[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / CodeGenPrepare.cpp
blob747f4e4fdeccacefee718549bec3e0a2ba4f5be6
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfo.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/IntrinsicsAArch64.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/MDBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Statepoint.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/ValueMap.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/BlockFrequency.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CommandLine.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/MachineValueType.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetMachine.h"
89 #include "llvm/Target/TargetOptions.h"
90 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
91 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
92 #include "llvm/Transforms/Utils/Local.h"
93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
94 #include "llvm/Transforms/Utils/SizeOpts.h"
95 #include <algorithm>
96 #include <cassert>
97 #include <cstdint>
98 #include <iterator>
99 #include <limits>
100 #include <memory>
101 #include <utility>
102 #include <vector>
104 using namespace llvm;
105 using namespace llvm::PatternMatch;
107 #define DEBUG_TYPE "codegenprepare"
109 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
110 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
111 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
112 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
113 "sunken Cmps");
114 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
115 "of sunken Casts");
116 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
117 "computations were sunk");
118 STATISTIC(NumMemoryInstsPhiCreated,
119 "Number of phis created when address "
120 "computations were sunk to memory instructions");
121 STATISTIC(NumMemoryInstsSelectCreated,
122 "Number of select created when address "
123 "computations were sunk to memory instructions");
124 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
125 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
126 STATISTIC(NumAndsAdded,
127 "Number of and mask instructions added to form ext loads");
128 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
129 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
130 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
131 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
132 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
134 static cl::opt<bool> DisableBranchOpts(
135 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
136 cl::desc("Disable branch optimizations in CodeGenPrepare"));
138 static cl::opt<bool>
139 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
140 cl::desc("Disable GC optimizations in CodeGenPrepare"));
142 static cl::opt<bool> DisableSelectToBranch(
143 "disable-cgp-select2branch", cl::Hidden, cl::init(false),
144 cl::desc("Disable select to branch conversion."));
146 static cl::opt<bool> AddrSinkUsingGEPs(
147 "addr-sink-using-gep", cl::Hidden, cl::init(true),
148 cl::desc("Address sinking in CGP using GEPs."));
150 static cl::opt<bool> EnableAndCmpSinking(
151 "enable-andcmp-sinking", cl::Hidden, cl::init(true),
152 cl::desc("Enable sinkinig and/cmp into branches."));
154 static cl::opt<bool> DisableStoreExtract(
155 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
156 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
158 static cl::opt<bool> StressStoreExtract(
159 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
160 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
162 static cl::opt<bool> DisableExtLdPromotion(
163 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
164 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
165 "CodeGenPrepare"));
167 static cl::opt<bool> StressExtLdPromotion(
168 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
169 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
170 "optimization in CodeGenPrepare"));
172 static cl::opt<bool> DisablePreheaderProtect(
173 "disable-preheader-prot", cl::Hidden, cl::init(false),
174 cl::desc("Disable protection against removing loop preheaders"));
176 static cl::opt<bool> ProfileGuidedSectionPrefix(
177 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
178 cl::desc("Use profile info to add section prefix for hot/cold functions"));
180 static cl::opt<bool> ProfileUnknownInSpecialSection(
181 "profile-unknown-in-special-section", cl::Hidden, cl::init(false),
182 cl::ZeroOrMore,
183 cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
184 "profile, we cannot tell the function is cold for sure because "
185 "it may be a function newly added without ever being sampled. "
186 "With the flag enabled, compiler can put such profile unknown "
187 "functions into a special section, so runtime system can choose "
188 "to handle it in a different way than .text section, to save "
189 "RAM for example. "));
191 static cl::opt<unsigned> FreqRatioToSkipMerge(
192 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
193 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
194 "(frequency of destination block) is greater than this ratio"));
196 static cl::opt<bool> ForceSplitStore(
197 "force-split-store", cl::Hidden, cl::init(false),
198 cl::desc("Force store splitting no matter what the target query says."));
200 static cl::opt<bool>
201 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
202 cl::desc("Enable merging of redundant sexts when one is dominating"
203 " the other."), cl::init(true));
205 static cl::opt<bool> DisableComplexAddrModes(
206 "disable-complex-addr-modes", cl::Hidden, cl::init(false),
207 cl::desc("Disables combining addressing modes with different parts "
208 "in optimizeMemoryInst."));
210 static cl::opt<bool>
211 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
212 cl::desc("Allow creation of Phis in Address sinking."));
214 static cl::opt<bool>
215 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
216 cl::desc("Allow creation of selects in Address sinking."));
218 static cl::opt<bool> AddrSinkCombineBaseReg(
219 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
220 cl::desc("Allow combining of BaseReg field in Address sinking."));
222 static cl::opt<bool> AddrSinkCombineBaseGV(
223 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
224 cl::desc("Allow combining of BaseGV field in Address sinking."));
226 static cl::opt<bool> AddrSinkCombineBaseOffs(
227 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
228 cl::desc("Allow combining of BaseOffs field in Address sinking."));
230 static cl::opt<bool> AddrSinkCombineScaledReg(
231 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
232 cl::desc("Allow combining of ScaledReg field in Address sinking."));
234 static cl::opt<bool>
235 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
236 cl::init(true),
237 cl::desc("Enable splitting large offset of GEP."));
239 static cl::opt<bool> EnableICMP_EQToICMP_ST(
240 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
241 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
243 static cl::opt<bool>
244 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
245 cl::desc("Enable BFI update verification for "
246 "CodeGenPrepare."));
248 static cl::opt<bool> OptimizePhiTypes(
249 "cgp-optimize-phi-types", cl::Hidden, cl::init(false),
250 cl::desc("Enable converting phi types in CodeGenPrepare"));
252 namespace {
254 enum ExtType {
255 ZeroExtension, // Zero extension has been seen.
256 SignExtension, // Sign extension has been seen.
257 BothExtension // This extension type is used if we saw sext after
258 // ZeroExtension had been set, or if we saw zext after
259 // SignExtension had been set. It makes the type
260 // information of a promoted instruction invalid.
263 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
264 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
265 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
266 using SExts = SmallVector<Instruction *, 16>;
267 using ValueToSExts = DenseMap<Value *, SExts>;
269 class TypePromotionTransaction;
271 class CodeGenPrepare : public FunctionPass {
272 const TargetMachine *TM = nullptr;
273 const TargetSubtargetInfo *SubtargetInfo;
274 const TargetLowering *TLI = nullptr;
275 const TargetRegisterInfo *TRI;
276 const TargetTransformInfo *TTI = nullptr;
277 const TargetLibraryInfo *TLInfo;
278 const LoopInfo *LI;
279 std::unique_ptr<BlockFrequencyInfo> BFI;
280 std::unique_ptr<BranchProbabilityInfo> BPI;
281 ProfileSummaryInfo *PSI;
283 /// As we scan instructions optimizing them, this is the next instruction
284 /// to optimize. Transforms that can invalidate this should update it.
285 BasicBlock::iterator CurInstIterator;
287 /// Keeps track of non-local addresses that have been sunk into a block.
288 /// This allows us to avoid inserting duplicate code for blocks with
289 /// multiple load/stores of the same address. The usage of WeakTrackingVH
290 /// enables SunkAddrs to be treated as a cache whose entries can be
291 /// invalidated if a sunken address computation has been erased.
292 ValueMap<Value*, WeakTrackingVH> SunkAddrs;
294 /// Keeps track of all instructions inserted for the current function.
295 SetOfInstrs InsertedInsts;
297 /// Keeps track of the type of the related instruction before their
298 /// promotion for the current function.
299 InstrToOrigTy PromotedInsts;
301 /// Keep track of instructions removed during promotion.
302 SetOfInstrs RemovedInsts;
304 /// Keep track of sext chains based on their initial value.
305 DenseMap<Value *, Instruction *> SeenChainsForSExt;
307 /// Keep track of GEPs accessing the same data structures such as structs or
308 /// arrays that are candidates to be split later because of their large
309 /// size.
310 MapVector<
311 AssertingVH<Value>,
312 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
313 LargeOffsetGEPMap;
315 /// Keep track of new GEP base after splitting the GEPs having large offset.
316 SmallSet<AssertingVH<Value>, 2> NewGEPBases;
318 /// Map serial numbers to Large offset GEPs.
319 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
321 /// Keep track of SExt promoted.
322 ValueToSExts ValToSExtendedUses;
324 /// True if the function has the OptSize attribute.
325 bool OptSize;
327 /// DataLayout for the Function being processed.
328 const DataLayout *DL = nullptr;
330 /// Building the dominator tree can be expensive, so we only build it
331 /// lazily and update it when required.
332 std::unique_ptr<DominatorTree> DT;
334 public:
335 static char ID; // Pass identification, replacement for typeid
337 CodeGenPrepare() : FunctionPass(ID) {
338 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
341 bool runOnFunction(Function &F) override;
343 StringRef getPassName() const override { return "CodeGen Prepare"; }
345 void getAnalysisUsage(AnalysisUsage &AU) const override {
346 // FIXME: When we can selectively preserve passes, preserve the domtree.
347 AU.addRequired<ProfileSummaryInfoWrapperPass>();
348 AU.addRequired<TargetLibraryInfoWrapperPass>();
349 AU.addRequired<TargetPassConfig>();
350 AU.addRequired<TargetTransformInfoWrapperPass>();
351 AU.addRequired<LoopInfoWrapperPass>();
354 private:
355 template <typename F>
356 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
357 // Substituting can cause recursive simplifications, which can invalidate
358 // our iterator. Use a WeakTrackingVH to hold onto it in case this
359 // happens.
360 Value *CurValue = &*CurInstIterator;
361 WeakTrackingVH IterHandle(CurValue);
363 f();
365 // If the iterator instruction was recursively deleted, start over at the
366 // start of the block.
367 if (IterHandle != CurValue) {
368 CurInstIterator = BB->begin();
369 SunkAddrs.clear();
373 // Get the DominatorTree, building if necessary.
374 DominatorTree &getDT(Function &F) {
375 if (!DT)
376 DT = std::make_unique<DominatorTree>(F);
377 return *DT;
380 void removeAllAssertingVHReferences(Value *V);
381 bool eliminateAssumptions(Function &F);
382 bool eliminateFallThrough(Function &F);
383 bool eliminateMostlyEmptyBlocks(Function &F);
384 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
385 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
386 void eliminateMostlyEmptyBlock(BasicBlock *BB);
387 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
388 bool isPreheader);
389 bool makeBitReverse(Instruction &I);
390 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
391 bool optimizeInst(Instruction *I, bool &ModifiedDT);
392 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
393 Type *AccessTy, unsigned AddrSpace);
394 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
395 bool optimizeInlineAsmInst(CallInst *CS);
396 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
397 bool optimizeExt(Instruction *&I);
398 bool optimizeExtUses(Instruction *I);
399 bool optimizeLoadExt(LoadInst *Load);
400 bool optimizeShiftInst(BinaryOperator *BO);
401 bool optimizeFunnelShift(IntrinsicInst *Fsh);
402 bool optimizeSelectInst(SelectInst *SI);
403 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
404 bool optimizeSwitchInst(SwitchInst *SI);
405 bool optimizeExtractElementInst(Instruction *Inst);
406 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
407 bool fixupDbgValue(Instruction *I);
408 bool placeDbgValues(Function &F);
409 bool placePseudoProbes(Function &F);
410 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
411 LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
412 bool tryToPromoteExts(TypePromotionTransaction &TPT,
413 const SmallVectorImpl<Instruction *> &Exts,
414 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
415 unsigned CreatedInstsCost = 0);
416 bool mergeSExts(Function &F);
417 bool splitLargeGEPOffsets();
418 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
419 SmallPtrSetImpl<Instruction *> &DeletedInstrs);
420 bool optimizePhiTypes(Function &F);
421 bool performAddressTypePromotion(
422 Instruction *&Inst,
423 bool AllowPromotionWithoutCommonHeader,
424 bool HasPromoted, TypePromotionTransaction &TPT,
425 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
426 bool splitBranchCondition(Function &F, bool &ModifiedDT);
427 bool simplifyOffsetableRelocate(GCStatepointInst &I);
429 bool tryToSinkFreeOperands(Instruction *I);
430 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0,
431 Value *Arg1, CmpInst *Cmp,
432 Intrinsic::ID IID);
433 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
434 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
435 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
436 void verifyBFIUpdates(Function &F);
439 } // end anonymous namespace
441 char CodeGenPrepare::ID = 0;
443 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
444 "Optimize for code generation", false, false)
445 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
446 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
447 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
448 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
449 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
450 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
451 "Optimize for code generation", false, false)
453 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
455 bool CodeGenPrepare::runOnFunction(Function &F) {
456 if (skipFunction(F))
457 return false;
459 DL = &F.getParent()->getDataLayout();
461 bool EverMadeChange = false;
462 // Clear per function information.
463 InsertedInsts.clear();
464 PromotedInsts.clear();
466 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
467 SubtargetInfo = TM->getSubtargetImpl(F);
468 TLI = SubtargetInfo->getTargetLowering();
469 TRI = SubtargetInfo->getRegisterInfo();
470 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
471 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
472 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
473 BPI.reset(new BranchProbabilityInfo(F, *LI));
474 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
475 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
476 OptSize = F.hasOptSize();
477 if (ProfileGuidedSectionPrefix) {
478 // The hot attribute overwrites profile count based hotness while profile
479 // counts based hotness overwrite the cold attribute.
480 // This is a conservative behabvior.
481 if (F.hasFnAttribute(Attribute::Hot) ||
482 PSI->isFunctionHotInCallGraph(&F, *BFI))
483 F.setSectionPrefix("hot");
484 // If PSI shows this function is not hot, we will placed the function
485 // into unlikely section if (1) PSI shows this is a cold function, or
486 // (2) the function has a attribute of cold.
487 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
488 F.hasFnAttribute(Attribute::Cold))
489 F.setSectionPrefix("unlikely");
490 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
491 PSI->isFunctionHotnessUnknown(F))
492 F.setSectionPrefix("unknown");
495 /// This optimization identifies DIV instructions that can be
496 /// profitably bypassed and carried out with a shorter, faster divide.
497 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
498 const DenseMap<unsigned int, unsigned int> &BypassWidths =
499 TLI->getBypassSlowDivWidths();
500 BasicBlock* BB = &*F.begin();
501 while (BB != nullptr) {
502 // bypassSlowDivision may create new BBs, but we don't want to reapply the
503 // optimization to those blocks.
504 BasicBlock* Next = BB->getNextNode();
505 // F.hasOptSize is already checked in the outer if statement.
506 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
507 EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
508 BB = Next;
512 // Get rid of @llvm.assume builtins before attempting to eliminate empty
513 // blocks, since there might be blocks that only contain @llvm.assume calls
514 // (plus arguments that we can get rid of).
515 EverMadeChange |= eliminateAssumptions(F);
517 // Eliminate blocks that contain only PHI nodes and an
518 // unconditional branch.
519 EverMadeChange |= eliminateMostlyEmptyBlocks(F);
521 bool ModifiedDT = false;
522 if (!DisableBranchOpts)
523 EverMadeChange |= splitBranchCondition(F, ModifiedDT);
525 // Split some critical edges where one of the sources is an indirect branch,
526 // to help generate sane code for PHIs involving such edges.
527 EverMadeChange |= SplitIndirectBrCriticalEdges(F);
529 bool MadeChange = true;
530 while (MadeChange) {
531 MadeChange = false;
532 DT.reset();
533 for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
534 bool ModifiedDTOnIteration = false;
535 MadeChange |= optimizeBlock(BB, ModifiedDTOnIteration);
537 // Restart BB iteration if the dominator tree of the Function was changed
538 if (ModifiedDTOnIteration)
539 break;
541 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
542 MadeChange |= mergeSExts(F);
543 if (!LargeOffsetGEPMap.empty())
544 MadeChange |= splitLargeGEPOffsets();
545 MadeChange |= optimizePhiTypes(F);
547 if (MadeChange)
548 eliminateFallThrough(F);
550 // Really free removed instructions during promotion.
551 for (Instruction *I : RemovedInsts)
552 I->deleteValue();
554 EverMadeChange |= MadeChange;
555 SeenChainsForSExt.clear();
556 ValToSExtendedUses.clear();
557 RemovedInsts.clear();
558 LargeOffsetGEPMap.clear();
559 LargeOffsetGEPID.clear();
562 NewGEPBases.clear();
563 SunkAddrs.clear();
565 if (!DisableBranchOpts) {
566 MadeChange = false;
567 // Use a set vector to get deterministic iteration order. The order the
568 // blocks are removed may affect whether or not PHI nodes in successors
569 // are removed.
570 SmallSetVector<BasicBlock*, 8> WorkList;
571 for (BasicBlock &BB : F) {
572 SmallVector<BasicBlock *, 2> Successors(successors(&BB));
573 MadeChange |= ConstantFoldTerminator(&BB, true);
574 if (!MadeChange) continue;
576 for (BasicBlock *Succ : Successors)
577 if (pred_empty(Succ))
578 WorkList.insert(Succ);
581 // Delete the dead blocks and any of their dead successors.
582 MadeChange |= !WorkList.empty();
583 while (!WorkList.empty()) {
584 BasicBlock *BB = WorkList.pop_back_val();
585 SmallVector<BasicBlock*, 2> Successors(successors(BB));
587 DeleteDeadBlock(BB);
589 for (BasicBlock *Succ : Successors)
590 if (pred_empty(Succ))
591 WorkList.insert(Succ);
594 // Merge pairs of basic blocks with unconditional branches, connected by
595 // a single edge.
596 if (EverMadeChange || MadeChange)
597 MadeChange |= eliminateFallThrough(F);
599 EverMadeChange |= MadeChange;
602 if (!DisableGCOpts) {
603 SmallVector<GCStatepointInst *, 2> Statepoints;
604 for (BasicBlock &BB : F)
605 for (Instruction &I : BB)
606 if (auto *SP = dyn_cast<GCStatepointInst>(&I))
607 Statepoints.push_back(SP);
608 for (auto &I : Statepoints)
609 EverMadeChange |= simplifyOffsetableRelocate(*I);
612 // Do this last to clean up use-before-def scenarios introduced by other
613 // preparatory transforms.
614 EverMadeChange |= placeDbgValues(F);
615 EverMadeChange |= placePseudoProbes(F);
617 #ifndef NDEBUG
618 if (VerifyBFIUpdates)
619 verifyBFIUpdates(F);
620 #endif
622 return EverMadeChange;
625 bool CodeGenPrepare::eliminateAssumptions(Function &F) {
626 bool MadeChange = false;
627 for (BasicBlock &BB : F) {
628 CurInstIterator = BB.begin();
629 while (CurInstIterator != BB.end()) {
630 Instruction *I = &*(CurInstIterator++);
631 if (auto *Assume = dyn_cast<AssumeInst>(I)) {
632 MadeChange = true;
633 Value *Operand = Assume->getOperand(0);
634 Assume->eraseFromParent();
636 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() {
637 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr);
642 return MadeChange;
645 /// An instruction is about to be deleted, so remove all references to it in our
646 /// GEP-tracking data strcutures.
647 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
648 LargeOffsetGEPMap.erase(V);
649 NewGEPBases.erase(V);
651 auto GEP = dyn_cast<GetElementPtrInst>(V);
652 if (!GEP)
653 return;
655 LargeOffsetGEPID.erase(GEP);
657 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
658 if (VecI == LargeOffsetGEPMap.end())
659 return;
661 auto &GEPVector = VecI->second;
662 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
664 if (GEPVector.empty())
665 LargeOffsetGEPMap.erase(VecI);
668 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
669 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
670 DominatorTree NewDT(F);
671 LoopInfo NewLI(NewDT);
672 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
673 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
674 NewBFI.verifyMatch(*BFI);
677 /// Merge basic blocks which are connected by a single edge, where one of the
678 /// basic blocks has a single successor pointing to the other basic block,
679 /// which has a single predecessor.
680 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
681 bool Changed = false;
682 // Scan all of the blocks in the function, except for the entry block.
683 // Use a temporary array to avoid iterator being invalidated when
684 // deleting blocks.
685 SmallVector<WeakTrackingVH, 16> Blocks;
686 for (auto &Block : llvm::drop_begin(F))
687 Blocks.push_back(&Block);
689 SmallSet<WeakTrackingVH, 16> Preds;
690 for (auto &Block : Blocks) {
691 auto *BB = cast_or_null<BasicBlock>(Block);
692 if (!BB)
693 continue;
694 // If the destination block has a single pred, then this is a trivial
695 // edge, just collapse it.
696 BasicBlock *SinglePred = BB->getSinglePredecessor();
698 // Don't merge if BB's address is taken.
699 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
701 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
702 if (Term && !Term->isConditional()) {
703 Changed = true;
704 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
706 // Merge BB into SinglePred and delete it.
707 MergeBlockIntoPredecessor(BB);
708 Preds.insert(SinglePred);
712 // (Repeatedly) merging blocks into their predecessors can create redundant
713 // debug intrinsics.
714 for (auto &Pred : Preds)
715 if (auto *BB = cast_or_null<BasicBlock>(Pred))
716 RemoveRedundantDbgInstrs(BB);
718 return Changed;
721 /// Find a destination block from BB if BB is mergeable empty block.
722 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
723 // If this block doesn't end with an uncond branch, ignore it.
724 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
725 if (!BI || !BI->isUnconditional())
726 return nullptr;
728 // If the instruction before the branch (skipping debug info) isn't a phi
729 // node, then other stuff is happening here.
730 BasicBlock::iterator BBI = BI->getIterator();
731 if (BBI != BB->begin()) {
732 --BBI;
733 while (isa<DbgInfoIntrinsic>(BBI)) {
734 if (BBI == BB->begin())
735 break;
736 --BBI;
738 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
739 return nullptr;
742 // Do not break infinite loops.
743 BasicBlock *DestBB = BI->getSuccessor(0);
744 if (DestBB == BB)
745 return nullptr;
747 if (!canMergeBlocks(BB, DestBB))
748 DestBB = nullptr;
750 return DestBB;
753 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
754 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
755 /// edges in ways that are non-optimal for isel. Start by eliminating these
756 /// blocks so we can split them the way we want them.
757 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
758 SmallPtrSet<BasicBlock *, 16> Preheaders;
759 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
760 while (!LoopList.empty()) {
761 Loop *L = LoopList.pop_back_val();
762 llvm::append_range(LoopList, *L);
763 if (BasicBlock *Preheader = L->getLoopPreheader())
764 Preheaders.insert(Preheader);
767 bool MadeChange = false;
768 // Copy blocks into a temporary array to avoid iterator invalidation issues
769 // as we remove them.
770 // Note that this intentionally skips the entry block.
771 SmallVector<WeakTrackingVH, 16> Blocks;
772 for (auto &Block : llvm::drop_begin(F))
773 Blocks.push_back(&Block);
775 for (auto &Block : Blocks) {
776 BasicBlock *BB = cast_or_null<BasicBlock>(Block);
777 if (!BB)
778 continue;
779 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
780 if (!DestBB ||
781 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
782 continue;
784 eliminateMostlyEmptyBlock(BB);
785 MadeChange = true;
787 return MadeChange;
790 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
791 BasicBlock *DestBB,
792 bool isPreheader) {
793 // Do not delete loop preheaders if doing so would create a critical edge.
794 // Loop preheaders can be good locations to spill registers. If the
795 // preheader is deleted and we create a critical edge, registers may be
796 // spilled in the loop body instead.
797 if (!DisablePreheaderProtect && isPreheader &&
798 !(BB->getSinglePredecessor() &&
799 BB->getSinglePredecessor()->getSingleSuccessor()))
800 return false;
802 // Skip merging if the block's successor is also a successor to any callbr
803 // that leads to this block.
804 // FIXME: Is this really needed? Is this a correctness issue?
805 for (BasicBlock *Pred : predecessors(BB)) {
806 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator()))
807 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
808 if (DestBB == CBI->getSuccessor(i))
809 return false;
812 // Try to skip merging if the unique predecessor of BB is terminated by a
813 // switch or indirect branch instruction, and BB is used as an incoming block
814 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
815 // add COPY instructions in the predecessor of BB instead of BB (if it is not
816 // merged). Note that the critical edge created by merging such blocks wont be
817 // split in MachineSink because the jump table is not analyzable. By keeping
818 // such empty block (BB), ISel will place COPY instructions in BB, not in the
819 // predecessor of BB.
820 BasicBlock *Pred = BB->getUniquePredecessor();
821 if (!Pred ||
822 !(isa<SwitchInst>(Pred->getTerminator()) ||
823 isa<IndirectBrInst>(Pred->getTerminator())))
824 return true;
826 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
827 return true;
829 // We use a simple cost heuristic which determine skipping merging is
830 // profitable if the cost of skipping merging is less than the cost of
831 // merging : Cost(skipping merging) < Cost(merging BB), where the
832 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
833 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
834 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
835 // Freq(Pred) / Freq(BB) > 2.
836 // Note that if there are multiple empty blocks sharing the same incoming
837 // value for the PHIs in the DestBB, we consider them together. In such
838 // case, Cost(merging BB) will be the sum of their frequencies.
840 if (!isa<PHINode>(DestBB->begin()))
841 return true;
843 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
845 // Find all other incoming blocks from which incoming values of all PHIs in
846 // DestBB are the same as the ones from BB.
847 for (BasicBlock *DestBBPred : predecessors(DestBB)) {
848 if (DestBBPred == BB)
849 continue;
851 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
852 return DestPN.getIncomingValueForBlock(BB) ==
853 DestPN.getIncomingValueForBlock(DestBBPred);
855 SameIncomingValueBBs.insert(DestBBPred);
858 // See if all BB's incoming values are same as the value from Pred. In this
859 // case, no reason to skip merging because COPYs are expected to be place in
860 // Pred already.
861 if (SameIncomingValueBBs.count(Pred))
862 return true;
864 BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
865 BlockFrequency BBFreq = BFI->getBlockFreq(BB);
867 for (auto *SameValueBB : SameIncomingValueBBs)
868 if (SameValueBB->getUniquePredecessor() == Pred &&
869 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
870 BBFreq += BFI->getBlockFreq(SameValueBB);
872 return PredFreq.getFrequency() <=
873 BBFreq.getFrequency() * FreqRatioToSkipMerge;
876 /// Return true if we can merge BB into DestBB if there is a single
877 /// unconditional branch between them, and BB contains no other non-phi
878 /// instructions.
879 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
880 const BasicBlock *DestBB) const {
881 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
882 // the successor. If there are more complex condition (e.g. preheaders),
883 // don't mess around with them.
884 for (const PHINode &PN : BB->phis()) {
885 for (const User *U : PN.users()) {
886 const Instruction *UI = cast<Instruction>(U);
887 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
888 return false;
889 // If User is inside DestBB block and it is a PHINode then check
890 // incoming value. If incoming value is not from BB then this is
891 // a complex condition (e.g. preheaders) we want to avoid here.
892 if (UI->getParent() == DestBB) {
893 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
894 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
895 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
896 if (Insn && Insn->getParent() == BB &&
897 Insn->getParent() != UPN->getIncomingBlock(I))
898 return false;
904 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
905 // and DestBB may have conflicting incoming values for the block. If so, we
906 // can't merge the block.
907 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
908 if (!DestBBPN) return true; // no conflict.
910 // Collect the preds of BB.
911 SmallPtrSet<const BasicBlock*, 16> BBPreds;
912 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
913 // It is faster to get preds from a PHI than with pred_iterator.
914 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
915 BBPreds.insert(BBPN->getIncomingBlock(i));
916 } else {
917 BBPreds.insert(pred_begin(BB), pred_end(BB));
920 // Walk the preds of DestBB.
921 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
922 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
923 if (BBPreds.count(Pred)) { // Common predecessor?
924 for (const PHINode &PN : DestBB->phis()) {
925 const Value *V1 = PN.getIncomingValueForBlock(Pred);
926 const Value *V2 = PN.getIncomingValueForBlock(BB);
928 // If V2 is a phi node in BB, look up what the mapped value will be.
929 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
930 if (V2PN->getParent() == BB)
931 V2 = V2PN->getIncomingValueForBlock(Pred);
933 // If there is a conflict, bail out.
934 if (V1 != V2) return false;
939 return true;
942 /// Eliminate a basic block that has only phi's and an unconditional branch in
943 /// it.
944 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
945 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
946 BasicBlock *DestBB = BI->getSuccessor(0);
948 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
949 << *BB << *DestBB);
951 // If the destination block has a single pred, then this is a trivial edge,
952 // just collapse it.
953 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
954 if (SinglePred != DestBB) {
955 assert(SinglePred == BB &&
956 "Single predecessor not the same as predecessor");
957 // Merge DestBB into SinglePred/BB and delete it.
958 MergeBlockIntoPredecessor(DestBB);
959 // Note: BB(=SinglePred) will not be deleted on this path.
960 // DestBB(=its single successor) is the one that was deleted.
961 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
962 return;
966 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
967 // to handle the new incoming edges it is about to have.
968 for (PHINode &PN : DestBB->phis()) {
969 // Remove the incoming value for BB, and remember it.
970 Value *InVal = PN.removeIncomingValue(BB, false);
972 // Two options: either the InVal is a phi node defined in BB or it is some
973 // value that dominates BB.
974 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
975 if (InValPhi && InValPhi->getParent() == BB) {
976 // Add all of the input values of the input PHI as inputs of this phi.
977 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
978 PN.addIncoming(InValPhi->getIncomingValue(i),
979 InValPhi->getIncomingBlock(i));
980 } else {
981 // Otherwise, add one instance of the dominating value for each edge that
982 // we will be adding.
983 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
984 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
985 PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
986 } else {
987 for (BasicBlock *Pred : predecessors(BB))
988 PN.addIncoming(InVal, Pred);
993 // The PHIs are now updated, change everything that refers to BB to use
994 // DestBB and remove BB.
995 BB->replaceAllUsesWith(DestBB);
996 BB->eraseFromParent();
997 ++NumBlocksElim;
999 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1002 // Computes a map of base pointer relocation instructions to corresponding
1003 // derived pointer relocation instructions given a vector of all relocate calls
1004 static void computeBaseDerivedRelocateMap(
1005 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1006 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
1007 &RelocateInstMap) {
1008 // Collect information in two maps: one primarily for locating the base object
1009 // while filling the second map; the second map is the final structure holding
1010 // a mapping between Base and corresponding Derived relocate calls
1011 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
1012 for (auto *ThisRelocate : AllRelocateCalls) {
1013 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1014 ThisRelocate->getDerivedPtrIndex());
1015 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1017 for (auto &Item : RelocateIdxMap) {
1018 std::pair<unsigned, unsigned> Key = Item.first;
1019 if (Key.first == Key.second)
1020 // Base relocation: nothing to insert
1021 continue;
1023 GCRelocateInst *I = Item.second;
1024 auto BaseKey = std::make_pair(Key.first, Key.first);
1026 // We're iterating over RelocateIdxMap so we cannot modify it.
1027 auto MaybeBase = RelocateIdxMap.find(BaseKey);
1028 if (MaybeBase == RelocateIdxMap.end())
1029 // TODO: We might want to insert a new base object relocate and gep off
1030 // that, if there are enough derived object relocates.
1031 continue;
1033 RelocateInstMap[MaybeBase->second].push_back(I);
1037 // Accepts a GEP and extracts the operands into a vector provided they're all
1038 // small integer constants
1039 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1040 SmallVectorImpl<Value *> &OffsetV) {
1041 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1042 // Only accept small constant integer operands
1043 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1044 if (!Op || Op->getZExtValue() > 20)
1045 return false;
1048 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1049 OffsetV.push_back(GEP->getOperand(i));
1050 return true;
1053 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1054 // replace, computes a replacement, and affects it.
1055 static bool
1056 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1057 const SmallVectorImpl<GCRelocateInst *> &Targets) {
1058 bool MadeChange = false;
1059 // We must ensure the relocation of derived pointer is defined after
1060 // relocation of base pointer. If we find a relocation corresponding to base
1061 // defined earlier than relocation of base then we move relocation of base
1062 // right before found relocation. We consider only relocation in the same
1063 // basic block as relocation of base. Relocations from other basic block will
1064 // be skipped by optimization and we do not care about them.
1065 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1066 &*R != RelocatedBase; ++R)
1067 if (auto *RI = dyn_cast<GCRelocateInst>(R))
1068 if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1069 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1070 RelocatedBase->moveBefore(RI);
1071 break;
1074 for (GCRelocateInst *ToReplace : Targets) {
1075 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1076 "Not relocating a derived object of the original base object");
1077 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1078 // A duplicate relocate call. TODO: coalesce duplicates.
1079 continue;
1082 if (RelocatedBase->getParent() != ToReplace->getParent()) {
1083 // Base and derived relocates are in different basic blocks.
1084 // In this case transform is only valid when base dominates derived
1085 // relocate. However it would be too expensive to check dominance
1086 // for each such relocate, so we skip the whole transformation.
1087 continue;
1090 Value *Base = ToReplace->getBasePtr();
1091 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1092 if (!Derived || Derived->getPointerOperand() != Base)
1093 continue;
1095 SmallVector<Value *, 2> OffsetV;
1096 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1097 continue;
1099 // Create a Builder and replace the target callsite with a gep
1100 assert(RelocatedBase->getNextNode() &&
1101 "Should always have one since it's not a terminator");
1103 // Insert after RelocatedBase
1104 IRBuilder<> Builder(RelocatedBase->getNextNode());
1105 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1107 // If gc_relocate does not match the actual type, cast it to the right type.
1108 // In theory, there must be a bitcast after gc_relocate if the type does not
1109 // match, and we should reuse it to get the derived pointer. But it could be
1110 // cases like this:
1111 // bb1:
1112 // ...
1113 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1114 // br label %merge
1116 // bb2:
1117 // ...
1118 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1119 // br label %merge
1121 // merge:
1122 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1123 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1125 // In this case, we can not find the bitcast any more. So we insert a new bitcast
1126 // no matter there is already one or not. In this way, we can handle all cases, and
1127 // the extra bitcast should be optimized away in later passes.
1128 Value *ActualRelocatedBase = RelocatedBase;
1129 if (RelocatedBase->getType() != Base->getType()) {
1130 ActualRelocatedBase =
1131 Builder.CreateBitCast(RelocatedBase, Base->getType());
1133 Value *Replacement = Builder.CreateGEP(
1134 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1135 Replacement->takeName(ToReplace);
1136 // If the newly generated derived pointer's type does not match the original derived
1137 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1138 Value *ActualReplacement = Replacement;
1139 if (Replacement->getType() != ToReplace->getType()) {
1140 ActualReplacement =
1141 Builder.CreateBitCast(Replacement, ToReplace->getType());
1143 ToReplace->replaceAllUsesWith(ActualReplacement);
1144 ToReplace->eraseFromParent();
1146 MadeChange = true;
1148 return MadeChange;
1151 // Turns this:
1153 // %base = ...
1154 // %ptr = gep %base + 15
1155 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1156 // %base' = relocate(%tok, i32 4, i32 4)
1157 // %ptr' = relocate(%tok, i32 4, i32 5)
1158 // %val = load %ptr'
1160 // into this:
1162 // %base = ...
1163 // %ptr = gep %base + 15
1164 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1165 // %base' = gc.relocate(%tok, i32 4, i32 4)
1166 // %ptr' = gep %base' + 15
1167 // %val = load %ptr'
1168 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1169 bool MadeChange = false;
1170 SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1171 for (auto *U : I.users())
1172 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1173 // Collect all the relocate calls associated with a statepoint
1174 AllRelocateCalls.push_back(Relocate);
1176 // We need at least one base pointer relocation + one derived pointer
1177 // relocation to mangle
1178 if (AllRelocateCalls.size() < 2)
1179 return false;
1181 // RelocateInstMap is a mapping from the base relocate instruction to the
1182 // corresponding derived relocate instructions
1183 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1184 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1185 if (RelocateInstMap.empty())
1186 return false;
1188 for (auto &Item : RelocateInstMap)
1189 // Item.first is the RelocatedBase to offset against
1190 // Item.second is the vector of Targets to replace
1191 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1192 return MadeChange;
1195 /// Sink the specified cast instruction into its user blocks.
1196 static bool SinkCast(CastInst *CI) {
1197 BasicBlock *DefBB = CI->getParent();
1199 /// InsertedCasts - Only insert a cast in each block once.
1200 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1202 bool MadeChange = false;
1203 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1204 UI != E; ) {
1205 Use &TheUse = UI.getUse();
1206 Instruction *User = cast<Instruction>(*UI);
1208 // Figure out which BB this cast is used in. For PHI's this is the
1209 // appropriate predecessor block.
1210 BasicBlock *UserBB = User->getParent();
1211 if (PHINode *PN = dyn_cast<PHINode>(User)) {
1212 UserBB = PN->getIncomingBlock(TheUse);
1215 // Preincrement use iterator so we don't invalidate it.
1216 ++UI;
1218 // The first insertion point of a block containing an EH pad is after the
1219 // pad. If the pad is the user, we cannot sink the cast past the pad.
1220 if (User->isEHPad())
1221 continue;
1223 // If the block selected to receive the cast is an EH pad that does not
1224 // allow non-PHI instructions before the terminator, we can't sink the
1225 // cast.
1226 if (UserBB->getTerminator()->isEHPad())
1227 continue;
1229 // If this user is in the same block as the cast, don't change the cast.
1230 if (UserBB == DefBB) continue;
1232 // If we have already inserted a cast into this block, use it.
1233 CastInst *&InsertedCast = InsertedCasts[UserBB];
1235 if (!InsertedCast) {
1236 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1237 assert(InsertPt != UserBB->end());
1238 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1239 CI->getType(), "", &*InsertPt);
1240 InsertedCast->setDebugLoc(CI->getDebugLoc());
1243 // Replace a use of the cast with a use of the new cast.
1244 TheUse = InsertedCast;
1245 MadeChange = true;
1246 ++NumCastUses;
1249 // If we removed all uses, nuke the cast.
1250 if (CI->use_empty()) {
1251 salvageDebugInfo(*CI);
1252 CI->eraseFromParent();
1253 MadeChange = true;
1256 return MadeChange;
1259 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1260 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1261 /// reduce the number of virtual registers that must be created and coalesced.
1263 /// Return true if any changes are made.
1264 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1265 const DataLayout &DL) {
1266 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1267 // than sinking only nop casts, but is helpful on some platforms.
1268 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1269 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1270 ASC->getDestAddressSpace()))
1271 return false;
1274 // If this is a noop copy,
1275 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1276 EVT DstVT = TLI.getValueType(DL, CI->getType());
1278 // This is an fp<->int conversion?
1279 if (SrcVT.isInteger() != DstVT.isInteger())
1280 return false;
1282 // If this is an extension, it will be a zero or sign extension, which
1283 // isn't a noop.
1284 if (SrcVT.bitsLT(DstVT)) return false;
1286 // If these values will be promoted, find out what they will be promoted
1287 // to. This helps us consider truncates on PPC as noop copies when they
1288 // are.
1289 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1290 TargetLowering::TypePromoteInteger)
1291 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1292 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1293 TargetLowering::TypePromoteInteger)
1294 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1296 // If, after promotion, these are the same types, this is a noop copy.
1297 if (SrcVT != DstVT)
1298 return false;
1300 return SinkCast(CI);
1303 // Match a simple increment by constant operation. Note that if a sub is
1304 // matched, the step is negated (as if the step had been canonicalized to
1305 // an add, even though we leave the instruction alone.)
1306 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS,
1307 Constant *&Step) {
1308 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) ||
1309 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>(
1310 m_Instruction(LHS), m_Constant(Step)))))
1311 return true;
1312 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) ||
1313 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
1314 m_Instruction(LHS), m_Constant(Step))))) {
1315 Step = ConstantExpr::getNeg(Step);
1316 return true;
1318 return false;
1321 /// If given \p PN is an inductive variable with value IVInc coming from the
1322 /// backedge, and on each iteration it gets increased by Step, return pair
1323 /// <IVInc, Step>. Otherwise, return None.
1324 static Optional<std::pair<Instruction *, Constant *> >
1325 getIVIncrement(const PHINode *PN, const LoopInfo *LI) {
1326 const Loop *L = LI->getLoopFor(PN->getParent());
1327 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch())
1328 return None;
1329 auto *IVInc =
1330 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
1331 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L)
1332 return None;
1333 Instruction *LHS = nullptr;
1334 Constant *Step = nullptr;
1335 if (matchIncrement(IVInc, LHS, Step) && LHS == PN)
1336 return std::make_pair(IVInc, Step);
1337 return None;
1340 static bool isIVIncrement(const Value *V, const LoopInfo *LI) {
1341 auto *I = dyn_cast<Instruction>(V);
1342 if (!I)
1343 return false;
1344 Instruction *LHS = nullptr;
1345 Constant *Step = nullptr;
1346 if (!matchIncrement(I, LHS, Step))
1347 return false;
1348 if (auto *PN = dyn_cast<PHINode>(LHS))
1349 if (auto IVInc = getIVIncrement(PN, LI))
1350 return IVInc->first == I;
1351 return false;
1354 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1355 Value *Arg0, Value *Arg1,
1356 CmpInst *Cmp,
1357 Intrinsic::ID IID) {
1358 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) {
1359 if (!isIVIncrement(BO, LI))
1360 return false;
1361 const Loop *L = LI->getLoopFor(BO->getParent());
1362 assert(L && "L should not be null after isIVIncrement()");
1363 // Do not risk on moving increment into a child loop.
1364 if (LI->getLoopFor(Cmp->getParent()) != L)
1365 return false;
1367 // Finally, we need to ensure that the insert point will dominate all
1368 // existing uses of the increment.
1370 auto &DT = getDT(*BO->getParent()->getParent());
1371 if (DT.dominates(Cmp->getParent(), BO->getParent()))
1372 // If we're moving up the dom tree, all uses are trivially dominated.
1373 // (This is the common case for code produced by LSR.)
1374 return true;
1376 // Otherwise, special case the single use in the phi recurrence.
1377 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch());
1379 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) {
1380 // We used to use a dominator tree here to allow multi-block optimization.
1381 // But that was problematic because:
1382 // 1. It could cause a perf regression by hoisting the math op into the
1383 // critical path.
1384 // 2. It could cause a perf regression by creating a value that was live
1385 // across multiple blocks and increasing register pressure.
1386 // 3. Use of a dominator tree could cause large compile-time regression.
1387 // This is because we recompute the DT on every change in the main CGP
1388 // run-loop. The recomputing is probably unnecessary in many cases, so if
1389 // that was fixed, using a DT here would be ok.
1391 // There is one important particular case we still want to handle: if BO is
1392 // the IV increment. Important properties that make it profitable:
1393 // - We can speculate IV increment anywhere in the loop (as long as the
1394 // indvar Phi is its only user);
1395 // - Upon computing Cmp, we effectively compute something equivalent to the
1396 // IV increment (despite it loops differently in the IR). So moving it up
1397 // to the cmp point does not really increase register pressure.
1398 return false;
1401 // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1402 if (BO->getOpcode() == Instruction::Add &&
1403 IID == Intrinsic::usub_with_overflow) {
1404 assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1405 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1408 // Insert at the first instruction of the pair.
1409 Instruction *InsertPt = nullptr;
1410 for (Instruction &Iter : *Cmp->getParent()) {
1411 // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1412 // the overflow intrinsic are defined.
1413 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1414 InsertPt = &Iter;
1415 break;
1418 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1420 IRBuilder<> Builder(InsertPt);
1421 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1422 if (BO->getOpcode() != Instruction::Xor) {
1423 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1424 BO->replaceAllUsesWith(Math);
1425 } else
1426 assert(BO->hasOneUse() &&
1427 "Patterns with XOr should use the BO only in the compare");
1428 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1429 Cmp->replaceAllUsesWith(OV);
1430 Cmp->eraseFromParent();
1431 BO->eraseFromParent();
1432 return true;
1435 /// Match special-case patterns that check for unsigned add overflow.
1436 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1437 BinaryOperator *&Add) {
1438 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1439 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1440 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1442 // We are not expecting non-canonical/degenerate code. Just bail out.
1443 if (isa<Constant>(A))
1444 return false;
1446 ICmpInst::Predicate Pred = Cmp->getPredicate();
1447 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1448 B = ConstantInt::get(B->getType(), 1);
1449 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1450 B = ConstantInt::get(B->getType(), -1);
1451 else
1452 return false;
1454 // Check the users of the variable operand of the compare looking for an add
1455 // with the adjusted constant.
1456 for (User *U : A->users()) {
1457 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1458 Add = cast<BinaryOperator>(U);
1459 return true;
1462 return false;
1465 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1466 /// intrinsic. Return true if any changes were made.
1467 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1468 bool &ModifiedDT) {
1469 Value *A, *B;
1470 BinaryOperator *Add;
1471 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1472 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1473 return false;
1474 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1475 A = Add->getOperand(0);
1476 B = Add->getOperand(1);
1479 if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1480 TLI->getValueType(*DL, Add->getType()),
1481 Add->hasNUsesOrMore(2)))
1482 return false;
1484 // We don't want to move around uses of condition values this late, so we
1485 // check if it is legal to create the call to the intrinsic in the basic
1486 // block containing the icmp.
1487 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1488 return false;
1490 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1491 Intrinsic::uadd_with_overflow))
1492 return false;
1494 // Reset callers - do not crash by iterating over a dead instruction.
1495 ModifiedDT = true;
1496 return true;
1499 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1500 bool &ModifiedDT) {
1501 // We are not expecting non-canonical/degenerate code. Just bail out.
1502 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1503 if (isa<Constant>(A) && isa<Constant>(B))
1504 return false;
1506 // Convert (A u> B) to (A u< B) to simplify pattern matching.
1507 ICmpInst::Predicate Pred = Cmp->getPredicate();
1508 if (Pred == ICmpInst::ICMP_UGT) {
1509 std::swap(A, B);
1510 Pred = ICmpInst::ICMP_ULT;
1512 // Convert special-case: (A == 0) is the same as (A u< 1).
1513 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1514 B = ConstantInt::get(B->getType(), 1);
1515 Pred = ICmpInst::ICMP_ULT;
1517 // Convert special-case: (A != 0) is the same as (0 u< A).
1518 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1519 std::swap(A, B);
1520 Pred = ICmpInst::ICMP_ULT;
1522 if (Pred != ICmpInst::ICMP_ULT)
1523 return false;
1525 // Walk the users of a variable operand of a compare looking for a subtract or
1526 // add with that same operand. Also match the 2nd operand of the compare to
1527 // the add/sub, but that may be a negated constant operand of an add.
1528 Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1529 BinaryOperator *Sub = nullptr;
1530 for (User *U : CmpVariableOperand->users()) {
1531 // A - B, A u< B --> usubo(A, B)
1532 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1533 Sub = cast<BinaryOperator>(U);
1534 break;
1537 // A + (-C), A u< C (canonicalized form of (sub A, C))
1538 const APInt *CmpC, *AddC;
1539 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1540 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1541 Sub = cast<BinaryOperator>(U);
1542 break;
1545 if (!Sub)
1546 return false;
1548 if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1549 TLI->getValueType(*DL, Sub->getType()),
1550 Sub->hasNUsesOrMore(2)))
1551 return false;
1553 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1554 Cmp, Intrinsic::usub_with_overflow))
1555 return false;
1557 // Reset callers - do not crash by iterating over a dead instruction.
1558 ModifiedDT = true;
1559 return true;
1562 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1563 /// registers that must be created and coalesced. This is a clear win except on
1564 /// targets with multiple condition code registers (PowerPC), where it might
1565 /// lose; some adjustment may be wanted there.
1567 /// Return true if any changes are made.
1568 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1569 if (TLI.hasMultipleConditionRegisters())
1570 return false;
1572 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1573 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1574 return false;
1576 // Only insert a cmp in each block once.
1577 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1579 bool MadeChange = false;
1580 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1581 UI != E; ) {
1582 Use &TheUse = UI.getUse();
1583 Instruction *User = cast<Instruction>(*UI);
1585 // Preincrement use iterator so we don't invalidate it.
1586 ++UI;
1588 // Don't bother for PHI nodes.
1589 if (isa<PHINode>(User))
1590 continue;
1592 // Figure out which BB this cmp is used in.
1593 BasicBlock *UserBB = User->getParent();
1594 BasicBlock *DefBB = Cmp->getParent();
1596 // If this user is in the same block as the cmp, don't change the cmp.
1597 if (UserBB == DefBB) continue;
1599 // If we have already inserted a cmp into this block, use it.
1600 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1602 if (!InsertedCmp) {
1603 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1604 assert(InsertPt != UserBB->end());
1605 InsertedCmp =
1606 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1607 Cmp->getOperand(0), Cmp->getOperand(1), "",
1608 &*InsertPt);
1609 // Propagate the debug info.
1610 InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1613 // Replace a use of the cmp with a use of the new cmp.
1614 TheUse = InsertedCmp;
1615 MadeChange = true;
1616 ++NumCmpUses;
1619 // If we removed all uses, nuke the cmp.
1620 if (Cmp->use_empty()) {
1621 Cmp->eraseFromParent();
1622 MadeChange = true;
1625 return MadeChange;
1628 /// For pattern like:
1630 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1631 /// ...
1632 /// DomBB:
1633 /// ...
1634 /// br DomCond, TrueBB, CmpBB
1635 /// CmpBB: (with DomBB being the single predecessor)
1636 /// ...
1637 /// Cmp = icmp eq CmpOp0, CmpOp1
1638 /// ...
1640 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1641 /// different from lowering of icmp eq (PowerPC). This function try to convert
1642 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1643 /// After that, DomCond and Cmp can use the same comparison so reduce one
1644 /// comparison.
1646 /// Return true if any changes are made.
1647 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1648 const TargetLowering &TLI) {
1649 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1650 return false;
1652 ICmpInst::Predicate Pred = Cmp->getPredicate();
1653 if (Pred != ICmpInst::ICMP_EQ)
1654 return false;
1656 // If icmp eq has users other than BranchInst and SelectInst, converting it to
1657 // icmp slt/sgt would introduce more redundant LLVM IR.
1658 for (User *U : Cmp->users()) {
1659 if (isa<BranchInst>(U))
1660 continue;
1661 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1662 continue;
1663 return false;
1666 // This is a cheap/incomplete check for dominance - just match a single
1667 // predecessor with a conditional branch.
1668 BasicBlock *CmpBB = Cmp->getParent();
1669 BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1670 if (!DomBB)
1671 return false;
1673 // We want to ensure that the only way control gets to the comparison of
1674 // interest is that a less/greater than comparison on the same operands is
1675 // false.
1676 Value *DomCond;
1677 BasicBlock *TrueBB, *FalseBB;
1678 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1679 return false;
1680 if (CmpBB != FalseBB)
1681 return false;
1683 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1684 ICmpInst::Predicate DomPred;
1685 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1686 return false;
1687 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1688 return false;
1690 // Convert the equality comparison to the opposite of the dominating
1691 // comparison and swap the direction for all branch/select users.
1692 // We have conceptually converted:
1693 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1694 // to
1695 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>;
1696 // And similarly for branches.
1697 for (User *U : Cmp->users()) {
1698 if (auto *BI = dyn_cast<BranchInst>(U)) {
1699 assert(BI->isConditional() && "Must be conditional");
1700 BI->swapSuccessors();
1701 continue;
1703 if (auto *SI = dyn_cast<SelectInst>(U)) {
1704 // Swap operands
1705 SI->swapValues();
1706 SI->swapProfMetadata();
1707 continue;
1709 llvm_unreachable("Must be a branch or a select");
1711 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1712 return true;
1715 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1716 if (sinkCmpExpression(Cmp, *TLI))
1717 return true;
1719 if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1720 return true;
1722 if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1723 return true;
1725 if (foldICmpWithDominatingICmp(Cmp, *TLI))
1726 return true;
1728 return false;
1731 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1732 /// used in a compare to allow isel to generate better code for targets where
1733 /// this operation can be combined.
1735 /// Return true if any changes are made.
1736 static bool sinkAndCmp0Expression(Instruction *AndI,
1737 const TargetLowering &TLI,
1738 SetOfInstrs &InsertedInsts) {
1739 // Double-check that we're not trying to optimize an instruction that was
1740 // already optimized by some other part of this pass.
1741 assert(!InsertedInsts.count(AndI) &&
1742 "Attempting to optimize already optimized and instruction");
1743 (void) InsertedInsts;
1745 // Nothing to do for single use in same basic block.
1746 if (AndI->hasOneUse() &&
1747 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1748 return false;
1750 // Try to avoid cases where sinking/duplicating is likely to increase register
1751 // pressure.
1752 if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1753 !isa<ConstantInt>(AndI->getOperand(1)) &&
1754 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1755 return false;
1757 for (auto *U : AndI->users()) {
1758 Instruction *User = cast<Instruction>(U);
1760 // Only sink 'and' feeding icmp with 0.
1761 if (!isa<ICmpInst>(User))
1762 return false;
1764 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1765 if (!CmpC || !CmpC->isZero())
1766 return false;
1769 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1770 return false;
1772 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1773 LLVM_DEBUG(AndI->getParent()->dump());
1775 // Push the 'and' into the same block as the icmp 0. There should only be
1776 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1777 // others, so we don't need to keep track of which BBs we insert into.
1778 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1779 UI != E; ) {
1780 Use &TheUse = UI.getUse();
1781 Instruction *User = cast<Instruction>(*UI);
1783 // Preincrement use iterator so we don't invalidate it.
1784 ++UI;
1786 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1788 // Keep the 'and' in the same place if the use is already in the same block.
1789 Instruction *InsertPt =
1790 User->getParent() == AndI->getParent() ? AndI : User;
1791 Instruction *InsertedAnd =
1792 BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1793 AndI->getOperand(1), "", InsertPt);
1794 // Propagate the debug info.
1795 InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1797 // Replace a use of the 'and' with a use of the new 'and'.
1798 TheUse = InsertedAnd;
1799 ++NumAndUses;
1800 LLVM_DEBUG(User->getParent()->dump());
1803 // We removed all uses, nuke the and.
1804 AndI->eraseFromParent();
1805 return true;
1808 /// Check if the candidates could be combined with a shift instruction, which
1809 /// includes:
1810 /// 1. Truncate instruction
1811 /// 2. And instruction and the imm is a mask of the low bits:
1812 /// imm & (imm+1) == 0
1813 static bool isExtractBitsCandidateUse(Instruction *User) {
1814 if (!isa<TruncInst>(User)) {
1815 if (User->getOpcode() != Instruction::And ||
1816 !isa<ConstantInt>(User->getOperand(1)))
1817 return false;
1819 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1821 if ((Cimm & (Cimm + 1)).getBoolValue())
1822 return false;
1824 return true;
1827 /// Sink both shift and truncate instruction to the use of truncate's BB.
1828 static bool
1829 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1830 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1831 const TargetLowering &TLI, const DataLayout &DL) {
1832 BasicBlock *UserBB = User->getParent();
1833 DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1834 auto *TruncI = cast<TruncInst>(User);
1835 bool MadeChange = false;
1837 for (Value::user_iterator TruncUI = TruncI->user_begin(),
1838 TruncE = TruncI->user_end();
1839 TruncUI != TruncE;) {
1841 Use &TruncTheUse = TruncUI.getUse();
1842 Instruction *TruncUser = cast<Instruction>(*TruncUI);
1843 // Preincrement use iterator so we don't invalidate it.
1845 ++TruncUI;
1847 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1848 if (!ISDOpcode)
1849 continue;
1851 // If the use is actually a legal node, there will not be an
1852 // implicit truncate.
1853 // FIXME: always querying the result type is just an
1854 // approximation; some nodes' legality is determined by the
1855 // operand or other means. There's no good way to find out though.
1856 if (TLI.isOperationLegalOrCustom(
1857 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1858 continue;
1860 // Don't bother for PHI nodes.
1861 if (isa<PHINode>(TruncUser))
1862 continue;
1864 BasicBlock *TruncUserBB = TruncUser->getParent();
1866 if (UserBB == TruncUserBB)
1867 continue;
1869 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1870 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1872 if (!InsertedShift && !InsertedTrunc) {
1873 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1874 assert(InsertPt != TruncUserBB->end());
1875 // Sink the shift
1876 if (ShiftI->getOpcode() == Instruction::AShr)
1877 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1878 "", &*InsertPt);
1879 else
1880 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1881 "", &*InsertPt);
1882 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1884 // Sink the trunc
1885 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1886 TruncInsertPt++;
1887 assert(TruncInsertPt != TruncUserBB->end());
1889 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1890 TruncI->getType(), "", &*TruncInsertPt);
1891 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1893 MadeChange = true;
1895 TruncTheUse = InsertedTrunc;
1898 return MadeChange;
1901 /// Sink the shift *right* instruction into user blocks if the uses could
1902 /// potentially be combined with this shift instruction and generate BitExtract
1903 /// instruction. It will only be applied if the architecture supports BitExtract
1904 /// instruction. Here is an example:
1905 /// BB1:
1906 /// %x.extract.shift = lshr i64 %arg1, 32
1907 /// BB2:
1908 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1909 /// ==>
1911 /// BB2:
1912 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1913 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1915 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1916 /// instruction.
1917 /// Return true if any changes are made.
1918 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1919 const TargetLowering &TLI,
1920 const DataLayout &DL) {
1921 BasicBlock *DefBB = ShiftI->getParent();
1923 /// Only insert instructions in each block once.
1924 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1926 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1928 bool MadeChange = false;
1929 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1930 UI != E;) {
1931 Use &TheUse = UI.getUse();
1932 Instruction *User = cast<Instruction>(*UI);
1933 // Preincrement use iterator so we don't invalidate it.
1934 ++UI;
1936 // Don't bother for PHI nodes.
1937 if (isa<PHINode>(User))
1938 continue;
1940 if (!isExtractBitsCandidateUse(User))
1941 continue;
1943 BasicBlock *UserBB = User->getParent();
1945 if (UserBB == DefBB) {
1946 // If the shift and truncate instruction are in the same BB. The use of
1947 // the truncate(TruncUse) may still introduce another truncate if not
1948 // legal. In this case, we would like to sink both shift and truncate
1949 // instruction to the BB of TruncUse.
1950 // for example:
1951 // BB1:
1952 // i64 shift.result = lshr i64 opnd, imm
1953 // trunc.result = trunc shift.result to i16
1955 // BB2:
1956 // ----> We will have an implicit truncate here if the architecture does
1957 // not have i16 compare.
1958 // cmp i16 trunc.result, opnd2
1960 if (isa<TruncInst>(User) && shiftIsLegal
1961 // If the type of the truncate is legal, no truncate will be
1962 // introduced in other basic blocks.
1964 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1965 MadeChange =
1966 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1968 continue;
1970 // If we have already inserted a shift into this block, use it.
1971 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1973 if (!InsertedShift) {
1974 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1975 assert(InsertPt != UserBB->end());
1977 if (ShiftI->getOpcode() == Instruction::AShr)
1978 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1979 "", &*InsertPt);
1980 else
1981 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1982 "", &*InsertPt);
1983 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1985 MadeChange = true;
1988 // Replace a use of the shift with a use of the new shift.
1989 TheUse = InsertedShift;
1992 // If we removed all uses, or there are none, nuke the shift.
1993 if (ShiftI->use_empty()) {
1994 salvageDebugInfo(*ShiftI);
1995 ShiftI->eraseFromParent();
1996 MadeChange = true;
1999 return MadeChange;
2002 /// If counting leading or trailing zeros is an expensive operation and a zero
2003 /// input is defined, add a check for zero to avoid calling the intrinsic.
2005 /// We want to transform:
2006 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2008 /// into:
2009 /// entry:
2010 /// %cmpz = icmp eq i64 %A, 0
2011 /// br i1 %cmpz, label %cond.end, label %cond.false
2012 /// cond.false:
2013 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2014 /// br label %cond.end
2015 /// cond.end:
2016 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2018 /// If the transform is performed, return true and set ModifiedDT to true.
2019 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
2020 const TargetLowering *TLI,
2021 const DataLayout *DL,
2022 bool &ModifiedDT) {
2023 // If a zero input is undefined, it doesn't make sense to despeculate that.
2024 if (match(CountZeros->getOperand(1), m_One()))
2025 return false;
2027 // If it's cheap to speculate, there's nothing to do.
2028 auto IntrinsicID = CountZeros->getIntrinsicID();
2029 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
2030 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
2031 return false;
2033 // Only handle legal scalar cases. Anything else requires too much work.
2034 Type *Ty = CountZeros->getType();
2035 unsigned SizeInBits = Ty->getScalarSizeInBits();
2036 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
2037 return false;
2039 // Bail if the value is never zero.
2040 if (llvm::isKnownNonZero(CountZeros->getOperand(0), *DL))
2041 return false;
2043 // The intrinsic will be sunk behind a compare against zero and branch.
2044 BasicBlock *StartBlock = CountZeros->getParent();
2045 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2047 // Create another block after the count zero intrinsic. A PHI will be added
2048 // in this block to select the result of the intrinsic or the bit-width
2049 // constant if the input to the intrinsic is zero.
2050 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
2051 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2053 // Set up a builder to create a compare, conditional branch, and PHI.
2054 IRBuilder<> Builder(CountZeros->getContext());
2055 Builder.SetInsertPoint(StartBlock->getTerminator());
2056 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2058 // Replace the unconditional branch that was created by the first split with
2059 // a compare against zero and a conditional branch.
2060 Value *Zero = Constant::getNullValue(Ty);
2061 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
2062 Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2063 StartBlock->getTerminator()->eraseFromParent();
2065 // Create a PHI in the end block to select either the output of the intrinsic
2066 // or the bit width of the operand.
2067 Builder.SetInsertPoint(&EndBlock->front());
2068 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2069 CountZeros->replaceAllUsesWith(PN);
2070 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2071 PN->addIncoming(BitWidth, StartBlock);
2072 PN->addIncoming(CountZeros, CallBlock);
2074 // We are explicitly handling the zero case, so we can set the intrinsic's
2075 // undefined zero argument to 'true'. This will also prevent reprocessing the
2076 // intrinsic; we only despeculate when a zero input is defined.
2077 CountZeros->setArgOperand(1, Builder.getTrue());
2078 ModifiedDT = true;
2079 return true;
2082 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
2083 BasicBlock *BB = CI->getParent();
2085 // Lower inline assembly if we can.
2086 // If we found an inline asm expession, and if the target knows how to
2087 // lower it to normal LLVM code, do so now.
2088 if (CI->isInlineAsm()) {
2089 if (TLI->ExpandInlineAsm(CI)) {
2090 // Avoid invalidating the iterator.
2091 CurInstIterator = BB->begin();
2092 // Avoid processing instructions out of order, which could cause
2093 // reuse before a value is defined.
2094 SunkAddrs.clear();
2095 return true;
2097 // Sink address computing for memory operands into the block.
2098 if (optimizeInlineAsmInst(CI))
2099 return true;
2102 // Align the pointer arguments to this call if the target thinks it's a good
2103 // idea
2104 unsigned MinSize, PrefAlign;
2105 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2106 for (auto &Arg : CI->args()) {
2107 // We want to align both objects whose address is used directly and
2108 // objects whose address is used in casts and GEPs, though it only makes
2109 // sense for GEPs if the offset is a multiple of the desired alignment and
2110 // if size - offset meets the size threshold.
2111 if (!Arg->getType()->isPointerTy())
2112 continue;
2113 APInt Offset(DL->getIndexSizeInBits(
2114 cast<PointerType>(Arg->getType())->getAddressSpace()),
2116 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2117 uint64_t Offset2 = Offset.getLimitedValue();
2118 if ((Offset2 & (PrefAlign-1)) != 0)
2119 continue;
2120 AllocaInst *AI;
2121 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2122 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2123 AI->setAlignment(Align(PrefAlign));
2124 // Global variables can only be aligned if they are defined in this
2125 // object (i.e. they are uniquely initialized in this object), and
2126 // over-aligning global variables that have an explicit section is
2127 // forbidden.
2128 GlobalVariable *GV;
2129 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2130 GV->getPointerAlignment(*DL) < PrefAlign &&
2131 DL->getTypeAllocSize(GV->getValueType()) >=
2132 MinSize + Offset2)
2133 GV->setAlignment(MaybeAlign(PrefAlign));
2135 // If this is a memcpy (or similar) then we may be able to improve the
2136 // alignment
2137 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2138 Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2139 MaybeAlign MIDestAlign = MI->getDestAlign();
2140 if (!MIDestAlign || DestAlign > *MIDestAlign)
2141 MI->setDestAlignment(DestAlign);
2142 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2143 MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2144 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2145 if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2146 MTI->setSourceAlignment(SrcAlign);
2151 // If we have a cold call site, try to sink addressing computation into the
2152 // cold block. This interacts with our handling for loads and stores to
2153 // ensure that we can fold all uses of a potential addressing computation
2154 // into their uses. TODO: generalize this to work over profiling data
2155 if (CI->hasFnAttr(Attribute::Cold) &&
2156 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2157 for (auto &Arg : CI->args()) {
2158 if (!Arg->getType()->isPointerTy())
2159 continue;
2160 unsigned AS = Arg->getType()->getPointerAddressSpace();
2161 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2164 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2165 if (II) {
2166 switch (II->getIntrinsicID()) {
2167 default: break;
2168 case Intrinsic::assume:
2169 llvm_unreachable("llvm.assume should have been removed already");
2170 case Intrinsic::experimental_widenable_condition: {
2171 // Give up on future widening oppurtunties so that we can fold away dead
2172 // paths and merge blocks before going into block-local instruction
2173 // selection.
2174 if (II->use_empty()) {
2175 II->eraseFromParent();
2176 return true;
2178 Constant *RetVal = ConstantInt::getTrue(II->getContext());
2179 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2180 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2182 return true;
2184 case Intrinsic::objectsize:
2185 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2186 case Intrinsic::is_constant:
2187 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2188 case Intrinsic::aarch64_stlxr:
2189 case Intrinsic::aarch64_stxr: {
2190 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2191 if (!ExtVal || !ExtVal->hasOneUse() ||
2192 ExtVal->getParent() == CI->getParent())
2193 return false;
2194 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2195 ExtVal->moveBefore(CI);
2196 // Mark this instruction as "inserted by CGP", so that other
2197 // optimizations don't touch it.
2198 InsertedInsts.insert(ExtVal);
2199 return true;
2202 case Intrinsic::launder_invariant_group:
2203 case Intrinsic::strip_invariant_group: {
2204 Value *ArgVal = II->getArgOperand(0);
2205 auto it = LargeOffsetGEPMap.find(II);
2206 if (it != LargeOffsetGEPMap.end()) {
2207 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2208 // Make sure not to have to deal with iterator invalidation
2209 // after possibly adding ArgVal to LargeOffsetGEPMap.
2210 auto GEPs = std::move(it->second);
2211 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2212 LargeOffsetGEPMap.erase(II);
2215 II->replaceAllUsesWith(ArgVal);
2216 II->eraseFromParent();
2217 return true;
2219 case Intrinsic::cttz:
2220 case Intrinsic::ctlz:
2221 // If counting zeros is expensive, try to avoid it.
2222 return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2223 case Intrinsic::fshl:
2224 case Intrinsic::fshr:
2225 return optimizeFunnelShift(II);
2226 case Intrinsic::dbg_value:
2227 return fixupDbgValue(II);
2228 case Intrinsic::vscale: {
2229 // If datalayout has no special restrictions on vector data layout,
2230 // replace `llvm.vscale` by an equivalent constant expression
2231 // to benefit from cheap constant propagation.
2232 Type *ScalableVectorTy =
2233 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
2234 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
2235 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
2236 auto *One = ConstantInt::getSigned(II->getType(), 1);
2237 auto *CGep =
2238 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
2239 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
2240 II->eraseFromParent();
2241 return true;
2243 break;
2245 case Intrinsic::masked_gather:
2246 return optimizeGatherScatterInst(II, II->getArgOperand(0));
2247 case Intrinsic::masked_scatter:
2248 return optimizeGatherScatterInst(II, II->getArgOperand(1));
2251 SmallVector<Value *, 2> PtrOps;
2252 Type *AccessTy;
2253 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2254 while (!PtrOps.empty()) {
2255 Value *PtrVal = PtrOps.pop_back_val();
2256 unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2257 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2258 return true;
2262 // From here on out we're working with named functions.
2263 if (!CI->getCalledFunction()) return false;
2265 // Lower all default uses of _chk calls. This is very similar
2266 // to what InstCombineCalls does, but here we are only lowering calls
2267 // to fortified library functions (e.g. __memcpy_chk) that have the default
2268 // "don't know" as the objectsize. Anything else should be left alone.
2269 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2270 IRBuilder<> Builder(CI);
2271 if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2272 CI->replaceAllUsesWith(V);
2273 CI->eraseFromParent();
2274 return true;
2277 return false;
2280 /// Look for opportunities to duplicate return instructions to the predecessor
2281 /// to enable tail call optimizations. The case it is currently looking for is:
2282 /// @code
2283 /// bb0:
2284 /// %tmp0 = tail call i32 @f0()
2285 /// br label %return
2286 /// bb1:
2287 /// %tmp1 = tail call i32 @f1()
2288 /// br label %return
2289 /// bb2:
2290 /// %tmp2 = tail call i32 @f2()
2291 /// br label %return
2292 /// return:
2293 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2294 /// ret i32 %retval
2295 /// @endcode
2297 /// =>
2299 /// @code
2300 /// bb0:
2301 /// %tmp0 = tail call i32 @f0()
2302 /// ret i32 %tmp0
2303 /// bb1:
2304 /// %tmp1 = tail call i32 @f1()
2305 /// ret i32 %tmp1
2306 /// bb2:
2307 /// %tmp2 = tail call i32 @f2()
2308 /// ret i32 %tmp2
2309 /// @endcode
2310 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2311 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2312 if (!RetI)
2313 return false;
2315 PHINode *PN = nullptr;
2316 ExtractValueInst *EVI = nullptr;
2317 BitCastInst *BCI = nullptr;
2318 Value *V = RetI->getReturnValue();
2319 if (V) {
2320 BCI = dyn_cast<BitCastInst>(V);
2321 if (BCI)
2322 V = BCI->getOperand(0);
2324 EVI = dyn_cast<ExtractValueInst>(V);
2325 if (EVI) {
2326 V = EVI->getOperand(0);
2327 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2328 return false;
2331 PN = dyn_cast<PHINode>(V);
2332 if (!PN)
2333 return false;
2336 if (PN && PN->getParent() != BB)
2337 return false;
2339 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) {
2340 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst);
2341 if (BC && BC->hasOneUse())
2342 Inst = BC->user_back();
2344 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
2345 return II->getIntrinsicID() == Intrinsic::lifetime_end;
2346 return false;
2349 // Make sure there are no instructions between the first instruction
2350 // and return.
2351 const Instruction *BI = BB->getFirstNonPHI();
2352 // Skip over debug and the bitcast.
2353 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI ||
2354 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI))
2355 BI = BI->getNextNode();
2356 if (BI != RetI)
2357 return false;
2359 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2360 /// call.
2361 const Function *F = BB->getParent();
2362 SmallVector<BasicBlock*, 4> TailCallBBs;
2363 if (PN) {
2364 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2365 // Look through bitcasts.
2366 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2367 CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2368 BasicBlock *PredBB = PN->getIncomingBlock(I);
2369 // Make sure the phi value is indeed produced by the tail call.
2370 if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2371 TLI->mayBeEmittedAsTailCall(CI) &&
2372 attributesPermitTailCall(F, CI, RetI, *TLI))
2373 TailCallBBs.push_back(PredBB);
2375 } else {
2376 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2377 for (BasicBlock *Pred : predecessors(BB)) {
2378 if (!VisitedBBs.insert(Pred).second)
2379 continue;
2380 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) {
2381 CallInst *CI = dyn_cast<CallInst>(I);
2382 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2383 attributesPermitTailCall(F, CI, RetI, *TLI))
2384 TailCallBBs.push_back(Pred);
2389 bool Changed = false;
2390 for (auto const &TailCallBB : TailCallBBs) {
2391 // Make sure the call instruction is followed by an unconditional branch to
2392 // the return block.
2393 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2394 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2395 continue;
2397 // Duplicate the return into TailCallBB.
2398 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2399 assert(!VerifyBFIUpdates ||
2400 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2401 BFI->setBlockFreq(
2403 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency());
2404 ModifiedDT = Changed = true;
2405 ++NumRetsDup;
2408 // If we eliminated all predecessors of the block, delete the block now.
2409 if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2410 BB->eraseFromParent();
2412 return Changed;
2415 //===----------------------------------------------------------------------===//
2416 // Memory Optimization
2417 //===----------------------------------------------------------------------===//
2419 namespace {
2421 /// This is an extended version of TargetLowering::AddrMode
2422 /// which holds actual Value*'s for register values.
2423 struct ExtAddrMode : public TargetLowering::AddrMode {
2424 Value *BaseReg = nullptr;
2425 Value *ScaledReg = nullptr;
2426 Value *OriginalValue = nullptr;
2427 bool InBounds = true;
2429 enum FieldName {
2430 NoField = 0x00,
2431 BaseRegField = 0x01,
2432 BaseGVField = 0x02,
2433 BaseOffsField = 0x04,
2434 ScaledRegField = 0x08,
2435 ScaleField = 0x10,
2436 MultipleFields = 0xff
2440 ExtAddrMode() = default;
2442 void print(raw_ostream &OS) const;
2443 void dump() const;
2445 FieldName compare(const ExtAddrMode &other) {
2446 // First check that the types are the same on each field, as differing types
2447 // is something we can't cope with later on.
2448 if (BaseReg && other.BaseReg &&
2449 BaseReg->getType() != other.BaseReg->getType())
2450 return MultipleFields;
2451 if (BaseGV && other.BaseGV &&
2452 BaseGV->getType() != other.BaseGV->getType())
2453 return MultipleFields;
2454 if (ScaledReg && other.ScaledReg &&
2455 ScaledReg->getType() != other.ScaledReg->getType())
2456 return MultipleFields;
2458 // Conservatively reject 'inbounds' mismatches.
2459 if (InBounds != other.InBounds)
2460 return MultipleFields;
2462 // Check each field to see if it differs.
2463 unsigned Result = NoField;
2464 if (BaseReg != other.BaseReg)
2465 Result |= BaseRegField;
2466 if (BaseGV != other.BaseGV)
2467 Result |= BaseGVField;
2468 if (BaseOffs != other.BaseOffs)
2469 Result |= BaseOffsField;
2470 if (ScaledReg != other.ScaledReg)
2471 Result |= ScaledRegField;
2472 // Don't count 0 as being a different scale, because that actually means
2473 // unscaled (which will already be counted by having no ScaledReg).
2474 if (Scale && other.Scale && Scale != other.Scale)
2475 Result |= ScaleField;
2477 if (countPopulation(Result) > 1)
2478 return MultipleFields;
2479 else
2480 return static_cast<FieldName>(Result);
2483 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2484 // with no offset.
2485 bool isTrivial() {
2486 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2487 // trivial if at most one of these terms is nonzero, except that BaseGV and
2488 // BaseReg both being zero actually means a null pointer value, which we
2489 // consider to be 'non-zero' here.
2490 return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2493 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2494 switch (Field) {
2495 default:
2496 return nullptr;
2497 case BaseRegField:
2498 return BaseReg;
2499 case BaseGVField:
2500 return BaseGV;
2501 case ScaledRegField:
2502 return ScaledReg;
2503 case BaseOffsField:
2504 return ConstantInt::get(IntPtrTy, BaseOffs);
2508 void SetCombinedField(FieldName Field, Value *V,
2509 const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2510 switch (Field) {
2511 default:
2512 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2513 break;
2514 case ExtAddrMode::BaseRegField:
2515 BaseReg = V;
2516 break;
2517 case ExtAddrMode::BaseGVField:
2518 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2519 // in the BaseReg field.
2520 assert(BaseReg == nullptr);
2521 BaseReg = V;
2522 BaseGV = nullptr;
2523 break;
2524 case ExtAddrMode::ScaledRegField:
2525 ScaledReg = V;
2526 // If we have a mix of scaled and unscaled addrmodes then we want scale
2527 // to be the scale and not zero.
2528 if (!Scale)
2529 for (const ExtAddrMode &AM : AddrModes)
2530 if (AM.Scale) {
2531 Scale = AM.Scale;
2532 break;
2534 break;
2535 case ExtAddrMode::BaseOffsField:
2536 // The offset is no longer a constant, so it goes in ScaledReg with a
2537 // scale of 1.
2538 assert(ScaledReg == nullptr);
2539 ScaledReg = V;
2540 Scale = 1;
2541 BaseOffs = 0;
2542 break;
2547 } // end anonymous namespace
2549 #ifndef NDEBUG
2550 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2551 AM.print(OS);
2552 return OS;
2554 #endif
2556 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2557 void ExtAddrMode::print(raw_ostream &OS) const {
2558 bool NeedPlus = false;
2559 OS << "[";
2560 if (InBounds)
2561 OS << "inbounds ";
2562 if (BaseGV) {
2563 OS << (NeedPlus ? " + " : "")
2564 << "GV:";
2565 BaseGV->printAsOperand(OS, /*PrintType=*/false);
2566 NeedPlus = true;
2569 if (BaseOffs) {
2570 OS << (NeedPlus ? " + " : "")
2571 << BaseOffs;
2572 NeedPlus = true;
2575 if (BaseReg) {
2576 OS << (NeedPlus ? " + " : "")
2577 << "Base:";
2578 BaseReg->printAsOperand(OS, /*PrintType=*/false);
2579 NeedPlus = true;
2581 if (Scale) {
2582 OS << (NeedPlus ? " + " : "")
2583 << Scale << "*";
2584 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2587 OS << ']';
2590 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2591 print(dbgs());
2592 dbgs() << '\n';
2594 #endif
2596 namespace {
2598 /// This class provides transaction based operation on the IR.
2599 /// Every change made through this class is recorded in the internal state and
2600 /// can be undone (rollback) until commit is called.
2601 /// CGP does not check if instructions could be speculatively executed when
2602 /// moved. Preserving the original location would pessimize the debugging
2603 /// experience, as well as negatively impact the quality of sample PGO.
2604 class TypePromotionTransaction {
2605 /// This represents the common interface of the individual transaction.
2606 /// Each class implements the logic for doing one specific modification on
2607 /// the IR via the TypePromotionTransaction.
2608 class TypePromotionAction {
2609 protected:
2610 /// The Instruction modified.
2611 Instruction *Inst;
2613 public:
2614 /// Constructor of the action.
2615 /// The constructor performs the related action on the IR.
2616 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2618 virtual ~TypePromotionAction() = default;
2620 /// Undo the modification done by this action.
2621 /// When this method is called, the IR must be in the same state as it was
2622 /// before this action was applied.
2623 /// \pre Undoing the action works if and only if the IR is in the exact same
2624 /// state as it was directly after this action was applied.
2625 virtual void undo() = 0;
2627 /// Advocate every change made by this action.
2628 /// When the results on the IR of the action are to be kept, it is important
2629 /// to call this function, otherwise hidden information may be kept forever.
2630 virtual void commit() {
2631 // Nothing to be done, this action is not doing anything.
2635 /// Utility to remember the position of an instruction.
2636 class InsertionHandler {
2637 /// Position of an instruction.
2638 /// Either an instruction:
2639 /// - Is the first in a basic block: BB is used.
2640 /// - Has a previous instruction: PrevInst is used.
2641 union {
2642 Instruction *PrevInst;
2643 BasicBlock *BB;
2644 } Point;
2646 /// Remember whether or not the instruction had a previous instruction.
2647 bool HasPrevInstruction;
2649 public:
2650 /// Record the position of \p Inst.
2651 InsertionHandler(Instruction *Inst) {
2652 BasicBlock::iterator It = Inst->getIterator();
2653 HasPrevInstruction = (It != (Inst->getParent()->begin()));
2654 if (HasPrevInstruction)
2655 Point.PrevInst = &*--It;
2656 else
2657 Point.BB = Inst->getParent();
2660 /// Insert \p Inst at the recorded position.
2661 void insert(Instruction *Inst) {
2662 if (HasPrevInstruction) {
2663 if (Inst->getParent())
2664 Inst->removeFromParent();
2665 Inst->insertAfter(Point.PrevInst);
2666 } else {
2667 Instruction *Position = &*Point.BB->getFirstInsertionPt();
2668 if (Inst->getParent())
2669 Inst->moveBefore(Position);
2670 else
2671 Inst->insertBefore(Position);
2676 /// Move an instruction before another.
2677 class InstructionMoveBefore : public TypePromotionAction {
2678 /// Original position of the instruction.
2679 InsertionHandler Position;
2681 public:
2682 /// Move \p Inst before \p Before.
2683 InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2684 : TypePromotionAction(Inst), Position(Inst) {
2685 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2686 << "\n");
2687 Inst->moveBefore(Before);
2690 /// Move the instruction back to its original position.
2691 void undo() override {
2692 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2693 Position.insert(Inst);
2697 /// Set the operand of an instruction with a new value.
2698 class OperandSetter : public TypePromotionAction {
2699 /// Original operand of the instruction.
2700 Value *Origin;
2702 /// Index of the modified instruction.
2703 unsigned Idx;
2705 public:
2706 /// Set \p Idx operand of \p Inst with \p NewVal.
2707 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2708 : TypePromotionAction(Inst), Idx(Idx) {
2709 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2710 << "for:" << *Inst << "\n"
2711 << "with:" << *NewVal << "\n");
2712 Origin = Inst->getOperand(Idx);
2713 Inst->setOperand(Idx, NewVal);
2716 /// Restore the original value of the instruction.
2717 void undo() override {
2718 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2719 << "for: " << *Inst << "\n"
2720 << "with: " << *Origin << "\n");
2721 Inst->setOperand(Idx, Origin);
2725 /// Hide the operands of an instruction.
2726 /// Do as if this instruction was not using any of its operands.
2727 class OperandsHider : public TypePromotionAction {
2728 /// The list of original operands.
2729 SmallVector<Value *, 4> OriginalValues;
2731 public:
2732 /// Remove \p Inst from the uses of the operands of \p Inst.
2733 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2734 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2735 unsigned NumOpnds = Inst->getNumOperands();
2736 OriginalValues.reserve(NumOpnds);
2737 for (unsigned It = 0; It < NumOpnds; ++It) {
2738 // Save the current operand.
2739 Value *Val = Inst->getOperand(It);
2740 OriginalValues.push_back(Val);
2741 // Set a dummy one.
2742 // We could use OperandSetter here, but that would imply an overhead
2743 // that we are not willing to pay.
2744 Inst->setOperand(It, UndefValue::get(Val->getType()));
2748 /// Restore the original list of uses.
2749 void undo() override {
2750 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2751 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2752 Inst->setOperand(It, OriginalValues[It]);
2756 /// Build a truncate instruction.
2757 class TruncBuilder : public TypePromotionAction {
2758 Value *Val;
2760 public:
2761 /// Build a truncate instruction of \p Opnd producing a \p Ty
2762 /// result.
2763 /// trunc Opnd to Ty.
2764 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2765 IRBuilder<> Builder(Opnd);
2766 Builder.SetCurrentDebugLocation(DebugLoc());
2767 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2768 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2771 /// Get the built value.
2772 Value *getBuiltValue() { return Val; }
2774 /// Remove the built instruction.
2775 void undo() override {
2776 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2777 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2778 IVal->eraseFromParent();
2782 /// Build a sign extension instruction.
2783 class SExtBuilder : public TypePromotionAction {
2784 Value *Val;
2786 public:
2787 /// Build a sign extension instruction of \p Opnd producing a \p Ty
2788 /// result.
2789 /// sext Opnd to Ty.
2790 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2791 : TypePromotionAction(InsertPt) {
2792 IRBuilder<> Builder(InsertPt);
2793 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2794 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2797 /// Get the built value.
2798 Value *getBuiltValue() { return Val; }
2800 /// Remove the built instruction.
2801 void undo() override {
2802 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2803 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2804 IVal->eraseFromParent();
2808 /// Build a zero extension instruction.
2809 class ZExtBuilder : public TypePromotionAction {
2810 Value *Val;
2812 public:
2813 /// Build a zero extension instruction of \p Opnd producing a \p Ty
2814 /// result.
2815 /// zext Opnd to Ty.
2816 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2817 : TypePromotionAction(InsertPt) {
2818 IRBuilder<> Builder(InsertPt);
2819 Builder.SetCurrentDebugLocation(DebugLoc());
2820 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2821 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2824 /// Get the built value.
2825 Value *getBuiltValue() { return Val; }
2827 /// Remove the built instruction.
2828 void undo() override {
2829 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2830 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2831 IVal->eraseFromParent();
2835 /// Mutate an instruction to another type.
2836 class TypeMutator : public TypePromotionAction {
2837 /// Record the original type.
2838 Type *OrigTy;
2840 public:
2841 /// Mutate the type of \p Inst into \p NewTy.
2842 TypeMutator(Instruction *Inst, Type *NewTy)
2843 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2844 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2845 << "\n");
2846 Inst->mutateType(NewTy);
2849 /// Mutate the instruction back to its original type.
2850 void undo() override {
2851 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2852 << "\n");
2853 Inst->mutateType(OrigTy);
2857 /// Replace the uses of an instruction by another instruction.
2858 class UsesReplacer : public TypePromotionAction {
2859 /// Helper structure to keep track of the replaced uses.
2860 struct InstructionAndIdx {
2861 /// The instruction using the instruction.
2862 Instruction *Inst;
2864 /// The index where this instruction is used for Inst.
2865 unsigned Idx;
2867 InstructionAndIdx(Instruction *Inst, unsigned Idx)
2868 : Inst(Inst), Idx(Idx) {}
2871 /// Keep track of the original uses (pair Instruction, Index).
2872 SmallVector<InstructionAndIdx, 4> OriginalUses;
2873 /// Keep track of the debug users.
2874 SmallVector<DbgValueInst *, 1> DbgValues;
2876 /// Keep track of the new value so that we can undo it by replacing
2877 /// instances of the new value with the original value.
2878 Value *New;
2880 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2882 public:
2883 /// Replace all the use of \p Inst by \p New.
2884 UsesReplacer(Instruction *Inst, Value *New)
2885 : TypePromotionAction(Inst), New(New) {
2886 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2887 << "\n");
2888 // Record the original uses.
2889 for (Use &U : Inst->uses()) {
2890 Instruction *UserI = cast<Instruction>(U.getUser());
2891 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2893 // Record the debug uses separately. They are not in the instruction's
2894 // use list, but they are replaced by RAUW.
2895 findDbgValues(DbgValues, Inst);
2897 // Now, we can replace the uses.
2898 Inst->replaceAllUsesWith(New);
2901 /// Reassign the original uses of Inst to Inst.
2902 void undo() override {
2903 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2904 for (InstructionAndIdx &Use : OriginalUses)
2905 Use.Inst->setOperand(Use.Idx, Inst);
2906 // RAUW has replaced all original uses with references to the new value,
2907 // including the debug uses. Since we are undoing the replacements,
2908 // the original debug uses must also be reinstated to maintain the
2909 // correctness and utility of debug value instructions.
2910 for (auto *DVI : DbgValues)
2911 DVI->replaceVariableLocationOp(New, Inst);
2915 /// Remove an instruction from the IR.
2916 class InstructionRemover : public TypePromotionAction {
2917 /// Original position of the instruction.
2918 InsertionHandler Inserter;
2920 /// Helper structure to hide all the link to the instruction. In other
2921 /// words, this helps to do as if the instruction was removed.
2922 OperandsHider Hider;
2924 /// Keep track of the uses replaced, if any.
2925 UsesReplacer *Replacer = nullptr;
2927 /// Keep track of instructions removed.
2928 SetOfInstrs &RemovedInsts;
2930 public:
2931 /// Remove all reference of \p Inst and optionally replace all its
2932 /// uses with New.
2933 /// \p RemovedInsts Keep track of the instructions removed by this Action.
2934 /// \pre If !Inst->use_empty(), then New != nullptr
2935 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2936 Value *New = nullptr)
2937 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2938 RemovedInsts(RemovedInsts) {
2939 if (New)
2940 Replacer = new UsesReplacer(Inst, New);
2941 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2942 RemovedInsts.insert(Inst);
2943 /// The instructions removed here will be freed after completing
2944 /// optimizeBlock() for all blocks as we need to keep track of the
2945 /// removed instructions during promotion.
2946 Inst->removeFromParent();
2949 ~InstructionRemover() override { delete Replacer; }
2951 /// Resurrect the instruction and reassign it to the proper uses if
2952 /// new value was provided when build this action.
2953 void undo() override {
2954 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2955 Inserter.insert(Inst);
2956 if (Replacer)
2957 Replacer->undo();
2958 Hider.undo();
2959 RemovedInsts.erase(Inst);
2963 public:
2964 /// Restoration point.
2965 /// The restoration point is a pointer to an action instead of an iterator
2966 /// because the iterator may be invalidated but not the pointer.
2967 using ConstRestorationPt = const TypePromotionAction *;
2969 TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2970 : RemovedInsts(RemovedInsts) {}
2972 /// Advocate every changes made in that transaction. Return true if any change
2973 /// happen.
2974 bool commit();
2976 /// Undo all the changes made after the given point.
2977 void rollback(ConstRestorationPt Point);
2979 /// Get the current restoration point.
2980 ConstRestorationPt getRestorationPoint() const;
2982 /// \name API for IR modification with state keeping to support rollback.
2983 /// @{
2984 /// Same as Instruction::setOperand.
2985 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2987 /// Same as Instruction::eraseFromParent.
2988 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2990 /// Same as Value::replaceAllUsesWith.
2991 void replaceAllUsesWith(Instruction *Inst, Value *New);
2993 /// Same as Value::mutateType.
2994 void mutateType(Instruction *Inst, Type *NewTy);
2996 /// Same as IRBuilder::createTrunc.
2997 Value *createTrunc(Instruction *Opnd, Type *Ty);
2999 /// Same as IRBuilder::createSExt.
3000 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3002 /// Same as IRBuilder::createZExt.
3003 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3005 /// Same as Instruction::moveBefore.
3006 void moveBefore(Instruction *Inst, Instruction *Before);
3007 /// @}
3009 private:
3010 /// The ordered list of actions made so far.
3011 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3013 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3015 SetOfInstrs &RemovedInsts;
3018 } // end anonymous namespace
3020 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3021 Value *NewVal) {
3022 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
3023 Inst, Idx, NewVal));
3026 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3027 Value *NewVal) {
3028 Actions.push_back(
3029 std::make_unique<TypePromotionTransaction::InstructionRemover>(
3030 Inst, RemovedInsts, NewVal));
3033 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3034 Value *New) {
3035 Actions.push_back(
3036 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3039 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3040 Actions.push_back(
3041 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3044 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
3045 Type *Ty) {
3046 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3047 Value *Val = Ptr->getBuiltValue();
3048 Actions.push_back(std::move(Ptr));
3049 return Val;
3052 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
3053 Value *Opnd, Type *Ty) {
3054 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3055 Value *Val = Ptr->getBuiltValue();
3056 Actions.push_back(std::move(Ptr));
3057 return Val;
3060 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
3061 Value *Opnd, Type *Ty) {
3062 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3063 Value *Val = Ptr->getBuiltValue();
3064 Actions.push_back(std::move(Ptr));
3065 return Val;
3068 void TypePromotionTransaction::moveBefore(Instruction *Inst,
3069 Instruction *Before) {
3070 Actions.push_back(
3071 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
3072 Inst, Before));
3075 TypePromotionTransaction::ConstRestorationPt
3076 TypePromotionTransaction::getRestorationPoint() const {
3077 return !Actions.empty() ? Actions.back().get() : nullptr;
3080 bool TypePromotionTransaction::commit() {
3081 for (std::unique_ptr<TypePromotionAction> &Action : Actions)
3082 Action->commit();
3083 bool Modified = !Actions.empty();
3084 Actions.clear();
3085 return Modified;
3088 void TypePromotionTransaction::rollback(
3089 TypePromotionTransaction::ConstRestorationPt Point) {
3090 while (!Actions.empty() && Point != Actions.back().get()) {
3091 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3092 Curr->undo();
3096 namespace {
3098 /// A helper class for matching addressing modes.
3100 /// This encapsulates the logic for matching the target-legal addressing modes.
3101 class AddressingModeMatcher {
3102 SmallVectorImpl<Instruction*> &AddrModeInsts;
3103 const TargetLowering &TLI;
3104 const TargetRegisterInfo &TRI;
3105 const DataLayout &DL;
3106 const LoopInfo &LI;
3107 const std::function<const DominatorTree &()> getDTFn;
3109 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3110 /// the memory instruction that we're computing this address for.
3111 Type *AccessTy;
3112 unsigned AddrSpace;
3113 Instruction *MemoryInst;
3115 /// This is the addressing mode that we're building up. This is
3116 /// part of the return value of this addressing mode matching stuff.
3117 ExtAddrMode &AddrMode;
3119 /// The instructions inserted by other CodeGenPrepare optimizations.
3120 const SetOfInstrs &InsertedInsts;
3122 /// A map from the instructions to their type before promotion.
3123 InstrToOrigTy &PromotedInsts;
3125 /// The ongoing transaction where every action should be registered.
3126 TypePromotionTransaction &TPT;
3128 // A GEP which has too large offset to be folded into the addressing mode.
3129 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3131 /// This is set to true when we should not do profitability checks.
3132 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3133 bool IgnoreProfitability;
3135 /// True if we are optimizing for size.
3136 bool OptSize;
3138 ProfileSummaryInfo *PSI;
3139 BlockFrequencyInfo *BFI;
3141 AddressingModeMatcher(
3142 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3143 const TargetRegisterInfo &TRI, const LoopInfo &LI,
3144 const std::function<const DominatorTree &()> getDTFn,
3145 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM,
3146 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3147 TypePromotionTransaction &TPT,
3148 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3149 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3150 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3151 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn),
3152 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM),
3153 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT),
3154 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) {
3155 IgnoreProfitability = false;
3158 public:
3159 /// Find the maximal addressing mode that a load/store of V can fold,
3160 /// give an access type of AccessTy. This returns a list of involved
3161 /// instructions in AddrModeInsts.
3162 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3163 /// optimizations.
3164 /// \p PromotedInsts maps the instructions to their type before promotion.
3165 /// \p The ongoing transaction where every action should be registered.
3166 static ExtAddrMode
3167 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3168 SmallVectorImpl<Instruction *> &AddrModeInsts,
3169 const TargetLowering &TLI, const LoopInfo &LI,
3170 const std::function<const DominatorTree &()> getDTFn,
3171 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts,
3172 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3173 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3174 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3175 ExtAddrMode Result;
3177 bool Success = AddressingModeMatcher(
3178 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result,
3179 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
3180 BFI).matchAddr(V, 0);
3181 (void)Success; assert(Success && "Couldn't select *anything*?");
3182 return Result;
3185 private:
3186 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3187 bool matchAddr(Value *Addr, unsigned Depth);
3188 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3189 bool *MovedAway = nullptr);
3190 bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3191 ExtAddrMode &AMBefore,
3192 ExtAddrMode &AMAfter);
3193 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3194 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3195 Value *PromotedOperand) const;
3198 class PhiNodeSet;
3200 /// An iterator for PhiNodeSet.
3201 class PhiNodeSetIterator {
3202 PhiNodeSet * const Set;
3203 size_t CurrentIndex = 0;
3205 public:
3206 /// The constructor. Start should point to either a valid element, or be equal
3207 /// to the size of the underlying SmallVector of the PhiNodeSet.
3208 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
3209 PHINode * operator*() const;
3210 PhiNodeSetIterator& operator++();
3211 bool operator==(const PhiNodeSetIterator &RHS) const;
3212 bool operator!=(const PhiNodeSetIterator &RHS) const;
3215 /// Keeps a set of PHINodes.
3217 /// This is a minimal set implementation for a specific use case:
3218 /// It is very fast when there are very few elements, but also provides good
3219 /// performance when there are many. It is similar to SmallPtrSet, but also
3220 /// provides iteration by insertion order, which is deterministic and stable
3221 /// across runs. It is also similar to SmallSetVector, but provides removing
3222 /// elements in O(1) time. This is achieved by not actually removing the element
3223 /// from the underlying vector, so comes at the cost of using more memory, but
3224 /// that is fine, since PhiNodeSets are used as short lived objects.
3225 class PhiNodeSet {
3226 friend class PhiNodeSetIterator;
3228 using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3229 using iterator = PhiNodeSetIterator;
3231 /// Keeps the elements in the order of their insertion in the underlying
3232 /// vector. To achieve constant time removal, it never deletes any element.
3233 SmallVector<PHINode *, 32> NodeList;
3235 /// Keeps the elements in the underlying set implementation. This (and not the
3236 /// NodeList defined above) is the source of truth on whether an element
3237 /// is actually in the collection.
3238 MapType NodeMap;
3240 /// Points to the first valid (not deleted) element when the set is not empty
3241 /// and the value is not zero. Equals to the size of the underlying vector
3242 /// when the set is empty. When the value is 0, as in the beginning, the
3243 /// first element may or may not be valid.
3244 size_t FirstValidElement = 0;
3246 public:
3247 /// Inserts a new element to the collection.
3248 /// \returns true if the element is actually added, i.e. was not in the
3249 /// collection before the operation.
3250 bool insert(PHINode *Ptr) {
3251 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3252 NodeList.push_back(Ptr);
3253 return true;
3255 return false;
3258 /// Removes the element from the collection.
3259 /// \returns whether the element is actually removed, i.e. was in the
3260 /// collection before the operation.
3261 bool erase(PHINode *Ptr) {
3262 if (NodeMap.erase(Ptr)) {
3263 SkipRemovedElements(FirstValidElement);
3264 return true;
3266 return false;
3269 /// Removes all elements and clears the collection.
3270 void clear() {
3271 NodeMap.clear();
3272 NodeList.clear();
3273 FirstValidElement = 0;
3276 /// \returns an iterator that will iterate the elements in the order of
3277 /// insertion.
3278 iterator begin() {
3279 if (FirstValidElement == 0)
3280 SkipRemovedElements(FirstValidElement);
3281 return PhiNodeSetIterator(this, FirstValidElement);
3284 /// \returns an iterator that points to the end of the collection.
3285 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3287 /// Returns the number of elements in the collection.
3288 size_t size() const {
3289 return NodeMap.size();
3292 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3293 size_t count(PHINode *Ptr) const {
3294 return NodeMap.count(Ptr);
3297 private:
3298 /// Updates the CurrentIndex so that it will point to a valid element.
3300 /// If the element of NodeList at CurrentIndex is valid, it does not
3301 /// change it. If there are no more valid elements, it updates CurrentIndex
3302 /// to point to the end of the NodeList.
3303 void SkipRemovedElements(size_t &CurrentIndex) {
3304 while (CurrentIndex < NodeList.size()) {
3305 auto it = NodeMap.find(NodeList[CurrentIndex]);
3306 // If the element has been deleted and added again later, NodeMap will
3307 // point to a different index, so CurrentIndex will still be invalid.
3308 if (it != NodeMap.end() && it->second == CurrentIndex)
3309 break;
3310 ++CurrentIndex;
3315 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3316 : Set(Set), CurrentIndex(Start) {}
3318 PHINode * PhiNodeSetIterator::operator*() const {
3319 assert(CurrentIndex < Set->NodeList.size() &&
3320 "PhiNodeSet access out of range");
3321 return Set->NodeList[CurrentIndex];
3324 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3325 assert(CurrentIndex < Set->NodeList.size() &&
3326 "PhiNodeSet access out of range");
3327 ++CurrentIndex;
3328 Set->SkipRemovedElements(CurrentIndex);
3329 return *this;
3332 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3333 return CurrentIndex == RHS.CurrentIndex;
3336 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3337 return !((*this) == RHS);
3340 /// Keep track of simplification of Phi nodes.
3341 /// Accept the set of all phi nodes and erase phi node from this set
3342 /// if it is simplified.
3343 class SimplificationTracker {
3344 DenseMap<Value *, Value *> Storage;
3345 const SimplifyQuery &SQ;
3346 // Tracks newly created Phi nodes. The elements are iterated by insertion
3347 // order.
3348 PhiNodeSet AllPhiNodes;
3349 // Tracks newly created Select nodes.
3350 SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3352 public:
3353 SimplificationTracker(const SimplifyQuery &sq)
3354 : SQ(sq) {}
3356 Value *Get(Value *V) {
3357 do {
3358 auto SV = Storage.find(V);
3359 if (SV == Storage.end())
3360 return V;
3361 V = SV->second;
3362 } while (true);
3365 Value *Simplify(Value *Val) {
3366 SmallVector<Value *, 32> WorkList;
3367 SmallPtrSet<Value *, 32> Visited;
3368 WorkList.push_back(Val);
3369 while (!WorkList.empty()) {
3370 auto *P = WorkList.pop_back_val();
3371 if (!Visited.insert(P).second)
3372 continue;
3373 if (auto *PI = dyn_cast<Instruction>(P))
3374 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3375 for (auto *U : PI->users())
3376 WorkList.push_back(cast<Value>(U));
3377 Put(PI, V);
3378 PI->replaceAllUsesWith(V);
3379 if (auto *PHI = dyn_cast<PHINode>(PI))
3380 AllPhiNodes.erase(PHI);
3381 if (auto *Select = dyn_cast<SelectInst>(PI))
3382 AllSelectNodes.erase(Select);
3383 PI->eraseFromParent();
3386 return Get(Val);
3389 void Put(Value *From, Value *To) {
3390 Storage.insert({ From, To });
3393 void ReplacePhi(PHINode *From, PHINode *To) {
3394 Value* OldReplacement = Get(From);
3395 while (OldReplacement != From) {
3396 From = To;
3397 To = dyn_cast<PHINode>(OldReplacement);
3398 OldReplacement = Get(From);
3400 assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3401 Put(From, To);
3402 From->replaceAllUsesWith(To);
3403 AllPhiNodes.erase(From);
3404 From->eraseFromParent();
3407 PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3409 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3411 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3413 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3415 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3417 void destroyNewNodes(Type *CommonType) {
3418 // For safe erasing, replace the uses with dummy value first.
3419 auto *Dummy = UndefValue::get(CommonType);
3420 for (auto *I : AllPhiNodes) {
3421 I->replaceAllUsesWith(Dummy);
3422 I->eraseFromParent();
3424 AllPhiNodes.clear();
3425 for (auto *I : AllSelectNodes) {
3426 I->replaceAllUsesWith(Dummy);
3427 I->eraseFromParent();
3429 AllSelectNodes.clear();
3433 /// A helper class for combining addressing modes.
3434 class AddressingModeCombiner {
3435 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3436 typedef std::pair<PHINode *, PHINode *> PHIPair;
3438 private:
3439 /// The addressing modes we've collected.
3440 SmallVector<ExtAddrMode, 16> AddrModes;
3442 /// The field in which the AddrModes differ, when we have more than one.
3443 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3445 /// Are the AddrModes that we have all just equal to their original values?
3446 bool AllAddrModesTrivial = true;
3448 /// Common Type for all different fields in addressing modes.
3449 Type *CommonType;
3451 /// SimplifyQuery for simplifyInstruction utility.
3452 const SimplifyQuery &SQ;
3454 /// Original Address.
3455 Value *Original;
3457 public:
3458 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3459 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3461 /// Get the combined AddrMode
3462 const ExtAddrMode &getAddrMode() const {
3463 return AddrModes[0];
3466 /// Add a new AddrMode if it's compatible with the AddrModes we already
3467 /// have.
3468 /// \return True iff we succeeded in doing so.
3469 bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3470 // Take note of if we have any non-trivial AddrModes, as we need to detect
3471 // when all AddrModes are trivial as then we would introduce a phi or select
3472 // which just duplicates what's already there.
3473 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3475 // If this is the first addrmode then everything is fine.
3476 if (AddrModes.empty()) {
3477 AddrModes.emplace_back(NewAddrMode);
3478 return true;
3481 // Figure out how different this is from the other address modes, which we
3482 // can do just by comparing against the first one given that we only care
3483 // about the cumulative difference.
3484 ExtAddrMode::FieldName ThisDifferentField =
3485 AddrModes[0].compare(NewAddrMode);
3486 if (DifferentField == ExtAddrMode::NoField)
3487 DifferentField = ThisDifferentField;
3488 else if (DifferentField != ThisDifferentField)
3489 DifferentField = ExtAddrMode::MultipleFields;
3491 // If NewAddrMode differs in more than one dimension we cannot handle it.
3492 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3494 // If Scale Field is different then we reject.
3495 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3497 // We also must reject the case when base offset is different and
3498 // scale reg is not null, we cannot handle this case due to merge of
3499 // different offsets will be used as ScaleReg.
3500 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3501 !NewAddrMode.ScaledReg);
3503 // We also must reject the case when GV is different and BaseReg installed
3504 // due to we want to use base reg as a merge of GV values.
3505 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3506 !NewAddrMode.HasBaseReg);
3508 // Even if NewAddMode is the same we still need to collect it due to
3509 // original value is different. And later we will need all original values
3510 // as anchors during finding the common Phi node.
3511 if (CanHandle)
3512 AddrModes.emplace_back(NewAddrMode);
3513 else
3514 AddrModes.clear();
3516 return CanHandle;
3519 /// Combine the addressing modes we've collected into a single
3520 /// addressing mode.
3521 /// \return True iff we successfully combined them or we only had one so
3522 /// didn't need to combine them anyway.
3523 bool combineAddrModes() {
3524 // If we have no AddrModes then they can't be combined.
3525 if (AddrModes.size() == 0)
3526 return false;
3528 // A single AddrMode can trivially be combined.
3529 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3530 return true;
3532 // If the AddrModes we collected are all just equal to the value they are
3533 // derived from then combining them wouldn't do anything useful.
3534 if (AllAddrModesTrivial)
3535 return false;
3537 if (!addrModeCombiningAllowed())
3538 return false;
3540 // Build a map between <original value, basic block where we saw it> to
3541 // value of base register.
3542 // Bail out if there is no common type.
3543 FoldAddrToValueMapping Map;
3544 if (!initializeMap(Map))
3545 return false;
3547 Value *CommonValue = findCommon(Map);
3548 if (CommonValue)
3549 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3550 return CommonValue != nullptr;
3553 private:
3554 /// Initialize Map with anchor values. For address seen
3555 /// we set the value of different field saw in this address.
3556 /// At the same time we find a common type for different field we will
3557 /// use to create new Phi/Select nodes. Keep it in CommonType field.
3558 /// Return false if there is no common type found.
3559 bool initializeMap(FoldAddrToValueMapping &Map) {
3560 // Keep track of keys where the value is null. We will need to replace it
3561 // with constant null when we know the common type.
3562 SmallVector<Value *, 2> NullValue;
3563 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3564 for (auto &AM : AddrModes) {
3565 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3566 if (DV) {
3567 auto *Type = DV->getType();
3568 if (CommonType && CommonType != Type)
3569 return false;
3570 CommonType = Type;
3571 Map[AM.OriginalValue] = DV;
3572 } else {
3573 NullValue.push_back(AM.OriginalValue);
3576 assert(CommonType && "At least one non-null value must be!");
3577 for (auto *V : NullValue)
3578 Map[V] = Constant::getNullValue(CommonType);
3579 return true;
3582 /// We have mapping between value A and other value B where B was a field in
3583 /// addressing mode represented by A. Also we have an original value C
3584 /// representing an address we start with. Traversing from C through phi and
3585 /// selects we ended up with A's in a map. This utility function tries to find
3586 /// a value V which is a field in addressing mode C and traversing through phi
3587 /// nodes and selects we will end up in corresponded values B in a map.
3588 /// The utility will create a new Phi/Selects if needed.
3589 // The simple example looks as follows:
3590 // BB1:
3591 // p1 = b1 + 40
3592 // br cond BB2, BB3
3593 // BB2:
3594 // p2 = b2 + 40
3595 // br BB3
3596 // BB3:
3597 // p = phi [p1, BB1], [p2, BB2]
3598 // v = load p
3599 // Map is
3600 // p1 -> b1
3601 // p2 -> b2
3602 // Request is
3603 // p -> ?
3604 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3605 Value *findCommon(FoldAddrToValueMapping &Map) {
3606 // Tracks the simplification of newly created phi nodes. The reason we use
3607 // this mapping is because we will add new created Phi nodes in AddrToBase.
3608 // Simplification of Phi nodes is recursive, so some Phi node may
3609 // be simplified after we added it to AddrToBase. In reality this
3610 // simplification is possible only if original phi/selects were not
3611 // simplified yet.
3612 // Using this mapping we can find the current value in AddrToBase.
3613 SimplificationTracker ST(SQ);
3615 // First step, DFS to create PHI nodes for all intermediate blocks.
3616 // Also fill traverse order for the second step.
3617 SmallVector<Value *, 32> TraverseOrder;
3618 InsertPlaceholders(Map, TraverseOrder, ST);
3620 // Second Step, fill new nodes by merged values and simplify if possible.
3621 FillPlaceholders(Map, TraverseOrder, ST);
3623 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3624 ST.destroyNewNodes(CommonType);
3625 return nullptr;
3628 // Now we'd like to match New Phi nodes to existed ones.
3629 unsigned PhiNotMatchedCount = 0;
3630 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3631 ST.destroyNewNodes(CommonType);
3632 return nullptr;
3635 auto *Result = ST.Get(Map.find(Original)->second);
3636 if (Result) {
3637 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3638 NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3640 return Result;
3643 /// Try to match PHI node to Candidate.
3644 /// Matcher tracks the matched Phi nodes.
3645 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3646 SmallSetVector<PHIPair, 8> &Matcher,
3647 PhiNodeSet &PhiNodesToMatch) {
3648 SmallVector<PHIPair, 8> WorkList;
3649 Matcher.insert({ PHI, Candidate });
3650 SmallSet<PHINode *, 8> MatchedPHIs;
3651 MatchedPHIs.insert(PHI);
3652 WorkList.push_back({ PHI, Candidate });
3653 SmallSet<PHIPair, 8> Visited;
3654 while (!WorkList.empty()) {
3655 auto Item = WorkList.pop_back_val();
3656 if (!Visited.insert(Item).second)
3657 continue;
3658 // We iterate over all incoming values to Phi to compare them.
3659 // If values are different and both of them Phi and the first one is a
3660 // Phi we added (subject to match) and both of them is in the same basic
3661 // block then we can match our pair if values match. So we state that
3662 // these values match and add it to work list to verify that.
3663 for (auto B : Item.first->blocks()) {
3664 Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3665 Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3666 if (FirstValue == SecondValue)
3667 continue;
3669 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3670 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3672 // One of them is not Phi or
3673 // The first one is not Phi node from the set we'd like to match or
3674 // Phi nodes from different basic blocks then
3675 // we will not be able to match.
3676 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3677 FirstPhi->getParent() != SecondPhi->getParent())
3678 return false;
3680 // If we already matched them then continue.
3681 if (Matcher.count({ FirstPhi, SecondPhi }))
3682 continue;
3683 // So the values are different and does not match. So we need them to
3684 // match. (But we register no more than one match per PHI node, so that
3685 // we won't later try to replace them twice.)
3686 if (MatchedPHIs.insert(FirstPhi).second)
3687 Matcher.insert({ FirstPhi, SecondPhi });
3688 // But me must check it.
3689 WorkList.push_back({ FirstPhi, SecondPhi });
3692 return true;
3695 /// For the given set of PHI nodes (in the SimplificationTracker) try
3696 /// to find their equivalents.
3697 /// Returns false if this matching fails and creation of new Phi is disabled.
3698 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3699 unsigned &PhiNotMatchedCount) {
3700 // Matched and PhiNodesToMatch iterate their elements in a deterministic
3701 // order, so the replacements (ReplacePhi) are also done in a deterministic
3702 // order.
3703 SmallSetVector<PHIPair, 8> Matched;
3704 SmallPtrSet<PHINode *, 8> WillNotMatch;
3705 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3706 while (PhiNodesToMatch.size()) {
3707 PHINode *PHI = *PhiNodesToMatch.begin();
3709 // Add us, if no Phi nodes in the basic block we do not match.
3710 WillNotMatch.clear();
3711 WillNotMatch.insert(PHI);
3713 // Traverse all Phis until we found equivalent or fail to do that.
3714 bool IsMatched = false;
3715 for (auto &P : PHI->getParent()->phis()) {
3716 // Skip new Phi nodes.
3717 if (PhiNodesToMatch.count(&P))
3718 continue;
3719 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3720 break;
3721 // If it does not match, collect all Phi nodes from matcher.
3722 // if we end up with no match, them all these Phi nodes will not match
3723 // later.
3724 for (auto M : Matched)
3725 WillNotMatch.insert(M.first);
3726 Matched.clear();
3728 if (IsMatched) {
3729 // Replace all matched values and erase them.
3730 for (auto MV : Matched)
3731 ST.ReplacePhi(MV.first, MV.second);
3732 Matched.clear();
3733 continue;
3735 // If we are not allowed to create new nodes then bail out.
3736 if (!AllowNewPhiNodes)
3737 return false;
3738 // Just remove all seen values in matcher. They will not match anything.
3739 PhiNotMatchedCount += WillNotMatch.size();
3740 for (auto *P : WillNotMatch)
3741 PhiNodesToMatch.erase(P);
3743 return true;
3745 /// Fill the placeholders with values from predecessors and simplify them.
3746 void FillPlaceholders(FoldAddrToValueMapping &Map,
3747 SmallVectorImpl<Value *> &TraverseOrder,
3748 SimplificationTracker &ST) {
3749 while (!TraverseOrder.empty()) {
3750 Value *Current = TraverseOrder.pop_back_val();
3751 assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3752 Value *V = Map[Current];
3754 if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3755 // CurrentValue also must be Select.
3756 auto *CurrentSelect = cast<SelectInst>(Current);
3757 auto *TrueValue = CurrentSelect->getTrueValue();
3758 assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3759 Select->setTrueValue(ST.Get(Map[TrueValue]));
3760 auto *FalseValue = CurrentSelect->getFalseValue();
3761 assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3762 Select->setFalseValue(ST.Get(Map[FalseValue]));
3763 } else {
3764 // Must be a Phi node then.
3765 auto *PHI = cast<PHINode>(V);
3766 // Fill the Phi node with values from predecessors.
3767 for (auto *B : predecessors(PHI->getParent())) {
3768 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3769 assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3770 PHI->addIncoming(ST.Get(Map[PV]), B);
3773 Map[Current] = ST.Simplify(V);
3777 /// Starting from original value recursively iterates over def-use chain up to
3778 /// known ending values represented in a map. For each traversed phi/select
3779 /// inserts a placeholder Phi or Select.
3780 /// Reports all new created Phi/Select nodes by adding them to set.
3781 /// Also reports and order in what values have been traversed.
3782 void InsertPlaceholders(FoldAddrToValueMapping &Map,
3783 SmallVectorImpl<Value *> &TraverseOrder,
3784 SimplificationTracker &ST) {
3785 SmallVector<Value *, 32> Worklist;
3786 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3787 "Address must be a Phi or Select node");
3788 auto *Dummy = UndefValue::get(CommonType);
3789 Worklist.push_back(Original);
3790 while (!Worklist.empty()) {
3791 Value *Current = Worklist.pop_back_val();
3792 // if it is already visited or it is an ending value then skip it.
3793 if (Map.find(Current) != Map.end())
3794 continue;
3795 TraverseOrder.push_back(Current);
3797 // CurrentValue must be a Phi node or select. All others must be covered
3798 // by anchors.
3799 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3800 // Is it OK to get metadata from OrigSelect?!
3801 // Create a Select placeholder with dummy value.
3802 SelectInst *Select = SelectInst::Create(
3803 CurrentSelect->getCondition(), Dummy, Dummy,
3804 CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3805 Map[Current] = Select;
3806 ST.insertNewSelect(Select);
3807 // We are interested in True and False values.
3808 Worklist.push_back(CurrentSelect->getTrueValue());
3809 Worklist.push_back(CurrentSelect->getFalseValue());
3810 } else {
3811 // It must be a Phi node then.
3812 PHINode *CurrentPhi = cast<PHINode>(Current);
3813 unsigned PredCount = CurrentPhi->getNumIncomingValues();
3814 PHINode *PHI =
3815 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3816 Map[Current] = PHI;
3817 ST.insertNewPhi(PHI);
3818 append_range(Worklist, CurrentPhi->incoming_values());
3823 bool addrModeCombiningAllowed() {
3824 if (DisableComplexAddrModes)
3825 return false;
3826 switch (DifferentField) {
3827 default:
3828 return false;
3829 case ExtAddrMode::BaseRegField:
3830 return AddrSinkCombineBaseReg;
3831 case ExtAddrMode::BaseGVField:
3832 return AddrSinkCombineBaseGV;
3833 case ExtAddrMode::BaseOffsField:
3834 return AddrSinkCombineBaseOffs;
3835 case ExtAddrMode::ScaledRegField:
3836 return AddrSinkCombineScaledReg;
3840 } // end anonymous namespace
3842 /// Try adding ScaleReg*Scale to the current addressing mode.
3843 /// Return true and update AddrMode if this addr mode is legal for the target,
3844 /// false if not.
3845 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3846 unsigned Depth) {
3847 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3848 // mode. Just process that directly.
3849 if (Scale == 1)
3850 return matchAddr(ScaleReg, Depth);
3852 // If the scale is 0, it takes nothing to add this.
3853 if (Scale == 0)
3854 return true;
3856 // If we already have a scale of this value, we can add to it, otherwise, we
3857 // need an available scale field.
3858 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3859 return false;
3861 ExtAddrMode TestAddrMode = AddrMode;
3863 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
3864 // [A+B + A*7] -> [B+A*8].
3865 TestAddrMode.Scale += Scale;
3866 TestAddrMode.ScaledReg = ScaleReg;
3868 // If the new address isn't legal, bail out.
3869 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3870 return false;
3872 // It was legal, so commit it.
3873 AddrMode = TestAddrMode;
3875 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
3876 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
3877 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
3878 // go any further: we can reuse it and cannot eliminate it.
3879 ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3880 if (isa<Instruction>(ScaleReg) && // not a constant expr.
3881 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
3882 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) {
3883 TestAddrMode.InBounds = false;
3884 TestAddrMode.ScaledReg = AddLHS;
3885 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
3887 // If this addressing mode is legal, commit it and remember that we folded
3888 // this instruction.
3889 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3890 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3891 AddrMode = TestAddrMode;
3892 return true;
3894 // Restore status quo.
3895 TestAddrMode = AddrMode;
3898 // If this is an add recurrence with a constant step, return the increment
3899 // instruction and the canonicalized step.
3900 auto GetConstantStep = [this](const Value * V)
3901 ->Optional<std::pair<Instruction *, APInt> > {
3902 auto *PN = dyn_cast<PHINode>(V);
3903 if (!PN)
3904 return None;
3905 auto IVInc = getIVIncrement(PN, &LI);
3906 if (!IVInc)
3907 return None;
3908 // TODO: The result of the intrinsics above is two-compliment. However when
3909 // IV inc is expressed as add or sub, iv.next is potentially a poison value.
3910 // If it has nuw or nsw flags, we need to make sure that these flags are
3911 // inferrable at the point of memory instruction. Otherwise we are replacing
3912 // well-defined two-compliment computation with poison. Currently, to avoid
3913 // potentially complex analysis needed to prove this, we reject such cases.
3914 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first))
3915 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap())
3916 return None;
3917 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second))
3918 return std::make_pair(IVInc->first, ConstantStep->getValue());
3919 return None;
3922 // Try to account for the following special case:
3923 // 1. ScaleReg is an inductive variable;
3924 // 2. We use it with non-zero offset;
3925 // 3. IV's increment is available at the point of memory instruction.
3927 // In this case, we may reuse the IV increment instead of the IV Phi to
3928 // achieve the following advantages:
3929 // 1. If IV step matches the offset, we will have no need in the offset;
3930 // 2. Even if they don't match, we will reduce the overlap of living IV
3931 // and IV increment, that will potentially lead to better register
3932 // assignment.
3933 if (AddrMode.BaseOffs) {
3934 if (auto IVStep = GetConstantStep(ScaleReg)) {
3935 Instruction *IVInc = IVStep->first;
3936 // The following assert is important to ensure a lack of infinite loops.
3937 // This transforms is (intentionally) the inverse of the one just above.
3938 // If they don't agree on the definition of an increment, we'd alternate
3939 // back and forth indefinitely.
3940 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep");
3941 APInt Step = IVStep->second;
3942 APInt Offset = Step * AddrMode.Scale;
3943 if (Offset.isSignedIntN(64)) {
3944 TestAddrMode.InBounds = false;
3945 TestAddrMode.ScaledReg = IVInc;
3946 TestAddrMode.BaseOffs -= Offset.getLimitedValue();
3947 // If this addressing mode is legal, commit it..
3948 // (Note that we defer the (expensive) domtree base legality check
3949 // to the very last possible point.)
3950 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) &&
3951 getDTFn().dominates(IVInc, MemoryInst)) {
3952 AddrModeInsts.push_back(cast<Instruction>(IVInc));
3953 AddrMode = TestAddrMode;
3954 return true;
3956 // Restore status quo.
3957 TestAddrMode = AddrMode;
3962 // Otherwise, just return what we have.
3963 return true;
3966 /// This is a little filter, which returns true if an addressing computation
3967 /// involving I might be folded into a load/store accessing it.
3968 /// This doesn't need to be perfect, but needs to accept at least
3969 /// the set of instructions that MatchOperationAddr can.
3970 static bool MightBeFoldableInst(Instruction *I) {
3971 switch (I->getOpcode()) {
3972 case Instruction::BitCast:
3973 case Instruction::AddrSpaceCast:
3974 // Don't touch identity bitcasts.
3975 if (I->getType() == I->getOperand(0)->getType())
3976 return false;
3977 return I->getType()->isIntOrPtrTy();
3978 case Instruction::PtrToInt:
3979 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3980 return true;
3981 case Instruction::IntToPtr:
3982 // We know the input is intptr_t, so this is foldable.
3983 return true;
3984 case Instruction::Add:
3985 return true;
3986 case Instruction::Mul:
3987 case Instruction::Shl:
3988 // Can only handle X*C and X << C.
3989 return isa<ConstantInt>(I->getOperand(1));
3990 case Instruction::GetElementPtr:
3991 return true;
3992 default:
3993 return false;
3997 /// Check whether or not \p Val is a legal instruction for \p TLI.
3998 /// \note \p Val is assumed to be the product of some type promotion.
3999 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4000 /// to be legal, as the non-promoted value would have had the same state.
4001 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
4002 const DataLayout &DL, Value *Val) {
4003 Instruction *PromotedInst = dyn_cast<Instruction>(Val);
4004 if (!PromotedInst)
4005 return false;
4006 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
4007 // If the ISDOpcode is undefined, it was undefined before the promotion.
4008 if (!ISDOpcode)
4009 return true;
4010 // Otherwise, check if the promoted instruction is legal or not.
4011 return TLI.isOperationLegalOrCustom(
4012 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
4015 namespace {
4017 /// Hepler class to perform type promotion.
4018 class TypePromotionHelper {
4019 /// Utility function to add a promoted instruction \p ExtOpnd to
4020 /// \p PromotedInsts and record the type of extension we have seen.
4021 static void addPromotedInst(InstrToOrigTy &PromotedInsts,
4022 Instruction *ExtOpnd,
4023 bool IsSExt) {
4024 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4025 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
4026 if (It != PromotedInsts.end()) {
4027 // If the new extension is same as original, the information in
4028 // PromotedInsts[ExtOpnd] is still correct.
4029 if (It->second.getInt() == ExtTy)
4030 return;
4032 // Now the new extension is different from old extension, we make
4033 // the type information invalid by setting extension type to
4034 // BothExtension.
4035 ExtTy = BothExtension;
4037 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
4040 /// Utility function to query the original type of instruction \p Opnd
4041 /// with a matched extension type. If the extension doesn't match, we
4042 /// cannot use the information we had on the original type.
4043 /// BothExtension doesn't match any extension type.
4044 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
4045 Instruction *Opnd,
4046 bool IsSExt) {
4047 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4048 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
4049 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
4050 return It->second.getPointer();
4051 return nullptr;
4054 /// Utility function to check whether or not a sign or zero extension
4055 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4056 /// either using the operands of \p Inst or promoting \p Inst.
4057 /// The type of the extension is defined by \p IsSExt.
4058 /// In other words, check if:
4059 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4060 /// #1 Promotion applies:
4061 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4062 /// #2 Operand reuses:
4063 /// ext opnd1 to ConsideredExtType.
4064 /// \p PromotedInsts maps the instructions to their type before promotion.
4065 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
4066 const InstrToOrigTy &PromotedInsts, bool IsSExt);
4068 /// Utility function to determine if \p OpIdx should be promoted when
4069 /// promoting \p Inst.
4070 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
4071 return !(isa<SelectInst>(Inst) && OpIdx == 0);
4074 /// Utility function to promote the operand of \p Ext when this
4075 /// operand is a promotable trunc or sext or zext.
4076 /// \p PromotedInsts maps the instructions to their type before promotion.
4077 /// \p CreatedInstsCost[out] contains the cost of all instructions
4078 /// created to promote the operand of Ext.
4079 /// Newly added extensions are inserted in \p Exts.
4080 /// Newly added truncates are inserted in \p Truncs.
4081 /// Should never be called directly.
4082 /// \return The promoted value which is used instead of Ext.
4083 static Value *promoteOperandForTruncAndAnyExt(
4084 Instruction *Ext, TypePromotionTransaction &TPT,
4085 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4086 SmallVectorImpl<Instruction *> *Exts,
4087 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
4089 /// Utility function to promote the operand of \p Ext when this
4090 /// operand is promotable and is not a supported trunc or sext.
4091 /// \p PromotedInsts maps the instructions to their type before promotion.
4092 /// \p CreatedInstsCost[out] contains the cost of all the instructions
4093 /// created to promote the operand of Ext.
4094 /// Newly added extensions are inserted in \p Exts.
4095 /// Newly added truncates are inserted in \p Truncs.
4096 /// Should never be called directly.
4097 /// \return The promoted value which is used instead of Ext.
4098 static Value *promoteOperandForOther(Instruction *Ext,
4099 TypePromotionTransaction &TPT,
4100 InstrToOrigTy &PromotedInsts,
4101 unsigned &CreatedInstsCost,
4102 SmallVectorImpl<Instruction *> *Exts,
4103 SmallVectorImpl<Instruction *> *Truncs,
4104 const TargetLowering &TLI, bool IsSExt);
4106 /// \see promoteOperandForOther.
4107 static Value *signExtendOperandForOther(
4108 Instruction *Ext, TypePromotionTransaction &TPT,
4109 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4110 SmallVectorImpl<Instruction *> *Exts,
4111 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4112 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4113 Exts, Truncs, TLI, true);
4116 /// \see promoteOperandForOther.
4117 static Value *zeroExtendOperandForOther(
4118 Instruction *Ext, TypePromotionTransaction &TPT,
4119 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4120 SmallVectorImpl<Instruction *> *Exts,
4121 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4122 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4123 Exts, Truncs, TLI, false);
4126 public:
4127 /// Type for the utility function that promotes the operand of Ext.
4128 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
4129 InstrToOrigTy &PromotedInsts,
4130 unsigned &CreatedInstsCost,
4131 SmallVectorImpl<Instruction *> *Exts,
4132 SmallVectorImpl<Instruction *> *Truncs,
4133 const TargetLowering &TLI);
4135 /// Given a sign/zero extend instruction \p Ext, return the appropriate
4136 /// action to promote the operand of \p Ext instead of using Ext.
4137 /// \return NULL if no promotable action is possible with the current
4138 /// sign extension.
4139 /// \p InsertedInsts keeps track of all the instructions inserted by the
4140 /// other CodeGenPrepare optimizations. This information is important
4141 /// because we do not want to promote these instructions as CodeGenPrepare
4142 /// will reinsert them later. Thus creating an infinite loop: create/remove.
4143 /// \p PromotedInsts maps the instructions to their type before promotion.
4144 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
4145 const TargetLowering &TLI,
4146 const InstrToOrigTy &PromotedInsts);
4149 } // end anonymous namespace
4151 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
4152 Type *ConsideredExtType,
4153 const InstrToOrigTy &PromotedInsts,
4154 bool IsSExt) {
4155 // The promotion helper does not know how to deal with vector types yet.
4156 // To be able to fix that, we would need to fix the places where we
4157 // statically extend, e.g., constants and such.
4158 if (Inst->getType()->isVectorTy())
4159 return false;
4161 // We can always get through zext.
4162 if (isa<ZExtInst>(Inst))
4163 return true;
4165 // sext(sext) is ok too.
4166 if (IsSExt && isa<SExtInst>(Inst))
4167 return true;
4169 // We can get through binary operator, if it is legal. In other words, the
4170 // binary operator must have a nuw or nsw flag.
4171 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
4172 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) &&
4173 ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4174 (IsSExt && BinOp->hasNoSignedWrap())))
4175 return true;
4177 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4178 if ((Inst->getOpcode() == Instruction::And ||
4179 Inst->getOpcode() == Instruction::Or))
4180 return true;
4182 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4183 if (Inst->getOpcode() == Instruction::Xor) {
4184 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
4185 // Make sure it is not a NOT.
4186 if (Cst && !Cst->getValue().isAllOnes())
4187 return true;
4190 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4191 // It may change a poisoned value into a regular value, like
4192 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
4193 // poisoned value regular value
4194 // It should be OK since undef covers valid value.
4195 if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4196 return true;
4198 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4199 // It may change a poisoned value into a regular value, like
4200 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
4201 // poisoned value regular value
4202 // It should be OK since undef covers valid value.
4203 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4204 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4205 if (ExtInst->hasOneUse()) {
4206 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4207 if (AndInst && AndInst->getOpcode() == Instruction::And) {
4208 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4209 if (Cst &&
4210 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4211 return true;
4216 // Check if we can do the following simplification.
4217 // ext(trunc(opnd)) --> ext(opnd)
4218 if (!isa<TruncInst>(Inst))
4219 return false;
4221 Value *OpndVal = Inst->getOperand(0);
4222 // Check if we can use this operand in the extension.
4223 // If the type is larger than the result type of the extension, we cannot.
4224 if (!OpndVal->getType()->isIntegerTy() ||
4225 OpndVal->getType()->getIntegerBitWidth() >
4226 ConsideredExtType->getIntegerBitWidth())
4227 return false;
4229 // If the operand of the truncate is not an instruction, we will not have
4230 // any information on the dropped bits.
4231 // (Actually we could for constant but it is not worth the extra logic).
4232 Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4233 if (!Opnd)
4234 return false;
4236 // Check if the source of the type is narrow enough.
4237 // I.e., check that trunc just drops extended bits of the same kind of
4238 // the extension.
4239 // #1 get the type of the operand and check the kind of the extended bits.
4240 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4241 if (OpndType)
4243 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4244 OpndType = Opnd->getOperand(0)->getType();
4245 else
4246 return false;
4248 // #2 check that the truncate just drops extended bits.
4249 return Inst->getType()->getIntegerBitWidth() >=
4250 OpndType->getIntegerBitWidth();
4253 TypePromotionHelper::Action TypePromotionHelper::getAction(
4254 Instruction *Ext, const SetOfInstrs &InsertedInsts,
4255 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4256 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4257 "Unexpected instruction type");
4258 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4259 Type *ExtTy = Ext->getType();
4260 bool IsSExt = isa<SExtInst>(Ext);
4261 // If the operand of the extension is not an instruction, we cannot
4262 // get through.
4263 // If it, check we can get through.
4264 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4265 return nullptr;
4267 // Do not promote if the operand has been added by codegenprepare.
4268 // Otherwise, it means we are undoing an optimization that is likely to be
4269 // redone, thus causing potential infinite loop.
4270 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4271 return nullptr;
4273 // SExt or Trunc instructions.
4274 // Return the related handler.
4275 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4276 isa<ZExtInst>(ExtOpnd))
4277 return promoteOperandForTruncAndAnyExt;
4279 // Regular instruction.
4280 // Abort early if we will have to insert non-free instructions.
4281 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4282 return nullptr;
4283 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4286 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4287 Instruction *SExt, TypePromotionTransaction &TPT,
4288 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4289 SmallVectorImpl<Instruction *> *Exts,
4290 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4291 // By construction, the operand of SExt is an instruction. Otherwise we cannot
4292 // get through it and this method should not be called.
4293 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4294 Value *ExtVal = SExt;
4295 bool HasMergedNonFreeExt = false;
4296 if (isa<ZExtInst>(SExtOpnd)) {
4297 // Replace s|zext(zext(opnd))
4298 // => zext(opnd).
4299 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4300 Value *ZExt =
4301 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4302 TPT.replaceAllUsesWith(SExt, ZExt);
4303 TPT.eraseInstruction(SExt);
4304 ExtVal = ZExt;
4305 } else {
4306 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4307 // => z|sext(opnd).
4308 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4310 CreatedInstsCost = 0;
4312 // Remove dead code.
4313 if (SExtOpnd->use_empty())
4314 TPT.eraseInstruction(SExtOpnd);
4316 // Check if the extension is still needed.
4317 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4318 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4319 if (ExtInst) {
4320 if (Exts)
4321 Exts->push_back(ExtInst);
4322 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4324 return ExtVal;
4327 // At this point we have: ext ty opnd to ty.
4328 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4329 Value *NextVal = ExtInst->getOperand(0);
4330 TPT.eraseInstruction(ExtInst, NextVal);
4331 return NextVal;
4334 Value *TypePromotionHelper::promoteOperandForOther(
4335 Instruction *Ext, TypePromotionTransaction &TPT,
4336 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4337 SmallVectorImpl<Instruction *> *Exts,
4338 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4339 bool IsSExt) {
4340 // By construction, the operand of Ext is an instruction. Otherwise we cannot
4341 // get through it and this method should not be called.
4342 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4343 CreatedInstsCost = 0;
4344 if (!ExtOpnd->hasOneUse()) {
4345 // ExtOpnd will be promoted.
4346 // All its uses, but Ext, will need to use a truncated value of the
4347 // promoted version.
4348 // Create the truncate now.
4349 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4350 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4351 // Insert it just after the definition.
4352 ITrunc->moveAfter(ExtOpnd);
4353 if (Truncs)
4354 Truncs->push_back(ITrunc);
4357 TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4358 // Restore the operand of Ext (which has been replaced by the previous call
4359 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4360 TPT.setOperand(Ext, 0, ExtOpnd);
4363 // Get through the Instruction:
4364 // 1. Update its type.
4365 // 2. Replace the uses of Ext by Inst.
4366 // 3. Extend each operand that needs to be extended.
4368 // Remember the original type of the instruction before promotion.
4369 // This is useful to know that the high bits are sign extended bits.
4370 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4371 // Step #1.
4372 TPT.mutateType(ExtOpnd, Ext->getType());
4373 // Step #2.
4374 TPT.replaceAllUsesWith(Ext, ExtOpnd);
4375 // Step #3.
4376 Instruction *ExtForOpnd = Ext;
4378 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4379 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4380 ++OpIdx) {
4381 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4382 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4383 !shouldExtOperand(ExtOpnd, OpIdx)) {
4384 LLVM_DEBUG(dbgs() << "No need to propagate\n");
4385 continue;
4387 // Check if we can statically extend the operand.
4388 Value *Opnd = ExtOpnd->getOperand(OpIdx);
4389 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4390 LLVM_DEBUG(dbgs() << "Statically extend\n");
4391 unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4392 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4393 : Cst->getValue().zext(BitWidth);
4394 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4395 continue;
4397 // UndefValue are typed, so we have to statically sign extend them.
4398 if (isa<UndefValue>(Opnd)) {
4399 LLVM_DEBUG(dbgs() << "Statically extend\n");
4400 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4401 continue;
4404 // Otherwise we have to explicitly sign extend the operand.
4405 // Check if Ext was reused to extend an operand.
4406 if (!ExtForOpnd) {
4407 // If yes, create a new one.
4408 LLVM_DEBUG(dbgs() << "More operands to ext\n");
4409 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4410 : TPT.createZExt(Ext, Opnd, Ext->getType());
4411 if (!isa<Instruction>(ValForExtOpnd)) {
4412 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4413 continue;
4415 ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4417 if (Exts)
4418 Exts->push_back(ExtForOpnd);
4419 TPT.setOperand(ExtForOpnd, 0, Opnd);
4421 // Move the sign extension before the insertion point.
4422 TPT.moveBefore(ExtForOpnd, ExtOpnd);
4423 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4424 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4425 // If more sext are required, new instructions will have to be created.
4426 ExtForOpnd = nullptr;
4428 if (ExtForOpnd == Ext) {
4429 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4430 TPT.eraseInstruction(Ext);
4432 return ExtOpnd;
4435 /// Check whether or not promoting an instruction to a wider type is profitable.
4436 /// \p NewCost gives the cost of extension instructions created by the
4437 /// promotion.
4438 /// \p OldCost gives the cost of extension instructions before the promotion
4439 /// plus the number of instructions that have been
4440 /// matched in the addressing mode the promotion.
4441 /// \p PromotedOperand is the value that has been promoted.
4442 /// \return True if the promotion is profitable, false otherwise.
4443 bool AddressingModeMatcher::isPromotionProfitable(
4444 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4445 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4446 << '\n');
4447 // The cost of the new extensions is greater than the cost of the
4448 // old extension plus what we folded.
4449 // This is not profitable.
4450 if (NewCost > OldCost)
4451 return false;
4452 if (NewCost < OldCost)
4453 return true;
4454 // The promotion is neutral but it may help folding the sign extension in
4455 // loads for instance.
4456 // Check that we did not create an illegal instruction.
4457 return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4460 /// Given an instruction or constant expr, see if we can fold the operation
4461 /// into the addressing mode. If so, update the addressing mode and return
4462 /// true, otherwise return false without modifying AddrMode.
4463 /// If \p MovedAway is not NULL, it contains the information of whether or
4464 /// not AddrInst has to be folded into the addressing mode on success.
4465 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4466 /// because it has been moved away.
4467 /// Thus AddrInst must not be added in the matched instructions.
4468 /// This state can happen when AddrInst is a sext, since it may be moved away.
4469 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4470 /// not be referenced anymore.
4471 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4472 unsigned Depth,
4473 bool *MovedAway) {
4474 // Avoid exponential behavior on extremely deep expression trees.
4475 if (Depth >= 5) return false;
4477 // By default, all matched instructions stay in place.
4478 if (MovedAway)
4479 *MovedAway = false;
4481 switch (Opcode) {
4482 case Instruction::PtrToInt:
4483 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4484 return matchAddr(AddrInst->getOperand(0), Depth);
4485 case Instruction::IntToPtr: {
4486 auto AS = AddrInst->getType()->getPointerAddressSpace();
4487 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4488 // This inttoptr is a no-op if the integer type is pointer sized.
4489 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4490 return matchAddr(AddrInst->getOperand(0), Depth);
4491 return false;
4493 case Instruction::BitCast:
4494 // BitCast is always a noop, and we can handle it as long as it is
4495 // int->int or pointer->pointer (we don't want int<->fp or something).
4496 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4497 // Don't touch identity bitcasts. These were probably put here by LSR,
4498 // and we don't want to mess around with them. Assume it knows what it
4499 // is doing.
4500 AddrInst->getOperand(0)->getType() != AddrInst->getType())
4501 return matchAddr(AddrInst->getOperand(0), Depth);
4502 return false;
4503 case Instruction::AddrSpaceCast: {
4504 unsigned SrcAS
4505 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4506 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4507 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4508 return matchAddr(AddrInst->getOperand(0), Depth);
4509 return false;
4511 case Instruction::Add: {
4512 // Check to see if we can merge in the RHS then the LHS. If so, we win.
4513 ExtAddrMode BackupAddrMode = AddrMode;
4514 unsigned OldSize = AddrModeInsts.size();
4515 // Start a transaction at this point.
4516 // The LHS may match but not the RHS.
4517 // Therefore, we need a higher level restoration point to undo partially
4518 // matched operation.
4519 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4520 TPT.getRestorationPoint();
4522 AddrMode.InBounds = false;
4523 if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4524 matchAddr(AddrInst->getOperand(0), Depth+1))
4525 return true;
4527 // Restore the old addr mode info.
4528 AddrMode = BackupAddrMode;
4529 AddrModeInsts.resize(OldSize);
4530 TPT.rollback(LastKnownGood);
4532 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
4533 if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4534 matchAddr(AddrInst->getOperand(1), Depth+1))
4535 return true;
4537 // Otherwise we definitely can't merge the ADD in.
4538 AddrMode = BackupAddrMode;
4539 AddrModeInsts.resize(OldSize);
4540 TPT.rollback(LastKnownGood);
4541 break;
4543 //case Instruction::Or:
4544 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4545 //break;
4546 case Instruction::Mul:
4547 case Instruction::Shl: {
4548 // Can only handle X*C and X << C.
4549 AddrMode.InBounds = false;
4550 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4551 if (!RHS || RHS->getBitWidth() > 64)
4552 return false;
4553 int64_t Scale = RHS->getSExtValue();
4554 if (Opcode == Instruction::Shl)
4555 Scale = 1LL << Scale;
4557 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4559 case Instruction::GetElementPtr: {
4560 // Scan the GEP. We check it if it contains constant offsets and at most
4561 // one variable offset.
4562 int VariableOperand = -1;
4563 unsigned VariableScale = 0;
4565 int64_t ConstantOffset = 0;
4566 gep_type_iterator GTI = gep_type_begin(AddrInst);
4567 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4568 if (StructType *STy = GTI.getStructTypeOrNull()) {
4569 const StructLayout *SL = DL.getStructLayout(STy);
4570 unsigned Idx =
4571 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4572 ConstantOffset += SL->getElementOffset(Idx);
4573 } else {
4574 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType());
4575 if (TS.isNonZero()) {
4576 // The optimisations below currently only work for fixed offsets.
4577 if (TS.isScalable())
4578 return false;
4579 int64_t TypeSize = TS.getFixedSize();
4580 if (ConstantInt *CI =
4581 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4582 const APInt &CVal = CI->getValue();
4583 if (CVal.getMinSignedBits() <= 64) {
4584 ConstantOffset += CVal.getSExtValue() * TypeSize;
4585 continue;
4588 // We only allow one variable index at the moment.
4589 if (VariableOperand != -1)
4590 return false;
4592 // Remember the variable index.
4593 VariableOperand = i;
4594 VariableScale = TypeSize;
4599 // A common case is for the GEP to only do a constant offset. In this case,
4600 // just add it to the disp field and check validity.
4601 if (VariableOperand == -1) {
4602 AddrMode.BaseOffs += ConstantOffset;
4603 if (ConstantOffset == 0 ||
4604 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4605 // Check to see if we can fold the base pointer in too.
4606 if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4607 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4608 AddrMode.InBounds = false;
4609 return true;
4611 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4612 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4613 ConstantOffset > 0) {
4614 // Record GEPs with non-zero offsets as candidates for splitting in the
4615 // event that the offset cannot fit into the r+i addressing mode.
4616 // Simple and common case that only one GEP is used in calculating the
4617 // address for the memory access.
4618 Value *Base = AddrInst->getOperand(0);
4619 auto *BaseI = dyn_cast<Instruction>(Base);
4620 auto *GEP = cast<GetElementPtrInst>(AddrInst);
4621 if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4622 (BaseI && !isa<CastInst>(BaseI) &&
4623 !isa<GetElementPtrInst>(BaseI))) {
4624 // Make sure the parent block allows inserting non-PHI instructions
4625 // before the terminator.
4626 BasicBlock *Parent =
4627 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4628 if (!Parent->getTerminator()->isEHPad())
4629 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4632 AddrMode.BaseOffs -= ConstantOffset;
4633 return false;
4636 // Save the valid addressing mode in case we can't match.
4637 ExtAddrMode BackupAddrMode = AddrMode;
4638 unsigned OldSize = AddrModeInsts.size();
4640 // See if the scale and offset amount is valid for this target.
4641 AddrMode.BaseOffs += ConstantOffset;
4642 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4643 AddrMode.InBounds = false;
4645 // Match the base operand of the GEP.
4646 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4647 // If it couldn't be matched, just stuff the value in a register.
4648 if (AddrMode.HasBaseReg) {
4649 AddrMode = BackupAddrMode;
4650 AddrModeInsts.resize(OldSize);
4651 return false;
4653 AddrMode.HasBaseReg = true;
4654 AddrMode.BaseReg = AddrInst->getOperand(0);
4657 // Match the remaining variable portion of the GEP.
4658 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4659 Depth)) {
4660 // If it couldn't be matched, try stuffing the base into a register
4661 // instead of matching it, and retrying the match of the scale.
4662 AddrMode = BackupAddrMode;
4663 AddrModeInsts.resize(OldSize);
4664 if (AddrMode.HasBaseReg)
4665 return false;
4666 AddrMode.HasBaseReg = true;
4667 AddrMode.BaseReg = AddrInst->getOperand(0);
4668 AddrMode.BaseOffs += ConstantOffset;
4669 if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4670 VariableScale, Depth)) {
4671 // If even that didn't work, bail.
4672 AddrMode = BackupAddrMode;
4673 AddrModeInsts.resize(OldSize);
4674 return false;
4678 return true;
4680 case Instruction::SExt:
4681 case Instruction::ZExt: {
4682 Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4683 if (!Ext)
4684 return false;
4686 // Try to move this ext out of the way of the addressing mode.
4687 // Ask for a method for doing so.
4688 TypePromotionHelper::Action TPH =
4689 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4690 if (!TPH)
4691 return false;
4693 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4694 TPT.getRestorationPoint();
4695 unsigned CreatedInstsCost = 0;
4696 unsigned ExtCost = !TLI.isExtFree(Ext);
4697 Value *PromotedOperand =
4698 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4699 // SExt has been moved away.
4700 // Thus either it will be rematched later in the recursive calls or it is
4701 // gone. Anyway, we must not fold it into the addressing mode at this point.
4702 // E.g.,
4703 // op = add opnd, 1
4704 // idx = ext op
4705 // addr = gep base, idx
4706 // is now:
4707 // promotedOpnd = ext opnd <- no match here
4708 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
4709 // addr = gep base, op <- match
4710 if (MovedAway)
4711 *MovedAway = true;
4713 assert(PromotedOperand &&
4714 "TypePromotionHelper should have filtered out those cases");
4716 ExtAddrMode BackupAddrMode = AddrMode;
4717 unsigned OldSize = AddrModeInsts.size();
4719 if (!matchAddr(PromotedOperand, Depth) ||
4720 // The total of the new cost is equal to the cost of the created
4721 // instructions.
4722 // The total of the old cost is equal to the cost of the extension plus
4723 // what we have saved in the addressing mode.
4724 !isPromotionProfitable(CreatedInstsCost,
4725 ExtCost + (AddrModeInsts.size() - OldSize),
4726 PromotedOperand)) {
4727 AddrMode = BackupAddrMode;
4728 AddrModeInsts.resize(OldSize);
4729 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4730 TPT.rollback(LastKnownGood);
4731 return false;
4733 return true;
4736 return false;
4739 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4740 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4741 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4742 /// for the target.
4744 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4745 // Start a transaction at this point that we will rollback if the matching
4746 // fails.
4747 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4748 TPT.getRestorationPoint();
4749 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4750 if (CI->getValue().isSignedIntN(64)) {
4751 // Fold in immediates if legal for the target.
4752 AddrMode.BaseOffs += CI->getSExtValue();
4753 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4754 return true;
4755 AddrMode.BaseOffs -= CI->getSExtValue();
4757 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4758 // If this is a global variable, try to fold it into the addressing mode.
4759 if (!AddrMode.BaseGV) {
4760 AddrMode.BaseGV = GV;
4761 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4762 return true;
4763 AddrMode.BaseGV = nullptr;
4765 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4766 ExtAddrMode BackupAddrMode = AddrMode;
4767 unsigned OldSize = AddrModeInsts.size();
4769 // Check to see if it is possible to fold this operation.
4770 bool MovedAway = false;
4771 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4772 // This instruction may have been moved away. If so, there is nothing
4773 // to check here.
4774 if (MovedAway)
4775 return true;
4776 // Okay, it's possible to fold this. Check to see if it is actually
4777 // *profitable* to do so. We use a simple cost model to avoid increasing
4778 // register pressure too much.
4779 if (I->hasOneUse() ||
4780 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4781 AddrModeInsts.push_back(I);
4782 return true;
4785 // It isn't profitable to do this, roll back.
4786 //cerr << "NOT FOLDING: " << *I;
4787 AddrMode = BackupAddrMode;
4788 AddrModeInsts.resize(OldSize);
4789 TPT.rollback(LastKnownGood);
4791 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4792 if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4793 return true;
4794 TPT.rollback(LastKnownGood);
4795 } else if (isa<ConstantPointerNull>(Addr)) {
4796 // Null pointer gets folded without affecting the addressing mode.
4797 return true;
4800 // Worse case, the target should support [reg] addressing modes. :)
4801 if (!AddrMode.HasBaseReg) {
4802 AddrMode.HasBaseReg = true;
4803 AddrMode.BaseReg = Addr;
4804 // Still check for legality in case the target supports [imm] but not [i+r].
4805 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4806 return true;
4807 AddrMode.HasBaseReg = false;
4808 AddrMode.BaseReg = nullptr;
4811 // If the base register is already taken, see if we can do [r+r].
4812 if (AddrMode.Scale == 0) {
4813 AddrMode.Scale = 1;
4814 AddrMode.ScaledReg = Addr;
4815 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4816 return true;
4817 AddrMode.Scale = 0;
4818 AddrMode.ScaledReg = nullptr;
4820 // Couldn't match.
4821 TPT.rollback(LastKnownGood);
4822 return false;
4825 /// Check to see if all uses of OpVal by the specified inline asm call are due
4826 /// to memory operands. If so, return true, otherwise return false.
4827 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4828 const TargetLowering &TLI,
4829 const TargetRegisterInfo &TRI) {
4830 const Function *F = CI->getFunction();
4831 TargetLowering::AsmOperandInfoVector TargetConstraints =
4832 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);
4834 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
4835 // Compute the constraint code and ConstraintType to use.
4836 TLI.ComputeConstraintToUse(OpInfo, SDValue());
4838 // If this asm operand is our Value*, and if it isn't an indirect memory
4839 // operand, we can't fold it!
4840 if (OpInfo.CallOperandVal == OpVal &&
4841 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4842 !OpInfo.isIndirect))
4843 return false;
4846 return true;
4849 // Max number of memory uses to look at before aborting the search to conserve
4850 // compile time.
4851 static constexpr int MaxMemoryUsesToScan = 20;
4853 /// Recursively walk all the uses of I until we find a memory use.
4854 /// If we find an obviously non-foldable instruction, return true.
4855 /// Add accessed addresses and types to MemoryUses.
4856 static bool FindAllMemoryUses(
4857 Instruction *I, SmallVectorImpl<std::pair<Value *, Type *>> &MemoryUses,
4858 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4859 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4860 BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4861 // If we already considered this instruction, we're done.
4862 if (!ConsideredInsts.insert(I).second)
4863 return false;
4865 // If this is an obviously unfoldable instruction, bail out.
4866 if (!MightBeFoldableInst(I))
4867 return true;
4869 // Loop over all the uses, recursively processing them.
4870 for (Use &U : I->uses()) {
4871 // Conservatively return true if we're seeing a large number or a deep chain
4872 // of users. This avoids excessive compilation times in pathological cases.
4873 if (SeenInsts++ >= MaxMemoryUsesToScan)
4874 return true;
4876 Instruction *UserI = cast<Instruction>(U.getUser());
4877 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4878 MemoryUses.push_back({U.get(), LI->getType()});
4879 continue;
4882 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4883 if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
4884 return true; // Storing addr, not into addr.
4885 MemoryUses.push_back({U.get(), SI->getValueOperand()->getType()});
4886 continue;
4889 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4890 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
4891 return true; // Storing addr, not into addr.
4892 MemoryUses.push_back({U.get(), RMW->getValOperand()->getType()});
4893 continue;
4896 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4897 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
4898 return true; // Storing addr, not into addr.
4899 MemoryUses.push_back({U.get(), CmpX->getCompareOperand()->getType()});
4900 continue;
4903 if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4904 if (CI->hasFnAttr(Attribute::Cold)) {
4905 // If this is a cold call, we can sink the addressing calculation into
4906 // the cold path. See optimizeCallInst
4907 bool OptForSize = OptSize ||
4908 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4909 if (!OptForSize)
4910 continue;
4913 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
4914 if (!IA) return true;
4916 // If this is a memory operand, we're cool, otherwise bail out.
4917 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4918 return true;
4919 continue;
4922 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4923 PSI, BFI, SeenInsts))
4924 return true;
4927 return false;
4930 /// Return true if Val is already known to be live at the use site that we're
4931 /// folding it into. If so, there is no cost to include it in the addressing
4932 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4933 /// instruction already.
4934 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4935 Value *KnownLive2) {
4936 // If Val is either of the known-live values, we know it is live!
4937 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4938 return true;
4940 // All values other than instructions and arguments (e.g. constants) are live.
4941 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4943 // If Val is a constant sized alloca in the entry block, it is live, this is
4944 // true because it is just a reference to the stack/frame pointer, which is
4945 // live for the whole function.
4946 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4947 if (AI->isStaticAlloca())
4948 return true;
4950 // Check to see if this value is already used in the memory instruction's
4951 // block. If so, it's already live into the block at the very least, so we
4952 // can reasonably fold it.
4953 return Val->isUsedInBasicBlock(MemoryInst->getParent());
4956 /// It is possible for the addressing mode of the machine to fold the specified
4957 /// instruction into a load or store that ultimately uses it.
4958 /// However, the specified instruction has multiple uses.
4959 /// Given this, it may actually increase register pressure to fold it
4960 /// into the load. For example, consider this code:
4962 /// X = ...
4963 /// Y = X+1
4964 /// use(Y) -> nonload/store
4965 /// Z = Y+1
4966 /// load Z
4968 /// In this case, Y has multiple uses, and can be folded into the load of Z
4969 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
4970 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
4971 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
4972 /// number of computations either.
4974 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
4975 /// X was live across 'load Z' for other reasons, we actually *would* want to
4976 /// fold the addressing mode in the Z case. This would make Y die earlier.
4977 bool AddressingModeMatcher::
4978 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4979 ExtAddrMode &AMAfter) {
4980 if (IgnoreProfitability) return true;
4982 // AMBefore is the addressing mode before this instruction was folded into it,
4983 // and AMAfter is the addressing mode after the instruction was folded. Get
4984 // the set of registers referenced by AMAfter and subtract out those
4985 // referenced by AMBefore: this is the set of values which folding in this
4986 // address extends the lifetime of.
4988 // Note that there are only two potential values being referenced here,
4989 // BaseReg and ScaleReg (global addresses are always available, as are any
4990 // folded immediates).
4991 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4993 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4994 // lifetime wasn't extended by adding this instruction.
4995 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4996 BaseReg = nullptr;
4997 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4998 ScaledReg = nullptr;
5000 // If folding this instruction (and it's subexprs) didn't extend any live
5001 // ranges, we're ok with it.
5002 if (!BaseReg && !ScaledReg)
5003 return true;
5005 // If all uses of this instruction can have the address mode sunk into them,
5006 // we can remove the addressing mode and effectively trade one live register
5007 // for another (at worst.) In this context, folding an addressing mode into
5008 // the use is just a particularly nice way of sinking it.
5009 SmallVector<std::pair<Value *, Type *>, 16> MemoryUses;
5010 SmallPtrSet<Instruction*, 16> ConsideredInsts;
5011 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5012 PSI, BFI))
5013 return false; // Has a non-memory, non-foldable use!
5015 // Now that we know that all uses of this instruction are part of a chain of
5016 // computation involving only operations that could theoretically be folded
5017 // into a memory use, loop over each of these memory operation uses and see
5018 // if they could *actually* fold the instruction. The assumption is that
5019 // addressing modes are cheap and that duplicating the computation involved
5020 // many times is worthwhile, even on a fastpath. For sinking candidates
5021 // (i.e. cold call sites), this serves as a way to prevent excessive code
5022 // growth since most architectures have some reasonable small and fast way to
5023 // compute an effective address. (i.e LEA on x86)
5024 SmallVector<Instruction*, 32> MatchedAddrModeInsts;
5025 for (const std::pair<Value *, Type *> &Pair : MemoryUses) {
5026 Value *Address = Pair.first;
5027 Type *AddressAccessTy = Pair.second;
5028 unsigned AS = Address->getType()->getPointerAddressSpace();
5030 // Do a match against the root of this address, ignoring profitability. This
5031 // will tell us if the addressing mode for the memory operation will
5032 // *actually* cover the shared instruction.
5033 ExtAddrMode Result;
5034 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5036 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5037 TPT.getRestorationPoint();
5038 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn,
5039 AddressAccessTy, AS, MemoryInst, Result,
5040 InsertedInsts, PromotedInsts, TPT,
5041 LargeOffsetGEP, OptSize, PSI, BFI);
5042 Matcher.IgnoreProfitability = true;
5043 bool Success = Matcher.matchAddr(Address, 0);
5044 (void)Success; assert(Success && "Couldn't select *anything*?");
5046 // The match was to check the profitability, the changes made are not
5047 // part of the original matcher. Therefore, they should be dropped
5048 // otherwise the original matcher will not present the right state.
5049 TPT.rollback(LastKnownGood);
5051 // If the match didn't cover I, then it won't be shared by it.
5052 if (!is_contained(MatchedAddrModeInsts, I))
5053 return false;
5055 MatchedAddrModeInsts.clear();
5058 return true;
5061 /// Return true if the specified values are defined in a
5062 /// different basic block than BB.
5063 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
5064 if (Instruction *I = dyn_cast<Instruction>(V))
5065 return I->getParent() != BB;
5066 return false;
5069 /// Sink addressing mode computation immediate before MemoryInst if doing so
5070 /// can be done without increasing register pressure. The need for the
5071 /// register pressure constraint means this can end up being an all or nothing
5072 /// decision for all uses of the same addressing computation.
5074 /// Load and Store Instructions often have addressing modes that can do
5075 /// significant amounts of computation. As such, instruction selection will try
5076 /// to get the load or store to do as much computation as possible for the
5077 /// program. The problem is that isel can only see within a single block. As
5078 /// such, we sink as much legal addressing mode work into the block as possible.
5080 /// This method is used to optimize both load/store and inline asms with memory
5081 /// operands. It's also used to sink addressing computations feeding into cold
5082 /// call sites into their (cold) basic block.
5084 /// The motivation for handling sinking into cold blocks is that doing so can
5085 /// both enable other address mode sinking (by satisfying the register pressure
5086 /// constraint above), and reduce register pressure globally (by removing the
5087 /// addressing mode computation from the fast path entirely.).
5088 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
5089 Type *AccessTy, unsigned AddrSpace) {
5090 Value *Repl = Addr;
5092 // Try to collapse single-value PHI nodes. This is necessary to undo
5093 // unprofitable PRE transformations.
5094 SmallVector<Value*, 8> worklist;
5095 SmallPtrSet<Value*, 16> Visited;
5096 worklist.push_back(Addr);
5098 // Use a worklist to iteratively look through PHI and select nodes, and
5099 // ensure that the addressing mode obtained from the non-PHI/select roots of
5100 // the graph are compatible.
5101 bool PhiOrSelectSeen = false;
5102 SmallVector<Instruction*, 16> AddrModeInsts;
5103 const SimplifyQuery SQ(*DL, TLInfo);
5104 AddressingModeCombiner AddrModes(SQ, Addr);
5105 TypePromotionTransaction TPT(RemovedInsts);
5106 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5107 TPT.getRestorationPoint();
5108 while (!worklist.empty()) {
5109 Value *V = worklist.pop_back_val();
5111 // We allow traversing cyclic Phi nodes.
5112 // In case of success after this loop we ensure that traversing through
5113 // Phi nodes ends up with all cases to compute address of the form
5114 // BaseGV + Base + Scale * Index + Offset
5115 // where Scale and Offset are constans and BaseGV, Base and Index
5116 // are exactly the same Values in all cases.
5117 // It means that BaseGV, Scale and Offset dominate our memory instruction
5118 // and have the same value as they had in address computation represented
5119 // as Phi. So we can safely sink address computation to memory instruction.
5120 if (!Visited.insert(V).second)
5121 continue;
5123 // For a PHI node, push all of its incoming values.
5124 if (PHINode *P = dyn_cast<PHINode>(V)) {
5125 append_range(worklist, P->incoming_values());
5126 PhiOrSelectSeen = true;
5127 continue;
5129 // Similar for select.
5130 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
5131 worklist.push_back(SI->getFalseValue());
5132 worklist.push_back(SI->getTrueValue());
5133 PhiOrSelectSeen = true;
5134 continue;
5137 // For non-PHIs, determine the addressing mode being computed. Note that
5138 // the result may differ depending on what other uses our candidate
5139 // addressing instructions might have.
5140 AddrModeInsts.clear();
5141 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5143 // Defer the query (and possible computation of) the dom tree to point of
5144 // actual use. It's expected that most address matches don't actually need
5145 // the domtree.
5146 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & {
5147 Function *F = MemoryInst->getParent()->getParent();
5148 return this->getDT(*F);
5150 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
5151 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn,
5152 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
5153 BFI.get());
5155 GetElementPtrInst *GEP = LargeOffsetGEP.first;
5156 if (GEP && !NewGEPBases.count(GEP)) {
5157 // If splitting the underlying data structure can reduce the offset of a
5158 // GEP, collect the GEP. Skip the GEPs that are the new bases of
5159 // previously split data structures.
5160 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5161 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
5162 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
5165 NewAddrMode.OriginalValue = V;
5166 if (!AddrModes.addNewAddrMode(NewAddrMode))
5167 break;
5170 // Try to combine the AddrModes we've collected. If we couldn't collect any,
5171 // or we have multiple but either couldn't combine them or combining them
5172 // wouldn't do anything useful, bail out now.
5173 if (!AddrModes.combineAddrModes()) {
5174 TPT.rollback(LastKnownGood);
5175 return false;
5177 bool Modified = TPT.commit();
5179 // Get the combined AddrMode (or the only AddrMode, if we only had one).
5180 ExtAddrMode AddrMode = AddrModes.getAddrMode();
5182 // If all the instructions matched are already in this BB, don't do anything.
5183 // If we saw a Phi node then it is not local definitely, and if we saw a select
5184 // then we want to push the address calculation past it even if it's already
5185 // in this BB.
5186 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5187 return IsNonLocalValue(V, MemoryInst->getParent());
5188 })) {
5189 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
5190 << "\n");
5191 return Modified;
5194 // Insert this computation right after this user. Since our caller is
5195 // scanning from the top of the BB to the bottom, reuse of the expr are
5196 // guaranteed to happen later.
5197 IRBuilder<> Builder(MemoryInst);
5199 // Now that we determined the addressing expression we want to use and know
5200 // that we have to sink it into this block. Check to see if we have already
5201 // done this for some other load/store instr in this block. If so, reuse
5202 // the computation. Before attempting reuse, check if the address is valid
5203 // as it may have been erased.
5205 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5207 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5208 if (SunkAddr) {
5209 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5210 << " for " << *MemoryInst << "\n");
5211 if (SunkAddr->getType() != Addr->getType())
5212 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5213 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5214 SubtargetInfo->addrSinkUsingGEPs())) {
5215 // By default, we use the GEP-based method when AA is used later. This
5216 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5217 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5218 << " for " << *MemoryInst << "\n");
5219 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5220 Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5222 // First, find the pointer.
5223 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5224 ResultPtr = AddrMode.BaseReg;
5225 AddrMode.BaseReg = nullptr;
5228 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5229 // We can't add more than one pointer together, nor can we scale a
5230 // pointer (both of which seem meaningless).
5231 if (ResultPtr || AddrMode.Scale != 1)
5232 return Modified;
5234 ResultPtr = AddrMode.ScaledReg;
5235 AddrMode.Scale = 0;
5238 // It is only safe to sign extend the BaseReg if we know that the math
5239 // required to create it did not overflow before we extend it. Since
5240 // the original IR value was tossed in favor of a constant back when
5241 // the AddrMode was created we need to bail out gracefully if widths
5242 // do not match instead of extending it.
5244 // (See below for code to add the scale.)
5245 if (AddrMode.Scale) {
5246 Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5247 if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5248 cast<IntegerType>(ScaledRegTy)->getBitWidth())
5249 return Modified;
5252 if (AddrMode.BaseGV) {
5253 if (ResultPtr)
5254 return Modified;
5256 ResultPtr = AddrMode.BaseGV;
5259 // If the real base value actually came from an inttoptr, then the matcher
5260 // will look through it and provide only the integer value. In that case,
5261 // use it here.
5262 if (!DL->isNonIntegralPointerType(Addr->getType())) {
5263 if (!ResultPtr && AddrMode.BaseReg) {
5264 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5265 "sunkaddr");
5266 AddrMode.BaseReg = nullptr;
5267 } else if (!ResultPtr && AddrMode.Scale == 1) {
5268 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5269 "sunkaddr");
5270 AddrMode.Scale = 0;
5274 if (!ResultPtr &&
5275 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
5276 SunkAddr = Constant::getNullValue(Addr->getType());
5277 } else if (!ResultPtr) {
5278 return Modified;
5279 } else {
5280 Type *I8PtrTy =
5281 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
5282 Type *I8Ty = Builder.getInt8Ty();
5284 // Start with the base register. Do this first so that subsequent address
5285 // matching finds it last, which will prevent it from trying to match it
5286 // as the scaled value in case it happens to be a mul. That would be
5287 // problematic if we've sunk a different mul for the scale, because then
5288 // we'd end up sinking both muls.
5289 if (AddrMode.BaseReg) {
5290 Value *V = AddrMode.BaseReg;
5291 if (V->getType() != IntPtrTy)
5292 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5294 ResultIndex = V;
5297 // Add the scale value.
5298 if (AddrMode.Scale) {
5299 Value *V = AddrMode.ScaledReg;
5300 if (V->getType() == IntPtrTy) {
5301 // done.
5302 } else {
5303 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5304 cast<IntegerType>(V->getType())->getBitWidth() &&
5305 "We can't transform if ScaledReg is too narrow");
5306 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5309 if (AddrMode.Scale != 1)
5310 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5311 "sunkaddr");
5312 if (ResultIndex)
5313 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5314 else
5315 ResultIndex = V;
5318 // Add in the Base Offset if present.
5319 if (AddrMode.BaseOffs) {
5320 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5321 if (ResultIndex) {
5322 // We need to add this separately from the scale above to help with
5323 // SDAG consecutive load/store merging.
5324 if (ResultPtr->getType() != I8PtrTy)
5325 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5326 ResultPtr =
5327 AddrMode.InBounds
5328 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5329 "sunkaddr")
5330 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5333 ResultIndex = V;
5336 if (!ResultIndex) {
5337 SunkAddr = ResultPtr;
5338 } else {
5339 if (ResultPtr->getType() != I8PtrTy)
5340 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5341 SunkAddr =
5342 AddrMode.InBounds
5343 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5344 "sunkaddr")
5345 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5348 if (SunkAddr->getType() != Addr->getType())
5349 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5351 } else {
5352 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5353 // non-integral pointers, so in that case bail out now.
5354 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5355 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5356 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5357 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5358 if (DL->isNonIntegralPointerType(Addr->getType()) ||
5359 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5360 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5361 (AddrMode.BaseGV &&
5362 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5363 return Modified;
5365 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5366 << " for " << *MemoryInst << "\n");
5367 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5368 Value *Result = nullptr;
5370 // Start with the base register. Do this first so that subsequent address
5371 // matching finds it last, which will prevent it from trying to match it
5372 // as the scaled value in case it happens to be a mul. That would be
5373 // problematic if we've sunk a different mul for the scale, because then
5374 // we'd end up sinking both muls.
5375 if (AddrMode.BaseReg) {
5376 Value *V = AddrMode.BaseReg;
5377 if (V->getType()->isPointerTy())
5378 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5379 if (V->getType() != IntPtrTy)
5380 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5381 Result = V;
5384 // Add the scale value.
5385 if (AddrMode.Scale) {
5386 Value *V = AddrMode.ScaledReg;
5387 if (V->getType() == IntPtrTy) {
5388 // done.
5389 } else if (V->getType()->isPointerTy()) {
5390 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5391 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5392 cast<IntegerType>(V->getType())->getBitWidth()) {
5393 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5394 } else {
5395 // It is only safe to sign extend the BaseReg if we know that the math
5396 // required to create it did not overflow before we extend it. Since
5397 // the original IR value was tossed in favor of a constant back when
5398 // the AddrMode was created we need to bail out gracefully if widths
5399 // do not match instead of extending it.
5400 Instruction *I = dyn_cast_or_null<Instruction>(Result);
5401 if (I && (Result != AddrMode.BaseReg))
5402 I->eraseFromParent();
5403 return Modified;
5405 if (AddrMode.Scale != 1)
5406 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5407 "sunkaddr");
5408 if (Result)
5409 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5410 else
5411 Result = V;
5414 // Add in the BaseGV if present.
5415 if (AddrMode.BaseGV) {
5416 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5417 if (Result)
5418 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5419 else
5420 Result = V;
5423 // Add in the Base Offset if present.
5424 if (AddrMode.BaseOffs) {
5425 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5426 if (Result)
5427 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5428 else
5429 Result = V;
5432 if (!Result)
5433 SunkAddr = Constant::getNullValue(Addr->getType());
5434 else
5435 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5438 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5439 // Store the newly computed address into the cache. In the case we reused a
5440 // value, this should be idempotent.
5441 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5443 // If we have no uses, recursively delete the value and all dead instructions
5444 // using it.
5445 if (Repl->use_empty()) {
5446 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5447 RecursivelyDeleteTriviallyDeadInstructions(
5448 Repl, TLInfo, nullptr,
5449 [&](Value *V) { removeAllAssertingVHReferences(V); });
5452 ++NumMemoryInsts;
5453 return true;
5456 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5457 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5458 /// only handle a 2 operand GEP in the same basic block or a splat constant
5459 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5460 /// index.
5462 /// If the existing GEP has a vector base pointer that is splat, we can look
5463 /// through the splat to find the scalar pointer. If we can't find a scalar
5464 /// pointer there's nothing we can do.
5466 /// If we have a GEP with more than 2 indices where the middle indices are all
5467 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5469 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5470 /// followed by a GEP with an all zeroes vector index. This will enable
5471 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5472 /// zero index.
5473 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5474 Value *Ptr) {
5475 Value *NewAddr;
5477 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5478 // Don't optimize GEPs that don't have indices.
5479 if (!GEP->hasIndices())
5480 return false;
5482 // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5483 // FIXME: We should support this by sinking the GEP.
5484 if (MemoryInst->getParent() != GEP->getParent())
5485 return false;
5487 SmallVector<Value *, 2> Ops(GEP->operands());
5489 bool RewriteGEP = false;
5491 if (Ops[0]->getType()->isVectorTy()) {
5492 Ops[0] = getSplatValue(Ops[0]);
5493 if (!Ops[0])
5494 return false;
5495 RewriteGEP = true;
5498 unsigned FinalIndex = Ops.size() - 1;
5500 // Ensure all but the last index is 0.
5501 // FIXME: This isn't strictly required. All that's required is that they are
5502 // all scalars or splats.
5503 for (unsigned i = 1; i < FinalIndex; ++i) {
5504 auto *C = dyn_cast<Constant>(Ops[i]);
5505 if (!C)
5506 return false;
5507 if (isa<VectorType>(C->getType()))
5508 C = C->getSplatValue();
5509 auto *CI = dyn_cast_or_null<ConstantInt>(C);
5510 if (!CI || !CI->isZero())
5511 return false;
5512 // Scalarize the index if needed.
5513 Ops[i] = CI;
5516 // Try to scalarize the final index.
5517 if (Ops[FinalIndex]->getType()->isVectorTy()) {
5518 if (Value *V = getSplatValue(Ops[FinalIndex])) {
5519 auto *C = dyn_cast<ConstantInt>(V);
5520 // Don't scalarize all zeros vector.
5521 if (!C || !C->isZero()) {
5522 Ops[FinalIndex] = V;
5523 RewriteGEP = true;
5528 // If we made any changes or the we have extra operands, we need to generate
5529 // new instructions.
5530 if (!RewriteGEP && Ops.size() == 2)
5531 return false;
5533 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5535 IRBuilder<> Builder(MemoryInst);
5537 Type *SourceTy = GEP->getSourceElementType();
5538 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5540 // If the final index isn't a vector, emit a scalar GEP containing all ops
5541 // and a vector GEP with all zeroes final index.
5542 if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5543 NewAddr = Builder.CreateGEP(SourceTy, Ops[0],
5544 makeArrayRef(Ops).drop_front());
5545 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5546 auto *SecondTy = GetElementPtrInst::getIndexedType(
5547 SourceTy, makeArrayRef(Ops).drop_front());
5548 NewAddr =
5549 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy));
5550 } else {
5551 Value *Base = Ops[0];
5552 Value *Index = Ops[FinalIndex];
5554 // Create a scalar GEP if there are more than 2 operands.
5555 if (Ops.size() != 2) {
5556 // Replace the last index with 0.
5557 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy);
5558 Base = Builder.CreateGEP(SourceTy, Base,
5559 makeArrayRef(Ops).drop_front());
5560 SourceTy = GetElementPtrInst::getIndexedType(
5561 SourceTy, makeArrayRef(Ops).drop_front());
5564 // Now create the GEP with scalar pointer and vector index.
5565 NewAddr = Builder.CreateGEP(SourceTy, Base, Index);
5567 } else if (!isa<Constant>(Ptr)) {
5568 // Not a GEP, maybe its a splat and we can create a GEP to enable
5569 // SelectionDAGBuilder to use it as a uniform base.
5570 Value *V = getSplatValue(Ptr);
5571 if (!V)
5572 return false;
5574 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5576 IRBuilder<> Builder(MemoryInst);
5578 // Emit a vector GEP with a scalar pointer and all 0s vector index.
5579 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5580 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5581 Type *ScalarTy;
5582 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5583 Intrinsic::masked_gather) {
5584 ScalarTy = MemoryInst->getType()->getScalarType();
5585 } else {
5586 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5587 Intrinsic::masked_scatter);
5588 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType();
5590 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy));
5591 } else {
5592 // Constant, SelectionDAGBuilder knows to check if its a splat.
5593 return false;
5596 MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5598 // If we have no uses, recursively delete the value and all dead instructions
5599 // using it.
5600 if (Ptr->use_empty())
5601 RecursivelyDeleteTriviallyDeadInstructions(
5602 Ptr, TLInfo, nullptr,
5603 [&](Value *V) { removeAllAssertingVHReferences(V); });
5605 return true;
5608 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5609 /// address computing into the block when possible / profitable.
5610 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5611 bool MadeChange = false;
5613 const TargetRegisterInfo *TRI =
5614 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5615 TargetLowering::AsmOperandInfoVector TargetConstraints =
5616 TLI->ParseConstraints(*DL, TRI, *CS);
5617 unsigned ArgNo = 0;
5618 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5619 // Compute the constraint code and ConstraintType to use.
5620 TLI->ComputeConstraintToUse(OpInfo, SDValue());
5622 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5623 OpInfo.isIndirect) {
5624 Value *OpVal = CS->getArgOperand(ArgNo++);
5625 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5626 } else if (OpInfo.Type == InlineAsm::isInput)
5627 ArgNo++;
5630 return MadeChange;
5633 /// Check if all the uses of \p Val are equivalent (or free) zero or
5634 /// sign extensions.
5635 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5636 assert(!Val->use_empty() && "Input must have at least one use");
5637 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5638 bool IsSExt = isa<SExtInst>(FirstUser);
5639 Type *ExtTy = FirstUser->getType();
5640 for (const User *U : Val->users()) {
5641 const Instruction *UI = cast<Instruction>(U);
5642 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5643 return false;
5644 Type *CurTy = UI->getType();
5645 // Same input and output types: Same instruction after CSE.
5646 if (CurTy == ExtTy)
5647 continue;
5649 // If IsSExt is true, we are in this situation:
5650 // a = Val
5651 // b = sext ty1 a to ty2
5652 // c = sext ty1 a to ty3
5653 // Assuming ty2 is shorter than ty3, this could be turned into:
5654 // a = Val
5655 // b = sext ty1 a to ty2
5656 // c = sext ty2 b to ty3
5657 // However, the last sext is not free.
5658 if (IsSExt)
5659 return false;
5661 // This is a ZExt, maybe this is free to extend from one type to another.
5662 // In that case, we would not account for a different use.
5663 Type *NarrowTy;
5664 Type *LargeTy;
5665 if (ExtTy->getScalarType()->getIntegerBitWidth() >
5666 CurTy->getScalarType()->getIntegerBitWidth()) {
5667 NarrowTy = CurTy;
5668 LargeTy = ExtTy;
5669 } else {
5670 NarrowTy = ExtTy;
5671 LargeTy = CurTy;
5674 if (!TLI.isZExtFree(NarrowTy, LargeTy))
5675 return false;
5677 // All uses are the same or can be derived from one another for free.
5678 return true;
5681 /// Try to speculatively promote extensions in \p Exts and continue
5682 /// promoting through newly promoted operands recursively as far as doing so is
5683 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5684 /// When some promotion happened, \p TPT contains the proper state to revert
5685 /// them.
5687 /// \return true if some promotion happened, false otherwise.
5688 bool CodeGenPrepare::tryToPromoteExts(
5689 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5690 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5691 unsigned CreatedInstsCost) {
5692 bool Promoted = false;
5694 // Iterate over all the extensions to try to promote them.
5695 for (auto *I : Exts) {
5696 // Early check if we directly have ext(load).
5697 if (isa<LoadInst>(I->getOperand(0))) {
5698 ProfitablyMovedExts.push_back(I);
5699 continue;
5702 // Check whether or not we want to do any promotion. The reason we have
5703 // this check inside the for loop is to catch the case where an extension
5704 // is directly fed by a load because in such case the extension can be moved
5705 // up without any promotion on its operands.
5706 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5707 return false;
5709 // Get the action to perform the promotion.
5710 TypePromotionHelper::Action TPH =
5711 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5712 // Check if we can promote.
5713 if (!TPH) {
5714 // Save the current extension as we cannot move up through its operand.
5715 ProfitablyMovedExts.push_back(I);
5716 continue;
5719 // Save the current state.
5720 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5721 TPT.getRestorationPoint();
5722 SmallVector<Instruction *, 4> NewExts;
5723 unsigned NewCreatedInstsCost = 0;
5724 unsigned ExtCost = !TLI->isExtFree(I);
5725 // Promote.
5726 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5727 &NewExts, nullptr, *TLI);
5728 assert(PromotedVal &&
5729 "TypePromotionHelper should have filtered out those cases");
5731 // We would be able to merge only one extension in a load.
5732 // Therefore, if we have more than 1 new extension we heuristically
5733 // cut this search path, because it means we degrade the code quality.
5734 // With exactly 2, the transformation is neutral, because we will merge
5735 // one extension but leave one. However, we optimistically keep going,
5736 // because the new extension may be removed too.
5737 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5738 // FIXME: It would be possible to propagate a negative value instead of
5739 // conservatively ceiling it to 0.
5740 TotalCreatedInstsCost =
5741 std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5742 if (!StressExtLdPromotion &&
5743 (TotalCreatedInstsCost > 1 ||
5744 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5745 // This promotion is not profitable, rollback to the previous state, and
5746 // save the current extension in ProfitablyMovedExts as the latest
5747 // speculative promotion turned out to be unprofitable.
5748 TPT.rollback(LastKnownGood);
5749 ProfitablyMovedExts.push_back(I);
5750 continue;
5752 // Continue promoting NewExts as far as doing so is profitable.
5753 SmallVector<Instruction *, 2> NewlyMovedExts;
5754 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5755 bool NewPromoted = false;
5756 for (auto *ExtInst : NewlyMovedExts) {
5757 Instruction *MovedExt = cast<Instruction>(ExtInst);
5758 Value *ExtOperand = MovedExt->getOperand(0);
5759 // If we have reached to a load, we need this extra profitability check
5760 // as it could potentially be merged into an ext(load).
5761 if (isa<LoadInst>(ExtOperand) &&
5762 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5763 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5764 continue;
5766 ProfitablyMovedExts.push_back(MovedExt);
5767 NewPromoted = true;
5770 // If none of speculative promotions for NewExts is profitable, rollback
5771 // and save the current extension (I) as the last profitable extension.
5772 if (!NewPromoted) {
5773 TPT.rollback(LastKnownGood);
5774 ProfitablyMovedExts.push_back(I);
5775 continue;
5777 // The promotion is profitable.
5778 Promoted = true;
5780 return Promoted;
5783 /// Merging redundant sexts when one is dominating the other.
5784 bool CodeGenPrepare::mergeSExts(Function &F) {
5785 bool Changed = false;
5786 for (auto &Entry : ValToSExtendedUses) {
5787 SExts &Insts = Entry.second;
5788 SExts CurPts;
5789 for (Instruction *Inst : Insts) {
5790 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5791 Inst->getOperand(0) != Entry.first)
5792 continue;
5793 bool inserted = false;
5794 for (auto &Pt : CurPts) {
5795 if (getDT(F).dominates(Inst, Pt)) {
5796 Pt->replaceAllUsesWith(Inst);
5797 RemovedInsts.insert(Pt);
5798 Pt->removeFromParent();
5799 Pt = Inst;
5800 inserted = true;
5801 Changed = true;
5802 break;
5804 if (!getDT(F).dominates(Pt, Inst))
5805 // Give up if we need to merge in a common dominator as the
5806 // experiments show it is not profitable.
5807 continue;
5808 Inst->replaceAllUsesWith(Pt);
5809 RemovedInsts.insert(Inst);
5810 Inst->removeFromParent();
5811 inserted = true;
5812 Changed = true;
5813 break;
5815 if (!inserted)
5816 CurPts.push_back(Inst);
5819 return Changed;
5822 // Splitting large data structures so that the GEPs accessing them can have
5823 // smaller offsets so that they can be sunk to the same blocks as their users.
5824 // For example, a large struct starting from %base is split into two parts
5825 // where the second part starts from %new_base.
5827 // Before:
5828 // BB0:
5829 // %base =
5831 // BB1:
5832 // %gep0 = gep %base, off0
5833 // %gep1 = gep %base, off1
5834 // %gep2 = gep %base, off2
5836 // BB2:
5837 // %load1 = load %gep0
5838 // %load2 = load %gep1
5839 // %load3 = load %gep2
5841 // After:
5842 // BB0:
5843 // %base =
5844 // %new_base = gep %base, off0
5846 // BB1:
5847 // %new_gep0 = %new_base
5848 // %new_gep1 = gep %new_base, off1 - off0
5849 // %new_gep2 = gep %new_base, off2 - off0
5851 // BB2:
5852 // %load1 = load i32, i32* %new_gep0
5853 // %load2 = load i32, i32* %new_gep1
5854 // %load3 = load i32, i32* %new_gep2
5856 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5857 // their offsets are smaller enough to fit into the addressing mode.
5858 bool CodeGenPrepare::splitLargeGEPOffsets() {
5859 bool Changed = false;
5860 for (auto &Entry : LargeOffsetGEPMap) {
5861 Value *OldBase = Entry.first;
5862 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5863 &LargeOffsetGEPs = Entry.second;
5864 auto compareGEPOffset =
5865 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5866 const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5867 if (LHS.first == RHS.first)
5868 return false;
5869 if (LHS.second != RHS.second)
5870 return LHS.second < RHS.second;
5871 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5873 // Sorting all the GEPs of the same data structures based on the offsets.
5874 llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5875 LargeOffsetGEPs.erase(
5876 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5877 LargeOffsetGEPs.end());
5878 // Skip if all the GEPs have the same offsets.
5879 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5880 continue;
5881 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5882 int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5883 Value *NewBaseGEP = nullptr;
5885 auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
5886 while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5887 GetElementPtrInst *GEP = LargeOffsetGEP->first;
5888 int64_t Offset = LargeOffsetGEP->second;
5889 if (Offset != BaseOffset) {
5890 TargetLowering::AddrMode AddrMode;
5891 AddrMode.BaseOffs = Offset - BaseOffset;
5892 // The result type of the GEP might not be the type of the memory
5893 // access.
5894 if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5895 GEP->getResultElementType(),
5896 GEP->getAddressSpace())) {
5897 // We need to create a new base if the offset to the current base is
5898 // too large to fit into the addressing mode. So, a very large struct
5899 // may be split into several parts.
5900 BaseGEP = GEP;
5901 BaseOffset = Offset;
5902 NewBaseGEP = nullptr;
5906 // Generate a new GEP to replace the current one.
5907 LLVMContext &Ctx = GEP->getContext();
5908 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5909 Type *I8PtrTy =
5910 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5911 Type *I8Ty = Type::getInt8Ty(Ctx);
5913 if (!NewBaseGEP) {
5914 // Create a new base if we don't have one yet. Find the insertion
5915 // pointer for the new base first.
5916 BasicBlock::iterator NewBaseInsertPt;
5917 BasicBlock *NewBaseInsertBB;
5918 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5919 // If the base of the struct is an instruction, the new base will be
5920 // inserted close to it.
5921 NewBaseInsertBB = BaseI->getParent();
5922 if (isa<PHINode>(BaseI))
5923 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5924 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5925 NewBaseInsertBB =
5926 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5927 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5928 } else
5929 NewBaseInsertPt = std::next(BaseI->getIterator());
5930 } else {
5931 // If the current base is an argument or global value, the new base
5932 // will be inserted to the entry block.
5933 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5934 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5936 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5937 // Create a new base.
5938 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5939 NewBaseGEP = OldBase;
5940 if (NewBaseGEP->getType() != I8PtrTy)
5941 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5942 NewBaseGEP =
5943 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5944 NewGEPBases.insert(NewBaseGEP);
5947 IRBuilder<> Builder(GEP);
5948 Value *NewGEP = NewBaseGEP;
5949 if (Offset == BaseOffset) {
5950 if (GEP->getType() != I8PtrTy)
5951 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5952 } else {
5953 // Calculate the new offset for the new GEP.
5954 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5955 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5957 if (GEP->getType() != I8PtrTy)
5958 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5960 GEP->replaceAllUsesWith(NewGEP);
5961 LargeOffsetGEPID.erase(GEP);
5962 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5963 GEP->eraseFromParent();
5964 Changed = true;
5967 return Changed;
5970 bool CodeGenPrepare::optimizePhiType(
5971 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
5972 SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
5973 // We are looking for a collection on interconnected phi nodes that together
5974 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
5975 // are of the same type. Convert the whole set of nodes to the type of the
5976 // bitcast.
5977 Type *PhiTy = I->getType();
5978 Type *ConvertTy = nullptr;
5979 if (Visited.count(I) ||
5980 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
5981 return false;
5983 SmallVector<Instruction *, 4> Worklist;
5984 Worklist.push_back(cast<Instruction>(I));
5985 SmallPtrSet<PHINode *, 4> PhiNodes;
5986 PhiNodes.insert(I);
5987 Visited.insert(I);
5988 SmallPtrSet<Instruction *, 4> Defs;
5989 SmallPtrSet<Instruction *, 4> Uses;
5990 // This works by adding extra bitcasts between load/stores and removing
5991 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
5992 // we can get in the situation where we remove a bitcast in one iteration
5993 // just to add it again in the next. We need to ensure that at least one
5994 // bitcast we remove are anchored to something that will not change back.
5995 bool AnyAnchored = false;
5997 while (!Worklist.empty()) {
5998 Instruction *II = Worklist.pop_back_val();
6000 if (auto *Phi = dyn_cast<PHINode>(II)) {
6001 // Handle Defs, which might also be PHI's
6002 for (Value *V : Phi->incoming_values()) {
6003 if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6004 if (!PhiNodes.count(OpPhi)) {
6005 if (Visited.count(OpPhi))
6006 return false;
6007 PhiNodes.insert(OpPhi);
6008 Visited.insert(OpPhi);
6009 Worklist.push_back(OpPhi);
6011 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
6012 if (!OpLoad->isSimple())
6013 return false;
6014 if (!Defs.count(OpLoad)) {
6015 Defs.insert(OpLoad);
6016 Worklist.push_back(OpLoad);
6018 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
6019 if (!Defs.count(OpEx)) {
6020 Defs.insert(OpEx);
6021 Worklist.push_back(OpEx);
6023 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6024 if (!ConvertTy)
6025 ConvertTy = OpBC->getOperand(0)->getType();
6026 if (OpBC->getOperand(0)->getType() != ConvertTy)
6027 return false;
6028 if (!Defs.count(OpBC)) {
6029 Defs.insert(OpBC);
6030 Worklist.push_back(OpBC);
6031 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
6032 !isa<ExtractElementInst>(OpBC->getOperand(0));
6034 } else if (!isa<UndefValue>(V)) {
6035 return false;
6040 // Handle uses which might also be phi's
6041 for (User *V : II->users()) {
6042 if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6043 if (!PhiNodes.count(OpPhi)) {
6044 if (Visited.count(OpPhi))
6045 return false;
6046 PhiNodes.insert(OpPhi);
6047 Visited.insert(OpPhi);
6048 Worklist.push_back(OpPhi);
6050 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
6051 if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
6052 return false;
6053 Uses.insert(OpStore);
6054 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6055 if (!ConvertTy)
6056 ConvertTy = OpBC->getType();
6057 if (OpBC->getType() != ConvertTy)
6058 return false;
6059 Uses.insert(OpBC);
6060 AnyAnchored |=
6061 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
6062 } else {
6063 return false;
6068 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
6069 return false;
6071 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to "
6072 << *ConvertTy << "\n");
6074 // Create all the new phi nodes of the new type, and bitcast any loads to the
6075 // correct type.
6076 ValueToValueMap ValMap;
6077 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy);
6078 for (Instruction *D : Defs) {
6079 if (isa<BitCastInst>(D)) {
6080 ValMap[D] = D->getOperand(0);
6081 DeletedInstrs.insert(D);
6082 } else {
6083 ValMap[D] =
6084 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
6087 for (PHINode *Phi : PhiNodes)
6088 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
6089 Phi->getName() + ".tc", Phi);
6090 // Pipe together all the PhiNodes.
6091 for (PHINode *Phi : PhiNodes) {
6092 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
6093 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
6094 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
6095 Phi->getIncomingBlock(i));
6096 Visited.insert(NewPhi);
6098 // And finally pipe up the stores and bitcasts
6099 for (Instruction *U : Uses) {
6100 if (isa<BitCastInst>(U)) {
6101 DeletedInstrs.insert(U);
6102 U->replaceAllUsesWith(ValMap[U->getOperand(0)]);
6103 } else {
6104 U->setOperand(0,
6105 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
6109 // Save the removed phis to be deleted later.
6110 for (PHINode *Phi : PhiNodes)
6111 DeletedInstrs.insert(Phi);
6112 return true;
6115 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
6116 if (!OptimizePhiTypes)
6117 return false;
6119 bool Changed = false;
6120 SmallPtrSet<PHINode *, 4> Visited;
6121 SmallPtrSet<Instruction *, 4> DeletedInstrs;
6123 // Attempt to optimize all the phis in the functions to the correct type.
6124 for (auto &BB : F)
6125 for (auto &Phi : BB.phis())
6126 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
6128 // Remove any old phi's that have been converted.
6129 for (auto *I : DeletedInstrs) {
6130 I->replaceAllUsesWith(UndefValue::get(I->getType()));
6131 I->eraseFromParent();
6134 return Changed;
6137 /// Return true, if an ext(load) can be formed from an extension in
6138 /// \p MovedExts.
6139 bool CodeGenPrepare::canFormExtLd(
6140 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
6141 Instruction *&Inst, bool HasPromoted) {
6142 for (auto *MovedExtInst : MovedExts) {
6143 if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
6144 LI = cast<LoadInst>(MovedExtInst->getOperand(0));
6145 Inst = MovedExtInst;
6146 break;
6149 if (!LI)
6150 return false;
6152 // If they're already in the same block, there's nothing to do.
6153 // Make the cheap checks first if we did not promote.
6154 // If we promoted, we need to check if it is indeed profitable.
6155 if (!HasPromoted && LI->getParent() == Inst->getParent())
6156 return false;
6158 return TLI->isExtLoad(LI, Inst, *DL);
6161 /// Move a zext or sext fed by a load into the same basic block as the load,
6162 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6163 /// extend into the load.
6165 /// E.g.,
6166 /// \code
6167 /// %ld = load i32* %addr
6168 /// %add = add nuw i32 %ld, 4
6169 /// %zext = zext i32 %add to i64
6170 // \endcode
6171 /// =>
6172 /// \code
6173 /// %ld = load i32* %addr
6174 /// %zext = zext i32 %ld to i64
6175 /// %add = add nuw i64 %zext, 4
6176 /// \encode
6177 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6178 /// allow us to match zext(load i32*) to i64.
6180 /// Also, try to promote the computations used to obtain a sign extended
6181 /// value used into memory accesses.
6182 /// E.g.,
6183 /// \code
6184 /// a = add nsw i32 b, 3
6185 /// d = sext i32 a to i64
6186 /// e = getelementptr ..., i64 d
6187 /// \endcode
6188 /// =>
6189 /// \code
6190 /// f = sext i32 b to i64
6191 /// a = add nsw i64 f, 3
6192 /// e = getelementptr ..., i64 a
6193 /// \endcode
6195 /// \p Inst[in/out] the extension may be modified during the process if some
6196 /// promotions apply.
6197 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6198 bool AllowPromotionWithoutCommonHeader = false;
6199 /// See if it is an interesting sext operations for the address type
6200 /// promotion before trying to promote it, e.g., the ones with the right
6201 /// type and used in memory accesses.
6202 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6203 *Inst, AllowPromotionWithoutCommonHeader);
6204 TypePromotionTransaction TPT(RemovedInsts);
6205 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6206 TPT.getRestorationPoint();
6207 SmallVector<Instruction *, 1> Exts;
6208 SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6209 Exts.push_back(Inst);
6211 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6213 // Look for a load being extended.
6214 LoadInst *LI = nullptr;
6215 Instruction *ExtFedByLoad;
6217 // Try to promote a chain of computation if it allows to form an extended
6218 // load.
6219 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6220 assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6221 TPT.commit();
6222 // Move the extend into the same block as the load.
6223 ExtFedByLoad->moveAfter(LI);
6224 ++NumExtsMoved;
6225 Inst = ExtFedByLoad;
6226 return true;
6229 // Continue promoting SExts if known as considerable depending on targets.
6230 if (ATPConsiderable &&
6231 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6232 HasPromoted, TPT, SpeculativelyMovedExts))
6233 return true;
6235 TPT.rollback(LastKnownGood);
6236 return false;
6239 // Perform address type promotion if doing so is profitable.
6240 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6241 // instructions that sign extended the same initial value. However, if
6242 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6243 // extension is just profitable.
6244 bool CodeGenPrepare::performAddressTypePromotion(
6245 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6246 bool HasPromoted, TypePromotionTransaction &TPT,
6247 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6248 bool Promoted = false;
6249 SmallPtrSet<Instruction *, 1> UnhandledExts;
6250 bool AllSeenFirst = true;
6251 for (auto *I : SpeculativelyMovedExts) {
6252 Value *HeadOfChain = I->getOperand(0);
6253 DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6254 SeenChainsForSExt.find(HeadOfChain);
6255 // If there is an unhandled SExt which has the same header, try to promote
6256 // it as well.
6257 if (AlreadySeen != SeenChainsForSExt.end()) {
6258 if (AlreadySeen->second != nullptr)
6259 UnhandledExts.insert(AlreadySeen->second);
6260 AllSeenFirst = false;
6264 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6265 SpeculativelyMovedExts.size() == 1)) {
6266 TPT.commit();
6267 if (HasPromoted)
6268 Promoted = true;
6269 for (auto *I : SpeculativelyMovedExts) {
6270 Value *HeadOfChain = I->getOperand(0);
6271 SeenChainsForSExt[HeadOfChain] = nullptr;
6272 ValToSExtendedUses[HeadOfChain].push_back(I);
6274 // Update Inst as promotion happen.
6275 Inst = SpeculativelyMovedExts.pop_back_val();
6276 } else {
6277 // This is the first chain visited from the header, keep the current chain
6278 // as unhandled. Defer to promote this until we encounter another SExt
6279 // chain derived from the same header.
6280 for (auto *I : SpeculativelyMovedExts) {
6281 Value *HeadOfChain = I->getOperand(0);
6282 SeenChainsForSExt[HeadOfChain] = Inst;
6284 return false;
6287 if (!AllSeenFirst && !UnhandledExts.empty())
6288 for (auto *VisitedSExt : UnhandledExts) {
6289 if (RemovedInsts.count(VisitedSExt))
6290 continue;
6291 TypePromotionTransaction TPT(RemovedInsts);
6292 SmallVector<Instruction *, 1> Exts;
6293 SmallVector<Instruction *, 2> Chains;
6294 Exts.push_back(VisitedSExt);
6295 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6296 TPT.commit();
6297 if (HasPromoted)
6298 Promoted = true;
6299 for (auto *I : Chains) {
6300 Value *HeadOfChain = I->getOperand(0);
6301 // Mark this as handled.
6302 SeenChainsForSExt[HeadOfChain] = nullptr;
6303 ValToSExtendedUses[HeadOfChain].push_back(I);
6306 return Promoted;
6309 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6310 BasicBlock *DefBB = I->getParent();
6312 // If the result of a {s|z}ext and its source are both live out, rewrite all
6313 // other uses of the source with result of extension.
6314 Value *Src = I->getOperand(0);
6315 if (Src->hasOneUse())
6316 return false;
6318 // Only do this xform if truncating is free.
6319 if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6320 return false;
6322 // Only safe to perform the optimization if the source is also defined in
6323 // this block.
6324 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6325 return false;
6327 bool DefIsLiveOut = false;
6328 for (User *U : I->users()) {
6329 Instruction *UI = cast<Instruction>(U);
6331 // Figure out which BB this ext is used in.
6332 BasicBlock *UserBB = UI->getParent();
6333 if (UserBB == DefBB) continue;
6334 DefIsLiveOut = true;
6335 break;
6337 if (!DefIsLiveOut)
6338 return false;
6340 // Make sure none of the uses are PHI nodes.
6341 for (User *U : Src->users()) {
6342 Instruction *UI = cast<Instruction>(U);
6343 BasicBlock *UserBB = UI->getParent();
6344 if (UserBB == DefBB) continue;
6345 // Be conservative. We don't want this xform to end up introducing
6346 // reloads just before load / store instructions.
6347 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6348 return false;
6351 // InsertedTruncs - Only insert one trunc in each block once.
6352 DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
6354 bool MadeChange = false;
6355 for (Use &U : Src->uses()) {
6356 Instruction *User = cast<Instruction>(U.getUser());
6358 // Figure out which BB this ext is used in.
6359 BasicBlock *UserBB = User->getParent();
6360 if (UserBB == DefBB) continue;
6362 // Both src and def are live in this block. Rewrite the use.
6363 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6365 if (!InsertedTrunc) {
6366 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6367 assert(InsertPt != UserBB->end());
6368 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
6369 InsertedInsts.insert(InsertedTrunc);
6372 // Replace a use of the {s|z}ext source with a use of the result.
6373 U = InsertedTrunc;
6374 ++NumExtUses;
6375 MadeChange = true;
6378 return MadeChange;
6381 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
6382 // just after the load if the target can fold this into one extload instruction,
6383 // with the hope of eliminating some of the other later "and" instructions using
6384 // the loaded value. "and"s that are made trivially redundant by the insertion
6385 // of the new "and" are removed by this function, while others (e.g. those whose
6386 // path from the load goes through a phi) are left for isel to potentially
6387 // remove.
6389 // For example:
6391 // b0:
6392 // x = load i32
6393 // ...
6394 // b1:
6395 // y = and x, 0xff
6396 // z = use y
6398 // becomes:
6400 // b0:
6401 // x = load i32
6402 // x' = and x, 0xff
6403 // ...
6404 // b1:
6405 // z = use x'
6407 // whereas:
6409 // b0:
6410 // x1 = load i32
6411 // ...
6412 // b1:
6413 // x2 = load i32
6414 // ...
6415 // b2:
6416 // x = phi x1, x2
6417 // y = and x, 0xff
6419 // becomes (after a call to optimizeLoadExt for each load):
6421 // b0:
6422 // x1 = load i32
6423 // x1' = and x1, 0xff
6424 // ...
6425 // b1:
6426 // x2 = load i32
6427 // x2' = and x2, 0xff
6428 // ...
6429 // b2:
6430 // x = phi x1', x2'
6431 // y = and x, 0xff
6432 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6433 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6434 return false;
6436 // Skip loads we've already transformed.
6437 if (Load->hasOneUse() &&
6438 InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6439 return false;
6441 // Look at all uses of Load, looking through phis, to determine how many bits
6442 // of the loaded value are needed.
6443 SmallVector<Instruction *, 8> WorkList;
6444 SmallPtrSet<Instruction *, 16> Visited;
6445 SmallVector<Instruction *, 8> AndsToMaybeRemove;
6446 for (auto *U : Load->users())
6447 WorkList.push_back(cast<Instruction>(U));
6449 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6450 unsigned BitWidth = LoadResultVT.getSizeInBits();
6451 // If the BitWidth is 0, do not try to optimize the type
6452 if (BitWidth == 0)
6453 return false;
6455 APInt DemandBits(BitWidth, 0);
6456 APInt WidestAndBits(BitWidth, 0);
6458 while (!WorkList.empty()) {
6459 Instruction *I = WorkList.pop_back_val();
6461 // Break use-def graph loops.
6462 if (!Visited.insert(I).second)
6463 continue;
6465 // For a PHI node, push all of its users.
6466 if (auto *Phi = dyn_cast<PHINode>(I)) {
6467 for (auto *U : Phi->users())
6468 WorkList.push_back(cast<Instruction>(U));
6469 continue;
6472 switch (I->getOpcode()) {
6473 case Instruction::And: {
6474 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6475 if (!AndC)
6476 return false;
6477 APInt AndBits = AndC->getValue();
6478 DemandBits |= AndBits;
6479 // Keep track of the widest and mask we see.
6480 if (AndBits.ugt(WidestAndBits))
6481 WidestAndBits = AndBits;
6482 if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6483 AndsToMaybeRemove.push_back(I);
6484 break;
6487 case Instruction::Shl: {
6488 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6489 if (!ShlC)
6490 return false;
6491 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6492 DemandBits.setLowBits(BitWidth - ShiftAmt);
6493 break;
6496 case Instruction::Trunc: {
6497 EVT TruncVT = TLI->getValueType(*DL, I->getType());
6498 unsigned TruncBitWidth = TruncVT.getSizeInBits();
6499 DemandBits.setLowBits(TruncBitWidth);
6500 break;
6503 default:
6504 return false;
6508 uint32_t ActiveBits = DemandBits.getActiveBits();
6509 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6510 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
6511 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6512 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6513 // followed by an AND.
6514 // TODO: Look into removing this restriction by fixing backends to either
6515 // return false for isLoadExtLegal for i1 or have them select this pattern to
6516 // a single instruction.
6518 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6519 // mask, since these are the only ands that will be removed by isel.
6520 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6521 WidestAndBits != DemandBits)
6522 return false;
6524 LLVMContext &Ctx = Load->getType()->getContext();
6525 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6526 EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6528 // Reject cases that won't be matched as extloads.
6529 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6530 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6531 return false;
6533 IRBuilder<> Builder(Load->getNextNode());
6534 auto *NewAnd = cast<Instruction>(
6535 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6536 // Mark this instruction as "inserted by CGP", so that other
6537 // optimizations don't touch it.
6538 InsertedInsts.insert(NewAnd);
6540 // Replace all uses of load with new and (except for the use of load in the
6541 // new and itself).
6542 Load->replaceAllUsesWith(NewAnd);
6543 NewAnd->setOperand(0, Load);
6545 // Remove any and instructions that are now redundant.
6546 for (auto *And : AndsToMaybeRemove)
6547 // Check that the and mask is the same as the one we decided to put on the
6548 // new and.
6549 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6550 And->replaceAllUsesWith(NewAnd);
6551 if (&*CurInstIterator == And)
6552 CurInstIterator = std::next(And->getIterator());
6553 And->eraseFromParent();
6554 ++NumAndUses;
6557 ++NumAndsAdded;
6558 return true;
6561 /// Check if V (an operand of a select instruction) is an expensive instruction
6562 /// that is only used once.
6563 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6564 auto *I = dyn_cast<Instruction>(V);
6565 // If it's safe to speculatively execute, then it should not have side
6566 // effects; therefore, it's safe to sink and possibly *not* execute.
6567 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6568 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >=
6569 TargetTransformInfo::TCC_Expensive;
6572 /// Returns true if a SelectInst should be turned into an explicit branch.
6573 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6574 const TargetLowering *TLI,
6575 SelectInst *SI) {
6576 // If even a predictable select is cheap, then a branch can't be cheaper.
6577 if (!TLI->isPredictableSelectExpensive())
6578 return false;
6580 // FIXME: This should use the same heuristics as IfConversion to determine
6581 // whether a select is better represented as a branch.
6583 // If metadata tells us that the select condition is obviously predictable,
6584 // then we want to replace the select with a branch.
6585 uint64_t TrueWeight, FalseWeight;
6586 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
6587 uint64_t Max = std::max(TrueWeight, FalseWeight);
6588 uint64_t Sum = TrueWeight + FalseWeight;
6589 if (Sum != 0) {
6590 auto Probability = BranchProbability::getBranchProbability(Max, Sum);
6591 if (Probability > TTI->getPredictableBranchThreshold())
6592 return true;
6596 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
6598 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6599 // comparison condition. If the compare has more than one use, there's
6600 // probably another cmov or setcc around, so it's not worth emitting a branch.
6601 if (!Cmp || !Cmp->hasOneUse())
6602 return false;
6604 // If either operand of the select is expensive and only needed on one side
6605 // of the select, we should form a branch.
6606 if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6607 sinkSelectOperand(TTI, SI->getFalseValue()))
6608 return true;
6610 return false;
6613 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6614 /// false value of \p SI. If the true/false value of \p SI is defined by any
6615 /// select instructions in \p Selects, look through the defining select
6616 /// instruction until the true/false value is not defined in \p Selects.
6617 static Value *getTrueOrFalseValue(
6618 SelectInst *SI, bool isTrue,
6619 const SmallPtrSet<const Instruction *, 2> &Selects) {
6620 Value *V = nullptr;
6622 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6623 DefSI = dyn_cast<SelectInst>(V)) {
6624 assert(DefSI->getCondition() == SI->getCondition() &&
6625 "The condition of DefSI does not match with SI");
6626 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6629 assert(V && "Failed to get select true/false value");
6630 return V;
6633 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6634 assert(Shift->isShift() && "Expected a shift");
6636 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6637 // general vector shifts, and (3) the shift amount is a select-of-splatted
6638 // values, hoist the shifts before the select:
6639 // shift Op0, (select Cond, TVal, FVal) -->
6640 // select Cond, (shift Op0, TVal), (shift Op0, FVal)
6642 // This is inverting a generic IR transform when we know that the cost of a
6643 // general vector shift is more than the cost of 2 shift-by-scalars.
6644 // We can't do this effectively in SDAG because we may not be able to
6645 // determine if the select operands are splats from within a basic block.
6646 Type *Ty = Shift->getType();
6647 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6648 return false;
6649 Value *Cond, *TVal, *FVal;
6650 if (!match(Shift->getOperand(1),
6651 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6652 return false;
6653 if (!isSplatValue(TVal) || !isSplatValue(FVal))
6654 return false;
6656 IRBuilder<> Builder(Shift);
6657 BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6658 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6659 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6660 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6661 Shift->replaceAllUsesWith(NewSel);
6662 Shift->eraseFromParent();
6663 return true;
6666 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
6667 Intrinsic::ID Opcode = Fsh->getIntrinsicID();
6668 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
6669 "Expected a funnel shift");
6671 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6672 // than general vector shifts, and (3) the shift amount is select-of-splatted
6673 // values, hoist the funnel shifts before the select:
6674 // fsh Op0, Op1, (select Cond, TVal, FVal) -->
6675 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6677 // This is inverting a generic IR transform when we know that the cost of a
6678 // general vector shift is more than the cost of 2 shift-by-scalars.
6679 // We can't do this effectively in SDAG because we may not be able to
6680 // determine if the select operands are splats from within a basic block.
6681 Type *Ty = Fsh->getType();
6682 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6683 return false;
6684 Value *Cond, *TVal, *FVal;
6685 if (!match(Fsh->getOperand(2),
6686 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6687 return false;
6688 if (!isSplatValue(TVal) || !isSplatValue(FVal))
6689 return false;
6691 IRBuilder<> Builder(Fsh);
6692 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
6693 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal });
6694 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal });
6695 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6696 Fsh->replaceAllUsesWith(NewSel);
6697 Fsh->eraseFromParent();
6698 return true;
6701 /// If we have a SelectInst that will likely profit from branch prediction,
6702 /// turn it into a branch.
6703 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6704 if (DisableSelectToBranch)
6705 return false;
6707 // Find all consecutive select instructions that share the same condition.
6708 SmallVector<SelectInst *, 2> ASI;
6709 ASI.push_back(SI);
6710 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6711 It != SI->getParent()->end(); ++It) {
6712 SelectInst *I = dyn_cast<SelectInst>(&*It);
6713 if (I && SI->getCondition() == I->getCondition()) {
6714 ASI.push_back(I);
6715 } else {
6716 break;
6720 SelectInst *LastSI = ASI.back();
6721 // Increment the current iterator to skip all the rest of select instructions
6722 // because they will be either "not lowered" or "all lowered" to branch.
6723 CurInstIterator = std::next(LastSI->getIterator());
6725 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6727 // Can we convert the 'select' to CF ?
6728 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6729 return false;
6731 TargetLowering::SelectSupportKind SelectKind;
6732 if (VectorCond)
6733 SelectKind = TargetLowering::VectorMaskSelect;
6734 else if (SI->getType()->isVectorTy())
6735 SelectKind = TargetLowering::ScalarCondVectorVal;
6736 else
6737 SelectKind = TargetLowering::ScalarValSelect;
6739 if (TLI->isSelectSupported(SelectKind) &&
6740 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
6741 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
6742 return false;
6744 // The DominatorTree needs to be rebuilt by any consumers after this
6745 // transformation. We simply reset here rather than setting the ModifiedDT
6746 // flag to avoid restarting the function walk in runOnFunction for each
6747 // select optimized.
6748 DT.reset();
6750 // Transform a sequence like this:
6751 // start:
6752 // %cmp = cmp uge i32 %a, %b
6753 // %sel = select i1 %cmp, i32 %c, i32 %d
6755 // Into:
6756 // start:
6757 // %cmp = cmp uge i32 %a, %b
6758 // %cmp.frozen = freeze %cmp
6759 // br i1 %cmp.frozen, label %select.true, label %select.false
6760 // select.true:
6761 // br label %select.end
6762 // select.false:
6763 // br label %select.end
6764 // select.end:
6765 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6767 // %cmp should be frozen, otherwise it may introduce undefined behavior.
6768 // In addition, we may sink instructions that produce %c or %d from
6769 // the entry block into the destination(s) of the new branch.
6770 // If the true or false blocks do not contain a sunken instruction, that
6771 // block and its branch may be optimized away. In that case, one side of the
6772 // first branch will point directly to select.end, and the corresponding PHI
6773 // predecessor block will be the start block.
6775 // First, we split the block containing the select into 2 blocks.
6776 BasicBlock *StartBlock = SI->getParent();
6777 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6778 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6779 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6781 // Delete the unconditional branch that was just created by the split.
6782 StartBlock->getTerminator()->eraseFromParent();
6784 // These are the new basic blocks for the conditional branch.
6785 // At least one will become an actual new basic block.
6786 BasicBlock *TrueBlock = nullptr;
6787 BasicBlock *FalseBlock = nullptr;
6788 BranchInst *TrueBranch = nullptr;
6789 BranchInst *FalseBranch = nullptr;
6791 // Sink expensive instructions into the conditional blocks to avoid executing
6792 // them speculatively.
6793 for (SelectInst *SI : ASI) {
6794 if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6795 if (TrueBlock == nullptr) {
6796 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6797 EndBlock->getParent(), EndBlock);
6798 TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6799 TrueBranch->setDebugLoc(SI->getDebugLoc());
6801 auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6802 TrueInst->moveBefore(TrueBranch);
6804 if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6805 if (FalseBlock == nullptr) {
6806 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6807 EndBlock->getParent(), EndBlock);
6808 FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6809 FalseBranch->setDebugLoc(SI->getDebugLoc());
6811 auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6812 FalseInst->moveBefore(FalseBranch);
6816 // If there was nothing to sink, then arbitrarily choose the 'false' side
6817 // for a new input value to the PHI.
6818 if (TrueBlock == FalseBlock) {
6819 assert(TrueBlock == nullptr &&
6820 "Unexpected basic block transform while optimizing select");
6822 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6823 EndBlock->getParent(), EndBlock);
6824 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6825 FalseBranch->setDebugLoc(SI->getDebugLoc());
6828 // Insert the real conditional branch based on the original condition.
6829 // If we did not create a new block for one of the 'true' or 'false' paths
6830 // of the condition, it means that side of the branch goes to the end block
6831 // directly and the path originates from the start block from the point of
6832 // view of the new PHI.
6833 BasicBlock *TT, *FT;
6834 if (TrueBlock == nullptr) {
6835 TT = EndBlock;
6836 FT = FalseBlock;
6837 TrueBlock = StartBlock;
6838 } else if (FalseBlock == nullptr) {
6839 TT = TrueBlock;
6840 FT = EndBlock;
6841 FalseBlock = StartBlock;
6842 } else {
6843 TT = TrueBlock;
6844 FT = FalseBlock;
6846 IRBuilder<> IB(SI);
6847 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
6848 IB.CreateCondBr(CondFr, TT, FT, SI);
6850 SmallPtrSet<const Instruction *, 2> INS;
6851 INS.insert(ASI.begin(), ASI.end());
6852 // Use reverse iterator because later select may use the value of the
6853 // earlier select, and we need to propagate value through earlier select
6854 // to get the PHI operand.
6855 for (SelectInst *SI : llvm::reverse(ASI)) {
6856 // The select itself is replaced with a PHI Node.
6857 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6858 PN->takeName(SI);
6859 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6860 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6861 PN->setDebugLoc(SI->getDebugLoc());
6863 SI->replaceAllUsesWith(PN);
6864 SI->eraseFromParent();
6865 INS.erase(SI);
6866 ++NumSelectsExpanded;
6869 // Instruct OptimizeBlock to skip to the next block.
6870 CurInstIterator = StartBlock->end();
6871 return true;
6874 /// Some targets only accept certain types for splat inputs. For example a VDUP
6875 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
6876 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
6877 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6878 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
6879 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
6880 m_Undef(), m_ZeroMask())))
6881 return false;
6882 Type *NewType = TLI->shouldConvertSplatType(SVI);
6883 if (!NewType)
6884 return false;
6886 auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
6887 assert(!NewType->isVectorTy() && "Expected a scalar type!");
6888 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
6889 "Expected a type of the same size!");
6890 auto *NewVecType =
6891 FixedVectorType::get(NewType, SVIVecType->getNumElements());
6893 // Create a bitcast (shuffle (insert (bitcast(..))))
6894 IRBuilder<> Builder(SVI->getContext());
6895 Builder.SetInsertPoint(SVI);
6896 Value *BC1 = Builder.CreateBitCast(
6897 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
6898 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
6899 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
6901 SVI->replaceAllUsesWith(BC2);
6902 RecursivelyDeleteTriviallyDeadInstructions(
6903 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
6905 // Also hoist the bitcast up to its operand if it they are not in the same
6906 // block.
6907 if (auto *BCI = dyn_cast<Instruction>(BC1))
6908 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
6909 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
6910 !Op->isTerminator() && !Op->isEHPad())
6911 BCI->moveAfter(Op);
6913 return true;
6916 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6917 // If the operands of I can be folded into a target instruction together with
6918 // I, duplicate and sink them.
6919 SmallVector<Use *, 4> OpsToSink;
6920 if (!TLI->shouldSinkOperands(I, OpsToSink))
6921 return false;
6923 // OpsToSink can contain multiple uses in a use chain (e.g.
6924 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6925 // uses must come first, so we process the ops in reverse order so as to not
6926 // create invalid IR.
6927 BasicBlock *TargetBB = I->getParent();
6928 bool Changed = false;
6929 SmallVector<Use *, 4> ToReplace;
6930 Instruction *InsertPoint = I;
6931 DenseMap<const Instruction *, unsigned long> InstOrdering;
6932 unsigned long InstNumber = 0;
6933 for (const auto &I : *TargetBB)
6934 InstOrdering[&I] = InstNumber++;
6936 for (Use *U : reverse(OpsToSink)) {
6937 auto *UI = cast<Instruction>(U->get());
6938 if (isa<PHINode>(UI))
6939 continue;
6940 if (UI->getParent() == TargetBB) {
6941 if (InstOrdering[UI] < InstOrdering[InsertPoint])
6942 InsertPoint = UI;
6943 continue;
6945 ToReplace.push_back(U);
6948 SetVector<Instruction *> MaybeDead;
6949 DenseMap<Instruction *, Instruction *> NewInstructions;
6950 for (Use *U : ToReplace) {
6951 auto *UI = cast<Instruction>(U->get());
6952 Instruction *NI = UI->clone();
6953 NewInstructions[UI] = NI;
6954 MaybeDead.insert(UI);
6955 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6956 NI->insertBefore(InsertPoint);
6957 InsertPoint = NI;
6958 InsertedInsts.insert(NI);
6960 // Update the use for the new instruction, making sure that we update the
6961 // sunk instruction uses, if it is part of a chain that has already been
6962 // sunk.
6963 Instruction *OldI = cast<Instruction>(U->getUser());
6964 if (NewInstructions.count(OldI))
6965 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6966 else
6967 U->set(NI);
6968 Changed = true;
6971 // Remove instructions that are dead after sinking.
6972 for (auto *I : MaybeDead) {
6973 if (!I->hasNUsesOrMore(1)) {
6974 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6975 I->eraseFromParent();
6979 return Changed;
6982 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6983 Value *Cond = SI->getCondition();
6984 Type *OldType = Cond->getType();
6985 LLVMContext &Context = Cond->getContext();
6986 EVT OldVT = TLI->getValueType(*DL, OldType);
6987 MVT RegType = TLI->getRegisterType(Context, OldVT);
6988 unsigned RegWidth = RegType.getSizeInBits();
6990 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6991 return false;
6993 // If the register width is greater than the type width, expand the condition
6994 // of the switch instruction and each case constant to the width of the
6995 // register. By widening the type of the switch condition, subsequent
6996 // comparisons (for case comparisons) will not need to be extended to the
6997 // preferred register width, so we will potentially eliminate N-1 extends,
6998 // where N is the number of cases in the switch.
6999 auto *NewType = Type::getIntNTy(Context, RegWidth);
7001 // Extend the switch condition and case constants using the target preferred
7002 // extend unless the switch condition is a function argument with an extend
7003 // attribute. In that case, we can avoid an unnecessary mask/extension by
7004 // matching the argument extension instead.
7005 Instruction::CastOps ExtType = Instruction::ZExt;
7006 // Some targets prefer SExt over ZExt.
7007 if (TLI->isSExtCheaperThanZExt(OldVT, RegType))
7008 ExtType = Instruction::SExt;
7010 if (auto *Arg = dyn_cast<Argument>(Cond)) {
7011 if (Arg->hasSExtAttr())
7012 ExtType = Instruction::SExt;
7013 if (Arg->hasZExtAttr())
7014 ExtType = Instruction::ZExt;
7017 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
7018 ExtInst->insertBefore(SI);
7019 ExtInst->setDebugLoc(SI->getDebugLoc());
7020 SI->setCondition(ExtInst);
7021 for (auto Case : SI->cases()) {
7022 APInt NarrowConst = Case.getCaseValue()->getValue();
7023 APInt WideConst = (ExtType == Instruction::ZExt) ?
7024 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
7025 Case.setValue(ConstantInt::get(Context, WideConst));
7028 return true;
7032 namespace {
7034 /// Helper class to promote a scalar operation to a vector one.
7035 /// This class is used to move downward extractelement transition.
7036 /// E.g.,
7037 /// a = vector_op <2 x i32>
7038 /// b = extractelement <2 x i32> a, i32 0
7039 /// c = scalar_op b
7040 /// store c
7042 /// =>
7043 /// a = vector_op <2 x i32>
7044 /// c = vector_op a (equivalent to scalar_op on the related lane)
7045 /// * d = extractelement <2 x i32> c, i32 0
7046 /// * store d
7047 /// Assuming both extractelement and store can be combine, we get rid of the
7048 /// transition.
7049 class VectorPromoteHelper {
7050 /// DataLayout associated with the current module.
7051 const DataLayout &DL;
7053 /// Used to perform some checks on the legality of vector operations.
7054 const TargetLowering &TLI;
7056 /// Used to estimated the cost of the promoted chain.
7057 const TargetTransformInfo &TTI;
7059 /// The transition being moved downwards.
7060 Instruction *Transition;
7062 /// The sequence of instructions to be promoted.
7063 SmallVector<Instruction *, 4> InstsToBePromoted;
7065 /// Cost of combining a store and an extract.
7066 unsigned StoreExtractCombineCost;
7068 /// Instruction that will be combined with the transition.
7069 Instruction *CombineInst = nullptr;
7071 /// The instruction that represents the current end of the transition.
7072 /// Since we are faking the promotion until we reach the end of the chain
7073 /// of computation, we need a way to get the current end of the transition.
7074 Instruction *getEndOfTransition() const {
7075 if (InstsToBePromoted.empty())
7076 return Transition;
7077 return InstsToBePromoted.back();
7080 /// Return the index of the original value in the transition.
7081 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7082 /// c, is at index 0.
7083 unsigned getTransitionOriginalValueIdx() const {
7084 assert(isa<ExtractElementInst>(Transition) &&
7085 "Other kind of transitions are not supported yet");
7086 return 0;
7089 /// Return the index of the index in the transition.
7090 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7091 /// is at index 1.
7092 unsigned getTransitionIdx() const {
7093 assert(isa<ExtractElementInst>(Transition) &&
7094 "Other kind of transitions are not supported yet");
7095 return 1;
7098 /// Get the type of the transition.
7099 /// This is the type of the original value.
7100 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7101 /// transition is <2 x i32>.
7102 Type *getTransitionType() const {
7103 return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
7106 /// Promote \p ToBePromoted by moving \p Def downward through.
7107 /// I.e., we have the following sequence:
7108 /// Def = Transition <ty1> a to <ty2>
7109 /// b = ToBePromoted <ty2> Def, ...
7110 /// =>
7111 /// b = ToBePromoted <ty1> a, ...
7112 /// Def = Transition <ty1> ToBePromoted to <ty2>
7113 void promoteImpl(Instruction *ToBePromoted);
7115 /// Check whether or not it is profitable to promote all the
7116 /// instructions enqueued to be promoted.
7117 bool isProfitableToPromote() {
7118 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
7119 unsigned Index = isa<ConstantInt>(ValIdx)
7120 ? cast<ConstantInt>(ValIdx)->getZExtValue()
7121 : -1;
7122 Type *PromotedType = getTransitionType();
7124 StoreInst *ST = cast<StoreInst>(CombineInst);
7125 unsigned AS = ST->getPointerAddressSpace();
7126 // Check if this store is supported.
7127 if (!TLI.allowsMisalignedMemoryAccesses(
7128 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
7129 ST->getAlign())) {
7130 // If this is not supported, there is no way we can combine
7131 // the extract with the store.
7132 return false;
7135 // The scalar chain of computation has to pay for the transition
7136 // scalar to vector.
7137 // The vector chain has to account for the combining cost.
7138 InstructionCost ScalarCost =
7139 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
7140 InstructionCost VectorCost = StoreExtractCombineCost;
7141 enum TargetTransformInfo::TargetCostKind CostKind =
7142 TargetTransformInfo::TCK_RecipThroughput;
7143 for (const auto &Inst : InstsToBePromoted) {
7144 // Compute the cost.
7145 // By construction, all instructions being promoted are arithmetic ones.
7146 // Moreover, one argument is a constant that can be viewed as a splat
7147 // constant.
7148 Value *Arg0 = Inst->getOperand(0);
7149 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
7150 isa<ConstantFP>(Arg0);
7151 TargetTransformInfo::OperandValueKind Arg0OVK =
7152 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
7153 : TargetTransformInfo::OK_AnyValue;
7154 TargetTransformInfo::OperandValueKind Arg1OVK =
7155 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
7156 : TargetTransformInfo::OK_AnyValue;
7157 ScalarCost += TTI.getArithmeticInstrCost(
7158 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK);
7159 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
7160 CostKind,
7161 Arg0OVK, Arg1OVK);
7163 LLVM_DEBUG(
7164 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7165 << ScalarCost << "\nVector: " << VectorCost << '\n');
7166 return ScalarCost > VectorCost;
7169 /// Generate a constant vector with \p Val with the same
7170 /// number of elements as the transition.
7171 /// \p UseSplat defines whether or not \p Val should be replicated
7172 /// across the whole vector.
7173 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7174 /// otherwise we generate a vector with as many undef as possible:
7175 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7176 /// used at the index of the extract.
7177 Value *getConstantVector(Constant *Val, bool UseSplat) const {
7178 unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
7179 if (!UseSplat) {
7180 // If we cannot determine where the constant must be, we have to
7181 // use a splat constant.
7182 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
7183 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
7184 ExtractIdx = CstVal->getSExtValue();
7185 else
7186 UseSplat = true;
7189 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
7190 if (UseSplat)
7191 return ConstantVector::getSplat(EC, Val);
7193 if (!EC.isScalable()) {
7194 SmallVector<Constant *, 4> ConstVec;
7195 UndefValue *UndefVal = UndefValue::get(Val->getType());
7196 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7197 if (Idx == ExtractIdx)
7198 ConstVec.push_back(Val);
7199 else
7200 ConstVec.push_back(UndefVal);
7202 return ConstantVector::get(ConstVec);
7203 } else
7204 llvm_unreachable(
7205 "Generate scalable vector for non-splat is unimplemented");
7208 /// Check if promoting to a vector type an operand at \p OperandIdx
7209 /// in \p Use can trigger undefined behavior.
7210 static bool canCauseUndefinedBehavior(const Instruction *Use,
7211 unsigned OperandIdx) {
7212 // This is not safe to introduce undef when the operand is on
7213 // the right hand side of a division-like instruction.
7214 if (OperandIdx != 1)
7215 return false;
7216 switch (Use->getOpcode()) {
7217 default:
7218 return false;
7219 case Instruction::SDiv:
7220 case Instruction::UDiv:
7221 case Instruction::SRem:
7222 case Instruction::URem:
7223 return true;
7224 case Instruction::FDiv:
7225 case Instruction::FRem:
7226 return !Use->hasNoNaNs();
7228 llvm_unreachable(nullptr);
7231 public:
7232 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7233 const TargetTransformInfo &TTI, Instruction *Transition,
7234 unsigned CombineCost)
7235 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7236 StoreExtractCombineCost(CombineCost) {
7237 assert(Transition && "Do not know how to promote null");
7240 /// Check if we can promote \p ToBePromoted to \p Type.
7241 bool canPromote(const Instruction *ToBePromoted) const {
7242 // We could support CastInst too.
7243 return isa<BinaryOperator>(ToBePromoted);
7246 /// Check if it is profitable to promote \p ToBePromoted
7247 /// by moving downward the transition through.
7248 bool shouldPromote(const Instruction *ToBePromoted) const {
7249 // Promote only if all the operands can be statically expanded.
7250 // Indeed, we do not want to introduce any new kind of transitions.
7251 for (const Use &U : ToBePromoted->operands()) {
7252 const Value *Val = U.get();
7253 if (Val == getEndOfTransition()) {
7254 // If the use is a division and the transition is on the rhs,
7255 // we cannot promote the operation, otherwise we may create a
7256 // division by zero.
7257 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7258 return false;
7259 continue;
7261 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7262 !isa<ConstantFP>(Val))
7263 return false;
7265 // Check that the resulting operation is legal.
7266 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7267 if (!ISDOpcode)
7268 return false;
7269 return StressStoreExtract ||
7270 TLI.isOperationLegalOrCustom(
7271 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7274 /// Check whether or not \p Use can be combined
7275 /// with the transition.
7276 /// I.e., is it possible to do Use(Transition) => AnotherUse?
7277 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7279 /// Record \p ToBePromoted as part of the chain to be promoted.
7280 void enqueueForPromotion(Instruction *ToBePromoted) {
7281 InstsToBePromoted.push_back(ToBePromoted);
7284 /// Set the instruction that will be combined with the transition.
7285 void recordCombineInstruction(Instruction *ToBeCombined) {
7286 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7287 CombineInst = ToBeCombined;
7290 /// Promote all the instructions enqueued for promotion if it is
7291 /// is profitable.
7292 /// \return True if the promotion happened, false otherwise.
7293 bool promote() {
7294 // Check if there is something to promote.
7295 // Right now, if we do not have anything to combine with,
7296 // we assume the promotion is not profitable.
7297 if (InstsToBePromoted.empty() || !CombineInst)
7298 return false;
7300 // Check cost.
7301 if (!StressStoreExtract && !isProfitableToPromote())
7302 return false;
7304 // Promote.
7305 for (auto &ToBePromoted : InstsToBePromoted)
7306 promoteImpl(ToBePromoted);
7307 InstsToBePromoted.clear();
7308 return true;
7312 } // end anonymous namespace
7314 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7315 // At this point, we know that all the operands of ToBePromoted but Def
7316 // can be statically promoted.
7317 // For Def, we need to use its parameter in ToBePromoted:
7318 // b = ToBePromoted ty1 a
7319 // Def = Transition ty1 b to ty2
7320 // Move the transition down.
7321 // 1. Replace all uses of the promoted operation by the transition.
7322 // = ... b => = ... Def.
7323 assert(ToBePromoted->getType() == Transition->getType() &&
7324 "The type of the result of the transition does not match "
7325 "the final type");
7326 ToBePromoted->replaceAllUsesWith(Transition);
7327 // 2. Update the type of the uses.
7328 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7329 Type *TransitionTy = getTransitionType();
7330 ToBePromoted->mutateType(TransitionTy);
7331 // 3. Update all the operands of the promoted operation with promoted
7332 // operands.
7333 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7334 for (Use &U : ToBePromoted->operands()) {
7335 Value *Val = U.get();
7336 Value *NewVal = nullptr;
7337 if (Val == Transition)
7338 NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7339 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7340 isa<ConstantFP>(Val)) {
7341 // Use a splat constant if it is not safe to use undef.
7342 NewVal = getConstantVector(
7343 cast<Constant>(Val),
7344 isa<UndefValue>(Val) ||
7345 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7346 } else
7347 llvm_unreachable("Did you modified shouldPromote and forgot to update "
7348 "this?");
7349 ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7351 Transition->moveAfter(ToBePromoted);
7352 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7355 /// Some targets can do store(extractelement) with one instruction.
7356 /// Try to push the extractelement towards the stores when the target
7357 /// has this feature and this is profitable.
7358 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7359 unsigned CombineCost = std::numeric_limits<unsigned>::max();
7360 if (DisableStoreExtract ||
7361 (!StressStoreExtract &&
7362 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7363 Inst->getOperand(1), CombineCost)))
7364 return false;
7366 // At this point we know that Inst is a vector to scalar transition.
7367 // Try to move it down the def-use chain, until:
7368 // - We can combine the transition with its single use
7369 // => we got rid of the transition.
7370 // - We escape the current basic block
7371 // => we would need to check that we are moving it at a cheaper place and
7372 // we do not do that for now.
7373 BasicBlock *Parent = Inst->getParent();
7374 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7375 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7376 // If the transition has more than one use, assume this is not going to be
7377 // beneficial.
7378 while (Inst->hasOneUse()) {
7379 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7380 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7382 if (ToBePromoted->getParent() != Parent) {
7383 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7384 << ToBePromoted->getParent()->getName()
7385 << ") than the transition (" << Parent->getName()
7386 << ").\n");
7387 return false;
7390 if (VPH.canCombine(ToBePromoted)) {
7391 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7392 << "will be combined with: " << *ToBePromoted << '\n');
7393 VPH.recordCombineInstruction(ToBePromoted);
7394 bool Changed = VPH.promote();
7395 NumStoreExtractExposed += Changed;
7396 return Changed;
7399 LLVM_DEBUG(dbgs() << "Try promoting.\n");
7400 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7401 return false;
7403 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7405 VPH.enqueueForPromotion(ToBePromoted);
7406 Inst = ToBePromoted;
7408 return false;
7411 /// For the instruction sequence of store below, F and I values
7412 /// are bundled together as an i64 value before being stored into memory.
7413 /// Sometimes it is more efficient to generate separate stores for F and I,
7414 /// which can remove the bitwise instructions or sink them to colder places.
7416 /// (store (or (zext (bitcast F to i32) to i64),
7417 /// (shl (zext I to i64), 32)), addr) -->
7418 /// (store F, addr) and (store I, addr+4)
7420 /// Similarly, splitting for other merged store can also be beneficial, like:
7421 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7422 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7423 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7424 /// For pair of {i16, i8}, i32 store --> two i16 stores.
7425 /// For pair of {i8, i8}, i16 store --> two i8 stores.
7427 /// We allow each target to determine specifically which kind of splitting is
7428 /// supported.
7430 /// The store patterns are commonly seen from the simple code snippet below
7431 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7432 /// void goo(const std::pair<int, float> &);
7433 /// hoo() {
7434 /// ...
7435 /// goo(std::make_pair(tmp, ftmp));
7436 /// ...
7437 /// }
7439 /// Although we already have similar splitting in DAG Combine, we duplicate
7440 /// it in CodeGenPrepare to catch the case in which pattern is across
7441 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7442 /// during code expansion.
7443 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7444 const TargetLowering &TLI) {
7445 // Handle simple but common cases only.
7446 Type *StoreType = SI.getValueOperand()->getType();
7448 // The code below assumes shifting a value by <number of bits>,
7449 // whereas scalable vectors would have to be shifted by
7450 // <2log(vscale) + number of bits> in order to store the
7451 // low/high parts. Bailing out for now.
7452 if (isa<ScalableVectorType>(StoreType))
7453 return false;
7455 if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7456 DL.getTypeSizeInBits(StoreType) == 0)
7457 return false;
7459 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7460 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7461 if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7462 return false;
7464 // Don't split the store if it is volatile.
7465 if (SI.isVolatile())
7466 return false;
7468 // Match the following patterns:
7469 // (store (or (zext LValue to i64),
7470 // (shl (zext HValue to i64), 32)), HalfValBitSize)
7471 // or
7472 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7473 // (zext LValue to i64),
7474 // Expect both operands of OR and the first operand of SHL have only
7475 // one use.
7476 Value *LValue, *HValue;
7477 if (!match(SI.getValueOperand(),
7478 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
7479 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
7480 m_SpecificInt(HalfValBitSize))))))
7481 return false;
7483 // Check LValue and HValue are int with size less or equal than 32.
7484 if (!LValue->getType()->isIntegerTy() ||
7485 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
7486 !HValue->getType()->isIntegerTy() ||
7487 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
7488 return false;
7490 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7491 // as the input of target query.
7492 auto *LBC = dyn_cast<BitCastInst>(LValue);
7493 auto *HBC = dyn_cast<BitCastInst>(HValue);
7494 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
7495 : EVT::getEVT(LValue->getType());
7496 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
7497 : EVT::getEVT(HValue->getType());
7498 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
7499 return false;
7501 // Start to split store.
7502 IRBuilder<> Builder(SI.getContext());
7503 Builder.SetInsertPoint(&SI);
7505 // If LValue/HValue is a bitcast in another BB, create a new one in current
7506 // BB so it may be merged with the splitted stores by dag combiner.
7507 if (LBC && LBC->getParent() != SI.getParent())
7508 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
7509 if (HBC && HBC->getParent() != SI.getParent())
7510 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
7512 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
7513 auto CreateSplitStore = [&](Value *V, bool Upper) {
7514 V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
7515 Value *Addr = Builder.CreateBitCast(
7516 SI.getOperand(1),
7517 SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
7518 Align Alignment = SI.getAlign();
7519 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
7520 if (IsOffsetStore) {
7521 Addr = Builder.CreateGEP(
7522 SplitStoreType, Addr,
7523 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
7525 // When splitting the store in half, naturally one half will retain the
7526 // alignment of the original wider store, regardless of whether it was
7527 // over-aligned or not, while the other will require adjustment.
7528 Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
7530 Builder.CreateAlignedStore(V, Addr, Alignment);
7533 CreateSplitStore(LValue, false);
7534 CreateSplitStore(HValue, true);
7536 // Delete the old store.
7537 SI.eraseFromParent();
7538 return true;
7541 // Return true if the GEP has two operands, the first operand is of a sequential
7542 // type, and the second operand is a constant.
7543 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
7544 gep_type_iterator I = gep_type_begin(*GEP);
7545 return GEP->getNumOperands() == 2 &&
7546 I.isSequential() &&
7547 isa<ConstantInt>(GEP->getOperand(1));
7550 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7551 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7552 // reducing liveness interference across those edges benefits global register
7553 // allocation. Currently handles only certain cases.
7555 // For example, unmerge %GEPI and %UGEPI as below.
7557 // ---------- BEFORE ----------
7558 // SrcBlock:
7559 // ...
7560 // %GEPIOp = ...
7561 // ...
7562 // %GEPI = gep %GEPIOp, Idx
7563 // ...
7564 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7565 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7566 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7567 // %UGEPI)
7569 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7570 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7571 // ...
7573 // DstBi:
7574 // ...
7575 // %UGEPI = gep %GEPIOp, UIdx
7576 // ...
7577 // ---------------------------
7579 // ---------- AFTER ----------
7580 // SrcBlock:
7581 // ... (same as above)
7582 // (* %GEPI is still alive on the indirectbr edges)
7583 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7584 // unmerging)
7585 // ...
7587 // DstBi:
7588 // ...
7589 // %UGEPI = gep %GEPI, (UIdx-Idx)
7590 // ...
7591 // ---------------------------
7593 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
7594 // no longer alive on them.
7596 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
7597 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
7598 // not to disable further simplications and optimizations as a result of GEP
7599 // merging.
7601 // Note this unmerging may increase the length of the data flow critical path
7602 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
7603 // between the register pressure and the length of data-flow critical
7604 // path. Restricting this to the uncommon IndirectBr case would minimize the
7605 // impact of potentially longer critical path, if any, and the impact on compile
7606 // time.
7607 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
7608 const TargetTransformInfo *TTI) {
7609 BasicBlock *SrcBlock = GEPI->getParent();
7610 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
7611 // (non-IndirectBr) cases exit early here.
7612 if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
7613 return false;
7614 // Check that GEPI is a simple gep with a single constant index.
7615 if (!GEPSequentialConstIndexed(GEPI))
7616 return false;
7617 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
7618 // Check that GEPI is a cheap one.
7619 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
7620 TargetTransformInfo::TCK_SizeAndLatency)
7621 > TargetTransformInfo::TCC_Basic)
7622 return false;
7623 Value *GEPIOp = GEPI->getOperand(0);
7624 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
7625 if (!isa<Instruction>(GEPIOp))
7626 return false;
7627 auto *GEPIOpI = cast<Instruction>(GEPIOp);
7628 if (GEPIOpI->getParent() != SrcBlock)
7629 return false;
7630 // Check that GEP is used outside the block, meaning it's alive on the
7631 // IndirectBr edge(s).
7632 if (find_if(GEPI->users(), [&](User *Usr) {
7633 if (auto *I = dyn_cast<Instruction>(Usr)) {
7634 if (I->getParent() != SrcBlock) {
7635 return true;
7638 return false;
7639 }) == GEPI->users().end())
7640 return false;
7641 // The second elements of the GEP chains to be unmerged.
7642 std::vector<GetElementPtrInst *> UGEPIs;
7643 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7644 // on IndirectBr edges.
7645 for (User *Usr : GEPIOp->users()) {
7646 if (Usr == GEPI) continue;
7647 // Check if Usr is an Instruction. If not, give up.
7648 if (!isa<Instruction>(Usr))
7649 return false;
7650 auto *UI = cast<Instruction>(Usr);
7651 // Check if Usr in the same block as GEPIOp, which is fine, skip.
7652 if (UI->getParent() == SrcBlock)
7653 continue;
7654 // Check if Usr is a GEP. If not, give up.
7655 if (!isa<GetElementPtrInst>(Usr))
7656 return false;
7657 auto *UGEPI = cast<GetElementPtrInst>(Usr);
7658 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7659 // the pointer operand to it. If so, record it in the vector. If not, give
7660 // up.
7661 if (!GEPSequentialConstIndexed(UGEPI))
7662 return false;
7663 if (UGEPI->getOperand(0) != GEPIOp)
7664 return false;
7665 if (GEPIIdx->getType() !=
7666 cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7667 return false;
7668 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7669 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
7670 TargetTransformInfo::TCK_SizeAndLatency)
7671 > TargetTransformInfo::TCC_Basic)
7672 return false;
7673 UGEPIs.push_back(UGEPI);
7675 if (UGEPIs.size() == 0)
7676 return false;
7677 // Check the materializing cost of (Uidx-Idx).
7678 for (GetElementPtrInst *UGEPI : UGEPIs) {
7679 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7680 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7681 InstructionCost ImmCost = TTI->getIntImmCost(
7682 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency);
7683 if (ImmCost > TargetTransformInfo::TCC_Basic)
7684 return false;
7686 // Now unmerge between GEPI and UGEPIs.
7687 for (GetElementPtrInst *UGEPI : UGEPIs) {
7688 UGEPI->setOperand(0, GEPI);
7689 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7690 Constant *NewUGEPIIdx =
7691 ConstantInt::get(GEPIIdx->getType(),
7692 UGEPIIdx->getValue() - GEPIIdx->getValue());
7693 UGEPI->setOperand(1, NewUGEPIIdx);
7694 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7695 // inbounds to avoid UB.
7696 if (!GEPI->isInBounds()) {
7697 UGEPI->setIsInBounds(false);
7700 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7701 // alive on IndirectBr edges).
7702 assert(find_if(GEPIOp->users(), [&](User *Usr) {
7703 return cast<Instruction>(Usr)->getParent() != SrcBlock;
7704 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
7705 return true;
7708 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI) {
7709 // Try and convert
7710 // %c = icmp ult %x, 8
7711 // br %c, bla, blb
7712 // %tc = lshr %x, 3
7713 // to
7714 // %tc = lshr %x, 3
7715 // %c = icmp eq %tc, 0
7716 // br %c, bla, blb
7717 // Creating the cmp to zero can be better for the backend, especially if the
7718 // lshr produces flags that can be used automatically.
7719 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional())
7720 return false;
7722 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition());
7723 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse())
7724 return false;
7726 Value *X = Cmp->getOperand(0);
7727 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue();
7729 for (auto *U : X->users()) {
7730 Instruction *UI = dyn_cast<Instruction>(U);
7731 // A quick dominance check
7732 if (!UI ||
7733 (UI->getParent() != Branch->getParent() &&
7734 UI->getParent() != Branch->getSuccessor(0) &&
7735 UI->getParent() != Branch->getSuccessor(1)) ||
7736 (UI->getParent() != Branch->getParent() &&
7737 !UI->getParent()->getSinglePredecessor()))
7738 continue;
7740 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT &&
7741 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) {
7742 IRBuilder<> Builder(Branch);
7743 if (UI->getParent() != Branch->getParent())
7744 UI->moveBefore(Branch);
7745 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI,
7746 ConstantInt::get(UI->getType(), 0));
7747 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
7748 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
7749 Cmp->replaceAllUsesWith(NewCmp);
7750 return true;
7752 if (Cmp->isEquality() &&
7753 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) ||
7754 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) {
7755 IRBuilder<> Builder(Branch);
7756 if (UI->getParent() != Branch->getParent())
7757 UI->moveBefore(Branch);
7758 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI,
7759 ConstantInt::get(UI->getType(), 0));
7760 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
7761 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
7762 Cmp->replaceAllUsesWith(NewCmp);
7763 return true;
7766 return false;
7769 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7770 // Bail out if we inserted the instruction to prevent optimizations from
7771 // stepping on each other's toes.
7772 if (InsertedInsts.count(I))
7773 return false;
7775 // TODO: Move into the switch on opcode below here.
7776 if (PHINode *P = dyn_cast<PHINode>(I)) {
7777 // It is possible for very late stage optimizations (such as SimplifyCFG)
7778 // to introduce PHI nodes too late to be cleaned up. If we detect such a
7779 // trivial PHI, go ahead and zap it here.
7780 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
7781 LargeOffsetGEPMap.erase(P);
7782 P->replaceAllUsesWith(V);
7783 P->eraseFromParent();
7784 ++NumPHIsElim;
7785 return true;
7787 return false;
7790 if (CastInst *CI = dyn_cast<CastInst>(I)) {
7791 // If the source of the cast is a constant, then this should have
7792 // already been constant folded. The only reason NOT to constant fold
7793 // it is if something (e.g. LSR) was careful to place the constant
7794 // evaluation in a block other than then one that uses it (e.g. to hoist
7795 // the address of globals out of a loop). If this is the case, we don't
7796 // want to forward-subst the cast.
7797 if (isa<Constant>(CI->getOperand(0)))
7798 return false;
7800 if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
7801 return true;
7803 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7804 /// Sink a zext or sext into its user blocks if the target type doesn't
7805 /// fit in one register
7806 if (TLI->getTypeAction(CI->getContext(),
7807 TLI->getValueType(*DL, CI->getType())) ==
7808 TargetLowering::TypeExpandInteger) {
7809 return SinkCast(CI);
7810 } else {
7811 bool MadeChange = optimizeExt(I);
7812 return MadeChange | optimizeExtUses(I);
7815 return false;
7818 if (auto *Cmp = dyn_cast<CmpInst>(I))
7819 if (optimizeCmp(Cmp, ModifiedDT))
7820 return true;
7822 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7823 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7824 bool Modified = optimizeLoadExt(LI);
7825 unsigned AS = LI->getPointerAddressSpace();
7826 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7827 return Modified;
7830 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7831 if (splitMergedValStore(*SI, *DL, *TLI))
7832 return true;
7833 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7834 unsigned AS = SI->getPointerAddressSpace();
7835 return optimizeMemoryInst(I, SI->getOperand(1),
7836 SI->getOperand(0)->getType(), AS);
7839 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7840 unsigned AS = RMW->getPointerAddressSpace();
7841 return optimizeMemoryInst(I, RMW->getPointerOperand(),
7842 RMW->getType(), AS);
7845 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7846 unsigned AS = CmpX->getPointerAddressSpace();
7847 return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7848 CmpX->getCompareOperand()->getType(), AS);
7851 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7853 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking &&
7854 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts))
7855 return true;
7857 // TODO: Move this into the switch on opcode - it handles shifts already.
7858 if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7859 BinOp->getOpcode() == Instruction::LShr)) {
7860 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7861 if (CI && TLI->hasExtractBitsInsn())
7862 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7863 return true;
7866 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7867 if (GEPI->hasAllZeroIndices()) {
7868 /// The GEP operand must be a pointer, so must its result -> BitCast
7869 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7870 GEPI->getName(), GEPI);
7871 NC->setDebugLoc(GEPI->getDebugLoc());
7872 GEPI->replaceAllUsesWith(NC);
7873 GEPI->eraseFromParent();
7874 ++NumGEPsElim;
7875 optimizeInst(NC, ModifiedDT);
7876 return true;
7878 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7879 return true;
7881 return false;
7884 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
7885 // freeze(icmp a, const)) -> icmp (freeze a), const
7886 // This helps generate efficient conditional jumps.
7887 Instruction *CmpI = nullptr;
7888 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
7889 CmpI = II;
7890 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
7891 CmpI = F->getFastMathFlags().none() ? F : nullptr;
7893 if (CmpI && CmpI->hasOneUse()) {
7894 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
7895 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
7896 isa<ConstantPointerNull>(Op0);
7897 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
7898 isa<ConstantPointerNull>(Op1);
7899 if (Const0 || Const1) {
7900 if (!Const0 || !Const1) {
7901 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
7902 F->takeName(FI);
7903 CmpI->setOperand(Const0 ? 1 : 0, F);
7905 FI->replaceAllUsesWith(CmpI);
7906 FI->eraseFromParent();
7907 return true;
7910 return false;
7913 if (tryToSinkFreeOperands(I))
7914 return true;
7916 switch (I->getOpcode()) {
7917 case Instruction::Shl:
7918 case Instruction::LShr:
7919 case Instruction::AShr:
7920 return optimizeShiftInst(cast<BinaryOperator>(I));
7921 case Instruction::Call:
7922 return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7923 case Instruction::Select:
7924 return optimizeSelectInst(cast<SelectInst>(I));
7925 case Instruction::ShuffleVector:
7926 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7927 case Instruction::Switch:
7928 return optimizeSwitchInst(cast<SwitchInst>(I));
7929 case Instruction::ExtractElement:
7930 return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7931 case Instruction::Br:
7932 return optimizeBranch(cast<BranchInst>(I), *TLI);
7935 return false;
7938 /// Given an OR instruction, check to see if this is a bitreverse
7939 /// idiom. If so, insert the new intrinsic and return true.
7940 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
7941 if (!I.getType()->isIntegerTy() ||
7942 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
7943 TLI->getValueType(*DL, I.getType(), true)))
7944 return false;
7946 SmallVector<Instruction*, 4> Insts;
7947 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7948 return false;
7949 Instruction *LastInst = Insts.back();
7950 I.replaceAllUsesWith(LastInst);
7951 RecursivelyDeleteTriviallyDeadInstructions(
7952 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
7953 return true;
7956 // In this pass we look for GEP and cast instructions that are used
7957 // across basic blocks and rewrite them to improve basic-block-at-a-time
7958 // selection.
7959 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7960 SunkAddrs.clear();
7961 bool MadeChange = false;
7963 CurInstIterator = BB.begin();
7964 while (CurInstIterator != BB.end()) {
7965 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7966 if (ModifiedDT)
7967 return true;
7970 bool MadeBitReverse = true;
7971 while (MadeBitReverse) {
7972 MadeBitReverse = false;
7973 for (auto &I : reverse(BB)) {
7974 if (makeBitReverse(I)) {
7975 MadeBitReverse = MadeChange = true;
7976 break;
7980 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7982 return MadeChange;
7985 // Some CGP optimizations may move or alter what's computed in a block. Check
7986 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
7987 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
7988 assert(isa<DbgValueInst>(I));
7989 DbgValueInst &DVI = *cast<DbgValueInst>(I);
7991 // Does this dbg.value refer to a sunk address calculation?
7992 bool AnyChange = false;
7993 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(),
7994 DVI.location_ops().end());
7995 for (Value *Location : LocationOps) {
7996 WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
7997 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
7998 if (SunkAddr) {
7999 // Point dbg.value at locally computed address, which should give the best
8000 // opportunity to be accurately lowered. This update may change the type
8001 // of pointer being referred to; however this makes no difference to
8002 // debugging information, and we can't generate bitcasts that may affect
8003 // codegen.
8004 DVI.replaceVariableLocationOp(Location, SunkAddr);
8005 AnyChange = true;
8008 return AnyChange;
8011 // A llvm.dbg.value may be using a value before its definition, due to
8012 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8013 // them by moving the dbg.value to immediately after the value definition.
8014 // FIXME: Ideally this should never be necessary, and this has the potential
8015 // to re-order dbg.value intrinsics.
8016 bool CodeGenPrepare::placeDbgValues(Function &F) {
8017 bool MadeChange = false;
8018 DominatorTree DT(F);
8020 for (BasicBlock &BB : F) {
8021 for (Instruction &Insn : llvm::make_early_inc_range(BB)) {
8022 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn);
8023 if (!DVI)
8024 continue;
8026 SmallVector<Instruction *, 4> VIs;
8027 for (Value *V : DVI->getValues())
8028 if (Instruction *VI = dyn_cast_or_null<Instruction>(V))
8029 VIs.push_back(VI);
8031 // This DVI may depend on multiple instructions, complicating any
8032 // potential sink. This block takes the defensive approach, opting to
8033 // "undef" the DVI if it has more than one instruction and any of them do
8034 // not dominate DVI.
8035 for (Instruction *VI : VIs) {
8036 if (VI->isTerminator())
8037 continue;
8039 // If VI is a phi in a block with an EHPad terminator, we can't insert
8040 // after it.
8041 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
8042 continue;
8044 // If the defining instruction dominates the dbg.value, we do not need
8045 // to move the dbg.value.
8046 if (DT.dominates(VI, DVI))
8047 continue;
8049 // If we depend on multiple instructions and any of them doesn't
8050 // dominate this DVI, we probably can't salvage it: moving it to
8051 // after any of the instructions could cause us to lose the others.
8052 if (VIs.size() > 1) {
8053 LLVM_DEBUG(
8054 dbgs()
8055 << "Unable to find valid location for Debug Value, undefing:\n"
8056 << *DVI);
8057 DVI->setUndef();
8058 break;
8061 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8062 << *DVI << ' ' << *VI);
8063 DVI->removeFromParent();
8064 if (isa<PHINode>(VI))
8065 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
8066 else
8067 DVI->insertAfter(VI);
8068 MadeChange = true;
8069 ++NumDbgValueMoved;
8073 return MadeChange;
8076 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8077 // probes can be chained dependencies of other regular DAG nodes and block DAG
8078 // combine optimizations.
8079 bool CodeGenPrepare::placePseudoProbes(Function &F) {
8080 bool MadeChange = false;
8081 for (auto &Block : F) {
8082 // Move the rest probes to the beginning of the block.
8083 auto FirstInst = Block.getFirstInsertionPt();
8084 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst())
8085 ++FirstInst;
8086 BasicBlock::iterator I(FirstInst);
8087 I++;
8088 while (I != Block.end()) {
8089 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) {
8090 II->moveBefore(&*FirstInst);
8091 MadeChange = true;
8095 return MadeChange;
8098 /// Scale down both weights to fit into uint32_t.
8099 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
8100 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
8101 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
8102 NewTrue = NewTrue / Scale;
8103 NewFalse = NewFalse / Scale;
8106 /// Some targets prefer to split a conditional branch like:
8107 /// \code
8108 /// %0 = icmp ne i32 %a, 0
8109 /// %1 = icmp ne i32 %b, 0
8110 /// %or.cond = or i1 %0, %1
8111 /// br i1 %or.cond, label %TrueBB, label %FalseBB
8112 /// \endcode
8113 /// into multiple branch instructions like:
8114 /// \code
8115 /// bb1:
8116 /// %0 = icmp ne i32 %a, 0
8117 /// br i1 %0, label %TrueBB, label %bb2
8118 /// bb2:
8119 /// %1 = icmp ne i32 %b, 0
8120 /// br i1 %1, label %TrueBB, label %FalseBB
8121 /// \endcode
8122 /// This usually allows instruction selection to do even further optimizations
8123 /// and combine the compare with the branch instruction. Currently this is
8124 /// applied for targets which have "cheap" jump instructions.
8126 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8128 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
8129 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
8130 return false;
8132 bool MadeChange = false;
8133 for (auto &BB : F) {
8134 // Does this BB end with the following?
8135 // %cond1 = icmp|fcmp|binary instruction ...
8136 // %cond2 = icmp|fcmp|binary instruction ...
8137 // %cond.or = or|and i1 %cond1, cond2
8138 // br i1 %cond.or label %dest1, label %dest2"
8139 Instruction *LogicOp;
8140 BasicBlock *TBB, *FBB;
8141 if (!match(BB.getTerminator(),
8142 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
8143 continue;
8145 auto *Br1 = cast<BranchInst>(BB.getTerminator());
8146 if (Br1->getMetadata(LLVMContext::MD_unpredictable))
8147 continue;
8149 // The merging of mostly empty BB can cause a degenerate branch.
8150 if (TBB == FBB)
8151 continue;
8153 unsigned Opc;
8154 Value *Cond1, *Cond2;
8155 if (match(LogicOp,
8156 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
8157 Opc = Instruction::And;
8158 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
8159 m_OneUse(m_Value(Cond2)))))
8160 Opc = Instruction::Or;
8161 else
8162 continue;
8164 auto IsGoodCond = [](Value *Cond) {
8165 return match(
8166 Cond,
8167 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8168 m_LogicalOr(m_Value(), m_Value()))));
8170 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
8171 continue;
8173 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
8175 // Create a new BB.
8176 auto *TmpBB =
8177 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
8178 BB.getParent(), BB.getNextNode());
8180 // Update original basic block by using the first condition directly by the
8181 // branch instruction and removing the no longer needed and/or instruction.
8182 Br1->setCondition(Cond1);
8183 LogicOp->eraseFromParent();
8185 // Depending on the condition we have to either replace the true or the
8186 // false successor of the original branch instruction.
8187 if (Opc == Instruction::And)
8188 Br1->setSuccessor(0, TmpBB);
8189 else
8190 Br1->setSuccessor(1, TmpBB);
8192 // Fill in the new basic block.
8193 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
8194 if (auto *I = dyn_cast<Instruction>(Cond2)) {
8195 I->removeFromParent();
8196 I->insertBefore(Br2);
8199 // Update PHI nodes in both successors. The original BB needs to be
8200 // replaced in one successor's PHI nodes, because the branch comes now from
8201 // the newly generated BB (NewBB). In the other successor we need to add one
8202 // incoming edge to the PHI nodes, because both branch instructions target
8203 // now the same successor. Depending on the original branch condition
8204 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8205 // we perform the correct update for the PHI nodes.
8206 // This doesn't change the successor order of the just created branch
8207 // instruction (or any other instruction).
8208 if (Opc == Instruction::Or)
8209 std::swap(TBB, FBB);
8211 // Replace the old BB with the new BB.
8212 TBB->replacePhiUsesWith(&BB, TmpBB);
8214 // Add another incoming edge form the new BB.
8215 for (PHINode &PN : FBB->phis()) {
8216 auto *Val = PN.getIncomingValueForBlock(&BB);
8217 PN.addIncoming(Val, TmpBB);
8220 // Update the branch weights (from SelectionDAGBuilder::
8221 // FindMergedConditions).
8222 if (Opc == Instruction::Or) {
8223 // Codegen X | Y as:
8224 // BB1:
8225 // jmp_if_X TBB
8226 // jmp TmpBB
8227 // TmpBB:
8228 // jmp_if_Y TBB
8229 // jmp FBB
8232 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
8233 // The requirement is that
8234 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8235 // = TrueProb for original BB.
8236 // Assuming the original weights are A and B, one choice is to set BB1's
8237 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8238 // assumes that
8239 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8240 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
8241 // TmpBB, but the math is more complicated.
8242 uint64_t TrueWeight, FalseWeight;
8243 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
8244 uint64_t NewTrueWeight = TrueWeight;
8245 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
8246 scaleWeights(NewTrueWeight, NewFalseWeight);
8247 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
8248 .createBranchWeights(TrueWeight, FalseWeight));
8250 NewTrueWeight = TrueWeight;
8251 NewFalseWeight = 2 * FalseWeight;
8252 scaleWeights(NewTrueWeight, NewFalseWeight);
8253 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
8254 .createBranchWeights(TrueWeight, FalseWeight));
8256 } else {
8257 // Codegen X & Y as:
8258 // BB1:
8259 // jmp_if_X TmpBB
8260 // jmp FBB
8261 // TmpBB:
8262 // jmp_if_Y TBB
8263 // jmp FBB
8265 // This requires creation of TmpBB after CurBB.
8267 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
8268 // The requirement is that
8269 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
8270 // = FalseProb for original BB.
8271 // Assuming the original weights are A and B, one choice is to set BB1's
8272 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
8273 // assumes that
8274 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
8275 uint64_t TrueWeight, FalseWeight;
8276 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
8277 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
8278 uint64_t NewFalseWeight = FalseWeight;
8279 scaleWeights(NewTrueWeight, NewFalseWeight);
8280 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
8281 .createBranchWeights(TrueWeight, FalseWeight));
8283 NewTrueWeight = 2 * TrueWeight;
8284 NewFalseWeight = FalseWeight;
8285 scaleWeights(NewTrueWeight, NewFalseWeight);
8286 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
8287 .createBranchWeights(TrueWeight, FalseWeight));
8291 ModifiedDT = true;
8292 MadeChange = true;
8294 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
8295 TmpBB->dump());
8297 return MadeChange;