadata(I, MD);
5322 if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof))
5323 visitMemProfMetadata(I, MD);
5325 if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite))
5326 visitCallsiteMetadata(I, MD);
5328 if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID))
5329 visitDIAssignIDMetadata(I, MD);
5331 if (MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra))
5332 visitMMRAMetadata(I, MMRA);
5334 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
5335 visitAnnotationMetadata(Annotation);
5337 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
5338 CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
5339 visitMDNode(*N, AreDebugLocsAllowed::Yes);
5342 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
5343 verifyFragmentExpression(*DII);
5344 verifyNotEntryValue(*DII);
5347 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
5348 I.getAllMetadata(MDs);
5349 for (auto Attachment : MDs) {
5350 unsigned Kind = Attachment.first;
5351 auto AllowLocs =
5352 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
5353 ? AreDebugLocsAllowed::Yes
5354 : AreDebugLocsAllowed::No;
5355 visitMDNode(*Attachment.second, AllowLocs);
5358 InstsInThisBlock.insert(&I);
5361 /// Allow intrinsics to be verified in different ways.
5362 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
5363 Function *IF = Call.getCalledFunction();
5364 Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
5365 IF);
5367 // Verify that the intrinsic prototype lines up with what the .td files
5368 // describe.
5369 FunctionType *IFTy = IF->getFunctionType();
5370 bool IsVarArg = IFTy->isVarArg();
5372 SmallVector<Intrinsic::IITDescriptor, 8> Table;
5373 getIntrinsicInfoTableEntries(ID, Table);
5374 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
5376 // Walk the descriptors to extract overloaded types.
5377 SmallVector<Type *, 4> ArgTys;
5378 Intrinsic::MatchIntrinsicTypesResult Res =
5379 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
5380 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
5381 "Intrinsic has incorrect return type!", IF);
5382 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
5383 "Intrinsic has incorrect argument type!", IF);
5385 // Verify if the intrinsic call matches the vararg property.
5386 if (IsVarArg)
5387 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5388 "Intrinsic was not defined with variable arguments!", IF);
5389 else
5390 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5391 "Callsite was not defined with variable arguments!", IF);
5393 // All descriptors should be absorbed by now.
5394 Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);
5396 // Now that we have the intrinsic ID and the actual argument types (and we
5397 // know they are legal for the intrinsic!) get the intrinsic name through the
5398 // usual means. This allows us to verify the mangling of argument types into
5399 // the name.
5400 const std::string ExpectedName =
5401 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
5402 Check(ExpectedName == IF->getName(),
5403 "Intrinsic name not mangled correctly for type arguments! "
5404 "Should be: " +
5405 ExpectedName,
5406 IF);
5408 // If the intrinsic takes MDNode arguments, verify that they are either global
5409 // or are local to *this* function.
5410 for (Value *V : Call.args()) {
5411 if (auto *MD = dyn_cast<MetadataAsValue>(V))
5412 visitMetadataAsValue(*MD, Call.getCaller());
5413 if (auto *Const = dyn_cast<Constant>(V))
5414 Check(!Const->getType()->isX86_AMXTy(),
5415 "const x86_amx is not allowed in argument!");
5418 switch (ID) {
5419 default:
5420 break;
5421 case Intrinsic::assume: {
5422 for (auto &Elem : Call.bundle_op_infos()) {
5423 unsigned ArgCount = Elem.End - Elem.Begin;
5424 // Separate storage assumptions are special insofar as they're the only
5425 // operand bundles allowed on assumes that aren't parameter attributes.
5426 if (Elem.Tag->getKey() == "separate_storage") {
5427 Check(ArgCount == 2,
5428 "separate_storage assumptions should have 2 arguments", Call);
5429 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() &&
5430 Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(),
5431 "arguments to separate_storage assumptions should be pointers",
5432 Call);
5433 return;
5435 Check(Elem.Tag->getKey() == "ignore" ||
5436 Attribute::isExistingAttribute(Elem.Tag->getKey()),
5437 "tags must be valid attribute names", Call);
5438 Attribute::AttrKind Kind =
5439 Attribute::getAttrKindFromName(Elem.Tag->getKey());
5440 if (Kind == Attribute::Alignment) {
5441 Check(ArgCount <= 3 && ArgCount >= 2,
5442 "alignment assumptions should have 2 or 3 arguments", Call);
5443 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
5444 "first argument should be a pointer", Call);
5445 Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
5446 "second argument should be an integer", Call);
5447 if (ArgCount == 3)
5448 Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
5449 "third argument should be an integer if present", Call);
5450 return;
5452 Check(ArgCount <= 2, "too many arguments", Call);
5453 if (Kind == Attribute::None)
5454 break;
5455 if (Attribute::isIntAttrKind(Kind)) {
5456 Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
5457 Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
5458 "the second argument should be a constant integral value", Call);
5459 } else if (Attribute::canUseAsParamAttr(Kind)) {
5460 Check((ArgCount) == 1, "this attribute should have one argument", Call);
5461 } else if (Attribute::canUseAsFnAttr(Kind)) {
5462 Check((ArgCount) == 0, "this attribute has no argument", Call);
5465 break;
5467 case Intrinsic::ucmp:
5468 case Intrinsic::scmp: {
5469 Type *SrcTy = Call.getOperand(0)->getType();
5470 Type *DestTy = Call.getType();
5472 Check(DestTy->getScalarSizeInBits() >= 2,
5473 "result type must be at least 2 bits wide", Call);
5475 bool IsDestTypeVector = DestTy->isVectorTy();
5476 Check(SrcTy->isVectorTy() == IsDestTypeVector,
5477 "ucmp/scmp argument and result types must both be either vector or "
5478 "scalar types",
5479 Call);
5480 if (IsDestTypeVector) {
5481 auto SrcVecLen = cast<VectorType>(SrcTy)->getElementCount();
5482 auto DestVecLen = cast<VectorType>(DestTy)->getElementCount();
5483 Check(SrcVecLen == DestVecLen,
5484 "return type and arguments must have the same number of "
5485 "elements",
5486 Call);
5488 break;
5490 case Intrinsic::coro_id: {
5491 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
5492 if (isa<ConstantPointerNull>(InfoArg))
5493 break;
5494 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
5495 Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
5496 "info argument of llvm.coro.id must refer to an initialized "
5497 "constant");
5498 Constant *Init = GV->getInitializer();
5499 Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
5500 "info argument of llvm.coro.id must refer to either a struct or "
5501 "an array");
5502 break;
5504 case Intrinsic::is_fpclass: {
5505 const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1));
5506 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
5507 "unsupported bits for llvm.is.fpclass test mask");
5508 break;
5510 case Intrinsic::fptrunc_round: {
5511 // Check the rounding mode
5512 Metadata *MD = nullptr;
5513 auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
5514 if (MAV)
5515 MD = MAV->getMetadata();
5517 Check(MD != nullptr, "missing rounding mode argument", Call);
5519 Check(isa<MDString>(MD),
5520 ("invalid value for llvm.fptrunc.round metadata operand"
5521 " (the operand should be a string)"),
5522 MD);
5524 std::optional<RoundingMode> RoundMode =
5525 convertStrToRoundingMode(cast<MDString>(MD)->getString());
5526 Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5527 "unsupported rounding mode argument", Call);
5528 break;
5530 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5531 #include "llvm/IR/VPIntrinsics.def"
5532 #undef BEGIN_REGISTER_VP_INTRINSIC
5533 visitVPIntrinsic(cast<VPIntrinsic>(Call));
5534 break;
5535 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
5536 case Intrinsic::INTRINSIC:
5537 #include "llvm/IR/ConstrainedOps.def"
5538 #undef INSTRUCTION
5539 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
5540 break;
5541 case Intrinsic::dbg_declare: // llvm.dbg.declare
5542 Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
5543 "invalid llvm.dbg.declare intrinsic call 1", Call);
5544 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
5545 break;
5546 case Intrinsic::dbg_value: // llvm.dbg.value
5547 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
5548 break;
5549 case Intrinsic::dbg_assign: // llvm.dbg.assign
5550 visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call));
5551 break;
5552 case Intrinsic::dbg_label: // llvm.dbg.label
5553 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
5554 break;
5555 case Intrinsic::memcpy:
5556 case Intrinsic::memcpy_inline:
5557 case Intrinsic::memmove:
5558 case Intrinsic::memset:
5559 case Intrinsic::memset_inline:
5560 case Intrinsic::experimental_memset_pattern: {
5561 break;
5563 case Intrinsic::memcpy_element_unordered_atomic:
5564 case Intrinsic::memmove_element_unordered_atomic:
5565 case Intrinsic::memset_element_unordered_atomic: {
5566 const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
5568 ConstantInt *ElementSizeCI =
5569 cast<ConstantInt>(AMI->getRawElementSizeInBytes());
5570 const APInt &ElementSizeVal = ElementSizeCI->getValue();
5571 Check(ElementSizeVal.isPowerOf2(),
5572 "element size of the element-wise atomic memory intrinsic "
5573 "must be a power of 2",
5574 Call);
5576 auto IsValidAlignment = [&](MaybeAlign Alignment) {
5577 return Alignment && ElementSizeVal.ule(Alignment->value());
5579 Check(IsValidAlignment(AMI->getDestAlign()),
5580 "incorrect alignment of the destination argument", Call);
5581 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
5582 Check(IsValidAlignment(AMT->getSourceAlign()),
5583 "incorrect alignment of the source argument", Call);
5585 break;
5587 case Intrinsic::call_preallocated_setup: {
5588 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5589 Check(NumArgs != nullptr,
5590 "llvm.call.preallocated.setup argument must be a constant");
5591 bool FoundCall = false;
5592 for (User *U : Call.users()) {
5593 auto *UseCall = dyn_cast<CallBase>(U);
5594 Check(UseCall != nullptr,
5595 "Uses of llvm.call.preallocated.setup must be calls");
5596 const Function *Fn = UseCall->getCalledFunction();
5597 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
5598 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
5599 Check(AllocArgIndex != nullptr,
5600 "llvm.call.preallocated.alloc arg index must be a constant");
5601 auto AllocArgIndexInt = AllocArgIndex->getValue();
5602 Check(AllocArgIndexInt.sge(0) &&
5603 AllocArgIndexInt.slt(NumArgs->getValue()),
5604 "llvm.call.preallocated.alloc arg index must be between 0 and "
5605 "corresponding "
5606 "llvm.call.preallocated.setup's argument count");
5607 } else if (Fn && Fn->getIntrinsicID() ==
5608 Intrinsic::call_preallocated_teardown) {
5609 // nothing to do
5610 } else {
5611 Check(!FoundCall, "Can have at most one call corresponding to a "
5612 "llvm.call.preallocated.setup");
5613 FoundCall = true;
5614 size_t NumPreallocatedArgs = 0;
5615 for (unsigned i = 0; i < UseCall->arg_size(); i++) {
5616 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5617 ++NumPreallocatedArgs;
5620 Check(NumPreallocatedArgs != 0,
5621 "cannot use preallocated intrinsics on a call without "
5622 "preallocated arguments");
5623 Check(NumArgs->equalsInt(NumPreallocatedArgs),
5624 "llvm.call.preallocated.setup arg size must be equal to number "
5625 "of preallocated arguments "
5626 "at call site",
5627 Call, *UseCall);
5628 // getOperandBundle() cannot be called if more than one of the operand
5629 // bundle exists. There is already a check elsewhere for this, so skip
5630 // here if we see more than one.
5631 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
5632 1) {
5633 return;
5635 auto PreallocatedBundle =
5636 UseCall->getOperandBundle(LLVMContext::OB_preallocated);
5637 Check(PreallocatedBundle,
5638 "Use of llvm.call.preallocated.setup outside intrinsics "
5639 "must be in \"preallocated\" operand bundle");
5640 Check(PreallocatedBundle->Inputs.front().get() == &Call,
5641 "preallocated bundle must have token from corresponding "
5642 "llvm.call.preallocated.setup");
5645 break;
5647 case Intrinsic::call_preallocated_arg: {
5648 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5649 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5650 Intrinsic::call_preallocated_setup,
5651 "llvm.call.preallocated.arg token argument must be a "
5652 "llvm.call.preallocated.setup");
5653 Check(Call.hasFnAttr(Attribute::Preallocated),
5654 "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5655 "call site attribute");
5656 break;
5658 case Intrinsic::call_preallocated_teardown: {
5659 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5660 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5661 Intrinsic::call_preallocated_setup,
5662 "llvm.call.preallocated.teardown token argument must be a "
5663 "llvm.call.preallocated.setup");
5664 break;
5666 case Intrinsic::gcroot:
5667 case Intrinsic::gcwrite:
5668 case Intrinsic::gcread:
5669 if (ID == Intrinsic::gcroot) {
5670 AllocaInst *AI =
5671 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
5672 Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
5673 Check(isa<Constant>(Call.getArgOperand(1)),
5674 "llvm.gcroot parameter #2 must be a constant.", Call);
5675 if (!AI->getAllocatedType()->isPointerTy()) {
5676 Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5677 "llvm.gcroot parameter #1 must either be a pointer alloca, "
5678 "or argument #2 must be a non-null constant.",
5679 Call);
5683 Check(Call.getParent()->getParent()->hasGC(),
5684 "Enclosing function does not use GC.", Call);
5685 break;
5686 case Intrinsic::init_trampoline:
5687 Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5688 "llvm.init_trampoline parameter #2 must resolve to a function.",
5689 Call);
5690 break;
5691 case Intrinsic::prefetch:
5692 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5693 "rw argument to llvm.prefetch must be 0-1", Call);
5694 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5695 "locality argument to llvm.prefetch must be 0-3", Call);
5696 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5697 "cache type argument to llvm.prefetch must be 0-1", Call);
5698 break;
5699 case Intrinsic::stackprotector:
5700 Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5701 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5702 break;
5703 case Intrinsic::localescape: {
5704 BasicBlock *BB = Call.getParent();
5705 Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block",
5706 Call);
5707 Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
5708 Call);
5709 for (Value *Arg : Call.args()) {
5710 if (isa<ConstantPointerNull>(Arg))
5711 continue; // Null values are allowed as placeholders.
5712 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5713 Check(AI && AI->isStaticAlloca(),
5714 "llvm.localescape only accepts static allocas", Call);
5716 FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5717 SawFrameEscape = true;
5718 break;
5720 case Intrinsic::localrecover: {
5721 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
5722 Function *Fn = dyn_cast<Function>(FnArg);
5723 Check(Fn && !Fn->isDeclaration(),
5724 "llvm.localrecover first "
5725 "argument must be function defined in this module",
5726 Call);
5727 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
5728 auto &Entry = FrameEscapeInfo[Fn];
5729 Entry.second = unsigned(
5730 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5731 break;
5734 case Intrinsic::experimental_gc_statepoint:
5735 if (auto *CI = dyn_cast<CallInst>(&Call))
5736 Check(!CI->isInlineAsm(),
5737 "gc.statepoint support for inline assembly unimplemented", CI);
5738 Check(Call.getParent()->getParent()->hasGC(),
5739 "Enclosing function does not use GC.", Call);
5741 verifyStatepoint(Call);
5742 break;
5743 case Intrinsic::experimental_gc_result: {
5744 Check(Call.getParent()->getParent()->hasGC(),
5745 "Enclosing function does not use GC.", Call);
5747 auto *Statepoint = Call.getArgOperand(0);
5748 if (isa<UndefValue>(Statepoint))
5749 break;
5751 // Are we tied to a statepoint properly?
5752 const auto *StatepointCall = dyn_cast<CallBase>(Statepoint);
5753 const Function *StatepointFn =
5754 StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5755 Check(StatepointFn && StatepointFn->isDeclaration() &&
5756 StatepointFn->getIntrinsicID() ==
5757 Intrinsic::experimental_gc_statepoint,
5758 "gc.result operand #1 must be from a statepoint", Call,
5759 Call.getArgOperand(0));
5761 // Check that result type matches wrapped callee.
5762 auto *TargetFuncType =
5763 cast<FunctionType>(StatepointCall->getParamElementType(2));
5764 Check(Call.getType() == TargetFuncType->getReturnType(),
5765 "gc.result result type does not match wrapped callee", Call);
5766 break;
5768 case Intrinsic::experimental_gc_relocate: {
5769 Check(Call.arg_size() == 3, "wrong number of arguments", Call);
5771 Check(isa<PointerType>(Call.getType()->getScalarType()),
5772 "gc.relocate must return a pointer or a vector of pointers", Call);
5774 // Check that this relocate is correctly tied to the statepoint
5776 // This is case for relocate on the unwinding path of an invoke statepoint
5777 if (LandingPadInst *LandingPad =
5778 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5780 const BasicBlock *InvokeBB =
5781 LandingPad->getParent()->getUniquePredecessor();
5783 // Landingpad relocates should have only one predecessor with invoke
5784 // statepoint terminator
5785 Check(InvokeBB, "safepoints should have unique landingpads",
5786 LandingPad->getParent());
5787 Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
5788 InvokeBB);
5789 Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5790 "gc relocate should be linked to a statepoint", InvokeBB);
5791 } else {
5792 // In all other cases relocate should be tied to the statepoint directly.
5793 // This covers relocates on a normal return path of invoke statepoint and
5794 // relocates of a call statepoint.
5795 auto *Token = Call.getArgOperand(0);
5796 Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
5797 "gc relocate is incorrectly tied to the statepoint", Call, Token);
5800 // Verify rest of the relocate arguments.
5801 const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint();
5803 // Both the base and derived must be piped through the safepoint.
5804 Value *Base = Call.getArgOperand(1);
5805 Check(isa<ConstantInt>(Base),
5806 "gc.relocate operand #2 must be integer offset", Call);
5808 Value *Derived = Call.getArgOperand(2);
5809 Check(isa<ConstantInt>(Derived),
5810 "gc.relocate operand #3 must be integer offset", Call);
5812 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5813 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5815 // Check the bounds
5816 if (isa<UndefValue>(StatepointCall))
5817 break;
5818 if (auto Opt = cast<GCStatepointInst>(StatepointCall)
5819 .getOperandBundle(LLVMContext::OB_gc_live)) {
5820 Check(BaseIndex < Opt->Inputs.size(),
5821 "gc.relocate: statepoint base index out of bounds", Call);
5822 Check(DerivedIndex < Opt->Inputs.size(),
5823 "gc.relocate: statepoint derived index out of bounds", Call);
5826 // Relocated value must be either a pointer type or vector-of-pointer type,
5827 // but gc_relocate does not need to return the same pointer type as the
5828 // relocated pointer. It can be casted to the correct type later if it's
5829 // desired. However, they must have the same address space and 'vectorness'
5830 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5831 auto *ResultType = Call.getType();
5832 auto *DerivedType = Relocate.getDerivedPtr()->getType();
5833 auto *BaseType = Relocate.getBasePtr()->getType();
5835 Check(BaseType->isPtrOrPtrVectorTy(),
5836 "gc.relocate: relocated value must be a pointer", Call);
5837 Check(DerivedType->isPtrOrPtrVectorTy(),
5838 "gc.relocate: relocated value must be a pointer", Call);
5840 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5841 "gc.relocate: vector relocates to vector and pointer to pointer",
5842 Call);
5843 Check(
5844 ResultType->getPointerAddressSpace() ==
5845 DerivedType->getPointerAddressSpace(),
5846 "gc.relocate: relocating a pointer shouldn't change its address space",
5847 Call);
5849 auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC());
5850 Check(GC, "gc.relocate: calling function must have GCStrategy",
5851 Call.getFunction());
5852 if (GC) {
5853 auto isGCPtr = [&GC](Type *PTy) {
5854 return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true);
5856 Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call);
5857 Check(isGCPtr(BaseType),
5858 "gc.relocate: relocated value must be a gc pointer", Call);
5859 Check(isGCPtr(DerivedType),
5860 "gc.relocate: relocated value must be a gc pointer", Call);
5862 break;
5864 case Intrinsic::experimental_patchpoint: {
5865 if (Call.getCallingConv() == CallingConv::AnyReg) {
5866 Check(Call.getType()->isSingleValueType(),
5867 "patchpoint: invalid return type used with anyregcc", Call);
5869 break;
5871 case Intrinsic::eh_exceptioncode:
5872 case Intrinsic::eh_exceptionpointer: {
5873 Check(isa<CatchPadInst>(Call.getArgOperand(0)),
5874 "eh.exceptionpointer argument must be a catchpad", Call);
5875 break;
5877 case Intrinsic::get_active_lane_mask: {
5878 Check(Call.getType()->isVectorTy(),
5879 "get_active_lane_mask: must return a "
5880 "vector",
5881 Call);
5882 auto *ElemTy = Call.getType()->getScalarType();
5883 Check(ElemTy->isIntegerTy(1),
5884 "get_active_lane_mask: element type is not "
5885 "i1",
5886 Call);
5887 break;
5889 case Intrinsic::experimental_get_vector_length: {
5890 ConstantInt *VF = cast<ConstantInt>(Call.getArgOperand(1));
5891 Check(!VF->isNegative() && !VF->isZero(),
5892 "get_vector_length: VF must be positive", Call);
5893 break;
5895 case Intrinsic::masked_load: {
5896 Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5897 Call);
5899 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5900 Value *Mask = Call.getArgOperand(2);
5901 Value *PassThru = Call.getArgOperand(3);
5902 Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5903 Call);
5904 Check(Alignment->getValue().isPowerOf2(),
5905 "masked_load: alignment must be a power of 2", Call);
5906 Check(PassThru->getType() == Call.getType(),
5907 "masked_load: pass through and return type must match", Call);
5908 Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5909 cast<VectorType>(Call.getType())->getElementCount(),
5910 "masked_load: vector mask must be same length as return", Call);
5911 break;
5913 case Intrinsic::masked_store: {
5914 Value *Val = Call.getArgOperand(0);
5915 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5916 Value *Mask = Call.getArgOperand(3);
5917 Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5918 Call);
5919 Check(Alignment->getValue().isPowerOf2(),
5920 "masked_store: alignment must be a power of 2", Call);
5921 Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5922 cast<VectorType>(Val->getType())->getElementCount(),
5923 "masked_store: vector mask must be same length as value", Call);
5924 break;
5927 case Intrinsic::masked_gather: {
5928 const APInt &Alignment =
5929 cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5930 Check(Alignment.isZero() || Alignment.isPowerOf2(),
5931 "masked_gather: alignment must be 0 or a power of 2", Call);
5932 break;
5934 case Intrinsic::masked_scatter: {
5935 const APInt &Alignment =
5936 cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5937 Check(Alignment.isZero() || Alignment.isPowerOf2(),
5938 "masked_scatter: alignment must be 0 or a power of 2", Call);
5939 break;
5942 case Intrinsic::experimental_guard: {
5943 Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5944 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5945 "experimental_guard must have exactly one "
5946 "\"deopt\" operand bundle");
5947 break;
5950 case Intrinsic::experimental_deoptimize: {
5951 Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5952 Call);
5953 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5954 "experimental_deoptimize must have exactly one "
5955 "\"deopt\" operand bundle");
5956 Check(Call.getType() == Call.getFunction()->getReturnType(),
5957 "experimental_deoptimize return type must match caller return type");
5959 if (isa<CallInst>(Call)) {
5960 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5961 Check(RI,
5962 "calls to experimental_deoptimize must be followed by a return");
5964 if (!Call.getType()->isVoidTy() && RI)
5965 Check(RI->getReturnValue() == &Call,
5966 "calls to experimental_deoptimize must be followed by a return "
5967 "of the value computed by experimental_deoptimize");
5970 break;
5972 case Intrinsic::vastart: {
5973 Check(Call.getFunction()->isVarArg(),
5974 "va_start called in a non-varargs function");
5975 break;
5977 case Intrinsic::vector_reduce_and:
5978 case Intrinsic::vector_reduce_or:
5979 case Intrinsic::vector_reduce_xor:
5980 case Intrinsic::vector_reduce_add:
5981 case Intrinsic::vector_reduce_mul:
5982 case Intrinsic::vector_reduce_smax:
5983 case Intrinsic::vector_reduce_smin:
5984 case Intrinsic::vector_reduce_umax:
5985 case Intrinsic::vector_reduce_umin: {
5986 Type *ArgTy = Call.getArgOperand(0)->getType();
5987 Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5988 "Intrinsic has incorrect argument type!");
5989 break;
5991 case Intrinsic::vector_reduce_fmax:
5992 case Intrinsic::vector_reduce_fmin: {
5993 Type *ArgTy = Call.getArgOperand(0)->getType();
5994 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5995 "Intrinsic has incorrect argument type!");
5996 break;
5998 case Intrinsic::vector_reduce_fadd:
5999 case Intrinsic::vector_reduce_fmul: {
6000 // Unlike the other reductions, the first argument is a start value. The
6001 // second argument is the vector to be reduced.
6002 Type *ArgTy = Call.getArgOperand(1)->getType();
6003 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
6004 "Intrinsic has incorrect argument type!");
6005 break;
6007 case Intrinsic::smul_fix:
6008 case Intrinsic::smul_fix_sat:
6009 case Intrinsic::umul_fix:
6010 case Intrinsic::umul_fix_sat:
6011 case Intrinsic::sdiv_fix:
6012 case Intrinsic::sdiv_fix_sat:
6013 case Intrinsic::udiv_fix:
6014 case Intrinsic::udiv_fix_sat: {
6015 Value *Op1 = Call.getArgOperand(0);
6016 Value *Op2 = Call.getArgOperand(1);
6017 Check(Op1->getType()->isIntOrIntVectorTy(),
6018 "first operand of [us][mul|div]_fix[_sat] must be an int type or "
6019 "vector of ints");
6020 Check(Op2->getType()->isIntOrIntVectorTy(),
6021 "second operand of [us][mul|div]_fix[_sat] must be an int type or "
6022 "vector of ints");
6024 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
6025 Check(Op3->getType()->isIntegerTy(),
6026 "third operand of [us][mul|div]_fix[_sat] must be an int type");
6027 Check(Op3->getBitWidth() <= 32,
6028 "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits");
6030 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
6031 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
6032 Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
6033 "the scale of s[mul|div]_fix[_sat] must be less than the width of "
6034 "the operands");
6035 } else {
6036 Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
6037 "the scale of u[mul|div]_fix[_sat] must be less than or equal "
6038 "to the width of the operands");
6040 break;
6042 case Intrinsic::lrint:
6043 case Intrinsic::llrint:
6044 case Intrinsic::lround:
6045 case Intrinsic::llround: {
6046 Type *ValTy = Call.getArgOperand(0)->getType();
6047 Type *ResultTy = Call.getType();
6048 auto *VTy = dyn_cast<VectorType>(ValTy);
6049 auto *RTy = dyn_cast<VectorType>(ResultTy);
6050 Check(ValTy->isFPOrFPVectorTy() && ResultTy->isIntOrIntVectorTy(),
6051 ExpectedName + ": argument must be floating-point or vector "
6052 "of floating-points, and result must be integer or "
6053 "vector of integers",
6054 &Call);
6055 Check(ValTy->isVectorTy() == ResultTy->isVectorTy(),
6056 ExpectedName + ": argument and result disagree on vector use", &Call);
6057 if (VTy) {
6058 Check(VTy->getElementCount() == RTy->getElementCount(),
6059 ExpectedName + ": argument must be same length as result", &Call);
6061 break;
6063 case Intrinsic::bswap: {
6064 Type *Ty = Call.getType();
6065 unsigned Size = Ty->getScalarSizeInBits();
6066 Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
6067 break;
6069 case Intrinsic::invariant_start: {
6070 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
6071 Check(InvariantSize &&
6072 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
6073 "invariant_start parameter must be -1, 0 or a positive number",
6074 &Call);
6075 break;
6077 case Intrinsic::matrix_multiply:
6078 case Intrinsic::matrix_transpose:
6079 case Intrinsic::matrix_column_major_load:
6080 case Intrinsic::matrix_column_major_store: {
6081 Function *IF = Call.getCalledFunction();
6082 ConstantInt *Stride = nullptr;
6083 ConstantInt *NumRows;
6084 ConstantInt *NumColumns;
6085 VectorType *ResultTy;
6086 Type *Op0ElemTy = nullptr;
6087 Type *Op1ElemTy = nullptr;
6088 switch (ID) {
6089 case Intrinsic::matrix_multiply: {
6090 NumRows = cast<ConstantInt>(Call.getArgOperand(2));
6091 ConstantInt *N = cast<ConstantInt>(Call.getArgOperand(3));
6092 NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
6093 Check(cast<FixedVectorType>(Call.getArgOperand(0)->getType())
6094 ->getNumElements() ==
6095 NumRows->getZExtValue() * N->getZExtValue(),
6096 "First argument of a matrix operation does not match specified "
6097 "shape!");
6098 Check(cast<FixedVectorType>(Call.getArgOperand(1)->getType())
6099 ->getNumElements() ==
6100 N->getZExtValue() * NumColumns->getZExtValue(),
6101 "Second argument of a matrix operation does not match specified "
6102 "shape!");
6104 ResultTy = cast<VectorType>(Call.getType());
6105 Op0ElemTy =
6106 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
6107 Op1ElemTy =
6108 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
6109 break;
6111 case Intrinsic::matrix_transpose:
6112 NumRows = cast<ConstantInt>(Call.getArgOperand(1));
6113 NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
6114 ResultTy = cast<VectorType>(Call.getType());
6115 Op0ElemTy =
6116 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
6117 break;
6118 case Intrinsic::matrix_column_major_load: {
6119 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
6120 NumRows = cast<ConstantInt>(Call.getArgOperand(3));
6121 NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
6122 ResultTy = cast<VectorType>(Call.getType());
6123 break;
6125 case Intrinsic::matrix_column_major_store: {
6126 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
6127 NumRows = cast<ConstantInt>(Call.getArgOperand(4));
6128 NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
6129 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
6130 Op0ElemTy =
6131 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
6132 break;
6134 default:
6135 llvm_unreachable("unexpected intrinsic");
6138 Check(ResultTy->getElementType()->isIntegerTy() ||
6139 ResultTy->getElementType()->isFloatingPointTy(),
6140 "Result type must be an integer or floating-point type!", IF);
6142 if (Op0ElemTy)
6143 Check(ResultTy->getElementType() == Op0ElemTy,
6144 "Vector element type mismatch of the result and first operand "
6145 "vector!",
6146 IF);
6148 if (Op1ElemTy)
6149 Check(ResultTy->getElementType() == Op1ElemTy,
6150 "Vector element type mismatch of the result and second operand "
6151 "vector!",
6152 IF);
6154 Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
6155 NumRows->getZExtValue() * NumColumns->getZExtValue(),
6156 "Result of a matrix operation does not fit in the returned vector!");
6158 if (Stride)
6159 Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
6160 "Stride must be greater or equal than the number of rows!", IF);
6162 break;
6164 case Intrinsic::vector_splice: {
6165 VectorType *VecTy = cast<VectorType>(Call.getType());
6166 int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
6167 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
6168 if (Call.getParent() && Call.getParent()->getParent()) {
6169 AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
6170 if (Attrs.hasFnAttr(Attribute::VScaleRange))
6171 KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
6173 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
6174 (Idx >= 0 && Idx < KnownMinNumElements),
6175 "The splice index exceeds the range [-VL, VL-1] where VL is the "
6176 "known minimum number of elements in the vector. For scalable "
6177 "vectors the minimum number of elements is determined from "
6178 "vscale_range.",
6179 &Call);
6180 break;
6182 case Intrinsic::stepvector: {
6183 VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
6184 Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
6185 VecTy->getScalarSizeInBits() >= 8,
6186 "stepvector only supported for vectors of integers "
6187 "with a bitwidth of at least 8.",
6188 &Call);
6189 break;
6191 case Intrinsic::experimental_vector_match: {
6192 Value *Op1 = Call.getArgOperand(0);
6193 Value *Op2 = Call.getArgOperand(1);
6194 Value *Mask = Call.getArgOperand(2);
6196 VectorType *Op1Ty = dyn_cast<VectorType>(Op1->getType());
6197 VectorType *Op2Ty = dyn_cast<VectorType>(Op2->getType());
6198 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
6200 Check(Op1Ty && Op2Ty && MaskTy, "Operands must be vectors.", &Call);
6201 Check(isa<FixedVectorType>(Op2Ty),
6202 "Second operand must be a fixed length vector.", &Call);
6203 Check(Op1Ty->getElementType()->isIntegerTy(),
6204 "First operand must be a vector of integers.", &Call);
6205 Check(Op1Ty->getElementType() == Op2Ty->getElementType(),
6206 "First two operands must have the same element type.", &Call);
6207 Check(Op1Ty->getElementCount() == MaskTy->getElementCount(),
6208 "First operand and mask must have the same number of elements.",
6209 &Call);
6210 Check(MaskTy->getElementType()->isIntegerTy(1),
6211 "Mask must be a vector of i1's.", &Call);
6212 Check(Call.getType() == MaskTy, "Return type must match the mask type.",
6213 &Call);
6214 break;
6216 case Intrinsic::vector_insert: {
6217 Value *Vec = Call.getArgOperand(0);
6218 Value *SubVec = Call.getArgOperand(1);
6219 Value *Idx = Call.getArgOperand(2);
6220 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6222 VectorType *VecTy = cast<VectorType>(Vec->getType());
6223 VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
6225 ElementCount VecEC = VecTy->getElementCount();
6226 ElementCount SubVecEC = SubVecTy->getElementCount();
6227 Check(VecTy->getElementType() == SubVecTy->getElementType(),
6228 "vector_insert parameters must have the same element "
6229 "type.",
6230 &Call);
6231 Check(IdxN % SubVecEC.getKnownMinValue() == 0,
6232 "vector_insert index must be a constant multiple of "
6233 "the subvector's known minimum vector length.");
6235 // If this insertion is not the 'mixed' case where a fixed vector is
6236 // inserted into a scalable vector, ensure that the insertion of the
6237 // subvector does not overrun the parent vector.
6238 if (VecEC.isScalable() == SubVecEC.isScalable()) {
6239 Check(IdxN < VecEC.getKnownMinValue() &&
6240 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
6241 "subvector operand of vector_insert would overrun the "
6242 "vector being inserted into.");
6244 break;
6246 case Intrinsic::vector_extract: {
6247 Value *Vec = Call.getArgOperand(0);
6248 Value *Idx = Call.getArgOperand(1);
6249 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6251 VectorType *ResultTy = cast<VectorType>(Call.getType());
6252 VectorType *VecTy = cast<VectorType>(Vec->getType());
6254 ElementCount VecEC = VecTy->getElementCount();
6255 ElementCount ResultEC = ResultTy->getElementCount();
6257 Check(ResultTy->getElementType() == VecTy->getElementType(),
6258 "vector_extract result must have the same element "
6259 "type as the input vector.",
6260 &Call);
6261 Check(IdxN % ResultEC.getKnownMinValue() == 0,
6262 "vector_extract index must be a constant multiple of "
6263 "the result type's known minimum vector length.");
6265 // If this extraction is not the 'mixed' case where a fixed vector is
6266 // extracted from a scalable vector, ensure that the extraction does not
6267 // overrun the parent vector.
6268 if (VecEC.isScalable() == ResultEC.isScalable()) {
6269 Check(IdxN < VecEC.getKnownMinValue() &&
6270 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
6271 "vector_extract would overrun.");
6273 break;
6275 case Intrinsic::experimental_vector_partial_reduce_add: {
6276 VectorType *AccTy = cast<VectorType>(Call.getArgOperand(0)->getType());
6277 VectorType *VecTy = cast<VectorType>(Call.getArgOperand(1)->getType());
6279 unsigned VecWidth = VecTy->getElementCount().getKnownMinValue();
6280 unsigned AccWidth = AccTy->getElementCount().getKnownMinValue();
6282 Check((VecWidth % AccWidth) == 0,
6283 "Invalid vector widths for partial "
6284 "reduction. The width of the input vector "
6285 "must be a positive integer multiple of "
6286 "the width of the accumulator vector.");
6287 break;
6289 case Intrinsic::experimental_noalias_scope_decl: {
6290 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
6291 break;
6293 case Intrinsic::preserve_array_access_index:
6294 case Intrinsic::preserve_struct_access_index:
6295 case Intrinsic::aarch64_ldaxr:
6296 case Intrinsic::aarch64_ldxr:
6297 case Intrinsic::arm_ldaex:
6298 case Intrinsic::arm_ldrex: {
6299 Type *ElemTy = Call.getParamElementType(0);
6300 Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
6301 &Call);
6302 break;
6304 case Intrinsic::aarch64_stlxr:
6305 case Intrinsic::aarch64_stxr:
6306 case Intrinsic::arm_stlex:
6307 case Intrinsic::arm_strex: {
6308 Type *ElemTy = Call.getAttributes().getParamElementType(1);
6309 Check(ElemTy,
6310 "Intrinsic requires elementtype attribute on second argument.",
6311 &Call);
6312 break;
6314 case Intrinsic::aarch64_prefetch: {
6315 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
6316 "write argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6317 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
6318 "target argument to llvm.aarch64.prefetch must be 0-3", Call);
6319 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
6320 "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6321 Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2,
6322 "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6323 break;
6325 case Intrinsic::callbr_landingpad: {
6326 const auto *CBR = dyn_cast<CallBrInst>(Call.getOperand(0));
6327 Check(CBR, "intrinstic requires callbr operand", &Call);
6328 if (!CBR)
6329 break;
6331 const BasicBlock *LandingPadBB = Call.getParent();
6332 const BasicBlock *PredBB = LandingPadBB->getUniquePredecessor();
6333 if (!PredBB) {
6334 CheckFailed("Intrinsic in block must have 1 unique predecessor", &Call);
6335 break;
6337 if (!isa<CallBrInst>(PredBB->getTerminator())) {
6338 CheckFailed("Intrinsic must have corresponding callbr in predecessor",
6339 &Call);
6340 break;
6342 Check(llvm::is_contained(CBR->getIndirectDests(), LandingPadBB),
6343 "Intrinsic's corresponding callbr must have intrinsic's parent basic "
6344 "block in indirect destination list",
6345 &Call);
6346 const Instruction &First = *LandingPadBB->begin();
6347 Check(&First == &Call, "No other instructions may proceed intrinsic",
6348 &Call);
6349 break;
6351 case Intrinsic::amdgcn_cs_chain: {
6352 auto CallerCC = Call.getCaller()->getCallingConv();
6353 switch (CallerCC) {
6354 case CallingConv::AMDGPU_CS:
6355 case CallingConv::AMDGPU_CS_Chain:
6356 case CallingConv::AMDGPU_CS_ChainPreserve:
6357 break;
6358 default:
6359 CheckFailed("Intrinsic can only be used from functions with the "
6360 "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6361 "calling conventions",
6362 &Call);
6363 break;
6366 Check(Call.paramHasAttr(2, Attribute::InReg),
6367 "SGPR arguments must have the `inreg` attribute", &Call);
6368 Check(!Call.paramHasAttr(3, Attribute::InReg),
6369 "VGPR arguments must not have the `inreg` attribute", &Call);
6370 break;
6372 case Intrinsic::amdgcn_set_inactive_chain_arg: {
6373 auto CallerCC = Call.getCaller()->getCallingConv();
6374 switch (CallerCC) {
6375 case CallingConv::AMDGPU_CS_Chain:
6376 case CallingConv::AMDGPU_CS_ChainPreserve:
6377 break;
6378 default:
6379 CheckFailed("Intrinsic can only be used from functions with the "
6380 "amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6381 "calling conventions",
6382 &Call);
6383 break;
6386 unsigned InactiveIdx = 1;
6387 Check(!Call.paramHasAttr(InactiveIdx, Attribute::InReg),
6388 "Value for inactive lanes must not have the `inreg` attribute",
6389 &Call);
6390 Check(isa<Argument>(Call.getArgOperand(InactiveIdx)),
6391 "Value for inactive lanes must be a function argument", &Call);
6392 Check(!cast<Argument>(Call.getArgOperand(InactiveIdx))->hasInRegAttr(),
6393 "Value for inactive lanes must be a VGPR function argument", &Call);
6394 break;
6396 case Intrinsic::amdgcn_s_prefetch_data: {
6397 Check(
6398 AMDGPU::isFlatGlobalAddrSpace(
6399 Call.getArgOperand(0)->getType()->getPointerAddressSpace()),
6400 "llvm.amdgcn.s.prefetch.data only supports global or constant memory");
6401 break;
6403 case Intrinsic::amdgcn_mfma_scale_f32_16x16x128_f8f6f4:
6404 case Intrinsic::amdgcn_mfma_scale_f32_32x32x64_f8f6f4: {
6405 Value *Src0 = Call.getArgOperand(0);
6406 Value *Src1 = Call.getArgOperand(1);
6408 uint64_t CBSZ = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
6409 uint64_t BLGP = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
6410 Check(CBSZ <= 4, "invalid value for cbsz format", Call,
6411 Call.getArgOperand(3));
6412 Check(BLGP <= 4, "invalid value for blgp format", Call,
6413 Call.getArgOperand(4));
6415 // AMDGPU::MFMAScaleFormats values
6416 auto getFormatNumRegs = [](unsigned FormatVal) {
6417 switch (FormatVal) {
6418 case 0:
6419 case 1:
6420 return 8u;
6421 case 2:
6422 case 3:
6423 return 6u;
6424 case 4:
6425 return 4u;
6426 default:
6427 llvm_unreachable("invalid format value");
6431 auto isValidSrcASrcBVector = [](FixedVectorType *Ty) {
6432 if (!Ty || !Ty->getElementType()->isIntegerTy(32))
6433 return false;
6434 unsigned NumElts = Ty->getNumElements();
6435 return NumElts == 4 || NumElts == 6 || NumElts == 8;
6438 auto *Src0Ty = dyn_cast<FixedVectorType>(Src0->getType());
6439 auto *Src1Ty = dyn_cast<FixedVectorType>(Src1->getType());
6440 Check(isValidSrcASrcBVector(Src0Ty),
6441 "operand 0 must be 4, 6 or 8 element i32 vector", &Call, Src0);
6442 Check(isValidSrcASrcBVector(Src1Ty),
6443 "operand 1 must be 4, 6 or 8 element i32 vector", &Call, Src1);
6445 // Permit excess registers for the format.
6446 Check(Src0Ty->getNumElements() >= getFormatNumRegs(CBSZ),
6447 "invalid vector type for format", &Call, Src0, Call.getArgOperand(3));
6448 Check(Src1Ty->getNumElements() >= getFormatNumRegs(BLGP),
6449 "invalid vector type for format", &Call, Src1, Call.getArgOperand(5));
6450 break;
6452 case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32:
6453 case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: {
6454 Value *V = Call.getArgOperand(0);
6455 unsigned RegCount = cast<ConstantInt>(V)->getZExtValue();
6456 Check(RegCount % 8 == 0,
6457 "reg_count argument to nvvm.setmaxnreg must be in multiples of 8");
6458 Check((RegCount >= 24 && RegCount <= 256),
6459 "reg_count argument to nvvm.setmaxnreg must be within [24, 256]");
6460 break;
6462 case Intrinsic::experimental_convergence_entry:
6463 case Intrinsic::experimental_convergence_anchor:
6464 break;
6465 case Intrinsic::experimental_convergence_loop:
6466 break;
6467 case Intrinsic::ptrmask: {
6468 Type *Ty0 = Call.getArgOperand(0)->getType();
6469 Type *Ty1 = Call.getArgOperand(1)->getType();
6470 Check(Ty0->isPtrOrPtrVectorTy(),
6471 "llvm.ptrmask intrinsic first argument must be pointer or vector "
6472 "of pointers",
6473 &Call);
6474 Check(
6475 Ty0->isVectorTy() == Ty1->isVectorTy(),
6476 "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
6477 &Call);
6478 if (Ty0->isVectorTy())
6479 Check(cast<VectorType>(Ty0)->getElementCount() ==
6480 cast<VectorType>(Ty1)->getElementCount(),
6481 "llvm.ptrmask intrinsic arguments must have the same number of "
6482 "elements",
6483 &Call);
6484 Check(DL.getIndexTypeSizeInBits(Ty0) == Ty1->getScalarSizeInBits(),
6485 "llvm.ptrmask intrinsic second argument bitwidth must match "
6486 "pointer index type size of first argument",
6487 &Call);
6488 break;
6490 case Intrinsic::threadlocal_address: {
6491 const Value &Arg0 = *Call.getArgOperand(0);
6492 Check(isa<GlobalValue>(Arg0),
6493 "llvm.threadlocal.address first argument must be a GlobalValue");
6494 Check(cast<GlobalValue>(Arg0).isThreadLocal(),
6495 "llvm.threadlocal.address operand isThreadLocal() must be true");
6496 break;
6498 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_cta:
6499 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_cluster:
6500 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_gpu:
6501 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_sys: {
6502 unsigned size = cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue();
6503 Check(size == 128, " The only supported value for size operand is 128");
6504 break;
6508 // Verify that there aren't any unmediated control transfers between funclets.
6509 if (IntrinsicInst::mayLowerToFunctionCall(ID)) {
6510 Function *F = Call.getParent()->getParent();
6511 if (F->hasPersonalityFn() &&
6512 isScopedEHPersonality(classifyEHPersonality(F->getPersonalityFn()))) {
6513 // Run EH funclet coloring on-demand and cache results for other intrinsic
6514 // calls in this function
6515 if (BlockEHFuncletColors.empty())
6516 BlockEHFuncletColors = colorEHFunclets(*F);
6518 // Check for catch-/cleanup-pad in first funclet block
6519 bool InEHFunclet = false;
6520 BasicBlock *CallBB = Call.getParent();
6521 const ColorVector &CV = BlockEHFuncletColors.find(CallBB)->second;
6522 assert(CV.size() > 0 && "Uncolored block");
6523 for (BasicBlock *ColorFirstBB : CV)
6524 if (auto It = ColorFirstBB->getFirstNonPHIIt();
6525 It != ColorFirstBB->end())
6526 if (dyn_cast_or_null<FuncletPadInst>(&*It))
6527 InEHFunclet = true;
6529 // Check for funclet operand bundle
6530 bool HasToken = false;
6531 for (unsigned I = 0, E = Call.getNumOperandBundles(); I != E; ++I)
6532 if (Call.getOperandBundleAt(I).getTagID() == LLVMContext::OB_funclet)
6533 HasToken = true;
6535 // This would cause silent code truncation in WinEHPrepare
6536 if (InEHFunclet)
6537 Check(HasToken, "Missing funclet token on intrinsic call", &Call);
6542 /// Carefully grab the subprogram from a local scope.
6544 /// This carefully grabs the subprogram from a local scope, avoiding the
6545 /// built-in assertions that would typically fire.
6546 static DISubprogram *getSubprogram(Metadata *LocalScope) {
6547 if (!LocalScope)
6548 return nullptr;
6550 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
6551 return SP;
6553 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
6554 return getSubprogram(LB->getRawScope());
6556 // Just return null; broken scope chains are checked elsewhere.
6557 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
6558 return nullptr;
6561 void Verifier::visit(DbgLabelRecord &DLR) {
6562 CheckDI(isa<DILabel>(DLR.getRawLabel()),
6563 "invalid #dbg_label intrinsic variable", &DLR, DLR.getRawLabel());
6565 // Ignore broken !dbg attachments; they're checked elsewhere.
6566 if (MDNode *N = DLR.getDebugLoc().getAsMDNode())
6567 if (!isa<DILocation>(N))
6568 return;
6570 BasicBlock *BB = DLR.getParent();
6571 Function *F = BB ? BB->getParent() : nullptr;
6573 // The scopes for variables and !dbg attachments must agree.
6574 DILabel *Label = DLR.getLabel();
6575 DILocation *Loc = DLR.getDebugLoc();
6576 CheckDI(Loc, "#dbg_label record requires a !dbg attachment", &DLR, BB, F);
6578 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
6579 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6580 if (!LabelSP || !LocSP)
6581 return;
6583 CheckDI(LabelSP == LocSP,
6584 "mismatched subprogram between #dbg_label label and !dbg attachment",
6585 &DLR, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6586 Loc->getScope()->getSubprogram());
6589 void Verifier::visit(DbgVariableRecord &DVR) {
6590 BasicBlock *BB = DVR.getParent();
6591 Function *F = BB->getParent();
6593 CheckDI(DVR.getType() == DbgVariableRecord::LocationType::Value ||
6594 DVR.getType() == DbgVariableRecord::LocationType::Declare ||
6595 DVR.getType() == DbgVariableRecord::LocationType::Assign,
6596 "invalid #dbg record type", &DVR, DVR.getType());
6598 // The location for a DbgVariableRecord must be either a ValueAsMetadata,
6599 // DIArgList, or an empty MDNode (which is a legacy representation for an
6600 // "undef" location).
6601 auto *MD = DVR.getRawLocation();
6602 CheckDI(MD && (isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6603 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands())),
6604 "invalid #dbg record address/value", &DVR, MD);
6605 if (auto *VAM = dyn_cast<ValueAsMetadata>(MD))
6606 visitValueAsMetadata(*VAM, F);
6607 else if (auto *AL = dyn_cast<DIArgList>(MD))
6608 visitDIArgList(*AL, F);
6610 CheckDI(isa_and_nonnull<DILocalVariable>(DVR.getRawVariable()),
6611 "invalid #dbg record variable", &DVR, DVR.getRawVariable());
6612 visitMDNode(*DVR.getRawVariable(), AreDebugLocsAllowed::No);
6614 CheckDI(isa_and_nonnull<DIExpression>(DVR.getRawExpression()),
6615 "invalid #dbg record expression", &DVR, DVR.getRawExpression());
6616 visitMDNode(*DVR.getExpression(), AreDebugLocsAllowed::No);
6618 if (DVR.isDbgAssign()) {
6619 CheckDI(isa_and_nonnull<DIAssignID>(DVR.getRawAssignID()),
6620 "invalid #dbg_assign DIAssignID", &DVR, DVR.getRawAssignID());
6621 visitMDNode(*cast<DIAssignID>(DVR.getRawAssignID()),
6622 AreDebugLocsAllowed::No);
6624 const auto *RawAddr = DVR.getRawAddress();
6625 // Similarly to the location above, the address for an assign
6626 // DbgVariableRecord must be a ValueAsMetadata or an empty MDNode, which
6627 // represents an undef address.
6628 CheckDI(
6629 isa<ValueAsMetadata>(RawAddr) ||
6630 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6631 "invalid #dbg_assign address", &DVR, DVR.getRawAddress());
6632 if (auto *VAM = dyn_cast<ValueAsMetadata>(RawAddr))
6633 visitValueAsMetadata(*VAM, F);
6635 CheckDI(isa_and_nonnull<DIExpression>(DVR.getRawAddressExpression()),
6636 "invalid #dbg_assign address expression", &DVR,
6637 DVR.getRawAddressExpression());
6638 visitMDNode(*DVR.getAddressExpression(), AreDebugLocsAllowed::No);
6640 // All of the linked instructions should be in the same function as DVR.
6641 for (Instruction *I : at::getAssignmentInsts(&DVR))
6642 CheckDI(DVR.getFunction() == I->getFunction(),
6643 "inst not in same function as #dbg_assign", I, &DVR);
6646 // This check is redundant with one in visitLocalVariable().
6647 DILocalVariable *Var = DVR.getVariable();
6648 CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6649 Var->getRawType());
6651 auto *DLNode = DVR.getDebugLoc().getAsMDNode();
6652 CheckDI(isa_and_nonnull<DILocation>(DLNode), "invalid #dbg record DILocation",
6653 &DVR, DLNode);
6654 DILocation *Loc = DVR.getDebugLoc();
6656 // The scopes for variables and !dbg attachments must agree.
6657 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
6658 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6659 if (!VarSP || !LocSP)
6660 return; // Broken scope chains are checked elsewhere.
6662 CheckDI(VarSP == LocSP,
6663 "mismatched subprogram between #dbg record variable and DILocation",
6664 &DVR, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6665 Loc->getScope()->getSubprogram());
6667 verifyFnArgs(DVR);
6670 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
6671 if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
6672 auto *RetTy = cast<VectorType>(VPCast->getType());
6673 auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
6674 Check(RetTy->getElementCount() == ValTy->getElementCount(),
6675 "VP cast intrinsic first argument and result vector lengths must be "
6676 "equal",
6677 *VPCast);
6679 switch (VPCast->getIntrinsicID()) {
6680 default:
6681 llvm_unreachable("Unknown VP cast intrinsic");
6682 case Intrinsic::vp_trunc:
6683 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6684 "llvm.vp.trunc intrinsic first argument and result element type "
6685 "must be integer",
6686 *VPCast);
6687 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6688 "llvm.vp.trunc intrinsic the bit size of first argument must be "
6689 "larger than the bit size of the return type",
6690 *VPCast);
6691 break;
6692 case Intrinsic::vp_zext:
6693 case Intrinsic::vp_sext:
6694 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6695 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
6696 "element type must be integer",
6697 *VPCast);
6698 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6699 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
6700 "argument must be smaller than the bit size of the return type",
6701 *VPCast);
6702 break;
6703 case Intrinsic::vp_fptoui:
6704 case Intrinsic::vp_fptosi:
6705 case Intrinsic::vp_lrint:
6706 case Intrinsic::vp_llrint:
6707 Check(
6708 RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
6709 "llvm.vp.fptoui, llvm.vp.fptosi, llvm.vp.lrint or llvm.vp.llrint" "intrinsic first argument element "
6710 "type must be floating-point and result element type must be integer",
6711 *VPCast);
6712 break;
6713 case Intrinsic::vp_uitofp:
6714 case Intrinsic::vp_sitofp:
6715 Check(
6716 RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
6717 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
6718 "type must be integer and result element type must be floating-point",
6719 *VPCast);
6720 break;
6721 case Intrinsic::vp_fptrunc:
6722 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6723 "llvm.vp.fptrunc intrinsic first argument and result element type "
6724 "must be floating-point",
6725 *VPCast);
6726 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6727 "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
6728 "larger than the bit size of the return type",
6729 *VPCast);
6730 break;
6731 case Intrinsic::vp_fpext:
6732 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6733 "llvm.vp.fpext intrinsic first argument and result element type "
6734 "must be floating-point",
6735 *VPCast);
6736 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6737 "llvm.vp.fpext intrinsic the bit size of first argument must be "
6738 "smaller than the bit size of the return type",
6739 *VPCast);
6740 break;
6741 case Intrinsic::vp_ptrtoint:
6742 Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
6743 "llvm.vp.ptrtoint intrinsic first argument element type must be "
6744 "pointer and result element type must be integer",
6745 *VPCast);
6746 break;
6747 case Intrinsic::vp_inttoptr:
6748 Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
6749 "llvm.vp.inttoptr intrinsic first argument element type must be "
6750 "integer and result element type must be pointer",
6751 *VPCast);
6752 break;
6755 if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
6756 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6757 Check(CmpInst::isFPPredicate(Pred),
6758 "invalid predicate for VP FP comparison intrinsic", &VPI);
6760 if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
6761 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6762 Check(CmpInst::isIntPredicate(Pred),
6763 "invalid predicate for VP integer comparison intrinsic", &VPI);
6765 if (VPI.getIntrinsicID() == Intrinsic::vp_is_fpclass) {
6766 auto TestMask = cast<ConstantInt>(VPI.getOperand(1));
6767 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
6768 "unsupported bits for llvm.vp.is.fpclass test mask");
6772 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
6773 unsigned NumOperands = FPI.getNonMetadataArgCount();
6774 bool HasRoundingMD =
6775 Intrinsic::hasConstrainedFPRoundingModeOperand(FPI.getIntrinsicID());
6777 // Add the expected number of metadata operands.
6778 NumOperands += (1 + HasRoundingMD);
6780 // Compare intrinsics carry an extra predicate metadata operand.
6781 if (isa<ConstrainedFPCmpIntrinsic>(FPI))
6782 NumOperands += 1;
6783 Check((FPI.arg_size() == NumOperands),
6784 "invalid arguments for constrained FP intrinsic", &FPI);
6786 switch (FPI.getIntrinsicID()) {
6787 case Intrinsic::experimental_constrained_lrint:
6788 case Intrinsic::experimental_constrained_llrint: {
6789 Type *ValTy = FPI.getArgOperand(0)->getType();
6790 Type *ResultTy = FPI.getType();
6791 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6792 "Intrinsic does not support vectors", &FPI);
6793 break;
6796 case Intrinsic::experimental_constrained_lround:
6797 case Intrinsic::experimental_constrained_llround: {
6798 Type *ValTy = FPI.getArgOperand(0)->getType();
6799 Type *ResultTy = FPI.getType();
6800 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6801 "Intrinsic does not support vectors", &FPI);
6802 break;
6805 case Intrinsic::experimental_constrained_fcmp:
6806 case Intrinsic::experimental_constrained_fcmps: {
6807 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
6808 Check(CmpInst::isFPPredicate(Pred),
6809 "invalid predicate for constrained FP comparison intrinsic", &FPI);
6810 break;
6813 case Intrinsic::experimental_constrained_fptosi:
6814 case Intrinsic::experimental_constrained_fptoui: {
6815 Value *Operand = FPI.getArgOperand(0);
6816 ElementCount SrcEC;
6817 Check(Operand->getType()->isFPOrFPVectorTy(),
6818 "Intrinsic first argument must be floating point", &FPI);
6819 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6820 SrcEC = cast<VectorType>(OperandT)->getElementCount();
6823 Operand = &FPI;
6824 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6825 "Intrinsic first argument and result disagree on vector use", &FPI);
6826 Check(Operand->getType()->isIntOrIntVectorTy(),
6827 "Intrinsic result must be an integer", &FPI);
6828 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6829 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6830 "Intrinsic first argument and result vector lengths must be equal",
6831 &FPI);
6833 break;
6836 case Intrinsic::experimental_constrained_sitofp:
6837 case Intrinsic::experimental_constrained_uitofp: {
6838 Value *Operand = FPI.getArgOperand(0);
6839 ElementCount SrcEC;
6840 Check(Operand->getType()->isIntOrIntVectorTy(),
6841 "Intrinsic first argument must be integer", &FPI);
6842 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6843 SrcEC = cast<VectorType>(OperandT)->getElementCount();
6846 Operand = &FPI;
6847 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6848 "Intrinsic first argument and result disagree on vector use", &FPI);
6849 Check(Operand->getType()->isFPOrFPVectorTy(),
6850 "Intrinsic result must be a floating point", &FPI);
6851 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6852 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6853 "Intrinsic first argument and result vector lengths must be equal",
6854 &FPI);
6856 break;
6859 case Intrinsic::experimental_constrained_fptrunc:
6860 case Intrinsic::experimental_constrained_fpext: {
6861 Value *Operand = FPI.getArgOperand(0);
6862 Type *OperandTy = Operand->getType();
6863 Value *Result = &FPI;
6864 Type *ResultTy = Result->getType();
6865 Check(OperandTy->isFPOrFPVectorTy(),
6866 "Intrinsic first argument must be FP or FP vector", &FPI);
6867 Check(ResultTy->isFPOrFPVectorTy(),
6868 "Intrinsic result must be FP or FP vector", &FPI);
6869 Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
6870 "Intrinsic first argument and result disagree on vector use", &FPI);
6871 if (OperandTy->isVectorTy()) {
6872 Check(cast<VectorType>(OperandTy)->getElementCount() ==
6873 cast<VectorType>(ResultTy)->getElementCount(),
6874 "Intrinsic first argument and result vector lengths must be equal",
6875 &FPI);
6877 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
6878 Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
6879 "Intrinsic first argument's type must be larger than result type",
6880 &FPI);
6881 } else {
6882 Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
6883 "Intrinsic first argument's type must be smaller than result type",
6884 &FPI);
6886 break;
6889 default:
6890 break;
6893 // If a non-metadata argument is passed in a metadata slot then the
6894 // error will be caught earlier when the incorrect argument doesn't
6895 // match the specification in the intrinsic call table. Thus, no
6896 // argument type check is needed here.
6898 Check(FPI.getExceptionBehavior().has_value(),
6899 "invalid exception behavior argument", &FPI);
6900 if (HasRoundingMD) {
6901 Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument",
6902 &FPI);
6906 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
6907 auto *MD = DII.getRawLocation();
6908 CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6909 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
6910 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
6911 CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
6912 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
6913 DII.getRawVariable());
6914 CheckDI(isa<DIExpression>(DII.getRawExpression()),
6915 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
6916 DII.getRawExpression());
6918 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) {
6919 CheckDI(isa<DIAssignID>(DAI->getRawAssignID()),
6920 "invalid llvm.dbg.assign intrinsic DIAssignID", &DII,
6921 DAI->getRawAssignID());
6922 const auto *RawAddr = DAI->getRawAddress();
6923 CheckDI(
6924 isa<ValueAsMetadata>(RawAddr) ||
6925 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6926 "invalid llvm.dbg.assign intrinsic address", &DII,
6927 DAI->getRawAddress());
6928 CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()),
6929 "invalid llvm.dbg.assign intrinsic address expression", &DII,
6930 DAI->getRawAddressExpression());
6931 // All of the linked instructions should be in the same function as DII.
6932 for (Instruction *I : at::getAssignmentInsts(DAI))
6933 CheckDI(DAI->getFunction() == I->getFunction(),
6934 "inst not in same function as dbg.assign", I, DAI);
6937 // Ignore broken !dbg attachments; they're checked elsewhere.
6938 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
6939 if (!isa<DILocation>(N))
6940 return;
6942 BasicBlock *BB = DII.getParent();
6943 Function *F = BB ? BB->getParent() : nullptr;
6945 // The scopes for variables and !dbg attachments must agree.
6946 DILocalVariable *Var = DII.getVariable();
6947 DILocation *Loc = DII.getDebugLoc();
6948 CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
6949 &DII, BB, F);
6951 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
6952 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6953 if (!VarSP || !LocSP)
6954 return; // Broken scope chains are checked elsewhere.
6956 CheckDI(VarSP == LocSP,
6957 "mismatched subprogram between llvm.dbg." + Kind +
6958 " variable and !dbg attachment",
6959 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6960 Loc->getScope()->getSubprogram());
6962 // This check is redundant with one in visitLocalVariable().
6963 CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6964 Var->getRawType());
6965 verifyFnArgs(DII);
6968 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
6969 CheckDI(isa<DILabel>(DLI.getRawLabel()),
6970 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
6971 DLI.getRawLabel());
6973 // Ignore broken !dbg attachments; they're checked elsewhere.
6974 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
6975 if (!isa<DILocation>(N))
6976 return;
6978 BasicBlock *BB = DLI.getParent();
6979 Function *F = BB ? BB->getParent() : nullptr;
6981 // The scopes for variables and !dbg attachments must agree.
6982 DILabel *Label = DLI.getLabel();
6983 DILocation *Loc = DLI.getDebugLoc();
6984 Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
6985 BB, F);
6987 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
6988 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6989 if (!LabelSP || !LocSP)
6990 return;
6992 CheckDI(LabelSP == LocSP,
6993 "mismatched subprogram between llvm.dbg." + Kind +
6994 " label and !dbg attachment",
6995 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6996 Loc->getScope()->getSubprogram());
6999 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
7000 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
7001 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
7003 // We don't know whether this intrinsic verified correctly.
7004 if (!V || !E || !E->isValid())
7005 return;
7007 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
7008 auto Fragment = E->getFragmentInfo();
7009 if (!Fragment)
7010 return;
7012 // The frontend helps out GDB by emitting the members of local anonymous
7013 // unions as artificial local variables with shared storage. When SROA splits
7014 // the storage for artificial local variables that are smaller than the entire
7015 // union, the overhang piece will be outside of the allotted space for the
7016 // variable and this check fails.
7017 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
7018 if (V->isArtificial())
7019 return;
7021 verifyFragmentExpression(*V, *Fragment, &I);
7023 void Verifier::verifyFragmentExpression(const DbgVariableRecord &DVR) {
7024 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(DVR.getRawVariable());
7025 DIExpression *E = dyn_cast_or_null<DIExpression>(DVR.getRawExpression());
7027 // We don't know whether this intrinsic verified correctly.
7028 if (!V || !E || !E->isValid())
7029 return;
7031 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
7032 auto Fragment = E->getFragmentInfo();
7033 if (!Fragment)
7034 return;
7036 // The frontend helps out GDB by emitting the members of local anonymous
7037 // unions as artificial local variables with shared storage. When SROA splits
7038 // the storage for artificial local variables that are smaller than the entire
7039 // union, the overhang piece will be outside of the allotted space for the
7040 // variable and this check fails.
7041 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
7042 if (V->isArtificial())
7043 return;
7045 verifyFragmentExpression(*V, *Fragment, &DVR);
7048 template <typename ValueOrMetadata>
7049 void Verifier::verifyFragmentExpression(const DIVariable &V,
7050 DIExpression::FragmentInfo Fragment,
7051 ValueOrMetadata *Desc) {
7052 // If there's no size, the type is broken, but that should be checked
7053 // elsewhere.
7054 auto VarSize = V.getSizeInBits();
7055 if (!VarSize)
7056 return;
7058 unsigned FragSize = Fragment.SizeInBits;
7059 unsigned FragOffset = Fragment.OffsetInBits;
7060 CheckDI(FragSize + FragOffset <= *VarSize,
7061 "fragment is larger than or outside of variable", Desc, &V);
7062 CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
7065 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
7066 // This function does not take the scope of noninlined function arguments into
7067 // account. Don't run it if current function is nodebug, because it may
7068 // contain inlined debug intrinsics.
7069 if (!HasDebugInfo)
7070 return;
7072 // For performance reasons only check non-inlined ones.
7073 if (I.getDebugLoc()->getInlinedAt())
7074 return;
7076 DILocalVariable *Var = I.getVariable();
7077 CheckDI(Var, "dbg intrinsic without variable");
7079 unsigned ArgNo = Var->getArg();
7080 if (!ArgNo)
7081 return;
7083 // Verify there are no duplicate function argument debug info entries.
7084 // These will cause hard-to-debug assertions in the DWARF backend.
7085 if (DebugFnArgs.size() < ArgNo)
7086 DebugFnArgs.resize(ArgNo, nullptr);
7088 auto *Prev = DebugFnArgs[ArgNo - 1];
7089 DebugFnArgs[ArgNo - 1] = Var;
7090 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
7091 Prev, Var);
7093 void Verifier::verifyFnArgs(const DbgVariableRecord &DVR) {
7094 // This function does not take the scope of noninlined function arguments into
7095 // account. Don't run it if current function is nodebug, because it may
7096 // contain inlined debug intrinsics.
7097 if (!HasDebugInfo)
7098 return;
7100 // For performance reasons only check non-inlined ones.
7101 if (DVR.getDebugLoc()->getInlinedAt())
7102 return;
7104 DILocalVariable *Var = DVR.getVariable();
7105 CheckDI(Var, "#dbg record without variable");
7107 unsigned ArgNo = Var->getArg();
7108 if (!ArgNo)
7109 return;
7111 // Verify there are no duplicate function argument debug info entries.
7112 // These will cause hard-to-debug assertions in the DWARF backend.
7113 if (DebugFnArgs.size() < ArgNo)
7114 DebugFnArgs.resize(ArgNo, nullptr);
7116 auto *Prev = DebugFnArgs[ArgNo - 1];
7117 DebugFnArgs[ArgNo - 1] = Var;
7118 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &DVR,
7119 Prev, Var);
7122 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
7123 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
7125 // We don't know whether this intrinsic verified correctly.
7126 if (!E || !E->isValid())
7127 return;
7129 if (isa<ValueAsMetadata>(I.getRawLocation())) {
7130 Value *VarValue = I.getVariableLocationOp(0);
7131 if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
7132 return;
7133 // We allow EntryValues for swift async arguments, as they have an
7134 // ABI-guarantee to be turned into a specific register.
7135 if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
7136 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
7137 return;
7140 CheckDI(!E->isEntryValue(),
7141 "Entry values are only allowed in MIR unless they target a "
7142 "swiftasync Argument",
7143 &I);
7145 void Verifier::verifyNotEntryValue(const DbgVariableRecord &DVR) {
7146 DIExpression *E = dyn_cast_or_null<DIExpression>(DVR.getRawExpression());
7148 // We don't know whether this intrinsic verified correctly.
7149 if (!E || !E->isValid())
7150 return;
7152 if (isa<ValueAsMetadata>(DVR.getRawLocation())) {
7153 Value *VarValue = DVR.getVariableLocationOp(0);
7154 if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
7155 return;
7156 // We allow EntryValues for swift async arguments, as they have an
7157 // ABI-guarantee to be turned into a specific register.
7158 if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
7159 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
7160 return;
7163 CheckDI(!E->isEntryValue(),
7164 "Entry values are only allowed in MIR unless they target a "
7165 "swiftasync Argument",
7166 &DVR);
7169 void Verifier::verifyCompileUnits() {
7170 // When more than one Module is imported into the same context, such as during
7171 // an LTO build before linking the modules, ODR type uniquing may cause types
7172 // to point to a different CU. This check does not make sense in this case.
7173 if (M.getContext().isODRUniquingDebugTypes())
7174 return;
7175 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
7176 SmallPtrSet<const Metadata *, 2> Listed;
7177 if (CUs)
7178 Listed.insert(CUs->op_begin(), CUs->op_end());
7179 for (const auto *CU : CUVisited)
7180 CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
7181 CUVisited.clear();
7184 void Verifier::verifyDeoptimizeCallingConvs() {
7185 if (DeoptimizeDeclarations.empty())
7186 return;
7188 const Function *First = DeoptimizeDeclarations[0];
7189 for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) {
7190 Check(First->getCallingConv() == F->getCallingConv(),
7191 "All llvm.experimental.deoptimize declarations must have the same "
7192 "calling convention",
7193 First, F);
7197 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
7198 const OperandBundleUse &BU) {
7199 FunctionType *FTy = Call.getFunctionType();
7201 Check((FTy->getReturnType()->isPointerTy() ||
7202 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
7203 "a call with operand bundle \"clang.arc.attachedcall\" must call a "
7204 "function returning a pointer or a non-returning function that has a "
7205 "void return type",
7206 Call);
7208 Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
7209 "operand bundle \"clang.arc.attachedcall\" requires one function as "
7210 "an argument",
7211 Call);
7213 auto *Fn = cast<Function>(BU.Inputs.front());
7214 Intrinsic::ID IID = Fn->getIntrinsicID();
7216 if (IID) {
7217 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
7218 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
7219 "invalid function argument", Call);
7220 } else {
7221 StringRef FnName = Fn->getName();
7222 Check((FnName == "objc_retainAutoreleasedReturnValue" ||
7223 FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
7224 "invalid function argument", Call);
7228 void Verifier::verifyNoAliasScopeDecl() {
7229 if (NoAliasScopeDecls.empty())
7230 return;
7232 // only a single scope must be declared at a time.
7233 for (auto *II : NoAliasScopeDecls) {
7234 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
7235 "Not a llvm.experimental.noalias.scope.decl ?");
7236 const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
7237 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
7238 Check(ScopeListMV != nullptr,
7239 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
7240 "argument",
7241 II);
7243 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
7244 Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
7245 Check(ScopeListMD->getNumOperands() == 1,
7246 "!id.scope.list must point to a list with a single scope", II);
7247 visitAliasScopeListMetadata(ScopeListMD);
7250 // Only check the domination rule when requested. Once all passes have been
7251 // adapted this option can go away.
7252 if (!VerifyNoAliasScopeDomination)
7253 return;
7255 // Now sort the intrinsics based on the scope MDNode so that declarations of
7256 // the same scopes are next to each other.
7257 auto GetScope = [](IntrinsicInst *II) {
7258 const auto *ScopeListMV = cast<MetadataAsValue>(
7259 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
7260 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
7263 // We are sorting on MDNode pointers here. For valid input IR this is ok.
7264 // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
7265 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
7266 return GetScope(Lhs) < GetScope(Rhs);
7269 llvm::sort(NoAliasScopeDecls, Compare);
7271 // Go over the intrinsics and check that for the same scope, they are not
7272 // dominating each other.
7273 auto ItCurrent = NoAliasScopeDecls.begin();
7274 while (ItCurrent != NoAliasScopeDecls.end()) {
7275 auto CurScope = GetScope(*ItCurrent);
7276 auto ItNext = ItCurrent;
7277 do {
7278 ++ItNext;
7279 } while (ItNext != NoAliasScopeDecls.end() &&
7280 GetScope(*ItNext) == CurScope);
7282 // [ItCurrent, ItNext) represents the declarations for the same scope.
7283 // Ensure they are not dominating each other.. but only if it is not too
7284 // expensive.
7285 if (ItNext - ItCurrent < 32)
7286 for (auto *I : llvm::make_range(ItCurrent, ItNext))
7287 for (auto *J : llvm::make_range(ItCurrent, ItNext))
7288 if (I != J)
7289 Check(!DT.dominates(I, J),
7290 "llvm.experimental.noalias.scope.decl dominates another one "
7291 "with the same scope",
7293 ItCurrent = ItNext;
7297 //===----------------------------------------------------------------------===//
7298 // Implement the public interfaces to this file...
7299 //===----------------------------------------------------------------------===//
7301 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
7302 Function &F = const_cast<Function &>(f);
7304 // Don't use a raw_null_ostream. Printing IR is expensive.
7305 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
7307 // Note that this function's return value is inverted from what you would
7308 // expect of a function called "verify".
7309 return !V.verify(F);
7312 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
7313 bool *BrokenDebugInfo) {
7314 // Don't use a raw_null_ostream. Printing IR is expensive.
7315 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
7317 bool Broken = false;
7318 for (const Function &F : M)
7319 Broken |= !V.verify(F);
7321 Broken |= !V.verify();
7322 if (BrokenDebugInfo)
7323 *BrokenDebugInfo = V.hasBrokenDebugInfo();
7324 // Note that this function's return value is inverted from what you would
7325 // expect of a function called "verify".
7326 return Broken;
7329 namespace {
7331 struct VerifierLegacyPass : public FunctionPass {
7332 static char ID;
7334 std::unique_ptr<Verifier> V;
7335 bool FatalErrors = true;
7337 VerifierLegacyPass() : FunctionPass(ID) {
7338 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
7340 explicit VerifierLegacyPass(bool FatalErrors)
7341 : FunctionPass(ID),
7342 FatalErrors(FatalErrors) {
7343 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
7346 bool doInitialization(Module &M) override {
7347 V = std::make_unique<Verifier>(
7348 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
7349 return false;
7352 bool runOnFunction(Function &F) override {
7353 if (!V->verify(F) && FatalErrors) {
7354 errs() << "in function " << F.getName() << '\n';
7355 report_fatal_error("Broken function found, compilation aborted!");
7357 return false;
7360 bool doFinalization(Module &M) override {
7361 bool HasErrors = false;
7362 for (Function &F : M)
7363 if (F.isDeclaration())
7364 HasErrors |= !V->verify(F);
7366 HasErrors |= !V->verify();
7367 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
7368 report_fatal_error("Broken module found, compilation aborted!");
7369 return false;
7372 void getAnalysisUsage(AnalysisUsage &AU) const override {
7373 AU.setPreservesAll();
7377 } // end anonymous namespace
7379 /// Helper to issue failure from the TBAA verification
7380 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
7381 if (Diagnostic)
7382 return Diagnostic->CheckFailed(Args...);
7385 #define CheckTBAA(C, ...) \
7386 do { \
7387 if (!(C)) { \
7388 CheckFailed(__VA_ARGS__); \
7389 return false; \
7391 } while (false)
7393 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
7394 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
7395 /// struct-type node describing an aggregate data structure (like a struct).
7396 TBAAVerifier::TBAABaseNodeSummary
7397 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
7398 bool IsNewFormat) {
7399 if (BaseNode->getNumOperands() < 2) {
7400 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
7401 return {true, ~0u};
7404 auto Itr = TBAABaseNodes.find(BaseNode);
7405 if (Itr != TBAABaseNodes.end())
7406 return Itr->second;
7408 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
7409 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
7410 (void)InsertResult;
7411 assert(InsertResult.second && "We just checked!");
7412 return Result;
7415 TBAAVerifier::TBAABaseNodeSummary
7416 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
7417 bool IsNewFormat) {
7418 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
7420 if (BaseNode->getNumOperands() == 2) {
7421 // Scalar nodes can only be accessed at offset 0.
7422 return isValidScalarTBAANode(BaseNode)
7423 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
7424 : InvalidNode;
7427 if (IsNewFormat) {
7428 if (BaseNode->getNumOperands() % 3 != 0) {
7429 CheckFailed("Access tag nodes must have the number of operands that is a "
7430 "multiple of 3!", BaseNode);
7431 return InvalidNode;
7433 } else {
7434 if (BaseNode->getNumOperands() % 2 != 1) {
7435 CheckFailed("Struct tag nodes must have an odd number of operands!",
7436 BaseNode);
7437 return InvalidNode;
7441 // Check the type size field.
7442 if (IsNewFormat) {
7443 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7444 BaseNode->getOperand(1));
7445 if (!TypeSizeNode) {
7446 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
7447 return InvalidNode;
7451 // Check the type name field. In the new format it can be anything.
7452 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
7453 CheckFailed("Struct tag nodes have a string as their first operand",
7454 BaseNode);
7455 return InvalidNode;
7458 bool Failed = false;
7460 std::optional<APInt> PrevOffset;
7461 unsigned BitWidth = ~0u;
7463 // We've already checked that BaseNode is not a degenerate root node with one
7464 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
7465 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7466 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7467 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
7468 Idx += NumOpsPerField) {
7469 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
7470 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
7471 if (!isa<MDNode>(FieldTy)) {
7472 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
7473 Failed = true;
7474 continue;
7477 auto *OffsetEntryCI =
7478 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
7479 if (!OffsetEntryCI) {
7480 CheckFailed("Offset entries must be constants!", &I, BaseNode);
7481 Failed = true;
7482 continue;
7485 if (BitWidth == ~0u)
7486 BitWidth = OffsetEntryCI->getBitWidth();
7488 if (OffsetEntryCI->getBitWidth() != BitWidth) {
7489 CheckFailed(
7490 "Bitwidth between the offsets and struct type entries must match", &I,
7491 BaseNode);
7492 Failed = true;
7493 continue;
7496 // NB! As far as I can tell, we generate a non-strictly increasing offset
7497 // sequence only from structs that have zero size bit fields. When
7498 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
7499 // pick the field lexically the latest in struct type metadata node. This
7500 // mirrors the actual behavior of the alias analysis implementation.
7501 bool IsAscending =
7502 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
7504 if (!IsAscending) {
7505 CheckFailed("Offsets must be increasing!", &I, BaseNode);
7506 Failed = true;
7509 PrevOffset = OffsetEntryCI->getValue();
7511 if (IsNewFormat) {
7512 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7513 BaseNode->getOperand(Idx + 2));
7514 if (!MemberSizeNode) {
7515 CheckFailed("Member size entries must be constants!", &I, BaseNode);
7516 Failed = true;
7517 continue;
7522 return Failed ? InvalidNode
7523 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
7526 static bool IsRootTBAANode(const MDNode *MD) {
7527 return MD->getNumOperands() < 2;
7530 static bool IsScalarTBAANodeImpl(const MDNode *MD,
7531 SmallPtrSetImpl<const MDNode *> &Visited) {
7532 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
7533 return false;
7535 if (!isa<MDString>(MD->getOperand(0)))
7536 return false;
7538 if (MD->getNumOperands() == 3) {
7539 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
7540 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
7541 return false;
7544 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
7545 return Parent && Visited.insert(Parent).second &&
7546 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
7549 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
7550 auto ResultIt = TBAAScalarNodes.find(MD);
7551 if (ResultIt != TBAAScalarNodes.end())
7552 return ResultIt->second;
7554 SmallPtrSet<const MDNode *, 4> Visited;
7555 bool Result = IsScalarTBAANodeImpl(MD, Visited);
7556 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
7557 (void)InsertResult;
7558 assert(InsertResult.second && "Just checked!");
7560 return Result;
7563 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
7564 /// Offset in place to be the offset within the field node returned.
7566 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
7567 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
7568 const MDNode *BaseNode,
7569 APInt &Offset,
7570 bool IsNewFormat) {
7571 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
7573 // Scalar nodes have only one possible "field" -- their parent in the access
7574 // hierarchy. Offset must be zero at this point, but our caller is supposed
7575 // to check that.
7576 if (BaseNode->getNumOperands() == 2)
7577 return cast<MDNode>(BaseNode->getOperand(1));
7579 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7580 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7581 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
7582 Idx += NumOpsPerField) {
7583 auto *OffsetEntryCI =
7584 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
7585 if (OffsetEntryCI->getValue().ugt(Offset)) {
7586 if (Idx == FirstFieldOpNo) {
7587 CheckFailed("Could not find TBAA parent in struct type node", &I,
7588 BaseNode, &Offset);
7589 return nullptr;
7592 unsigned PrevIdx = Idx - NumOpsPerField;
7593 auto *PrevOffsetEntryCI =
7594 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
7595 Offset -= PrevOffsetEntryCI->getValue();
7596 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
7600 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
7601 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
7602 BaseNode->getOperand(LastIdx + 1));
7603 Offset -= LastOffsetEntryCI->getValue();
7604 return cast<MDNode>(BaseNode->getOperand(LastIdx));
7607 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
7608 if (!Type || Type->getNumOperands() < 3)
7609 return false;
7611 // In the new format type nodes shall have a reference to the parent type as
7612 // its first operand.
7613 return isa_and_nonnull<MDNode>(Type->getOperand(0));
7616 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
7617 CheckTBAA(MD->getNumOperands() > 0, "TBAA metadata cannot have 0 operands",
7618 &I, MD);
7620 CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
7621 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
7622 isa<AtomicCmpXchgInst>(I),
7623 "This instruction shall not have a TBAA access tag!", &I);
7625 bool IsStructPathTBAA =
7626 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
7628 CheckTBAA(IsStructPathTBAA,
7629 "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
7630 &I);
7632 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
7633 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
7635 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
7637 if (IsNewFormat) {
7638 CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
7639 "Access tag metadata must have either 4 or 5 operands", &I, MD);
7640 } else {
7641 CheckTBAA(MD->getNumOperands() < 5,
7642 "Struct tag metadata must have either 3 or 4 operands", &I, MD);
7645 // Check the access size field.
7646 if (IsNewFormat) {
7647 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7648 MD->getOperand(3));
7649 CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
7652 // Check the immutability flag.
7653 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
7654 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
7655 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
7656 MD->getOperand(ImmutabilityFlagOpNo));
7657 CheckTBAA(IsImmutableCI,
7658 "Immutability tag on struct tag metadata must be a constant", &I,
7659 MD);
7660 CheckTBAA(
7661 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
7662 "Immutability part of the struct tag metadata must be either 0 or 1",
7663 &I, MD);
7666 CheckTBAA(BaseNode && AccessType,
7667 "Malformed struct tag metadata: base and access-type "
7668 "should be non-null and point to Metadata nodes",
7669 &I, MD, BaseNode, AccessType);
7671 if (!IsNewFormat) {
7672 CheckTBAA(isValidScalarTBAANode(AccessType),
7673 "Access type node must be a valid scalar type", &I, MD,
7674 AccessType);
7677 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
7678 CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
7680 APInt Offset = OffsetCI->getValue();
7681 bool SeenAccessTypeInPath = false;
7683 SmallPtrSet<MDNode *, 4> StructPath;
7685 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
7686 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
7687 IsNewFormat)) {
7688 if (!StructPath.insert(BaseNode).second) {
7689 CheckFailed("Cycle detected in struct path", &I, MD);
7690 return false;
7693 bool Invalid;
7694 unsigned BaseNodeBitWidth;
7695 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
7696 IsNewFormat);
7698 // If the base node is invalid in itself, then we've already printed all the
7699 // errors we wanted to print.
7700 if (Invalid)
7701 return false;
7703 SeenAccessTypeInPath |= BaseNode == AccessType;
7705 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
7706 CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
7707 &I, MD, &Offset);
7709 CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
7710 (BaseNodeBitWidth == 0 && Offset == 0) ||
7711 (IsNewFormat && BaseNodeBitWidth == ~0u),
7712 "Access bit-width not the same as description bit-width", &I, MD,
7713 BaseNodeBitWidth, Offset.getBitWidth());
7715 if (IsNewFormat && SeenAccessTypeInPath)
7716 break;
7719 CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
7720 MD);
7721 return true;
7724 char VerifierLegacyPass::ID = 0;
7725 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
7727 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
7728 return new VerifierLegacyPass(FatalErrors);
7731 AnalysisKey VerifierAnalysis::Key;
7732 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
7733 ModuleAnalysisManager &) {
7734 Result Res;
7735 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
7736 return Res;
7739 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
7740 FunctionAnalysisManager &) {
7741 return { llvm::verifyFunction(F, &dbgs()), false };
7744 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
7745 auto Res = AM.getResult<VerifierAnalysis>(M);
7746 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
7747 report_fatal_error("Broken module found, compilation aborted!");
7749 return PreservedAnalyses::all();
7752 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
7753 auto res = AM.getResult<VerifierAnalysis>(F);
7754 if (res.IRBroken && FatalErrors)
7755 report_fatal_error("Broken function found, compilation aborted!");
7757 return PreservedAnalyses::all();