[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / examples / Kaleidoscope / Chapter7 / toy.cpp
blobd6069c015b61189ef0192086f221bb3423523466
1 #include "../include/KaleidoscopeJIT.h"
2 #include "llvm/ADT/APFloat.h"
3 #include "llvm/ADT/STLExtras.h"
4 #include "llvm/IR/BasicBlock.h"
5 #include "llvm/IR/Constants.h"
6 #include "llvm/IR/DerivedTypes.h"
7 #include "llvm/IR/Function.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/Instructions.h"
10 #include "llvm/IR/LLVMContext.h"
11 #include "llvm/IR/LegacyPassManager.h"
12 #include "llvm/IR/Module.h"
13 #include "llvm/IR/Type.h"
14 #include "llvm/IR/Verifier.h"
15 #include "llvm/Support/TargetSelect.h"
16 #include "llvm/Target/TargetMachine.h"
17 #include "llvm/Transforms/InstCombine/InstCombine.h"
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/Transforms/Scalar/GVN.h"
20 #include "llvm/Transforms/Utils.h"
21 #include <algorithm>
22 #include <cassert>
23 #include <cctype>
24 #include <cstdint>
25 #include <cstdio>
26 #include <cstdlib>
27 #include <map>
28 #include <memory>
29 #include <string>
30 #include <utility>
31 #include <vector>
33 using namespace llvm;
34 using namespace llvm::orc;
36 //===----------------------------------------------------------------------===//
37 // Lexer
38 //===----------------------------------------------------------------------===//
40 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
41 // of these for known things.
42 enum Token {
43 tok_eof = -1,
45 // commands
46 tok_def = -2,
47 tok_extern = -3,
49 // primary
50 tok_identifier = -4,
51 tok_number = -5,
53 // control
54 tok_if = -6,
55 tok_then = -7,
56 tok_else = -8,
57 tok_for = -9,
58 tok_in = -10,
60 // operators
61 tok_binary = -11,
62 tok_unary = -12,
64 // var definition
65 tok_var = -13
68 static std::string IdentifierStr; // Filled in if tok_identifier
69 static double NumVal; // Filled in if tok_number
71 /// gettok - Return the next token from standard input.
72 static int gettok() {
73 static int LastChar = ' ';
75 // Skip any whitespace.
76 while (isspace(LastChar))
77 LastChar = getchar();
79 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
80 IdentifierStr = LastChar;
81 while (isalnum((LastChar = getchar())))
82 IdentifierStr += LastChar;
84 if (IdentifierStr == "def")
85 return tok_def;
86 if (IdentifierStr == "extern")
87 return tok_extern;
88 if (IdentifierStr == "if")
89 return tok_if;
90 if (IdentifierStr == "then")
91 return tok_then;
92 if (IdentifierStr == "else")
93 return tok_else;
94 if (IdentifierStr == "for")
95 return tok_for;
96 if (IdentifierStr == "in")
97 return tok_in;
98 if (IdentifierStr == "binary")
99 return tok_binary;
100 if (IdentifierStr == "unary")
101 return tok_unary;
102 if (IdentifierStr == "var")
103 return tok_var;
104 return tok_identifier;
107 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
108 std::string NumStr;
109 do {
110 NumStr += LastChar;
111 LastChar = getchar();
112 } while (isdigit(LastChar) || LastChar == '.');
114 NumVal = strtod(NumStr.c_str(), nullptr);
115 return tok_number;
118 if (LastChar == '#') {
119 // Comment until end of line.
121 LastChar = getchar();
122 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
124 if (LastChar != EOF)
125 return gettok();
128 // Check for end of file. Don't eat the EOF.
129 if (LastChar == EOF)
130 return tok_eof;
132 // Otherwise, just return the character as its ascii value.
133 int ThisChar = LastChar;
134 LastChar = getchar();
135 return ThisChar;
138 //===----------------------------------------------------------------------===//
139 // Abstract Syntax Tree (aka Parse Tree)
140 //===----------------------------------------------------------------------===//
142 namespace {
144 /// ExprAST - Base class for all expression nodes.
145 class ExprAST {
146 public:
147 virtual ~ExprAST() = default;
149 virtual Value *codegen() = 0;
152 /// NumberExprAST - Expression class for numeric literals like "1.0".
153 class NumberExprAST : public ExprAST {
154 double Val;
156 public:
157 NumberExprAST(double Val) : Val(Val) {}
159 Value *codegen() override;
162 /// VariableExprAST - Expression class for referencing a variable, like "a".
163 class VariableExprAST : public ExprAST {
164 std::string Name;
166 public:
167 VariableExprAST(const std::string &Name) : Name(Name) {}
169 Value *codegen() override;
170 const std::string &getName() const { return Name; }
173 /// UnaryExprAST - Expression class for a unary operator.
174 class UnaryExprAST : public ExprAST {
175 char Opcode;
176 std::unique_ptr<ExprAST> Operand;
178 public:
179 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
180 : Opcode(Opcode), Operand(std::move(Operand)) {}
182 Value *codegen() override;
185 /// BinaryExprAST - Expression class for a binary operator.
186 class BinaryExprAST : public ExprAST {
187 char Op;
188 std::unique_ptr<ExprAST> LHS, RHS;
190 public:
191 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
192 std::unique_ptr<ExprAST> RHS)
193 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
195 Value *codegen() override;
198 /// CallExprAST - Expression class for function calls.
199 class CallExprAST : public ExprAST {
200 std::string Callee;
201 std::vector<std::unique_ptr<ExprAST>> Args;
203 public:
204 CallExprAST(const std::string &Callee,
205 std::vector<std::unique_ptr<ExprAST>> Args)
206 : Callee(Callee), Args(std::move(Args)) {}
208 Value *codegen() override;
211 /// IfExprAST - Expression class for if/then/else.
212 class IfExprAST : public ExprAST {
213 std::unique_ptr<ExprAST> Cond, Then, Else;
215 public:
216 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
217 std::unique_ptr<ExprAST> Else)
218 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
220 Value *codegen() override;
223 /// ForExprAST - Expression class for for/in.
224 class ForExprAST : public ExprAST {
225 std::string VarName;
226 std::unique_ptr<ExprAST> Start, End, Step, Body;
228 public:
229 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
230 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
231 std::unique_ptr<ExprAST> Body)
232 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
233 Step(std::move(Step)), Body(std::move(Body)) {}
235 Value *codegen() override;
238 /// VarExprAST - Expression class for var/in
239 class VarExprAST : public ExprAST {
240 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
241 std::unique_ptr<ExprAST> Body;
243 public:
244 VarExprAST(
245 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
246 std::unique_ptr<ExprAST> Body)
247 : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
249 Value *codegen() override;
252 /// PrototypeAST - This class represents the "prototype" for a function,
253 /// which captures its name, and its argument names (thus implicitly the number
254 /// of arguments the function takes), as well as if it is an operator.
255 class PrototypeAST {
256 std::string Name;
257 std::vector<std::string> Args;
258 bool IsOperator;
259 unsigned Precedence; // Precedence if a binary op.
261 public:
262 PrototypeAST(const std::string &Name, std::vector<std::string> Args,
263 bool IsOperator = false, unsigned Prec = 0)
264 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
265 Precedence(Prec) {}
267 Function *codegen();
268 const std::string &getName() const { return Name; }
270 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
271 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
273 char getOperatorName() const {
274 assert(isUnaryOp() || isBinaryOp());
275 return Name[Name.size() - 1];
278 unsigned getBinaryPrecedence() const { return Precedence; }
281 /// FunctionAST - This class represents a function definition itself.
282 class FunctionAST {
283 std::unique_ptr<PrototypeAST> Proto;
284 std::unique_ptr<ExprAST> Body;
286 public:
287 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
288 std::unique_ptr<ExprAST> Body)
289 : Proto(std::move(Proto)), Body(std::move(Body)) {}
291 Function *codegen();
294 } // end anonymous namespace
296 //===----------------------------------------------------------------------===//
297 // Parser
298 //===----------------------------------------------------------------------===//
300 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
301 /// token the parser is looking at. getNextToken reads another token from the
302 /// lexer and updates CurTok with its results.
303 static int CurTok;
304 static int getNextToken() { return CurTok = gettok(); }
306 /// BinopPrecedence - This holds the precedence for each binary operator that is
307 /// defined.
308 static std::map<char, int> BinopPrecedence;
310 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
311 static int GetTokPrecedence() {
312 if (!isascii(CurTok))
313 return -1;
315 // Make sure it's a declared binop.
316 int TokPrec = BinopPrecedence[CurTok];
317 if (TokPrec <= 0)
318 return -1;
319 return TokPrec;
322 /// LogError* - These are little helper functions for error handling.
323 std::unique_ptr<ExprAST> LogError(const char *Str) {
324 fprintf(stderr, "Error: %s\n", Str);
325 return nullptr;
328 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
329 LogError(Str);
330 return nullptr;
333 static std::unique_ptr<ExprAST> ParseExpression();
335 /// numberexpr ::= number
336 static std::unique_ptr<ExprAST> ParseNumberExpr() {
337 auto Result = std::make_unique<NumberExprAST>(NumVal);
338 getNextToken(); // consume the number
339 return std::move(Result);
342 /// parenexpr ::= '(' expression ')'
343 static std::unique_ptr<ExprAST> ParseParenExpr() {
344 getNextToken(); // eat (.
345 auto V = ParseExpression();
346 if (!V)
347 return nullptr;
349 if (CurTok != ')')
350 return LogError("expected ')'");
351 getNextToken(); // eat ).
352 return V;
355 /// identifierexpr
356 /// ::= identifier
357 /// ::= identifier '(' expression* ')'
358 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
359 std::string IdName = IdentifierStr;
361 getNextToken(); // eat identifier.
363 if (CurTok != '(') // Simple variable ref.
364 return std::make_unique<VariableExprAST>(IdName);
366 // Call.
367 getNextToken(); // eat (
368 std::vector<std::unique_ptr<ExprAST>> Args;
369 if (CurTok != ')') {
370 while (true) {
371 if (auto Arg = ParseExpression())
372 Args.push_back(std::move(Arg));
373 else
374 return nullptr;
376 if (CurTok == ')')
377 break;
379 if (CurTok != ',')
380 return LogError("Expected ')' or ',' in argument list");
381 getNextToken();
385 // Eat the ')'.
386 getNextToken();
388 return std::make_unique<CallExprAST>(IdName, std::move(Args));
391 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
392 static std::unique_ptr<ExprAST> ParseIfExpr() {
393 getNextToken(); // eat the if.
395 // condition.
396 auto Cond = ParseExpression();
397 if (!Cond)
398 return nullptr;
400 if (CurTok != tok_then)
401 return LogError("expected then");
402 getNextToken(); // eat the then
404 auto Then = ParseExpression();
405 if (!Then)
406 return nullptr;
408 if (CurTok != tok_else)
409 return LogError("expected else");
411 getNextToken();
413 auto Else = ParseExpression();
414 if (!Else)
415 return nullptr;
417 return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
418 std::move(Else));
421 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
422 static std::unique_ptr<ExprAST> ParseForExpr() {
423 getNextToken(); // eat the for.
425 if (CurTok != tok_identifier)
426 return LogError("expected identifier after for");
428 std::string IdName = IdentifierStr;
429 getNextToken(); // eat identifier.
431 if (CurTok != '=')
432 return LogError("expected '=' after for");
433 getNextToken(); // eat '='.
435 auto Start = ParseExpression();
436 if (!Start)
437 return nullptr;
438 if (CurTok != ',')
439 return LogError("expected ',' after for start value");
440 getNextToken();
442 auto End = ParseExpression();
443 if (!End)
444 return nullptr;
446 // The step value is optional.
447 std::unique_ptr<ExprAST> Step;
448 if (CurTok == ',') {
449 getNextToken();
450 Step = ParseExpression();
451 if (!Step)
452 return nullptr;
455 if (CurTok != tok_in)
456 return LogError("expected 'in' after for");
457 getNextToken(); // eat 'in'.
459 auto Body = ParseExpression();
460 if (!Body)
461 return nullptr;
463 return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
464 std::move(Step), std::move(Body));
467 /// varexpr ::= 'var' identifier ('=' expression)?
468 // (',' identifier ('=' expression)?)* 'in' expression
469 static std::unique_ptr<ExprAST> ParseVarExpr() {
470 getNextToken(); // eat the var.
472 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
474 // At least one variable name is required.
475 if (CurTok != tok_identifier)
476 return LogError("expected identifier after var");
478 while (true) {
479 std::string Name = IdentifierStr;
480 getNextToken(); // eat identifier.
482 // Read the optional initializer.
483 std::unique_ptr<ExprAST> Init = nullptr;
484 if (CurTok == '=') {
485 getNextToken(); // eat the '='.
487 Init = ParseExpression();
488 if (!Init)
489 return nullptr;
492 VarNames.push_back(std::make_pair(Name, std::move(Init)));
494 // End of var list, exit loop.
495 if (CurTok != ',')
496 break;
497 getNextToken(); // eat the ','.
499 if (CurTok != tok_identifier)
500 return LogError("expected identifier list after var");
503 // At this point, we have to have 'in'.
504 if (CurTok != tok_in)
505 return LogError("expected 'in' keyword after 'var'");
506 getNextToken(); // eat 'in'.
508 auto Body = ParseExpression();
509 if (!Body)
510 return nullptr;
512 return std::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
515 /// primary
516 /// ::= identifierexpr
517 /// ::= numberexpr
518 /// ::= parenexpr
519 /// ::= ifexpr
520 /// ::= forexpr
521 /// ::= varexpr
522 static std::unique_ptr<ExprAST> ParsePrimary() {
523 switch (CurTok) {
524 default:
525 return LogError("unknown token when expecting an expression");
526 case tok_identifier:
527 return ParseIdentifierExpr();
528 case tok_number:
529 return ParseNumberExpr();
530 case '(':
531 return ParseParenExpr();
532 case tok_if:
533 return ParseIfExpr();
534 case tok_for:
535 return ParseForExpr();
536 case tok_var:
537 return ParseVarExpr();
541 /// unary
542 /// ::= primary
543 /// ::= '!' unary
544 static std::unique_ptr<ExprAST> ParseUnary() {
545 // If the current token is not an operator, it must be a primary expr.
546 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
547 return ParsePrimary();
549 // If this is a unary operator, read it.
550 int Opc = CurTok;
551 getNextToken();
552 if (auto Operand = ParseUnary())
553 return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
554 return nullptr;
557 /// binoprhs
558 /// ::= ('+' unary)*
559 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
560 std::unique_ptr<ExprAST> LHS) {
561 // If this is a binop, find its precedence.
562 while (true) {
563 int TokPrec = GetTokPrecedence();
565 // If this is a binop that binds at least as tightly as the current binop,
566 // consume it, otherwise we are done.
567 if (TokPrec < ExprPrec)
568 return LHS;
570 // Okay, we know this is a binop.
571 int BinOp = CurTok;
572 getNextToken(); // eat binop
574 // Parse the unary expression after the binary operator.
575 auto RHS = ParseUnary();
576 if (!RHS)
577 return nullptr;
579 // If BinOp binds less tightly with RHS than the operator after RHS, let
580 // the pending operator take RHS as its LHS.
581 int NextPrec = GetTokPrecedence();
582 if (TokPrec < NextPrec) {
583 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
584 if (!RHS)
585 return nullptr;
588 // Merge LHS/RHS.
589 LHS =
590 std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
594 /// expression
595 /// ::= unary binoprhs
597 static std::unique_ptr<ExprAST> ParseExpression() {
598 auto LHS = ParseUnary();
599 if (!LHS)
600 return nullptr;
602 return ParseBinOpRHS(0, std::move(LHS));
605 /// prototype
606 /// ::= id '(' id* ')'
607 /// ::= binary LETTER number? (id, id)
608 /// ::= unary LETTER (id)
609 static std::unique_ptr<PrototypeAST> ParsePrototype() {
610 std::string FnName;
612 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
613 unsigned BinaryPrecedence = 30;
615 switch (CurTok) {
616 default:
617 return LogErrorP("Expected function name in prototype");
618 case tok_identifier:
619 FnName = IdentifierStr;
620 Kind = 0;
621 getNextToken();
622 break;
623 case tok_unary:
624 getNextToken();
625 if (!isascii(CurTok))
626 return LogErrorP("Expected unary operator");
627 FnName = "unary";
628 FnName += (char)CurTok;
629 Kind = 1;
630 getNextToken();
631 break;
632 case tok_binary:
633 getNextToken();
634 if (!isascii(CurTok))
635 return LogErrorP("Expected binary operator");
636 FnName = "binary";
637 FnName += (char)CurTok;
638 Kind = 2;
639 getNextToken();
641 // Read the precedence if present.
642 if (CurTok == tok_number) {
643 if (NumVal < 1 || NumVal > 100)
644 return LogErrorP("Invalid precedence: must be 1..100");
645 BinaryPrecedence = (unsigned)NumVal;
646 getNextToken();
648 break;
651 if (CurTok != '(')
652 return LogErrorP("Expected '(' in prototype");
654 std::vector<std::string> ArgNames;
655 while (getNextToken() == tok_identifier)
656 ArgNames.push_back(IdentifierStr);
657 if (CurTok != ')')
658 return LogErrorP("Expected ')' in prototype");
660 // success.
661 getNextToken(); // eat ')'.
663 // Verify right number of names for operator.
664 if (Kind && ArgNames.size() != Kind)
665 return LogErrorP("Invalid number of operands for operator");
667 return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
668 BinaryPrecedence);
671 /// definition ::= 'def' prototype expression
672 static std::unique_ptr<FunctionAST> ParseDefinition() {
673 getNextToken(); // eat def.
674 auto Proto = ParsePrototype();
675 if (!Proto)
676 return nullptr;
678 if (auto E = ParseExpression())
679 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
680 return nullptr;
683 /// toplevelexpr ::= expression
684 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
685 if (auto E = ParseExpression()) {
686 // Make an anonymous proto.
687 auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
688 std::vector<std::string>());
689 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
691 return nullptr;
694 /// external ::= 'extern' prototype
695 static std::unique_ptr<PrototypeAST> ParseExtern() {
696 getNextToken(); // eat extern.
697 return ParsePrototype();
700 //===----------------------------------------------------------------------===//
701 // Code Generation
702 //===----------------------------------------------------------------------===//
704 static std::unique_ptr<LLVMContext> TheContext;
705 static std::unique_ptr<Module> TheModule;
706 static std::unique_ptr<IRBuilder<>> Builder;
707 static std::map<std::string, AllocaInst *> NamedValues;
708 static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
709 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
710 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
711 static ExitOnError ExitOnErr;
713 Value *LogErrorV(const char *Str) {
714 LogError(Str);
715 return nullptr;
718 Function *getFunction(std::string Name) {
719 // First, see if the function has already been added to the current module.
720 if (auto *F = TheModule->getFunction(Name))
721 return F;
723 // If not, check whether we can codegen the declaration from some existing
724 // prototype.
725 auto FI = FunctionProtos.find(Name);
726 if (FI != FunctionProtos.end())
727 return FI->second->codegen();
729 // If no existing prototype exists, return null.
730 return nullptr;
733 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
734 /// the function. This is used for mutable variables etc.
735 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
736 StringRef VarName) {
737 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
738 TheFunction->getEntryBlock().begin());
739 return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr, VarName);
742 Value *NumberExprAST::codegen() {
743 return ConstantFP::get(*TheContext, APFloat(Val));
746 Value *VariableExprAST::codegen() {
747 // Look this variable up in the function.
748 AllocaInst *A = NamedValues[Name];
749 if (!A)
750 return LogErrorV("Unknown variable name");
752 // Load the value.
753 return Builder->CreateLoad(A->getAllocatedType(), A, Name.c_str());
756 Value *UnaryExprAST::codegen() {
757 Value *OperandV = Operand->codegen();
758 if (!OperandV)
759 return nullptr;
761 Function *F = getFunction(std::string("unary") + Opcode);
762 if (!F)
763 return LogErrorV("Unknown unary operator");
765 return Builder->CreateCall(F, OperandV, "unop");
768 Value *BinaryExprAST::codegen() {
769 // Special case '=' because we don't want to emit the LHS as an expression.
770 if (Op == '=') {
771 // Assignment requires the LHS to be an identifier.
772 // This assume we're building without RTTI because LLVM builds that way by
773 // default. If you build LLVM with RTTI this can be changed to a
774 // dynamic_cast for automatic error checking.
775 VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
776 if (!LHSE)
777 return LogErrorV("destination of '=' must be a variable");
778 // Codegen the RHS.
779 Value *Val = RHS->codegen();
780 if (!Val)
781 return nullptr;
783 // Look up the name.
784 Value *Variable = NamedValues[LHSE->getName()];
785 if (!Variable)
786 return LogErrorV("Unknown variable name");
788 Builder->CreateStore(Val, Variable);
789 return Val;
792 Value *L = LHS->codegen();
793 Value *R = RHS->codegen();
794 if (!L || !R)
795 return nullptr;
797 switch (Op) {
798 case '+':
799 return Builder->CreateFAdd(L, R, "addtmp");
800 case '-':
801 return Builder->CreateFSub(L, R, "subtmp");
802 case '*':
803 return Builder->CreateFMul(L, R, "multmp");
804 case '<':
805 L = Builder->CreateFCmpULT(L, R, "cmptmp");
806 // Convert bool 0/1 to double 0.0 or 1.0
807 return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
808 default:
809 break;
812 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
813 // a call to it.
814 Function *F = getFunction(std::string("binary") + Op);
815 assert(F && "binary operator not found!");
817 Value *Ops[] = {L, R};
818 return Builder->CreateCall(F, Ops, "binop");
821 Value *CallExprAST::codegen() {
822 // Look up the name in the global module table.
823 Function *CalleeF = getFunction(Callee);
824 if (!CalleeF)
825 return LogErrorV("Unknown function referenced");
827 // If argument mismatch error.
828 if (CalleeF->arg_size() != Args.size())
829 return LogErrorV("Incorrect # arguments passed");
831 std::vector<Value *> ArgsV;
832 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
833 ArgsV.push_back(Args[i]->codegen());
834 if (!ArgsV.back())
835 return nullptr;
838 return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
841 Value *IfExprAST::codegen() {
842 Value *CondV = Cond->codegen();
843 if (!CondV)
844 return nullptr;
846 // Convert condition to a bool by comparing non-equal to 0.0.
847 CondV = Builder->CreateFCmpONE(
848 CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
850 Function *TheFunction = Builder->GetInsertBlock()->getParent();
852 // Create blocks for the then and else cases. Insert the 'then' block at the
853 // end of the function.
854 BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
855 BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
856 BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
858 Builder->CreateCondBr(CondV, ThenBB, ElseBB);
860 // Emit then value.
861 Builder->SetInsertPoint(ThenBB);
863 Value *ThenV = Then->codegen();
864 if (!ThenV)
865 return nullptr;
867 Builder->CreateBr(MergeBB);
868 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
869 ThenBB = Builder->GetInsertBlock();
871 // Emit else block.
872 TheFunction->getBasicBlockList().push_back(ElseBB);
873 Builder->SetInsertPoint(ElseBB);
875 Value *ElseV = Else->codegen();
876 if (!ElseV)
877 return nullptr;
879 Builder->CreateBr(MergeBB);
880 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
881 ElseBB = Builder->GetInsertBlock();
883 // Emit merge block.
884 TheFunction->getBasicBlockList().push_back(MergeBB);
885 Builder->SetInsertPoint(MergeBB);
886 PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
888 PN->addIncoming(ThenV, ThenBB);
889 PN->addIncoming(ElseV, ElseBB);
890 return PN;
893 // Output for-loop as:
894 // var = alloca double
895 // ...
896 // start = startexpr
897 // store start -> var
898 // goto loop
899 // loop:
900 // ...
901 // bodyexpr
902 // ...
903 // loopend:
904 // step = stepexpr
905 // endcond = endexpr
907 // curvar = load var
908 // nextvar = curvar + step
909 // store nextvar -> var
910 // br endcond, loop, endloop
911 // outloop:
912 Value *ForExprAST::codegen() {
913 Function *TheFunction = Builder->GetInsertBlock()->getParent();
915 // Create an alloca for the variable in the entry block.
916 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
918 // Emit the start code first, without 'variable' in scope.
919 Value *StartVal = Start->codegen();
920 if (!StartVal)
921 return nullptr;
923 // Store the value into the alloca.
924 Builder->CreateStore(StartVal, Alloca);
926 // Make the new basic block for the loop header, inserting after current
927 // block.
928 BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
930 // Insert an explicit fall through from the current block to the LoopBB.
931 Builder->CreateBr(LoopBB);
933 // Start insertion in LoopBB.
934 Builder->SetInsertPoint(LoopBB);
936 // Within the loop, the variable is defined equal to the PHI node. If it
937 // shadows an existing variable, we have to restore it, so save it now.
938 AllocaInst *OldVal = NamedValues[VarName];
939 NamedValues[VarName] = Alloca;
941 // Emit the body of the loop. This, like any other expr, can change the
942 // current BB. Note that we ignore the value computed by the body, but don't
943 // allow an error.
944 if (!Body->codegen())
945 return nullptr;
947 // Emit the step value.
948 Value *StepVal = nullptr;
949 if (Step) {
950 StepVal = Step->codegen();
951 if (!StepVal)
952 return nullptr;
953 } else {
954 // If not specified, use 1.0.
955 StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
958 // Compute the end condition.
959 Value *EndCond = End->codegen();
960 if (!EndCond)
961 return nullptr;
963 // Reload, increment, and restore the alloca. This handles the case where
964 // the body of the loop mutates the variable.
965 Value *CurVar =
966 Builder->CreateLoad(Alloca->getAllocatedType(), Alloca, VarName.c_str());
967 Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar");
968 Builder->CreateStore(NextVar, Alloca);
970 // Convert condition to a bool by comparing non-equal to 0.0.
971 EndCond = Builder->CreateFCmpONE(
972 EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
974 // Create the "after loop" block and insert it.
975 BasicBlock *AfterBB =
976 BasicBlock::Create(*TheContext, "afterloop", TheFunction);
978 // Insert the conditional branch into the end of LoopEndBB.
979 Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
981 // Any new code will be inserted in AfterBB.
982 Builder->SetInsertPoint(AfterBB);
984 // Restore the unshadowed variable.
985 if (OldVal)
986 NamedValues[VarName] = OldVal;
987 else
988 NamedValues.erase(VarName);
990 // for expr always returns 0.0.
991 return Constant::getNullValue(Type::getDoubleTy(*TheContext));
994 Value *VarExprAST::codegen() {
995 std::vector<AllocaInst *> OldBindings;
997 Function *TheFunction = Builder->GetInsertBlock()->getParent();
999 // Register all variables and emit their initializer.
1000 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1001 const std::string &VarName = VarNames[i].first;
1002 ExprAST *Init = VarNames[i].second.get();
1004 // Emit the initializer before adding the variable to scope, this prevents
1005 // the initializer from referencing the variable itself, and permits stuff
1006 // like this:
1007 // var a = 1 in
1008 // var a = a in ... # refers to outer 'a'.
1009 Value *InitVal;
1010 if (Init) {
1011 InitVal = Init->codegen();
1012 if (!InitVal)
1013 return nullptr;
1014 } else { // If not specified, use 0.0.
1015 InitVal = ConstantFP::get(*TheContext, APFloat(0.0));
1018 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1019 Builder->CreateStore(InitVal, Alloca);
1021 // Remember the old variable binding so that we can restore the binding when
1022 // we unrecurse.
1023 OldBindings.push_back(NamedValues[VarName]);
1025 // Remember this binding.
1026 NamedValues[VarName] = Alloca;
1029 // Codegen the body, now that all vars are in scope.
1030 Value *BodyVal = Body->codegen();
1031 if (!BodyVal)
1032 return nullptr;
1034 // Pop all our variables from scope.
1035 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1036 NamedValues[VarNames[i].first] = OldBindings[i];
1038 // Return the body computation.
1039 return BodyVal;
1042 Function *PrototypeAST::codegen() {
1043 // Make the function type: double(double,double) etc.
1044 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
1045 FunctionType *FT =
1046 FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
1048 Function *F =
1049 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1051 // Set names for all arguments.
1052 unsigned Idx = 0;
1053 for (auto &Arg : F->args())
1054 Arg.setName(Args[Idx++]);
1056 return F;
1059 Function *FunctionAST::codegen() {
1060 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1061 // reference to it for use below.
1062 auto &P = *Proto;
1063 FunctionProtos[Proto->getName()] = std::move(Proto);
1064 Function *TheFunction = getFunction(P.getName());
1065 if (!TheFunction)
1066 return nullptr;
1068 // If this is an operator, install it.
1069 if (P.isBinaryOp())
1070 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1072 // Create a new basic block to start insertion into.
1073 BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
1074 Builder->SetInsertPoint(BB);
1076 // Record the function arguments in the NamedValues map.
1077 NamedValues.clear();
1078 for (auto &Arg : TheFunction->args()) {
1079 // Create an alloca for this variable.
1080 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1082 // Store the initial value into the alloca.
1083 Builder->CreateStore(&Arg, Alloca);
1085 // Add arguments to variable symbol table.
1086 NamedValues[std::string(Arg.getName())] = Alloca;
1089 if (Value *RetVal = Body->codegen()) {
1090 // Finish off the function.
1091 Builder->CreateRet(RetVal);
1093 // Validate the generated code, checking for consistency.
1094 verifyFunction(*TheFunction);
1096 // Run the optimizer on the function.
1097 TheFPM->run(*TheFunction);
1099 return TheFunction;
1102 // Error reading body, remove function.
1103 TheFunction->eraseFromParent();
1105 if (P.isBinaryOp())
1106 BinopPrecedence.erase(P.getOperatorName());
1107 return nullptr;
1110 //===----------------------------------------------------------------------===//
1111 // Top-Level parsing and JIT Driver
1112 //===----------------------------------------------------------------------===//
1114 static void InitializeModuleAndPassManager() {
1115 // Open a new module.
1116 TheContext = std::make_unique<LLVMContext>();
1117 TheModule = std::make_unique<Module>("my cool jit", *TheContext);
1118 TheModule->setDataLayout(TheJIT->getDataLayout());
1120 // Create a new builder for the module.
1121 Builder = std::make_unique<IRBuilder<>>(*TheContext);
1123 // Create a new pass manager attached to it.
1124 TheFPM = std::make_unique<legacy::FunctionPassManager>(TheModule.get());
1126 // Promote allocas to registers.
1127 TheFPM->add(createPromoteMemoryToRegisterPass());
1128 // Do simple "peephole" optimizations and bit-twiddling optzns.
1129 TheFPM->add(createInstructionCombiningPass());
1130 // Reassociate expressions.
1131 TheFPM->add(createReassociatePass());
1132 // Eliminate Common SubExpressions.
1133 TheFPM->add(createGVNPass());
1134 // Simplify the control flow graph (deleting unreachable blocks, etc).
1135 TheFPM->add(createCFGSimplificationPass());
1137 TheFPM->doInitialization();
1140 static void HandleDefinition() {
1141 if (auto FnAST = ParseDefinition()) {
1142 if (auto *FnIR = FnAST->codegen()) {
1143 fprintf(stderr, "Read function definition:");
1144 FnIR->print(errs());
1145 fprintf(stderr, "\n");
1146 ExitOnErr(TheJIT->addModule(
1147 ThreadSafeModule(std::move(TheModule), std::move(TheContext))));
1148 InitializeModuleAndPassManager();
1150 } else {
1151 // Skip token for error recovery.
1152 getNextToken();
1156 static void HandleExtern() {
1157 if (auto ProtoAST = ParseExtern()) {
1158 if (auto *FnIR = ProtoAST->codegen()) {
1159 fprintf(stderr, "Read extern: ");
1160 FnIR->print(errs());
1161 fprintf(stderr, "\n");
1162 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1164 } else {
1165 // Skip token for error recovery.
1166 getNextToken();
1170 static void HandleTopLevelExpression() {
1171 // Evaluate a top-level expression into an anonymous function.
1172 if (auto FnAST = ParseTopLevelExpr()) {
1173 if (FnAST->codegen()) {
1174 // Create a ResourceTracker to track JIT'd memory allocated to our
1175 // anonymous expression -- that way we can free it after executing.
1176 auto RT = TheJIT->getMainJITDylib().createResourceTracker();
1178 auto TSM = ThreadSafeModule(std::move(TheModule), std::move(TheContext));
1179 ExitOnErr(TheJIT->addModule(std::move(TSM), RT));
1180 InitializeModuleAndPassManager();
1182 // Search the JIT for the __anon_expr symbol.
1183 auto ExprSymbol = ExitOnErr(TheJIT->lookup("__anon_expr"));
1185 // Get the symbol's address and cast it to the right type (takes no
1186 // arguments, returns a double) so we can call it as a native function.
1187 double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
1188 fprintf(stderr, "Evaluated to %f\n", FP());
1190 // Delete the anonymous expression module from the JIT.
1191 ExitOnErr(RT->remove());
1193 } else {
1194 // Skip token for error recovery.
1195 getNextToken();
1199 /// top ::= definition | external | expression | ';'
1200 static void MainLoop() {
1201 while (true) {
1202 fprintf(stderr, "ready> ");
1203 switch (CurTok) {
1204 case tok_eof:
1205 return;
1206 case ';': // ignore top-level semicolons.
1207 getNextToken();
1208 break;
1209 case tok_def:
1210 HandleDefinition();
1211 break;
1212 case tok_extern:
1213 HandleExtern();
1214 break;
1215 default:
1216 HandleTopLevelExpression();
1217 break;
1222 //===----------------------------------------------------------------------===//
1223 // "Library" functions that can be "extern'd" from user code.
1224 //===----------------------------------------------------------------------===//
1226 #ifdef _WIN32
1227 #define DLLEXPORT __declspec(dllexport)
1228 #else
1229 #define DLLEXPORT
1230 #endif
1232 /// putchard - putchar that takes a double and returns 0.
1233 extern "C" DLLEXPORT double putchard(double X) {
1234 fputc((char)X, stderr);
1235 return 0;
1238 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1239 extern "C" DLLEXPORT double printd(double X) {
1240 fprintf(stderr, "%f\n", X);
1241 return 0;
1244 //===----------------------------------------------------------------------===//
1245 // Main driver code.
1246 //===----------------------------------------------------------------------===//
1248 int main() {
1249 InitializeNativeTarget();
1250 InitializeNativeTargetAsmPrinter();
1251 InitializeNativeTargetAsmParser();
1253 // Install standard binary operators.
1254 // 1 is lowest precedence.
1255 BinopPrecedence['='] = 2;
1256 BinopPrecedence['<'] = 10;
1257 BinopPrecedence['+'] = 20;
1258 BinopPrecedence['-'] = 20;
1259 BinopPrecedence['*'] = 40; // highest.
1261 // Prime the first token.
1262 fprintf(stderr, "ready> ");
1263 getNextToken();
1265 TheJIT = ExitOnErr(KaleidoscopeJIT::Create());
1267 InitializeModuleAndPassManager();
1269 // Run the main "interpreter loop" now.
1270 MainLoop();
1272 return 0;