1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains support for writing Microsoft CodeView debug info.
11 //===----------------------------------------------------------------------===//
13 #include "CodeViewDebug.h"
14 #include "DwarfExpression.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/BinaryFormat/COFF.h"
25 #include "llvm/BinaryFormat/Dwarf.h"
26 #include "llvm/CodeGen/AsmPrinter.h"
27 #include "llvm/CodeGen/LexicalScopes.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/TargetFrameLowering.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/Config/llvm-config.h"
37 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
38 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
39 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
41 #include "llvm/DebugInfo/CodeView/EnumTables.h"
42 #include "llvm/DebugInfo/CodeView/Line.h"
43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
45 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
47 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/GlobalVariable.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/MC/MCAsmInfo.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSectionCOFF.h"
59 #include "llvm/MC/MCStreamer.h"
60 #include "llvm/MC/MCSymbol.h"
61 #include "llvm/Support/BinaryByteStream.h"
62 #include "llvm/Support/BinaryStreamReader.h"
63 #include "llvm/Support/BinaryStreamWriter.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/FormatVariadic.h"
70 #include "llvm/Support/Path.h"
71 #include "llvm/Support/SMLoc.h"
72 #include "llvm/Support/ScopedPrinter.h"
73 #include "llvm/Target/TargetLoweringObjectFile.h"
74 #include "llvm/Target/TargetMachine.h"
83 using namespace llvm::codeview
;
86 class CVMCAdapter
: public CodeViewRecordStreamer
{
88 CVMCAdapter(MCStreamer
&OS
, TypeCollection
&TypeTable
)
89 : OS(&OS
), TypeTable(TypeTable
) {}
91 void emitBytes(StringRef Data
) override
{ OS
->emitBytes(Data
); }
93 void emitIntValue(uint64_t Value
, unsigned Size
) override
{
94 OS
->emitIntValueInHex(Value
, Size
);
97 void emitBinaryData(StringRef Data
) override
{ OS
->emitBinaryData(Data
); }
99 void AddComment(const Twine
&T
) override
{ OS
->AddComment(T
); }
101 void AddRawComment(const Twine
&T
) override
{ OS
->emitRawComment(T
); }
103 bool isVerboseAsm() override
{ return OS
->isVerboseAsm(); }
105 std::string
getTypeName(TypeIndex TI
) override
{
106 std::string TypeName
;
107 if (!TI
.isNoneType()) {
109 TypeName
= std::string(TypeIndex::simpleTypeName(TI
));
111 TypeName
= std::string(TypeTable
.getTypeName(TI
));
117 MCStreamer
*OS
= nullptr;
118 TypeCollection
&TypeTable
;
122 static CPUType
mapArchToCVCPUType(Triple::ArchType Type
) {
124 case Triple::ArchType::x86
:
125 return CPUType::Pentium3
;
126 case Triple::ArchType::x86_64
:
128 case Triple::ArchType::thumb
:
129 // LLVM currently doesn't support Windows CE and so thumb
130 // here is indiscriminately mapped to ARMNT specifically.
131 return CPUType::ARMNT
;
132 case Triple::ArchType::aarch64
:
133 return CPUType::ARM64
;
135 report_fatal_error("target architecture doesn't map to a CodeView CPUType");
139 CodeViewDebug::CodeViewDebug(AsmPrinter
*AP
)
140 : DebugHandlerBase(AP
), OS(*Asm
->OutStreamer
), TypeTable(Allocator
) {}
142 StringRef
CodeViewDebug::getFullFilepath(const DIFile
*File
) {
143 std::string
&Filepath
= FileToFilepathMap
[File
];
144 if (!Filepath
.empty())
147 StringRef Dir
= File
->getDirectory(), Filename
= File
->getFilename();
149 // If this is a Unix-style path, just use it as is. Don't try to canonicalize
150 // it textually because one of the path components could be a symlink.
151 if (Dir
.startswith("/") || Filename
.startswith("/")) {
152 if (llvm::sys::path::is_absolute(Filename
, llvm::sys::path::Style::posix
))
154 Filepath
= std::string(Dir
);
155 if (Dir
.back() != '/')
157 Filepath
+= Filename
;
161 // Clang emits directory and relative filename info into the IR, but CodeView
162 // operates on full paths. We could change Clang to emit full paths too, but
163 // that would increase the IR size and probably not needed for other users.
164 // For now, just concatenate and canonicalize the path here.
165 if (Filename
.find(':') == 1)
166 Filepath
= std::string(Filename
);
168 Filepath
= (Dir
+ "\\" + Filename
).str();
170 // Canonicalize the path. We have to do it textually because we may no longer
171 // have access the file in the filesystem.
172 // First, replace all slashes with backslashes.
173 std::replace(Filepath
.begin(), Filepath
.end(), '/', '\\');
175 // Remove all "\.\" with "\".
177 while ((Cursor
= Filepath
.find("\\.\\", Cursor
)) != std::string::npos
)
178 Filepath
.erase(Cursor
, 2);
180 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original
181 // path should be well-formatted, e.g. start with a drive letter, etc.
183 while ((Cursor
= Filepath
.find("\\..\\", Cursor
)) != std::string::npos
) {
184 // Something's wrong if the path starts with "\..\", abort.
188 size_t PrevSlash
= Filepath
.rfind('\\', Cursor
- 1);
189 if (PrevSlash
== std::string::npos
)
190 // Something's wrong, abort.
193 Filepath
.erase(PrevSlash
, Cursor
+ 3 - PrevSlash
);
194 // The next ".." might be following the one we've just erased.
198 // Remove all duplicate backslashes.
200 while ((Cursor
= Filepath
.find("\\\\", Cursor
)) != std::string::npos
)
201 Filepath
.erase(Cursor
, 1);
206 unsigned CodeViewDebug::maybeRecordFile(const DIFile
*F
) {
207 StringRef FullPath
= getFullFilepath(F
);
208 unsigned NextId
= FileIdMap
.size() + 1;
209 auto Insertion
= FileIdMap
.insert(std::make_pair(FullPath
, NextId
));
210 if (Insertion
.second
) {
211 // We have to compute the full filepath and emit a .cv_file directive.
212 ArrayRef
<uint8_t> ChecksumAsBytes
;
213 FileChecksumKind CSKind
= FileChecksumKind::None
;
214 if (F
->getChecksum()) {
215 std::string Checksum
= fromHex(F
->getChecksum()->Value
);
216 void *CKMem
= OS
.getContext().allocate(Checksum
.size(), 1);
217 memcpy(CKMem
, Checksum
.data(), Checksum
.size());
218 ChecksumAsBytes
= ArrayRef
<uint8_t>(
219 reinterpret_cast<const uint8_t *>(CKMem
), Checksum
.size());
220 switch (F
->getChecksum()->Kind
) {
221 case DIFile::CSK_MD5
:
222 CSKind
= FileChecksumKind::MD5
;
224 case DIFile::CSK_SHA1
:
225 CSKind
= FileChecksumKind::SHA1
;
227 case DIFile::CSK_SHA256
:
228 CSKind
= FileChecksumKind::SHA256
;
232 bool Success
= OS
.EmitCVFileDirective(NextId
, FullPath
, ChecksumAsBytes
,
233 static_cast<unsigned>(CSKind
));
235 assert(Success
&& ".cv_file directive failed");
237 return Insertion
.first
->second
;
240 CodeViewDebug::InlineSite
&
241 CodeViewDebug::getInlineSite(const DILocation
*InlinedAt
,
242 const DISubprogram
*Inlinee
) {
243 auto SiteInsertion
= CurFn
->InlineSites
.insert({InlinedAt
, InlineSite()});
244 InlineSite
*Site
= &SiteInsertion
.first
->second
;
245 if (SiteInsertion
.second
) {
246 unsigned ParentFuncId
= CurFn
->FuncId
;
247 if (const DILocation
*OuterIA
= InlinedAt
->getInlinedAt())
249 getInlineSite(OuterIA
, InlinedAt
->getScope()->getSubprogram())
252 Site
->SiteFuncId
= NextFuncId
++;
253 OS
.EmitCVInlineSiteIdDirective(
254 Site
->SiteFuncId
, ParentFuncId
, maybeRecordFile(InlinedAt
->getFile()),
255 InlinedAt
->getLine(), InlinedAt
->getColumn(), SMLoc());
256 Site
->Inlinee
= Inlinee
;
257 InlinedSubprograms
.insert(Inlinee
);
258 getFuncIdForSubprogram(Inlinee
);
263 static StringRef
getPrettyScopeName(const DIScope
*Scope
) {
264 StringRef ScopeName
= Scope
->getName();
265 if (!ScopeName
.empty())
268 switch (Scope
->getTag()) {
269 case dwarf::DW_TAG_enumeration_type
:
270 case dwarf::DW_TAG_class_type
:
271 case dwarf::DW_TAG_structure_type
:
272 case dwarf::DW_TAG_union_type
:
273 return "<unnamed-tag>";
274 case dwarf::DW_TAG_namespace
:
275 return "`anonymous namespace'";
281 const DISubprogram
*CodeViewDebug::collectParentScopeNames(
282 const DIScope
*Scope
, SmallVectorImpl
<StringRef
> &QualifiedNameComponents
) {
283 const DISubprogram
*ClosestSubprogram
= nullptr;
284 while (Scope
!= nullptr) {
285 if (ClosestSubprogram
== nullptr)
286 ClosestSubprogram
= dyn_cast
<DISubprogram
>(Scope
);
288 // If a type appears in a scope chain, make sure it gets emitted. The
289 // frontend will be responsible for deciding if this should be a forward
290 // declaration or a complete type.
291 if (const auto *Ty
= dyn_cast
<DICompositeType
>(Scope
))
292 DeferredCompleteTypes
.push_back(Ty
);
294 StringRef ScopeName
= getPrettyScopeName(Scope
);
295 if (!ScopeName
.empty())
296 QualifiedNameComponents
.push_back(ScopeName
);
297 Scope
= Scope
->getScope();
299 return ClosestSubprogram
;
302 static std::string
formatNestedName(ArrayRef
<StringRef
> QualifiedNameComponents
,
303 StringRef TypeName
) {
304 std::string FullyQualifiedName
;
305 for (StringRef QualifiedNameComponent
:
306 llvm::reverse(QualifiedNameComponents
)) {
307 FullyQualifiedName
.append(std::string(QualifiedNameComponent
));
308 FullyQualifiedName
.append("::");
310 FullyQualifiedName
.append(std::string(TypeName
));
311 return FullyQualifiedName
;
314 struct CodeViewDebug::TypeLoweringScope
{
315 TypeLoweringScope(CodeViewDebug
&CVD
) : CVD(CVD
) { ++CVD
.TypeEmissionLevel
; }
316 ~TypeLoweringScope() {
317 // Don't decrement TypeEmissionLevel until after emitting deferred types, so
318 // inner TypeLoweringScopes don't attempt to emit deferred types.
319 if (CVD
.TypeEmissionLevel
== 1)
320 CVD
.emitDeferredCompleteTypes();
321 --CVD
.TypeEmissionLevel
;
326 std::string
CodeViewDebug::getFullyQualifiedName(const DIScope
*Scope
,
328 // Ensure types in the scope chain are emitted as soon as possible.
329 // This can create otherwise a situation where S_UDTs are emitted while
330 // looping in emitDebugInfoForUDTs.
331 TypeLoweringScope
S(*this);
332 SmallVector
<StringRef
, 5> QualifiedNameComponents
;
333 collectParentScopeNames(Scope
, QualifiedNameComponents
);
334 return formatNestedName(QualifiedNameComponents
, Name
);
337 std::string
CodeViewDebug::getFullyQualifiedName(const DIScope
*Ty
) {
338 const DIScope
*Scope
= Ty
->getScope();
339 return getFullyQualifiedName(Scope
, getPrettyScopeName(Ty
));
342 TypeIndex
CodeViewDebug::getScopeIndex(const DIScope
*Scope
) {
343 // No scope means global scope and that uses the zero index.
345 // We also use zero index when the scope is a DISubprogram
346 // to suppress the emission of LF_STRING_ID for the function,
347 // which can trigger a link-time error with the linker in
348 // VS2019 version 16.11.2 or newer.
349 // Note, however, skipping the debug info emission for the DISubprogram
350 // is a temporary fix. The root issue here is that we need to figure out
351 // the proper way to encode a function nested in another function
352 // (as introduced by the Fortran 'contains' keyword) in CodeView.
353 if (!Scope
|| isa
<DIFile
>(Scope
) || isa
<DISubprogram
>(Scope
))
356 assert(!isa
<DIType
>(Scope
) && "shouldn't make a namespace scope for a type");
358 // Check if we've already translated this scope.
359 auto I
= TypeIndices
.find({Scope
, nullptr});
360 if (I
!= TypeIndices
.end())
363 // Build the fully qualified name of the scope.
364 std::string ScopeName
= getFullyQualifiedName(Scope
);
365 StringIdRecord
SID(TypeIndex(), ScopeName
);
366 auto TI
= TypeTable
.writeLeafType(SID
);
367 return recordTypeIndexForDINode(Scope
, TI
);
370 static StringRef
removeTemplateArgs(StringRef Name
) {
371 // Remove template args from the display name. Assume that the template args
372 // are the last thing in the name.
373 if (Name
.empty() || Name
.back() != '>')
376 int OpenBrackets
= 0;
377 for (int i
= Name
.size() - 1; i
>= 0; --i
) {
380 else if (Name
[i
] == '<') {
382 if (OpenBrackets
== 0)
383 return Name
.substr(0, i
);
389 TypeIndex
CodeViewDebug::getFuncIdForSubprogram(const DISubprogram
*SP
) {
392 // Check if we've already translated this subprogram.
393 auto I
= TypeIndices
.find({SP
, nullptr});
394 if (I
!= TypeIndices
.end())
397 // The display name includes function template arguments. Drop them to match
398 // MSVC. We need to have the template arguments in the DISubprogram name
399 // because they are used in other symbol records, such as S_GPROC32_IDs.
400 StringRef DisplayName
= removeTemplateArgs(SP
->getName());
402 const DIScope
*Scope
= SP
->getScope();
404 if (const auto *Class
= dyn_cast_or_null
<DICompositeType
>(Scope
)) {
405 // If the scope is a DICompositeType, then this must be a method. Member
406 // function types take some special handling, and require access to the
408 TypeIndex ClassType
= getTypeIndex(Class
);
409 MemberFuncIdRecord
MFuncId(ClassType
, getMemberFunctionType(SP
, Class
),
411 TI
= TypeTable
.writeLeafType(MFuncId
);
413 // Otherwise, this must be a free function.
414 TypeIndex ParentScope
= getScopeIndex(Scope
);
415 FuncIdRecord
FuncId(ParentScope
, getTypeIndex(SP
->getType()), DisplayName
);
416 TI
= TypeTable
.writeLeafType(FuncId
);
419 return recordTypeIndexForDINode(SP
, TI
);
422 static bool isNonTrivial(const DICompositeType
*DCTy
) {
423 return ((DCTy
->getFlags() & DINode::FlagNonTrivial
) == DINode::FlagNonTrivial
);
426 static FunctionOptions
427 getFunctionOptions(const DISubroutineType
*Ty
,
428 const DICompositeType
*ClassTy
= nullptr,
429 StringRef SPName
= StringRef("")) {
430 FunctionOptions FO
= FunctionOptions::None
;
431 const DIType
*ReturnTy
= nullptr;
432 if (auto TypeArray
= Ty
->getTypeArray()) {
433 if (TypeArray
.size())
434 ReturnTy
= TypeArray
[0];
437 // Add CxxReturnUdt option to functions that return nontrivial record types
438 // or methods that return record types.
439 if (auto *ReturnDCTy
= dyn_cast_or_null
<DICompositeType
>(ReturnTy
))
440 if (isNonTrivial(ReturnDCTy
) || ClassTy
)
441 FO
|= FunctionOptions::CxxReturnUdt
;
443 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
444 if (ClassTy
&& isNonTrivial(ClassTy
) && SPName
== ClassTy
->getName()) {
445 FO
|= FunctionOptions::Constructor
;
447 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
453 TypeIndex
CodeViewDebug::getMemberFunctionType(const DISubprogram
*SP
,
454 const DICompositeType
*Class
) {
455 // Always use the method declaration as the key for the function type. The
456 // method declaration contains the this adjustment.
457 if (SP
->getDeclaration())
458 SP
= SP
->getDeclaration();
459 assert(!SP
->getDeclaration() && "should use declaration as key");
461 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
462 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
463 auto I
= TypeIndices
.find({SP
, Class
});
464 if (I
!= TypeIndices
.end())
467 // Make sure complete type info for the class is emitted *after* the member
468 // function type, as the complete class type is likely to reference this
469 // member function type.
470 TypeLoweringScope
S(*this);
471 const bool IsStaticMethod
= (SP
->getFlags() & DINode::FlagStaticMember
) != 0;
473 FunctionOptions FO
= getFunctionOptions(SP
->getType(), Class
, SP
->getName());
474 TypeIndex TI
= lowerTypeMemberFunction(
475 SP
->getType(), Class
, SP
->getThisAdjustment(), IsStaticMethod
, FO
);
476 return recordTypeIndexForDINode(SP
, TI
, Class
);
479 TypeIndex
CodeViewDebug::recordTypeIndexForDINode(const DINode
*Node
,
481 const DIType
*ClassTy
) {
482 auto InsertResult
= TypeIndices
.insert({{Node
, ClassTy
}, TI
});
484 assert(InsertResult
.second
&& "DINode was already assigned a type index");
488 unsigned CodeViewDebug::getPointerSizeInBytes() {
489 return MMI
->getModule()->getDataLayout().getPointerSizeInBits() / 8;
492 void CodeViewDebug::recordLocalVariable(LocalVariable
&&Var
,
493 const LexicalScope
*LS
) {
494 if (const DILocation
*InlinedAt
= LS
->getInlinedAt()) {
495 // This variable was inlined. Associate it with the InlineSite.
496 const DISubprogram
*Inlinee
= Var
.DIVar
->getScope()->getSubprogram();
497 InlineSite
&Site
= getInlineSite(InlinedAt
, Inlinee
);
498 Site
.InlinedLocals
.emplace_back(Var
);
500 // This variable goes into the corresponding lexical scope.
501 ScopeVariables
[LS
].emplace_back(Var
);
505 static void addLocIfNotPresent(SmallVectorImpl
<const DILocation
*> &Locs
,
506 const DILocation
*Loc
) {
507 if (!llvm::is_contained(Locs
, Loc
))
511 void CodeViewDebug::maybeRecordLocation(const DebugLoc
&DL
,
512 const MachineFunction
*MF
) {
513 // Skip this instruction if it has the same location as the previous one.
514 if (!DL
|| DL
== PrevInstLoc
)
517 const DIScope
*Scope
= DL
.get()->getScope();
521 // Skip this line if it is longer than the maximum we can record.
522 LineInfo
LI(DL
.getLine(), DL
.getLine(), /*IsStatement=*/true);
523 if (LI
.getStartLine() != DL
.getLine() || LI
.isAlwaysStepInto() ||
524 LI
.isNeverStepInto())
527 ColumnInfo
CI(DL
.getCol(), /*EndColumn=*/0);
528 if (CI
.getStartColumn() != DL
.getCol())
531 if (!CurFn
->HaveLineInfo
)
532 CurFn
->HaveLineInfo
= true;
534 if (PrevInstLoc
.get() && PrevInstLoc
->getFile() == DL
->getFile())
535 FileId
= CurFn
->LastFileId
;
537 FileId
= CurFn
->LastFileId
= maybeRecordFile(DL
->getFile());
540 unsigned FuncId
= CurFn
->FuncId
;
541 if (const DILocation
*SiteLoc
= DL
->getInlinedAt()) {
542 const DILocation
*Loc
= DL
.get();
544 // If this location was actually inlined from somewhere else, give it the ID
545 // of the inline call site.
547 getInlineSite(SiteLoc
, Loc
->getScope()->getSubprogram()).SiteFuncId
;
549 // Ensure we have links in the tree of inline call sites.
550 bool FirstLoc
= true;
551 while ((SiteLoc
= Loc
->getInlinedAt())) {
553 getInlineSite(SiteLoc
, Loc
->getScope()->getSubprogram());
555 addLocIfNotPresent(Site
.ChildSites
, Loc
);
559 addLocIfNotPresent(CurFn
->ChildSites
, Loc
);
562 OS
.emitCVLocDirective(FuncId
, FileId
, DL
.getLine(), DL
.getCol(),
563 /*PrologueEnd=*/false, /*IsStmt=*/false,
564 DL
->getFilename(), SMLoc());
567 void CodeViewDebug::emitCodeViewMagicVersion() {
568 OS
.emitValueToAlignment(4);
569 OS
.AddComment("Debug section magic");
570 OS
.emitInt32(COFF::DEBUG_SECTION_MAGIC
);
573 static SourceLanguage
MapDWLangToCVLang(unsigned DWLang
) {
575 case dwarf::DW_LANG_C
:
576 case dwarf::DW_LANG_C89
:
577 case dwarf::DW_LANG_C99
:
578 case dwarf::DW_LANG_C11
:
579 case dwarf::DW_LANG_ObjC
:
580 return SourceLanguage::C
;
581 case dwarf::DW_LANG_C_plus_plus
:
582 case dwarf::DW_LANG_C_plus_plus_03
:
583 case dwarf::DW_LANG_C_plus_plus_11
:
584 case dwarf::DW_LANG_C_plus_plus_14
:
585 return SourceLanguage::Cpp
;
586 case dwarf::DW_LANG_Fortran77
:
587 case dwarf::DW_LANG_Fortran90
:
588 case dwarf::DW_LANG_Fortran95
:
589 case dwarf::DW_LANG_Fortran03
:
590 case dwarf::DW_LANG_Fortran08
:
591 return SourceLanguage::Fortran
;
592 case dwarf::DW_LANG_Pascal83
:
593 return SourceLanguage::Pascal
;
594 case dwarf::DW_LANG_Cobol74
:
595 case dwarf::DW_LANG_Cobol85
:
596 return SourceLanguage::Cobol
;
597 case dwarf::DW_LANG_Java
:
598 return SourceLanguage::Java
;
599 case dwarf::DW_LANG_D
:
600 return SourceLanguage::D
;
601 case dwarf::DW_LANG_Swift
:
602 return SourceLanguage::Swift
;
603 case dwarf::DW_LANG_Rust
:
604 return SourceLanguage::Rust
;
606 // There's no CodeView representation for this language, and CV doesn't
607 // have an "unknown" option for the language field, so we'll use MASM,
608 // as it's very low level.
609 return SourceLanguage::Masm
;
613 void CodeViewDebug::beginModule(Module
*M
) {
614 // If module doesn't have named metadata anchors or COFF debug section
615 // is not available, skip any debug info related stuff.
616 NamedMDNode
*CUs
= M
->getNamedMetadata("llvm.dbg.cu");
617 if (!CUs
|| !Asm
->getObjFileLowering().getCOFFDebugSymbolsSection()) {
621 // Tell MMI that we have and need debug info.
622 MMI
->setDebugInfoAvailability(true);
624 TheCPU
= mapArchToCVCPUType(Triple(M
->getTargetTriple()).getArch());
626 // Get the current source language.
627 const MDNode
*Node
= *CUs
->operands().begin();
628 const auto *CU
= cast
<DICompileUnit
>(Node
);
630 CurrentSourceLanguage
= MapDWLangToCVLang(CU
->getSourceLanguage());
632 collectGlobalVariableInfo();
634 // Check if we should emit type record hashes.
636 mdconst::extract_or_null
<ConstantInt
>(M
->getModuleFlag("CodeViewGHash"));
637 EmitDebugGlobalHashes
= GH
&& !GH
->isZero();
640 void CodeViewDebug::endModule() {
641 if (!Asm
|| !MMI
->hasDebugInfo())
644 // The COFF .debug$S section consists of several subsections, each starting
645 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
646 // of the payload followed by the payload itself. The subsections are 4-byte
649 // Use the generic .debug$S section, and make a subsection for all the inlined
651 switchToDebugSectionForSymbol(nullptr);
653 MCSymbol
*CompilerInfo
= beginCVSubsection(DebugSubsectionKind::Symbols
);
655 emitCompilerInformation();
656 endCVSubsection(CompilerInfo
);
658 emitInlineeLinesSubsection();
660 // Emit per-function debug information.
661 for (auto &P
: FnDebugInfo
)
662 if (!P
.first
->isDeclarationForLinker())
663 emitDebugInfoForFunction(P
.first
, *P
.second
);
665 // Get types used by globals without emitting anything.
666 // This is meant to collect all static const data members so they can be
667 // emitted as globals.
668 collectDebugInfoForGlobals();
670 // Emit retained types.
671 emitDebugInfoForRetainedTypes();
673 // Emit global variable debug information.
674 setCurrentSubprogram(nullptr);
675 emitDebugInfoForGlobals();
677 // Switch back to the generic .debug$S section after potentially processing
678 // comdat symbol sections.
679 switchToDebugSectionForSymbol(nullptr);
681 // Emit UDT records for any types used by global variables.
682 if (!GlobalUDTs
.empty()) {
683 MCSymbol
*SymbolsEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
684 emitDebugInfoForUDTs(GlobalUDTs
);
685 endCVSubsection(SymbolsEnd
);
688 // This subsection holds a file index to offset in string table table.
689 OS
.AddComment("File index to string table offset subsection");
690 OS
.emitCVFileChecksumsDirective();
692 // This subsection holds the string table.
693 OS
.AddComment("String table");
694 OS
.emitCVStringTableDirective();
696 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
697 // subsection in the generic .debug$S section at the end. There is no
698 // particular reason for this ordering other than to match MSVC.
701 // Emit type information and hashes last, so that any types we translate while
702 // emitting function info are included.
703 emitTypeInformation();
705 if (EmitDebugGlobalHashes
)
706 emitTypeGlobalHashes();
712 emitNullTerminatedSymbolName(MCStreamer
&OS
, StringRef S
,
713 unsigned MaxFixedRecordLength
= 0xF00) {
714 // The maximum CV record length is 0xFF00. Most of the strings we emit appear
715 // after a fixed length portion of the record. The fixed length portion should
716 // always be less than 0xF00 (3840) bytes, so truncate the string so that the
717 // overall record size is less than the maximum allowed.
718 SmallString
<32> NullTerminatedString(
719 S
.take_front(MaxRecordLength
- MaxFixedRecordLength
- 1));
720 NullTerminatedString
.push_back('\0');
721 OS
.emitBytes(NullTerminatedString
);
724 void CodeViewDebug::emitTypeInformation() {
725 if (TypeTable
.empty())
728 // Start the .debug$T or .debug$P section with 0x4.
729 OS
.SwitchSection(Asm
->getObjFileLowering().getCOFFDebugTypesSection());
730 emitCodeViewMagicVersion();
732 TypeTableCollection
Table(TypeTable
.records());
733 TypeVisitorCallbackPipeline Pipeline
;
735 // To emit type record using Codeview MCStreamer adapter
736 CVMCAdapter
CVMCOS(OS
, Table
);
737 TypeRecordMapping
typeMapping(CVMCOS
);
738 Pipeline
.addCallbackToPipeline(typeMapping
);
740 Optional
<TypeIndex
> B
= Table
.getFirst();
742 // This will fail if the record data is invalid.
743 CVType Record
= Table
.getType(*B
);
745 Error E
= codeview::visitTypeRecord(Record
, *B
, Pipeline
);
748 logAllUnhandledErrors(std::move(E
), errs(), "error: ");
749 llvm_unreachable("produced malformed type record");
752 B
= Table
.getNext(*B
);
756 void CodeViewDebug::emitTypeGlobalHashes() {
757 if (TypeTable
.empty())
760 // Start the .debug$H section with the version and hash algorithm, currently
761 // hardcoded to version 0, SHA1.
762 OS
.SwitchSection(Asm
->getObjFileLowering().getCOFFGlobalTypeHashesSection());
764 OS
.emitValueToAlignment(4);
765 OS
.AddComment("Magic");
766 OS
.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC
);
767 OS
.AddComment("Section Version");
769 OS
.AddComment("Hash Algorithm");
770 OS
.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8
));
772 TypeIndex
TI(TypeIndex::FirstNonSimpleIndex
);
773 for (const auto &GHR
: TypeTable
.hashes()) {
774 if (OS
.isVerboseAsm()) {
775 // Emit an EOL-comment describing which TypeIndex this hash corresponds
776 // to, as well as the stringified SHA1 hash.
777 SmallString
<32> Comment
;
778 raw_svector_ostream
CommentOS(Comment
);
779 CommentOS
<< formatv("{0:X+} [{1}]", TI
.getIndex(), GHR
);
780 OS
.AddComment(Comment
);
783 assert(GHR
.Hash
.size() == 8);
784 StringRef
S(reinterpret_cast<const char *>(GHR
.Hash
.data()),
786 OS
.emitBinaryData(S
);
790 void CodeViewDebug::emitObjName() {
791 MCSymbol
*CompilerEnd
= beginSymbolRecord(SymbolKind::S_OBJNAME
);
793 StringRef
PathRef(Asm
->TM
.Options
.ObjectFilenameForDebug
);
794 llvm::SmallString
<256> PathStore(PathRef
);
796 if (PathRef
.empty() || PathRef
== "-") {
797 // Don't emit the filename if we're writing to stdout or to /dev/null.
800 llvm::sys::path::remove_dots(PathStore
, /*remove_dot_dot=*/true);
804 OS
.AddComment("Signature");
805 OS
.emitIntValue(0, 4);
807 OS
.AddComment("Object name");
808 emitNullTerminatedSymbolName(OS
, PathRef
);
810 endSymbolRecord(CompilerEnd
);
817 } // end anonymous namespace
819 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
820 // the version number.
821 static Version
parseVersion(StringRef Name
) {
824 for (const char C
: Name
) {
827 V
.Part
[N
] += C
- '0';
828 } else if (C
== '.') {
838 void CodeViewDebug::emitCompilerInformation() {
839 MCSymbol
*CompilerEnd
= beginSymbolRecord(SymbolKind::S_COMPILE3
);
842 // The low byte of the flags indicates the source language.
843 Flags
= CurrentSourceLanguage
;
844 // TODO: Figure out which other flags need to be set.
845 if (MMI
->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) {
846 Flags
|= static_cast<uint32_t>(CompileSym3Flags::PGO
);
849 OS
.AddComment("Flags and language");
852 OS
.AddComment("CPUType");
853 OS
.emitInt16(static_cast<uint64_t>(TheCPU
));
855 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
856 const MDNode
*Node
= *CUs
->operands().begin();
857 const auto *CU
= cast
<DICompileUnit
>(Node
);
859 StringRef CompilerVersion
= CU
->getProducer();
860 Version FrontVer
= parseVersion(CompilerVersion
);
861 OS
.AddComment("Frontend version");
862 for (int N
: FrontVer
.Part
) {
863 N
= std::min
<int>(N
, std::numeric_limits
<uint16_t>::max());
867 // Some Microsoft tools, like Binscope, expect a backend version number of at
868 // least 8.something, so we'll coerce the LLVM version into a form that
869 // guarantees it'll be big enough without really lying about the version.
870 int Major
= 1000 * LLVM_VERSION_MAJOR
+
871 10 * LLVM_VERSION_MINOR
+
873 // Clamp it for builds that use unusually large version numbers.
874 Major
= std::min
<int>(Major
, std::numeric_limits
<uint16_t>::max());
875 Version BackVer
= {{ Major
, 0, 0, 0 }};
876 OS
.AddComment("Backend version");
877 for (int N
: BackVer
.Part
)
880 OS
.AddComment("Null-terminated compiler version string");
881 emitNullTerminatedSymbolName(OS
, CompilerVersion
);
883 endSymbolRecord(CompilerEnd
);
886 static TypeIndex
getStringIdTypeIdx(GlobalTypeTableBuilder
&TypeTable
,
888 StringIdRecord
SIR(TypeIndex(0x0), S
);
889 return TypeTable
.writeLeafType(SIR
);
892 void CodeViewDebug::emitBuildInfo() {
893 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
894 // build info. The known prefix is:
895 // - Absolute path of current directory
897 // - Main source file path, relative to CWD or absolute
898 // - Type server PDB file
899 // - Canonical compiler command line
900 // If frontend and backend compilation are separated (think llc or LTO), it's
901 // not clear if the compiler path should refer to the executable for the
902 // frontend or the backend. Leave it blank for now.
903 TypeIndex BuildInfoArgs
[BuildInfoRecord::MaxArgs
] = {};
904 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
905 const MDNode
*Node
= *CUs
->operands().begin(); // FIXME: Multiple CUs.
906 const auto *CU
= cast
<DICompileUnit
>(Node
);
907 const DIFile
*MainSourceFile
= CU
->getFile();
908 BuildInfoArgs
[BuildInfoRecord::CurrentDirectory
] =
909 getStringIdTypeIdx(TypeTable
, MainSourceFile
->getDirectory());
910 BuildInfoArgs
[BuildInfoRecord::SourceFile
] =
911 getStringIdTypeIdx(TypeTable
, MainSourceFile
->getFilename());
912 // FIXME: Path to compiler and command line. PDB is intentionally blank unless
913 // we implement /Zi type servers.
914 BuildInfoRecord
BIR(BuildInfoArgs
);
915 TypeIndex BuildInfoIndex
= TypeTable
.writeLeafType(BIR
);
917 // Make a new .debug$S subsection for the S_BUILDINFO record, which points
918 // from the module symbols into the type stream.
919 MCSymbol
*BISubsecEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
920 MCSymbol
*BIEnd
= beginSymbolRecord(SymbolKind::S_BUILDINFO
);
921 OS
.AddComment("LF_BUILDINFO index");
922 OS
.emitInt32(BuildInfoIndex
.getIndex());
923 endSymbolRecord(BIEnd
);
924 endCVSubsection(BISubsecEnd
);
927 void CodeViewDebug::emitInlineeLinesSubsection() {
928 if (InlinedSubprograms
.empty())
931 OS
.AddComment("Inlinee lines subsection");
932 MCSymbol
*InlineEnd
= beginCVSubsection(DebugSubsectionKind::InlineeLines
);
934 // We emit the checksum info for files. This is used by debuggers to
935 // determine if a pdb matches the source before loading it. Visual Studio,
936 // for instance, will display a warning that the breakpoints are not valid if
937 // the pdb does not match the source.
938 OS
.AddComment("Inlinee lines signature");
939 OS
.emitInt32(unsigned(InlineeLinesSignature::Normal
));
941 for (const DISubprogram
*SP
: InlinedSubprograms
) {
942 assert(TypeIndices
.count({SP
, nullptr}));
943 TypeIndex InlineeIdx
= TypeIndices
[{SP
, nullptr}];
946 unsigned FileId
= maybeRecordFile(SP
->getFile());
947 OS
.AddComment("Inlined function " + SP
->getName() + " starts at " +
948 SP
->getFilename() + Twine(':') + Twine(SP
->getLine()));
950 OS
.AddComment("Type index of inlined function");
951 OS
.emitInt32(InlineeIdx
.getIndex());
952 OS
.AddComment("Offset into filechecksum table");
953 OS
.emitCVFileChecksumOffsetDirective(FileId
);
954 OS
.AddComment("Starting line number");
955 OS
.emitInt32(SP
->getLine());
958 endCVSubsection(InlineEnd
);
961 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo
&FI
,
962 const DILocation
*InlinedAt
,
963 const InlineSite
&Site
) {
964 assert(TypeIndices
.count({Site
.Inlinee
, nullptr}));
965 TypeIndex InlineeIdx
= TypeIndices
[{Site
.Inlinee
, nullptr}];
968 MCSymbol
*InlineEnd
= beginSymbolRecord(SymbolKind::S_INLINESITE
);
970 OS
.AddComment("PtrParent");
972 OS
.AddComment("PtrEnd");
974 OS
.AddComment("Inlinee type index");
975 OS
.emitInt32(InlineeIdx
.getIndex());
977 unsigned FileId
= maybeRecordFile(Site
.Inlinee
->getFile());
978 unsigned StartLineNum
= Site
.Inlinee
->getLine();
980 OS
.emitCVInlineLinetableDirective(Site
.SiteFuncId
, FileId
, StartLineNum
,
983 endSymbolRecord(InlineEnd
);
985 emitLocalVariableList(FI
, Site
.InlinedLocals
);
987 // Recurse on child inlined call sites before closing the scope.
988 for (const DILocation
*ChildSite
: Site
.ChildSites
) {
989 auto I
= FI
.InlineSites
.find(ChildSite
);
990 assert(I
!= FI
.InlineSites
.end() &&
991 "child site not in function inline site map");
992 emitInlinedCallSite(FI
, ChildSite
, I
->second
);
996 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END
);
999 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol
*GVSym
) {
1000 // If we have a symbol, it may be in a section that is COMDAT. If so, find the
1001 // comdat key. A section may be comdat because of -ffunction-sections or
1002 // because it is comdat in the IR.
1003 MCSectionCOFF
*GVSec
=
1004 GVSym
? dyn_cast
<MCSectionCOFF
>(&GVSym
->getSection()) : nullptr;
1005 const MCSymbol
*KeySym
= GVSec
? GVSec
->getCOMDATSymbol() : nullptr;
1007 MCSectionCOFF
*DebugSec
= cast
<MCSectionCOFF
>(
1008 Asm
->getObjFileLowering().getCOFFDebugSymbolsSection());
1009 DebugSec
= OS
.getContext().getAssociativeCOFFSection(DebugSec
, KeySym
);
1011 OS
.SwitchSection(DebugSec
);
1013 // Emit the magic version number if this is the first time we've switched to
1015 if (ComdatDebugSections
.insert(DebugSec
).second
)
1016 emitCodeViewMagicVersion();
1019 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
1020 // The only supported thunk ordinal is currently the standard type.
1021 void CodeViewDebug::emitDebugInfoForThunk(const Function
*GV
,
1023 const MCSymbol
*Fn
) {
1024 std::string FuncName
=
1025 std::string(GlobalValue::dropLLVMManglingEscape(GV
->getName()));
1026 const ThunkOrdinal ordinal
= ThunkOrdinal::Standard
; // Only supported kind.
1028 OS
.AddComment("Symbol subsection for " + Twine(FuncName
));
1029 MCSymbol
*SymbolsEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
1032 MCSymbol
*ThunkRecordEnd
= beginSymbolRecord(SymbolKind::S_THUNK32
);
1033 OS
.AddComment("PtrParent");
1035 OS
.AddComment("PtrEnd");
1037 OS
.AddComment("PtrNext");
1039 OS
.AddComment("Thunk section relative address");
1040 OS
.EmitCOFFSecRel32(Fn
, /*Offset=*/0);
1041 OS
.AddComment("Thunk section index");
1042 OS
.EmitCOFFSectionIndex(Fn
);
1043 OS
.AddComment("Code size");
1044 OS
.emitAbsoluteSymbolDiff(FI
.End
, Fn
, 2);
1045 OS
.AddComment("Ordinal");
1046 OS
.emitInt8(unsigned(ordinal
));
1047 OS
.AddComment("Function name");
1048 emitNullTerminatedSymbolName(OS
, FuncName
);
1049 // Additional fields specific to the thunk ordinal would go here.
1050 endSymbolRecord(ThunkRecordEnd
);
1052 // Local variables/inlined routines are purposely omitted here. The point of
1053 // marking this as a thunk is so Visual Studio will NOT stop in this routine.
1055 // Emit S_PROC_ID_END
1056 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END
);
1058 endCVSubsection(SymbolsEnd
);
1061 void CodeViewDebug::emitDebugInfoForFunction(const Function
*GV
,
1063 // For each function there is a separate subsection which holds the PC to
1065 const MCSymbol
*Fn
= Asm
->getSymbol(GV
);
1068 // Switch to the to a comdat section, if appropriate.
1069 switchToDebugSectionForSymbol(Fn
);
1071 std::string FuncName
;
1072 auto *SP
= GV
->getSubprogram();
1074 setCurrentSubprogram(SP
);
1076 if (SP
->isThunk()) {
1077 emitDebugInfoForThunk(GV
, FI
, Fn
);
1081 // If we have a display name, build the fully qualified name by walking the
1083 if (!SP
->getName().empty())
1084 FuncName
= getFullyQualifiedName(SP
->getScope(), SP
->getName());
1086 // If our DISubprogram name is empty, use the mangled name.
1087 if (FuncName
.empty())
1088 FuncName
= std::string(GlobalValue::dropLLVMManglingEscape(GV
->getName()));
1090 // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1091 if (Triple(MMI
->getModule()->getTargetTriple()).getArch() == Triple::x86
)
1092 OS
.EmitCVFPOData(Fn
);
1094 // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1095 OS
.AddComment("Symbol subsection for " + Twine(FuncName
));
1096 MCSymbol
*SymbolsEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
1098 SymbolKind ProcKind
= GV
->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1099 : SymbolKind::S_GPROC32_ID
;
1100 MCSymbol
*ProcRecordEnd
= beginSymbolRecord(ProcKind
);
1102 // These fields are filled in by tools like CVPACK which run after the fact.
1103 OS
.AddComment("PtrParent");
1105 OS
.AddComment("PtrEnd");
1107 OS
.AddComment("PtrNext");
1109 // This is the important bit that tells the debugger where the function
1110 // code is located and what's its size:
1111 OS
.AddComment("Code size");
1112 OS
.emitAbsoluteSymbolDiff(FI
.End
, Fn
, 4);
1113 OS
.AddComment("Offset after prologue");
1115 OS
.AddComment("Offset before epilogue");
1117 OS
.AddComment("Function type index");
1118 OS
.emitInt32(getFuncIdForSubprogram(GV
->getSubprogram()).getIndex());
1119 OS
.AddComment("Function section relative address");
1120 OS
.EmitCOFFSecRel32(Fn
, /*Offset=*/0);
1121 OS
.AddComment("Function section index");
1122 OS
.EmitCOFFSectionIndex(Fn
);
1123 OS
.AddComment("Flags");
1125 // Emit the function display name as a null-terminated string.
1126 OS
.AddComment("Function name");
1127 // Truncate the name so we won't overflow the record length field.
1128 emitNullTerminatedSymbolName(OS
, FuncName
);
1129 endSymbolRecord(ProcRecordEnd
);
1131 MCSymbol
*FrameProcEnd
= beginSymbolRecord(SymbolKind::S_FRAMEPROC
);
1132 // Subtract out the CSR size since MSVC excludes that and we include it.
1133 OS
.AddComment("FrameSize");
1134 OS
.emitInt32(FI
.FrameSize
- FI
.CSRSize
);
1135 OS
.AddComment("Padding");
1137 OS
.AddComment("Offset of padding");
1139 OS
.AddComment("Bytes of callee saved registers");
1140 OS
.emitInt32(FI
.CSRSize
);
1141 OS
.AddComment("Exception handler offset");
1143 OS
.AddComment("Exception handler section");
1145 OS
.AddComment("Flags (defines frame register)");
1146 OS
.emitInt32(uint32_t(FI
.FrameProcOpts
));
1147 endSymbolRecord(FrameProcEnd
);
1149 emitLocalVariableList(FI
, FI
.Locals
);
1150 emitGlobalVariableList(FI
.Globals
);
1151 emitLexicalBlockList(FI
.ChildBlocks
, FI
);
1153 // Emit inlined call site information. Only emit functions inlined directly
1154 // into the parent function. We'll emit the other sites recursively as part
1155 // of their parent inline site.
1156 for (const DILocation
*InlinedAt
: FI
.ChildSites
) {
1157 auto I
= FI
.InlineSites
.find(InlinedAt
);
1158 assert(I
!= FI
.InlineSites
.end() &&
1159 "child site not in function inline site map");
1160 emitInlinedCallSite(FI
, InlinedAt
, I
->second
);
1163 for (auto Annot
: FI
.Annotations
) {
1164 MCSymbol
*Label
= Annot
.first
;
1165 MDTuple
*Strs
= cast
<MDTuple
>(Annot
.second
);
1166 MCSymbol
*AnnotEnd
= beginSymbolRecord(SymbolKind::S_ANNOTATION
);
1167 OS
.EmitCOFFSecRel32(Label
, /*Offset=*/0);
1168 // FIXME: Make sure we don't overflow the max record size.
1169 OS
.EmitCOFFSectionIndex(Label
);
1170 OS
.emitInt16(Strs
->getNumOperands());
1171 for (Metadata
*MD
: Strs
->operands()) {
1172 // MDStrings are null terminated, so we can do EmitBytes and get the
1173 // nice .asciz directive.
1174 StringRef Str
= cast
<MDString
>(MD
)->getString();
1175 assert(Str
.data()[Str
.size()] == '\0' && "non-nullterminated MDString");
1176 OS
.emitBytes(StringRef(Str
.data(), Str
.size() + 1));
1178 endSymbolRecord(AnnotEnd
);
1181 for (auto HeapAllocSite
: FI
.HeapAllocSites
) {
1182 const MCSymbol
*BeginLabel
= std::get
<0>(HeapAllocSite
);
1183 const MCSymbol
*EndLabel
= std::get
<1>(HeapAllocSite
);
1184 const DIType
*DITy
= std::get
<2>(HeapAllocSite
);
1185 MCSymbol
*HeapAllocEnd
= beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE
);
1186 OS
.AddComment("Call site offset");
1187 OS
.EmitCOFFSecRel32(BeginLabel
, /*Offset=*/0);
1188 OS
.AddComment("Call site section index");
1189 OS
.EmitCOFFSectionIndex(BeginLabel
);
1190 OS
.AddComment("Call instruction length");
1191 OS
.emitAbsoluteSymbolDiff(EndLabel
, BeginLabel
, 2);
1192 OS
.AddComment("Type index");
1193 OS
.emitInt32(getCompleteTypeIndex(DITy
).getIndex());
1194 endSymbolRecord(HeapAllocEnd
);
1198 emitDebugInfoForUDTs(LocalUDTs
);
1200 // We're done with this function.
1201 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END
);
1203 endCVSubsection(SymbolsEnd
);
1205 // We have an assembler directive that takes care of the whole line table.
1206 OS
.emitCVLinetableDirective(FI
.FuncId
, Fn
, FI
.End
);
1209 CodeViewDebug::LocalVarDefRange
1210 CodeViewDebug::createDefRangeMem(uint16_t CVRegister
, int Offset
) {
1211 LocalVarDefRange DR
;
1213 DR
.DataOffset
= Offset
;
1214 assert(DR
.DataOffset
== Offset
&& "truncation");
1216 DR
.StructOffset
= 0;
1217 DR
.CVRegister
= CVRegister
;
1221 void CodeViewDebug::collectVariableInfoFromMFTable(
1222 DenseSet
<InlinedEntity
> &Processed
) {
1223 const MachineFunction
&MF
= *Asm
->MF
;
1224 const TargetSubtargetInfo
&TSI
= MF
.getSubtarget();
1225 const TargetFrameLowering
*TFI
= TSI
.getFrameLowering();
1226 const TargetRegisterInfo
*TRI
= TSI
.getRegisterInfo();
1228 for (const MachineFunction::VariableDbgInfo
&VI
: MF
.getVariableDbgInfo()) {
1231 assert(VI
.Var
->isValidLocationForIntrinsic(VI
.Loc
) &&
1232 "Expected inlined-at fields to agree");
1234 Processed
.insert(InlinedEntity(VI
.Var
, VI
.Loc
->getInlinedAt()));
1235 LexicalScope
*Scope
= LScopes
.findLexicalScope(VI
.Loc
);
1237 // If variable scope is not found then skip this variable.
1241 // If the variable has an attached offset expression, extract it.
1242 // FIXME: Try to handle DW_OP_deref as well.
1243 int64_t ExprOffset
= 0;
1246 // If there is one DW_OP_deref element, use offset of 0 and keep going.
1247 if (VI
.Expr
->getNumElements() == 1 &&
1248 VI
.Expr
->getElement(0) == llvm::dwarf::DW_OP_deref
)
1250 else if (!VI
.Expr
->extractIfOffset(ExprOffset
))
1254 // Get the frame register used and the offset.
1256 StackOffset FrameOffset
= TFI
->getFrameIndexReference(*Asm
->MF
, VI
.Slot
, FrameReg
);
1257 uint16_t CVReg
= TRI
->getCodeViewRegNum(FrameReg
);
1259 assert(!FrameOffset
.getScalable() &&
1260 "Frame offsets with a scalable component are not supported");
1262 // Calculate the label ranges.
1263 LocalVarDefRange DefRange
=
1264 createDefRangeMem(CVReg
, FrameOffset
.getFixed() + ExprOffset
);
1266 for (const InsnRange
&Range
: Scope
->getRanges()) {
1267 const MCSymbol
*Begin
= getLabelBeforeInsn(Range
.first
);
1268 const MCSymbol
*End
= getLabelAfterInsn(Range
.second
);
1269 End
= End
? End
: Asm
->getFunctionEnd();
1270 DefRange
.Ranges
.emplace_back(Begin
, End
);
1275 Var
.DefRanges
.emplace_back(std::move(DefRange
));
1277 Var
.UseReferenceType
= true;
1279 recordLocalVariable(std::move(Var
), Scope
);
1283 static bool canUseReferenceType(const DbgVariableLocation
&Loc
) {
1284 return !Loc
.LoadChain
.empty() && Loc
.LoadChain
.back() == 0;
1287 static bool needsReferenceType(const DbgVariableLocation
&Loc
) {
1288 return Loc
.LoadChain
.size() == 2 && Loc
.LoadChain
.back() == 0;
1291 void CodeViewDebug::calculateRanges(
1292 LocalVariable
&Var
, const DbgValueHistoryMap::Entries
&Entries
) {
1293 const TargetRegisterInfo
*TRI
= Asm
->MF
->getSubtarget().getRegisterInfo();
1295 // Calculate the definition ranges.
1296 for (auto I
= Entries
.begin(), E
= Entries
.end(); I
!= E
; ++I
) {
1297 const auto &Entry
= *I
;
1298 if (!Entry
.isDbgValue())
1300 const MachineInstr
*DVInst
= Entry
.getInstr();
1301 assert(DVInst
->isDebugValue() && "Invalid History entry");
1302 // FIXME: Find a way to represent constant variables, since they are
1303 // relatively common.
1304 Optional
<DbgVariableLocation
> Location
=
1305 DbgVariableLocation::extractFromMachineInstruction(*DVInst
);
1309 // CodeView can only express variables in register and variables in memory
1310 // at a constant offset from a register. However, for variables passed
1311 // indirectly by pointer, it is common for that pointer to be spilled to a
1312 // stack location. For the special case of one offseted load followed by a
1313 // zero offset load (a pointer spilled to the stack), we change the type of
1314 // the local variable from a value type to a reference type. This tricks the
1315 // debugger into doing the load for us.
1316 if (Var
.UseReferenceType
) {
1317 // We're using a reference type. Drop the last zero offset load.
1318 if (canUseReferenceType(*Location
))
1319 Location
->LoadChain
.pop_back();
1322 } else if (needsReferenceType(*Location
)) {
1323 // This location can't be expressed without switching to a reference type.
1324 // Start over using that.
1325 Var
.UseReferenceType
= true;
1326 Var
.DefRanges
.clear();
1327 calculateRanges(Var
, Entries
);
1331 // We can only handle a register or an offseted load of a register.
1332 if (Location
->Register
== 0 || Location
->LoadChain
.size() > 1)
1335 LocalVarDefRange DR
;
1336 DR
.CVRegister
= TRI
->getCodeViewRegNum(Location
->Register
);
1337 DR
.InMemory
= !Location
->LoadChain
.empty();
1339 !Location
->LoadChain
.empty() ? Location
->LoadChain
.back() : 0;
1340 if (Location
->FragmentInfo
) {
1341 DR
.IsSubfield
= true;
1342 DR
.StructOffset
= Location
->FragmentInfo
->OffsetInBits
/ 8;
1344 DR
.IsSubfield
= false;
1345 DR
.StructOffset
= 0;
1348 if (Var
.DefRanges
.empty() ||
1349 Var
.DefRanges
.back().isDifferentLocation(DR
)) {
1350 Var
.DefRanges
.emplace_back(std::move(DR
));
1354 // Compute the label range.
1355 const MCSymbol
*Begin
= getLabelBeforeInsn(Entry
.getInstr());
1356 const MCSymbol
*End
;
1357 if (Entry
.getEndIndex() != DbgValueHistoryMap::NoEntry
) {
1358 auto &EndingEntry
= Entries
[Entry
.getEndIndex()];
1359 End
= EndingEntry
.isDbgValue()
1360 ? getLabelBeforeInsn(EndingEntry
.getInstr())
1361 : getLabelAfterInsn(EndingEntry
.getInstr());
1363 End
= Asm
->getFunctionEnd();
1365 // If the last range end is our begin, just extend the last range.
1366 // Otherwise make a new range.
1367 SmallVectorImpl
<std::pair
<const MCSymbol
*, const MCSymbol
*>> &R
=
1368 Var
.DefRanges
.back().Ranges
;
1369 if (!R
.empty() && R
.back().second
== Begin
)
1370 R
.back().second
= End
;
1372 R
.emplace_back(Begin
, End
);
1374 // FIXME: Do more range combining.
1378 void CodeViewDebug::collectVariableInfo(const DISubprogram
*SP
) {
1379 DenseSet
<InlinedEntity
> Processed
;
1380 // Grab the variable info that was squirreled away in the MMI side-table.
1381 collectVariableInfoFromMFTable(Processed
);
1383 for (const auto &I
: DbgValues
) {
1384 InlinedEntity IV
= I
.first
;
1385 if (Processed
.count(IV
))
1387 const DILocalVariable
*DIVar
= cast
<DILocalVariable
>(IV
.first
);
1388 const DILocation
*InlinedAt
= IV
.second
;
1390 // Instruction ranges, specifying where IV is accessible.
1391 const auto &Entries
= I
.second
;
1393 LexicalScope
*Scope
= nullptr;
1395 Scope
= LScopes
.findInlinedScope(DIVar
->getScope(), InlinedAt
);
1397 Scope
= LScopes
.findLexicalScope(DIVar
->getScope());
1398 // If variable scope is not found then skip this variable.
1405 calculateRanges(Var
, Entries
);
1406 recordLocalVariable(std::move(Var
), Scope
);
1410 void CodeViewDebug::beginFunctionImpl(const MachineFunction
*MF
) {
1411 const TargetSubtargetInfo
&TSI
= MF
->getSubtarget();
1412 const TargetRegisterInfo
*TRI
= TSI
.getRegisterInfo();
1413 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1414 const Function
&GV
= MF
->getFunction();
1415 auto Insertion
= FnDebugInfo
.insert({&GV
, std::make_unique
<FunctionInfo
>()});
1416 assert(Insertion
.second
&& "function already has info");
1417 CurFn
= Insertion
.first
->second
.get();
1418 CurFn
->FuncId
= NextFuncId
++;
1419 CurFn
->Begin
= Asm
->getFunctionBegin();
1421 // The S_FRAMEPROC record reports the stack size, and how many bytes of
1422 // callee-saved registers were used. For targets that don't use a PUSH
1423 // instruction (AArch64), this will be zero.
1424 CurFn
->CSRSize
= MFI
.getCVBytesOfCalleeSavedRegisters();
1425 CurFn
->FrameSize
= MFI
.getStackSize();
1426 CurFn
->OffsetAdjustment
= MFI
.getOffsetAdjustment();
1427 CurFn
->HasStackRealignment
= TRI
->hasStackRealignment(*MF
);
1429 // For this function S_FRAMEPROC record, figure out which codeview register
1430 // will be the frame pointer.
1431 CurFn
->EncodedParamFramePtrReg
= EncodedFramePtrReg::None
; // None.
1432 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::None
; // None.
1433 if (CurFn
->FrameSize
> 0) {
1434 if (!TSI
.getFrameLowering()->hasFP(*MF
)) {
1435 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::StackPtr
;
1436 CurFn
->EncodedParamFramePtrReg
= EncodedFramePtrReg::StackPtr
;
1438 // If there is an FP, parameters are always relative to it.
1439 CurFn
->EncodedParamFramePtrReg
= EncodedFramePtrReg::FramePtr
;
1440 if (CurFn
->HasStackRealignment
) {
1441 // If the stack needs realignment, locals are relative to SP or VFRAME.
1442 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::StackPtr
;
1444 // Otherwise, locals are relative to EBP, and we probably have VLAs or
1445 // other stack adjustments.
1446 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::FramePtr
;
1451 // Compute other frame procedure options.
1452 FrameProcedureOptions FPO
= FrameProcedureOptions::None
;
1453 if (MFI
.hasVarSizedObjects())
1454 FPO
|= FrameProcedureOptions::HasAlloca
;
1455 if (MF
->exposesReturnsTwice())
1456 FPO
|= FrameProcedureOptions::HasSetJmp
;
1457 // FIXME: Set HasLongJmp if we ever track that info.
1458 if (MF
->hasInlineAsm())
1459 FPO
|= FrameProcedureOptions::HasInlineAssembly
;
1460 if (GV
.hasPersonalityFn()) {
1461 if (isAsynchronousEHPersonality(
1462 classifyEHPersonality(GV
.getPersonalityFn())))
1463 FPO
|= FrameProcedureOptions::HasStructuredExceptionHandling
;
1465 FPO
|= FrameProcedureOptions::HasExceptionHandling
;
1467 if (GV
.hasFnAttribute(Attribute::InlineHint
))
1468 FPO
|= FrameProcedureOptions::MarkedInline
;
1469 if (GV
.hasFnAttribute(Attribute::Naked
))
1470 FPO
|= FrameProcedureOptions::Naked
;
1471 if (MFI
.hasStackProtectorIndex())
1472 FPO
|= FrameProcedureOptions::SecurityChecks
;
1473 FPO
|= FrameProcedureOptions(uint32_t(CurFn
->EncodedLocalFramePtrReg
) << 14U);
1474 FPO
|= FrameProcedureOptions(uint32_t(CurFn
->EncodedParamFramePtrReg
) << 16U);
1475 if (Asm
->TM
.getOptLevel() != CodeGenOpt::None
&&
1476 !GV
.hasOptSize() && !GV
.hasOptNone())
1477 FPO
|= FrameProcedureOptions::OptimizedForSpeed
;
1478 if (GV
.hasProfileData()) {
1479 FPO
|= FrameProcedureOptions::ValidProfileCounts
;
1480 FPO
|= FrameProcedureOptions::ProfileGuidedOptimization
;
1482 // FIXME: Set GuardCfg when it is implemented.
1483 CurFn
->FrameProcOpts
= FPO
;
1485 OS
.EmitCVFuncIdDirective(CurFn
->FuncId
);
1487 // Find the end of the function prolog. First known non-DBG_VALUE and
1488 // non-frame setup location marks the beginning of the function body.
1489 // FIXME: is there a simpler a way to do this? Can we just search
1490 // for the first instruction of the function, not the last of the prolog?
1491 DebugLoc PrologEndLoc
;
1492 bool EmptyPrologue
= true;
1493 for (const auto &MBB
: *MF
) {
1494 for (const auto &MI
: MBB
) {
1495 if (!MI
.isMetaInstruction() && !MI
.getFlag(MachineInstr::FrameSetup
) &&
1497 PrologEndLoc
= MI
.getDebugLoc();
1499 } else if (!MI
.isMetaInstruction()) {
1500 EmptyPrologue
= false;
1505 // Record beginning of function if we have a non-empty prologue.
1506 if (PrologEndLoc
&& !EmptyPrologue
) {
1507 DebugLoc FnStartDL
= PrologEndLoc
.getFnDebugLoc();
1508 maybeRecordLocation(FnStartDL
, MF
);
1511 // Find heap alloc sites and emit labels around them.
1512 for (const auto &MBB
: *MF
) {
1513 for (const auto &MI
: MBB
) {
1514 if (MI
.getHeapAllocMarker()) {
1515 requestLabelBeforeInsn(&MI
);
1516 requestLabelAfterInsn(&MI
);
1522 static bool shouldEmitUdt(const DIType
*T
) {
1526 // MSVC does not emit UDTs for typedefs that are scoped to classes.
1527 if (T
->getTag() == dwarf::DW_TAG_typedef
) {
1528 if (DIScope
*Scope
= T
->getScope()) {
1529 switch (Scope
->getTag()) {
1530 case dwarf::DW_TAG_structure_type
:
1531 case dwarf::DW_TAG_class_type
:
1532 case dwarf::DW_TAG_union_type
:
1542 if (!T
|| T
->isForwardDecl())
1545 const DIDerivedType
*DT
= dyn_cast
<DIDerivedType
>(T
);
1548 T
= DT
->getBaseType();
1553 void CodeViewDebug::addToUDTs(const DIType
*Ty
) {
1554 // Don't record empty UDTs.
1555 if (Ty
->getName().empty())
1557 if (!shouldEmitUdt(Ty
))
1560 SmallVector
<StringRef
, 5> ParentScopeNames
;
1561 const DISubprogram
*ClosestSubprogram
=
1562 collectParentScopeNames(Ty
->getScope(), ParentScopeNames
);
1564 std::string FullyQualifiedName
=
1565 formatNestedName(ParentScopeNames
, getPrettyScopeName(Ty
));
1567 if (ClosestSubprogram
== nullptr) {
1568 GlobalUDTs
.emplace_back(std::move(FullyQualifiedName
), Ty
);
1569 } else if (ClosestSubprogram
== CurrentSubprogram
) {
1570 LocalUDTs
.emplace_back(std::move(FullyQualifiedName
), Ty
);
1573 // TODO: What if the ClosestSubprogram is neither null or the current
1574 // subprogram? Currently, the UDT just gets dropped on the floor.
1576 // The current behavior is not desirable. To get maximal fidelity, we would
1577 // need to perform all type translation before beginning emission of .debug$S
1578 // and then make LocalUDTs a member of FunctionInfo
1581 TypeIndex
CodeViewDebug::lowerType(const DIType
*Ty
, const DIType
*ClassTy
) {
1582 // Generic dispatch for lowering an unknown type.
1583 switch (Ty
->getTag()) {
1584 case dwarf::DW_TAG_array_type
:
1585 return lowerTypeArray(cast
<DICompositeType
>(Ty
));
1586 case dwarf::DW_TAG_typedef
:
1587 return lowerTypeAlias(cast
<DIDerivedType
>(Ty
));
1588 case dwarf::DW_TAG_base_type
:
1589 return lowerTypeBasic(cast
<DIBasicType
>(Ty
));
1590 case dwarf::DW_TAG_pointer_type
:
1591 if (cast
<DIDerivedType
>(Ty
)->getName() == "__vtbl_ptr_type")
1592 return lowerTypeVFTableShape(cast
<DIDerivedType
>(Ty
));
1594 case dwarf::DW_TAG_reference_type
:
1595 case dwarf::DW_TAG_rvalue_reference_type
:
1596 return lowerTypePointer(cast
<DIDerivedType
>(Ty
));
1597 case dwarf::DW_TAG_ptr_to_member_type
:
1598 return lowerTypeMemberPointer(cast
<DIDerivedType
>(Ty
));
1599 case dwarf::DW_TAG_restrict_type
:
1600 case dwarf::DW_TAG_const_type
:
1601 case dwarf::DW_TAG_volatile_type
:
1602 // TODO: add support for DW_TAG_atomic_type here
1603 return lowerTypeModifier(cast
<DIDerivedType
>(Ty
));
1604 case dwarf::DW_TAG_subroutine_type
:
1606 // The member function type of a member function pointer has no
1608 return lowerTypeMemberFunction(cast
<DISubroutineType
>(Ty
), ClassTy
,
1609 /*ThisAdjustment=*/0,
1610 /*IsStaticMethod=*/false);
1612 return lowerTypeFunction(cast
<DISubroutineType
>(Ty
));
1613 case dwarf::DW_TAG_enumeration_type
:
1614 return lowerTypeEnum(cast
<DICompositeType
>(Ty
));
1615 case dwarf::DW_TAG_class_type
:
1616 case dwarf::DW_TAG_structure_type
:
1617 return lowerTypeClass(cast
<DICompositeType
>(Ty
));
1618 case dwarf::DW_TAG_union_type
:
1619 return lowerTypeUnion(cast
<DICompositeType
>(Ty
));
1620 case dwarf::DW_TAG_string_type
:
1621 return lowerTypeString(cast
<DIStringType
>(Ty
));
1622 case dwarf::DW_TAG_unspecified_type
:
1623 if (Ty
->getName() == "decltype(nullptr)")
1624 return TypeIndex::NullptrT();
1625 return TypeIndex::None();
1627 // Use the null type index.
1632 TypeIndex
CodeViewDebug::lowerTypeAlias(const DIDerivedType
*Ty
) {
1633 TypeIndex UnderlyingTypeIndex
= getTypeIndex(Ty
->getBaseType());
1634 StringRef TypeName
= Ty
->getName();
1638 if (UnderlyingTypeIndex
== TypeIndex(SimpleTypeKind::Int32Long
) &&
1639 TypeName
== "HRESULT")
1640 return TypeIndex(SimpleTypeKind::HResult
);
1641 if (UnderlyingTypeIndex
== TypeIndex(SimpleTypeKind::UInt16Short
) &&
1642 TypeName
== "wchar_t")
1643 return TypeIndex(SimpleTypeKind::WideCharacter
);
1645 return UnderlyingTypeIndex
;
1648 TypeIndex
CodeViewDebug::lowerTypeArray(const DICompositeType
*Ty
) {
1649 const DIType
*ElementType
= Ty
->getBaseType();
1650 TypeIndex ElementTypeIndex
= getTypeIndex(ElementType
);
1651 // IndexType is size_t, which depends on the bitness of the target.
1652 TypeIndex IndexType
= getPointerSizeInBytes() == 8
1653 ? TypeIndex(SimpleTypeKind::UInt64Quad
)
1654 : TypeIndex(SimpleTypeKind::UInt32Long
);
1656 uint64_t ElementSize
= getBaseTypeSize(ElementType
) / 8;
1658 // Add subranges to array type.
1659 DINodeArray Elements
= Ty
->getElements();
1660 for (int i
= Elements
.size() - 1; i
>= 0; --i
) {
1661 const DINode
*Element
= Elements
[i
];
1662 assert(Element
->getTag() == dwarf::DW_TAG_subrange_type
);
1664 const DISubrange
*Subrange
= cast
<DISubrange
>(Element
);
1667 // If Subrange has a Count field, use it.
1668 // Otherwise, if it has an upperboud, use (upperbound - lowerbound + 1),
1669 // where lowerbound is from the LowerBound field of the Subrange,
1670 // or the language default lowerbound if that field is unspecified.
1671 if (auto *CI
= Subrange
->getCount().dyn_cast
<ConstantInt
*>())
1672 Count
= CI
->getSExtValue();
1673 else if (auto *UI
= Subrange
->getUpperBound().dyn_cast
<ConstantInt
*>()) {
1674 // Fortran uses 1 as the default lowerbound; other languages use 0.
1675 int64_t Lowerbound
= (moduleIsInFortran()) ? 1 : 0;
1676 auto *LI
= Subrange
->getLowerBound().dyn_cast
<ConstantInt
*>();
1677 Lowerbound
= (LI
) ? LI
->getSExtValue() : Lowerbound
;
1678 Count
= UI
->getSExtValue() - Lowerbound
+ 1;
1681 // Forward declarations of arrays without a size and VLAs use a count of -1.
1682 // Emit a count of zero in these cases to match what MSVC does for arrays
1683 // without a size. MSVC doesn't support VLAs, so it's not clear what we
1684 // should do for them even if we could distinguish them.
1688 // Update the element size and element type index for subsequent subranges.
1689 ElementSize
*= Count
;
1691 // If this is the outermost array, use the size from the array. It will be
1692 // more accurate if we had a VLA or an incomplete element type size.
1693 uint64_t ArraySize
=
1694 (i
== 0 && ElementSize
== 0) ? Ty
->getSizeInBits() / 8 : ElementSize
;
1696 StringRef Name
= (i
== 0) ? Ty
->getName() : "";
1697 ArrayRecord
AR(ElementTypeIndex
, IndexType
, ArraySize
, Name
);
1698 ElementTypeIndex
= TypeTable
.writeLeafType(AR
);
1701 return ElementTypeIndex
;
1704 // This function lowers a Fortran character type (DIStringType).
1705 // Note that it handles only the character*n variant (using SizeInBits
1706 // field in DIString to describe the type size) at the moment.
1707 // Other variants (leveraging the StringLength and StringLengthExp
1708 // fields in DIStringType) remain TBD.
1709 TypeIndex
CodeViewDebug::lowerTypeString(const DIStringType
*Ty
) {
1710 TypeIndex CharType
= TypeIndex(SimpleTypeKind::NarrowCharacter
);
1711 uint64_t ArraySize
= Ty
->getSizeInBits() >> 3;
1712 StringRef Name
= Ty
->getName();
1713 // IndexType is size_t, which depends on the bitness of the target.
1714 TypeIndex IndexType
= getPointerSizeInBytes() == 8
1715 ? TypeIndex(SimpleTypeKind::UInt64Quad
)
1716 : TypeIndex(SimpleTypeKind::UInt32Long
);
1718 // Create a type of character array of ArraySize.
1719 ArrayRecord
AR(CharType
, IndexType
, ArraySize
, Name
);
1721 return TypeTable
.writeLeafType(AR
);
1724 TypeIndex
CodeViewDebug::lowerTypeBasic(const DIBasicType
*Ty
) {
1726 dwarf::TypeKind Kind
;
1729 Kind
= static_cast<dwarf::TypeKind
>(Ty
->getEncoding());
1730 ByteSize
= Ty
->getSizeInBits() / 8;
1732 SimpleTypeKind STK
= SimpleTypeKind::None
;
1734 case dwarf::DW_ATE_address
:
1737 case dwarf::DW_ATE_boolean
:
1739 case 1: STK
= SimpleTypeKind::Boolean8
; break;
1740 case 2: STK
= SimpleTypeKind::Boolean16
; break;
1741 case 4: STK
= SimpleTypeKind::Boolean32
; break;
1742 case 8: STK
= SimpleTypeKind::Boolean64
; break;
1743 case 16: STK
= SimpleTypeKind::Boolean128
; break;
1746 case dwarf::DW_ATE_complex_float
:
1748 case 2: STK
= SimpleTypeKind::Complex16
; break;
1749 case 4: STK
= SimpleTypeKind::Complex32
; break;
1750 case 8: STK
= SimpleTypeKind::Complex64
; break;
1751 case 10: STK
= SimpleTypeKind::Complex80
; break;
1752 case 16: STK
= SimpleTypeKind::Complex128
; break;
1755 case dwarf::DW_ATE_float
:
1757 case 2: STK
= SimpleTypeKind::Float16
; break;
1758 case 4: STK
= SimpleTypeKind::Float32
; break;
1759 case 6: STK
= SimpleTypeKind::Float48
; break;
1760 case 8: STK
= SimpleTypeKind::Float64
; break;
1761 case 10: STK
= SimpleTypeKind::Float80
; break;
1762 case 16: STK
= SimpleTypeKind::Float128
; break;
1765 case dwarf::DW_ATE_signed
:
1767 case 1: STK
= SimpleTypeKind::SignedCharacter
; break;
1768 case 2: STK
= SimpleTypeKind::Int16Short
; break;
1769 case 4: STK
= SimpleTypeKind::Int32
; break;
1770 case 8: STK
= SimpleTypeKind::Int64Quad
; break;
1771 case 16: STK
= SimpleTypeKind::Int128Oct
; break;
1774 case dwarf::DW_ATE_unsigned
:
1776 case 1: STK
= SimpleTypeKind::UnsignedCharacter
; break;
1777 case 2: STK
= SimpleTypeKind::UInt16Short
; break;
1778 case 4: STK
= SimpleTypeKind::UInt32
; break;
1779 case 8: STK
= SimpleTypeKind::UInt64Quad
; break;
1780 case 16: STK
= SimpleTypeKind::UInt128Oct
; break;
1783 case dwarf::DW_ATE_UTF
:
1785 case 2: STK
= SimpleTypeKind::Character16
; break;
1786 case 4: STK
= SimpleTypeKind::Character32
; break;
1789 case dwarf::DW_ATE_signed_char
:
1791 STK
= SimpleTypeKind::SignedCharacter
;
1793 case dwarf::DW_ATE_unsigned_char
:
1795 STK
= SimpleTypeKind::UnsignedCharacter
;
1801 // Apply some fixups based on the source-level type name.
1802 // Include some amount of canonicalization from an old naming scheme Clang
1803 // used to use for integer types (in an outdated effort to be compatible with
1804 // GCC's debug info/GDB's behavior, which has since been addressed).
1805 if (STK
== SimpleTypeKind::Int32
&&
1806 (Ty
->getName() == "long int" || Ty
->getName() == "long"))
1807 STK
= SimpleTypeKind::Int32Long
;
1808 if (STK
== SimpleTypeKind::UInt32
&& (Ty
->getName() == "long unsigned int" ||
1809 Ty
->getName() == "unsigned long"))
1810 STK
= SimpleTypeKind::UInt32Long
;
1811 if (STK
== SimpleTypeKind::UInt16Short
&&
1812 (Ty
->getName() == "wchar_t" || Ty
->getName() == "__wchar_t"))
1813 STK
= SimpleTypeKind::WideCharacter
;
1814 if ((STK
== SimpleTypeKind::SignedCharacter
||
1815 STK
== SimpleTypeKind::UnsignedCharacter
) &&
1816 Ty
->getName() == "char")
1817 STK
= SimpleTypeKind::NarrowCharacter
;
1819 return TypeIndex(STK
);
1822 TypeIndex
CodeViewDebug::lowerTypePointer(const DIDerivedType
*Ty
,
1823 PointerOptions PO
) {
1824 TypeIndex PointeeTI
= getTypeIndex(Ty
->getBaseType());
1826 // Pointers to simple types without any options can use SimpleTypeMode, rather
1827 // than having a dedicated pointer type record.
1828 if (PointeeTI
.isSimple() && PO
== PointerOptions::None
&&
1829 PointeeTI
.getSimpleMode() == SimpleTypeMode::Direct
&&
1830 Ty
->getTag() == dwarf::DW_TAG_pointer_type
) {
1831 SimpleTypeMode Mode
= Ty
->getSizeInBits() == 64
1832 ? SimpleTypeMode::NearPointer64
1833 : SimpleTypeMode::NearPointer32
;
1834 return TypeIndex(PointeeTI
.getSimpleKind(), Mode
);
1838 Ty
->getSizeInBits() == 64 ? PointerKind::Near64
: PointerKind::Near32
;
1839 PointerMode PM
= PointerMode::Pointer
;
1840 switch (Ty
->getTag()) {
1841 default: llvm_unreachable("not a pointer tag type");
1842 case dwarf::DW_TAG_pointer_type
:
1843 PM
= PointerMode::Pointer
;
1845 case dwarf::DW_TAG_reference_type
:
1846 PM
= PointerMode::LValueReference
;
1848 case dwarf::DW_TAG_rvalue_reference_type
:
1849 PM
= PointerMode::RValueReference
;
1853 if (Ty
->isObjectPointer())
1854 PO
|= PointerOptions::Const
;
1856 PointerRecord
PR(PointeeTI
, PK
, PM
, PO
, Ty
->getSizeInBits() / 8);
1857 return TypeTable
.writeLeafType(PR
);
1860 static PointerToMemberRepresentation
1861 translatePtrToMemberRep(unsigned SizeInBytes
, bool IsPMF
, unsigned Flags
) {
1862 // SizeInBytes being zero generally implies that the member pointer type was
1863 // incomplete, which can happen if it is part of a function prototype. In this
1864 // case, use the unknown model instead of the general model.
1866 switch (Flags
& DINode::FlagPtrToMemberRep
) {
1868 return SizeInBytes
== 0 ? PointerToMemberRepresentation::Unknown
1869 : PointerToMemberRepresentation::GeneralFunction
;
1870 case DINode::FlagSingleInheritance
:
1871 return PointerToMemberRepresentation::SingleInheritanceFunction
;
1872 case DINode::FlagMultipleInheritance
:
1873 return PointerToMemberRepresentation::MultipleInheritanceFunction
;
1874 case DINode::FlagVirtualInheritance
:
1875 return PointerToMemberRepresentation::VirtualInheritanceFunction
;
1878 switch (Flags
& DINode::FlagPtrToMemberRep
) {
1880 return SizeInBytes
== 0 ? PointerToMemberRepresentation::Unknown
1881 : PointerToMemberRepresentation::GeneralData
;
1882 case DINode::FlagSingleInheritance
:
1883 return PointerToMemberRepresentation::SingleInheritanceData
;
1884 case DINode::FlagMultipleInheritance
:
1885 return PointerToMemberRepresentation::MultipleInheritanceData
;
1886 case DINode::FlagVirtualInheritance
:
1887 return PointerToMemberRepresentation::VirtualInheritanceData
;
1890 llvm_unreachable("invalid ptr to member representation");
1893 TypeIndex
CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType
*Ty
,
1894 PointerOptions PO
) {
1895 assert(Ty
->getTag() == dwarf::DW_TAG_ptr_to_member_type
);
1896 bool IsPMF
= isa
<DISubroutineType
>(Ty
->getBaseType());
1897 TypeIndex ClassTI
= getTypeIndex(Ty
->getClassType());
1898 TypeIndex PointeeTI
=
1899 getTypeIndex(Ty
->getBaseType(), IsPMF
? Ty
->getClassType() : nullptr);
1900 PointerKind PK
= getPointerSizeInBytes() == 8 ? PointerKind::Near64
1901 : PointerKind::Near32
;
1902 PointerMode PM
= IsPMF
? PointerMode::PointerToMemberFunction
1903 : PointerMode::PointerToDataMember
;
1905 assert(Ty
->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1906 uint8_t SizeInBytes
= Ty
->getSizeInBits() / 8;
1907 MemberPointerInfo
MPI(
1908 ClassTI
, translatePtrToMemberRep(SizeInBytes
, IsPMF
, Ty
->getFlags()));
1909 PointerRecord
PR(PointeeTI
, PK
, PM
, PO
, SizeInBytes
, MPI
);
1910 return TypeTable
.writeLeafType(PR
);
1913 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1914 /// have a translation, use the NearC convention.
1915 static CallingConvention
dwarfCCToCodeView(unsigned DwarfCC
) {
1917 case dwarf::DW_CC_normal
: return CallingConvention::NearC
;
1918 case dwarf::DW_CC_BORLAND_msfastcall
: return CallingConvention::NearFast
;
1919 case dwarf::DW_CC_BORLAND_thiscall
: return CallingConvention::ThisCall
;
1920 case dwarf::DW_CC_BORLAND_stdcall
: return CallingConvention::NearStdCall
;
1921 case dwarf::DW_CC_BORLAND_pascal
: return CallingConvention::NearPascal
;
1922 case dwarf::DW_CC_LLVM_vectorcall
: return CallingConvention::NearVector
;
1924 return CallingConvention::NearC
;
1927 TypeIndex
CodeViewDebug::lowerTypeModifier(const DIDerivedType
*Ty
) {
1928 ModifierOptions Mods
= ModifierOptions::None
;
1929 PointerOptions PO
= PointerOptions::None
;
1930 bool IsModifier
= true;
1931 const DIType
*BaseTy
= Ty
;
1932 while (IsModifier
&& BaseTy
) {
1933 // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1934 switch (BaseTy
->getTag()) {
1935 case dwarf::DW_TAG_const_type
:
1936 Mods
|= ModifierOptions::Const
;
1937 PO
|= PointerOptions::Const
;
1939 case dwarf::DW_TAG_volatile_type
:
1940 Mods
|= ModifierOptions::Volatile
;
1941 PO
|= PointerOptions::Volatile
;
1943 case dwarf::DW_TAG_restrict_type
:
1944 // Only pointer types be marked with __restrict. There is no known flag
1945 // for __restrict in LF_MODIFIER records.
1946 PO
|= PointerOptions::Restrict
;
1953 BaseTy
= cast
<DIDerivedType
>(BaseTy
)->getBaseType();
1956 // Check if the inner type will use an LF_POINTER record. If so, the
1957 // qualifiers will go in the LF_POINTER record. This comes up for types like
1958 // 'int *const' and 'int *__restrict', not the more common cases like 'const
1961 switch (BaseTy
->getTag()) {
1962 case dwarf::DW_TAG_pointer_type
:
1963 case dwarf::DW_TAG_reference_type
:
1964 case dwarf::DW_TAG_rvalue_reference_type
:
1965 return lowerTypePointer(cast
<DIDerivedType
>(BaseTy
), PO
);
1966 case dwarf::DW_TAG_ptr_to_member_type
:
1967 return lowerTypeMemberPointer(cast
<DIDerivedType
>(BaseTy
), PO
);
1973 TypeIndex ModifiedTI
= getTypeIndex(BaseTy
);
1975 // Return the base type index if there aren't any modifiers. For example, the
1976 // metadata could contain restrict wrappers around non-pointer types.
1977 if (Mods
== ModifierOptions::None
)
1980 ModifierRecord
MR(ModifiedTI
, Mods
);
1981 return TypeTable
.writeLeafType(MR
);
1984 TypeIndex
CodeViewDebug::lowerTypeFunction(const DISubroutineType
*Ty
) {
1985 SmallVector
<TypeIndex
, 8> ReturnAndArgTypeIndices
;
1986 for (const DIType
*ArgType
: Ty
->getTypeArray())
1987 ReturnAndArgTypeIndices
.push_back(getTypeIndex(ArgType
));
1989 // MSVC uses type none for variadic argument.
1990 if (ReturnAndArgTypeIndices
.size() > 1 &&
1991 ReturnAndArgTypeIndices
.back() == TypeIndex::Void()) {
1992 ReturnAndArgTypeIndices
.back() = TypeIndex::None();
1994 TypeIndex ReturnTypeIndex
= TypeIndex::Void();
1995 ArrayRef
<TypeIndex
> ArgTypeIndices
= None
;
1996 if (!ReturnAndArgTypeIndices
.empty()) {
1997 auto ReturnAndArgTypesRef
= makeArrayRef(ReturnAndArgTypeIndices
);
1998 ReturnTypeIndex
= ReturnAndArgTypesRef
.front();
1999 ArgTypeIndices
= ReturnAndArgTypesRef
.drop_front();
2002 ArgListRecord
ArgListRec(TypeRecordKind::ArgList
, ArgTypeIndices
);
2003 TypeIndex ArgListIndex
= TypeTable
.writeLeafType(ArgListRec
);
2005 CallingConvention CC
= dwarfCCToCodeView(Ty
->getCC());
2007 FunctionOptions FO
= getFunctionOptions(Ty
);
2008 ProcedureRecord
Procedure(ReturnTypeIndex
, CC
, FO
, ArgTypeIndices
.size(),
2010 return TypeTable
.writeLeafType(Procedure
);
2013 TypeIndex
CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType
*Ty
,
2014 const DIType
*ClassTy
,
2016 bool IsStaticMethod
,
2017 FunctionOptions FO
) {
2018 // Lower the containing class type.
2019 TypeIndex ClassType
= getTypeIndex(ClassTy
);
2021 DITypeRefArray ReturnAndArgs
= Ty
->getTypeArray();
2024 SmallVector
<TypeIndex
, 8> ArgTypeIndices
;
2025 TypeIndex ReturnTypeIndex
= TypeIndex::Void();
2026 if (ReturnAndArgs
.size() > Index
) {
2027 ReturnTypeIndex
= getTypeIndex(ReturnAndArgs
[Index
++]);
2030 // If the first argument is a pointer type and this isn't a static method,
2031 // treat it as the special 'this' parameter, which is encoded separately from
2033 TypeIndex ThisTypeIndex
;
2034 if (!IsStaticMethod
&& ReturnAndArgs
.size() > Index
) {
2035 if (const DIDerivedType
*PtrTy
=
2036 dyn_cast_or_null
<DIDerivedType
>(ReturnAndArgs
[Index
])) {
2037 if (PtrTy
->getTag() == dwarf::DW_TAG_pointer_type
) {
2038 ThisTypeIndex
= getTypeIndexForThisPtr(PtrTy
, Ty
);
2044 while (Index
< ReturnAndArgs
.size())
2045 ArgTypeIndices
.push_back(getTypeIndex(ReturnAndArgs
[Index
++]));
2047 // MSVC uses type none for variadic argument.
2048 if (!ArgTypeIndices
.empty() && ArgTypeIndices
.back() == TypeIndex::Void())
2049 ArgTypeIndices
.back() = TypeIndex::None();
2051 ArgListRecord
ArgListRec(TypeRecordKind::ArgList
, ArgTypeIndices
);
2052 TypeIndex ArgListIndex
= TypeTable
.writeLeafType(ArgListRec
);
2054 CallingConvention CC
= dwarfCCToCodeView(Ty
->getCC());
2056 MemberFunctionRecord
MFR(ReturnTypeIndex
, ClassType
, ThisTypeIndex
, CC
, FO
,
2057 ArgTypeIndices
.size(), ArgListIndex
, ThisAdjustment
);
2058 return TypeTable
.writeLeafType(MFR
);
2061 TypeIndex
CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType
*Ty
) {
2062 unsigned VSlotCount
=
2063 Ty
->getSizeInBits() / (8 * Asm
->MAI
->getCodePointerSize());
2064 SmallVector
<VFTableSlotKind
, 4> Slots(VSlotCount
, VFTableSlotKind::Near
);
2066 VFTableShapeRecord
VFTSR(Slots
);
2067 return TypeTable
.writeLeafType(VFTSR
);
2070 static MemberAccess
translateAccessFlags(unsigned RecordTag
, unsigned Flags
) {
2071 switch (Flags
& DINode::FlagAccessibility
) {
2072 case DINode::FlagPrivate
: return MemberAccess::Private
;
2073 case DINode::FlagPublic
: return MemberAccess::Public
;
2074 case DINode::FlagProtected
: return MemberAccess::Protected
;
2076 // If there was no explicit access control, provide the default for the tag.
2077 return RecordTag
== dwarf::DW_TAG_class_type
? MemberAccess::Private
2078 : MemberAccess::Public
;
2080 llvm_unreachable("access flags are exclusive");
2083 static MethodOptions
translateMethodOptionFlags(const DISubprogram
*SP
) {
2084 if (SP
->isArtificial())
2085 return MethodOptions::CompilerGenerated
;
2087 // FIXME: Handle other MethodOptions.
2089 return MethodOptions::None
;
2092 static MethodKind
translateMethodKindFlags(const DISubprogram
*SP
,
2094 if (SP
->getFlags() & DINode::FlagStaticMember
)
2095 return MethodKind::Static
;
2097 switch (SP
->getVirtuality()) {
2098 case dwarf::DW_VIRTUALITY_none
:
2100 case dwarf::DW_VIRTUALITY_virtual
:
2101 return Introduced
? MethodKind::IntroducingVirtual
: MethodKind::Virtual
;
2102 case dwarf::DW_VIRTUALITY_pure_virtual
:
2103 return Introduced
? MethodKind::PureIntroducingVirtual
2104 : MethodKind::PureVirtual
;
2106 llvm_unreachable("unhandled virtuality case");
2109 return MethodKind::Vanilla
;
2112 static TypeRecordKind
getRecordKind(const DICompositeType
*Ty
) {
2113 switch (Ty
->getTag()) {
2114 case dwarf::DW_TAG_class_type
:
2115 return TypeRecordKind::Class
;
2116 case dwarf::DW_TAG_structure_type
:
2117 return TypeRecordKind::Struct
;
2119 llvm_unreachable("unexpected tag");
2123 /// Return ClassOptions that should be present on both the forward declaration
2124 /// and the defintion of a tag type.
2125 static ClassOptions
getCommonClassOptions(const DICompositeType
*Ty
) {
2126 ClassOptions CO
= ClassOptions::None
;
2128 // MSVC always sets this flag, even for local types. Clang doesn't always
2129 // appear to give every type a linkage name, which may be problematic for us.
2130 // FIXME: Investigate the consequences of not following them here.
2131 if (!Ty
->getIdentifier().empty())
2132 CO
|= ClassOptions::HasUniqueName
;
2134 // Put the Nested flag on a type if it appears immediately inside a tag type.
2135 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2136 // here. That flag is only set on definitions, and not forward declarations.
2137 const DIScope
*ImmediateScope
= Ty
->getScope();
2138 if (ImmediateScope
&& isa
<DICompositeType
>(ImmediateScope
))
2139 CO
|= ClassOptions::Nested
;
2141 // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2142 // type only when it has an immediate function scope. Clang never puts enums
2143 // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2144 // always in function, class, or file scopes.
2145 if (Ty
->getTag() == dwarf::DW_TAG_enumeration_type
) {
2146 if (ImmediateScope
&& isa
<DISubprogram
>(ImmediateScope
))
2147 CO
|= ClassOptions::Scoped
;
2149 for (const DIScope
*Scope
= ImmediateScope
; Scope
!= nullptr;
2150 Scope
= Scope
->getScope()) {
2151 if (isa
<DISubprogram
>(Scope
)) {
2152 CO
|= ClassOptions::Scoped
;
2161 void CodeViewDebug::addUDTSrcLine(const DIType
*Ty
, TypeIndex TI
) {
2162 switch (Ty
->getTag()) {
2163 case dwarf::DW_TAG_class_type
:
2164 case dwarf::DW_TAG_structure_type
:
2165 case dwarf::DW_TAG_union_type
:
2166 case dwarf::DW_TAG_enumeration_type
:
2172 if (const auto *File
= Ty
->getFile()) {
2173 StringIdRecord
SIDR(TypeIndex(0x0), getFullFilepath(File
));
2174 TypeIndex SIDI
= TypeTable
.writeLeafType(SIDR
);
2176 UdtSourceLineRecord
USLR(TI
, SIDI
, Ty
->getLine());
2177 TypeTable
.writeLeafType(USLR
);
2181 TypeIndex
CodeViewDebug::lowerTypeEnum(const DICompositeType
*Ty
) {
2182 ClassOptions CO
= getCommonClassOptions(Ty
);
2184 unsigned EnumeratorCount
= 0;
2186 if (Ty
->isForwardDecl()) {
2187 CO
|= ClassOptions::ForwardReference
;
2189 ContinuationRecordBuilder ContinuationBuilder
;
2190 ContinuationBuilder
.begin(ContinuationRecordKind::FieldList
);
2191 for (const DINode
*Element
: Ty
->getElements()) {
2192 // We assume that the frontend provides all members in source declaration
2193 // order, which is what MSVC does.
2194 if (auto *Enumerator
= dyn_cast_or_null
<DIEnumerator
>(Element
)) {
2195 // FIXME: Is it correct to always emit these as unsigned here?
2196 EnumeratorRecord
ER(MemberAccess::Public
,
2197 APSInt(Enumerator
->getValue(), true),
2198 Enumerator
->getName());
2199 ContinuationBuilder
.writeMemberType(ER
);
2203 FTI
= TypeTable
.insertRecord(ContinuationBuilder
);
2206 std::string FullName
= getFullyQualifiedName(Ty
);
2208 EnumRecord
ER(EnumeratorCount
, CO
, FTI
, FullName
, Ty
->getIdentifier(),
2209 getTypeIndex(Ty
->getBaseType()));
2210 TypeIndex EnumTI
= TypeTable
.writeLeafType(ER
);
2212 addUDTSrcLine(Ty
, EnumTI
);
2217 //===----------------------------------------------------------------------===//
2219 //===----------------------------------------------------------------------===//
2221 struct llvm::ClassInfo
{
2223 const DIDerivedType
*MemberTypeNode
;
2224 uint64_t BaseOffset
;
2227 using MemberList
= std::vector
<MemberInfo
>;
2229 using MethodsList
= TinyPtrVector
<const DISubprogram
*>;
2230 // MethodName -> MethodsList
2231 using MethodsMap
= MapVector
<MDString
*, MethodsList
>;
2234 std::vector
<const DIDerivedType
*> Inheritance
;
2238 // Direct overloaded methods gathered by name.
2243 std::vector
<const DIType
*> NestedTypes
;
2246 void CodeViewDebug::clear() {
2247 assert(CurFn
== nullptr);
2249 FnDebugInfo
.clear();
2250 FileToFilepathMap
.clear();
2253 TypeIndices
.clear();
2254 CompleteTypeIndices
.clear();
2255 ScopeGlobals
.clear();
2256 CVGlobalVariableOffsets
.clear();
2259 void CodeViewDebug::collectMemberInfo(ClassInfo
&Info
,
2260 const DIDerivedType
*DDTy
) {
2261 if (!DDTy
->getName().empty()) {
2262 Info
.Members
.push_back({DDTy
, 0});
2264 // Collect static const data members with values.
2265 if ((DDTy
->getFlags() & DINode::FlagStaticMember
) ==
2266 DINode::FlagStaticMember
) {
2267 if (DDTy
->getConstant() && (isa
<ConstantInt
>(DDTy
->getConstant()) ||
2268 isa
<ConstantFP
>(DDTy
->getConstant())))
2269 StaticConstMembers
.push_back(DDTy
);
2275 // An unnamed member may represent a nested struct or union. Attempt to
2276 // interpret the unnamed member as a DICompositeType possibly wrapped in
2277 // qualifier types. Add all the indirect fields to the current record if that
2278 // succeeds, and drop the member if that fails.
2279 assert((DDTy
->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2280 uint64_t Offset
= DDTy
->getOffsetInBits();
2281 const DIType
*Ty
= DDTy
->getBaseType();
2282 bool FullyResolved
= false;
2283 while (!FullyResolved
) {
2284 switch (Ty
->getTag()) {
2285 case dwarf::DW_TAG_const_type
:
2286 case dwarf::DW_TAG_volatile_type
:
2287 // FIXME: we should apply the qualifier types to the indirect fields
2288 // rather than dropping them.
2289 Ty
= cast
<DIDerivedType
>(Ty
)->getBaseType();
2292 FullyResolved
= true;
2297 const DICompositeType
*DCTy
= dyn_cast
<DICompositeType
>(Ty
);
2301 ClassInfo NestedInfo
= collectClassInfo(DCTy
);
2302 for (const ClassInfo::MemberInfo
&IndirectField
: NestedInfo
.Members
)
2303 Info
.Members
.push_back(
2304 {IndirectField
.MemberTypeNode
, IndirectField
.BaseOffset
+ Offset
});
2307 ClassInfo
CodeViewDebug::collectClassInfo(const DICompositeType
*Ty
) {
2309 // Add elements to structure type.
2310 DINodeArray Elements
= Ty
->getElements();
2311 for (auto *Element
: Elements
) {
2312 // We assume that the frontend provides all members in source declaration
2313 // order, which is what MSVC does.
2316 if (auto *SP
= dyn_cast
<DISubprogram
>(Element
)) {
2317 Info
.Methods
[SP
->getRawName()].push_back(SP
);
2318 } else if (auto *DDTy
= dyn_cast
<DIDerivedType
>(Element
)) {
2319 if (DDTy
->getTag() == dwarf::DW_TAG_member
) {
2320 collectMemberInfo(Info
, DDTy
);
2321 } else if (DDTy
->getTag() == dwarf::DW_TAG_inheritance
) {
2322 Info
.Inheritance
.push_back(DDTy
);
2323 } else if (DDTy
->getTag() == dwarf::DW_TAG_pointer_type
&&
2324 DDTy
->getName() == "__vtbl_ptr_type") {
2325 Info
.VShapeTI
= getTypeIndex(DDTy
);
2326 } else if (DDTy
->getTag() == dwarf::DW_TAG_typedef
) {
2327 Info
.NestedTypes
.push_back(DDTy
);
2328 } else if (DDTy
->getTag() == dwarf::DW_TAG_friend
) {
2329 // Ignore friend members. It appears that MSVC emitted info about
2330 // friends in the past, but modern versions do not.
2332 } else if (auto *Composite
= dyn_cast
<DICompositeType
>(Element
)) {
2333 Info
.NestedTypes
.push_back(Composite
);
2335 // Skip other unrecognized kinds of elements.
2340 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType
*Ty
) {
2341 // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2342 // if a complete type should be emitted instead of a forward reference.
2343 return Ty
->getName().empty() && Ty
->getIdentifier().empty() &&
2344 !Ty
->isForwardDecl();
2347 TypeIndex
CodeViewDebug::lowerTypeClass(const DICompositeType
*Ty
) {
2348 // Emit the complete type for unnamed structs. C++ classes with methods
2349 // which have a circular reference back to the class type are expected to
2350 // be named by the front-end and should not be "unnamed". C unnamed
2351 // structs should not have circular references.
2352 if (shouldAlwaysEmitCompleteClassType(Ty
)) {
2353 // If this unnamed complete type is already in the process of being defined
2354 // then the description of the type is malformed and cannot be emitted
2355 // into CodeView correctly so report a fatal error.
2356 auto I
= CompleteTypeIndices
.find(Ty
);
2357 if (I
!= CompleteTypeIndices
.end() && I
->second
== TypeIndex())
2358 report_fatal_error("cannot debug circular reference to unnamed type");
2359 return getCompleteTypeIndex(Ty
);
2362 // First, construct the forward decl. Don't look into Ty to compute the
2363 // forward decl options, since it might not be available in all TUs.
2364 TypeRecordKind Kind
= getRecordKind(Ty
);
2366 ClassOptions::ForwardReference
| getCommonClassOptions(Ty
);
2367 std::string FullName
= getFullyQualifiedName(Ty
);
2368 ClassRecord
CR(Kind
, 0, CO
, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2369 FullName
, Ty
->getIdentifier());
2370 TypeIndex FwdDeclTI
= TypeTable
.writeLeafType(CR
);
2371 if (!Ty
->isForwardDecl())
2372 DeferredCompleteTypes
.push_back(Ty
);
2376 TypeIndex
CodeViewDebug::lowerCompleteTypeClass(const DICompositeType
*Ty
) {
2377 // Construct the field list and complete type record.
2378 TypeRecordKind Kind
= getRecordKind(Ty
);
2379 ClassOptions CO
= getCommonClassOptions(Ty
);
2382 unsigned FieldCount
;
2383 bool ContainsNestedClass
;
2384 std::tie(FieldTI
, VShapeTI
, FieldCount
, ContainsNestedClass
) =
2385 lowerRecordFieldList(Ty
);
2387 if (ContainsNestedClass
)
2388 CO
|= ClassOptions::ContainsNestedClass
;
2390 // MSVC appears to set this flag by searching any destructor or method with
2391 // FunctionOptions::Constructor among the emitted members. Clang AST has all
2392 // the members, however special member functions are not yet emitted into
2393 // debug information. For now checking a class's non-triviality seems enough.
2394 // FIXME: not true for a nested unnamed struct.
2395 if (isNonTrivial(Ty
))
2396 CO
|= ClassOptions::HasConstructorOrDestructor
;
2398 std::string FullName
= getFullyQualifiedName(Ty
);
2400 uint64_t SizeInBytes
= Ty
->getSizeInBits() / 8;
2402 ClassRecord
CR(Kind
, FieldCount
, CO
, FieldTI
, TypeIndex(), VShapeTI
,
2403 SizeInBytes
, FullName
, Ty
->getIdentifier());
2404 TypeIndex ClassTI
= TypeTable
.writeLeafType(CR
);
2406 addUDTSrcLine(Ty
, ClassTI
);
2413 TypeIndex
CodeViewDebug::lowerTypeUnion(const DICompositeType
*Ty
) {
2414 // Emit the complete type for unnamed unions.
2415 if (shouldAlwaysEmitCompleteClassType(Ty
))
2416 return getCompleteTypeIndex(Ty
);
2419 ClassOptions::ForwardReference
| getCommonClassOptions(Ty
);
2420 std::string FullName
= getFullyQualifiedName(Ty
);
2421 UnionRecord
UR(0, CO
, TypeIndex(), 0, FullName
, Ty
->getIdentifier());
2422 TypeIndex FwdDeclTI
= TypeTable
.writeLeafType(UR
);
2423 if (!Ty
->isForwardDecl())
2424 DeferredCompleteTypes
.push_back(Ty
);
2428 TypeIndex
CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType
*Ty
) {
2429 ClassOptions CO
= ClassOptions::Sealed
| getCommonClassOptions(Ty
);
2431 unsigned FieldCount
;
2432 bool ContainsNestedClass
;
2433 std::tie(FieldTI
, std::ignore
, FieldCount
, ContainsNestedClass
) =
2434 lowerRecordFieldList(Ty
);
2436 if (ContainsNestedClass
)
2437 CO
|= ClassOptions::ContainsNestedClass
;
2439 uint64_t SizeInBytes
= Ty
->getSizeInBits() / 8;
2440 std::string FullName
= getFullyQualifiedName(Ty
);
2442 UnionRecord
UR(FieldCount
, CO
, FieldTI
, SizeInBytes
, FullName
,
2443 Ty
->getIdentifier());
2444 TypeIndex UnionTI
= TypeTable
.writeLeafType(UR
);
2446 addUDTSrcLine(Ty
, UnionTI
);
2453 std::tuple
<TypeIndex
, TypeIndex
, unsigned, bool>
2454 CodeViewDebug::lowerRecordFieldList(const DICompositeType
*Ty
) {
2455 // Manually count members. MSVC appears to count everything that generates a
2456 // field list record. Each individual overload in a method overload group
2457 // contributes to this count, even though the overload group is a single field
2459 unsigned MemberCount
= 0;
2460 ClassInfo Info
= collectClassInfo(Ty
);
2461 ContinuationRecordBuilder ContinuationBuilder
;
2462 ContinuationBuilder
.begin(ContinuationRecordKind::FieldList
);
2464 // Create base classes.
2465 for (const DIDerivedType
*I
: Info
.Inheritance
) {
2466 if (I
->getFlags() & DINode::FlagVirtual
) {
2468 unsigned VBPtrOffset
= I
->getVBPtrOffset();
2469 // FIXME: Despite the accessor name, the offset is really in bytes.
2470 unsigned VBTableIndex
= I
->getOffsetInBits() / 4;
2471 auto RecordKind
= (I
->getFlags() & DINode::FlagIndirectVirtualBase
) == DINode::FlagIndirectVirtualBase
2472 ? TypeRecordKind::IndirectVirtualBaseClass
2473 : TypeRecordKind::VirtualBaseClass
;
2474 VirtualBaseClassRecord
VBCR(
2475 RecordKind
, translateAccessFlags(Ty
->getTag(), I
->getFlags()),
2476 getTypeIndex(I
->getBaseType()), getVBPTypeIndex(), VBPtrOffset
,
2479 ContinuationBuilder
.writeMemberType(VBCR
);
2482 assert(I
->getOffsetInBits() % 8 == 0 &&
2483 "bases must be on byte boundaries");
2484 BaseClassRecord
BCR(translateAccessFlags(Ty
->getTag(), I
->getFlags()),
2485 getTypeIndex(I
->getBaseType()),
2486 I
->getOffsetInBits() / 8);
2487 ContinuationBuilder
.writeMemberType(BCR
);
2493 for (ClassInfo::MemberInfo
&MemberInfo
: Info
.Members
) {
2494 const DIDerivedType
*Member
= MemberInfo
.MemberTypeNode
;
2495 TypeIndex MemberBaseType
= getTypeIndex(Member
->getBaseType());
2496 StringRef MemberName
= Member
->getName();
2497 MemberAccess Access
=
2498 translateAccessFlags(Ty
->getTag(), Member
->getFlags());
2500 if (Member
->isStaticMember()) {
2501 StaticDataMemberRecord
SDMR(Access
, MemberBaseType
, MemberName
);
2502 ContinuationBuilder
.writeMemberType(SDMR
);
2507 // Virtual function pointer member.
2508 if ((Member
->getFlags() & DINode::FlagArtificial
) &&
2509 Member
->getName().startswith("_vptr$")) {
2510 VFPtrRecord
VFPR(getTypeIndex(Member
->getBaseType()));
2511 ContinuationBuilder
.writeMemberType(VFPR
);
2517 uint64_t MemberOffsetInBits
=
2518 Member
->getOffsetInBits() + MemberInfo
.BaseOffset
;
2519 if (Member
->isBitField()) {
2520 uint64_t StartBitOffset
= MemberOffsetInBits
;
2521 if (const auto *CI
=
2522 dyn_cast_or_null
<ConstantInt
>(Member
->getStorageOffsetInBits())) {
2523 MemberOffsetInBits
= CI
->getZExtValue() + MemberInfo
.BaseOffset
;
2525 StartBitOffset
-= MemberOffsetInBits
;
2526 BitFieldRecord
BFR(MemberBaseType
, Member
->getSizeInBits(),
2528 MemberBaseType
= TypeTable
.writeLeafType(BFR
);
2530 uint64_t MemberOffsetInBytes
= MemberOffsetInBits
/ 8;
2531 DataMemberRecord
DMR(Access
, MemberBaseType
, MemberOffsetInBytes
,
2533 ContinuationBuilder
.writeMemberType(DMR
);
2538 for (auto &MethodItr
: Info
.Methods
) {
2539 StringRef Name
= MethodItr
.first
->getString();
2541 std::vector
<OneMethodRecord
> Methods
;
2542 for (const DISubprogram
*SP
: MethodItr
.second
) {
2543 TypeIndex MethodType
= getMemberFunctionType(SP
, Ty
);
2544 bool Introduced
= SP
->getFlags() & DINode::FlagIntroducedVirtual
;
2546 unsigned VFTableOffset
= -1;
2548 VFTableOffset
= SP
->getVirtualIndex() * getPointerSizeInBytes();
2550 Methods
.push_back(OneMethodRecord(
2551 MethodType
, translateAccessFlags(Ty
->getTag(), SP
->getFlags()),
2552 translateMethodKindFlags(SP
, Introduced
),
2553 translateMethodOptionFlags(SP
), VFTableOffset
, Name
));
2556 assert(!Methods
.empty() && "Empty methods map entry");
2557 if (Methods
.size() == 1)
2558 ContinuationBuilder
.writeMemberType(Methods
[0]);
2560 // FIXME: Make this use its own ContinuationBuilder so that
2561 // MethodOverloadList can be split correctly.
2562 MethodOverloadListRecord
MOLR(Methods
);
2563 TypeIndex MethodList
= TypeTable
.writeLeafType(MOLR
);
2565 OverloadedMethodRecord
OMR(Methods
.size(), MethodList
, Name
);
2566 ContinuationBuilder
.writeMemberType(OMR
);
2570 // Create nested classes.
2571 for (const DIType
*Nested
: Info
.NestedTypes
) {
2572 NestedTypeRecord
R(getTypeIndex(Nested
), Nested
->getName());
2573 ContinuationBuilder
.writeMemberType(R
);
2577 TypeIndex FieldTI
= TypeTable
.insertRecord(ContinuationBuilder
);
2578 return std::make_tuple(FieldTI
, Info
.VShapeTI
, MemberCount
,
2579 !Info
.NestedTypes
.empty());
2582 TypeIndex
CodeViewDebug::getVBPTypeIndex() {
2583 if (!VBPType
.getIndex()) {
2584 // Make a 'const int *' type.
2585 ModifierRecord
MR(TypeIndex::Int32(), ModifierOptions::Const
);
2586 TypeIndex ModifiedTI
= TypeTable
.writeLeafType(MR
);
2588 PointerKind PK
= getPointerSizeInBytes() == 8 ? PointerKind::Near64
2589 : PointerKind::Near32
;
2590 PointerMode PM
= PointerMode::Pointer
;
2591 PointerOptions PO
= PointerOptions::None
;
2592 PointerRecord
PR(ModifiedTI
, PK
, PM
, PO
, getPointerSizeInBytes());
2593 VBPType
= TypeTable
.writeLeafType(PR
);
2599 TypeIndex
CodeViewDebug::getTypeIndex(const DIType
*Ty
, const DIType
*ClassTy
) {
2600 // The null DIType is the void type. Don't try to hash it.
2602 return TypeIndex::Void();
2604 // Check if we've already translated this type. Don't try to do a
2605 // get-or-create style insertion that caches the hash lookup across the
2606 // lowerType call. It will update the TypeIndices map.
2607 auto I
= TypeIndices
.find({Ty
, ClassTy
});
2608 if (I
!= TypeIndices
.end())
2611 TypeLoweringScope
S(*this);
2612 TypeIndex TI
= lowerType(Ty
, ClassTy
);
2613 return recordTypeIndexForDINode(Ty
, TI
, ClassTy
);
2617 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType
*PtrTy
,
2618 const DISubroutineType
*SubroutineTy
) {
2619 assert(PtrTy
->getTag() == dwarf::DW_TAG_pointer_type
&&
2620 "this type must be a pointer type");
2622 PointerOptions Options
= PointerOptions::None
;
2623 if (SubroutineTy
->getFlags() & DINode::DIFlags::FlagLValueReference
)
2624 Options
= PointerOptions::LValueRefThisPointer
;
2625 else if (SubroutineTy
->getFlags() & DINode::DIFlags::FlagRValueReference
)
2626 Options
= PointerOptions::RValueRefThisPointer
;
2628 // Check if we've already translated this type. If there is no ref qualifier
2629 // on the function then we look up this pointer type with no associated class
2630 // so that the TypeIndex for the this pointer can be shared with the type
2631 // index for other pointers to this class type. If there is a ref qualifier
2632 // then we lookup the pointer using the subroutine as the parent type.
2633 auto I
= TypeIndices
.find({PtrTy
, SubroutineTy
});
2634 if (I
!= TypeIndices
.end())
2637 TypeLoweringScope
S(*this);
2638 TypeIndex TI
= lowerTypePointer(PtrTy
, Options
);
2639 return recordTypeIndexForDINode(PtrTy
, TI
, SubroutineTy
);
2642 TypeIndex
CodeViewDebug::getTypeIndexForReferenceTo(const DIType
*Ty
) {
2643 PointerRecord
PR(getTypeIndex(Ty
),
2644 getPointerSizeInBytes() == 8 ? PointerKind::Near64
2645 : PointerKind::Near32
,
2646 PointerMode::LValueReference
, PointerOptions::None
,
2647 Ty
->getSizeInBits() / 8);
2648 return TypeTable
.writeLeafType(PR
);
2651 TypeIndex
CodeViewDebug::getCompleteTypeIndex(const DIType
*Ty
) {
2652 // The null DIType is the void type. Don't try to hash it.
2654 return TypeIndex::Void();
2656 // Look through typedefs when getting the complete type index. Call
2657 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2658 // emitted only once.
2659 if (Ty
->getTag() == dwarf::DW_TAG_typedef
)
2660 (void)getTypeIndex(Ty
);
2661 while (Ty
->getTag() == dwarf::DW_TAG_typedef
)
2662 Ty
= cast
<DIDerivedType
>(Ty
)->getBaseType();
2664 // If this is a non-record type, the complete type index is the same as the
2665 // normal type index. Just call getTypeIndex.
2666 switch (Ty
->getTag()) {
2667 case dwarf::DW_TAG_class_type
:
2668 case dwarf::DW_TAG_structure_type
:
2669 case dwarf::DW_TAG_union_type
:
2672 return getTypeIndex(Ty
);
2675 const auto *CTy
= cast
<DICompositeType
>(Ty
);
2677 TypeLoweringScope
S(*this);
2679 // Make sure the forward declaration is emitted first. It's unclear if this
2680 // is necessary, but MSVC does it, and we should follow suit until we can show
2682 // We only emit a forward declaration for named types.
2683 if (!CTy
->getName().empty() || !CTy
->getIdentifier().empty()) {
2684 TypeIndex FwdDeclTI
= getTypeIndex(CTy
);
2686 // Just use the forward decl if we don't have complete type info. This
2687 // might happen if the frontend is using modules and expects the complete
2688 // definition to be emitted elsewhere.
2689 if (CTy
->isForwardDecl())
2693 // Check if we've already translated the complete record type.
2694 // Insert the type with a null TypeIndex to signify that the type is currently
2696 auto InsertResult
= CompleteTypeIndices
.insert({CTy
, TypeIndex()});
2697 if (!InsertResult
.second
)
2698 return InsertResult
.first
->second
;
2701 switch (CTy
->getTag()) {
2702 case dwarf::DW_TAG_class_type
:
2703 case dwarf::DW_TAG_structure_type
:
2704 TI
= lowerCompleteTypeClass(CTy
);
2706 case dwarf::DW_TAG_union_type
:
2707 TI
= lowerCompleteTypeUnion(CTy
);
2710 llvm_unreachable("not a record");
2713 // Update the type index associated with this CompositeType. This cannot
2714 // use the 'InsertResult' iterator above because it is potentially
2715 // invalidated by map insertions which can occur while lowering the class
2717 CompleteTypeIndices
[CTy
] = TI
;
2721 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2722 /// and do this until fixpoint, as each complete record type typically
2724 /// many other record types.
2725 void CodeViewDebug::emitDeferredCompleteTypes() {
2726 SmallVector
<const DICompositeType
*, 4> TypesToEmit
;
2727 while (!DeferredCompleteTypes
.empty()) {
2728 std::swap(DeferredCompleteTypes
, TypesToEmit
);
2729 for (const DICompositeType
*RecordTy
: TypesToEmit
)
2730 getCompleteTypeIndex(RecordTy
);
2731 TypesToEmit
.clear();
2735 void CodeViewDebug::emitLocalVariableList(const FunctionInfo
&FI
,
2736 ArrayRef
<LocalVariable
> Locals
) {
2737 // Get the sorted list of parameters and emit them first.
2738 SmallVector
<const LocalVariable
*, 6> Params
;
2739 for (const LocalVariable
&L
: Locals
)
2740 if (L
.DIVar
->isParameter())
2741 Params
.push_back(&L
);
2742 llvm::sort(Params
, [](const LocalVariable
*L
, const LocalVariable
*R
) {
2743 return L
->DIVar
->getArg() < R
->DIVar
->getArg();
2745 for (const LocalVariable
*L
: Params
)
2746 emitLocalVariable(FI
, *L
);
2748 // Next emit all non-parameters in the order that we found them.
2749 for (const LocalVariable
&L
: Locals
)
2750 if (!L
.DIVar
->isParameter())
2751 emitLocalVariable(FI
, L
);
2754 void CodeViewDebug::emitLocalVariable(const FunctionInfo
&FI
,
2755 const LocalVariable
&Var
) {
2756 // LocalSym record, see SymbolRecord.h for more info.
2757 MCSymbol
*LocalEnd
= beginSymbolRecord(SymbolKind::S_LOCAL
);
2759 LocalSymFlags Flags
= LocalSymFlags::None
;
2760 if (Var
.DIVar
->isParameter())
2761 Flags
|= LocalSymFlags::IsParameter
;
2762 if (Var
.DefRanges
.empty())
2763 Flags
|= LocalSymFlags::IsOptimizedOut
;
2765 OS
.AddComment("TypeIndex");
2766 TypeIndex TI
= Var
.UseReferenceType
2767 ? getTypeIndexForReferenceTo(Var
.DIVar
->getType())
2768 : getCompleteTypeIndex(Var
.DIVar
->getType());
2769 OS
.emitInt32(TI
.getIndex());
2770 OS
.AddComment("Flags");
2771 OS
.emitInt16(static_cast<uint16_t>(Flags
));
2772 // Truncate the name so we won't overflow the record length field.
2773 emitNullTerminatedSymbolName(OS
, Var
.DIVar
->getName());
2774 endSymbolRecord(LocalEnd
);
2776 // Calculate the on disk prefix of the appropriate def range record. The
2777 // records and on disk formats are described in SymbolRecords.h. BytePrefix
2778 // should be big enough to hold all forms without memory allocation.
2779 SmallString
<20> BytePrefix
;
2780 for (const LocalVarDefRange
&DefRange
: Var
.DefRanges
) {
2782 if (DefRange
.InMemory
) {
2783 int Offset
= DefRange
.DataOffset
;
2784 unsigned Reg
= DefRange
.CVRegister
;
2786 // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2787 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2788 // instead. In frames without stack realignment, $T0 will be the CFA.
2789 if (RegisterId(Reg
) == RegisterId::ESP
) {
2790 Reg
= unsigned(RegisterId::VFRAME
);
2791 Offset
+= FI
.OffsetAdjustment
;
2794 // If we can use the chosen frame pointer for the frame and this isn't a
2795 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2796 // Otherwise, use S_DEFRANGE_REGISTER_REL.
2797 EncodedFramePtrReg EncFP
= encodeFramePtrReg(RegisterId(Reg
), TheCPU
);
2798 if (!DefRange
.IsSubfield
&& EncFP
!= EncodedFramePtrReg::None
&&
2799 (bool(Flags
& LocalSymFlags::IsParameter
)
2800 ? (EncFP
== FI
.EncodedParamFramePtrReg
)
2801 : (EncFP
== FI
.EncodedLocalFramePtrReg
))) {
2802 DefRangeFramePointerRelHeader DRHdr
;
2803 DRHdr
.Offset
= Offset
;
2804 OS
.emitCVDefRangeDirective(DefRange
.Ranges
, DRHdr
);
2806 uint16_t RegRelFlags
= 0;
2807 if (DefRange
.IsSubfield
) {
2808 RegRelFlags
= DefRangeRegisterRelSym::IsSubfieldFlag
|
2809 (DefRange
.StructOffset
2810 << DefRangeRegisterRelSym::OffsetInParentShift
);
2812 DefRangeRegisterRelHeader DRHdr
;
2813 DRHdr
.Register
= Reg
;
2814 DRHdr
.Flags
= RegRelFlags
;
2815 DRHdr
.BasePointerOffset
= Offset
;
2816 OS
.emitCVDefRangeDirective(DefRange
.Ranges
, DRHdr
);
2819 assert(DefRange
.DataOffset
== 0 && "unexpected offset into register");
2820 if (DefRange
.IsSubfield
) {
2821 DefRangeSubfieldRegisterHeader DRHdr
;
2822 DRHdr
.Register
= DefRange
.CVRegister
;
2823 DRHdr
.MayHaveNoName
= 0;
2824 DRHdr
.OffsetInParent
= DefRange
.StructOffset
;
2825 OS
.emitCVDefRangeDirective(DefRange
.Ranges
, DRHdr
);
2827 DefRangeRegisterHeader DRHdr
;
2828 DRHdr
.Register
= DefRange
.CVRegister
;
2829 DRHdr
.MayHaveNoName
= 0;
2830 OS
.emitCVDefRangeDirective(DefRange
.Ranges
, DRHdr
);
2836 void CodeViewDebug::emitLexicalBlockList(ArrayRef
<LexicalBlock
*> Blocks
,
2837 const FunctionInfo
& FI
) {
2838 for (LexicalBlock
*Block
: Blocks
)
2839 emitLexicalBlock(*Block
, FI
);
2842 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2843 /// lexical block scope.
2844 void CodeViewDebug::emitLexicalBlock(const LexicalBlock
&Block
,
2845 const FunctionInfo
& FI
) {
2846 MCSymbol
*RecordEnd
= beginSymbolRecord(SymbolKind::S_BLOCK32
);
2847 OS
.AddComment("PtrParent");
2848 OS
.emitInt32(0); // PtrParent
2849 OS
.AddComment("PtrEnd");
2850 OS
.emitInt32(0); // PtrEnd
2851 OS
.AddComment("Code size");
2852 OS
.emitAbsoluteSymbolDiff(Block
.End
, Block
.Begin
, 4); // Code Size
2853 OS
.AddComment("Function section relative address");
2854 OS
.EmitCOFFSecRel32(Block
.Begin
, /*Offset=*/0); // Func Offset
2855 OS
.AddComment("Function section index");
2856 OS
.EmitCOFFSectionIndex(FI
.Begin
); // Func Symbol
2857 OS
.AddComment("Lexical block name");
2858 emitNullTerminatedSymbolName(OS
, Block
.Name
); // Name
2859 endSymbolRecord(RecordEnd
);
2861 // Emit variables local to this lexical block.
2862 emitLocalVariableList(FI
, Block
.Locals
);
2863 emitGlobalVariableList(Block
.Globals
);
2865 // Emit lexical blocks contained within this block.
2866 emitLexicalBlockList(Block
.Children
, FI
);
2868 // Close the lexical block scope.
2869 emitEndSymbolRecord(SymbolKind::S_END
);
2872 /// Convenience routine for collecting lexical block information for a list
2873 /// of lexical scopes.
2874 void CodeViewDebug::collectLexicalBlockInfo(
2875 SmallVectorImpl
<LexicalScope
*> &Scopes
,
2876 SmallVectorImpl
<LexicalBlock
*> &Blocks
,
2877 SmallVectorImpl
<LocalVariable
> &Locals
,
2878 SmallVectorImpl
<CVGlobalVariable
> &Globals
) {
2879 for (LexicalScope
*Scope
: Scopes
)
2880 collectLexicalBlockInfo(*Scope
, Blocks
, Locals
, Globals
);
2883 /// Populate the lexical blocks and local variable lists of the parent with
2884 /// information about the specified lexical scope.
2885 void CodeViewDebug::collectLexicalBlockInfo(
2886 LexicalScope
&Scope
,
2887 SmallVectorImpl
<LexicalBlock
*> &ParentBlocks
,
2888 SmallVectorImpl
<LocalVariable
> &ParentLocals
,
2889 SmallVectorImpl
<CVGlobalVariable
> &ParentGlobals
) {
2890 if (Scope
.isAbstractScope())
2893 // Gather information about the lexical scope including local variables,
2894 // global variables, and address ranges.
2895 bool IgnoreScope
= false;
2896 auto LI
= ScopeVariables
.find(&Scope
);
2897 SmallVectorImpl
<LocalVariable
> *Locals
=
2898 LI
!= ScopeVariables
.end() ? &LI
->second
: nullptr;
2899 auto GI
= ScopeGlobals
.find(Scope
.getScopeNode());
2900 SmallVectorImpl
<CVGlobalVariable
> *Globals
=
2901 GI
!= ScopeGlobals
.end() ? GI
->second
.get() : nullptr;
2902 const DILexicalBlock
*DILB
= dyn_cast
<DILexicalBlock
>(Scope
.getScopeNode());
2903 const SmallVectorImpl
<InsnRange
> &Ranges
= Scope
.getRanges();
2905 // Ignore lexical scopes which do not contain variables.
2906 if (!Locals
&& !Globals
)
2909 // Ignore lexical scopes which are not lexical blocks.
2913 // Ignore scopes which have too many address ranges to represent in the
2914 // current CodeView format or do not have a valid address range.
2916 // For lexical scopes with multiple address ranges you may be tempted to
2917 // construct a single range covering every instruction where the block is
2918 // live and everything in between. Unfortunately, Visual Studio only
2919 // displays variables from the first matching lexical block scope. If the
2920 // first lexical block contains exception handling code or cold code which
2921 // is moved to the bottom of the routine creating a single range covering
2922 // nearly the entire routine, then it will hide all other lexical blocks
2923 // and the variables they contain.
2924 if (Ranges
.size() != 1 || !getLabelAfterInsn(Ranges
.front().second
))
2928 // This scope can be safely ignored and eliminating it will reduce the
2929 // size of the debug information. Be sure to collect any variable and scope
2930 // information from the this scope or any of its children and collapse them
2931 // into the parent scope.
2933 ParentLocals
.append(Locals
->begin(), Locals
->end());
2935 ParentGlobals
.append(Globals
->begin(), Globals
->end());
2936 collectLexicalBlockInfo(Scope
.getChildren(),
2943 // Create a new CodeView lexical block for this lexical scope. If we've
2944 // seen this DILexicalBlock before then the scope tree is malformed and
2945 // we can handle this gracefully by not processing it a second time.
2946 auto BlockInsertion
= CurFn
->LexicalBlocks
.insert({DILB
, LexicalBlock()});
2947 if (!BlockInsertion
.second
)
2950 // Create a lexical block containing the variables and collect the the
2951 // lexical block information for the children.
2952 const InsnRange
&Range
= Ranges
.front();
2953 assert(Range
.first
&& Range
.second
);
2954 LexicalBlock
&Block
= BlockInsertion
.first
->second
;
2955 Block
.Begin
= getLabelBeforeInsn(Range
.first
);
2956 Block
.End
= getLabelAfterInsn(Range
.second
);
2957 assert(Block
.Begin
&& "missing label for scope begin");
2958 assert(Block
.End
&& "missing label for scope end");
2959 Block
.Name
= DILB
->getName();
2961 Block
.Locals
= std::move(*Locals
);
2963 Block
.Globals
= std::move(*Globals
);
2964 ParentBlocks
.push_back(&Block
);
2965 collectLexicalBlockInfo(Scope
.getChildren(),
2971 void CodeViewDebug::endFunctionImpl(const MachineFunction
*MF
) {
2972 const Function
&GV
= MF
->getFunction();
2973 assert(FnDebugInfo
.count(&GV
));
2974 assert(CurFn
== FnDebugInfo
[&GV
].get());
2976 collectVariableInfo(GV
.getSubprogram());
2978 // Build the lexical block structure to emit for this routine.
2979 if (LexicalScope
*CFS
= LScopes
.getCurrentFunctionScope())
2980 collectLexicalBlockInfo(*CFS
,
2985 // Clear the scope and variable information from the map which will not be
2986 // valid after we have finished processing this routine. This also prepares
2987 // the map for the subsequent routine.
2988 ScopeVariables
.clear();
2990 // Don't emit anything if we don't have any line tables.
2991 // Thunks are compiler-generated and probably won't have source correlation.
2992 if (!CurFn
->HaveLineInfo
&& !GV
.getSubprogram()->isThunk()) {
2993 FnDebugInfo
.erase(&GV
);
2998 // Find heap alloc sites and add to list.
2999 for (const auto &MBB
: *MF
) {
3000 for (const auto &MI
: MBB
) {
3001 if (MDNode
*MD
= MI
.getHeapAllocMarker()) {
3002 CurFn
->HeapAllocSites
.push_back(std::make_tuple(getLabelBeforeInsn(&MI
),
3003 getLabelAfterInsn(&MI
),
3004 dyn_cast
<DIType
>(MD
)));
3009 CurFn
->Annotations
= MF
->getCodeViewAnnotations();
3011 CurFn
->End
= Asm
->getFunctionEnd();
3016 // Usable locations are valid with non-zero line numbers. A line number of zero
3017 // corresponds to optimized code that doesn't have a distinct source location.
3018 // In this case, we try to use the previous or next source location depending on
3020 static bool isUsableDebugLoc(DebugLoc DL
) {
3021 return DL
&& DL
.getLine() != 0;
3024 void CodeViewDebug::beginInstruction(const MachineInstr
*MI
) {
3025 DebugHandlerBase::beginInstruction(MI
);
3027 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
3028 if (!Asm
|| !CurFn
|| MI
->isDebugInstr() ||
3029 MI
->getFlag(MachineInstr::FrameSetup
))
3032 // If the first instruction of a new MBB has no location, find the first
3033 // instruction with a location and use that.
3034 DebugLoc DL
= MI
->getDebugLoc();
3035 if (!isUsableDebugLoc(DL
) && MI
->getParent() != PrevInstBB
) {
3036 for (const auto &NextMI
: *MI
->getParent()) {
3037 if (NextMI
.isDebugInstr())
3039 DL
= NextMI
.getDebugLoc();
3040 if (isUsableDebugLoc(DL
))
3043 // FIXME: Handle the case where the BB has no valid locations. This would
3044 // probably require doing a real dataflow analysis.
3046 PrevInstBB
= MI
->getParent();
3048 // If we still don't have a debug location, don't record a location.
3049 if (!isUsableDebugLoc(DL
))
3052 maybeRecordLocation(DL
, Asm
->MF
);
3055 MCSymbol
*CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind
) {
3056 MCSymbol
*BeginLabel
= MMI
->getContext().createTempSymbol(),
3057 *EndLabel
= MMI
->getContext().createTempSymbol();
3058 OS
.emitInt32(unsigned(Kind
));
3059 OS
.AddComment("Subsection size");
3060 OS
.emitAbsoluteSymbolDiff(EndLabel
, BeginLabel
, 4);
3061 OS
.emitLabel(BeginLabel
);
3065 void CodeViewDebug::endCVSubsection(MCSymbol
*EndLabel
) {
3066 OS
.emitLabel(EndLabel
);
3067 // Every subsection must be aligned to a 4-byte boundary.
3068 OS
.emitValueToAlignment(4);
3071 static StringRef
getSymbolName(SymbolKind SymKind
) {
3072 for (const EnumEntry
<SymbolKind
> &EE
: getSymbolTypeNames())
3073 if (EE
.Value
== SymKind
)
3078 MCSymbol
*CodeViewDebug::beginSymbolRecord(SymbolKind SymKind
) {
3079 MCSymbol
*BeginLabel
= MMI
->getContext().createTempSymbol(),
3080 *EndLabel
= MMI
->getContext().createTempSymbol();
3081 OS
.AddComment("Record length");
3082 OS
.emitAbsoluteSymbolDiff(EndLabel
, BeginLabel
, 2);
3083 OS
.emitLabel(BeginLabel
);
3084 if (OS
.isVerboseAsm())
3085 OS
.AddComment("Record kind: " + getSymbolName(SymKind
));
3086 OS
.emitInt16(unsigned(SymKind
));
3090 void CodeViewDebug::endSymbolRecord(MCSymbol
*SymEnd
) {
3091 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
3092 // an extra copy of every symbol record in LLD. This increases object file
3093 // size by less than 1% in the clang build, and is compatible with the Visual
3095 OS
.emitValueToAlignment(4);
3096 OS
.emitLabel(SymEnd
);
3099 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind
) {
3100 OS
.AddComment("Record length");
3102 if (OS
.isVerboseAsm())
3103 OS
.AddComment("Record kind: " + getSymbolName(EndKind
));
3104 OS
.emitInt16(uint16_t(EndKind
)); // Record Kind
3107 void CodeViewDebug::emitDebugInfoForUDTs(
3108 const std::vector
<std::pair
<std::string
, const DIType
*>> &UDTs
) {
3110 size_t OriginalSize
= UDTs
.size();
3112 for (const auto &UDT
: UDTs
) {
3113 const DIType
*T
= UDT
.second
;
3114 assert(shouldEmitUdt(T
));
3115 MCSymbol
*UDTRecordEnd
= beginSymbolRecord(SymbolKind::S_UDT
);
3116 OS
.AddComment("Type");
3117 OS
.emitInt32(getCompleteTypeIndex(T
).getIndex());
3118 assert(OriginalSize
== UDTs
.size() &&
3119 "getCompleteTypeIndex found new UDTs!");
3120 emitNullTerminatedSymbolName(OS
, UDT
.first
);
3121 endSymbolRecord(UDTRecordEnd
);
3125 void CodeViewDebug::collectGlobalVariableInfo() {
3126 DenseMap
<const DIGlobalVariableExpression
*, const GlobalVariable
*>
3128 for (const GlobalVariable
&GV
: MMI
->getModule()->globals()) {
3129 SmallVector
<DIGlobalVariableExpression
*, 1> GVEs
;
3130 GV
.getDebugInfo(GVEs
);
3131 for (const auto *GVE
: GVEs
)
3132 GlobalMap
[GVE
] = &GV
;
3135 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
3136 for (const MDNode
*Node
: CUs
->operands()) {
3137 const auto *CU
= cast
<DICompileUnit
>(Node
);
3138 for (const auto *GVE
: CU
->getGlobalVariables()) {
3139 const DIGlobalVariable
*DIGV
= GVE
->getVariable();
3140 const DIExpression
*DIE
= GVE
->getExpression();
3142 if ((DIE
->getNumElements() == 2) &&
3143 (DIE
->getElement(0) == dwarf::DW_OP_plus_uconst
))
3144 // Record the constant offset for the variable.
3146 // A Fortran common block uses this idiom to encode the offset
3147 // of a variable from the common block's starting address.
3148 CVGlobalVariableOffsets
.insert(
3149 std::make_pair(DIGV
, DIE
->getElement(1)));
3151 // Emit constant global variables in a global symbol section.
3152 if (GlobalMap
.count(GVE
) == 0 && DIE
->isConstant()) {
3153 CVGlobalVariable CVGV
= {DIGV
, DIE
};
3154 GlobalVariables
.emplace_back(std::move(CVGV
));
3157 const auto *GV
= GlobalMap
.lookup(GVE
);
3158 if (!GV
|| GV
->isDeclarationForLinker())
3161 DIScope
*Scope
= DIGV
->getScope();
3162 SmallVector
<CVGlobalVariable
, 1> *VariableList
;
3163 if (Scope
&& isa
<DILocalScope
>(Scope
)) {
3164 // Locate a global variable list for this scope, creating one if
3166 auto Insertion
= ScopeGlobals
.insert(
3167 {Scope
, std::unique_ptr
<GlobalVariableList
>()});
3168 if (Insertion
.second
)
3169 Insertion
.first
->second
= std::make_unique
<GlobalVariableList
>();
3170 VariableList
= Insertion
.first
->second
.get();
3171 } else if (GV
->hasComdat())
3172 // Emit this global variable into a COMDAT section.
3173 VariableList
= &ComdatVariables
;
3175 // Emit this global variable in a single global symbol section.
3176 VariableList
= &GlobalVariables
;
3177 CVGlobalVariable CVGV
= {DIGV
, GV
};
3178 VariableList
->emplace_back(std::move(CVGV
));
3183 void CodeViewDebug::collectDebugInfoForGlobals() {
3184 for (const CVGlobalVariable
&CVGV
: GlobalVariables
) {
3185 const DIGlobalVariable
*DIGV
= CVGV
.DIGV
;
3186 const DIScope
*Scope
= DIGV
->getScope();
3187 getCompleteTypeIndex(DIGV
->getType());
3188 getFullyQualifiedName(Scope
, DIGV
->getName());
3191 for (const CVGlobalVariable
&CVGV
: ComdatVariables
) {
3192 const DIGlobalVariable
*DIGV
= CVGV
.DIGV
;
3193 const DIScope
*Scope
= DIGV
->getScope();
3194 getCompleteTypeIndex(DIGV
->getType());
3195 getFullyQualifiedName(Scope
, DIGV
->getName());
3199 void CodeViewDebug::emitDebugInfoForGlobals() {
3200 // First, emit all globals that are not in a comdat in a single symbol
3201 // substream. MSVC doesn't like it if the substream is empty, so only open
3202 // it if we have at least one global to emit.
3203 switchToDebugSectionForSymbol(nullptr);
3204 if (!GlobalVariables
.empty() || !StaticConstMembers
.empty()) {
3205 OS
.AddComment("Symbol subsection for globals");
3206 MCSymbol
*EndLabel
= beginCVSubsection(DebugSubsectionKind::Symbols
);
3207 emitGlobalVariableList(GlobalVariables
);
3208 emitStaticConstMemberList();
3209 endCVSubsection(EndLabel
);
3212 // Second, emit each global that is in a comdat into its own .debug$S
3213 // section along with its own symbol substream.
3214 for (const CVGlobalVariable
&CVGV
: ComdatVariables
) {
3215 const GlobalVariable
*GV
= CVGV
.GVInfo
.get
<const GlobalVariable
*>();
3216 MCSymbol
*GVSym
= Asm
->getSymbol(GV
);
3217 OS
.AddComment("Symbol subsection for " +
3218 Twine(GlobalValue::dropLLVMManglingEscape(GV
->getName())));
3219 switchToDebugSectionForSymbol(GVSym
);
3220 MCSymbol
*EndLabel
= beginCVSubsection(DebugSubsectionKind::Symbols
);
3221 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3222 emitDebugInfoForGlobal(CVGV
);
3223 endCVSubsection(EndLabel
);
3227 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3228 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
3229 for (const MDNode
*Node
: CUs
->operands()) {
3230 for (auto *Ty
: cast
<DICompileUnit
>(Node
)->getRetainedTypes()) {
3231 if (DIType
*RT
= dyn_cast
<DIType
>(Ty
)) {
3233 // FIXME: Add to global/local DTU list.
3239 // Emit each global variable in the specified array.
3240 void CodeViewDebug::emitGlobalVariableList(ArrayRef
<CVGlobalVariable
> Globals
) {
3241 for (const CVGlobalVariable
&CVGV
: Globals
) {
3242 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3243 emitDebugInfoForGlobal(CVGV
);
3247 void CodeViewDebug::emitConstantSymbolRecord(const DIType
*DTy
, APSInt
&Value
,
3248 const std::string
&QualifiedName
) {
3249 MCSymbol
*SConstantEnd
= beginSymbolRecord(SymbolKind::S_CONSTANT
);
3250 OS
.AddComment("Type");
3251 OS
.emitInt32(getTypeIndex(DTy
).getIndex());
3253 OS
.AddComment("Value");
3255 // Encoded integers shouldn't need more than 10 bytes.
3257 BinaryStreamWriter
Writer(Data
, llvm::support::endianness::little
);
3258 CodeViewRecordIO
IO(Writer
);
3259 cantFail(IO
.mapEncodedInteger(Value
));
3260 StringRef
SRef((char *)Data
, Writer
.getOffset());
3261 OS
.emitBinaryData(SRef
);
3263 OS
.AddComment("Name");
3264 emitNullTerminatedSymbolName(OS
, QualifiedName
);
3265 endSymbolRecord(SConstantEnd
);
3268 void CodeViewDebug::emitStaticConstMemberList() {
3269 for (const DIDerivedType
*DTy
: StaticConstMembers
) {
3270 const DIScope
*Scope
= DTy
->getScope();
3273 if (const ConstantInt
*CI
=
3274 dyn_cast_or_null
<ConstantInt
>(DTy
->getConstant()))
3275 Value
= APSInt(CI
->getValue(),
3276 DebugHandlerBase::isUnsignedDIType(DTy
->getBaseType()));
3277 else if (const ConstantFP
*CFP
=
3278 dyn_cast_or_null
<ConstantFP
>(DTy
->getConstant()))
3279 Value
= APSInt(CFP
->getValueAPF().bitcastToAPInt(), true);
3281 llvm_unreachable("cannot emit a constant without a value");
3283 emitConstantSymbolRecord(DTy
->getBaseType(), Value
,
3284 getFullyQualifiedName(Scope
, DTy
->getName()));
3288 static bool isFloatDIType(const DIType
*Ty
) {
3289 if (isa
<DICompositeType
>(Ty
))
3292 if (auto *DTy
= dyn_cast
<DIDerivedType
>(Ty
)) {
3293 dwarf::Tag T
= (dwarf::Tag
)Ty
->getTag();
3294 if (T
== dwarf::DW_TAG_pointer_type
||
3295 T
== dwarf::DW_TAG_ptr_to_member_type
||
3296 T
== dwarf::DW_TAG_reference_type
||
3297 T
== dwarf::DW_TAG_rvalue_reference_type
)
3299 assert(DTy
->getBaseType() && "Expected valid base type");
3300 return isFloatDIType(DTy
->getBaseType());
3303 auto *BTy
= cast
<DIBasicType
>(Ty
);
3304 return (BTy
->getEncoding() == dwarf::DW_ATE_float
);
3307 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable
&CVGV
) {
3308 const DIGlobalVariable
*DIGV
= CVGV
.DIGV
;
3310 const DIScope
*Scope
= DIGV
->getScope();
3311 // For static data members, get the scope from the declaration.
3312 if (const auto *MemberDecl
= dyn_cast_or_null
<DIDerivedType
>(
3313 DIGV
->getRawStaticDataMemberDeclaration()))
3314 Scope
= MemberDecl
->getScope();
3315 // For Fortran, the scoping portion is elided in its name so that we can
3316 // reference the variable in the command line of the VS debugger.
3317 std::string QualifiedName
=
3318 (moduleIsInFortran()) ? std::string(DIGV
->getName())
3319 : getFullyQualifiedName(Scope
, DIGV
->getName());
3321 if (const GlobalVariable
*GV
=
3322 CVGV
.GVInfo
.dyn_cast
<const GlobalVariable
*>()) {
3323 // DataSym record, see SymbolRecord.h for more info. Thread local data
3324 // happens to have the same format as global data.
3325 MCSymbol
*GVSym
= Asm
->getSymbol(GV
);
3326 SymbolKind DataSym
= GV
->isThreadLocal()
3327 ? (DIGV
->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3328 : SymbolKind::S_GTHREAD32
)
3329 : (DIGV
->isLocalToUnit() ? SymbolKind::S_LDATA32
3330 : SymbolKind::S_GDATA32
);
3331 MCSymbol
*DataEnd
= beginSymbolRecord(DataSym
);
3332 OS
.AddComment("Type");
3333 OS
.emitInt32(getCompleteTypeIndex(DIGV
->getType()).getIndex());
3334 OS
.AddComment("DataOffset");
3336 uint64_t Offset
= 0;
3337 if (CVGlobalVariableOffsets
.find(DIGV
) != CVGlobalVariableOffsets
.end())
3338 // Use the offset seen while collecting info on globals.
3339 Offset
= CVGlobalVariableOffsets
[DIGV
];
3340 OS
.EmitCOFFSecRel32(GVSym
, Offset
);
3342 OS
.AddComment("Segment");
3343 OS
.EmitCOFFSectionIndex(GVSym
);
3344 OS
.AddComment("Name");
3345 const unsigned LengthOfDataRecord
= 12;
3346 emitNullTerminatedSymbolName(OS
, QualifiedName
, LengthOfDataRecord
);
3347 endSymbolRecord(DataEnd
);
3349 const DIExpression
*DIE
= CVGV
.GVInfo
.get
<const DIExpression
*>();
3350 assert(DIE
->isConstant() &&
3351 "Global constant variables must contain a constant expression.");
3353 // Use unsigned for floats.
3354 bool isUnsigned
= isFloatDIType(DIGV
->getType())
3356 : DebugHandlerBase::isUnsignedDIType(DIGV
->getType());
3357 APSInt
Value(APInt(/*BitWidth=*/64, DIE
->getElement(1)), isUnsigned
);
3358 emitConstantSymbolRecord(DIGV
->getType(), Value
, QualifiedName
);