1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfo.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/IntrinsicsAArch64.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/MDBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Statepoint.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/ValueMap.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/BlockFrequency.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CommandLine.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/MachineValueType.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetMachine.h"
89 #include "llvm/Target/TargetOptions.h"
90 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
91 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
92 #include "llvm/Transforms/Utils/Local.h"
93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
94 #include "llvm/Transforms/Utils/SizeOpts.h"
104 using namespace llvm
;
105 using namespace llvm::PatternMatch
;
107 #define DEBUG_TYPE "codegenprepare"
109 STATISTIC(NumBlocksElim
, "Number of blocks eliminated");
110 STATISTIC(NumPHIsElim
, "Number of trivial PHIs eliminated");
111 STATISTIC(NumGEPsElim
, "Number of GEPs converted to casts");
112 STATISTIC(NumCmpUses
, "Number of uses of Cmp expressions replaced with uses of "
114 STATISTIC(NumCastUses
, "Number of uses of Cast expressions replaced with uses "
116 STATISTIC(NumMemoryInsts
, "Number of memory instructions whose address "
117 "computations were sunk");
118 STATISTIC(NumMemoryInstsPhiCreated
,
119 "Number of phis created when address "
120 "computations were sunk to memory instructions");
121 STATISTIC(NumMemoryInstsSelectCreated
,
122 "Number of select created when address "
123 "computations were sunk to memory instructions");
124 STATISTIC(NumExtsMoved
, "Number of [s|z]ext instructions combined with loads");
125 STATISTIC(NumExtUses
, "Number of uses of [s|z]ext instructions optimized");
126 STATISTIC(NumAndsAdded
,
127 "Number of and mask instructions added to form ext loads");
128 STATISTIC(NumAndUses
, "Number of uses of and mask instructions optimized");
129 STATISTIC(NumRetsDup
, "Number of return instructions duplicated");
130 STATISTIC(NumDbgValueMoved
, "Number of debug value instructions moved");
131 STATISTIC(NumSelectsExpanded
, "Number of selects turned into branches");
132 STATISTIC(NumStoreExtractExposed
, "Number of store(extractelement) exposed");
134 static cl::opt
<bool> DisableBranchOpts(
135 "disable-cgp-branch-opts", cl::Hidden
, cl::init(false),
136 cl::desc("Disable branch optimizations in CodeGenPrepare"));
139 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden
, cl::init(false),
140 cl::desc("Disable GC optimizations in CodeGenPrepare"));
142 static cl::opt
<bool> DisableSelectToBranch(
143 "disable-cgp-select2branch", cl::Hidden
, cl::init(false),
144 cl::desc("Disable select to branch conversion."));
146 static cl::opt
<bool> AddrSinkUsingGEPs(
147 "addr-sink-using-gep", cl::Hidden
, cl::init(true),
148 cl::desc("Address sinking in CGP using GEPs."));
150 static cl::opt
<bool> EnableAndCmpSinking(
151 "enable-andcmp-sinking", cl::Hidden
, cl::init(true),
152 cl::desc("Enable sinkinig and/cmp into branches."));
154 static cl::opt
<bool> DisableStoreExtract(
155 "disable-cgp-store-extract", cl::Hidden
, cl::init(false),
156 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
158 static cl::opt
<bool> StressStoreExtract(
159 "stress-cgp-store-extract", cl::Hidden
, cl::init(false),
160 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
162 static cl::opt
<bool> DisableExtLdPromotion(
163 "disable-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
164 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
167 static cl::opt
<bool> StressExtLdPromotion(
168 "stress-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
169 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
170 "optimization in CodeGenPrepare"));
172 static cl::opt
<bool> DisablePreheaderProtect(
173 "disable-preheader-prot", cl::Hidden
, cl::init(false),
174 cl::desc("Disable protection against removing loop preheaders"));
176 static cl::opt
<bool> ProfileGuidedSectionPrefix(
177 "profile-guided-section-prefix", cl::Hidden
, cl::init(true), cl::ZeroOrMore
,
178 cl::desc("Use profile info to add section prefix for hot/cold functions"));
180 static cl::opt
<bool> ProfileUnknownInSpecialSection(
181 "profile-unknown-in-special-section", cl::Hidden
, cl::init(false),
183 cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
184 "profile, we cannot tell the function is cold for sure because "
185 "it may be a function newly added without ever being sampled. "
186 "With the flag enabled, compiler can put such profile unknown "
187 "functions into a special section, so runtime system can choose "
188 "to handle it in a different way than .text section, to save "
189 "RAM for example. "));
191 static cl::opt
<unsigned> FreqRatioToSkipMerge(
192 "cgp-freq-ratio-to-skip-merge", cl::Hidden
, cl::init(2),
193 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
194 "(frequency of destination block) is greater than this ratio"));
196 static cl::opt
<bool> ForceSplitStore(
197 "force-split-store", cl::Hidden
, cl::init(false),
198 cl::desc("Force store splitting no matter what the target query says."));
201 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden
,
202 cl::desc("Enable merging of redundant sexts when one is dominating"
203 " the other."), cl::init(true));
205 static cl::opt
<bool> DisableComplexAddrModes(
206 "disable-complex-addr-modes", cl::Hidden
, cl::init(false),
207 cl::desc("Disables combining addressing modes with different parts "
208 "in optimizeMemoryInst."));
211 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden
, cl::init(false),
212 cl::desc("Allow creation of Phis in Address sinking."));
215 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden
, cl::init(true),
216 cl::desc("Allow creation of selects in Address sinking."));
218 static cl::opt
<bool> AddrSinkCombineBaseReg(
219 "addr-sink-combine-base-reg", cl::Hidden
, cl::init(true),
220 cl::desc("Allow combining of BaseReg field in Address sinking."));
222 static cl::opt
<bool> AddrSinkCombineBaseGV(
223 "addr-sink-combine-base-gv", cl::Hidden
, cl::init(true),
224 cl::desc("Allow combining of BaseGV field in Address sinking."));
226 static cl::opt
<bool> AddrSinkCombineBaseOffs(
227 "addr-sink-combine-base-offs", cl::Hidden
, cl::init(true),
228 cl::desc("Allow combining of BaseOffs field in Address sinking."));
230 static cl::opt
<bool> AddrSinkCombineScaledReg(
231 "addr-sink-combine-scaled-reg", cl::Hidden
, cl::init(true),
232 cl::desc("Allow combining of ScaledReg field in Address sinking."));
235 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden
,
237 cl::desc("Enable splitting large offset of GEP."));
239 static cl::opt
<bool> EnableICMP_EQToICMP_ST(
240 "cgp-icmp-eq2icmp-st", cl::Hidden
, cl::init(false),
241 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
244 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden
, cl::init(false),
245 cl::desc("Enable BFI update verification for "
248 static cl::opt
<bool> OptimizePhiTypes(
249 "cgp-optimize-phi-types", cl::Hidden
, cl::init(false),
250 cl::desc("Enable converting phi types in CodeGenPrepare"));
255 ZeroExtension
, // Zero extension has been seen.
256 SignExtension
, // Sign extension has been seen.
257 BothExtension
// This extension type is used if we saw sext after
258 // ZeroExtension had been set, or if we saw zext after
259 // SignExtension had been set. It makes the type
260 // information of a promoted instruction invalid.
263 using SetOfInstrs
= SmallPtrSet
<Instruction
*, 16>;
264 using TypeIsSExt
= PointerIntPair
<Type
*, 2, ExtType
>;
265 using InstrToOrigTy
= DenseMap
<Instruction
*, TypeIsSExt
>;
266 using SExts
= SmallVector
<Instruction
*, 16>;
267 using ValueToSExts
= DenseMap
<Value
*, SExts
>;
269 class TypePromotionTransaction
;
271 class CodeGenPrepare
: public FunctionPass
{
272 const TargetMachine
*TM
= nullptr;
273 const TargetSubtargetInfo
*SubtargetInfo
;
274 const TargetLowering
*TLI
= nullptr;
275 const TargetRegisterInfo
*TRI
;
276 const TargetTransformInfo
*TTI
= nullptr;
277 const TargetLibraryInfo
*TLInfo
;
279 std::unique_ptr
<BlockFrequencyInfo
> BFI
;
280 std::unique_ptr
<BranchProbabilityInfo
> BPI
;
281 ProfileSummaryInfo
*PSI
;
283 /// As we scan instructions optimizing them, this is the next instruction
284 /// to optimize. Transforms that can invalidate this should update it.
285 BasicBlock::iterator CurInstIterator
;
287 /// Keeps track of non-local addresses that have been sunk into a block.
288 /// This allows us to avoid inserting duplicate code for blocks with
289 /// multiple load/stores of the same address. The usage of WeakTrackingVH
290 /// enables SunkAddrs to be treated as a cache whose entries can be
291 /// invalidated if a sunken address computation has been erased.
292 ValueMap
<Value
*, WeakTrackingVH
> SunkAddrs
;
294 /// Keeps track of all instructions inserted for the current function.
295 SetOfInstrs InsertedInsts
;
297 /// Keeps track of the type of the related instruction before their
298 /// promotion for the current function.
299 InstrToOrigTy PromotedInsts
;
301 /// Keep track of instructions removed during promotion.
302 SetOfInstrs RemovedInsts
;
304 /// Keep track of sext chains based on their initial value.
305 DenseMap
<Value
*, Instruction
*> SeenChainsForSExt
;
307 /// Keep track of GEPs accessing the same data structures such as structs or
308 /// arrays that are candidates to be split later because of their large
312 SmallVector
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>, 32>>
315 /// Keep track of new GEP base after splitting the GEPs having large offset.
316 SmallSet
<AssertingVH
<Value
>, 2> NewGEPBases
;
318 /// Map serial numbers to Large offset GEPs.
319 DenseMap
<AssertingVH
<GetElementPtrInst
>, int> LargeOffsetGEPID
;
321 /// Keep track of SExt promoted.
322 ValueToSExts ValToSExtendedUses
;
324 /// True if the function has the OptSize attribute.
327 /// DataLayout for the Function being processed.
328 const DataLayout
*DL
= nullptr;
330 /// Building the dominator tree can be expensive, so we only build it
331 /// lazily and update it when required.
332 std::unique_ptr
<DominatorTree
> DT
;
335 static char ID
; // Pass identification, replacement for typeid
337 CodeGenPrepare() : FunctionPass(ID
) {
338 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
341 bool runOnFunction(Function
&F
) override
;
343 StringRef
getPassName() const override
{ return "CodeGen Prepare"; }
345 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
346 // FIXME: When we can selectively preserve passes, preserve the domtree.
347 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
348 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
349 AU
.addRequired
<TargetPassConfig
>();
350 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
351 AU
.addRequired
<LoopInfoWrapperPass
>();
355 template <typename F
>
356 void resetIteratorIfInvalidatedWhileCalling(BasicBlock
*BB
, F f
) {
357 // Substituting can cause recursive simplifications, which can invalidate
358 // our iterator. Use a WeakTrackingVH to hold onto it in case this
360 Value
*CurValue
= &*CurInstIterator
;
361 WeakTrackingVH
IterHandle(CurValue
);
365 // If the iterator instruction was recursively deleted, start over at the
366 // start of the block.
367 if (IterHandle
!= CurValue
) {
368 CurInstIterator
= BB
->begin();
373 // Get the DominatorTree, building if necessary.
374 DominatorTree
&getDT(Function
&F
) {
376 DT
= std::make_unique
<DominatorTree
>(F
);
380 void removeAllAssertingVHReferences(Value
*V
);
381 bool eliminateAssumptions(Function
&F
);
382 bool eliminateFallThrough(Function
&F
);
383 bool eliminateMostlyEmptyBlocks(Function
&F
);
384 BasicBlock
*findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
);
385 bool canMergeBlocks(const BasicBlock
*BB
, const BasicBlock
*DestBB
) const;
386 void eliminateMostlyEmptyBlock(BasicBlock
*BB
);
387 bool isMergingEmptyBlockProfitable(BasicBlock
*BB
, BasicBlock
*DestBB
,
389 bool makeBitReverse(Instruction
&I
);
390 bool optimizeBlock(BasicBlock
&BB
, bool &ModifiedDT
);
391 bool optimizeInst(Instruction
*I
, bool &ModifiedDT
);
392 bool optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
393 Type
*AccessTy
, unsigned AddrSpace
);
394 bool optimizeGatherScatterInst(Instruction
*MemoryInst
, Value
*Ptr
);
395 bool optimizeInlineAsmInst(CallInst
*CS
);
396 bool optimizeCallInst(CallInst
*CI
, bool &ModifiedDT
);
397 bool optimizeExt(Instruction
*&I
);
398 bool optimizeExtUses(Instruction
*I
);
399 bool optimizeLoadExt(LoadInst
*Load
);
400 bool optimizeShiftInst(BinaryOperator
*BO
);
401 bool optimizeFunnelShift(IntrinsicInst
*Fsh
);
402 bool optimizeSelectInst(SelectInst
*SI
);
403 bool optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
);
404 bool optimizeSwitchInst(SwitchInst
*SI
);
405 bool optimizeExtractElementInst(Instruction
*Inst
);
406 bool dupRetToEnableTailCallOpts(BasicBlock
*BB
, bool &ModifiedDT
);
407 bool fixupDbgValue(Instruction
*I
);
408 bool placeDbgValues(Function
&F
);
409 bool placePseudoProbes(Function
&F
);
410 bool canFormExtLd(const SmallVectorImpl
<Instruction
*> &MovedExts
,
411 LoadInst
*&LI
, Instruction
*&Inst
, bool HasPromoted
);
412 bool tryToPromoteExts(TypePromotionTransaction
&TPT
,
413 const SmallVectorImpl
<Instruction
*> &Exts
,
414 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
415 unsigned CreatedInstsCost
= 0);
416 bool mergeSExts(Function
&F
);
417 bool splitLargeGEPOffsets();
418 bool optimizePhiType(PHINode
*Inst
, SmallPtrSetImpl
<PHINode
*> &Visited
,
419 SmallPtrSetImpl
<Instruction
*> &DeletedInstrs
);
420 bool optimizePhiTypes(Function
&F
);
421 bool performAddressTypePromotion(
423 bool AllowPromotionWithoutCommonHeader
,
424 bool HasPromoted
, TypePromotionTransaction
&TPT
,
425 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
);
426 bool splitBranchCondition(Function
&F
, bool &ModifiedDT
);
427 bool simplifyOffsetableRelocate(GCStatepointInst
&I
);
429 bool tryToSinkFreeOperands(Instruction
*I
);
430 bool replaceMathCmpWithIntrinsic(BinaryOperator
*BO
, Value
*Arg0
,
431 Value
*Arg1
, CmpInst
*Cmp
,
433 bool optimizeCmp(CmpInst
*Cmp
, bool &ModifiedDT
);
434 bool combineToUSubWithOverflow(CmpInst
*Cmp
, bool &ModifiedDT
);
435 bool combineToUAddWithOverflow(CmpInst
*Cmp
, bool &ModifiedDT
);
436 void verifyBFIUpdates(Function
&F
);
439 } // end anonymous namespace
441 char CodeGenPrepare::ID
= 0;
443 INITIALIZE_PASS_BEGIN(CodeGenPrepare
, DEBUG_TYPE
,
444 "Optimize for code generation", false, false)
445 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
446 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
447 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
448 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
449 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
450 INITIALIZE_PASS_END(CodeGenPrepare
, DEBUG_TYPE
,
451 "Optimize for code generation", false, false)
453 FunctionPass
*llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
455 bool CodeGenPrepare::runOnFunction(Function
&F
) {
459 DL
= &F
.getParent()->getDataLayout();
461 bool EverMadeChange
= false;
462 // Clear per function information.
463 InsertedInsts
.clear();
464 PromotedInsts
.clear();
466 TM
= &getAnalysis
<TargetPassConfig
>().getTM
<TargetMachine
>();
467 SubtargetInfo
= TM
->getSubtargetImpl(F
);
468 TLI
= SubtargetInfo
->getTargetLowering();
469 TRI
= SubtargetInfo
->getRegisterInfo();
470 TLInfo
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
471 TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
472 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
473 BPI
.reset(new BranchProbabilityInfo(F
, *LI
));
474 BFI
.reset(new BlockFrequencyInfo(F
, *BPI
, *LI
));
475 PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
476 OptSize
= F
.hasOptSize();
477 if (ProfileGuidedSectionPrefix
) {
478 // The hot attribute overwrites profile count based hotness while profile
479 // counts based hotness overwrite the cold attribute.
480 // This is a conservative behabvior.
481 if (F
.hasFnAttribute(Attribute::Hot
) ||
482 PSI
->isFunctionHotInCallGraph(&F
, *BFI
))
483 F
.setSectionPrefix("hot");
484 // If PSI shows this function is not hot, we will placed the function
485 // into unlikely section if (1) PSI shows this is a cold function, or
486 // (2) the function has a attribute of cold.
487 else if (PSI
->isFunctionColdInCallGraph(&F
, *BFI
) ||
488 F
.hasFnAttribute(Attribute::Cold
))
489 F
.setSectionPrefix("unlikely");
490 else if (ProfileUnknownInSpecialSection
&& PSI
->hasPartialSampleProfile() &&
491 PSI
->isFunctionHotnessUnknown(F
))
492 F
.setSectionPrefix("unknown");
495 /// This optimization identifies DIV instructions that can be
496 /// profitably bypassed and carried out with a shorter, faster divide.
497 if (!OptSize
&& !PSI
->hasHugeWorkingSetSize() && TLI
->isSlowDivBypassed()) {
498 const DenseMap
<unsigned int, unsigned int> &BypassWidths
=
499 TLI
->getBypassSlowDivWidths();
500 BasicBlock
* BB
= &*F
.begin();
501 while (BB
!= nullptr) {
502 // bypassSlowDivision may create new BBs, but we don't want to reapply the
503 // optimization to those blocks.
504 BasicBlock
* Next
= BB
->getNextNode();
505 // F.hasOptSize is already checked in the outer if statement.
506 if (!llvm::shouldOptimizeForSize(BB
, PSI
, BFI
.get()))
507 EverMadeChange
|= bypassSlowDivision(BB
, BypassWidths
);
512 // Get rid of @llvm.assume builtins before attempting to eliminate empty
513 // blocks, since there might be blocks that only contain @llvm.assume calls
514 // (plus arguments that we can get rid of).
515 EverMadeChange
|= eliminateAssumptions(F
);
517 // Eliminate blocks that contain only PHI nodes and an
518 // unconditional branch.
519 EverMadeChange
|= eliminateMostlyEmptyBlocks(F
);
521 bool ModifiedDT
= false;
522 if (!DisableBranchOpts
)
523 EverMadeChange
|= splitBranchCondition(F
, ModifiedDT
);
525 // Split some critical edges where one of the sources is an indirect branch,
526 // to help generate sane code for PHIs involving such edges.
527 EverMadeChange
|= SplitIndirectBrCriticalEdges(F
);
529 bool MadeChange
= true;
533 for (BasicBlock
&BB
: llvm::make_early_inc_range(F
)) {
534 bool ModifiedDTOnIteration
= false;
535 MadeChange
|= optimizeBlock(BB
, ModifiedDTOnIteration
);
537 // Restart BB iteration if the dominator tree of the Function was changed
538 if (ModifiedDTOnIteration
)
541 if (EnableTypePromotionMerge
&& !ValToSExtendedUses
.empty())
542 MadeChange
|= mergeSExts(F
);
543 if (!LargeOffsetGEPMap
.empty())
544 MadeChange
|= splitLargeGEPOffsets();
545 MadeChange
|= optimizePhiTypes(F
);
548 eliminateFallThrough(F
);
550 // Really free removed instructions during promotion.
551 for (Instruction
*I
: RemovedInsts
)
554 EverMadeChange
|= MadeChange
;
555 SeenChainsForSExt
.clear();
556 ValToSExtendedUses
.clear();
557 RemovedInsts
.clear();
558 LargeOffsetGEPMap
.clear();
559 LargeOffsetGEPID
.clear();
565 if (!DisableBranchOpts
) {
567 // Use a set vector to get deterministic iteration order. The order the
568 // blocks are removed may affect whether or not PHI nodes in successors
570 SmallSetVector
<BasicBlock
*, 8> WorkList
;
571 for (BasicBlock
&BB
: F
) {
572 SmallVector
<BasicBlock
*, 2> Successors(successors(&BB
));
573 MadeChange
|= ConstantFoldTerminator(&BB
, true);
574 if (!MadeChange
) continue;
576 for (BasicBlock
*Succ
: Successors
)
577 if (pred_empty(Succ
))
578 WorkList
.insert(Succ
);
581 // Delete the dead blocks and any of their dead successors.
582 MadeChange
|= !WorkList
.empty();
583 while (!WorkList
.empty()) {
584 BasicBlock
*BB
= WorkList
.pop_back_val();
585 SmallVector
<BasicBlock
*, 2> Successors(successors(BB
));
589 for (BasicBlock
*Succ
: Successors
)
590 if (pred_empty(Succ
))
591 WorkList
.insert(Succ
);
594 // Merge pairs of basic blocks with unconditional branches, connected by
596 if (EverMadeChange
|| MadeChange
)
597 MadeChange
|= eliminateFallThrough(F
);
599 EverMadeChange
|= MadeChange
;
602 if (!DisableGCOpts
) {
603 SmallVector
<GCStatepointInst
*, 2> Statepoints
;
604 for (BasicBlock
&BB
: F
)
605 for (Instruction
&I
: BB
)
606 if (auto *SP
= dyn_cast
<GCStatepointInst
>(&I
))
607 Statepoints
.push_back(SP
);
608 for (auto &I
: Statepoints
)
609 EverMadeChange
|= simplifyOffsetableRelocate(*I
);
612 // Do this last to clean up use-before-def scenarios introduced by other
613 // preparatory transforms.
614 EverMadeChange
|= placeDbgValues(F
);
615 EverMadeChange
|= placePseudoProbes(F
);
618 if (VerifyBFIUpdates
)
622 return EverMadeChange
;
625 bool CodeGenPrepare::eliminateAssumptions(Function
&F
) {
626 bool MadeChange
= false;
627 for (BasicBlock
&BB
: F
) {
628 CurInstIterator
= BB
.begin();
629 while (CurInstIterator
!= BB
.end()) {
630 Instruction
*I
= &*(CurInstIterator
++);
631 if (auto *Assume
= dyn_cast
<AssumeInst
>(I
)) {
633 Value
*Operand
= Assume
->getOperand(0);
634 Assume
->eraseFromParent();
636 resetIteratorIfInvalidatedWhileCalling(&BB
, [&]() {
637 RecursivelyDeleteTriviallyDeadInstructions(Operand
, TLInfo
, nullptr);
645 /// An instruction is about to be deleted, so remove all references to it in our
646 /// GEP-tracking data strcutures.
647 void CodeGenPrepare::removeAllAssertingVHReferences(Value
*V
) {
648 LargeOffsetGEPMap
.erase(V
);
649 NewGEPBases
.erase(V
);
651 auto GEP
= dyn_cast
<GetElementPtrInst
>(V
);
655 LargeOffsetGEPID
.erase(GEP
);
657 auto VecI
= LargeOffsetGEPMap
.find(GEP
->getPointerOperand());
658 if (VecI
== LargeOffsetGEPMap
.end())
661 auto &GEPVector
= VecI
->second
;
662 llvm::erase_if(GEPVector
, [=](auto &Elt
) { return Elt
.first
== GEP
; });
664 if (GEPVector
.empty())
665 LargeOffsetGEPMap
.erase(VecI
);
668 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
669 void LLVM_ATTRIBUTE_UNUSED
CodeGenPrepare::verifyBFIUpdates(Function
&F
) {
670 DominatorTree
NewDT(F
);
671 LoopInfo
NewLI(NewDT
);
672 BranchProbabilityInfo
NewBPI(F
, NewLI
, TLInfo
);
673 BlockFrequencyInfo
NewBFI(F
, NewBPI
, NewLI
);
674 NewBFI
.verifyMatch(*BFI
);
677 /// Merge basic blocks which are connected by a single edge, where one of the
678 /// basic blocks has a single successor pointing to the other basic block,
679 /// which has a single predecessor.
680 bool CodeGenPrepare::eliminateFallThrough(Function
&F
) {
681 bool Changed
= false;
682 // Scan all of the blocks in the function, except for the entry block.
683 // Use a temporary array to avoid iterator being invalidated when
685 SmallVector
<WeakTrackingVH
, 16> Blocks
;
686 for (auto &Block
: llvm::drop_begin(F
))
687 Blocks
.push_back(&Block
);
689 SmallSet
<WeakTrackingVH
, 16> Preds
;
690 for (auto &Block
: Blocks
) {
691 auto *BB
= cast_or_null
<BasicBlock
>(Block
);
694 // If the destination block has a single pred, then this is a trivial
695 // edge, just collapse it.
696 BasicBlock
*SinglePred
= BB
->getSinglePredecessor();
698 // Don't merge if BB's address is taken.
699 if (!SinglePred
|| SinglePred
== BB
|| BB
->hasAddressTaken()) continue;
701 BranchInst
*Term
= dyn_cast
<BranchInst
>(SinglePred
->getTerminator());
702 if (Term
&& !Term
->isConditional()) {
704 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB
<< "\n\n\n");
706 // Merge BB into SinglePred and delete it.
707 MergeBlockIntoPredecessor(BB
);
708 Preds
.insert(SinglePred
);
712 // (Repeatedly) merging blocks into their predecessors can create redundant
714 for (auto &Pred
: Preds
)
715 if (auto *BB
= cast_or_null
<BasicBlock
>(Pred
))
716 RemoveRedundantDbgInstrs(BB
);
721 /// Find a destination block from BB if BB is mergeable empty block.
722 BasicBlock
*CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
) {
723 // If this block doesn't end with an uncond branch, ignore it.
724 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
725 if (!BI
|| !BI
->isUnconditional())
728 // If the instruction before the branch (skipping debug info) isn't a phi
729 // node, then other stuff is happening here.
730 BasicBlock::iterator BBI
= BI
->getIterator();
731 if (BBI
!= BB
->begin()) {
733 while (isa
<DbgInfoIntrinsic
>(BBI
)) {
734 if (BBI
== BB
->begin())
738 if (!isa
<DbgInfoIntrinsic
>(BBI
) && !isa
<PHINode
>(BBI
))
742 // Do not break infinite loops.
743 BasicBlock
*DestBB
= BI
->getSuccessor(0);
747 if (!canMergeBlocks(BB
, DestBB
))
753 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
754 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
755 /// edges in ways that are non-optimal for isel. Start by eliminating these
756 /// blocks so we can split them the way we want them.
757 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function
&F
) {
758 SmallPtrSet
<BasicBlock
*, 16> Preheaders
;
759 SmallVector
<Loop
*, 16> LoopList(LI
->begin(), LI
->end());
760 while (!LoopList
.empty()) {
761 Loop
*L
= LoopList
.pop_back_val();
762 llvm::append_range(LoopList
, *L
);
763 if (BasicBlock
*Preheader
= L
->getLoopPreheader())
764 Preheaders
.insert(Preheader
);
767 bool MadeChange
= false;
768 // Copy blocks into a temporary array to avoid iterator invalidation issues
769 // as we remove them.
770 // Note that this intentionally skips the entry block.
771 SmallVector
<WeakTrackingVH
, 16> Blocks
;
772 for (auto &Block
: llvm::drop_begin(F
))
773 Blocks
.push_back(&Block
);
775 for (auto &Block
: Blocks
) {
776 BasicBlock
*BB
= cast_or_null
<BasicBlock
>(Block
);
779 BasicBlock
*DestBB
= findDestBlockOfMergeableEmptyBlock(BB
);
781 !isMergingEmptyBlockProfitable(BB
, DestBB
, Preheaders
.count(BB
)))
784 eliminateMostlyEmptyBlock(BB
);
790 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock
*BB
,
793 // Do not delete loop preheaders if doing so would create a critical edge.
794 // Loop preheaders can be good locations to spill registers. If the
795 // preheader is deleted and we create a critical edge, registers may be
796 // spilled in the loop body instead.
797 if (!DisablePreheaderProtect
&& isPreheader
&&
798 !(BB
->getSinglePredecessor() &&
799 BB
->getSinglePredecessor()->getSingleSuccessor()))
802 // Skip merging if the block's successor is also a successor to any callbr
803 // that leads to this block.
804 // FIXME: Is this really needed? Is this a correctness issue?
805 for (BasicBlock
*Pred
: predecessors(BB
)) {
806 if (auto *CBI
= dyn_cast
<CallBrInst
>((Pred
)->getTerminator()))
807 for (unsigned i
= 0, e
= CBI
->getNumSuccessors(); i
!= e
; ++i
)
808 if (DestBB
== CBI
->getSuccessor(i
))
812 // Try to skip merging if the unique predecessor of BB is terminated by a
813 // switch or indirect branch instruction, and BB is used as an incoming block
814 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
815 // add COPY instructions in the predecessor of BB instead of BB (if it is not
816 // merged). Note that the critical edge created by merging such blocks wont be
817 // split in MachineSink because the jump table is not analyzable. By keeping
818 // such empty block (BB), ISel will place COPY instructions in BB, not in the
819 // predecessor of BB.
820 BasicBlock
*Pred
= BB
->getUniquePredecessor();
822 !(isa
<SwitchInst
>(Pred
->getTerminator()) ||
823 isa
<IndirectBrInst
>(Pred
->getTerminator())))
826 if (BB
->getTerminator() != BB
->getFirstNonPHIOrDbg())
829 // We use a simple cost heuristic which determine skipping merging is
830 // profitable if the cost of skipping merging is less than the cost of
831 // merging : Cost(skipping merging) < Cost(merging BB), where the
832 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
833 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
834 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
835 // Freq(Pred) / Freq(BB) > 2.
836 // Note that if there are multiple empty blocks sharing the same incoming
837 // value for the PHIs in the DestBB, we consider them together. In such
838 // case, Cost(merging BB) will be the sum of their frequencies.
840 if (!isa
<PHINode
>(DestBB
->begin()))
843 SmallPtrSet
<BasicBlock
*, 16> SameIncomingValueBBs
;
845 // Find all other incoming blocks from which incoming values of all PHIs in
846 // DestBB are the same as the ones from BB.
847 for (BasicBlock
*DestBBPred
: predecessors(DestBB
)) {
848 if (DestBBPred
== BB
)
851 if (llvm::all_of(DestBB
->phis(), [&](const PHINode
&DestPN
) {
852 return DestPN
.getIncomingValueForBlock(BB
) ==
853 DestPN
.getIncomingValueForBlock(DestBBPred
);
855 SameIncomingValueBBs
.insert(DestBBPred
);
858 // See if all BB's incoming values are same as the value from Pred. In this
859 // case, no reason to skip merging because COPYs are expected to be place in
861 if (SameIncomingValueBBs
.count(Pred
))
864 BlockFrequency PredFreq
= BFI
->getBlockFreq(Pred
);
865 BlockFrequency BBFreq
= BFI
->getBlockFreq(BB
);
867 for (auto *SameValueBB
: SameIncomingValueBBs
)
868 if (SameValueBB
->getUniquePredecessor() == Pred
&&
869 DestBB
== findDestBlockOfMergeableEmptyBlock(SameValueBB
))
870 BBFreq
+= BFI
->getBlockFreq(SameValueBB
);
872 return PredFreq
.getFrequency() <=
873 BBFreq
.getFrequency() * FreqRatioToSkipMerge
;
876 /// Return true if we can merge BB into DestBB if there is a single
877 /// unconditional branch between them, and BB contains no other non-phi
879 bool CodeGenPrepare::canMergeBlocks(const BasicBlock
*BB
,
880 const BasicBlock
*DestBB
) const {
881 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
882 // the successor. If there are more complex condition (e.g. preheaders),
883 // don't mess around with them.
884 for (const PHINode
&PN
: BB
->phis()) {
885 for (const User
*U
: PN
.users()) {
886 const Instruction
*UI
= cast
<Instruction
>(U
);
887 if (UI
->getParent() != DestBB
|| !isa
<PHINode
>(UI
))
889 // If User is inside DestBB block and it is a PHINode then check
890 // incoming value. If incoming value is not from BB then this is
891 // a complex condition (e.g. preheaders) we want to avoid here.
892 if (UI
->getParent() == DestBB
) {
893 if (const PHINode
*UPN
= dyn_cast
<PHINode
>(UI
))
894 for (unsigned I
= 0, E
= UPN
->getNumIncomingValues(); I
!= E
; ++I
) {
895 Instruction
*Insn
= dyn_cast
<Instruction
>(UPN
->getIncomingValue(I
));
896 if (Insn
&& Insn
->getParent() == BB
&&
897 Insn
->getParent() != UPN
->getIncomingBlock(I
))
904 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
905 // and DestBB may have conflicting incoming values for the block. If so, we
906 // can't merge the block.
907 const PHINode
*DestBBPN
= dyn_cast
<PHINode
>(DestBB
->begin());
908 if (!DestBBPN
) return true; // no conflict.
910 // Collect the preds of BB.
911 SmallPtrSet
<const BasicBlock
*, 16> BBPreds
;
912 if (const PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
913 // It is faster to get preds from a PHI than with pred_iterator.
914 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
915 BBPreds
.insert(BBPN
->getIncomingBlock(i
));
917 BBPreds
.insert(pred_begin(BB
), pred_end(BB
));
920 // Walk the preds of DestBB.
921 for (unsigned i
= 0, e
= DestBBPN
->getNumIncomingValues(); i
!= e
; ++i
) {
922 BasicBlock
*Pred
= DestBBPN
->getIncomingBlock(i
);
923 if (BBPreds
.count(Pred
)) { // Common predecessor?
924 for (const PHINode
&PN
: DestBB
->phis()) {
925 const Value
*V1
= PN
.getIncomingValueForBlock(Pred
);
926 const Value
*V2
= PN
.getIncomingValueForBlock(BB
);
928 // If V2 is a phi node in BB, look up what the mapped value will be.
929 if (const PHINode
*V2PN
= dyn_cast
<PHINode
>(V2
))
930 if (V2PN
->getParent() == BB
)
931 V2
= V2PN
->getIncomingValueForBlock(Pred
);
933 // If there is a conflict, bail out.
934 if (V1
!= V2
) return false;
942 /// Eliminate a basic block that has only phi's and an unconditional branch in
944 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock
*BB
) {
945 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
946 BasicBlock
*DestBB
= BI
->getSuccessor(0);
948 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
951 // If the destination block has a single pred, then this is a trivial edge,
953 if (BasicBlock
*SinglePred
= DestBB
->getSinglePredecessor()) {
954 if (SinglePred
!= DestBB
) {
955 assert(SinglePred
== BB
&&
956 "Single predecessor not the same as predecessor");
957 // Merge DestBB into SinglePred/BB and delete it.
958 MergeBlockIntoPredecessor(DestBB
);
959 // Note: BB(=SinglePred) will not be deleted on this path.
960 // DestBB(=its single successor) is the one that was deleted.
961 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred
<< "\n\n\n");
966 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
967 // to handle the new incoming edges it is about to have.
968 for (PHINode
&PN
: DestBB
->phis()) {
969 // Remove the incoming value for BB, and remember it.
970 Value
*InVal
= PN
.removeIncomingValue(BB
, false);
972 // Two options: either the InVal is a phi node defined in BB or it is some
973 // value that dominates BB.
974 PHINode
*InValPhi
= dyn_cast
<PHINode
>(InVal
);
975 if (InValPhi
&& InValPhi
->getParent() == BB
) {
976 // Add all of the input values of the input PHI as inputs of this phi.
977 for (unsigned i
= 0, e
= InValPhi
->getNumIncomingValues(); i
!= e
; ++i
)
978 PN
.addIncoming(InValPhi
->getIncomingValue(i
),
979 InValPhi
->getIncomingBlock(i
));
981 // Otherwise, add one instance of the dominating value for each edge that
982 // we will be adding.
983 if (PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
984 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
985 PN
.addIncoming(InVal
, BBPN
->getIncomingBlock(i
));
987 for (BasicBlock
*Pred
: predecessors(BB
))
988 PN
.addIncoming(InVal
, Pred
);
993 // The PHIs are now updated, change everything that refers to BB to use
994 // DestBB and remove BB.
995 BB
->replaceAllUsesWith(DestBB
);
996 BB
->eraseFromParent();
999 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB
<< "\n\n\n");
1002 // Computes a map of base pointer relocation instructions to corresponding
1003 // derived pointer relocation instructions given a vector of all relocate calls
1004 static void computeBaseDerivedRelocateMap(
1005 const SmallVectorImpl
<GCRelocateInst
*> &AllRelocateCalls
,
1006 DenseMap
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 2>>
1008 // Collect information in two maps: one primarily for locating the base object
1009 // while filling the second map; the second map is the final structure holding
1010 // a mapping between Base and corresponding Derived relocate calls
1011 DenseMap
<std::pair
<unsigned, unsigned>, GCRelocateInst
*> RelocateIdxMap
;
1012 for (auto *ThisRelocate
: AllRelocateCalls
) {
1013 auto K
= std::make_pair(ThisRelocate
->getBasePtrIndex(),
1014 ThisRelocate
->getDerivedPtrIndex());
1015 RelocateIdxMap
.insert(std::make_pair(K
, ThisRelocate
));
1017 for (auto &Item
: RelocateIdxMap
) {
1018 std::pair
<unsigned, unsigned> Key
= Item
.first
;
1019 if (Key
.first
== Key
.second
)
1020 // Base relocation: nothing to insert
1023 GCRelocateInst
*I
= Item
.second
;
1024 auto BaseKey
= std::make_pair(Key
.first
, Key
.first
);
1026 // We're iterating over RelocateIdxMap so we cannot modify it.
1027 auto MaybeBase
= RelocateIdxMap
.find(BaseKey
);
1028 if (MaybeBase
== RelocateIdxMap
.end())
1029 // TODO: We might want to insert a new base object relocate and gep off
1030 // that, if there are enough derived object relocates.
1033 RelocateInstMap
[MaybeBase
->second
].push_back(I
);
1037 // Accepts a GEP and extracts the operands into a vector provided they're all
1038 // small integer constants
1039 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst
*GEP
,
1040 SmallVectorImpl
<Value
*> &OffsetV
) {
1041 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++) {
1042 // Only accept small constant integer operands
1043 auto *Op
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
1044 if (!Op
|| Op
->getZExtValue() > 20)
1048 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++)
1049 OffsetV
.push_back(GEP
->getOperand(i
));
1053 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1054 // replace, computes a replacement, and affects it.
1056 simplifyRelocatesOffABase(GCRelocateInst
*RelocatedBase
,
1057 const SmallVectorImpl
<GCRelocateInst
*> &Targets
) {
1058 bool MadeChange
= false;
1059 // We must ensure the relocation of derived pointer is defined after
1060 // relocation of base pointer. If we find a relocation corresponding to base
1061 // defined earlier than relocation of base then we move relocation of base
1062 // right before found relocation. We consider only relocation in the same
1063 // basic block as relocation of base. Relocations from other basic block will
1064 // be skipped by optimization and we do not care about them.
1065 for (auto R
= RelocatedBase
->getParent()->getFirstInsertionPt();
1066 &*R
!= RelocatedBase
; ++R
)
1067 if (auto *RI
= dyn_cast
<GCRelocateInst
>(R
))
1068 if (RI
->getStatepoint() == RelocatedBase
->getStatepoint())
1069 if (RI
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex()) {
1070 RelocatedBase
->moveBefore(RI
);
1074 for (GCRelocateInst
*ToReplace
: Targets
) {
1075 assert(ToReplace
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex() &&
1076 "Not relocating a derived object of the original base object");
1077 if (ToReplace
->getBasePtrIndex() == ToReplace
->getDerivedPtrIndex()) {
1078 // A duplicate relocate call. TODO: coalesce duplicates.
1082 if (RelocatedBase
->getParent() != ToReplace
->getParent()) {
1083 // Base and derived relocates are in different basic blocks.
1084 // In this case transform is only valid when base dominates derived
1085 // relocate. However it would be too expensive to check dominance
1086 // for each such relocate, so we skip the whole transformation.
1090 Value
*Base
= ToReplace
->getBasePtr();
1091 auto *Derived
= dyn_cast
<GetElementPtrInst
>(ToReplace
->getDerivedPtr());
1092 if (!Derived
|| Derived
->getPointerOperand() != Base
)
1095 SmallVector
<Value
*, 2> OffsetV
;
1096 if (!getGEPSmallConstantIntOffsetV(Derived
, OffsetV
))
1099 // Create a Builder and replace the target callsite with a gep
1100 assert(RelocatedBase
->getNextNode() &&
1101 "Should always have one since it's not a terminator");
1103 // Insert after RelocatedBase
1104 IRBuilder
<> Builder(RelocatedBase
->getNextNode());
1105 Builder
.SetCurrentDebugLocation(ToReplace
->getDebugLoc());
1107 // If gc_relocate does not match the actual type, cast it to the right type.
1108 // In theory, there must be a bitcast after gc_relocate if the type does not
1109 // match, and we should reuse it to get the derived pointer. But it could be
1113 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1118 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1122 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1123 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1125 // In this case, we can not find the bitcast any more. So we insert a new bitcast
1126 // no matter there is already one or not. In this way, we can handle all cases, and
1127 // the extra bitcast should be optimized away in later passes.
1128 Value
*ActualRelocatedBase
= RelocatedBase
;
1129 if (RelocatedBase
->getType() != Base
->getType()) {
1130 ActualRelocatedBase
=
1131 Builder
.CreateBitCast(RelocatedBase
, Base
->getType());
1133 Value
*Replacement
= Builder
.CreateGEP(
1134 Derived
->getSourceElementType(), ActualRelocatedBase
, makeArrayRef(OffsetV
));
1135 Replacement
->takeName(ToReplace
);
1136 // If the newly generated derived pointer's type does not match the original derived
1137 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1138 Value
*ActualReplacement
= Replacement
;
1139 if (Replacement
->getType() != ToReplace
->getType()) {
1141 Builder
.CreateBitCast(Replacement
, ToReplace
->getType());
1143 ToReplace
->replaceAllUsesWith(ActualReplacement
);
1144 ToReplace
->eraseFromParent();
1154 // %ptr = gep %base + 15
1155 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1156 // %base' = relocate(%tok, i32 4, i32 4)
1157 // %ptr' = relocate(%tok, i32 4, i32 5)
1158 // %val = load %ptr'
1163 // %ptr = gep %base + 15
1164 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1165 // %base' = gc.relocate(%tok, i32 4, i32 4)
1166 // %ptr' = gep %base' + 15
1167 // %val = load %ptr'
1168 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst
&I
) {
1169 bool MadeChange
= false;
1170 SmallVector
<GCRelocateInst
*, 2> AllRelocateCalls
;
1171 for (auto *U
: I
.users())
1172 if (GCRelocateInst
*Relocate
= dyn_cast
<GCRelocateInst
>(U
))
1173 // Collect all the relocate calls associated with a statepoint
1174 AllRelocateCalls
.push_back(Relocate
);
1176 // We need at least one base pointer relocation + one derived pointer
1177 // relocation to mangle
1178 if (AllRelocateCalls
.size() < 2)
1181 // RelocateInstMap is a mapping from the base relocate instruction to the
1182 // corresponding derived relocate instructions
1183 DenseMap
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 2>> RelocateInstMap
;
1184 computeBaseDerivedRelocateMap(AllRelocateCalls
, RelocateInstMap
);
1185 if (RelocateInstMap
.empty())
1188 for (auto &Item
: RelocateInstMap
)
1189 // Item.first is the RelocatedBase to offset against
1190 // Item.second is the vector of Targets to replace
1191 MadeChange
= simplifyRelocatesOffABase(Item
.first
, Item
.second
);
1195 /// Sink the specified cast instruction into its user blocks.
1196 static bool SinkCast(CastInst
*CI
) {
1197 BasicBlock
*DefBB
= CI
->getParent();
1199 /// InsertedCasts - Only insert a cast in each block once.
1200 DenseMap
<BasicBlock
*, CastInst
*> InsertedCasts
;
1202 bool MadeChange
= false;
1203 for (Value::user_iterator UI
= CI
->user_begin(), E
= CI
->user_end();
1205 Use
&TheUse
= UI
.getUse();
1206 Instruction
*User
= cast
<Instruction
>(*UI
);
1208 // Figure out which BB this cast is used in. For PHI's this is the
1209 // appropriate predecessor block.
1210 BasicBlock
*UserBB
= User
->getParent();
1211 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
1212 UserBB
= PN
->getIncomingBlock(TheUse
);
1215 // Preincrement use iterator so we don't invalidate it.
1218 // The first insertion point of a block containing an EH pad is after the
1219 // pad. If the pad is the user, we cannot sink the cast past the pad.
1220 if (User
->isEHPad())
1223 // If the block selected to receive the cast is an EH pad that does not
1224 // allow non-PHI instructions before the terminator, we can't sink the
1226 if (UserBB
->getTerminator()->isEHPad())
1229 // If this user is in the same block as the cast, don't change the cast.
1230 if (UserBB
== DefBB
) continue;
1232 // If we have already inserted a cast into this block, use it.
1233 CastInst
*&InsertedCast
= InsertedCasts
[UserBB
];
1235 if (!InsertedCast
) {
1236 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1237 assert(InsertPt
!= UserBB
->end());
1238 InsertedCast
= CastInst::Create(CI
->getOpcode(), CI
->getOperand(0),
1239 CI
->getType(), "", &*InsertPt
);
1240 InsertedCast
->setDebugLoc(CI
->getDebugLoc());
1243 // Replace a use of the cast with a use of the new cast.
1244 TheUse
= InsertedCast
;
1249 // If we removed all uses, nuke the cast.
1250 if (CI
->use_empty()) {
1251 salvageDebugInfo(*CI
);
1252 CI
->eraseFromParent();
1259 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1260 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1261 /// reduce the number of virtual registers that must be created and coalesced.
1263 /// Return true if any changes are made.
1264 static bool OptimizeNoopCopyExpression(CastInst
*CI
, const TargetLowering
&TLI
,
1265 const DataLayout
&DL
) {
1266 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1267 // than sinking only nop casts, but is helpful on some platforms.
1268 if (auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(CI
)) {
1269 if (!TLI
.isFreeAddrSpaceCast(ASC
->getSrcAddressSpace(),
1270 ASC
->getDestAddressSpace()))
1274 // If this is a noop copy,
1275 EVT SrcVT
= TLI
.getValueType(DL
, CI
->getOperand(0)->getType());
1276 EVT DstVT
= TLI
.getValueType(DL
, CI
->getType());
1278 // This is an fp<->int conversion?
1279 if (SrcVT
.isInteger() != DstVT
.isInteger())
1282 // If this is an extension, it will be a zero or sign extension, which
1284 if (SrcVT
.bitsLT(DstVT
)) return false;
1286 // If these values will be promoted, find out what they will be promoted
1287 // to. This helps us consider truncates on PPC as noop copies when they
1289 if (TLI
.getTypeAction(CI
->getContext(), SrcVT
) ==
1290 TargetLowering::TypePromoteInteger
)
1291 SrcVT
= TLI
.getTypeToTransformTo(CI
->getContext(), SrcVT
);
1292 if (TLI
.getTypeAction(CI
->getContext(), DstVT
) ==
1293 TargetLowering::TypePromoteInteger
)
1294 DstVT
= TLI
.getTypeToTransformTo(CI
->getContext(), DstVT
);
1296 // If, after promotion, these are the same types, this is a noop copy.
1300 return SinkCast(CI
);
1303 // Match a simple increment by constant operation. Note that if a sub is
1304 // matched, the step is negated (as if the step had been canonicalized to
1305 // an add, even though we leave the instruction alone.)
1306 bool matchIncrement(const Instruction
* IVInc
, Instruction
*&LHS
,
1308 if (match(IVInc
, m_Add(m_Instruction(LHS
), m_Constant(Step
))) ||
1309 match(IVInc
, m_ExtractValue
<0>(m_Intrinsic
<Intrinsic::uadd_with_overflow
>(
1310 m_Instruction(LHS
), m_Constant(Step
)))))
1312 if (match(IVInc
, m_Sub(m_Instruction(LHS
), m_Constant(Step
))) ||
1313 match(IVInc
, m_ExtractValue
<0>(m_Intrinsic
<Intrinsic::usub_with_overflow
>(
1314 m_Instruction(LHS
), m_Constant(Step
))))) {
1315 Step
= ConstantExpr::getNeg(Step
);
1321 /// If given \p PN is an inductive variable with value IVInc coming from the
1322 /// backedge, and on each iteration it gets increased by Step, return pair
1323 /// <IVInc, Step>. Otherwise, return None.
1324 static Optional
<std::pair
<Instruction
*, Constant
*> >
1325 getIVIncrement(const PHINode
*PN
, const LoopInfo
*LI
) {
1326 const Loop
*L
= LI
->getLoopFor(PN
->getParent());
1327 if (!L
|| L
->getHeader() != PN
->getParent() || !L
->getLoopLatch())
1330 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(L
->getLoopLatch()));
1331 if (!IVInc
|| LI
->getLoopFor(IVInc
->getParent()) != L
)
1333 Instruction
*LHS
= nullptr;
1334 Constant
*Step
= nullptr;
1335 if (matchIncrement(IVInc
, LHS
, Step
) && LHS
== PN
)
1336 return std::make_pair(IVInc
, Step
);
1340 static bool isIVIncrement(const Value
*V
, const LoopInfo
*LI
) {
1341 auto *I
= dyn_cast
<Instruction
>(V
);
1344 Instruction
*LHS
= nullptr;
1345 Constant
*Step
= nullptr;
1346 if (!matchIncrement(I
, LHS
, Step
))
1348 if (auto *PN
= dyn_cast
<PHINode
>(LHS
))
1349 if (auto IVInc
= getIVIncrement(PN
, LI
))
1350 return IVInc
->first
== I
;
1354 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator
*BO
,
1355 Value
*Arg0
, Value
*Arg1
,
1357 Intrinsic::ID IID
) {
1358 auto IsReplacableIVIncrement
= [this, &Cmp
](BinaryOperator
*BO
) {
1359 if (!isIVIncrement(BO
, LI
))
1361 const Loop
*L
= LI
->getLoopFor(BO
->getParent());
1362 assert(L
&& "L should not be null after isIVIncrement()");
1363 // Do not risk on moving increment into a child loop.
1364 if (LI
->getLoopFor(Cmp
->getParent()) != L
)
1367 // Finally, we need to ensure that the insert point will dominate all
1368 // existing uses of the increment.
1370 auto &DT
= getDT(*BO
->getParent()->getParent());
1371 if (DT
.dominates(Cmp
->getParent(), BO
->getParent()))
1372 // If we're moving up the dom tree, all uses are trivially dominated.
1373 // (This is the common case for code produced by LSR.)
1376 // Otherwise, special case the single use in the phi recurrence.
1377 return BO
->hasOneUse() && DT
.dominates(Cmp
->getParent(), L
->getLoopLatch());
1379 if (BO
->getParent() != Cmp
->getParent() && !IsReplacableIVIncrement(BO
)) {
1380 // We used to use a dominator tree here to allow multi-block optimization.
1381 // But that was problematic because:
1382 // 1. It could cause a perf regression by hoisting the math op into the
1384 // 2. It could cause a perf regression by creating a value that was live
1385 // across multiple blocks and increasing register pressure.
1386 // 3. Use of a dominator tree could cause large compile-time regression.
1387 // This is because we recompute the DT on every change in the main CGP
1388 // run-loop. The recomputing is probably unnecessary in many cases, so if
1389 // that was fixed, using a DT here would be ok.
1391 // There is one important particular case we still want to handle: if BO is
1392 // the IV increment. Important properties that make it profitable:
1393 // - We can speculate IV increment anywhere in the loop (as long as the
1394 // indvar Phi is its only user);
1395 // - Upon computing Cmp, we effectively compute something equivalent to the
1396 // IV increment (despite it loops differently in the IR). So moving it up
1397 // to the cmp point does not really increase register pressure.
1401 // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1402 if (BO
->getOpcode() == Instruction::Add
&&
1403 IID
== Intrinsic::usub_with_overflow
) {
1404 assert(isa
<Constant
>(Arg1
) && "Unexpected input for usubo");
1405 Arg1
= ConstantExpr::getNeg(cast
<Constant
>(Arg1
));
1408 // Insert at the first instruction of the pair.
1409 Instruction
*InsertPt
= nullptr;
1410 for (Instruction
&Iter
: *Cmp
->getParent()) {
1411 // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1412 // the overflow intrinsic are defined.
1413 if ((BO
->getOpcode() != Instruction::Xor
&& &Iter
== BO
) || &Iter
== Cmp
) {
1418 assert(InsertPt
!= nullptr && "Parent block did not contain cmp or binop");
1420 IRBuilder
<> Builder(InsertPt
);
1421 Value
*MathOV
= Builder
.CreateBinaryIntrinsic(IID
, Arg0
, Arg1
);
1422 if (BO
->getOpcode() != Instruction::Xor
) {
1423 Value
*Math
= Builder
.CreateExtractValue(MathOV
, 0, "math");
1424 BO
->replaceAllUsesWith(Math
);
1426 assert(BO
->hasOneUse() &&
1427 "Patterns with XOr should use the BO only in the compare");
1428 Value
*OV
= Builder
.CreateExtractValue(MathOV
, 1, "ov");
1429 Cmp
->replaceAllUsesWith(OV
);
1430 Cmp
->eraseFromParent();
1431 BO
->eraseFromParent();
1435 /// Match special-case patterns that check for unsigned add overflow.
1436 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst
*Cmp
,
1437 BinaryOperator
*&Add
) {
1438 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1439 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1440 Value
*A
= Cmp
->getOperand(0), *B
= Cmp
->getOperand(1);
1442 // We are not expecting non-canonical/degenerate code. Just bail out.
1443 if (isa
<Constant
>(A
))
1446 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
1447 if (Pred
== ICmpInst::ICMP_EQ
&& match(B
, m_AllOnes()))
1448 B
= ConstantInt::get(B
->getType(), 1);
1449 else if (Pred
== ICmpInst::ICMP_NE
&& match(B
, m_ZeroInt()))
1450 B
= ConstantInt::get(B
->getType(), -1);
1454 // Check the users of the variable operand of the compare looking for an add
1455 // with the adjusted constant.
1456 for (User
*U
: A
->users()) {
1457 if (match(U
, m_Add(m_Specific(A
), m_Specific(B
)))) {
1458 Add
= cast
<BinaryOperator
>(U
);
1465 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1466 /// intrinsic. Return true if any changes were made.
1467 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst
*Cmp
,
1470 BinaryOperator
*Add
;
1471 if (!match(Cmp
, m_UAddWithOverflow(m_Value(A
), m_Value(B
), m_BinOp(Add
)))) {
1472 if (!matchUAddWithOverflowConstantEdgeCases(Cmp
, Add
))
1474 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1475 A
= Add
->getOperand(0);
1476 B
= Add
->getOperand(1);
1479 if (!TLI
->shouldFormOverflowOp(ISD::UADDO
,
1480 TLI
->getValueType(*DL
, Add
->getType()),
1481 Add
->hasNUsesOrMore(2)))
1484 // We don't want to move around uses of condition values this late, so we
1485 // check if it is legal to create the call to the intrinsic in the basic
1486 // block containing the icmp.
1487 if (Add
->getParent() != Cmp
->getParent() && !Add
->hasOneUse())
1490 if (!replaceMathCmpWithIntrinsic(Add
, A
, B
, Cmp
,
1491 Intrinsic::uadd_with_overflow
))
1494 // Reset callers - do not crash by iterating over a dead instruction.
1499 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst
*Cmp
,
1501 // We are not expecting non-canonical/degenerate code. Just bail out.
1502 Value
*A
= Cmp
->getOperand(0), *B
= Cmp
->getOperand(1);
1503 if (isa
<Constant
>(A
) && isa
<Constant
>(B
))
1506 // Convert (A u> B) to (A u< B) to simplify pattern matching.
1507 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
1508 if (Pred
== ICmpInst::ICMP_UGT
) {
1510 Pred
= ICmpInst::ICMP_ULT
;
1512 // Convert special-case: (A == 0) is the same as (A u< 1).
1513 if (Pred
== ICmpInst::ICMP_EQ
&& match(B
, m_ZeroInt())) {
1514 B
= ConstantInt::get(B
->getType(), 1);
1515 Pred
= ICmpInst::ICMP_ULT
;
1517 // Convert special-case: (A != 0) is the same as (0 u< A).
1518 if (Pred
== ICmpInst::ICMP_NE
&& match(B
, m_ZeroInt())) {
1520 Pred
= ICmpInst::ICMP_ULT
;
1522 if (Pred
!= ICmpInst::ICMP_ULT
)
1525 // Walk the users of a variable operand of a compare looking for a subtract or
1526 // add with that same operand. Also match the 2nd operand of the compare to
1527 // the add/sub, but that may be a negated constant operand of an add.
1528 Value
*CmpVariableOperand
= isa
<Constant
>(A
) ? B
: A
;
1529 BinaryOperator
*Sub
= nullptr;
1530 for (User
*U
: CmpVariableOperand
->users()) {
1531 // A - B, A u< B --> usubo(A, B)
1532 if (match(U
, m_Sub(m_Specific(A
), m_Specific(B
)))) {
1533 Sub
= cast
<BinaryOperator
>(U
);
1537 // A + (-C), A u< C (canonicalized form of (sub A, C))
1538 const APInt
*CmpC
, *AddC
;
1539 if (match(U
, m_Add(m_Specific(A
), m_APInt(AddC
))) &&
1540 match(B
, m_APInt(CmpC
)) && *AddC
== -(*CmpC
)) {
1541 Sub
= cast
<BinaryOperator
>(U
);
1548 if (!TLI
->shouldFormOverflowOp(ISD::USUBO
,
1549 TLI
->getValueType(*DL
, Sub
->getType()),
1550 Sub
->hasNUsesOrMore(2)))
1553 if (!replaceMathCmpWithIntrinsic(Sub
, Sub
->getOperand(0), Sub
->getOperand(1),
1554 Cmp
, Intrinsic::usub_with_overflow
))
1557 // Reset callers - do not crash by iterating over a dead instruction.
1562 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1563 /// registers that must be created and coalesced. This is a clear win except on
1564 /// targets with multiple condition code registers (PowerPC), where it might
1565 /// lose; some adjustment may be wanted there.
1567 /// Return true if any changes are made.
1568 static bool sinkCmpExpression(CmpInst
*Cmp
, const TargetLowering
&TLI
) {
1569 if (TLI
.hasMultipleConditionRegisters())
1572 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1573 if (TLI
.useSoftFloat() && isa
<FCmpInst
>(Cmp
))
1576 // Only insert a cmp in each block once.
1577 DenseMap
<BasicBlock
*, CmpInst
*> InsertedCmps
;
1579 bool MadeChange
= false;
1580 for (Value::user_iterator UI
= Cmp
->user_begin(), E
= Cmp
->user_end();
1582 Use
&TheUse
= UI
.getUse();
1583 Instruction
*User
= cast
<Instruction
>(*UI
);
1585 // Preincrement use iterator so we don't invalidate it.
1588 // Don't bother for PHI nodes.
1589 if (isa
<PHINode
>(User
))
1592 // Figure out which BB this cmp is used in.
1593 BasicBlock
*UserBB
= User
->getParent();
1594 BasicBlock
*DefBB
= Cmp
->getParent();
1596 // If this user is in the same block as the cmp, don't change the cmp.
1597 if (UserBB
== DefBB
) continue;
1599 // If we have already inserted a cmp into this block, use it.
1600 CmpInst
*&InsertedCmp
= InsertedCmps
[UserBB
];
1603 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1604 assert(InsertPt
!= UserBB
->end());
1606 CmpInst::Create(Cmp
->getOpcode(), Cmp
->getPredicate(),
1607 Cmp
->getOperand(0), Cmp
->getOperand(1), "",
1609 // Propagate the debug info.
1610 InsertedCmp
->setDebugLoc(Cmp
->getDebugLoc());
1613 // Replace a use of the cmp with a use of the new cmp.
1614 TheUse
= InsertedCmp
;
1619 // If we removed all uses, nuke the cmp.
1620 if (Cmp
->use_empty()) {
1621 Cmp
->eraseFromParent();
1628 /// For pattern like:
1630 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1634 /// br DomCond, TrueBB, CmpBB
1635 /// CmpBB: (with DomBB being the single predecessor)
1637 /// Cmp = icmp eq CmpOp0, CmpOp1
1640 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1641 /// different from lowering of icmp eq (PowerPC). This function try to convert
1642 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1643 /// After that, DomCond and Cmp can use the same comparison so reduce one
1646 /// Return true if any changes are made.
1647 static bool foldICmpWithDominatingICmp(CmpInst
*Cmp
,
1648 const TargetLowering
&TLI
) {
1649 if (!EnableICMP_EQToICMP_ST
&& TLI
.isEqualityCmpFoldedWithSignedCmp())
1652 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
1653 if (Pred
!= ICmpInst::ICMP_EQ
)
1656 // If icmp eq has users other than BranchInst and SelectInst, converting it to
1657 // icmp slt/sgt would introduce more redundant LLVM IR.
1658 for (User
*U
: Cmp
->users()) {
1659 if (isa
<BranchInst
>(U
))
1661 if (isa
<SelectInst
>(U
) && cast
<SelectInst
>(U
)->getCondition() == Cmp
)
1666 // This is a cheap/incomplete check for dominance - just match a single
1667 // predecessor with a conditional branch.
1668 BasicBlock
*CmpBB
= Cmp
->getParent();
1669 BasicBlock
*DomBB
= CmpBB
->getSinglePredecessor();
1673 // We want to ensure that the only way control gets to the comparison of
1674 // interest is that a less/greater than comparison on the same operands is
1677 BasicBlock
*TrueBB
, *FalseBB
;
1678 if (!match(DomBB
->getTerminator(), m_Br(m_Value(DomCond
), TrueBB
, FalseBB
)))
1680 if (CmpBB
!= FalseBB
)
1683 Value
*CmpOp0
= Cmp
->getOperand(0), *CmpOp1
= Cmp
->getOperand(1);
1684 ICmpInst::Predicate DomPred
;
1685 if (!match(DomCond
, m_ICmp(DomPred
, m_Specific(CmpOp0
), m_Specific(CmpOp1
))))
1687 if (DomPred
!= ICmpInst::ICMP_SGT
&& DomPred
!= ICmpInst::ICMP_SLT
)
1690 // Convert the equality comparison to the opposite of the dominating
1691 // comparison and swap the direction for all branch/select users.
1692 // We have conceptually converted:
1693 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1695 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>;
1696 // And similarly for branches.
1697 for (User
*U
: Cmp
->users()) {
1698 if (auto *BI
= dyn_cast
<BranchInst
>(U
)) {
1699 assert(BI
->isConditional() && "Must be conditional");
1700 BI
->swapSuccessors();
1703 if (auto *SI
= dyn_cast
<SelectInst
>(U
)) {
1706 SI
->swapProfMetadata();
1709 llvm_unreachable("Must be a branch or a select");
1711 Cmp
->setPredicate(CmpInst::getSwappedPredicate(DomPred
));
1715 bool CodeGenPrepare::optimizeCmp(CmpInst
*Cmp
, bool &ModifiedDT
) {
1716 if (sinkCmpExpression(Cmp
, *TLI
))
1719 if (combineToUAddWithOverflow(Cmp
, ModifiedDT
))
1722 if (combineToUSubWithOverflow(Cmp
, ModifiedDT
))
1725 if (foldICmpWithDominatingICmp(Cmp
, *TLI
))
1731 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1732 /// used in a compare to allow isel to generate better code for targets where
1733 /// this operation can be combined.
1735 /// Return true if any changes are made.
1736 static bool sinkAndCmp0Expression(Instruction
*AndI
,
1737 const TargetLowering
&TLI
,
1738 SetOfInstrs
&InsertedInsts
) {
1739 // Double-check that we're not trying to optimize an instruction that was
1740 // already optimized by some other part of this pass.
1741 assert(!InsertedInsts
.count(AndI
) &&
1742 "Attempting to optimize already optimized and instruction");
1743 (void) InsertedInsts
;
1745 // Nothing to do for single use in same basic block.
1746 if (AndI
->hasOneUse() &&
1747 AndI
->getParent() == cast
<Instruction
>(*AndI
->user_begin())->getParent())
1750 // Try to avoid cases where sinking/duplicating is likely to increase register
1752 if (!isa
<ConstantInt
>(AndI
->getOperand(0)) &&
1753 !isa
<ConstantInt
>(AndI
->getOperand(1)) &&
1754 AndI
->getOperand(0)->hasOneUse() && AndI
->getOperand(1)->hasOneUse())
1757 for (auto *U
: AndI
->users()) {
1758 Instruction
*User
= cast
<Instruction
>(U
);
1760 // Only sink 'and' feeding icmp with 0.
1761 if (!isa
<ICmpInst
>(User
))
1764 auto *CmpC
= dyn_cast
<ConstantInt
>(User
->getOperand(1));
1765 if (!CmpC
|| !CmpC
->isZero())
1769 if (!TLI
.isMaskAndCmp0FoldingBeneficial(*AndI
))
1772 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1773 LLVM_DEBUG(AndI
->getParent()->dump());
1775 // Push the 'and' into the same block as the icmp 0. There should only be
1776 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1777 // others, so we don't need to keep track of which BBs we insert into.
1778 for (Value::user_iterator UI
= AndI
->user_begin(), E
= AndI
->user_end();
1780 Use
&TheUse
= UI
.getUse();
1781 Instruction
*User
= cast
<Instruction
>(*UI
);
1783 // Preincrement use iterator so we don't invalidate it.
1786 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User
<< "\n");
1788 // Keep the 'and' in the same place if the use is already in the same block.
1789 Instruction
*InsertPt
=
1790 User
->getParent() == AndI
->getParent() ? AndI
: User
;
1791 Instruction
*InsertedAnd
=
1792 BinaryOperator::Create(Instruction::And
, AndI
->getOperand(0),
1793 AndI
->getOperand(1), "", InsertPt
);
1794 // Propagate the debug info.
1795 InsertedAnd
->setDebugLoc(AndI
->getDebugLoc());
1797 // Replace a use of the 'and' with a use of the new 'and'.
1798 TheUse
= InsertedAnd
;
1800 LLVM_DEBUG(User
->getParent()->dump());
1803 // We removed all uses, nuke the and.
1804 AndI
->eraseFromParent();
1808 /// Check if the candidates could be combined with a shift instruction, which
1810 /// 1. Truncate instruction
1811 /// 2. And instruction and the imm is a mask of the low bits:
1812 /// imm & (imm+1) == 0
1813 static bool isExtractBitsCandidateUse(Instruction
*User
) {
1814 if (!isa
<TruncInst
>(User
)) {
1815 if (User
->getOpcode() != Instruction::And
||
1816 !isa
<ConstantInt
>(User
->getOperand(1)))
1819 const APInt
&Cimm
= cast
<ConstantInt
>(User
->getOperand(1))->getValue();
1821 if ((Cimm
& (Cimm
+ 1)).getBoolValue())
1827 /// Sink both shift and truncate instruction to the use of truncate's BB.
1829 SinkShiftAndTruncate(BinaryOperator
*ShiftI
, Instruction
*User
, ConstantInt
*CI
,
1830 DenseMap
<BasicBlock
*, BinaryOperator
*> &InsertedShifts
,
1831 const TargetLowering
&TLI
, const DataLayout
&DL
) {
1832 BasicBlock
*UserBB
= User
->getParent();
1833 DenseMap
<BasicBlock
*, CastInst
*> InsertedTruncs
;
1834 auto *TruncI
= cast
<TruncInst
>(User
);
1835 bool MadeChange
= false;
1837 for (Value::user_iterator TruncUI
= TruncI
->user_begin(),
1838 TruncE
= TruncI
->user_end();
1839 TruncUI
!= TruncE
;) {
1841 Use
&TruncTheUse
= TruncUI
.getUse();
1842 Instruction
*TruncUser
= cast
<Instruction
>(*TruncUI
);
1843 // Preincrement use iterator so we don't invalidate it.
1847 int ISDOpcode
= TLI
.InstructionOpcodeToISD(TruncUser
->getOpcode());
1851 // If the use is actually a legal node, there will not be an
1852 // implicit truncate.
1853 // FIXME: always querying the result type is just an
1854 // approximation; some nodes' legality is determined by the
1855 // operand or other means. There's no good way to find out though.
1856 if (TLI
.isOperationLegalOrCustom(
1857 ISDOpcode
, TLI
.getValueType(DL
, TruncUser
->getType(), true)))
1860 // Don't bother for PHI nodes.
1861 if (isa
<PHINode
>(TruncUser
))
1864 BasicBlock
*TruncUserBB
= TruncUser
->getParent();
1866 if (UserBB
== TruncUserBB
)
1869 BinaryOperator
*&InsertedShift
= InsertedShifts
[TruncUserBB
];
1870 CastInst
*&InsertedTrunc
= InsertedTruncs
[TruncUserBB
];
1872 if (!InsertedShift
&& !InsertedTrunc
) {
1873 BasicBlock::iterator InsertPt
= TruncUserBB
->getFirstInsertionPt();
1874 assert(InsertPt
!= TruncUserBB
->end());
1876 if (ShiftI
->getOpcode() == Instruction::AShr
)
1877 InsertedShift
= BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
,
1880 InsertedShift
= BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
,
1882 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
1885 BasicBlock::iterator TruncInsertPt
= TruncUserBB
->getFirstInsertionPt();
1887 assert(TruncInsertPt
!= TruncUserBB
->end());
1889 InsertedTrunc
= CastInst::Create(TruncI
->getOpcode(), InsertedShift
,
1890 TruncI
->getType(), "", &*TruncInsertPt
);
1891 InsertedTrunc
->setDebugLoc(TruncI
->getDebugLoc());
1895 TruncTheUse
= InsertedTrunc
;
1901 /// Sink the shift *right* instruction into user blocks if the uses could
1902 /// potentially be combined with this shift instruction and generate BitExtract
1903 /// instruction. It will only be applied if the architecture supports BitExtract
1904 /// instruction. Here is an example:
1906 /// %x.extract.shift = lshr i64 %arg1, 32
1908 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1912 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1913 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1915 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1917 /// Return true if any changes are made.
1918 static bool OptimizeExtractBits(BinaryOperator
*ShiftI
, ConstantInt
*CI
,
1919 const TargetLowering
&TLI
,
1920 const DataLayout
&DL
) {
1921 BasicBlock
*DefBB
= ShiftI
->getParent();
1923 /// Only insert instructions in each block once.
1924 DenseMap
<BasicBlock
*, BinaryOperator
*> InsertedShifts
;
1926 bool shiftIsLegal
= TLI
.isTypeLegal(TLI
.getValueType(DL
, ShiftI
->getType()));
1928 bool MadeChange
= false;
1929 for (Value::user_iterator UI
= ShiftI
->user_begin(), E
= ShiftI
->user_end();
1931 Use
&TheUse
= UI
.getUse();
1932 Instruction
*User
= cast
<Instruction
>(*UI
);
1933 // Preincrement use iterator so we don't invalidate it.
1936 // Don't bother for PHI nodes.
1937 if (isa
<PHINode
>(User
))
1940 if (!isExtractBitsCandidateUse(User
))
1943 BasicBlock
*UserBB
= User
->getParent();
1945 if (UserBB
== DefBB
) {
1946 // If the shift and truncate instruction are in the same BB. The use of
1947 // the truncate(TruncUse) may still introduce another truncate if not
1948 // legal. In this case, we would like to sink both shift and truncate
1949 // instruction to the BB of TruncUse.
1952 // i64 shift.result = lshr i64 opnd, imm
1953 // trunc.result = trunc shift.result to i16
1956 // ----> We will have an implicit truncate here if the architecture does
1957 // not have i16 compare.
1958 // cmp i16 trunc.result, opnd2
1960 if (isa
<TruncInst
>(User
) && shiftIsLegal
1961 // If the type of the truncate is legal, no truncate will be
1962 // introduced in other basic blocks.
1964 (!TLI
.isTypeLegal(TLI
.getValueType(DL
, User
->getType()))))
1966 SinkShiftAndTruncate(ShiftI
, User
, CI
, InsertedShifts
, TLI
, DL
);
1970 // If we have already inserted a shift into this block, use it.
1971 BinaryOperator
*&InsertedShift
= InsertedShifts
[UserBB
];
1973 if (!InsertedShift
) {
1974 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1975 assert(InsertPt
!= UserBB
->end());
1977 if (ShiftI
->getOpcode() == Instruction::AShr
)
1978 InsertedShift
= BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
,
1981 InsertedShift
= BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
,
1983 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
1988 // Replace a use of the shift with a use of the new shift.
1989 TheUse
= InsertedShift
;
1992 // If we removed all uses, or there are none, nuke the shift.
1993 if (ShiftI
->use_empty()) {
1994 salvageDebugInfo(*ShiftI
);
1995 ShiftI
->eraseFromParent();
2002 /// If counting leading or trailing zeros is an expensive operation and a zero
2003 /// input is defined, add a check for zero to avoid calling the intrinsic.
2005 /// We want to transform:
2006 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2010 /// %cmpz = icmp eq i64 %A, 0
2011 /// br i1 %cmpz, label %cond.end, label %cond.false
2013 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2014 /// br label %cond.end
2016 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2018 /// If the transform is performed, return true and set ModifiedDT to true.
2019 static bool despeculateCountZeros(IntrinsicInst
*CountZeros
,
2020 const TargetLowering
*TLI
,
2021 const DataLayout
*DL
,
2023 // If a zero input is undefined, it doesn't make sense to despeculate that.
2024 if (match(CountZeros
->getOperand(1), m_One()))
2027 // If it's cheap to speculate, there's nothing to do.
2028 auto IntrinsicID
= CountZeros
->getIntrinsicID();
2029 if ((IntrinsicID
== Intrinsic::cttz
&& TLI
->isCheapToSpeculateCttz()) ||
2030 (IntrinsicID
== Intrinsic::ctlz
&& TLI
->isCheapToSpeculateCtlz()))
2033 // Only handle legal scalar cases. Anything else requires too much work.
2034 Type
*Ty
= CountZeros
->getType();
2035 unsigned SizeInBits
= Ty
->getScalarSizeInBits();
2036 if (Ty
->isVectorTy() || SizeInBits
> DL
->getLargestLegalIntTypeSizeInBits())
2039 // Bail if the value is never zero.
2040 if (llvm::isKnownNonZero(CountZeros
->getOperand(0), *DL
))
2043 // The intrinsic will be sunk behind a compare against zero and branch.
2044 BasicBlock
*StartBlock
= CountZeros
->getParent();
2045 BasicBlock
*CallBlock
= StartBlock
->splitBasicBlock(CountZeros
, "cond.false");
2047 // Create another block after the count zero intrinsic. A PHI will be added
2048 // in this block to select the result of the intrinsic or the bit-width
2049 // constant if the input to the intrinsic is zero.
2050 BasicBlock::iterator SplitPt
= ++(BasicBlock::iterator(CountZeros
));
2051 BasicBlock
*EndBlock
= CallBlock
->splitBasicBlock(SplitPt
, "cond.end");
2053 // Set up a builder to create a compare, conditional branch, and PHI.
2054 IRBuilder
<> Builder(CountZeros
->getContext());
2055 Builder
.SetInsertPoint(StartBlock
->getTerminator());
2056 Builder
.SetCurrentDebugLocation(CountZeros
->getDebugLoc());
2058 // Replace the unconditional branch that was created by the first split with
2059 // a compare against zero and a conditional branch.
2060 Value
*Zero
= Constant::getNullValue(Ty
);
2061 Value
*Cmp
= Builder
.CreateICmpEQ(CountZeros
->getOperand(0), Zero
, "cmpz");
2062 Builder
.CreateCondBr(Cmp
, EndBlock
, CallBlock
);
2063 StartBlock
->getTerminator()->eraseFromParent();
2065 // Create a PHI in the end block to select either the output of the intrinsic
2066 // or the bit width of the operand.
2067 Builder
.SetInsertPoint(&EndBlock
->front());
2068 PHINode
*PN
= Builder
.CreatePHI(Ty
, 2, "ctz");
2069 CountZeros
->replaceAllUsesWith(PN
);
2070 Value
*BitWidth
= Builder
.getInt(APInt(SizeInBits
, SizeInBits
));
2071 PN
->addIncoming(BitWidth
, StartBlock
);
2072 PN
->addIncoming(CountZeros
, CallBlock
);
2074 // We are explicitly handling the zero case, so we can set the intrinsic's
2075 // undefined zero argument to 'true'. This will also prevent reprocessing the
2076 // intrinsic; we only despeculate when a zero input is defined.
2077 CountZeros
->setArgOperand(1, Builder
.getTrue());
2082 bool CodeGenPrepare::optimizeCallInst(CallInst
*CI
, bool &ModifiedDT
) {
2083 BasicBlock
*BB
= CI
->getParent();
2085 // Lower inline assembly if we can.
2086 // If we found an inline asm expession, and if the target knows how to
2087 // lower it to normal LLVM code, do so now.
2088 if (CI
->isInlineAsm()) {
2089 if (TLI
->ExpandInlineAsm(CI
)) {
2090 // Avoid invalidating the iterator.
2091 CurInstIterator
= BB
->begin();
2092 // Avoid processing instructions out of order, which could cause
2093 // reuse before a value is defined.
2097 // Sink address computing for memory operands into the block.
2098 if (optimizeInlineAsmInst(CI
))
2102 // Align the pointer arguments to this call if the target thinks it's a good
2104 unsigned MinSize
, PrefAlign
;
2105 if (TLI
->shouldAlignPointerArgs(CI
, MinSize
, PrefAlign
)) {
2106 for (auto &Arg
: CI
->args()) {
2107 // We want to align both objects whose address is used directly and
2108 // objects whose address is used in casts and GEPs, though it only makes
2109 // sense for GEPs if the offset is a multiple of the desired alignment and
2110 // if size - offset meets the size threshold.
2111 if (!Arg
->getType()->isPointerTy())
2113 APInt
Offset(DL
->getIndexSizeInBits(
2114 cast
<PointerType
>(Arg
->getType())->getAddressSpace()),
2116 Value
*Val
= Arg
->stripAndAccumulateInBoundsConstantOffsets(*DL
, Offset
);
2117 uint64_t Offset2
= Offset
.getLimitedValue();
2118 if ((Offset2
& (PrefAlign
-1)) != 0)
2121 if ((AI
= dyn_cast
<AllocaInst
>(Val
)) && AI
->getAlignment() < PrefAlign
&&
2122 DL
->getTypeAllocSize(AI
->getAllocatedType()) >= MinSize
+ Offset2
)
2123 AI
->setAlignment(Align(PrefAlign
));
2124 // Global variables can only be aligned if they are defined in this
2125 // object (i.e. they are uniquely initialized in this object), and
2126 // over-aligning global variables that have an explicit section is
2129 if ((GV
= dyn_cast
<GlobalVariable
>(Val
)) && GV
->canIncreaseAlignment() &&
2130 GV
->getPointerAlignment(*DL
) < PrefAlign
&&
2131 DL
->getTypeAllocSize(GV
->getValueType()) >=
2133 GV
->setAlignment(MaybeAlign(PrefAlign
));
2135 // If this is a memcpy (or similar) then we may be able to improve the
2137 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(CI
)) {
2138 Align DestAlign
= getKnownAlignment(MI
->getDest(), *DL
);
2139 MaybeAlign MIDestAlign
= MI
->getDestAlign();
2140 if (!MIDestAlign
|| DestAlign
> *MIDestAlign
)
2141 MI
->setDestAlignment(DestAlign
);
2142 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
)) {
2143 MaybeAlign MTISrcAlign
= MTI
->getSourceAlign();
2144 Align SrcAlign
= getKnownAlignment(MTI
->getSource(), *DL
);
2145 if (!MTISrcAlign
|| SrcAlign
> *MTISrcAlign
)
2146 MTI
->setSourceAlignment(SrcAlign
);
2151 // If we have a cold call site, try to sink addressing computation into the
2152 // cold block. This interacts with our handling for loads and stores to
2153 // ensure that we can fold all uses of a potential addressing computation
2154 // into their uses. TODO: generalize this to work over profiling data
2155 if (CI
->hasFnAttr(Attribute::Cold
) &&
2156 !OptSize
&& !llvm::shouldOptimizeForSize(BB
, PSI
, BFI
.get()))
2157 for (auto &Arg
: CI
->args()) {
2158 if (!Arg
->getType()->isPointerTy())
2160 unsigned AS
= Arg
->getType()->getPointerAddressSpace();
2161 return optimizeMemoryInst(CI
, Arg
, Arg
->getType(), AS
);
2164 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
);
2166 switch (II
->getIntrinsicID()) {
2168 case Intrinsic::assume
:
2169 llvm_unreachable("llvm.assume should have been removed already");
2170 case Intrinsic::experimental_widenable_condition
: {
2171 // Give up on future widening oppurtunties so that we can fold away dead
2172 // paths and merge blocks before going into block-local instruction
2174 if (II
->use_empty()) {
2175 II
->eraseFromParent();
2178 Constant
*RetVal
= ConstantInt::getTrue(II
->getContext());
2179 resetIteratorIfInvalidatedWhileCalling(BB
, [&]() {
2180 replaceAndRecursivelySimplify(CI
, RetVal
, TLInfo
, nullptr);
2184 case Intrinsic::objectsize
:
2185 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2186 case Intrinsic::is_constant
:
2187 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2188 case Intrinsic::aarch64_stlxr
:
2189 case Intrinsic::aarch64_stxr
: {
2190 ZExtInst
*ExtVal
= dyn_cast
<ZExtInst
>(CI
->getArgOperand(0));
2191 if (!ExtVal
|| !ExtVal
->hasOneUse() ||
2192 ExtVal
->getParent() == CI
->getParent())
2194 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2195 ExtVal
->moveBefore(CI
);
2196 // Mark this instruction as "inserted by CGP", so that other
2197 // optimizations don't touch it.
2198 InsertedInsts
.insert(ExtVal
);
2202 case Intrinsic::launder_invariant_group
:
2203 case Intrinsic::strip_invariant_group
: {
2204 Value
*ArgVal
= II
->getArgOperand(0);
2205 auto it
= LargeOffsetGEPMap
.find(II
);
2206 if (it
!= LargeOffsetGEPMap
.end()) {
2207 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2208 // Make sure not to have to deal with iterator invalidation
2209 // after possibly adding ArgVal to LargeOffsetGEPMap.
2210 auto GEPs
= std::move(it
->second
);
2211 LargeOffsetGEPMap
[ArgVal
].append(GEPs
.begin(), GEPs
.end());
2212 LargeOffsetGEPMap
.erase(II
);
2215 II
->replaceAllUsesWith(ArgVal
);
2216 II
->eraseFromParent();
2219 case Intrinsic::cttz
:
2220 case Intrinsic::ctlz
:
2221 // If counting zeros is expensive, try to avoid it.
2222 return despeculateCountZeros(II
, TLI
, DL
, ModifiedDT
);
2223 case Intrinsic::fshl
:
2224 case Intrinsic::fshr
:
2225 return optimizeFunnelShift(II
);
2226 case Intrinsic::dbg_value
:
2227 return fixupDbgValue(II
);
2228 case Intrinsic::vscale
: {
2229 // If datalayout has no special restrictions on vector data layout,
2230 // replace `llvm.vscale` by an equivalent constant expression
2231 // to benefit from cheap constant propagation.
2232 Type
*ScalableVectorTy
=
2233 VectorType::get(Type::getInt8Ty(II
->getContext()), 1, true);
2234 if (DL
->getTypeAllocSize(ScalableVectorTy
).getKnownMinSize() == 8) {
2235 auto *Null
= Constant::getNullValue(ScalableVectorTy
->getPointerTo());
2236 auto *One
= ConstantInt::getSigned(II
->getType(), 1);
2238 ConstantExpr::getGetElementPtr(ScalableVectorTy
, Null
, One
);
2239 II
->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep
, II
->getType()));
2240 II
->eraseFromParent();
2245 case Intrinsic::masked_gather
:
2246 return optimizeGatherScatterInst(II
, II
->getArgOperand(0));
2247 case Intrinsic::masked_scatter
:
2248 return optimizeGatherScatterInst(II
, II
->getArgOperand(1));
2251 SmallVector
<Value
*, 2> PtrOps
;
2253 if (TLI
->getAddrModeArguments(II
, PtrOps
, AccessTy
))
2254 while (!PtrOps
.empty()) {
2255 Value
*PtrVal
= PtrOps
.pop_back_val();
2256 unsigned AS
= PtrVal
->getType()->getPointerAddressSpace();
2257 if (optimizeMemoryInst(II
, PtrVal
, AccessTy
, AS
))
2262 // From here on out we're working with named functions.
2263 if (!CI
->getCalledFunction()) return false;
2265 // Lower all default uses of _chk calls. This is very similar
2266 // to what InstCombineCalls does, but here we are only lowering calls
2267 // to fortified library functions (e.g. __memcpy_chk) that have the default
2268 // "don't know" as the objectsize. Anything else should be left alone.
2269 FortifiedLibCallSimplifier
Simplifier(TLInfo
, true);
2270 IRBuilder
<> Builder(CI
);
2271 if (Value
*V
= Simplifier
.optimizeCall(CI
, Builder
)) {
2272 CI
->replaceAllUsesWith(V
);
2273 CI
->eraseFromParent();
2280 /// Look for opportunities to duplicate return instructions to the predecessor
2281 /// to enable tail call optimizations. The case it is currently looking for is:
2284 /// %tmp0 = tail call i32 @f0()
2285 /// br label %return
2287 /// %tmp1 = tail call i32 @f1()
2288 /// br label %return
2290 /// %tmp2 = tail call i32 @f2()
2291 /// br label %return
2293 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2301 /// %tmp0 = tail call i32 @f0()
2304 /// %tmp1 = tail call i32 @f1()
2307 /// %tmp2 = tail call i32 @f2()
2310 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock
*BB
, bool &ModifiedDT
) {
2311 ReturnInst
*RetI
= dyn_cast
<ReturnInst
>(BB
->getTerminator());
2315 PHINode
*PN
= nullptr;
2316 ExtractValueInst
*EVI
= nullptr;
2317 BitCastInst
*BCI
= nullptr;
2318 Value
*V
= RetI
->getReturnValue();
2320 BCI
= dyn_cast
<BitCastInst
>(V
);
2322 V
= BCI
->getOperand(0);
2324 EVI
= dyn_cast
<ExtractValueInst
>(V
);
2326 V
= EVI
->getOperand(0);
2327 if (!llvm::all_of(EVI
->indices(), [](unsigned idx
) { return idx
== 0; }))
2331 PN
= dyn_cast
<PHINode
>(V
);
2336 if (PN
&& PN
->getParent() != BB
)
2339 auto isLifetimeEndOrBitCastFor
= [](const Instruction
*Inst
) {
2340 const BitCastInst
*BC
= dyn_cast
<BitCastInst
>(Inst
);
2341 if (BC
&& BC
->hasOneUse())
2342 Inst
= BC
->user_back();
2344 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
))
2345 return II
->getIntrinsicID() == Intrinsic::lifetime_end
;
2349 // Make sure there are no instructions between the first instruction
2351 const Instruction
*BI
= BB
->getFirstNonPHI();
2352 // Skip over debug and the bitcast.
2353 while (isa
<DbgInfoIntrinsic
>(BI
) || BI
== BCI
|| BI
== EVI
||
2354 isa
<PseudoProbeInst
>(BI
) || isLifetimeEndOrBitCastFor(BI
))
2355 BI
= BI
->getNextNode();
2359 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2361 const Function
*F
= BB
->getParent();
2362 SmallVector
<BasicBlock
*, 4> TailCallBBs
;
2364 for (unsigned I
= 0, E
= PN
->getNumIncomingValues(); I
!= E
; ++I
) {
2365 // Look through bitcasts.
2366 Value
*IncomingVal
= PN
->getIncomingValue(I
)->stripPointerCasts();
2367 CallInst
*CI
= dyn_cast
<CallInst
>(IncomingVal
);
2368 BasicBlock
*PredBB
= PN
->getIncomingBlock(I
);
2369 // Make sure the phi value is indeed produced by the tail call.
2370 if (CI
&& CI
->hasOneUse() && CI
->getParent() == PredBB
&&
2371 TLI
->mayBeEmittedAsTailCall(CI
) &&
2372 attributesPermitTailCall(F
, CI
, RetI
, *TLI
))
2373 TailCallBBs
.push_back(PredBB
);
2376 SmallPtrSet
<BasicBlock
*, 4> VisitedBBs
;
2377 for (BasicBlock
*Pred
: predecessors(BB
)) {
2378 if (!VisitedBBs
.insert(Pred
).second
)
2380 if (Instruction
*I
= Pred
->rbegin()->getPrevNonDebugInstruction(true)) {
2381 CallInst
*CI
= dyn_cast
<CallInst
>(I
);
2382 if (CI
&& CI
->use_empty() && TLI
->mayBeEmittedAsTailCall(CI
) &&
2383 attributesPermitTailCall(F
, CI
, RetI
, *TLI
))
2384 TailCallBBs
.push_back(Pred
);
2389 bool Changed
= false;
2390 for (auto const &TailCallBB
: TailCallBBs
) {
2391 // Make sure the call instruction is followed by an unconditional branch to
2392 // the return block.
2393 BranchInst
*BI
= dyn_cast
<BranchInst
>(TailCallBB
->getTerminator());
2394 if (!BI
|| !BI
->isUnconditional() || BI
->getSuccessor(0) != BB
)
2397 // Duplicate the return into TailCallBB.
2398 (void)FoldReturnIntoUncondBranch(RetI
, BB
, TailCallBB
);
2399 assert(!VerifyBFIUpdates
||
2400 BFI
->getBlockFreq(BB
) >= BFI
->getBlockFreq(TailCallBB
));
2403 (BFI
->getBlockFreq(BB
) - BFI
->getBlockFreq(TailCallBB
)).getFrequency());
2404 ModifiedDT
= Changed
= true;
2408 // If we eliminated all predecessors of the block, delete the block now.
2409 if (Changed
&& !BB
->hasAddressTaken() && pred_empty(BB
))
2410 BB
->eraseFromParent();
2415 //===----------------------------------------------------------------------===//
2416 // Memory Optimization
2417 //===----------------------------------------------------------------------===//
2421 /// This is an extended version of TargetLowering::AddrMode
2422 /// which holds actual Value*'s for register values.
2423 struct ExtAddrMode
: public TargetLowering::AddrMode
{
2424 Value
*BaseReg
= nullptr;
2425 Value
*ScaledReg
= nullptr;
2426 Value
*OriginalValue
= nullptr;
2427 bool InBounds
= true;
2431 BaseRegField
= 0x01,
2433 BaseOffsField
= 0x04,
2434 ScaledRegField
= 0x08,
2436 MultipleFields
= 0xff
2440 ExtAddrMode() = default;
2442 void print(raw_ostream
&OS
) const;
2445 FieldName
compare(const ExtAddrMode
&other
) {
2446 // First check that the types are the same on each field, as differing types
2447 // is something we can't cope with later on.
2448 if (BaseReg
&& other
.BaseReg
&&
2449 BaseReg
->getType() != other
.BaseReg
->getType())
2450 return MultipleFields
;
2451 if (BaseGV
&& other
.BaseGV
&&
2452 BaseGV
->getType() != other
.BaseGV
->getType())
2453 return MultipleFields
;
2454 if (ScaledReg
&& other
.ScaledReg
&&
2455 ScaledReg
->getType() != other
.ScaledReg
->getType())
2456 return MultipleFields
;
2458 // Conservatively reject 'inbounds' mismatches.
2459 if (InBounds
!= other
.InBounds
)
2460 return MultipleFields
;
2462 // Check each field to see if it differs.
2463 unsigned Result
= NoField
;
2464 if (BaseReg
!= other
.BaseReg
)
2465 Result
|= BaseRegField
;
2466 if (BaseGV
!= other
.BaseGV
)
2467 Result
|= BaseGVField
;
2468 if (BaseOffs
!= other
.BaseOffs
)
2469 Result
|= BaseOffsField
;
2470 if (ScaledReg
!= other
.ScaledReg
)
2471 Result
|= ScaledRegField
;
2472 // Don't count 0 as being a different scale, because that actually means
2473 // unscaled (which will already be counted by having no ScaledReg).
2474 if (Scale
&& other
.Scale
&& Scale
!= other
.Scale
)
2475 Result
|= ScaleField
;
2477 if (countPopulation(Result
) > 1)
2478 return MultipleFields
;
2480 return static_cast<FieldName
>(Result
);
2483 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2486 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2487 // trivial if at most one of these terms is nonzero, except that BaseGV and
2488 // BaseReg both being zero actually means a null pointer value, which we
2489 // consider to be 'non-zero' here.
2490 return !BaseOffs
&& !Scale
&& !(BaseGV
&& BaseReg
);
2493 Value
*GetFieldAsValue(FieldName Field
, Type
*IntPtrTy
) {
2501 case ScaledRegField
:
2504 return ConstantInt::get(IntPtrTy
, BaseOffs
);
2508 void SetCombinedField(FieldName Field
, Value
*V
,
2509 const SmallVectorImpl
<ExtAddrMode
> &AddrModes
) {
2512 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2514 case ExtAddrMode::BaseRegField
:
2517 case ExtAddrMode::BaseGVField
:
2518 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2519 // in the BaseReg field.
2520 assert(BaseReg
== nullptr);
2524 case ExtAddrMode::ScaledRegField
:
2526 // If we have a mix of scaled and unscaled addrmodes then we want scale
2527 // to be the scale and not zero.
2529 for (const ExtAddrMode
&AM
: AddrModes
)
2535 case ExtAddrMode::BaseOffsField
:
2536 // The offset is no longer a constant, so it goes in ScaledReg with a
2538 assert(ScaledReg
== nullptr);
2547 } // end anonymous namespace
2550 static inline raw_ostream
&operator<<(raw_ostream
&OS
, const ExtAddrMode
&AM
) {
2556 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2557 void ExtAddrMode::print(raw_ostream
&OS
) const {
2558 bool NeedPlus
= false;
2563 OS
<< (NeedPlus
? " + " : "")
2565 BaseGV
->printAsOperand(OS
, /*PrintType=*/false);
2570 OS
<< (NeedPlus
? " + " : "")
2576 OS
<< (NeedPlus
? " + " : "")
2578 BaseReg
->printAsOperand(OS
, /*PrintType=*/false);
2582 OS
<< (NeedPlus
? " + " : "")
2584 ScaledReg
->printAsOperand(OS
, /*PrintType=*/false);
2590 LLVM_DUMP_METHOD
void ExtAddrMode::dump() const {
2598 /// This class provides transaction based operation on the IR.
2599 /// Every change made through this class is recorded in the internal state and
2600 /// can be undone (rollback) until commit is called.
2601 /// CGP does not check if instructions could be speculatively executed when
2602 /// moved. Preserving the original location would pessimize the debugging
2603 /// experience, as well as negatively impact the quality of sample PGO.
2604 class TypePromotionTransaction
{
2605 /// This represents the common interface of the individual transaction.
2606 /// Each class implements the logic for doing one specific modification on
2607 /// the IR via the TypePromotionTransaction.
2608 class TypePromotionAction
{
2610 /// The Instruction modified.
2614 /// Constructor of the action.
2615 /// The constructor performs the related action on the IR.
2616 TypePromotionAction(Instruction
*Inst
) : Inst(Inst
) {}
2618 virtual ~TypePromotionAction() = default;
2620 /// Undo the modification done by this action.
2621 /// When this method is called, the IR must be in the same state as it was
2622 /// before this action was applied.
2623 /// \pre Undoing the action works if and only if the IR is in the exact same
2624 /// state as it was directly after this action was applied.
2625 virtual void undo() = 0;
2627 /// Advocate every change made by this action.
2628 /// When the results on the IR of the action are to be kept, it is important
2629 /// to call this function, otherwise hidden information may be kept forever.
2630 virtual void commit() {
2631 // Nothing to be done, this action is not doing anything.
2635 /// Utility to remember the position of an instruction.
2636 class InsertionHandler
{
2637 /// Position of an instruction.
2638 /// Either an instruction:
2639 /// - Is the first in a basic block: BB is used.
2640 /// - Has a previous instruction: PrevInst is used.
2642 Instruction
*PrevInst
;
2646 /// Remember whether or not the instruction had a previous instruction.
2647 bool HasPrevInstruction
;
2650 /// Record the position of \p Inst.
2651 InsertionHandler(Instruction
*Inst
) {
2652 BasicBlock::iterator It
= Inst
->getIterator();
2653 HasPrevInstruction
= (It
!= (Inst
->getParent()->begin()));
2654 if (HasPrevInstruction
)
2655 Point
.PrevInst
= &*--It
;
2657 Point
.BB
= Inst
->getParent();
2660 /// Insert \p Inst at the recorded position.
2661 void insert(Instruction
*Inst
) {
2662 if (HasPrevInstruction
) {
2663 if (Inst
->getParent())
2664 Inst
->removeFromParent();
2665 Inst
->insertAfter(Point
.PrevInst
);
2667 Instruction
*Position
= &*Point
.BB
->getFirstInsertionPt();
2668 if (Inst
->getParent())
2669 Inst
->moveBefore(Position
);
2671 Inst
->insertBefore(Position
);
2676 /// Move an instruction before another.
2677 class InstructionMoveBefore
: public TypePromotionAction
{
2678 /// Original position of the instruction.
2679 InsertionHandler Position
;
2682 /// Move \p Inst before \p Before.
2683 InstructionMoveBefore(Instruction
*Inst
, Instruction
*Before
)
2684 : TypePromotionAction(Inst
), Position(Inst
) {
2685 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst
<< "\nbefore: " << *Before
2687 Inst
->moveBefore(Before
);
2690 /// Move the instruction back to its original position.
2691 void undo() override
{
2692 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst
<< "\n");
2693 Position
.insert(Inst
);
2697 /// Set the operand of an instruction with a new value.
2698 class OperandSetter
: public TypePromotionAction
{
2699 /// Original operand of the instruction.
2702 /// Index of the modified instruction.
2706 /// Set \p Idx operand of \p Inst with \p NewVal.
2707 OperandSetter(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
)
2708 : TypePromotionAction(Inst
), Idx(Idx
) {
2709 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx
<< "\n"
2710 << "for:" << *Inst
<< "\n"
2711 << "with:" << *NewVal
<< "\n");
2712 Origin
= Inst
->getOperand(Idx
);
2713 Inst
->setOperand(Idx
, NewVal
);
2716 /// Restore the original value of the instruction.
2717 void undo() override
{
2718 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx
<< "\n"
2719 << "for: " << *Inst
<< "\n"
2720 << "with: " << *Origin
<< "\n");
2721 Inst
->setOperand(Idx
, Origin
);
2725 /// Hide the operands of an instruction.
2726 /// Do as if this instruction was not using any of its operands.
2727 class OperandsHider
: public TypePromotionAction
{
2728 /// The list of original operands.
2729 SmallVector
<Value
*, 4> OriginalValues
;
2732 /// Remove \p Inst from the uses of the operands of \p Inst.
2733 OperandsHider(Instruction
*Inst
) : TypePromotionAction(Inst
) {
2734 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst
<< "\n");
2735 unsigned NumOpnds
= Inst
->getNumOperands();
2736 OriginalValues
.reserve(NumOpnds
);
2737 for (unsigned It
= 0; It
< NumOpnds
; ++It
) {
2738 // Save the current operand.
2739 Value
*Val
= Inst
->getOperand(It
);
2740 OriginalValues
.push_back(Val
);
2742 // We could use OperandSetter here, but that would imply an overhead
2743 // that we are not willing to pay.
2744 Inst
->setOperand(It
, UndefValue::get(Val
->getType()));
2748 /// Restore the original list of uses.
2749 void undo() override
{
2750 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst
<< "\n");
2751 for (unsigned It
= 0, EndIt
= OriginalValues
.size(); It
!= EndIt
; ++It
)
2752 Inst
->setOperand(It
, OriginalValues
[It
]);
2756 /// Build a truncate instruction.
2757 class TruncBuilder
: public TypePromotionAction
{
2761 /// Build a truncate instruction of \p Opnd producing a \p Ty
2763 /// trunc Opnd to Ty.
2764 TruncBuilder(Instruction
*Opnd
, Type
*Ty
) : TypePromotionAction(Opnd
) {
2765 IRBuilder
<> Builder(Opnd
);
2766 Builder
.SetCurrentDebugLocation(DebugLoc());
2767 Val
= Builder
.CreateTrunc(Opnd
, Ty
, "promoted");
2768 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val
<< "\n");
2771 /// Get the built value.
2772 Value
*getBuiltValue() { return Val
; }
2774 /// Remove the built instruction.
2775 void undo() override
{
2776 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val
<< "\n");
2777 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2778 IVal
->eraseFromParent();
2782 /// Build a sign extension instruction.
2783 class SExtBuilder
: public TypePromotionAction
{
2787 /// Build a sign extension instruction of \p Opnd producing a \p Ty
2789 /// sext Opnd to Ty.
2790 SExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
2791 : TypePromotionAction(InsertPt
) {
2792 IRBuilder
<> Builder(InsertPt
);
2793 Val
= Builder
.CreateSExt(Opnd
, Ty
, "promoted");
2794 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val
<< "\n");
2797 /// Get the built value.
2798 Value
*getBuiltValue() { return Val
; }
2800 /// Remove the built instruction.
2801 void undo() override
{
2802 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val
<< "\n");
2803 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2804 IVal
->eraseFromParent();
2808 /// Build a zero extension instruction.
2809 class ZExtBuilder
: public TypePromotionAction
{
2813 /// Build a zero extension instruction of \p Opnd producing a \p Ty
2815 /// zext Opnd to Ty.
2816 ZExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
2817 : TypePromotionAction(InsertPt
) {
2818 IRBuilder
<> Builder(InsertPt
);
2819 Builder
.SetCurrentDebugLocation(DebugLoc());
2820 Val
= Builder
.CreateZExt(Opnd
, Ty
, "promoted");
2821 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val
<< "\n");
2824 /// Get the built value.
2825 Value
*getBuiltValue() { return Val
; }
2827 /// Remove the built instruction.
2828 void undo() override
{
2829 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val
<< "\n");
2830 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2831 IVal
->eraseFromParent();
2835 /// Mutate an instruction to another type.
2836 class TypeMutator
: public TypePromotionAction
{
2837 /// Record the original type.
2841 /// Mutate the type of \p Inst into \p NewTy.
2842 TypeMutator(Instruction
*Inst
, Type
*NewTy
)
2843 : TypePromotionAction(Inst
), OrigTy(Inst
->getType()) {
2844 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst
<< " with " << *NewTy
2846 Inst
->mutateType(NewTy
);
2849 /// Mutate the instruction back to its original type.
2850 void undo() override
{
2851 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst
<< " with " << *OrigTy
2853 Inst
->mutateType(OrigTy
);
2857 /// Replace the uses of an instruction by another instruction.
2858 class UsesReplacer
: public TypePromotionAction
{
2859 /// Helper structure to keep track of the replaced uses.
2860 struct InstructionAndIdx
{
2861 /// The instruction using the instruction.
2864 /// The index where this instruction is used for Inst.
2867 InstructionAndIdx(Instruction
*Inst
, unsigned Idx
)
2868 : Inst(Inst
), Idx(Idx
) {}
2871 /// Keep track of the original uses (pair Instruction, Index).
2872 SmallVector
<InstructionAndIdx
, 4> OriginalUses
;
2873 /// Keep track of the debug users.
2874 SmallVector
<DbgValueInst
*, 1> DbgValues
;
2876 /// Keep track of the new value so that we can undo it by replacing
2877 /// instances of the new value with the original value.
2880 using use_iterator
= SmallVectorImpl
<InstructionAndIdx
>::iterator
;
2883 /// Replace all the use of \p Inst by \p New.
2884 UsesReplacer(Instruction
*Inst
, Value
*New
)
2885 : TypePromotionAction(Inst
), New(New
) {
2886 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst
<< " with " << *New
2888 // Record the original uses.
2889 for (Use
&U
: Inst
->uses()) {
2890 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
2891 OriginalUses
.push_back(InstructionAndIdx(UserI
, U
.getOperandNo()));
2893 // Record the debug uses separately. They are not in the instruction's
2894 // use list, but they are replaced by RAUW.
2895 findDbgValues(DbgValues
, Inst
);
2897 // Now, we can replace the uses.
2898 Inst
->replaceAllUsesWith(New
);
2901 /// Reassign the original uses of Inst to Inst.
2902 void undo() override
{
2903 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst
<< "\n");
2904 for (InstructionAndIdx
&Use
: OriginalUses
)
2905 Use
.Inst
->setOperand(Use
.Idx
, Inst
);
2906 // RAUW has replaced all original uses with references to the new value,
2907 // including the debug uses. Since we are undoing the replacements,
2908 // the original debug uses must also be reinstated to maintain the
2909 // correctness and utility of debug value instructions.
2910 for (auto *DVI
: DbgValues
)
2911 DVI
->replaceVariableLocationOp(New
, Inst
);
2915 /// Remove an instruction from the IR.
2916 class InstructionRemover
: public TypePromotionAction
{
2917 /// Original position of the instruction.
2918 InsertionHandler Inserter
;
2920 /// Helper structure to hide all the link to the instruction. In other
2921 /// words, this helps to do as if the instruction was removed.
2922 OperandsHider Hider
;
2924 /// Keep track of the uses replaced, if any.
2925 UsesReplacer
*Replacer
= nullptr;
2927 /// Keep track of instructions removed.
2928 SetOfInstrs
&RemovedInsts
;
2931 /// Remove all reference of \p Inst and optionally replace all its
2933 /// \p RemovedInsts Keep track of the instructions removed by this Action.
2934 /// \pre If !Inst->use_empty(), then New != nullptr
2935 InstructionRemover(Instruction
*Inst
, SetOfInstrs
&RemovedInsts
,
2936 Value
*New
= nullptr)
2937 : TypePromotionAction(Inst
), Inserter(Inst
), Hider(Inst
),
2938 RemovedInsts(RemovedInsts
) {
2940 Replacer
= new UsesReplacer(Inst
, New
);
2941 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst
<< "\n");
2942 RemovedInsts
.insert(Inst
);
2943 /// The instructions removed here will be freed after completing
2944 /// optimizeBlock() for all blocks as we need to keep track of the
2945 /// removed instructions during promotion.
2946 Inst
->removeFromParent();
2949 ~InstructionRemover() override
{ delete Replacer
; }
2951 /// Resurrect the instruction and reassign it to the proper uses if
2952 /// new value was provided when build this action.
2953 void undo() override
{
2954 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst
<< "\n");
2955 Inserter
.insert(Inst
);
2959 RemovedInsts
.erase(Inst
);
2964 /// Restoration point.
2965 /// The restoration point is a pointer to an action instead of an iterator
2966 /// because the iterator may be invalidated but not the pointer.
2967 using ConstRestorationPt
= const TypePromotionAction
*;
2969 TypePromotionTransaction(SetOfInstrs
&RemovedInsts
)
2970 : RemovedInsts(RemovedInsts
) {}
2972 /// Advocate every changes made in that transaction. Return true if any change
2976 /// Undo all the changes made after the given point.
2977 void rollback(ConstRestorationPt Point
);
2979 /// Get the current restoration point.
2980 ConstRestorationPt
getRestorationPoint() const;
2982 /// \name API for IR modification with state keeping to support rollback.
2984 /// Same as Instruction::setOperand.
2985 void setOperand(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
);
2987 /// Same as Instruction::eraseFromParent.
2988 void eraseInstruction(Instruction
*Inst
, Value
*NewVal
= nullptr);
2990 /// Same as Value::replaceAllUsesWith.
2991 void replaceAllUsesWith(Instruction
*Inst
, Value
*New
);
2993 /// Same as Value::mutateType.
2994 void mutateType(Instruction
*Inst
, Type
*NewTy
);
2996 /// Same as IRBuilder::createTrunc.
2997 Value
*createTrunc(Instruction
*Opnd
, Type
*Ty
);
2999 /// Same as IRBuilder::createSExt.
3000 Value
*createSExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
3002 /// Same as IRBuilder::createZExt.
3003 Value
*createZExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
3005 /// Same as Instruction::moveBefore.
3006 void moveBefore(Instruction
*Inst
, Instruction
*Before
);
3010 /// The ordered list of actions made so far.
3011 SmallVector
<std::unique_ptr
<TypePromotionAction
>, 16> Actions
;
3013 using CommitPt
= SmallVectorImpl
<std::unique_ptr
<TypePromotionAction
>>::iterator
;
3015 SetOfInstrs
&RemovedInsts
;
3018 } // end anonymous namespace
3020 void TypePromotionTransaction::setOperand(Instruction
*Inst
, unsigned Idx
,
3022 Actions
.push_back(std::make_unique
<TypePromotionTransaction::OperandSetter
>(
3023 Inst
, Idx
, NewVal
));
3026 void TypePromotionTransaction::eraseInstruction(Instruction
*Inst
,
3029 std::make_unique
<TypePromotionTransaction::InstructionRemover
>(
3030 Inst
, RemovedInsts
, NewVal
));
3033 void TypePromotionTransaction::replaceAllUsesWith(Instruction
*Inst
,
3036 std::make_unique
<TypePromotionTransaction::UsesReplacer
>(Inst
, New
));
3039 void TypePromotionTransaction::mutateType(Instruction
*Inst
, Type
*NewTy
) {
3041 std::make_unique
<TypePromotionTransaction::TypeMutator
>(Inst
, NewTy
));
3044 Value
*TypePromotionTransaction::createTrunc(Instruction
*Opnd
,
3046 std::unique_ptr
<TruncBuilder
> Ptr(new TruncBuilder(Opnd
, Ty
));
3047 Value
*Val
= Ptr
->getBuiltValue();
3048 Actions
.push_back(std::move(Ptr
));
3052 Value
*TypePromotionTransaction::createSExt(Instruction
*Inst
,
3053 Value
*Opnd
, Type
*Ty
) {
3054 std::unique_ptr
<SExtBuilder
> Ptr(new SExtBuilder(Inst
, Opnd
, Ty
));
3055 Value
*Val
= Ptr
->getBuiltValue();
3056 Actions
.push_back(std::move(Ptr
));
3060 Value
*TypePromotionTransaction::createZExt(Instruction
*Inst
,
3061 Value
*Opnd
, Type
*Ty
) {
3062 std::unique_ptr
<ZExtBuilder
> Ptr(new ZExtBuilder(Inst
, Opnd
, Ty
));
3063 Value
*Val
= Ptr
->getBuiltValue();
3064 Actions
.push_back(std::move(Ptr
));
3068 void TypePromotionTransaction::moveBefore(Instruction
*Inst
,
3069 Instruction
*Before
) {
3071 std::make_unique
<TypePromotionTransaction::InstructionMoveBefore
>(
3075 TypePromotionTransaction::ConstRestorationPt
3076 TypePromotionTransaction::getRestorationPoint() const {
3077 return !Actions
.empty() ? Actions
.back().get() : nullptr;
3080 bool TypePromotionTransaction::commit() {
3081 for (std::unique_ptr
<TypePromotionAction
> &Action
: Actions
)
3083 bool Modified
= !Actions
.empty();
3088 void TypePromotionTransaction::rollback(
3089 TypePromotionTransaction::ConstRestorationPt Point
) {
3090 while (!Actions
.empty() && Point
!= Actions
.back().get()) {
3091 std::unique_ptr
<TypePromotionAction
> Curr
= Actions
.pop_back_val();
3098 /// A helper class for matching addressing modes.
3100 /// This encapsulates the logic for matching the target-legal addressing modes.
3101 class AddressingModeMatcher
{
3102 SmallVectorImpl
<Instruction
*> &AddrModeInsts
;
3103 const TargetLowering
&TLI
;
3104 const TargetRegisterInfo
&TRI
;
3105 const DataLayout
&DL
;
3107 const std::function
<const DominatorTree
&()> getDTFn
;
3109 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3110 /// the memory instruction that we're computing this address for.
3113 Instruction
*MemoryInst
;
3115 /// This is the addressing mode that we're building up. This is
3116 /// part of the return value of this addressing mode matching stuff.
3117 ExtAddrMode
&AddrMode
;
3119 /// The instructions inserted by other CodeGenPrepare optimizations.
3120 const SetOfInstrs
&InsertedInsts
;
3122 /// A map from the instructions to their type before promotion.
3123 InstrToOrigTy
&PromotedInsts
;
3125 /// The ongoing transaction where every action should be registered.
3126 TypePromotionTransaction
&TPT
;
3128 // A GEP which has too large offset to be folded into the addressing mode.
3129 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
;
3131 /// This is set to true when we should not do profitability checks.
3132 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3133 bool IgnoreProfitability
;
3135 /// True if we are optimizing for size.
3138 ProfileSummaryInfo
*PSI
;
3139 BlockFrequencyInfo
*BFI
;
3141 AddressingModeMatcher(
3142 SmallVectorImpl
<Instruction
*> &AMI
, const TargetLowering
&TLI
,
3143 const TargetRegisterInfo
&TRI
, const LoopInfo
&LI
,
3144 const std::function
<const DominatorTree
&()> getDTFn
,
3145 Type
*AT
, unsigned AS
, Instruction
*MI
, ExtAddrMode
&AM
,
3146 const SetOfInstrs
&InsertedInsts
, InstrToOrigTy
&PromotedInsts
,
3147 TypePromotionTransaction
&TPT
,
3148 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
,
3149 bool OptSize
, ProfileSummaryInfo
*PSI
, BlockFrequencyInfo
*BFI
)
3150 : AddrModeInsts(AMI
), TLI(TLI
), TRI(TRI
),
3151 DL(MI
->getModule()->getDataLayout()), LI(LI
), getDTFn(getDTFn
),
3152 AccessTy(AT
), AddrSpace(AS
), MemoryInst(MI
), AddrMode(AM
),
3153 InsertedInsts(InsertedInsts
), PromotedInsts(PromotedInsts
), TPT(TPT
),
3154 LargeOffsetGEP(LargeOffsetGEP
), OptSize(OptSize
), PSI(PSI
), BFI(BFI
) {
3155 IgnoreProfitability
= false;
3159 /// Find the maximal addressing mode that a load/store of V can fold,
3160 /// give an access type of AccessTy. This returns a list of involved
3161 /// instructions in AddrModeInsts.
3162 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3164 /// \p PromotedInsts maps the instructions to their type before promotion.
3165 /// \p The ongoing transaction where every action should be registered.
3167 Match(Value
*V
, Type
*AccessTy
, unsigned AS
, Instruction
*MemoryInst
,
3168 SmallVectorImpl
<Instruction
*> &AddrModeInsts
,
3169 const TargetLowering
&TLI
, const LoopInfo
&LI
,
3170 const std::function
<const DominatorTree
&()> getDTFn
,
3171 const TargetRegisterInfo
&TRI
, const SetOfInstrs
&InsertedInsts
,
3172 InstrToOrigTy
&PromotedInsts
, TypePromotionTransaction
&TPT
,
3173 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
,
3174 bool OptSize
, ProfileSummaryInfo
*PSI
, BlockFrequencyInfo
*BFI
) {
3177 bool Success
= AddressingModeMatcher(
3178 AddrModeInsts
, TLI
, TRI
, LI
, getDTFn
, AccessTy
, AS
, MemoryInst
, Result
,
3179 InsertedInsts
, PromotedInsts
, TPT
, LargeOffsetGEP
, OptSize
, PSI
,
3180 BFI
).matchAddr(V
, 0);
3181 (void)Success
; assert(Success
&& "Couldn't select *anything*?");
3186 bool matchScaledValue(Value
*ScaleReg
, int64_t Scale
, unsigned Depth
);
3187 bool matchAddr(Value
*Addr
, unsigned Depth
);
3188 bool matchOperationAddr(User
*AddrInst
, unsigned Opcode
, unsigned Depth
,
3189 bool *MovedAway
= nullptr);
3190 bool isProfitableToFoldIntoAddressingMode(Instruction
*I
,
3191 ExtAddrMode
&AMBefore
,
3192 ExtAddrMode
&AMAfter
);
3193 bool valueAlreadyLiveAtInst(Value
*Val
, Value
*KnownLive1
, Value
*KnownLive2
);
3194 bool isPromotionProfitable(unsigned NewCost
, unsigned OldCost
,
3195 Value
*PromotedOperand
) const;
3200 /// An iterator for PhiNodeSet.
3201 class PhiNodeSetIterator
{
3202 PhiNodeSet
* const Set
;
3203 size_t CurrentIndex
= 0;
3206 /// The constructor. Start should point to either a valid element, or be equal
3207 /// to the size of the underlying SmallVector of the PhiNodeSet.
3208 PhiNodeSetIterator(PhiNodeSet
* const Set
, size_t Start
);
3209 PHINode
* operator*() const;
3210 PhiNodeSetIterator
& operator++();
3211 bool operator==(const PhiNodeSetIterator
&RHS
) const;
3212 bool operator!=(const PhiNodeSetIterator
&RHS
) const;
3215 /// Keeps a set of PHINodes.
3217 /// This is a minimal set implementation for a specific use case:
3218 /// It is very fast when there are very few elements, but also provides good
3219 /// performance when there are many. It is similar to SmallPtrSet, but also
3220 /// provides iteration by insertion order, which is deterministic and stable
3221 /// across runs. It is also similar to SmallSetVector, but provides removing
3222 /// elements in O(1) time. This is achieved by not actually removing the element
3223 /// from the underlying vector, so comes at the cost of using more memory, but
3224 /// that is fine, since PhiNodeSets are used as short lived objects.
3226 friend class PhiNodeSetIterator
;
3228 using MapType
= SmallDenseMap
<PHINode
*, size_t, 32>;
3229 using iterator
= PhiNodeSetIterator
;
3231 /// Keeps the elements in the order of their insertion in the underlying
3232 /// vector. To achieve constant time removal, it never deletes any element.
3233 SmallVector
<PHINode
*, 32> NodeList
;
3235 /// Keeps the elements in the underlying set implementation. This (and not the
3236 /// NodeList defined above) is the source of truth on whether an element
3237 /// is actually in the collection.
3240 /// Points to the first valid (not deleted) element when the set is not empty
3241 /// and the value is not zero. Equals to the size of the underlying vector
3242 /// when the set is empty. When the value is 0, as in the beginning, the
3243 /// first element may or may not be valid.
3244 size_t FirstValidElement
= 0;
3247 /// Inserts a new element to the collection.
3248 /// \returns true if the element is actually added, i.e. was not in the
3249 /// collection before the operation.
3250 bool insert(PHINode
*Ptr
) {
3251 if (NodeMap
.insert(std::make_pair(Ptr
, NodeList
.size())).second
) {
3252 NodeList
.push_back(Ptr
);
3258 /// Removes the element from the collection.
3259 /// \returns whether the element is actually removed, i.e. was in the
3260 /// collection before the operation.
3261 bool erase(PHINode
*Ptr
) {
3262 if (NodeMap
.erase(Ptr
)) {
3263 SkipRemovedElements(FirstValidElement
);
3269 /// Removes all elements and clears the collection.
3273 FirstValidElement
= 0;
3276 /// \returns an iterator that will iterate the elements in the order of
3279 if (FirstValidElement
== 0)
3280 SkipRemovedElements(FirstValidElement
);
3281 return PhiNodeSetIterator(this, FirstValidElement
);
3284 /// \returns an iterator that points to the end of the collection.
3285 iterator
end() { return PhiNodeSetIterator(this, NodeList
.size()); }
3287 /// Returns the number of elements in the collection.
3288 size_t size() const {
3289 return NodeMap
.size();
3292 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3293 size_t count(PHINode
*Ptr
) const {
3294 return NodeMap
.count(Ptr
);
3298 /// Updates the CurrentIndex so that it will point to a valid element.
3300 /// If the element of NodeList at CurrentIndex is valid, it does not
3301 /// change it. If there are no more valid elements, it updates CurrentIndex
3302 /// to point to the end of the NodeList.
3303 void SkipRemovedElements(size_t &CurrentIndex
) {
3304 while (CurrentIndex
< NodeList
.size()) {
3305 auto it
= NodeMap
.find(NodeList
[CurrentIndex
]);
3306 // If the element has been deleted and added again later, NodeMap will
3307 // point to a different index, so CurrentIndex will still be invalid.
3308 if (it
!= NodeMap
.end() && it
->second
== CurrentIndex
)
3315 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet
*const Set
, size_t Start
)
3316 : Set(Set
), CurrentIndex(Start
) {}
3318 PHINode
* PhiNodeSetIterator::operator*() const {
3319 assert(CurrentIndex
< Set
->NodeList
.size() &&
3320 "PhiNodeSet access out of range");
3321 return Set
->NodeList
[CurrentIndex
];
3324 PhiNodeSetIterator
& PhiNodeSetIterator::operator++() {
3325 assert(CurrentIndex
< Set
->NodeList
.size() &&
3326 "PhiNodeSet access out of range");
3328 Set
->SkipRemovedElements(CurrentIndex
);
3332 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator
&RHS
) const {
3333 return CurrentIndex
== RHS
.CurrentIndex
;
3336 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator
&RHS
) const {
3337 return !((*this) == RHS
);
3340 /// Keep track of simplification of Phi nodes.
3341 /// Accept the set of all phi nodes and erase phi node from this set
3342 /// if it is simplified.
3343 class SimplificationTracker
{
3344 DenseMap
<Value
*, Value
*> Storage
;
3345 const SimplifyQuery
&SQ
;
3346 // Tracks newly created Phi nodes. The elements are iterated by insertion
3348 PhiNodeSet AllPhiNodes
;
3349 // Tracks newly created Select nodes.
3350 SmallPtrSet
<SelectInst
*, 32> AllSelectNodes
;
3353 SimplificationTracker(const SimplifyQuery
&sq
)
3356 Value
*Get(Value
*V
) {
3358 auto SV
= Storage
.find(V
);
3359 if (SV
== Storage
.end())
3365 Value
*Simplify(Value
*Val
) {
3366 SmallVector
<Value
*, 32> WorkList
;
3367 SmallPtrSet
<Value
*, 32> Visited
;
3368 WorkList
.push_back(Val
);
3369 while (!WorkList
.empty()) {
3370 auto *P
= WorkList
.pop_back_val();
3371 if (!Visited
.insert(P
).second
)
3373 if (auto *PI
= dyn_cast
<Instruction
>(P
))
3374 if (Value
*V
= SimplifyInstruction(cast
<Instruction
>(PI
), SQ
)) {
3375 for (auto *U
: PI
->users())
3376 WorkList
.push_back(cast
<Value
>(U
));
3378 PI
->replaceAllUsesWith(V
);
3379 if (auto *PHI
= dyn_cast
<PHINode
>(PI
))
3380 AllPhiNodes
.erase(PHI
);
3381 if (auto *Select
= dyn_cast
<SelectInst
>(PI
))
3382 AllSelectNodes
.erase(Select
);
3383 PI
->eraseFromParent();
3389 void Put(Value
*From
, Value
*To
) {
3390 Storage
.insert({ From
, To
});
3393 void ReplacePhi(PHINode
*From
, PHINode
*To
) {
3394 Value
* OldReplacement
= Get(From
);
3395 while (OldReplacement
!= From
) {
3397 To
= dyn_cast
<PHINode
>(OldReplacement
);
3398 OldReplacement
= Get(From
);
3400 assert(To
&& Get(To
) == To
&& "Replacement PHI node is already replaced.");
3402 From
->replaceAllUsesWith(To
);
3403 AllPhiNodes
.erase(From
);
3404 From
->eraseFromParent();
3407 PhiNodeSet
& newPhiNodes() { return AllPhiNodes
; }
3409 void insertNewPhi(PHINode
*PN
) { AllPhiNodes
.insert(PN
); }
3411 void insertNewSelect(SelectInst
*SI
) { AllSelectNodes
.insert(SI
); }
3413 unsigned countNewPhiNodes() const { return AllPhiNodes
.size(); }
3415 unsigned countNewSelectNodes() const { return AllSelectNodes
.size(); }
3417 void destroyNewNodes(Type
*CommonType
) {
3418 // For safe erasing, replace the uses with dummy value first.
3419 auto *Dummy
= UndefValue::get(CommonType
);
3420 for (auto *I
: AllPhiNodes
) {
3421 I
->replaceAllUsesWith(Dummy
);
3422 I
->eraseFromParent();
3424 AllPhiNodes
.clear();
3425 for (auto *I
: AllSelectNodes
) {
3426 I
->replaceAllUsesWith(Dummy
);
3427 I
->eraseFromParent();
3429 AllSelectNodes
.clear();
3433 /// A helper class for combining addressing modes.
3434 class AddressingModeCombiner
{
3435 typedef DenseMap
<Value
*, Value
*> FoldAddrToValueMapping
;
3436 typedef std::pair
<PHINode
*, PHINode
*> PHIPair
;
3439 /// The addressing modes we've collected.
3440 SmallVector
<ExtAddrMode
, 16> AddrModes
;
3442 /// The field in which the AddrModes differ, when we have more than one.
3443 ExtAddrMode::FieldName DifferentField
= ExtAddrMode::NoField
;
3445 /// Are the AddrModes that we have all just equal to their original values?
3446 bool AllAddrModesTrivial
= true;
3448 /// Common Type for all different fields in addressing modes.
3451 /// SimplifyQuery for simplifyInstruction utility.
3452 const SimplifyQuery
&SQ
;
3454 /// Original Address.
3458 AddressingModeCombiner(const SimplifyQuery
&_SQ
, Value
*OriginalValue
)
3459 : CommonType(nullptr), SQ(_SQ
), Original(OriginalValue
) {}
3461 /// Get the combined AddrMode
3462 const ExtAddrMode
&getAddrMode() const {
3463 return AddrModes
[0];
3466 /// Add a new AddrMode if it's compatible with the AddrModes we already
3468 /// \return True iff we succeeded in doing so.
3469 bool addNewAddrMode(ExtAddrMode
&NewAddrMode
) {
3470 // Take note of if we have any non-trivial AddrModes, as we need to detect
3471 // when all AddrModes are trivial as then we would introduce a phi or select
3472 // which just duplicates what's already there.
3473 AllAddrModesTrivial
= AllAddrModesTrivial
&& NewAddrMode
.isTrivial();
3475 // If this is the first addrmode then everything is fine.
3476 if (AddrModes
.empty()) {
3477 AddrModes
.emplace_back(NewAddrMode
);
3481 // Figure out how different this is from the other address modes, which we
3482 // can do just by comparing against the first one given that we only care
3483 // about the cumulative difference.
3484 ExtAddrMode::FieldName ThisDifferentField
=
3485 AddrModes
[0].compare(NewAddrMode
);
3486 if (DifferentField
== ExtAddrMode::NoField
)
3487 DifferentField
= ThisDifferentField
;
3488 else if (DifferentField
!= ThisDifferentField
)
3489 DifferentField
= ExtAddrMode::MultipleFields
;
3491 // If NewAddrMode differs in more than one dimension we cannot handle it.
3492 bool CanHandle
= DifferentField
!= ExtAddrMode::MultipleFields
;
3494 // If Scale Field is different then we reject.
3495 CanHandle
= CanHandle
&& DifferentField
!= ExtAddrMode::ScaleField
;
3497 // We also must reject the case when base offset is different and
3498 // scale reg is not null, we cannot handle this case due to merge of
3499 // different offsets will be used as ScaleReg.
3500 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseOffsField
||
3501 !NewAddrMode
.ScaledReg
);
3503 // We also must reject the case when GV is different and BaseReg installed
3504 // due to we want to use base reg as a merge of GV values.
3505 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseGVField
||
3506 !NewAddrMode
.HasBaseReg
);
3508 // Even if NewAddMode is the same we still need to collect it due to
3509 // original value is different. And later we will need all original values
3510 // as anchors during finding the common Phi node.
3512 AddrModes
.emplace_back(NewAddrMode
);
3519 /// Combine the addressing modes we've collected into a single
3520 /// addressing mode.
3521 /// \return True iff we successfully combined them or we only had one so
3522 /// didn't need to combine them anyway.
3523 bool combineAddrModes() {
3524 // If we have no AddrModes then they can't be combined.
3525 if (AddrModes
.size() == 0)
3528 // A single AddrMode can trivially be combined.
3529 if (AddrModes
.size() == 1 || DifferentField
== ExtAddrMode::NoField
)
3532 // If the AddrModes we collected are all just equal to the value they are
3533 // derived from then combining them wouldn't do anything useful.
3534 if (AllAddrModesTrivial
)
3537 if (!addrModeCombiningAllowed())
3540 // Build a map between <original value, basic block where we saw it> to
3541 // value of base register.
3542 // Bail out if there is no common type.
3543 FoldAddrToValueMapping Map
;
3544 if (!initializeMap(Map
))
3547 Value
*CommonValue
= findCommon(Map
);
3549 AddrModes
[0].SetCombinedField(DifferentField
, CommonValue
, AddrModes
);
3550 return CommonValue
!= nullptr;
3554 /// Initialize Map with anchor values. For address seen
3555 /// we set the value of different field saw in this address.
3556 /// At the same time we find a common type for different field we will
3557 /// use to create new Phi/Select nodes. Keep it in CommonType field.
3558 /// Return false if there is no common type found.
3559 bool initializeMap(FoldAddrToValueMapping
&Map
) {
3560 // Keep track of keys where the value is null. We will need to replace it
3561 // with constant null when we know the common type.
3562 SmallVector
<Value
*, 2> NullValue
;
3563 Type
*IntPtrTy
= SQ
.DL
.getIntPtrType(AddrModes
[0].OriginalValue
->getType());
3564 for (auto &AM
: AddrModes
) {
3565 Value
*DV
= AM
.GetFieldAsValue(DifferentField
, IntPtrTy
);
3567 auto *Type
= DV
->getType();
3568 if (CommonType
&& CommonType
!= Type
)
3571 Map
[AM
.OriginalValue
] = DV
;
3573 NullValue
.push_back(AM
.OriginalValue
);
3576 assert(CommonType
&& "At least one non-null value must be!");
3577 for (auto *V
: NullValue
)
3578 Map
[V
] = Constant::getNullValue(CommonType
);
3582 /// We have mapping between value A and other value B where B was a field in
3583 /// addressing mode represented by A. Also we have an original value C
3584 /// representing an address we start with. Traversing from C through phi and
3585 /// selects we ended up with A's in a map. This utility function tries to find
3586 /// a value V which is a field in addressing mode C and traversing through phi
3587 /// nodes and selects we will end up in corresponded values B in a map.
3588 /// The utility will create a new Phi/Selects if needed.
3589 // The simple example looks as follows:
3597 // p = phi [p1, BB1], [p2, BB2]
3604 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3605 Value
*findCommon(FoldAddrToValueMapping
&Map
) {
3606 // Tracks the simplification of newly created phi nodes. The reason we use
3607 // this mapping is because we will add new created Phi nodes in AddrToBase.
3608 // Simplification of Phi nodes is recursive, so some Phi node may
3609 // be simplified after we added it to AddrToBase. In reality this
3610 // simplification is possible only if original phi/selects were not
3612 // Using this mapping we can find the current value in AddrToBase.
3613 SimplificationTracker
ST(SQ
);
3615 // First step, DFS to create PHI nodes for all intermediate blocks.
3616 // Also fill traverse order for the second step.
3617 SmallVector
<Value
*, 32> TraverseOrder
;
3618 InsertPlaceholders(Map
, TraverseOrder
, ST
);
3620 // Second Step, fill new nodes by merged values and simplify if possible.
3621 FillPlaceholders(Map
, TraverseOrder
, ST
);
3623 if (!AddrSinkNewSelects
&& ST
.countNewSelectNodes() > 0) {
3624 ST
.destroyNewNodes(CommonType
);
3628 // Now we'd like to match New Phi nodes to existed ones.
3629 unsigned PhiNotMatchedCount
= 0;
3630 if (!MatchPhiSet(ST
, AddrSinkNewPhis
, PhiNotMatchedCount
)) {
3631 ST
.destroyNewNodes(CommonType
);
3635 auto *Result
= ST
.Get(Map
.find(Original
)->second
);
3637 NumMemoryInstsPhiCreated
+= ST
.countNewPhiNodes() + PhiNotMatchedCount
;
3638 NumMemoryInstsSelectCreated
+= ST
.countNewSelectNodes();
3643 /// Try to match PHI node to Candidate.
3644 /// Matcher tracks the matched Phi nodes.
3645 bool MatchPhiNode(PHINode
*PHI
, PHINode
*Candidate
,
3646 SmallSetVector
<PHIPair
, 8> &Matcher
,
3647 PhiNodeSet
&PhiNodesToMatch
) {
3648 SmallVector
<PHIPair
, 8> WorkList
;
3649 Matcher
.insert({ PHI
, Candidate
});
3650 SmallSet
<PHINode
*, 8> MatchedPHIs
;
3651 MatchedPHIs
.insert(PHI
);
3652 WorkList
.push_back({ PHI
, Candidate
});
3653 SmallSet
<PHIPair
, 8> Visited
;
3654 while (!WorkList
.empty()) {
3655 auto Item
= WorkList
.pop_back_val();
3656 if (!Visited
.insert(Item
).second
)
3658 // We iterate over all incoming values to Phi to compare them.
3659 // If values are different and both of them Phi and the first one is a
3660 // Phi we added (subject to match) and both of them is in the same basic
3661 // block then we can match our pair if values match. So we state that
3662 // these values match and add it to work list to verify that.
3663 for (auto B
: Item
.first
->blocks()) {
3664 Value
*FirstValue
= Item
.first
->getIncomingValueForBlock(B
);
3665 Value
*SecondValue
= Item
.second
->getIncomingValueForBlock(B
);
3666 if (FirstValue
== SecondValue
)
3669 PHINode
*FirstPhi
= dyn_cast
<PHINode
>(FirstValue
);
3670 PHINode
*SecondPhi
= dyn_cast
<PHINode
>(SecondValue
);
3672 // One of them is not Phi or
3673 // The first one is not Phi node from the set we'd like to match or
3674 // Phi nodes from different basic blocks then
3675 // we will not be able to match.
3676 if (!FirstPhi
|| !SecondPhi
|| !PhiNodesToMatch
.count(FirstPhi
) ||
3677 FirstPhi
->getParent() != SecondPhi
->getParent())
3680 // If we already matched them then continue.
3681 if (Matcher
.count({ FirstPhi
, SecondPhi
}))
3683 // So the values are different and does not match. So we need them to
3684 // match. (But we register no more than one match per PHI node, so that
3685 // we won't later try to replace them twice.)
3686 if (MatchedPHIs
.insert(FirstPhi
).second
)
3687 Matcher
.insert({ FirstPhi
, SecondPhi
});
3688 // But me must check it.
3689 WorkList
.push_back({ FirstPhi
, SecondPhi
});
3695 /// For the given set of PHI nodes (in the SimplificationTracker) try
3696 /// to find their equivalents.
3697 /// Returns false if this matching fails and creation of new Phi is disabled.
3698 bool MatchPhiSet(SimplificationTracker
&ST
, bool AllowNewPhiNodes
,
3699 unsigned &PhiNotMatchedCount
) {
3700 // Matched and PhiNodesToMatch iterate their elements in a deterministic
3701 // order, so the replacements (ReplacePhi) are also done in a deterministic
3703 SmallSetVector
<PHIPair
, 8> Matched
;
3704 SmallPtrSet
<PHINode
*, 8> WillNotMatch
;
3705 PhiNodeSet
&PhiNodesToMatch
= ST
.newPhiNodes();
3706 while (PhiNodesToMatch
.size()) {
3707 PHINode
*PHI
= *PhiNodesToMatch
.begin();
3709 // Add us, if no Phi nodes in the basic block we do not match.
3710 WillNotMatch
.clear();
3711 WillNotMatch
.insert(PHI
);
3713 // Traverse all Phis until we found equivalent or fail to do that.
3714 bool IsMatched
= false;
3715 for (auto &P
: PHI
->getParent()->phis()) {
3716 // Skip new Phi nodes.
3717 if (PhiNodesToMatch
.count(&P
))
3719 if ((IsMatched
= MatchPhiNode(PHI
, &P
, Matched
, PhiNodesToMatch
)))
3721 // If it does not match, collect all Phi nodes from matcher.
3722 // if we end up with no match, them all these Phi nodes will not match
3724 for (auto M
: Matched
)
3725 WillNotMatch
.insert(M
.first
);
3729 // Replace all matched values and erase them.
3730 for (auto MV
: Matched
)
3731 ST
.ReplacePhi(MV
.first
, MV
.second
);
3735 // If we are not allowed to create new nodes then bail out.
3736 if (!AllowNewPhiNodes
)
3738 // Just remove all seen values in matcher. They will not match anything.
3739 PhiNotMatchedCount
+= WillNotMatch
.size();
3740 for (auto *P
: WillNotMatch
)
3741 PhiNodesToMatch
.erase(P
);
3745 /// Fill the placeholders with values from predecessors and simplify them.
3746 void FillPlaceholders(FoldAddrToValueMapping
&Map
,
3747 SmallVectorImpl
<Value
*> &TraverseOrder
,
3748 SimplificationTracker
&ST
) {
3749 while (!TraverseOrder
.empty()) {
3750 Value
*Current
= TraverseOrder
.pop_back_val();
3751 assert(Map
.find(Current
) != Map
.end() && "No node to fill!!!");
3752 Value
*V
= Map
[Current
];
3754 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(V
)) {
3755 // CurrentValue also must be Select.
3756 auto *CurrentSelect
= cast
<SelectInst
>(Current
);
3757 auto *TrueValue
= CurrentSelect
->getTrueValue();
3758 assert(Map
.find(TrueValue
) != Map
.end() && "No True Value!");
3759 Select
->setTrueValue(ST
.Get(Map
[TrueValue
]));
3760 auto *FalseValue
= CurrentSelect
->getFalseValue();
3761 assert(Map
.find(FalseValue
) != Map
.end() && "No False Value!");
3762 Select
->setFalseValue(ST
.Get(Map
[FalseValue
]));
3764 // Must be a Phi node then.
3765 auto *PHI
= cast
<PHINode
>(V
);
3766 // Fill the Phi node with values from predecessors.
3767 for (auto *B
: predecessors(PHI
->getParent())) {
3768 Value
*PV
= cast
<PHINode
>(Current
)->getIncomingValueForBlock(B
);
3769 assert(Map
.find(PV
) != Map
.end() && "No predecessor Value!");
3770 PHI
->addIncoming(ST
.Get(Map
[PV
]), B
);
3773 Map
[Current
] = ST
.Simplify(V
);
3777 /// Starting from original value recursively iterates over def-use chain up to
3778 /// known ending values represented in a map. For each traversed phi/select
3779 /// inserts a placeholder Phi or Select.
3780 /// Reports all new created Phi/Select nodes by adding them to set.
3781 /// Also reports and order in what values have been traversed.
3782 void InsertPlaceholders(FoldAddrToValueMapping
&Map
,
3783 SmallVectorImpl
<Value
*> &TraverseOrder
,
3784 SimplificationTracker
&ST
) {
3785 SmallVector
<Value
*, 32> Worklist
;
3786 assert((isa
<PHINode
>(Original
) || isa
<SelectInst
>(Original
)) &&
3787 "Address must be a Phi or Select node");
3788 auto *Dummy
= UndefValue::get(CommonType
);
3789 Worklist
.push_back(Original
);
3790 while (!Worklist
.empty()) {
3791 Value
*Current
= Worklist
.pop_back_val();
3792 // if it is already visited or it is an ending value then skip it.
3793 if (Map
.find(Current
) != Map
.end())
3795 TraverseOrder
.push_back(Current
);
3797 // CurrentValue must be a Phi node or select. All others must be covered
3799 if (SelectInst
*CurrentSelect
= dyn_cast
<SelectInst
>(Current
)) {
3800 // Is it OK to get metadata from OrigSelect?!
3801 // Create a Select placeholder with dummy value.
3802 SelectInst
*Select
= SelectInst::Create(
3803 CurrentSelect
->getCondition(), Dummy
, Dummy
,
3804 CurrentSelect
->getName(), CurrentSelect
, CurrentSelect
);
3805 Map
[Current
] = Select
;
3806 ST
.insertNewSelect(Select
);
3807 // We are interested in True and False values.
3808 Worklist
.push_back(CurrentSelect
->getTrueValue());
3809 Worklist
.push_back(CurrentSelect
->getFalseValue());
3811 // It must be a Phi node then.
3812 PHINode
*CurrentPhi
= cast
<PHINode
>(Current
);
3813 unsigned PredCount
= CurrentPhi
->getNumIncomingValues();
3815 PHINode::Create(CommonType
, PredCount
, "sunk_phi", CurrentPhi
);
3817 ST
.insertNewPhi(PHI
);
3818 append_range(Worklist
, CurrentPhi
->incoming_values());
3823 bool addrModeCombiningAllowed() {
3824 if (DisableComplexAddrModes
)
3826 switch (DifferentField
) {
3829 case ExtAddrMode::BaseRegField
:
3830 return AddrSinkCombineBaseReg
;
3831 case ExtAddrMode::BaseGVField
:
3832 return AddrSinkCombineBaseGV
;
3833 case ExtAddrMode::BaseOffsField
:
3834 return AddrSinkCombineBaseOffs
;
3835 case ExtAddrMode::ScaledRegField
:
3836 return AddrSinkCombineScaledReg
;
3840 } // end anonymous namespace
3842 /// Try adding ScaleReg*Scale to the current addressing mode.
3843 /// Return true and update AddrMode if this addr mode is legal for the target,
3845 bool AddressingModeMatcher::matchScaledValue(Value
*ScaleReg
, int64_t Scale
,
3847 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3848 // mode. Just process that directly.
3850 return matchAddr(ScaleReg
, Depth
);
3852 // If the scale is 0, it takes nothing to add this.
3856 // If we already have a scale of this value, we can add to it, otherwise, we
3857 // need an available scale field.
3858 if (AddrMode
.Scale
!= 0 && AddrMode
.ScaledReg
!= ScaleReg
)
3861 ExtAddrMode TestAddrMode
= AddrMode
;
3863 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
3864 // [A+B + A*7] -> [B+A*8].
3865 TestAddrMode
.Scale
+= Scale
;
3866 TestAddrMode
.ScaledReg
= ScaleReg
;
3868 // If the new address isn't legal, bail out.
3869 if (!TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
))
3872 // It was legal, so commit it.
3873 AddrMode
= TestAddrMode
;
3875 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
3876 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
3877 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
3878 // go any further: we can reuse it and cannot eliminate it.
3879 ConstantInt
*CI
= nullptr; Value
*AddLHS
= nullptr;
3880 if (isa
<Instruction
>(ScaleReg
) && // not a constant expr.
3881 match(ScaleReg
, m_Add(m_Value(AddLHS
), m_ConstantInt(CI
))) &&
3882 !isIVIncrement(ScaleReg
, &LI
) && CI
->getValue().isSignedIntN(64)) {
3883 TestAddrMode
.InBounds
= false;
3884 TestAddrMode
.ScaledReg
= AddLHS
;
3885 TestAddrMode
.BaseOffs
+= CI
->getSExtValue() * TestAddrMode
.Scale
;
3887 // If this addressing mode is legal, commit it and remember that we folded
3888 // this instruction.
3889 if (TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
)) {
3890 AddrModeInsts
.push_back(cast
<Instruction
>(ScaleReg
));
3891 AddrMode
= TestAddrMode
;
3894 // Restore status quo.
3895 TestAddrMode
= AddrMode
;
3898 // If this is an add recurrence with a constant step, return the increment
3899 // instruction and the canonicalized step.
3900 auto GetConstantStep
= [this](const Value
* V
)
3901 ->Optional
<std::pair
<Instruction
*, APInt
> > {
3902 auto *PN
= dyn_cast
<PHINode
>(V
);
3905 auto IVInc
= getIVIncrement(PN
, &LI
);
3908 // TODO: The result of the intrinsics above is two-compliment. However when
3909 // IV inc is expressed as add or sub, iv.next is potentially a poison value.
3910 // If it has nuw or nsw flags, we need to make sure that these flags are
3911 // inferrable at the point of memory instruction. Otherwise we are replacing
3912 // well-defined two-compliment computation with poison. Currently, to avoid
3913 // potentially complex analysis needed to prove this, we reject such cases.
3914 if (auto *OIVInc
= dyn_cast
<OverflowingBinaryOperator
>(IVInc
->first
))
3915 if (OIVInc
->hasNoSignedWrap() || OIVInc
->hasNoUnsignedWrap())
3917 if (auto *ConstantStep
= dyn_cast
<ConstantInt
>(IVInc
->second
))
3918 return std::make_pair(IVInc
->first
, ConstantStep
->getValue());
3922 // Try to account for the following special case:
3923 // 1. ScaleReg is an inductive variable;
3924 // 2. We use it with non-zero offset;
3925 // 3. IV's increment is available at the point of memory instruction.
3927 // In this case, we may reuse the IV increment instead of the IV Phi to
3928 // achieve the following advantages:
3929 // 1. If IV step matches the offset, we will have no need in the offset;
3930 // 2. Even if they don't match, we will reduce the overlap of living IV
3931 // and IV increment, that will potentially lead to better register
3933 if (AddrMode
.BaseOffs
) {
3934 if (auto IVStep
= GetConstantStep(ScaleReg
)) {
3935 Instruction
*IVInc
= IVStep
->first
;
3936 // The following assert is important to ensure a lack of infinite loops.
3937 // This transforms is (intentionally) the inverse of the one just above.
3938 // If they don't agree on the definition of an increment, we'd alternate
3939 // back and forth indefinitely.
3940 assert(isIVIncrement(IVInc
, &LI
) && "implied by GetConstantStep");
3941 APInt Step
= IVStep
->second
;
3942 APInt Offset
= Step
* AddrMode
.Scale
;
3943 if (Offset
.isSignedIntN(64)) {
3944 TestAddrMode
.InBounds
= false;
3945 TestAddrMode
.ScaledReg
= IVInc
;
3946 TestAddrMode
.BaseOffs
-= Offset
.getLimitedValue();
3947 // If this addressing mode is legal, commit it..
3948 // (Note that we defer the (expensive) domtree base legality check
3949 // to the very last possible point.)
3950 if (TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
) &&
3951 getDTFn().dominates(IVInc
, MemoryInst
)) {
3952 AddrModeInsts
.push_back(cast
<Instruction
>(IVInc
));
3953 AddrMode
= TestAddrMode
;
3956 // Restore status quo.
3957 TestAddrMode
= AddrMode
;
3962 // Otherwise, just return what we have.
3966 /// This is a little filter, which returns true if an addressing computation
3967 /// involving I might be folded into a load/store accessing it.
3968 /// This doesn't need to be perfect, but needs to accept at least
3969 /// the set of instructions that MatchOperationAddr can.
3970 static bool MightBeFoldableInst(Instruction
*I
) {
3971 switch (I
->getOpcode()) {
3972 case Instruction::BitCast
:
3973 case Instruction::AddrSpaceCast
:
3974 // Don't touch identity bitcasts.
3975 if (I
->getType() == I
->getOperand(0)->getType())
3977 return I
->getType()->isIntOrPtrTy();
3978 case Instruction::PtrToInt
:
3979 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3981 case Instruction::IntToPtr
:
3982 // We know the input is intptr_t, so this is foldable.
3984 case Instruction::Add
:
3986 case Instruction::Mul
:
3987 case Instruction::Shl
:
3988 // Can only handle X*C and X << C.
3989 return isa
<ConstantInt
>(I
->getOperand(1));
3990 case Instruction::GetElementPtr
:
3997 /// Check whether or not \p Val is a legal instruction for \p TLI.
3998 /// \note \p Val is assumed to be the product of some type promotion.
3999 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4000 /// to be legal, as the non-promoted value would have had the same state.
4001 static bool isPromotedInstructionLegal(const TargetLowering
&TLI
,
4002 const DataLayout
&DL
, Value
*Val
) {
4003 Instruction
*PromotedInst
= dyn_cast
<Instruction
>(Val
);
4006 int ISDOpcode
= TLI
.InstructionOpcodeToISD(PromotedInst
->getOpcode());
4007 // If the ISDOpcode is undefined, it was undefined before the promotion.
4010 // Otherwise, check if the promoted instruction is legal or not.
4011 return TLI
.isOperationLegalOrCustom(
4012 ISDOpcode
, TLI
.getValueType(DL
, PromotedInst
->getType()));
4017 /// Hepler class to perform type promotion.
4018 class TypePromotionHelper
{
4019 /// Utility function to add a promoted instruction \p ExtOpnd to
4020 /// \p PromotedInsts and record the type of extension we have seen.
4021 static void addPromotedInst(InstrToOrigTy
&PromotedInsts
,
4022 Instruction
*ExtOpnd
,
4024 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
4025 InstrToOrigTy::iterator It
= PromotedInsts
.find(ExtOpnd
);
4026 if (It
!= PromotedInsts
.end()) {
4027 // If the new extension is same as original, the information in
4028 // PromotedInsts[ExtOpnd] is still correct.
4029 if (It
->second
.getInt() == ExtTy
)
4032 // Now the new extension is different from old extension, we make
4033 // the type information invalid by setting extension type to
4035 ExtTy
= BothExtension
;
4037 PromotedInsts
[ExtOpnd
] = TypeIsSExt(ExtOpnd
->getType(), ExtTy
);
4040 /// Utility function to query the original type of instruction \p Opnd
4041 /// with a matched extension type. If the extension doesn't match, we
4042 /// cannot use the information we had on the original type.
4043 /// BothExtension doesn't match any extension type.
4044 static const Type
*getOrigType(const InstrToOrigTy
&PromotedInsts
,
4047 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
4048 InstrToOrigTy::const_iterator It
= PromotedInsts
.find(Opnd
);
4049 if (It
!= PromotedInsts
.end() && It
->second
.getInt() == ExtTy
)
4050 return It
->second
.getPointer();
4054 /// Utility function to check whether or not a sign or zero extension
4055 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4056 /// either using the operands of \p Inst or promoting \p Inst.
4057 /// The type of the extension is defined by \p IsSExt.
4058 /// In other words, check if:
4059 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4060 /// #1 Promotion applies:
4061 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4062 /// #2 Operand reuses:
4063 /// ext opnd1 to ConsideredExtType.
4064 /// \p PromotedInsts maps the instructions to their type before promotion.
4065 static bool canGetThrough(const Instruction
*Inst
, Type
*ConsideredExtType
,
4066 const InstrToOrigTy
&PromotedInsts
, bool IsSExt
);
4068 /// Utility function to determine if \p OpIdx should be promoted when
4069 /// promoting \p Inst.
4070 static bool shouldExtOperand(const Instruction
*Inst
, int OpIdx
) {
4071 return !(isa
<SelectInst
>(Inst
) && OpIdx
== 0);
4074 /// Utility function to promote the operand of \p Ext when this
4075 /// operand is a promotable trunc or sext or zext.
4076 /// \p PromotedInsts maps the instructions to their type before promotion.
4077 /// \p CreatedInstsCost[out] contains the cost of all instructions
4078 /// created to promote the operand of Ext.
4079 /// Newly added extensions are inserted in \p Exts.
4080 /// Newly added truncates are inserted in \p Truncs.
4081 /// Should never be called directly.
4082 /// \return The promoted value which is used instead of Ext.
4083 static Value
*promoteOperandForTruncAndAnyExt(
4084 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4085 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4086 SmallVectorImpl
<Instruction
*> *Exts
,
4087 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
);
4089 /// Utility function to promote the operand of \p Ext when this
4090 /// operand is promotable and is not a supported trunc or sext.
4091 /// \p PromotedInsts maps the instructions to their type before promotion.
4092 /// \p CreatedInstsCost[out] contains the cost of all the instructions
4093 /// created to promote the operand of Ext.
4094 /// Newly added extensions are inserted in \p Exts.
4095 /// Newly added truncates are inserted in \p Truncs.
4096 /// Should never be called directly.
4097 /// \return The promoted value which is used instead of Ext.
4098 static Value
*promoteOperandForOther(Instruction
*Ext
,
4099 TypePromotionTransaction
&TPT
,
4100 InstrToOrigTy
&PromotedInsts
,
4101 unsigned &CreatedInstsCost
,
4102 SmallVectorImpl
<Instruction
*> *Exts
,
4103 SmallVectorImpl
<Instruction
*> *Truncs
,
4104 const TargetLowering
&TLI
, bool IsSExt
);
4106 /// \see promoteOperandForOther.
4107 static Value
*signExtendOperandForOther(
4108 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4109 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4110 SmallVectorImpl
<Instruction
*> *Exts
,
4111 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
4112 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
4113 Exts
, Truncs
, TLI
, true);
4116 /// \see promoteOperandForOther.
4117 static Value
*zeroExtendOperandForOther(
4118 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4119 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4120 SmallVectorImpl
<Instruction
*> *Exts
,
4121 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
4122 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
4123 Exts
, Truncs
, TLI
, false);
4127 /// Type for the utility function that promotes the operand of Ext.
4128 using Action
= Value
*(*)(Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4129 InstrToOrigTy
&PromotedInsts
,
4130 unsigned &CreatedInstsCost
,
4131 SmallVectorImpl
<Instruction
*> *Exts
,
4132 SmallVectorImpl
<Instruction
*> *Truncs
,
4133 const TargetLowering
&TLI
);
4135 /// Given a sign/zero extend instruction \p Ext, return the appropriate
4136 /// action to promote the operand of \p Ext instead of using Ext.
4137 /// \return NULL if no promotable action is possible with the current
4139 /// \p InsertedInsts keeps track of all the instructions inserted by the
4140 /// other CodeGenPrepare optimizations. This information is important
4141 /// because we do not want to promote these instructions as CodeGenPrepare
4142 /// will reinsert them later. Thus creating an infinite loop: create/remove.
4143 /// \p PromotedInsts maps the instructions to their type before promotion.
4144 static Action
getAction(Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
4145 const TargetLowering
&TLI
,
4146 const InstrToOrigTy
&PromotedInsts
);
4149 } // end anonymous namespace
4151 bool TypePromotionHelper::canGetThrough(const Instruction
*Inst
,
4152 Type
*ConsideredExtType
,
4153 const InstrToOrigTy
&PromotedInsts
,
4155 // The promotion helper does not know how to deal with vector types yet.
4156 // To be able to fix that, we would need to fix the places where we
4157 // statically extend, e.g., constants and such.
4158 if (Inst
->getType()->isVectorTy())
4161 // We can always get through zext.
4162 if (isa
<ZExtInst
>(Inst
))
4165 // sext(sext) is ok too.
4166 if (IsSExt
&& isa
<SExtInst
>(Inst
))
4169 // We can get through binary operator, if it is legal. In other words, the
4170 // binary operator must have a nuw or nsw flag.
4171 const BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(Inst
);
4172 if (isa_and_nonnull
<OverflowingBinaryOperator
>(BinOp
) &&
4173 ((!IsSExt
&& BinOp
->hasNoUnsignedWrap()) ||
4174 (IsSExt
&& BinOp
->hasNoSignedWrap())))
4177 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4178 if ((Inst
->getOpcode() == Instruction::And
||
4179 Inst
->getOpcode() == Instruction::Or
))
4182 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4183 if (Inst
->getOpcode() == Instruction::Xor
) {
4184 const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1));
4185 // Make sure it is not a NOT.
4186 if (Cst
&& !Cst
->getValue().isAllOnes())
4190 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4191 // It may change a poisoned value into a regular value, like
4192 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
4193 // poisoned value regular value
4194 // It should be OK since undef covers valid value.
4195 if (Inst
->getOpcode() == Instruction::LShr
&& !IsSExt
)
4198 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4199 // It may change a poisoned value into a regular value, like
4200 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
4201 // poisoned value regular value
4202 // It should be OK since undef covers valid value.
4203 if (Inst
->getOpcode() == Instruction::Shl
&& Inst
->hasOneUse()) {
4204 const auto *ExtInst
= cast
<const Instruction
>(*Inst
->user_begin());
4205 if (ExtInst
->hasOneUse()) {
4206 const auto *AndInst
= dyn_cast
<const Instruction
>(*ExtInst
->user_begin());
4207 if (AndInst
&& AndInst
->getOpcode() == Instruction::And
) {
4208 const auto *Cst
= dyn_cast
<ConstantInt
>(AndInst
->getOperand(1));
4210 Cst
->getValue().isIntN(Inst
->getType()->getIntegerBitWidth()))
4216 // Check if we can do the following simplification.
4217 // ext(trunc(opnd)) --> ext(opnd)
4218 if (!isa
<TruncInst
>(Inst
))
4221 Value
*OpndVal
= Inst
->getOperand(0);
4222 // Check if we can use this operand in the extension.
4223 // If the type is larger than the result type of the extension, we cannot.
4224 if (!OpndVal
->getType()->isIntegerTy() ||
4225 OpndVal
->getType()->getIntegerBitWidth() >
4226 ConsideredExtType
->getIntegerBitWidth())
4229 // If the operand of the truncate is not an instruction, we will not have
4230 // any information on the dropped bits.
4231 // (Actually we could for constant but it is not worth the extra logic).
4232 Instruction
*Opnd
= dyn_cast
<Instruction
>(OpndVal
);
4236 // Check if the source of the type is narrow enough.
4237 // I.e., check that trunc just drops extended bits of the same kind of
4239 // #1 get the type of the operand and check the kind of the extended bits.
4240 const Type
*OpndType
= getOrigType(PromotedInsts
, Opnd
, IsSExt
);
4243 else if ((IsSExt
&& isa
<SExtInst
>(Opnd
)) || (!IsSExt
&& isa
<ZExtInst
>(Opnd
)))
4244 OpndType
= Opnd
->getOperand(0)->getType();
4248 // #2 check that the truncate just drops extended bits.
4249 return Inst
->getType()->getIntegerBitWidth() >=
4250 OpndType
->getIntegerBitWidth();
4253 TypePromotionHelper::Action
TypePromotionHelper::getAction(
4254 Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
4255 const TargetLowering
&TLI
, const InstrToOrigTy
&PromotedInsts
) {
4256 assert((isa
<SExtInst
>(Ext
) || isa
<ZExtInst
>(Ext
)) &&
4257 "Unexpected instruction type");
4258 Instruction
*ExtOpnd
= dyn_cast
<Instruction
>(Ext
->getOperand(0));
4259 Type
*ExtTy
= Ext
->getType();
4260 bool IsSExt
= isa
<SExtInst
>(Ext
);
4261 // If the operand of the extension is not an instruction, we cannot
4263 // If it, check we can get through.
4264 if (!ExtOpnd
|| !canGetThrough(ExtOpnd
, ExtTy
, PromotedInsts
, IsSExt
))
4267 // Do not promote if the operand has been added by codegenprepare.
4268 // Otherwise, it means we are undoing an optimization that is likely to be
4269 // redone, thus causing potential infinite loop.
4270 if (isa
<TruncInst
>(ExtOpnd
) && InsertedInsts
.count(ExtOpnd
))
4273 // SExt or Trunc instructions.
4274 // Return the related handler.
4275 if (isa
<SExtInst
>(ExtOpnd
) || isa
<TruncInst
>(ExtOpnd
) ||
4276 isa
<ZExtInst
>(ExtOpnd
))
4277 return promoteOperandForTruncAndAnyExt
;
4279 // Regular instruction.
4280 // Abort early if we will have to insert non-free instructions.
4281 if (!ExtOpnd
->hasOneUse() && !TLI
.isTruncateFree(ExtTy
, ExtOpnd
->getType()))
4283 return IsSExt
? signExtendOperandForOther
: zeroExtendOperandForOther
;
4286 Value
*TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4287 Instruction
*SExt
, TypePromotionTransaction
&TPT
,
4288 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4289 SmallVectorImpl
<Instruction
*> *Exts
,
4290 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
4291 // By construction, the operand of SExt is an instruction. Otherwise we cannot
4292 // get through it and this method should not be called.
4293 Instruction
*SExtOpnd
= cast
<Instruction
>(SExt
->getOperand(0));
4294 Value
*ExtVal
= SExt
;
4295 bool HasMergedNonFreeExt
= false;
4296 if (isa
<ZExtInst
>(SExtOpnd
)) {
4297 // Replace s|zext(zext(opnd))
4299 HasMergedNonFreeExt
= !TLI
.isExtFree(SExtOpnd
);
4301 TPT
.createZExt(SExt
, SExtOpnd
->getOperand(0), SExt
->getType());
4302 TPT
.replaceAllUsesWith(SExt
, ZExt
);
4303 TPT
.eraseInstruction(SExt
);
4306 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4308 TPT
.setOperand(SExt
, 0, SExtOpnd
->getOperand(0));
4310 CreatedInstsCost
= 0;
4312 // Remove dead code.
4313 if (SExtOpnd
->use_empty())
4314 TPT
.eraseInstruction(SExtOpnd
);
4316 // Check if the extension is still needed.
4317 Instruction
*ExtInst
= dyn_cast
<Instruction
>(ExtVal
);
4318 if (!ExtInst
|| ExtInst
->getType() != ExtInst
->getOperand(0)->getType()) {
4321 Exts
->push_back(ExtInst
);
4322 CreatedInstsCost
= !TLI
.isExtFree(ExtInst
) && !HasMergedNonFreeExt
;
4327 // At this point we have: ext ty opnd to ty.
4328 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4329 Value
*NextVal
= ExtInst
->getOperand(0);
4330 TPT
.eraseInstruction(ExtInst
, NextVal
);
4334 Value
*TypePromotionHelper::promoteOperandForOther(
4335 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4336 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4337 SmallVectorImpl
<Instruction
*> *Exts
,
4338 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
,
4340 // By construction, the operand of Ext is an instruction. Otherwise we cannot
4341 // get through it and this method should not be called.
4342 Instruction
*ExtOpnd
= cast
<Instruction
>(Ext
->getOperand(0));
4343 CreatedInstsCost
= 0;
4344 if (!ExtOpnd
->hasOneUse()) {
4345 // ExtOpnd will be promoted.
4346 // All its uses, but Ext, will need to use a truncated value of the
4347 // promoted version.
4348 // Create the truncate now.
4349 Value
*Trunc
= TPT
.createTrunc(Ext
, ExtOpnd
->getType());
4350 if (Instruction
*ITrunc
= dyn_cast
<Instruction
>(Trunc
)) {
4351 // Insert it just after the definition.
4352 ITrunc
->moveAfter(ExtOpnd
);
4354 Truncs
->push_back(ITrunc
);
4357 TPT
.replaceAllUsesWith(ExtOpnd
, Trunc
);
4358 // Restore the operand of Ext (which has been replaced by the previous call
4359 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4360 TPT
.setOperand(Ext
, 0, ExtOpnd
);
4363 // Get through the Instruction:
4364 // 1. Update its type.
4365 // 2. Replace the uses of Ext by Inst.
4366 // 3. Extend each operand that needs to be extended.
4368 // Remember the original type of the instruction before promotion.
4369 // This is useful to know that the high bits are sign extended bits.
4370 addPromotedInst(PromotedInsts
, ExtOpnd
, IsSExt
);
4372 TPT
.mutateType(ExtOpnd
, Ext
->getType());
4374 TPT
.replaceAllUsesWith(Ext
, ExtOpnd
);
4376 Instruction
*ExtForOpnd
= Ext
;
4378 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4379 for (int OpIdx
= 0, EndOpIdx
= ExtOpnd
->getNumOperands(); OpIdx
!= EndOpIdx
;
4381 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd
->getOperand(OpIdx
)) << '\n');
4382 if (ExtOpnd
->getOperand(OpIdx
)->getType() == Ext
->getType() ||
4383 !shouldExtOperand(ExtOpnd
, OpIdx
)) {
4384 LLVM_DEBUG(dbgs() << "No need to propagate\n");
4387 // Check if we can statically extend the operand.
4388 Value
*Opnd
= ExtOpnd
->getOperand(OpIdx
);
4389 if (const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(Opnd
)) {
4390 LLVM_DEBUG(dbgs() << "Statically extend\n");
4391 unsigned BitWidth
= Ext
->getType()->getIntegerBitWidth();
4392 APInt CstVal
= IsSExt
? Cst
->getValue().sext(BitWidth
)
4393 : Cst
->getValue().zext(BitWidth
);
4394 TPT
.setOperand(ExtOpnd
, OpIdx
, ConstantInt::get(Ext
->getType(), CstVal
));
4397 // UndefValue are typed, so we have to statically sign extend them.
4398 if (isa
<UndefValue
>(Opnd
)) {
4399 LLVM_DEBUG(dbgs() << "Statically extend\n");
4400 TPT
.setOperand(ExtOpnd
, OpIdx
, UndefValue::get(Ext
->getType()));
4404 // Otherwise we have to explicitly sign extend the operand.
4405 // Check if Ext was reused to extend an operand.
4407 // If yes, create a new one.
4408 LLVM_DEBUG(dbgs() << "More operands to ext\n");
4409 Value
*ValForExtOpnd
= IsSExt
? TPT
.createSExt(Ext
, Opnd
, Ext
->getType())
4410 : TPT
.createZExt(Ext
, Opnd
, Ext
->getType());
4411 if (!isa
<Instruction
>(ValForExtOpnd
)) {
4412 TPT
.setOperand(ExtOpnd
, OpIdx
, ValForExtOpnd
);
4415 ExtForOpnd
= cast
<Instruction
>(ValForExtOpnd
);
4418 Exts
->push_back(ExtForOpnd
);
4419 TPT
.setOperand(ExtForOpnd
, 0, Opnd
);
4421 // Move the sign extension before the insertion point.
4422 TPT
.moveBefore(ExtForOpnd
, ExtOpnd
);
4423 TPT
.setOperand(ExtOpnd
, OpIdx
, ExtForOpnd
);
4424 CreatedInstsCost
+= !TLI
.isExtFree(ExtForOpnd
);
4425 // If more sext are required, new instructions will have to be created.
4426 ExtForOpnd
= nullptr;
4428 if (ExtForOpnd
== Ext
) {
4429 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4430 TPT
.eraseInstruction(Ext
);
4435 /// Check whether or not promoting an instruction to a wider type is profitable.
4436 /// \p NewCost gives the cost of extension instructions created by the
4438 /// \p OldCost gives the cost of extension instructions before the promotion
4439 /// plus the number of instructions that have been
4440 /// matched in the addressing mode the promotion.
4441 /// \p PromotedOperand is the value that has been promoted.
4442 /// \return True if the promotion is profitable, false otherwise.
4443 bool AddressingModeMatcher::isPromotionProfitable(
4444 unsigned NewCost
, unsigned OldCost
, Value
*PromotedOperand
) const {
4445 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost
<< "\tNewCost: " << NewCost
4447 // The cost of the new extensions is greater than the cost of the
4448 // old extension plus what we folded.
4449 // This is not profitable.
4450 if (NewCost
> OldCost
)
4452 if (NewCost
< OldCost
)
4454 // The promotion is neutral but it may help folding the sign extension in
4455 // loads for instance.
4456 // Check that we did not create an illegal instruction.
4457 return isPromotedInstructionLegal(TLI
, DL
, PromotedOperand
);
4460 /// Given an instruction or constant expr, see if we can fold the operation
4461 /// into the addressing mode. If so, update the addressing mode and return
4462 /// true, otherwise return false without modifying AddrMode.
4463 /// If \p MovedAway is not NULL, it contains the information of whether or
4464 /// not AddrInst has to be folded into the addressing mode on success.
4465 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4466 /// because it has been moved away.
4467 /// Thus AddrInst must not be added in the matched instructions.
4468 /// This state can happen when AddrInst is a sext, since it may be moved away.
4469 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4470 /// not be referenced anymore.
4471 bool AddressingModeMatcher::matchOperationAddr(User
*AddrInst
, unsigned Opcode
,
4474 // Avoid exponential behavior on extremely deep expression trees.
4475 if (Depth
>= 5) return false;
4477 // By default, all matched instructions stay in place.
4482 case Instruction::PtrToInt
:
4483 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4484 return matchAddr(AddrInst
->getOperand(0), Depth
);
4485 case Instruction::IntToPtr
: {
4486 auto AS
= AddrInst
->getType()->getPointerAddressSpace();
4487 auto PtrTy
= MVT::getIntegerVT(DL
.getPointerSizeInBits(AS
));
4488 // This inttoptr is a no-op if the integer type is pointer sized.
4489 if (TLI
.getValueType(DL
, AddrInst
->getOperand(0)->getType()) == PtrTy
)
4490 return matchAddr(AddrInst
->getOperand(0), Depth
);
4493 case Instruction::BitCast
:
4494 // BitCast is always a noop, and we can handle it as long as it is
4495 // int->int or pointer->pointer (we don't want int<->fp or something).
4496 if (AddrInst
->getOperand(0)->getType()->isIntOrPtrTy() &&
4497 // Don't touch identity bitcasts. These were probably put here by LSR,
4498 // and we don't want to mess around with them. Assume it knows what it
4500 AddrInst
->getOperand(0)->getType() != AddrInst
->getType())
4501 return matchAddr(AddrInst
->getOperand(0), Depth
);
4503 case Instruction::AddrSpaceCast
: {
4505 = AddrInst
->getOperand(0)->getType()->getPointerAddressSpace();
4506 unsigned DestAS
= AddrInst
->getType()->getPointerAddressSpace();
4507 if (TLI
.getTargetMachine().isNoopAddrSpaceCast(SrcAS
, DestAS
))
4508 return matchAddr(AddrInst
->getOperand(0), Depth
);
4511 case Instruction::Add
: {
4512 // Check to see if we can merge in the RHS then the LHS. If so, we win.
4513 ExtAddrMode BackupAddrMode
= AddrMode
;
4514 unsigned OldSize
= AddrModeInsts
.size();
4515 // Start a transaction at this point.
4516 // The LHS may match but not the RHS.
4517 // Therefore, we need a higher level restoration point to undo partially
4518 // matched operation.
4519 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4520 TPT
.getRestorationPoint();
4522 AddrMode
.InBounds
= false;
4523 if (matchAddr(AddrInst
->getOperand(1), Depth
+1) &&
4524 matchAddr(AddrInst
->getOperand(0), Depth
+1))
4527 // Restore the old addr mode info.
4528 AddrMode
= BackupAddrMode
;
4529 AddrModeInsts
.resize(OldSize
);
4530 TPT
.rollback(LastKnownGood
);
4532 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
4533 if (matchAddr(AddrInst
->getOperand(0), Depth
+1) &&
4534 matchAddr(AddrInst
->getOperand(1), Depth
+1))
4537 // Otherwise we definitely can't merge the ADD in.
4538 AddrMode
= BackupAddrMode
;
4539 AddrModeInsts
.resize(OldSize
);
4540 TPT
.rollback(LastKnownGood
);
4543 //case Instruction::Or:
4544 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4546 case Instruction::Mul
:
4547 case Instruction::Shl
: {
4548 // Can only handle X*C and X << C.
4549 AddrMode
.InBounds
= false;
4550 ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(AddrInst
->getOperand(1));
4551 if (!RHS
|| RHS
->getBitWidth() > 64)
4553 int64_t Scale
= RHS
->getSExtValue();
4554 if (Opcode
== Instruction::Shl
)
4555 Scale
= 1LL << Scale
;
4557 return matchScaledValue(AddrInst
->getOperand(0), Scale
, Depth
);
4559 case Instruction::GetElementPtr
: {
4560 // Scan the GEP. We check it if it contains constant offsets and at most
4561 // one variable offset.
4562 int VariableOperand
= -1;
4563 unsigned VariableScale
= 0;
4565 int64_t ConstantOffset
= 0;
4566 gep_type_iterator GTI
= gep_type_begin(AddrInst
);
4567 for (unsigned i
= 1, e
= AddrInst
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
4568 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
4569 const StructLayout
*SL
= DL
.getStructLayout(STy
);
4571 cast
<ConstantInt
>(AddrInst
->getOperand(i
))->getZExtValue();
4572 ConstantOffset
+= SL
->getElementOffset(Idx
);
4574 TypeSize TS
= DL
.getTypeAllocSize(GTI
.getIndexedType());
4575 if (TS
.isNonZero()) {
4576 // The optimisations below currently only work for fixed offsets.
4577 if (TS
.isScalable())
4579 int64_t TypeSize
= TS
.getFixedSize();
4580 if (ConstantInt
*CI
=
4581 dyn_cast
<ConstantInt
>(AddrInst
->getOperand(i
))) {
4582 const APInt
&CVal
= CI
->getValue();
4583 if (CVal
.getMinSignedBits() <= 64) {
4584 ConstantOffset
+= CVal
.getSExtValue() * TypeSize
;
4588 // We only allow one variable index at the moment.
4589 if (VariableOperand
!= -1)
4592 // Remember the variable index.
4593 VariableOperand
= i
;
4594 VariableScale
= TypeSize
;
4599 // A common case is for the GEP to only do a constant offset. In this case,
4600 // just add it to the disp field and check validity.
4601 if (VariableOperand
== -1) {
4602 AddrMode
.BaseOffs
+= ConstantOffset
;
4603 if (ConstantOffset
== 0 ||
4604 TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
)) {
4605 // Check to see if we can fold the base pointer in too.
4606 if (matchAddr(AddrInst
->getOperand(0), Depth
+1)) {
4607 if (!cast
<GEPOperator
>(AddrInst
)->isInBounds())
4608 AddrMode
.InBounds
= false;
4611 } else if (EnableGEPOffsetSplit
&& isa
<GetElementPtrInst
>(AddrInst
) &&
4612 TLI
.shouldConsiderGEPOffsetSplit() && Depth
== 0 &&
4613 ConstantOffset
> 0) {
4614 // Record GEPs with non-zero offsets as candidates for splitting in the
4615 // event that the offset cannot fit into the r+i addressing mode.
4616 // Simple and common case that only one GEP is used in calculating the
4617 // address for the memory access.
4618 Value
*Base
= AddrInst
->getOperand(0);
4619 auto *BaseI
= dyn_cast
<Instruction
>(Base
);
4620 auto *GEP
= cast
<GetElementPtrInst
>(AddrInst
);
4621 if (isa
<Argument
>(Base
) || isa
<GlobalValue
>(Base
) ||
4622 (BaseI
&& !isa
<CastInst
>(BaseI
) &&
4623 !isa
<GetElementPtrInst
>(BaseI
))) {
4624 // Make sure the parent block allows inserting non-PHI instructions
4625 // before the terminator.
4626 BasicBlock
*Parent
=
4627 BaseI
? BaseI
->getParent() : &GEP
->getFunction()->getEntryBlock();
4628 if (!Parent
->getTerminator()->isEHPad())
4629 LargeOffsetGEP
= std::make_pair(GEP
, ConstantOffset
);
4632 AddrMode
.BaseOffs
-= ConstantOffset
;
4636 // Save the valid addressing mode in case we can't match.
4637 ExtAddrMode BackupAddrMode
= AddrMode
;
4638 unsigned OldSize
= AddrModeInsts
.size();
4640 // See if the scale and offset amount is valid for this target.
4641 AddrMode
.BaseOffs
+= ConstantOffset
;
4642 if (!cast
<GEPOperator
>(AddrInst
)->isInBounds())
4643 AddrMode
.InBounds
= false;
4645 // Match the base operand of the GEP.
4646 if (!matchAddr(AddrInst
->getOperand(0), Depth
+1)) {
4647 // If it couldn't be matched, just stuff the value in a register.
4648 if (AddrMode
.HasBaseReg
) {
4649 AddrMode
= BackupAddrMode
;
4650 AddrModeInsts
.resize(OldSize
);
4653 AddrMode
.HasBaseReg
= true;
4654 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
4657 // Match the remaining variable portion of the GEP.
4658 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
), VariableScale
,
4660 // If it couldn't be matched, try stuffing the base into a register
4661 // instead of matching it, and retrying the match of the scale.
4662 AddrMode
= BackupAddrMode
;
4663 AddrModeInsts
.resize(OldSize
);
4664 if (AddrMode
.HasBaseReg
)
4666 AddrMode
.HasBaseReg
= true;
4667 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
4668 AddrMode
.BaseOffs
+= ConstantOffset
;
4669 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
),
4670 VariableScale
, Depth
)) {
4671 // If even that didn't work, bail.
4672 AddrMode
= BackupAddrMode
;
4673 AddrModeInsts
.resize(OldSize
);
4680 case Instruction::SExt
:
4681 case Instruction::ZExt
: {
4682 Instruction
*Ext
= dyn_cast
<Instruction
>(AddrInst
);
4686 // Try to move this ext out of the way of the addressing mode.
4687 // Ask for a method for doing so.
4688 TypePromotionHelper::Action TPH
=
4689 TypePromotionHelper::getAction(Ext
, InsertedInsts
, TLI
, PromotedInsts
);
4693 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4694 TPT
.getRestorationPoint();
4695 unsigned CreatedInstsCost
= 0;
4696 unsigned ExtCost
= !TLI
.isExtFree(Ext
);
4697 Value
*PromotedOperand
=
4698 TPH(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
, nullptr, nullptr, TLI
);
4699 // SExt has been moved away.
4700 // Thus either it will be rematched later in the recursive calls or it is
4701 // gone. Anyway, we must not fold it into the addressing mode at this point.
4705 // addr = gep base, idx
4707 // promotedOpnd = ext opnd <- no match here
4708 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
4709 // addr = gep base, op <- match
4713 assert(PromotedOperand
&&
4714 "TypePromotionHelper should have filtered out those cases");
4716 ExtAddrMode BackupAddrMode
= AddrMode
;
4717 unsigned OldSize
= AddrModeInsts
.size();
4719 if (!matchAddr(PromotedOperand
, Depth
) ||
4720 // The total of the new cost is equal to the cost of the created
4722 // The total of the old cost is equal to the cost of the extension plus
4723 // what we have saved in the addressing mode.
4724 !isPromotionProfitable(CreatedInstsCost
,
4725 ExtCost
+ (AddrModeInsts
.size() - OldSize
),
4727 AddrMode
= BackupAddrMode
;
4728 AddrModeInsts
.resize(OldSize
);
4729 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4730 TPT
.rollback(LastKnownGood
);
4739 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4740 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4741 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4744 bool AddressingModeMatcher::matchAddr(Value
*Addr
, unsigned Depth
) {
4745 // Start a transaction at this point that we will rollback if the matching
4747 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4748 TPT
.getRestorationPoint();
4749 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Addr
)) {
4750 if (CI
->getValue().isSignedIntN(64)) {
4751 // Fold in immediates if legal for the target.
4752 AddrMode
.BaseOffs
+= CI
->getSExtValue();
4753 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4755 AddrMode
.BaseOffs
-= CI
->getSExtValue();
4757 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(Addr
)) {
4758 // If this is a global variable, try to fold it into the addressing mode.
4759 if (!AddrMode
.BaseGV
) {
4760 AddrMode
.BaseGV
= GV
;
4761 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4763 AddrMode
.BaseGV
= nullptr;
4765 } else if (Instruction
*I
= dyn_cast
<Instruction
>(Addr
)) {
4766 ExtAddrMode BackupAddrMode
= AddrMode
;
4767 unsigned OldSize
= AddrModeInsts
.size();
4769 // Check to see if it is possible to fold this operation.
4770 bool MovedAway
= false;
4771 if (matchOperationAddr(I
, I
->getOpcode(), Depth
, &MovedAway
)) {
4772 // This instruction may have been moved away. If so, there is nothing
4776 // Okay, it's possible to fold this. Check to see if it is actually
4777 // *profitable* to do so. We use a simple cost model to avoid increasing
4778 // register pressure too much.
4779 if (I
->hasOneUse() ||
4780 isProfitableToFoldIntoAddressingMode(I
, BackupAddrMode
, AddrMode
)) {
4781 AddrModeInsts
.push_back(I
);
4785 // It isn't profitable to do this, roll back.
4786 //cerr << "NOT FOLDING: " << *I;
4787 AddrMode
= BackupAddrMode
;
4788 AddrModeInsts
.resize(OldSize
);
4789 TPT
.rollback(LastKnownGood
);
4791 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Addr
)) {
4792 if (matchOperationAddr(CE
, CE
->getOpcode(), Depth
))
4794 TPT
.rollback(LastKnownGood
);
4795 } else if (isa
<ConstantPointerNull
>(Addr
)) {
4796 // Null pointer gets folded without affecting the addressing mode.
4800 // Worse case, the target should support [reg] addressing modes. :)
4801 if (!AddrMode
.HasBaseReg
) {
4802 AddrMode
.HasBaseReg
= true;
4803 AddrMode
.BaseReg
= Addr
;
4804 // Still check for legality in case the target supports [imm] but not [i+r].
4805 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4807 AddrMode
.HasBaseReg
= false;
4808 AddrMode
.BaseReg
= nullptr;
4811 // If the base register is already taken, see if we can do [r+r].
4812 if (AddrMode
.Scale
== 0) {
4814 AddrMode
.ScaledReg
= Addr
;
4815 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4818 AddrMode
.ScaledReg
= nullptr;
4821 TPT
.rollback(LastKnownGood
);
4825 /// Check to see if all uses of OpVal by the specified inline asm call are due
4826 /// to memory operands. If so, return true, otherwise return false.
4827 static bool IsOperandAMemoryOperand(CallInst
*CI
, InlineAsm
*IA
, Value
*OpVal
,
4828 const TargetLowering
&TLI
,
4829 const TargetRegisterInfo
&TRI
) {
4830 const Function
*F
= CI
->getFunction();
4831 TargetLowering::AsmOperandInfoVector TargetConstraints
=
4832 TLI
.ParseConstraints(F
->getParent()->getDataLayout(), &TRI
, *CI
);
4834 for (TargetLowering::AsmOperandInfo
&OpInfo
: TargetConstraints
) {
4835 // Compute the constraint code and ConstraintType to use.
4836 TLI
.ComputeConstraintToUse(OpInfo
, SDValue());
4838 // If this asm operand is our Value*, and if it isn't an indirect memory
4839 // operand, we can't fold it!
4840 if (OpInfo
.CallOperandVal
== OpVal
&&
4841 (OpInfo
.ConstraintType
!= TargetLowering::C_Memory
||
4842 !OpInfo
.isIndirect
))
4849 // Max number of memory uses to look at before aborting the search to conserve
4851 static constexpr int MaxMemoryUsesToScan
= 20;
4853 /// Recursively walk all the uses of I until we find a memory use.
4854 /// If we find an obviously non-foldable instruction, return true.
4855 /// Add accessed addresses and types to MemoryUses.
4856 static bool FindAllMemoryUses(
4857 Instruction
*I
, SmallVectorImpl
<std::pair
<Value
*, Type
*>> &MemoryUses
,
4858 SmallPtrSetImpl
<Instruction
*> &ConsideredInsts
, const TargetLowering
&TLI
,
4859 const TargetRegisterInfo
&TRI
, bool OptSize
, ProfileSummaryInfo
*PSI
,
4860 BlockFrequencyInfo
*BFI
, int SeenInsts
= 0) {
4861 // If we already considered this instruction, we're done.
4862 if (!ConsideredInsts
.insert(I
).second
)
4865 // If this is an obviously unfoldable instruction, bail out.
4866 if (!MightBeFoldableInst(I
))
4869 // Loop over all the uses, recursively processing them.
4870 for (Use
&U
: I
->uses()) {
4871 // Conservatively return true if we're seeing a large number or a deep chain
4872 // of users. This avoids excessive compilation times in pathological cases.
4873 if (SeenInsts
++ >= MaxMemoryUsesToScan
)
4876 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
4877 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(UserI
)) {
4878 MemoryUses
.push_back({U
.get(), LI
->getType()});
4882 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UserI
)) {
4883 if (U
.getOperandNo() != StoreInst::getPointerOperandIndex())
4884 return true; // Storing addr, not into addr.
4885 MemoryUses
.push_back({U
.get(), SI
->getValueOperand()->getType()});
4889 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(UserI
)) {
4890 if (U
.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
4891 return true; // Storing addr, not into addr.
4892 MemoryUses
.push_back({U
.get(), RMW
->getValOperand()->getType()});
4896 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(UserI
)) {
4897 if (U
.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
4898 return true; // Storing addr, not into addr.
4899 MemoryUses
.push_back({U
.get(), CmpX
->getCompareOperand()->getType()});
4903 if (CallInst
*CI
= dyn_cast
<CallInst
>(UserI
)) {
4904 if (CI
->hasFnAttr(Attribute::Cold
)) {
4905 // If this is a cold call, we can sink the addressing calculation into
4906 // the cold path. See optimizeCallInst
4907 bool OptForSize
= OptSize
||
4908 llvm::shouldOptimizeForSize(CI
->getParent(), PSI
, BFI
);
4913 InlineAsm
*IA
= dyn_cast
<InlineAsm
>(CI
->getCalledOperand());
4914 if (!IA
) return true;
4916 // If this is a memory operand, we're cool, otherwise bail out.
4917 if (!IsOperandAMemoryOperand(CI
, IA
, I
, TLI
, TRI
))
4922 if (FindAllMemoryUses(UserI
, MemoryUses
, ConsideredInsts
, TLI
, TRI
, OptSize
,
4923 PSI
, BFI
, SeenInsts
))
4930 /// Return true if Val is already known to be live at the use site that we're
4931 /// folding it into. If so, there is no cost to include it in the addressing
4932 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4933 /// instruction already.
4934 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value
*Val
,Value
*KnownLive1
,
4935 Value
*KnownLive2
) {
4936 // If Val is either of the known-live values, we know it is live!
4937 if (Val
== nullptr || Val
== KnownLive1
|| Val
== KnownLive2
)
4940 // All values other than instructions and arguments (e.g. constants) are live.
4941 if (!isa
<Instruction
>(Val
) && !isa
<Argument
>(Val
)) return true;
4943 // If Val is a constant sized alloca in the entry block, it is live, this is
4944 // true because it is just a reference to the stack/frame pointer, which is
4945 // live for the whole function.
4946 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Val
))
4947 if (AI
->isStaticAlloca())
4950 // Check to see if this value is already used in the memory instruction's
4951 // block. If so, it's already live into the block at the very least, so we
4952 // can reasonably fold it.
4953 return Val
->isUsedInBasicBlock(MemoryInst
->getParent());
4956 /// It is possible for the addressing mode of the machine to fold the specified
4957 /// instruction into a load or store that ultimately uses it.
4958 /// However, the specified instruction has multiple uses.
4959 /// Given this, it may actually increase register pressure to fold it
4960 /// into the load. For example, consider this code:
4964 /// use(Y) -> nonload/store
4968 /// In this case, Y has multiple uses, and can be folded into the load of Z
4969 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
4970 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
4971 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
4972 /// number of computations either.
4974 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
4975 /// X was live across 'load Z' for other reasons, we actually *would* want to
4976 /// fold the addressing mode in the Z case. This would make Y die earlier.
4977 bool AddressingModeMatcher::
4978 isProfitableToFoldIntoAddressingMode(Instruction
*I
, ExtAddrMode
&AMBefore
,
4979 ExtAddrMode
&AMAfter
) {
4980 if (IgnoreProfitability
) return true;
4982 // AMBefore is the addressing mode before this instruction was folded into it,
4983 // and AMAfter is the addressing mode after the instruction was folded. Get
4984 // the set of registers referenced by AMAfter and subtract out those
4985 // referenced by AMBefore: this is the set of values which folding in this
4986 // address extends the lifetime of.
4988 // Note that there are only two potential values being referenced here,
4989 // BaseReg and ScaleReg (global addresses are always available, as are any
4990 // folded immediates).
4991 Value
*BaseReg
= AMAfter
.BaseReg
, *ScaledReg
= AMAfter
.ScaledReg
;
4993 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4994 // lifetime wasn't extended by adding this instruction.
4995 if (valueAlreadyLiveAtInst(BaseReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
4997 if (valueAlreadyLiveAtInst(ScaledReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
4998 ScaledReg
= nullptr;
5000 // If folding this instruction (and it's subexprs) didn't extend any live
5001 // ranges, we're ok with it.
5002 if (!BaseReg
&& !ScaledReg
)
5005 // If all uses of this instruction can have the address mode sunk into them,
5006 // we can remove the addressing mode and effectively trade one live register
5007 // for another (at worst.) In this context, folding an addressing mode into
5008 // the use is just a particularly nice way of sinking it.
5009 SmallVector
<std::pair
<Value
*, Type
*>, 16> MemoryUses
;
5010 SmallPtrSet
<Instruction
*, 16> ConsideredInsts
;
5011 if (FindAllMemoryUses(I
, MemoryUses
, ConsideredInsts
, TLI
, TRI
, OptSize
,
5013 return false; // Has a non-memory, non-foldable use!
5015 // Now that we know that all uses of this instruction are part of a chain of
5016 // computation involving only operations that could theoretically be folded
5017 // into a memory use, loop over each of these memory operation uses and see
5018 // if they could *actually* fold the instruction. The assumption is that
5019 // addressing modes are cheap and that duplicating the computation involved
5020 // many times is worthwhile, even on a fastpath. For sinking candidates
5021 // (i.e. cold call sites), this serves as a way to prevent excessive code
5022 // growth since most architectures have some reasonable small and fast way to
5023 // compute an effective address. (i.e LEA on x86)
5024 SmallVector
<Instruction
*, 32> MatchedAddrModeInsts
;
5025 for (const std::pair
<Value
*, Type
*> &Pair
: MemoryUses
) {
5026 Value
*Address
= Pair
.first
;
5027 Type
*AddressAccessTy
= Pair
.second
;
5028 unsigned AS
= Address
->getType()->getPointerAddressSpace();
5030 // Do a match against the root of this address, ignoring profitability. This
5031 // will tell us if the addressing mode for the memory operation will
5032 // *actually* cover the shared instruction.
5034 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
5036 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5037 TPT
.getRestorationPoint();
5038 AddressingModeMatcher
Matcher(MatchedAddrModeInsts
, TLI
, TRI
, LI
, getDTFn
,
5039 AddressAccessTy
, AS
, MemoryInst
, Result
,
5040 InsertedInsts
, PromotedInsts
, TPT
,
5041 LargeOffsetGEP
, OptSize
, PSI
, BFI
);
5042 Matcher
.IgnoreProfitability
= true;
5043 bool Success
= Matcher
.matchAddr(Address
, 0);
5044 (void)Success
; assert(Success
&& "Couldn't select *anything*?");
5046 // The match was to check the profitability, the changes made are not
5047 // part of the original matcher. Therefore, they should be dropped
5048 // otherwise the original matcher will not present the right state.
5049 TPT
.rollback(LastKnownGood
);
5051 // If the match didn't cover I, then it won't be shared by it.
5052 if (!is_contained(MatchedAddrModeInsts
, I
))
5055 MatchedAddrModeInsts
.clear();
5061 /// Return true if the specified values are defined in a
5062 /// different basic block than BB.
5063 static bool IsNonLocalValue(Value
*V
, BasicBlock
*BB
) {
5064 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
5065 return I
->getParent() != BB
;
5069 /// Sink addressing mode computation immediate before MemoryInst if doing so
5070 /// can be done without increasing register pressure. The need for the
5071 /// register pressure constraint means this can end up being an all or nothing
5072 /// decision for all uses of the same addressing computation.
5074 /// Load and Store Instructions often have addressing modes that can do
5075 /// significant amounts of computation. As such, instruction selection will try
5076 /// to get the load or store to do as much computation as possible for the
5077 /// program. The problem is that isel can only see within a single block. As
5078 /// such, we sink as much legal addressing mode work into the block as possible.
5080 /// This method is used to optimize both load/store and inline asms with memory
5081 /// operands. It's also used to sink addressing computations feeding into cold
5082 /// call sites into their (cold) basic block.
5084 /// The motivation for handling sinking into cold blocks is that doing so can
5085 /// both enable other address mode sinking (by satisfying the register pressure
5086 /// constraint above), and reduce register pressure globally (by removing the
5087 /// addressing mode computation from the fast path entirely.).
5088 bool CodeGenPrepare::optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
5089 Type
*AccessTy
, unsigned AddrSpace
) {
5092 // Try to collapse single-value PHI nodes. This is necessary to undo
5093 // unprofitable PRE transformations.
5094 SmallVector
<Value
*, 8> worklist
;
5095 SmallPtrSet
<Value
*, 16> Visited
;
5096 worklist
.push_back(Addr
);
5098 // Use a worklist to iteratively look through PHI and select nodes, and
5099 // ensure that the addressing mode obtained from the non-PHI/select roots of
5100 // the graph are compatible.
5101 bool PhiOrSelectSeen
= false;
5102 SmallVector
<Instruction
*, 16> AddrModeInsts
;
5103 const SimplifyQuery
SQ(*DL
, TLInfo
);
5104 AddressingModeCombiner
AddrModes(SQ
, Addr
);
5105 TypePromotionTransaction
TPT(RemovedInsts
);
5106 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5107 TPT
.getRestorationPoint();
5108 while (!worklist
.empty()) {
5109 Value
*V
= worklist
.pop_back_val();
5111 // We allow traversing cyclic Phi nodes.
5112 // In case of success after this loop we ensure that traversing through
5113 // Phi nodes ends up with all cases to compute address of the form
5114 // BaseGV + Base + Scale * Index + Offset
5115 // where Scale and Offset are constans and BaseGV, Base and Index
5116 // are exactly the same Values in all cases.
5117 // It means that BaseGV, Scale and Offset dominate our memory instruction
5118 // and have the same value as they had in address computation represented
5119 // as Phi. So we can safely sink address computation to memory instruction.
5120 if (!Visited
.insert(V
).second
)
5123 // For a PHI node, push all of its incoming values.
5124 if (PHINode
*P
= dyn_cast
<PHINode
>(V
)) {
5125 append_range(worklist
, P
->incoming_values());
5126 PhiOrSelectSeen
= true;
5129 // Similar for select.
5130 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
5131 worklist
.push_back(SI
->getFalseValue());
5132 worklist
.push_back(SI
->getTrueValue());
5133 PhiOrSelectSeen
= true;
5137 // For non-PHIs, determine the addressing mode being computed. Note that
5138 // the result may differ depending on what other uses our candidate
5139 // addressing instructions might have.
5140 AddrModeInsts
.clear();
5141 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
5143 // Defer the query (and possible computation of) the dom tree to point of
5144 // actual use. It's expected that most address matches don't actually need
5146 auto getDTFn
= [MemoryInst
, this]() -> const DominatorTree
& {
5147 Function
*F
= MemoryInst
->getParent()->getParent();
5148 return this->getDT(*F
);
5150 ExtAddrMode NewAddrMode
= AddressingModeMatcher::Match(
5151 V
, AccessTy
, AddrSpace
, MemoryInst
, AddrModeInsts
, *TLI
, *LI
, getDTFn
,
5152 *TRI
, InsertedInsts
, PromotedInsts
, TPT
, LargeOffsetGEP
, OptSize
, PSI
,
5155 GetElementPtrInst
*GEP
= LargeOffsetGEP
.first
;
5156 if (GEP
&& !NewGEPBases
.count(GEP
)) {
5157 // If splitting the underlying data structure can reduce the offset of a
5158 // GEP, collect the GEP. Skip the GEPs that are the new bases of
5159 // previously split data structures.
5160 LargeOffsetGEPMap
[GEP
->getPointerOperand()].push_back(LargeOffsetGEP
);
5161 if (LargeOffsetGEPID
.find(GEP
) == LargeOffsetGEPID
.end())
5162 LargeOffsetGEPID
[GEP
] = LargeOffsetGEPID
.size();
5165 NewAddrMode
.OriginalValue
= V
;
5166 if (!AddrModes
.addNewAddrMode(NewAddrMode
))
5170 // Try to combine the AddrModes we've collected. If we couldn't collect any,
5171 // or we have multiple but either couldn't combine them or combining them
5172 // wouldn't do anything useful, bail out now.
5173 if (!AddrModes
.combineAddrModes()) {
5174 TPT
.rollback(LastKnownGood
);
5177 bool Modified
= TPT
.commit();
5179 // Get the combined AddrMode (or the only AddrMode, if we only had one).
5180 ExtAddrMode AddrMode
= AddrModes
.getAddrMode();
5182 // If all the instructions matched are already in this BB, don't do anything.
5183 // If we saw a Phi node then it is not local definitely, and if we saw a select
5184 // then we want to push the address calculation past it even if it's already
5186 if (!PhiOrSelectSeen
&& none_of(AddrModeInsts
, [&](Value
*V
) {
5187 return IsNonLocalValue(V
, MemoryInst
->getParent());
5189 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
5194 // Insert this computation right after this user. Since our caller is
5195 // scanning from the top of the BB to the bottom, reuse of the expr are
5196 // guaranteed to happen later.
5197 IRBuilder
<> Builder(MemoryInst
);
5199 // Now that we determined the addressing expression we want to use and know
5200 // that we have to sink it into this block. Check to see if we have already
5201 // done this for some other load/store instr in this block. If so, reuse
5202 // the computation. Before attempting reuse, check if the address is valid
5203 // as it may have been erased.
5205 WeakTrackingVH SunkAddrVH
= SunkAddrs
[Addr
];
5207 Value
* SunkAddr
= SunkAddrVH
.pointsToAliveValue() ? SunkAddrVH
: nullptr;
5209 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5210 << " for " << *MemoryInst
<< "\n");
5211 if (SunkAddr
->getType() != Addr
->getType())
5212 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
5213 } else if (AddrSinkUsingGEPs
|| (!AddrSinkUsingGEPs
.getNumOccurrences() &&
5214 SubtargetInfo
->addrSinkUsingGEPs())) {
5215 // By default, we use the GEP-based method when AA is used later. This
5216 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5217 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5218 << " for " << *MemoryInst
<< "\n");
5219 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
5220 Value
*ResultPtr
= nullptr, *ResultIndex
= nullptr;
5222 // First, find the pointer.
5223 if (AddrMode
.BaseReg
&& AddrMode
.BaseReg
->getType()->isPointerTy()) {
5224 ResultPtr
= AddrMode
.BaseReg
;
5225 AddrMode
.BaseReg
= nullptr;
5228 if (AddrMode
.Scale
&& AddrMode
.ScaledReg
->getType()->isPointerTy()) {
5229 // We can't add more than one pointer together, nor can we scale a
5230 // pointer (both of which seem meaningless).
5231 if (ResultPtr
|| AddrMode
.Scale
!= 1)
5234 ResultPtr
= AddrMode
.ScaledReg
;
5238 // It is only safe to sign extend the BaseReg if we know that the math
5239 // required to create it did not overflow before we extend it. Since
5240 // the original IR value was tossed in favor of a constant back when
5241 // the AddrMode was created we need to bail out gracefully if widths
5242 // do not match instead of extending it.
5244 // (See below for code to add the scale.)
5245 if (AddrMode
.Scale
) {
5246 Type
*ScaledRegTy
= AddrMode
.ScaledReg
->getType();
5247 if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() >
5248 cast
<IntegerType
>(ScaledRegTy
)->getBitWidth())
5252 if (AddrMode
.BaseGV
) {
5256 ResultPtr
= AddrMode
.BaseGV
;
5259 // If the real base value actually came from an inttoptr, then the matcher
5260 // will look through it and provide only the integer value. In that case,
5262 if (!DL
->isNonIntegralPointerType(Addr
->getType())) {
5263 if (!ResultPtr
&& AddrMode
.BaseReg
) {
5264 ResultPtr
= Builder
.CreateIntToPtr(AddrMode
.BaseReg
, Addr
->getType(),
5266 AddrMode
.BaseReg
= nullptr;
5267 } else if (!ResultPtr
&& AddrMode
.Scale
== 1) {
5268 ResultPtr
= Builder
.CreateIntToPtr(AddrMode
.ScaledReg
, Addr
->getType(),
5275 !AddrMode
.BaseReg
&& !AddrMode
.Scale
&& !AddrMode
.BaseOffs
) {
5276 SunkAddr
= Constant::getNullValue(Addr
->getType());
5277 } else if (!ResultPtr
) {
5281 Builder
.getInt8PtrTy(Addr
->getType()->getPointerAddressSpace());
5282 Type
*I8Ty
= Builder
.getInt8Ty();
5284 // Start with the base register. Do this first so that subsequent address
5285 // matching finds it last, which will prevent it from trying to match it
5286 // as the scaled value in case it happens to be a mul. That would be
5287 // problematic if we've sunk a different mul for the scale, because then
5288 // we'd end up sinking both muls.
5289 if (AddrMode
.BaseReg
) {
5290 Value
*V
= AddrMode
.BaseReg
;
5291 if (V
->getType() != IntPtrTy
)
5292 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
5297 // Add the scale value.
5298 if (AddrMode
.Scale
) {
5299 Value
*V
= AddrMode
.ScaledReg
;
5300 if (V
->getType() == IntPtrTy
) {
5303 assert(cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
5304 cast
<IntegerType
>(V
->getType())->getBitWidth() &&
5305 "We can't transform if ScaledReg is too narrow");
5306 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
5309 if (AddrMode
.Scale
!= 1)
5310 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
5313 ResultIndex
= Builder
.CreateAdd(ResultIndex
, V
, "sunkaddr");
5318 // Add in the Base Offset if present.
5319 if (AddrMode
.BaseOffs
) {
5320 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
5322 // We need to add this separately from the scale above to help with
5323 // SDAG consecutive load/store merging.
5324 if (ResultPtr
->getType() != I8PtrTy
)
5325 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
5328 ? Builder
.CreateInBoundsGEP(I8Ty
, ResultPtr
, ResultIndex
,
5330 : Builder
.CreateGEP(I8Ty
, ResultPtr
, ResultIndex
, "sunkaddr");
5337 SunkAddr
= ResultPtr
;
5339 if (ResultPtr
->getType() != I8PtrTy
)
5340 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
5343 ? Builder
.CreateInBoundsGEP(I8Ty
, ResultPtr
, ResultIndex
,
5345 : Builder
.CreateGEP(I8Ty
, ResultPtr
, ResultIndex
, "sunkaddr");
5348 if (SunkAddr
->getType() != Addr
->getType())
5349 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
5352 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5353 // non-integral pointers, so in that case bail out now.
5354 Type
*BaseTy
= AddrMode
.BaseReg
? AddrMode
.BaseReg
->getType() : nullptr;
5355 Type
*ScaleTy
= AddrMode
.Scale
? AddrMode
.ScaledReg
->getType() : nullptr;
5356 PointerType
*BasePtrTy
= dyn_cast_or_null
<PointerType
>(BaseTy
);
5357 PointerType
*ScalePtrTy
= dyn_cast_or_null
<PointerType
>(ScaleTy
);
5358 if (DL
->isNonIntegralPointerType(Addr
->getType()) ||
5359 (BasePtrTy
&& DL
->isNonIntegralPointerType(BasePtrTy
)) ||
5360 (ScalePtrTy
&& DL
->isNonIntegralPointerType(ScalePtrTy
)) ||
5362 DL
->isNonIntegralPointerType(AddrMode
.BaseGV
->getType())))
5365 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5366 << " for " << *MemoryInst
<< "\n");
5367 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
5368 Value
*Result
= nullptr;
5370 // Start with the base register. Do this first so that subsequent address
5371 // matching finds it last, which will prevent it from trying to match it
5372 // as the scaled value in case it happens to be a mul. That would be
5373 // problematic if we've sunk a different mul for the scale, because then
5374 // we'd end up sinking both muls.
5375 if (AddrMode
.BaseReg
) {
5376 Value
*V
= AddrMode
.BaseReg
;
5377 if (V
->getType()->isPointerTy())
5378 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
5379 if (V
->getType() != IntPtrTy
)
5380 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
5384 // Add the scale value.
5385 if (AddrMode
.Scale
) {
5386 Value
*V
= AddrMode
.ScaledReg
;
5387 if (V
->getType() == IntPtrTy
) {
5389 } else if (V
->getType()->isPointerTy()) {
5390 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
5391 } else if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
5392 cast
<IntegerType
>(V
->getType())->getBitWidth()) {
5393 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
5395 // It is only safe to sign extend the BaseReg if we know that the math
5396 // required to create it did not overflow before we extend it. Since
5397 // the original IR value was tossed in favor of a constant back when
5398 // the AddrMode was created we need to bail out gracefully if widths
5399 // do not match instead of extending it.
5400 Instruction
*I
= dyn_cast_or_null
<Instruction
>(Result
);
5401 if (I
&& (Result
!= AddrMode
.BaseReg
))
5402 I
->eraseFromParent();
5405 if (AddrMode
.Scale
!= 1)
5406 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
5409 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
5414 // Add in the BaseGV if present.
5415 if (AddrMode
.BaseGV
) {
5416 Value
*V
= Builder
.CreatePtrToInt(AddrMode
.BaseGV
, IntPtrTy
, "sunkaddr");
5418 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
5423 // Add in the Base Offset if present.
5424 if (AddrMode
.BaseOffs
) {
5425 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
5427 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
5433 SunkAddr
= Constant::getNullValue(Addr
->getType());
5435 SunkAddr
= Builder
.CreateIntToPtr(Result
, Addr
->getType(), "sunkaddr");
5438 MemoryInst
->replaceUsesOfWith(Repl
, SunkAddr
);
5439 // Store the newly computed address into the cache. In the case we reused a
5440 // value, this should be idempotent.
5441 SunkAddrs
[Addr
] = WeakTrackingVH(SunkAddr
);
5443 // If we have no uses, recursively delete the value and all dead instructions
5445 if (Repl
->use_empty()) {
5446 resetIteratorIfInvalidatedWhileCalling(CurInstIterator
->getParent(), [&]() {
5447 RecursivelyDeleteTriviallyDeadInstructions(
5448 Repl
, TLInfo
, nullptr,
5449 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
5456 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5457 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5458 /// only handle a 2 operand GEP in the same basic block or a splat constant
5459 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5462 /// If the existing GEP has a vector base pointer that is splat, we can look
5463 /// through the splat to find the scalar pointer. If we can't find a scalar
5464 /// pointer there's nothing we can do.
5466 /// If we have a GEP with more than 2 indices where the middle indices are all
5467 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5469 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5470 /// followed by a GEP with an all zeroes vector index. This will enable
5471 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5473 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction
*MemoryInst
,
5477 if (const auto *GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
)) {
5478 // Don't optimize GEPs that don't have indices.
5479 if (!GEP
->hasIndices())
5482 // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5483 // FIXME: We should support this by sinking the GEP.
5484 if (MemoryInst
->getParent() != GEP
->getParent())
5487 SmallVector
<Value
*, 2> Ops(GEP
->operands());
5489 bool RewriteGEP
= false;
5491 if (Ops
[0]->getType()->isVectorTy()) {
5492 Ops
[0] = getSplatValue(Ops
[0]);
5498 unsigned FinalIndex
= Ops
.size() - 1;
5500 // Ensure all but the last index is 0.
5501 // FIXME: This isn't strictly required. All that's required is that they are
5502 // all scalars or splats.
5503 for (unsigned i
= 1; i
< FinalIndex
; ++i
) {
5504 auto *C
= dyn_cast
<Constant
>(Ops
[i
]);
5507 if (isa
<VectorType
>(C
->getType()))
5508 C
= C
->getSplatValue();
5509 auto *CI
= dyn_cast_or_null
<ConstantInt
>(C
);
5510 if (!CI
|| !CI
->isZero())
5512 // Scalarize the index if needed.
5516 // Try to scalarize the final index.
5517 if (Ops
[FinalIndex
]->getType()->isVectorTy()) {
5518 if (Value
*V
= getSplatValue(Ops
[FinalIndex
])) {
5519 auto *C
= dyn_cast
<ConstantInt
>(V
);
5520 // Don't scalarize all zeros vector.
5521 if (!C
|| !C
->isZero()) {
5522 Ops
[FinalIndex
] = V
;
5528 // If we made any changes or the we have extra operands, we need to generate
5529 // new instructions.
5530 if (!RewriteGEP
&& Ops
.size() == 2)
5533 auto NumElts
= cast
<VectorType
>(Ptr
->getType())->getElementCount();
5535 IRBuilder
<> Builder(MemoryInst
);
5537 Type
*SourceTy
= GEP
->getSourceElementType();
5538 Type
*ScalarIndexTy
= DL
->getIndexType(Ops
[0]->getType()->getScalarType());
5540 // If the final index isn't a vector, emit a scalar GEP containing all ops
5541 // and a vector GEP with all zeroes final index.
5542 if (!Ops
[FinalIndex
]->getType()->isVectorTy()) {
5543 NewAddr
= Builder
.CreateGEP(SourceTy
, Ops
[0],
5544 makeArrayRef(Ops
).drop_front());
5545 auto *IndexTy
= VectorType::get(ScalarIndexTy
, NumElts
);
5546 auto *SecondTy
= GetElementPtrInst::getIndexedType(
5547 SourceTy
, makeArrayRef(Ops
).drop_front());
5549 Builder
.CreateGEP(SecondTy
, NewAddr
, Constant::getNullValue(IndexTy
));
5551 Value
*Base
= Ops
[0];
5552 Value
*Index
= Ops
[FinalIndex
];
5554 // Create a scalar GEP if there are more than 2 operands.
5555 if (Ops
.size() != 2) {
5556 // Replace the last index with 0.
5557 Ops
[FinalIndex
] = Constant::getNullValue(ScalarIndexTy
);
5558 Base
= Builder
.CreateGEP(SourceTy
, Base
,
5559 makeArrayRef(Ops
).drop_front());
5560 SourceTy
= GetElementPtrInst::getIndexedType(
5561 SourceTy
, makeArrayRef(Ops
).drop_front());
5564 // Now create the GEP with scalar pointer and vector index.
5565 NewAddr
= Builder
.CreateGEP(SourceTy
, Base
, Index
);
5567 } else if (!isa
<Constant
>(Ptr
)) {
5568 // Not a GEP, maybe its a splat and we can create a GEP to enable
5569 // SelectionDAGBuilder to use it as a uniform base.
5570 Value
*V
= getSplatValue(Ptr
);
5574 auto NumElts
= cast
<VectorType
>(Ptr
->getType())->getElementCount();
5576 IRBuilder
<> Builder(MemoryInst
);
5578 // Emit a vector GEP with a scalar pointer and all 0s vector index.
5579 Type
*ScalarIndexTy
= DL
->getIndexType(V
->getType()->getScalarType());
5580 auto *IndexTy
= VectorType::get(ScalarIndexTy
, NumElts
);
5582 if (cast
<IntrinsicInst
>(MemoryInst
)->getIntrinsicID() ==
5583 Intrinsic::masked_gather
) {
5584 ScalarTy
= MemoryInst
->getType()->getScalarType();
5586 assert(cast
<IntrinsicInst
>(MemoryInst
)->getIntrinsicID() ==
5587 Intrinsic::masked_scatter
);
5588 ScalarTy
= MemoryInst
->getOperand(0)->getType()->getScalarType();
5590 NewAddr
= Builder
.CreateGEP(ScalarTy
, V
, Constant::getNullValue(IndexTy
));
5592 // Constant, SelectionDAGBuilder knows to check if its a splat.
5596 MemoryInst
->replaceUsesOfWith(Ptr
, NewAddr
);
5598 // If we have no uses, recursively delete the value and all dead instructions
5600 if (Ptr
->use_empty())
5601 RecursivelyDeleteTriviallyDeadInstructions(
5602 Ptr
, TLInfo
, nullptr,
5603 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
5608 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5609 /// address computing into the block when possible / profitable.
5610 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst
*CS
) {
5611 bool MadeChange
= false;
5613 const TargetRegisterInfo
*TRI
=
5614 TM
->getSubtargetImpl(*CS
->getFunction())->getRegisterInfo();
5615 TargetLowering::AsmOperandInfoVector TargetConstraints
=
5616 TLI
->ParseConstraints(*DL
, TRI
, *CS
);
5618 for (TargetLowering::AsmOperandInfo
&OpInfo
: TargetConstraints
) {
5619 // Compute the constraint code and ConstraintType to use.
5620 TLI
->ComputeConstraintToUse(OpInfo
, SDValue());
5622 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
5623 OpInfo
.isIndirect
) {
5624 Value
*OpVal
= CS
->getArgOperand(ArgNo
++);
5625 MadeChange
|= optimizeMemoryInst(CS
, OpVal
, OpVal
->getType(), ~0u);
5626 } else if (OpInfo
.Type
== InlineAsm::isInput
)
5633 /// Check if all the uses of \p Val are equivalent (or free) zero or
5634 /// sign extensions.
5635 static bool hasSameExtUse(Value
*Val
, const TargetLowering
&TLI
) {
5636 assert(!Val
->use_empty() && "Input must have at least one use");
5637 const Instruction
*FirstUser
= cast
<Instruction
>(*Val
->user_begin());
5638 bool IsSExt
= isa
<SExtInst
>(FirstUser
);
5639 Type
*ExtTy
= FirstUser
->getType();
5640 for (const User
*U
: Val
->users()) {
5641 const Instruction
*UI
= cast
<Instruction
>(U
);
5642 if ((IsSExt
&& !isa
<SExtInst
>(UI
)) || (!IsSExt
&& !isa
<ZExtInst
>(UI
)))
5644 Type
*CurTy
= UI
->getType();
5645 // Same input and output types: Same instruction after CSE.
5649 // If IsSExt is true, we are in this situation:
5651 // b = sext ty1 a to ty2
5652 // c = sext ty1 a to ty3
5653 // Assuming ty2 is shorter than ty3, this could be turned into:
5655 // b = sext ty1 a to ty2
5656 // c = sext ty2 b to ty3
5657 // However, the last sext is not free.
5661 // This is a ZExt, maybe this is free to extend from one type to another.
5662 // In that case, we would not account for a different use.
5665 if (ExtTy
->getScalarType()->getIntegerBitWidth() >
5666 CurTy
->getScalarType()->getIntegerBitWidth()) {
5674 if (!TLI
.isZExtFree(NarrowTy
, LargeTy
))
5677 // All uses are the same or can be derived from one another for free.
5681 /// Try to speculatively promote extensions in \p Exts and continue
5682 /// promoting through newly promoted operands recursively as far as doing so is
5683 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5684 /// When some promotion happened, \p TPT contains the proper state to revert
5687 /// \return true if some promotion happened, false otherwise.
5688 bool CodeGenPrepare::tryToPromoteExts(
5689 TypePromotionTransaction
&TPT
, const SmallVectorImpl
<Instruction
*> &Exts
,
5690 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
5691 unsigned CreatedInstsCost
) {
5692 bool Promoted
= false;
5694 // Iterate over all the extensions to try to promote them.
5695 for (auto *I
: Exts
) {
5696 // Early check if we directly have ext(load).
5697 if (isa
<LoadInst
>(I
->getOperand(0))) {
5698 ProfitablyMovedExts
.push_back(I
);
5702 // Check whether or not we want to do any promotion. The reason we have
5703 // this check inside the for loop is to catch the case where an extension
5704 // is directly fed by a load because in such case the extension can be moved
5705 // up without any promotion on its operands.
5706 if (!TLI
->enableExtLdPromotion() || DisableExtLdPromotion
)
5709 // Get the action to perform the promotion.
5710 TypePromotionHelper::Action TPH
=
5711 TypePromotionHelper::getAction(I
, InsertedInsts
, *TLI
, PromotedInsts
);
5712 // Check if we can promote.
5714 // Save the current extension as we cannot move up through its operand.
5715 ProfitablyMovedExts
.push_back(I
);
5719 // Save the current state.
5720 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5721 TPT
.getRestorationPoint();
5722 SmallVector
<Instruction
*, 4> NewExts
;
5723 unsigned NewCreatedInstsCost
= 0;
5724 unsigned ExtCost
= !TLI
->isExtFree(I
);
5726 Value
*PromotedVal
= TPH(I
, TPT
, PromotedInsts
, NewCreatedInstsCost
,
5727 &NewExts
, nullptr, *TLI
);
5728 assert(PromotedVal
&&
5729 "TypePromotionHelper should have filtered out those cases");
5731 // We would be able to merge only one extension in a load.
5732 // Therefore, if we have more than 1 new extension we heuristically
5733 // cut this search path, because it means we degrade the code quality.
5734 // With exactly 2, the transformation is neutral, because we will merge
5735 // one extension but leave one. However, we optimistically keep going,
5736 // because the new extension may be removed too.
5737 long long TotalCreatedInstsCost
= CreatedInstsCost
+ NewCreatedInstsCost
;
5738 // FIXME: It would be possible to propagate a negative value instead of
5739 // conservatively ceiling it to 0.
5740 TotalCreatedInstsCost
=
5741 std::max((long long)0, (TotalCreatedInstsCost
- ExtCost
));
5742 if (!StressExtLdPromotion
&&
5743 (TotalCreatedInstsCost
> 1 ||
5744 !isPromotedInstructionLegal(*TLI
, *DL
, PromotedVal
))) {
5745 // This promotion is not profitable, rollback to the previous state, and
5746 // save the current extension in ProfitablyMovedExts as the latest
5747 // speculative promotion turned out to be unprofitable.
5748 TPT
.rollback(LastKnownGood
);
5749 ProfitablyMovedExts
.push_back(I
);
5752 // Continue promoting NewExts as far as doing so is profitable.
5753 SmallVector
<Instruction
*, 2> NewlyMovedExts
;
5754 (void)tryToPromoteExts(TPT
, NewExts
, NewlyMovedExts
, TotalCreatedInstsCost
);
5755 bool NewPromoted
= false;
5756 for (auto *ExtInst
: NewlyMovedExts
) {
5757 Instruction
*MovedExt
= cast
<Instruction
>(ExtInst
);
5758 Value
*ExtOperand
= MovedExt
->getOperand(0);
5759 // If we have reached to a load, we need this extra profitability check
5760 // as it could potentially be merged into an ext(load).
5761 if (isa
<LoadInst
>(ExtOperand
) &&
5762 !(StressExtLdPromotion
|| NewCreatedInstsCost
<= ExtCost
||
5763 (ExtOperand
->hasOneUse() || hasSameExtUse(ExtOperand
, *TLI
))))
5766 ProfitablyMovedExts
.push_back(MovedExt
);
5770 // If none of speculative promotions for NewExts is profitable, rollback
5771 // and save the current extension (I) as the last profitable extension.
5773 TPT
.rollback(LastKnownGood
);
5774 ProfitablyMovedExts
.push_back(I
);
5777 // The promotion is profitable.
5783 /// Merging redundant sexts when one is dominating the other.
5784 bool CodeGenPrepare::mergeSExts(Function
&F
) {
5785 bool Changed
= false;
5786 for (auto &Entry
: ValToSExtendedUses
) {
5787 SExts
&Insts
= Entry
.second
;
5789 for (Instruction
*Inst
: Insts
) {
5790 if (RemovedInsts
.count(Inst
) || !isa
<SExtInst
>(Inst
) ||
5791 Inst
->getOperand(0) != Entry
.first
)
5793 bool inserted
= false;
5794 for (auto &Pt
: CurPts
) {
5795 if (getDT(F
).dominates(Inst
, Pt
)) {
5796 Pt
->replaceAllUsesWith(Inst
);
5797 RemovedInsts
.insert(Pt
);
5798 Pt
->removeFromParent();
5804 if (!getDT(F
).dominates(Pt
, Inst
))
5805 // Give up if we need to merge in a common dominator as the
5806 // experiments show it is not profitable.
5808 Inst
->replaceAllUsesWith(Pt
);
5809 RemovedInsts
.insert(Inst
);
5810 Inst
->removeFromParent();
5816 CurPts
.push_back(Inst
);
5822 // Splitting large data structures so that the GEPs accessing them can have
5823 // smaller offsets so that they can be sunk to the same blocks as their users.
5824 // For example, a large struct starting from %base is split into two parts
5825 // where the second part starts from %new_base.
5832 // %gep0 = gep %base, off0
5833 // %gep1 = gep %base, off1
5834 // %gep2 = gep %base, off2
5837 // %load1 = load %gep0
5838 // %load2 = load %gep1
5839 // %load3 = load %gep2
5844 // %new_base = gep %base, off0
5847 // %new_gep0 = %new_base
5848 // %new_gep1 = gep %new_base, off1 - off0
5849 // %new_gep2 = gep %new_base, off2 - off0
5852 // %load1 = load i32, i32* %new_gep0
5853 // %load2 = load i32, i32* %new_gep1
5854 // %load3 = load i32, i32* %new_gep2
5856 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5857 // their offsets are smaller enough to fit into the addressing mode.
5858 bool CodeGenPrepare::splitLargeGEPOffsets() {
5859 bool Changed
= false;
5860 for (auto &Entry
: LargeOffsetGEPMap
) {
5861 Value
*OldBase
= Entry
.first
;
5862 SmallVectorImpl
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>>
5863 &LargeOffsetGEPs
= Entry
.second
;
5864 auto compareGEPOffset
=
5865 [&](const std::pair
<GetElementPtrInst
*, int64_t> &LHS
,
5866 const std::pair
<GetElementPtrInst
*, int64_t> &RHS
) {
5867 if (LHS
.first
== RHS
.first
)
5869 if (LHS
.second
!= RHS
.second
)
5870 return LHS
.second
< RHS
.second
;
5871 return LargeOffsetGEPID
[LHS
.first
] < LargeOffsetGEPID
[RHS
.first
];
5873 // Sorting all the GEPs of the same data structures based on the offsets.
5874 llvm::sort(LargeOffsetGEPs
, compareGEPOffset
);
5875 LargeOffsetGEPs
.erase(
5876 std::unique(LargeOffsetGEPs
.begin(), LargeOffsetGEPs
.end()),
5877 LargeOffsetGEPs
.end());
5878 // Skip if all the GEPs have the same offsets.
5879 if (LargeOffsetGEPs
.front().second
== LargeOffsetGEPs
.back().second
)
5881 GetElementPtrInst
*BaseGEP
= LargeOffsetGEPs
.begin()->first
;
5882 int64_t BaseOffset
= LargeOffsetGEPs
.begin()->second
;
5883 Value
*NewBaseGEP
= nullptr;
5885 auto *LargeOffsetGEP
= LargeOffsetGEPs
.begin();
5886 while (LargeOffsetGEP
!= LargeOffsetGEPs
.end()) {
5887 GetElementPtrInst
*GEP
= LargeOffsetGEP
->first
;
5888 int64_t Offset
= LargeOffsetGEP
->second
;
5889 if (Offset
!= BaseOffset
) {
5890 TargetLowering::AddrMode AddrMode
;
5891 AddrMode
.BaseOffs
= Offset
- BaseOffset
;
5892 // The result type of the GEP might not be the type of the memory
5894 if (!TLI
->isLegalAddressingMode(*DL
, AddrMode
,
5895 GEP
->getResultElementType(),
5896 GEP
->getAddressSpace())) {
5897 // We need to create a new base if the offset to the current base is
5898 // too large to fit into the addressing mode. So, a very large struct
5899 // may be split into several parts.
5901 BaseOffset
= Offset
;
5902 NewBaseGEP
= nullptr;
5906 // Generate a new GEP to replace the current one.
5907 LLVMContext
&Ctx
= GEP
->getContext();
5908 Type
*IntPtrTy
= DL
->getIntPtrType(GEP
->getType());
5910 Type::getInt8PtrTy(Ctx
, GEP
->getType()->getPointerAddressSpace());
5911 Type
*I8Ty
= Type::getInt8Ty(Ctx
);
5914 // Create a new base if we don't have one yet. Find the insertion
5915 // pointer for the new base first.
5916 BasicBlock::iterator NewBaseInsertPt
;
5917 BasicBlock
*NewBaseInsertBB
;
5918 if (auto *BaseI
= dyn_cast
<Instruction
>(OldBase
)) {
5919 // If the base of the struct is an instruction, the new base will be
5920 // inserted close to it.
5921 NewBaseInsertBB
= BaseI
->getParent();
5922 if (isa
<PHINode
>(BaseI
))
5923 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
5924 else if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(BaseI
)) {
5926 SplitEdge(NewBaseInsertBB
, Invoke
->getNormalDest());
5927 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
5929 NewBaseInsertPt
= std::next(BaseI
->getIterator());
5931 // If the current base is an argument or global value, the new base
5932 // will be inserted to the entry block.
5933 NewBaseInsertBB
= &BaseGEP
->getFunction()->getEntryBlock();
5934 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
5936 IRBuilder
<> NewBaseBuilder(NewBaseInsertBB
, NewBaseInsertPt
);
5937 // Create a new base.
5938 Value
*BaseIndex
= ConstantInt::get(IntPtrTy
, BaseOffset
);
5939 NewBaseGEP
= OldBase
;
5940 if (NewBaseGEP
->getType() != I8PtrTy
)
5941 NewBaseGEP
= NewBaseBuilder
.CreatePointerCast(NewBaseGEP
, I8PtrTy
);
5943 NewBaseBuilder
.CreateGEP(I8Ty
, NewBaseGEP
, BaseIndex
, "splitgep");
5944 NewGEPBases
.insert(NewBaseGEP
);
5947 IRBuilder
<> Builder(GEP
);
5948 Value
*NewGEP
= NewBaseGEP
;
5949 if (Offset
== BaseOffset
) {
5950 if (GEP
->getType() != I8PtrTy
)
5951 NewGEP
= Builder
.CreatePointerCast(NewGEP
, GEP
->getType());
5953 // Calculate the new offset for the new GEP.
5954 Value
*Index
= ConstantInt::get(IntPtrTy
, Offset
- BaseOffset
);
5955 NewGEP
= Builder
.CreateGEP(I8Ty
, NewBaseGEP
, Index
);
5957 if (GEP
->getType() != I8PtrTy
)
5958 NewGEP
= Builder
.CreatePointerCast(NewGEP
, GEP
->getType());
5960 GEP
->replaceAllUsesWith(NewGEP
);
5961 LargeOffsetGEPID
.erase(GEP
);
5962 LargeOffsetGEP
= LargeOffsetGEPs
.erase(LargeOffsetGEP
);
5963 GEP
->eraseFromParent();
5970 bool CodeGenPrepare::optimizePhiType(
5971 PHINode
*I
, SmallPtrSetImpl
<PHINode
*> &Visited
,
5972 SmallPtrSetImpl
<Instruction
*> &DeletedInstrs
) {
5973 // We are looking for a collection on interconnected phi nodes that together
5974 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
5975 // are of the same type. Convert the whole set of nodes to the type of the
5977 Type
*PhiTy
= I
->getType();
5978 Type
*ConvertTy
= nullptr;
5979 if (Visited
.count(I
) ||
5980 (!I
->getType()->isIntegerTy() && !I
->getType()->isFloatingPointTy()))
5983 SmallVector
<Instruction
*, 4> Worklist
;
5984 Worklist
.push_back(cast
<Instruction
>(I
));
5985 SmallPtrSet
<PHINode
*, 4> PhiNodes
;
5988 SmallPtrSet
<Instruction
*, 4> Defs
;
5989 SmallPtrSet
<Instruction
*, 4> Uses
;
5990 // This works by adding extra bitcasts between load/stores and removing
5991 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
5992 // we can get in the situation where we remove a bitcast in one iteration
5993 // just to add it again in the next. We need to ensure that at least one
5994 // bitcast we remove are anchored to something that will not change back.
5995 bool AnyAnchored
= false;
5997 while (!Worklist
.empty()) {
5998 Instruction
*II
= Worklist
.pop_back_val();
6000 if (auto *Phi
= dyn_cast
<PHINode
>(II
)) {
6001 // Handle Defs, which might also be PHI's
6002 for (Value
*V
: Phi
->incoming_values()) {
6003 if (auto *OpPhi
= dyn_cast
<PHINode
>(V
)) {
6004 if (!PhiNodes
.count(OpPhi
)) {
6005 if (Visited
.count(OpPhi
))
6007 PhiNodes
.insert(OpPhi
);
6008 Visited
.insert(OpPhi
);
6009 Worklist
.push_back(OpPhi
);
6011 } else if (auto *OpLoad
= dyn_cast
<LoadInst
>(V
)) {
6012 if (!OpLoad
->isSimple())
6014 if (!Defs
.count(OpLoad
)) {
6015 Defs
.insert(OpLoad
);
6016 Worklist
.push_back(OpLoad
);
6018 } else if (auto *OpEx
= dyn_cast
<ExtractElementInst
>(V
)) {
6019 if (!Defs
.count(OpEx
)) {
6021 Worklist
.push_back(OpEx
);
6023 } else if (auto *OpBC
= dyn_cast
<BitCastInst
>(V
)) {
6025 ConvertTy
= OpBC
->getOperand(0)->getType();
6026 if (OpBC
->getOperand(0)->getType() != ConvertTy
)
6028 if (!Defs
.count(OpBC
)) {
6030 Worklist
.push_back(OpBC
);
6031 AnyAnchored
|= !isa
<LoadInst
>(OpBC
->getOperand(0)) &&
6032 !isa
<ExtractElementInst
>(OpBC
->getOperand(0));
6034 } else if (!isa
<UndefValue
>(V
)) {
6040 // Handle uses which might also be phi's
6041 for (User
*V
: II
->users()) {
6042 if (auto *OpPhi
= dyn_cast
<PHINode
>(V
)) {
6043 if (!PhiNodes
.count(OpPhi
)) {
6044 if (Visited
.count(OpPhi
))
6046 PhiNodes
.insert(OpPhi
);
6047 Visited
.insert(OpPhi
);
6048 Worklist
.push_back(OpPhi
);
6050 } else if (auto *OpStore
= dyn_cast
<StoreInst
>(V
)) {
6051 if (!OpStore
->isSimple() || OpStore
->getOperand(0) != II
)
6053 Uses
.insert(OpStore
);
6054 } else if (auto *OpBC
= dyn_cast
<BitCastInst
>(V
)) {
6056 ConvertTy
= OpBC
->getType();
6057 if (OpBC
->getType() != ConvertTy
)
6061 any_of(OpBC
->users(), [](User
*U
) { return !isa
<StoreInst
>(U
); });
6068 if (!ConvertTy
|| !AnyAnchored
|| !TLI
->shouldConvertPhiType(PhiTy
, ConvertTy
))
6071 LLVM_DEBUG(dbgs() << "Converting " << *I
<< "\n and connected nodes to "
6072 << *ConvertTy
<< "\n");
6074 // Create all the new phi nodes of the new type, and bitcast any loads to the
6076 ValueToValueMap ValMap
;
6077 ValMap
[UndefValue::get(PhiTy
)] = UndefValue::get(ConvertTy
);
6078 for (Instruction
*D
: Defs
) {
6079 if (isa
<BitCastInst
>(D
)) {
6080 ValMap
[D
] = D
->getOperand(0);
6081 DeletedInstrs
.insert(D
);
6084 new BitCastInst(D
, ConvertTy
, D
->getName() + ".bc", D
->getNextNode());
6087 for (PHINode
*Phi
: PhiNodes
)
6088 ValMap
[Phi
] = PHINode::Create(ConvertTy
, Phi
->getNumIncomingValues(),
6089 Phi
->getName() + ".tc", Phi
);
6090 // Pipe together all the PhiNodes.
6091 for (PHINode
*Phi
: PhiNodes
) {
6092 PHINode
*NewPhi
= cast
<PHINode
>(ValMap
[Phi
]);
6093 for (int i
= 0, e
= Phi
->getNumIncomingValues(); i
< e
; i
++)
6094 NewPhi
->addIncoming(ValMap
[Phi
->getIncomingValue(i
)],
6095 Phi
->getIncomingBlock(i
));
6096 Visited
.insert(NewPhi
);
6098 // And finally pipe up the stores and bitcasts
6099 for (Instruction
*U
: Uses
) {
6100 if (isa
<BitCastInst
>(U
)) {
6101 DeletedInstrs
.insert(U
);
6102 U
->replaceAllUsesWith(ValMap
[U
->getOperand(0)]);
6105 new BitCastInst(ValMap
[U
->getOperand(0)], PhiTy
, "bc", U
));
6109 // Save the removed phis to be deleted later.
6110 for (PHINode
*Phi
: PhiNodes
)
6111 DeletedInstrs
.insert(Phi
);
6115 bool CodeGenPrepare::optimizePhiTypes(Function
&F
) {
6116 if (!OptimizePhiTypes
)
6119 bool Changed
= false;
6120 SmallPtrSet
<PHINode
*, 4> Visited
;
6121 SmallPtrSet
<Instruction
*, 4> DeletedInstrs
;
6123 // Attempt to optimize all the phis in the functions to the correct type.
6125 for (auto &Phi
: BB
.phis())
6126 Changed
|= optimizePhiType(&Phi
, Visited
, DeletedInstrs
);
6128 // Remove any old phi's that have been converted.
6129 for (auto *I
: DeletedInstrs
) {
6130 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
6131 I
->eraseFromParent();
6137 /// Return true, if an ext(load) can be formed from an extension in
6139 bool CodeGenPrepare::canFormExtLd(
6140 const SmallVectorImpl
<Instruction
*> &MovedExts
, LoadInst
*&LI
,
6141 Instruction
*&Inst
, bool HasPromoted
) {
6142 for (auto *MovedExtInst
: MovedExts
) {
6143 if (isa
<LoadInst
>(MovedExtInst
->getOperand(0))) {
6144 LI
= cast
<LoadInst
>(MovedExtInst
->getOperand(0));
6145 Inst
= MovedExtInst
;
6152 // If they're already in the same block, there's nothing to do.
6153 // Make the cheap checks first if we did not promote.
6154 // If we promoted, we need to check if it is indeed profitable.
6155 if (!HasPromoted
&& LI
->getParent() == Inst
->getParent())
6158 return TLI
->isExtLoad(LI
, Inst
, *DL
);
6161 /// Move a zext or sext fed by a load into the same basic block as the load,
6162 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6163 /// extend into the load.
6167 /// %ld = load i32* %addr
6168 /// %add = add nuw i32 %ld, 4
6169 /// %zext = zext i32 %add to i64
6173 /// %ld = load i32* %addr
6174 /// %zext = zext i32 %ld to i64
6175 /// %add = add nuw i64 %zext, 4
6177 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6178 /// allow us to match zext(load i32*) to i64.
6180 /// Also, try to promote the computations used to obtain a sign extended
6181 /// value used into memory accesses.
6184 /// a = add nsw i32 b, 3
6185 /// d = sext i32 a to i64
6186 /// e = getelementptr ..., i64 d
6190 /// f = sext i32 b to i64
6191 /// a = add nsw i64 f, 3
6192 /// e = getelementptr ..., i64 a
6195 /// \p Inst[in/out] the extension may be modified during the process if some
6196 /// promotions apply.
6197 bool CodeGenPrepare::optimizeExt(Instruction
*&Inst
) {
6198 bool AllowPromotionWithoutCommonHeader
= false;
6199 /// See if it is an interesting sext operations for the address type
6200 /// promotion before trying to promote it, e.g., the ones with the right
6201 /// type and used in memory accesses.
6202 bool ATPConsiderable
= TTI
->shouldConsiderAddressTypePromotion(
6203 *Inst
, AllowPromotionWithoutCommonHeader
);
6204 TypePromotionTransaction
TPT(RemovedInsts
);
6205 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
6206 TPT
.getRestorationPoint();
6207 SmallVector
<Instruction
*, 1> Exts
;
6208 SmallVector
<Instruction
*, 2> SpeculativelyMovedExts
;
6209 Exts
.push_back(Inst
);
6211 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, SpeculativelyMovedExts
);
6213 // Look for a load being extended.
6214 LoadInst
*LI
= nullptr;
6215 Instruction
*ExtFedByLoad
;
6217 // Try to promote a chain of computation if it allows to form an extended
6219 if (canFormExtLd(SpeculativelyMovedExts
, LI
, ExtFedByLoad
, HasPromoted
)) {
6220 assert(LI
&& ExtFedByLoad
&& "Expect a valid load and extension");
6222 // Move the extend into the same block as the load.
6223 ExtFedByLoad
->moveAfter(LI
);
6225 Inst
= ExtFedByLoad
;
6229 // Continue promoting SExts if known as considerable depending on targets.
6230 if (ATPConsiderable
&&
6231 performAddressTypePromotion(Inst
, AllowPromotionWithoutCommonHeader
,
6232 HasPromoted
, TPT
, SpeculativelyMovedExts
))
6235 TPT
.rollback(LastKnownGood
);
6239 // Perform address type promotion if doing so is profitable.
6240 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6241 // instructions that sign extended the same initial value. However, if
6242 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6243 // extension is just profitable.
6244 bool CodeGenPrepare::performAddressTypePromotion(
6245 Instruction
*&Inst
, bool AllowPromotionWithoutCommonHeader
,
6246 bool HasPromoted
, TypePromotionTransaction
&TPT
,
6247 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
) {
6248 bool Promoted
= false;
6249 SmallPtrSet
<Instruction
*, 1> UnhandledExts
;
6250 bool AllSeenFirst
= true;
6251 for (auto *I
: SpeculativelyMovedExts
) {
6252 Value
*HeadOfChain
= I
->getOperand(0);
6253 DenseMap
<Value
*, Instruction
*>::iterator AlreadySeen
=
6254 SeenChainsForSExt
.find(HeadOfChain
);
6255 // If there is an unhandled SExt which has the same header, try to promote
6257 if (AlreadySeen
!= SeenChainsForSExt
.end()) {
6258 if (AlreadySeen
->second
!= nullptr)
6259 UnhandledExts
.insert(AlreadySeen
->second
);
6260 AllSeenFirst
= false;
6264 if (!AllSeenFirst
|| (AllowPromotionWithoutCommonHeader
&&
6265 SpeculativelyMovedExts
.size() == 1)) {
6269 for (auto *I
: SpeculativelyMovedExts
) {
6270 Value
*HeadOfChain
= I
->getOperand(0);
6271 SeenChainsForSExt
[HeadOfChain
] = nullptr;
6272 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
6274 // Update Inst as promotion happen.
6275 Inst
= SpeculativelyMovedExts
.pop_back_val();
6277 // This is the first chain visited from the header, keep the current chain
6278 // as unhandled. Defer to promote this until we encounter another SExt
6279 // chain derived from the same header.
6280 for (auto *I
: SpeculativelyMovedExts
) {
6281 Value
*HeadOfChain
= I
->getOperand(0);
6282 SeenChainsForSExt
[HeadOfChain
] = Inst
;
6287 if (!AllSeenFirst
&& !UnhandledExts
.empty())
6288 for (auto *VisitedSExt
: UnhandledExts
) {
6289 if (RemovedInsts
.count(VisitedSExt
))
6291 TypePromotionTransaction
TPT(RemovedInsts
);
6292 SmallVector
<Instruction
*, 1> Exts
;
6293 SmallVector
<Instruction
*, 2> Chains
;
6294 Exts
.push_back(VisitedSExt
);
6295 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, Chains
);
6299 for (auto *I
: Chains
) {
6300 Value
*HeadOfChain
= I
->getOperand(0);
6301 // Mark this as handled.
6302 SeenChainsForSExt
[HeadOfChain
] = nullptr;
6303 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
6309 bool CodeGenPrepare::optimizeExtUses(Instruction
*I
) {
6310 BasicBlock
*DefBB
= I
->getParent();
6312 // If the result of a {s|z}ext and its source are both live out, rewrite all
6313 // other uses of the source with result of extension.
6314 Value
*Src
= I
->getOperand(0);
6315 if (Src
->hasOneUse())
6318 // Only do this xform if truncating is free.
6319 if (!TLI
->isTruncateFree(I
->getType(), Src
->getType()))
6322 // Only safe to perform the optimization if the source is also defined in
6324 if (!isa
<Instruction
>(Src
) || DefBB
!= cast
<Instruction
>(Src
)->getParent())
6327 bool DefIsLiveOut
= false;
6328 for (User
*U
: I
->users()) {
6329 Instruction
*UI
= cast
<Instruction
>(U
);
6331 // Figure out which BB this ext is used in.
6332 BasicBlock
*UserBB
= UI
->getParent();
6333 if (UserBB
== DefBB
) continue;
6334 DefIsLiveOut
= true;
6340 // Make sure none of the uses are PHI nodes.
6341 for (User
*U
: Src
->users()) {
6342 Instruction
*UI
= cast
<Instruction
>(U
);
6343 BasicBlock
*UserBB
= UI
->getParent();
6344 if (UserBB
== DefBB
) continue;
6345 // Be conservative. We don't want this xform to end up introducing
6346 // reloads just before load / store instructions.
6347 if (isa
<PHINode
>(UI
) || isa
<LoadInst
>(UI
) || isa
<StoreInst
>(UI
))
6351 // InsertedTruncs - Only insert one trunc in each block once.
6352 DenseMap
<BasicBlock
*, Instruction
*> InsertedTruncs
;
6354 bool MadeChange
= false;
6355 for (Use
&U
: Src
->uses()) {
6356 Instruction
*User
= cast
<Instruction
>(U
.getUser());
6358 // Figure out which BB this ext is used in.
6359 BasicBlock
*UserBB
= User
->getParent();
6360 if (UserBB
== DefBB
) continue;
6362 // Both src and def are live in this block. Rewrite the use.
6363 Instruction
*&InsertedTrunc
= InsertedTruncs
[UserBB
];
6365 if (!InsertedTrunc
) {
6366 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
6367 assert(InsertPt
!= UserBB
->end());
6368 InsertedTrunc
= new TruncInst(I
, Src
->getType(), "", &*InsertPt
);
6369 InsertedInsts
.insert(InsertedTrunc
);
6372 // Replace a use of the {s|z}ext source with a use of the result.
6381 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
6382 // just after the load if the target can fold this into one extload instruction,
6383 // with the hope of eliminating some of the other later "and" instructions using
6384 // the loaded value. "and"s that are made trivially redundant by the insertion
6385 // of the new "and" are removed by this function, while others (e.g. those whose
6386 // path from the load goes through a phi) are left for isel to potentially
6419 // becomes (after a call to optimizeLoadExt for each load):
6423 // x1' = and x1, 0xff
6427 // x2' = and x2, 0xff
6432 bool CodeGenPrepare::optimizeLoadExt(LoadInst
*Load
) {
6433 if (!Load
->isSimple() || !Load
->getType()->isIntOrPtrTy())
6436 // Skip loads we've already transformed.
6437 if (Load
->hasOneUse() &&
6438 InsertedInsts
.count(cast
<Instruction
>(*Load
->user_begin())))
6441 // Look at all uses of Load, looking through phis, to determine how many bits
6442 // of the loaded value are needed.
6443 SmallVector
<Instruction
*, 8> WorkList
;
6444 SmallPtrSet
<Instruction
*, 16> Visited
;
6445 SmallVector
<Instruction
*, 8> AndsToMaybeRemove
;
6446 for (auto *U
: Load
->users())
6447 WorkList
.push_back(cast
<Instruction
>(U
));
6449 EVT LoadResultVT
= TLI
->getValueType(*DL
, Load
->getType());
6450 unsigned BitWidth
= LoadResultVT
.getSizeInBits();
6451 // If the BitWidth is 0, do not try to optimize the type
6455 APInt
DemandBits(BitWidth
, 0);
6456 APInt
WidestAndBits(BitWidth
, 0);
6458 while (!WorkList
.empty()) {
6459 Instruction
*I
= WorkList
.pop_back_val();
6461 // Break use-def graph loops.
6462 if (!Visited
.insert(I
).second
)
6465 // For a PHI node, push all of its users.
6466 if (auto *Phi
= dyn_cast
<PHINode
>(I
)) {
6467 for (auto *U
: Phi
->users())
6468 WorkList
.push_back(cast
<Instruction
>(U
));
6472 switch (I
->getOpcode()) {
6473 case Instruction::And
: {
6474 auto *AndC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
6477 APInt AndBits
= AndC
->getValue();
6478 DemandBits
|= AndBits
;
6479 // Keep track of the widest and mask we see.
6480 if (AndBits
.ugt(WidestAndBits
))
6481 WidestAndBits
= AndBits
;
6482 if (AndBits
== WidestAndBits
&& I
->getOperand(0) == Load
)
6483 AndsToMaybeRemove
.push_back(I
);
6487 case Instruction::Shl
: {
6488 auto *ShlC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
6491 uint64_t ShiftAmt
= ShlC
->getLimitedValue(BitWidth
- 1);
6492 DemandBits
.setLowBits(BitWidth
- ShiftAmt
);
6496 case Instruction::Trunc
: {
6497 EVT TruncVT
= TLI
->getValueType(*DL
, I
->getType());
6498 unsigned TruncBitWidth
= TruncVT
.getSizeInBits();
6499 DemandBits
.setLowBits(TruncBitWidth
);
6508 uint32_t ActiveBits
= DemandBits
.getActiveBits();
6509 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6510 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
6511 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6512 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6513 // followed by an AND.
6514 // TODO: Look into removing this restriction by fixing backends to either
6515 // return false for isLoadExtLegal for i1 or have them select this pattern to
6516 // a single instruction.
6518 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6519 // mask, since these are the only ands that will be removed by isel.
6520 if (ActiveBits
<= 1 || !DemandBits
.isMask(ActiveBits
) ||
6521 WidestAndBits
!= DemandBits
)
6524 LLVMContext
&Ctx
= Load
->getType()->getContext();
6525 Type
*TruncTy
= Type::getIntNTy(Ctx
, ActiveBits
);
6526 EVT TruncVT
= TLI
->getValueType(*DL
, TruncTy
);
6528 // Reject cases that won't be matched as extloads.
6529 if (!LoadResultVT
.bitsGT(TruncVT
) || !TruncVT
.isRound() ||
6530 !TLI
->isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultVT
, TruncVT
))
6533 IRBuilder
<> Builder(Load
->getNextNode());
6534 auto *NewAnd
= cast
<Instruction
>(
6535 Builder
.CreateAnd(Load
, ConstantInt::get(Ctx
, DemandBits
)));
6536 // Mark this instruction as "inserted by CGP", so that other
6537 // optimizations don't touch it.
6538 InsertedInsts
.insert(NewAnd
);
6540 // Replace all uses of load with new and (except for the use of load in the
6542 Load
->replaceAllUsesWith(NewAnd
);
6543 NewAnd
->setOperand(0, Load
);
6545 // Remove any and instructions that are now redundant.
6546 for (auto *And
: AndsToMaybeRemove
)
6547 // Check that the and mask is the same as the one we decided to put on the
6549 if (cast
<ConstantInt
>(And
->getOperand(1))->getValue() == DemandBits
) {
6550 And
->replaceAllUsesWith(NewAnd
);
6551 if (&*CurInstIterator
== And
)
6552 CurInstIterator
= std::next(And
->getIterator());
6553 And
->eraseFromParent();
6561 /// Check if V (an operand of a select instruction) is an expensive instruction
6562 /// that is only used once.
6563 static bool sinkSelectOperand(const TargetTransformInfo
*TTI
, Value
*V
) {
6564 auto *I
= dyn_cast
<Instruction
>(V
);
6565 // If it's safe to speculatively execute, then it should not have side
6566 // effects; therefore, it's safe to sink and possibly *not* execute.
6567 return I
&& I
->hasOneUse() && isSafeToSpeculativelyExecute(I
) &&
6568 TTI
->getUserCost(I
, TargetTransformInfo::TCK_SizeAndLatency
) >=
6569 TargetTransformInfo::TCC_Expensive
;
6572 /// Returns true if a SelectInst should be turned into an explicit branch.
6573 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo
*TTI
,
6574 const TargetLowering
*TLI
,
6576 // If even a predictable select is cheap, then a branch can't be cheaper.
6577 if (!TLI
->isPredictableSelectExpensive())
6580 // FIXME: This should use the same heuristics as IfConversion to determine
6581 // whether a select is better represented as a branch.
6583 // If metadata tells us that the select condition is obviously predictable,
6584 // then we want to replace the select with a branch.
6585 uint64_t TrueWeight
, FalseWeight
;
6586 if (SI
->extractProfMetadata(TrueWeight
, FalseWeight
)) {
6587 uint64_t Max
= std::max(TrueWeight
, FalseWeight
);
6588 uint64_t Sum
= TrueWeight
+ FalseWeight
;
6590 auto Probability
= BranchProbability::getBranchProbability(Max
, Sum
);
6591 if (Probability
> TTI
->getPredictableBranchThreshold())
6596 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(SI
->getCondition());
6598 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6599 // comparison condition. If the compare has more than one use, there's
6600 // probably another cmov or setcc around, so it's not worth emitting a branch.
6601 if (!Cmp
|| !Cmp
->hasOneUse())
6604 // If either operand of the select is expensive and only needed on one side
6605 // of the select, we should form a branch.
6606 if (sinkSelectOperand(TTI
, SI
->getTrueValue()) ||
6607 sinkSelectOperand(TTI
, SI
->getFalseValue()))
6613 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6614 /// false value of \p SI. If the true/false value of \p SI is defined by any
6615 /// select instructions in \p Selects, look through the defining select
6616 /// instruction until the true/false value is not defined in \p Selects.
6617 static Value
*getTrueOrFalseValue(
6618 SelectInst
*SI
, bool isTrue
,
6619 const SmallPtrSet
<const Instruction
*, 2> &Selects
) {
6622 for (SelectInst
*DefSI
= SI
; DefSI
!= nullptr && Selects
.count(DefSI
);
6623 DefSI
= dyn_cast
<SelectInst
>(V
)) {
6624 assert(DefSI
->getCondition() == SI
->getCondition() &&
6625 "The condition of DefSI does not match with SI");
6626 V
= (isTrue
? DefSI
->getTrueValue() : DefSI
->getFalseValue());
6629 assert(V
&& "Failed to get select true/false value");
6633 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator
*Shift
) {
6634 assert(Shift
->isShift() && "Expected a shift");
6636 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6637 // general vector shifts, and (3) the shift amount is a select-of-splatted
6638 // values, hoist the shifts before the select:
6639 // shift Op0, (select Cond, TVal, FVal) -->
6640 // select Cond, (shift Op0, TVal), (shift Op0, FVal)
6642 // This is inverting a generic IR transform when we know that the cost of a
6643 // general vector shift is more than the cost of 2 shift-by-scalars.
6644 // We can't do this effectively in SDAG because we may not be able to
6645 // determine if the select operands are splats from within a basic block.
6646 Type
*Ty
= Shift
->getType();
6647 if (!Ty
->isVectorTy() || !TLI
->isVectorShiftByScalarCheap(Ty
))
6649 Value
*Cond
, *TVal
, *FVal
;
6650 if (!match(Shift
->getOperand(1),
6651 m_OneUse(m_Select(m_Value(Cond
), m_Value(TVal
), m_Value(FVal
)))))
6653 if (!isSplatValue(TVal
) || !isSplatValue(FVal
))
6656 IRBuilder
<> Builder(Shift
);
6657 BinaryOperator::BinaryOps Opcode
= Shift
->getOpcode();
6658 Value
*NewTVal
= Builder
.CreateBinOp(Opcode
, Shift
->getOperand(0), TVal
);
6659 Value
*NewFVal
= Builder
.CreateBinOp(Opcode
, Shift
->getOperand(0), FVal
);
6660 Value
*NewSel
= Builder
.CreateSelect(Cond
, NewTVal
, NewFVal
);
6661 Shift
->replaceAllUsesWith(NewSel
);
6662 Shift
->eraseFromParent();
6666 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst
*Fsh
) {
6667 Intrinsic::ID Opcode
= Fsh
->getIntrinsicID();
6668 assert((Opcode
== Intrinsic::fshl
|| Opcode
== Intrinsic::fshr
) &&
6669 "Expected a funnel shift");
6671 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6672 // than general vector shifts, and (3) the shift amount is select-of-splatted
6673 // values, hoist the funnel shifts before the select:
6674 // fsh Op0, Op1, (select Cond, TVal, FVal) -->
6675 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6677 // This is inverting a generic IR transform when we know that the cost of a
6678 // general vector shift is more than the cost of 2 shift-by-scalars.
6679 // We can't do this effectively in SDAG because we may not be able to
6680 // determine if the select operands are splats from within a basic block.
6681 Type
*Ty
= Fsh
->getType();
6682 if (!Ty
->isVectorTy() || !TLI
->isVectorShiftByScalarCheap(Ty
))
6684 Value
*Cond
, *TVal
, *FVal
;
6685 if (!match(Fsh
->getOperand(2),
6686 m_OneUse(m_Select(m_Value(Cond
), m_Value(TVal
), m_Value(FVal
)))))
6688 if (!isSplatValue(TVal
) || !isSplatValue(FVal
))
6691 IRBuilder
<> Builder(Fsh
);
6692 Value
*X
= Fsh
->getOperand(0), *Y
= Fsh
->getOperand(1);
6693 Value
*NewTVal
= Builder
.CreateIntrinsic(Opcode
, Ty
, { X
, Y
, TVal
});
6694 Value
*NewFVal
= Builder
.CreateIntrinsic(Opcode
, Ty
, { X
, Y
, FVal
});
6695 Value
*NewSel
= Builder
.CreateSelect(Cond
, NewTVal
, NewFVal
);
6696 Fsh
->replaceAllUsesWith(NewSel
);
6697 Fsh
->eraseFromParent();
6701 /// If we have a SelectInst that will likely profit from branch prediction,
6702 /// turn it into a branch.
6703 bool CodeGenPrepare::optimizeSelectInst(SelectInst
*SI
) {
6704 if (DisableSelectToBranch
)
6707 // Find all consecutive select instructions that share the same condition.
6708 SmallVector
<SelectInst
*, 2> ASI
;
6710 for (BasicBlock::iterator It
= ++BasicBlock::iterator(SI
);
6711 It
!= SI
->getParent()->end(); ++It
) {
6712 SelectInst
*I
= dyn_cast
<SelectInst
>(&*It
);
6713 if (I
&& SI
->getCondition() == I
->getCondition()) {
6720 SelectInst
*LastSI
= ASI
.back();
6721 // Increment the current iterator to skip all the rest of select instructions
6722 // because they will be either "not lowered" or "all lowered" to branch.
6723 CurInstIterator
= std::next(LastSI
->getIterator());
6725 bool VectorCond
= !SI
->getCondition()->getType()->isIntegerTy(1);
6727 // Can we convert the 'select' to CF ?
6728 if (VectorCond
|| SI
->getMetadata(LLVMContext::MD_unpredictable
))
6731 TargetLowering::SelectSupportKind SelectKind
;
6733 SelectKind
= TargetLowering::VectorMaskSelect
;
6734 else if (SI
->getType()->isVectorTy())
6735 SelectKind
= TargetLowering::ScalarCondVectorVal
;
6737 SelectKind
= TargetLowering::ScalarValSelect
;
6739 if (TLI
->isSelectSupported(SelectKind
) &&
6740 (!isFormingBranchFromSelectProfitable(TTI
, TLI
, SI
) || OptSize
||
6741 llvm::shouldOptimizeForSize(SI
->getParent(), PSI
, BFI
.get())))
6744 // The DominatorTree needs to be rebuilt by any consumers after this
6745 // transformation. We simply reset here rather than setting the ModifiedDT
6746 // flag to avoid restarting the function walk in runOnFunction for each
6747 // select optimized.
6750 // Transform a sequence like this:
6752 // %cmp = cmp uge i32 %a, %b
6753 // %sel = select i1 %cmp, i32 %c, i32 %d
6757 // %cmp = cmp uge i32 %a, %b
6758 // %cmp.frozen = freeze %cmp
6759 // br i1 %cmp.frozen, label %select.true, label %select.false
6761 // br label %select.end
6763 // br label %select.end
6765 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6767 // %cmp should be frozen, otherwise it may introduce undefined behavior.
6768 // In addition, we may sink instructions that produce %c or %d from
6769 // the entry block into the destination(s) of the new branch.
6770 // If the true or false blocks do not contain a sunken instruction, that
6771 // block and its branch may be optimized away. In that case, one side of the
6772 // first branch will point directly to select.end, and the corresponding PHI
6773 // predecessor block will be the start block.
6775 // First, we split the block containing the select into 2 blocks.
6776 BasicBlock
*StartBlock
= SI
->getParent();
6777 BasicBlock::iterator SplitPt
= ++(BasicBlock::iterator(LastSI
));
6778 BasicBlock
*EndBlock
= StartBlock
->splitBasicBlock(SplitPt
, "select.end");
6779 BFI
->setBlockFreq(EndBlock
, BFI
->getBlockFreq(StartBlock
).getFrequency());
6781 // Delete the unconditional branch that was just created by the split.
6782 StartBlock
->getTerminator()->eraseFromParent();
6784 // These are the new basic blocks for the conditional branch.
6785 // At least one will become an actual new basic block.
6786 BasicBlock
*TrueBlock
= nullptr;
6787 BasicBlock
*FalseBlock
= nullptr;
6788 BranchInst
*TrueBranch
= nullptr;
6789 BranchInst
*FalseBranch
= nullptr;
6791 // Sink expensive instructions into the conditional blocks to avoid executing
6792 // them speculatively.
6793 for (SelectInst
*SI
: ASI
) {
6794 if (sinkSelectOperand(TTI
, SI
->getTrueValue())) {
6795 if (TrueBlock
== nullptr) {
6796 TrueBlock
= BasicBlock::Create(SI
->getContext(), "select.true.sink",
6797 EndBlock
->getParent(), EndBlock
);
6798 TrueBranch
= BranchInst::Create(EndBlock
, TrueBlock
);
6799 TrueBranch
->setDebugLoc(SI
->getDebugLoc());
6801 auto *TrueInst
= cast
<Instruction
>(SI
->getTrueValue());
6802 TrueInst
->moveBefore(TrueBranch
);
6804 if (sinkSelectOperand(TTI
, SI
->getFalseValue())) {
6805 if (FalseBlock
== nullptr) {
6806 FalseBlock
= BasicBlock::Create(SI
->getContext(), "select.false.sink",
6807 EndBlock
->getParent(), EndBlock
);
6808 FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
6809 FalseBranch
->setDebugLoc(SI
->getDebugLoc());
6811 auto *FalseInst
= cast
<Instruction
>(SI
->getFalseValue());
6812 FalseInst
->moveBefore(FalseBranch
);
6816 // If there was nothing to sink, then arbitrarily choose the 'false' side
6817 // for a new input value to the PHI.
6818 if (TrueBlock
== FalseBlock
) {
6819 assert(TrueBlock
== nullptr &&
6820 "Unexpected basic block transform while optimizing select");
6822 FalseBlock
= BasicBlock::Create(SI
->getContext(), "select.false",
6823 EndBlock
->getParent(), EndBlock
);
6824 auto *FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
6825 FalseBranch
->setDebugLoc(SI
->getDebugLoc());
6828 // Insert the real conditional branch based on the original condition.
6829 // If we did not create a new block for one of the 'true' or 'false' paths
6830 // of the condition, it means that side of the branch goes to the end block
6831 // directly and the path originates from the start block from the point of
6832 // view of the new PHI.
6833 BasicBlock
*TT
, *FT
;
6834 if (TrueBlock
== nullptr) {
6837 TrueBlock
= StartBlock
;
6838 } else if (FalseBlock
== nullptr) {
6841 FalseBlock
= StartBlock
;
6847 auto *CondFr
= IB
.CreateFreeze(SI
->getCondition(), SI
->getName() + ".frozen");
6848 IB
.CreateCondBr(CondFr
, TT
, FT
, SI
);
6850 SmallPtrSet
<const Instruction
*, 2> INS
;
6851 INS
.insert(ASI
.begin(), ASI
.end());
6852 // Use reverse iterator because later select may use the value of the
6853 // earlier select, and we need to propagate value through earlier select
6854 // to get the PHI operand.
6855 for (SelectInst
*SI
: llvm::reverse(ASI
)) {
6856 // The select itself is replaced with a PHI Node.
6857 PHINode
*PN
= PHINode::Create(SI
->getType(), 2, "", &EndBlock
->front());
6859 PN
->addIncoming(getTrueOrFalseValue(SI
, true, INS
), TrueBlock
);
6860 PN
->addIncoming(getTrueOrFalseValue(SI
, false, INS
), FalseBlock
);
6861 PN
->setDebugLoc(SI
->getDebugLoc());
6863 SI
->replaceAllUsesWith(PN
);
6864 SI
->eraseFromParent();
6866 ++NumSelectsExpanded
;
6869 // Instruct OptimizeBlock to skip to the next block.
6870 CurInstIterator
= StartBlock
->end();
6874 /// Some targets only accept certain types for splat inputs. For example a VDUP
6875 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
6876 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
6877 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
) {
6878 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
6879 if (!match(SVI
, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
6880 m_Undef(), m_ZeroMask())))
6882 Type
*NewType
= TLI
->shouldConvertSplatType(SVI
);
6886 auto *SVIVecType
= cast
<FixedVectorType
>(SVI
->getType());
6887 assert(!NewType
->isVectorTy() && "Expected a scalar type!");
6888 assert(NewType
->getScalarSizeInBits() == SVIVecType
->getScalarSizeInBits() &&
6889 "Expected a type of the same size!");
6891 FixedVectorType::get(NewType
, SVIVecType
->getNumElements());
6893 // Create a bitcast (shuffle (insert (bitcast(..))))
6894 IRBuilder
<> Builder(SVI
->getContext());
6895 Builder
.SetInsertPoint(SVI
);
6896 Value
*BC1
= Builder
.CreateBitCast(
6897 cast
<Instruction
>(SVI
->getOperand(0))->getOperand(1), NewType
);
6898 Value
*Shuffle
= Builder
.CreateVectorSplat(NewVecType
->getNumElements(), BC1
);
6899 Value
*BC2
= Builder
.CreateBitCast(Shuffle
, SVIVecType
);
6901 SVI
->replaceAllUsesWith(BC2
);
6902 RecursivelyDeleteTriviallyDeadInstructions(
6903 SVI
, TLInfo
, nullptr, [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
6905 // Also hoist the bitcast up to its operand if it they are not in the same
6907 if (auto *BCI
= dyn_cast
<Instruction
>(BC1
))
6908 if (auto *Op
= dyn_cast
<Instruction
>(BCI
->getOperand(0)))
6909 if (BCI
->getParent() != Op
->getParent() && !isa
<PHINode
>(Op
) &&
6910 !Op
->isTerminator() && !Op
->isEHPad())
6916 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction
*I
) {
6917 // If the operands of I can be folded into a target instruction together with
6918 // I, duplicate and sink them.
6919 SmallVector
<Use
*, 4> OpsToSink
;
6920 if (!TLI
->shouldSinkOperands(I
, OpsToSink
))
6923 // OpsToSink can contain multiple uses in a use chain (e.g.
6924 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6925 // uses must come first, so we process the ops in reverse order so as to not
6926 // create invalid IR.
6927 BasicBlock
*TargetBB
= I
->getParent();
6928 bool Changed
= false;
6929 SmallVector
<Use
*, 4> ToReplace
;
6930 Instruction
*InsertPoint
= I
;
6931 DenseMap
<const Instruction
*, unsigned long> InstOrdering
;
6932 unsigned long InstNumber
= 0;
6933 for (const auto &I
: *TargetBB
)
6934 InstOrdering
[&I
] = InstNumber
++;
6936 for (Use
*U
: reverse(OpsToSink
)) {
6937 auto *UI
= cast
<Instruction
>(U
->get());
6938 if (isa
<PHINode
>(UI
))
6940 if (UI
->getParent() == TargetBB
) {
6941 if (InstOrdering
[UI
] < InstOrdering
[InsertPoint
])
6945 ToReplace
.push_back(U
);
6948 SetVector
<Instruction
*> MaybeDead
;
6949 DenseMap
<Instruction
*, Instruction
*> NewInstructions
;
6950 for (Use
*U
: ToReplace
) {
6951 auto *UI
= cast
<Instruction
>(U
->get());
6952 Instruction
*NI
= UI
->clone();
6953 NewInstructions
[UI
] = NI
;
6954 MaybeDead
.insert(UI
);
6955 LLVM_DEBUG(dbgs() << "Sinking " << *UI
<< " to user " << *I
<< "\n");
6956 NI
->insertBefore(InsertPoint
);
6958 InsertedInsts
.insert(NI
);
6960 // Update the use for the new instruction, making sure that we update the
6961 // sunk instruction uses, if it is part of a chain that has already been
6963 Instruction
*OldI
= cast
<Instruction
>(U
->getUser());
6964 if (NewInstructions
.count(OldI
))
6965 NewInstructions
[OldI
]->setOperand(U
->getOperandNo(), NI
);
6971 // Remove instructions that are dead after sinking.
6972 for (auto *I
: MaybeDead
) {
6973 if (!I
->hasNUsesOrMore(1)) {
6974 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I
<< "\n");
6975 I
->eraseFromParent();
6982 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst
*SI
) {
6983 Value
*Cond
= SI
->getCondition();
6984 Type
*OldType
= Cond
->getType();
6985 LLVMContext
&Context
= Cond
->getContext();
6986 EVT OldVT
= TLI
->getValueType(*DL
, OldType
);
6987 MVT RegType
= TLI
->getRegisterType(Context
, OldVT
);
6988 unsigned RegWidth
= RegType
.getSizeInBits();
6990 if (RegWidth
<= cast
<IntegerType
>(OldType
)->getBitWidth())
6993 // If the register width is greater than the type width, expand the condition
6994 // of the switch instruction and each case constant to the width of the
6995 // register. By widening the type of the switch condition, subsequent
6996 // comparisons (for case comparisons) will not need to be extended to the
6997 // preferred register width, so we will potentially eliminate N-1 extends,
6998 // where N is the number of cases in the switch.
6999 auto *NewType
= Type::getIntNTy(Context
, RegWidth
);
7001 // Extend the switch condition and case constants using the target preferred
7002 // extend unless the switch condition is a function argument with an extend
7003 // attribute. In that case, we can avoid an unnecessary mask/extension by
7004 // matching the argument extension instead.
7005 Instruction::CastOps ExtType
= Instruction::ZExt
;
7006 // Some targets prefer SExt over ZExt.
7007 if (TLI
->isSExtCheaperThanZExt(OldVT
, RegType
))
7008 ExtType
= Instruction::SExt
;
7010 if (auto *Arg
= dyn_cast
<Argument
>(Cond
)) {
7011 if (Arg
->hasSExtAttr())
7012 ExtType
= Instruction::SExt
;
7013 if (Arg
->hasZExtAttr())
7014 ExtType
= Instruction::ZExt
;
7017 auto *ExtInst
= CastInst::Create(ExtType
, Cond
, NewType
);
7018 ExtInst
->insertBefore(SI
);
7019 ExtInst
->setDebugLoc(SI
->getDebugLoc());
7020 SI
->setCondition(ExtInst
);
7021 for (auto Case
: SI
->cases()) {
7022 APInt NarrowConst
= Case
.getCaseValue()->getValue();
7023 APInt WideConst
= (ExtType
== Instruction::ZExt
) ?
7024 NarrowConst
.zext(RegWidth
) : NarrowConst
.sext(RegWidth
);
7025 Case
.setValue(ConstantInt::get(Context
, WideConst
));
7034 /// Helper class to promote a scalar operation to a vector one.
7035 /// This class is used to move downward extractelement transition.
7037 /// a = vector_op <2 x i32>
7038 /// b = extractelement <2 x i32> a, i32 0
7043 /// a = vector_op <2 x i32>
7044 /// c = vector_op a (equivalent to scalar_op on the related lane)
7045 /// * d = extractelement <2 x i32> c, i32 0
7047 /// Assuming both extractelement and store can be combine, we get rid of the
7049 class VectorPromoteHelper
{
7050 /// DataLayout associated with the current module.
7051 const DataLayout
&DL
;
7053 /// Used to perform some checks on the legality of vector operations.
7054 const TargetLowering
&TLI
;
7056 /// Used to estimated the cost of the promoted chain.
7057 const TargetTransformInfo
&TTI
;
7059 /// The transition being moved downwards.
7060 Instruction
*Transition
;
7062 /// The sequence of instructions to be promoted.
7063 SmallVector
<Instruction
*, 4> InstsToBePromoted
;
7065 /// Cost of combining a store and an extract.
7066 unsigned StoreExtractCombineCost
;
7068 /// Instruction that will be combined with the transition.
7069 Instruction
*CombineInst
= nullptr;
7071 /// The instruction that represents the current end of the transition.
7072 /// Since we are faking the promotion until we reach the end of the chain
7073 /// of computation, we need a way to get the current end of the transition.
7074 Instruction
*getEndOfTransition() const {
7075 if (InstsToBePromoted
.empty())
7077 return InstsToBePromoted
.back();
7080 /// Return the index of the original value in the transition.
7081 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7082 /// c, is at index 0.
7083 unsigned getTransitionOriginalValueIdx() const {
7084 assert(isa
<ExtractElementInst
>(Transition
) &&
7085 "Other kind of transitions are not supported yet");
7089 /// Return the index of the index in the transition.
7090 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7092 unsigned getTransitionIdx() const {
7093 assert(isa
<ExtractElementInst
>(Transition
) &&
7094 "Other kind of transitions are not supported yet");
7098 /// Get the type of the transition.
7099 /// This is the type of the original value.
7100 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7101 /// transition is <2 x i32>.
7102 Type
*getTransitionType() const {
7103 return Transition
->getOperand(getTransitionOriginalValueIdx())->getType();
7106 /// Promote \p ToBePromoted by moving \p Def downward through.
7107 /// I.e., we have the following sequence:
7108 /// Def = Transition <ty1> a to <ty2>
7109 /// b = ToBePromoted <ty2> Def, ...
7111 /// b = ToBePromoted <ty1> a, ...
7112 /// Def = Transition <ty1> ToBePromoted to <ty2>
7113 void promoteImpl(Instruction
*ToBePromoted
);
7115 /// Check whether or not it is profitable to promote all the
7116 /// instructions enqueued to be promoted.
7117 bool isProfitableToPromote() {
7118 Value
*ValIdx
= Transition
->getOperand(getTransitionOriginalValueIdx());
7119 unsigned Index
= isa
<ConstantInt
>(ValIdx
)
7120 ? cast
<ConstantInt
>(ValIdx
)->getZExtValue()
7122 Type
*PromotedType
= getTransitionType();
7124 StoreInst
*ST
= cast
<StoreInst
>(CombineInst
);
7125 unsigned AS
= ST
->getPointerAddressSpace();
7126 // Check if this store is supported.
7127 if (!TLI
.allowsMisalignedMemoryAccesses(
7128 TLI
.getValueType(DL
, ST
->getValueOperand()->getType()), AS
,
7130 // If this is not supported, there is no way we can combine
7131 // the extract with the store.
7135 // The scalar chain of computation has to pay for the transition
7136 // scalar to vector.
7137 // The vector chain has to account for the combining cost.
7138 InstructionCost ScalarCost
=
7139 TTI
.getVectorInstrCost(Transition
->getOpcode(), PromotedType
, Index
);
7140 InstructionCost VectorCost
= StoreExtractCombineCost
;
7141 enum TargetTransformInfo::TargetCostKind CostKind
=
7142 TargetTransformInfo::TCK_RecipThroughput
;
7143 for (const auto &Inst
: InstsToBePromoted
) {
7144 // Compute the cost.
7145 // By construction, all instructions being promoted are arithmetic ones.
7146 // Moreover, one argument is a constant that can be viewed as a splat
7148 Value
*Arg0
= Inst
->getOperand(0);
7149 bool IsArg0Constant
= isa
<UndefValue
>(Arg0
) || isa
<ConstantInt
>(Arg0
) ||
7150 isa
<ConstantFP
>(Arg0
);
7151 TargetTransformInfo::OperandValueKind Arg0OVK
=
7152 IsArg0Constant
? TargetTransformInfo::OK_UniformConstantValue
7153 : TargetTransformInfo::OK_AnyValue
;
7154 TargetTransformInfo::OperandValueKind Arg1OVK
=
7155 !IsArg0Constant
? TargetTransformInfo::OK_UniformConstantValue
7156 : TargetTransformInfo::OK_AnyValue
;
7157 ScalarCost
+= TTI
.getArithmeticInstrCost(
7158 Inst
->getOpcode(), Inst
->getType(), CostKind
, Arg0OVK
, Arg1OVK
);
7159 VectorCost
+= TTI
.getArithmeticInstrCost(Inst
->getOpcode(), PromotedType
,
7164 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7165 << ScalarCost
<< "\nVector: " << VectorCost
<< '\n');
7166 return ScalarCost
> VectorCost
;
7169 /// Generate a constant vector with \p Val with the same
7170 /// number of elements as the transition.
7171 /// \p UseSplat defines whether or not \p Val should be replicated
7172 /// across the whole vector.
7173 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7174 /// otherwise we generate a vector with as many undef as possible:
7175 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7176 /// used at the index of the extract.
7177 Value
*getConstantVector(Constant
*Val
, bool UseSplat
) const {
7178 unsigned ExtractIdx
= std::numeric_limits
<unsigned>::max();
7180 // If we cannot determine where the constant must be, we have to
7181 // use a splat constant.
7182 Value
*ValExtractIdx
= Transition
->getOperand(getTransitionIdx());
7183 if (ConstantInt
*CstVal
= dyn_cast
<ConstantInt
>(ValExtractIdx
))
7184 ExtractIdx
= CstVal
->getSExtValue();
7189 ElementCount EC
= cast
<VectorType
>(getTransitionType())->getElementCount();
7191 return ConstantVector::getSplat(EC
, Val
);
7193 if (!EC
.isScalable()) {
7194 SmallVector
<Constant
*, 4> ConstVec
;
7195 UndefValue
*UndefVal
= UndefValue::get(Val
->getType());
7196 for (unsigned Idx
= 0; Idx
!= EC
.getKnownMinValue(); ++Idx
) {
7197 if (Idx
== ExtractIdx
)
7198 ConstVec
.push_back(Val
);
7200 ConstVec
.push_back(UndefVal
);
7202 return ConstantVector::get(ConstVec
);
7205 "Generate scalable vector for non-splat is unimplemented");
7208 /// Check if promoting to a vector type an operand at \p OperandIdx
7209 /// in \p Use can trigger undefined behavior.
7210 static bool canCauseUndefinedBehavior(const Instruction
*Use
,
7211 unsigned OperandIdx
) {
7212 // This is not safe to introduce undef when the operand is on
7213 // the right hand side of a division-like instruction.
7214 if (OperandIdx
!= 1)
7216 switch (Use
->getOpcode()) {
7219 case Instruction::SDiv
:
7220 case Instruction::UDiv
:
7221 case Instruction::SRem
:
7222 case Instruction::URem
:
7224 case Instruction::FDiv
:
7225 case Instruction::FRem
:
7226 return !Use
->hasNoNaNs();
7228 llvm_unreachable(nullptr);
7232 VectorPromoteHelper(const DataLayout
&DL
, const TargetLowering
&TLI
,
7233 const TargetTransformInfo
&TTI
, Instruction
*Transition
,
7234 unsigned CombineCost
)
7235 : DL(DL
), TLI(TLI
), TTI(TTI
), Transition(Transition
),
7236 StoreExtractCombineCost(CombineCost
) {
7237 assert(Transition
&& "Do not know how to promote null");
7240 /// Check if we can promote \p ToBePromoted to \p Type.
7241 bool canPromote(const Instruction
*ToBePromoted
) const {
7242 // We could support CastInst too.
7243 return isa
<BinaryOperator
>(ToBePromoted
);
7246 /// Check if it is profitable to promote \p ToBePromoted
7247 /// by moving downward the transition through.
7248 bool shouldPromote(const Instruction
*ToBePromoted
) const {
7249 // Promote only if all the operands can be statically expanded.
7250 // Indeed, we do not want to introduce any new kind of transitions.
7251 for (const Use
&U
: ToBePromoted
->operands()) {
7252 const Value
*Val
= U
.get();
7253 if (Val
== getEndOfTransition()) {
7254 // If the use is a division and the transition is on the rhs,
7255 // we cannot promote the operation, otherwise we may create a
7256 // division by zero.
7257 if (canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()))
7261 if (!isa
<ConstantInt
>(Val
) && !isa
<UndefValue
>(Val
) &&
7262 !isa
<ConstantFP
>(Val
))
7265 // Check that the resulting operation is legal.
7266 int ISDOpcode
= TLI
.InstructionOpcodeToISD(ToBePromoted
->getOpcode());
7269 return StressStoreExtract
||
7270 TLI
.isOperationLegalOrCustom(
7271 ISDOpcode
, TLI
.getValueType(DL
, getTransitionType(), true));
7274 /// Check whether or not \p Use can be combined
7275 /// with the transition.
7276 /// I.e., is it possible to do Use(Transition) => AnotherUse?
7277 bool canCombine(const Instruction
*Use
) { return isa
<StoreInst
>(Use
); }
7279 /// Record \p ToBePromoted as part of the chain to be promoted.
7280 void enqueueForPromotion(Instruction
*ToBePromoted
) {
7281 InstsToBePromoted
.push_back(ToBePromoted
);
7284 /// Set the instruction that will be combined with the transition.
7285 void recordCombineInstruction(Instruction
*ToBeCombined
) {
7286 assert(canCombine(ToBeCombined
) && "Unsupported instruction to combine");
7287 CombineInst
= ToBeCombined
;
7290 /// Promote all the instructions enqueued for promotion if it is
7292 /// \return True if the promotion happened, false otherwise.
7294 // Check if there is something to promote.
7295 // Right now, if we do not have anything to combine with,
7296 // we assume the promotion is not profitable.
7297 if (InstsToBePromoted
.empty() || !CombineInst
)
7301 if (!StressStoreExtract
&& !isProfitableToPromote())
7305 for (auto &ToBePromoted
: InstsToBePromoted
)
7306 promoteImpl(ToBePromoted
);
7307 InstsToBePromoted
.clear();
7312 } // end anonymous namespace
7314 void VectorPromoteHelper::promoteImpl(Instruction
*ToBePromoted
) {
7315 // At this point, we know that all the operands of ToBePromoted but Def
7316 // can be statically promoted.
7317 // For Def, we need to use its parameter in ToBePromoted:
7318 // b = ToBePromoted ty1 a
7319 // Def = Transition ty1 b to ty2
7320 // Move the transition down.
7321 // 1. Replace all uses of the promoted operation by the transition.
7322 // = ... b => = ... Def.
7323 assert(ToBePromoted
->getType() == Transition
->getType() &&
7324 "The type of the result of the transition does not match "
7326 ToBePromoted
->replaceAllUsesWith(Transition
);
7327 // 2. Update the type of the uses.
7328 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7329 Type
*TransitionTy
= getTransitionType();
7330 ToBePromoted
->mutateType(TransitionTy
);
7331 // 3. Update all the operands of the promoted operation with promoted
7333 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7334 for (Use
&U
: ToBePromoted
->operands()) {
7335 Value
*Val
= U
.get();
7336 Value
*NewVal
= nullptr;
7337 if (Val
== Transition
)
7338 NewVal
= Transition
->getOperand(getTransitionOriginalValueIdx());
7339 else if (isa
<UndefValue
>(Val
) || isa
<ConstantInt
>(Val
) ||
7340 isa
<ConstantFP
>(Val
)) {
7341 // Use a splat constant if it is not safe to use undef.
7342 NewVal
= getConstantVector(
7343 cast
<Constant
>(Val
),
7344 isa
<UndefValue
>(Val
) ||
7345 canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()));
7347 llvm_unreachable("Did you modified shouldPromote and forgot to update "
7349 ToBePromoted
->setOperand(U
.getOperandNo(), NewVal
);
7351 Transition
->moveAfter(ToBePromoted
);
7352 Transition
->setOperand(getTransitionOriginalValueIdx(), ToBePromoted
);
7355 /// Some targets can do store(extractelement) with one instruction.
7356 /// Try to push the extractelement towards the stores when the target
7357 /// has this feature and this is profitable.
7358 bool CodeGenPrepare::optimizeExtractElementInst(Instruction
*Inst
) {
7359 unsigned CombineCost
= std::numeric_limits
<unsigned>::max();
7360 if (DisableStoreExtract
||
7361 (!StressStoreExtract
&&
7362 !TLI
->canCombineStoreAndExtract(Inst
->getOperand(0)->getType(),
7363 Inst
->getOperand(1), CombineCost
)))
7366 // At this point we know that Inst is a vector to scalar transition.
7367 // Try to move it down the def-use chain, until:
7368 // - We can combine the transition with its single use
7369 // => we got rid of the transition.
7370 // - We escape the current basic block
7371 // => we would need to check that we are moving it at a cheaper place and
7372 // we do not do that for now.
7373 BasicBlock
*Parent
= Inst
->getParent();
7374 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst
<< '\n');
7375 VectorPromoteHelper
VPH(*DL
, *TLI
, *TTI
, Inst
, CombineCost
);
7376 // If the transition has more than one use, assume this is not going to be
7378 while (Inst
->hasOneUse()) {
7379 Instruction
*ToBePromoted
= cast
<Instruction
>(*Inst
->user_begin());
7380 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted
<< '\n');
7382 if (ToBePromoted
->getParent() != Parent
) {
7383 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7384 << ToBePromoted
->getParent()->getName()
7385 << ") than the transition (" << Parent
->getName()
7390 if (VPH
.canCombine(ToBePromoted
)) {
7391 LLVM_DEBUG(dbgs() << "Assume " << *Inst
<< '\n'
7392 << "will be combined with: " << *ToBePromoted
<< '\n');
7393 VPH
.recordCombineInstruction(ToBePromoted
);
7394 bool Changed
= VPH
.promote();
7395 NumStoreExtractExposed
+= Changed
;
7399 LLVM_DEBUG(dbgs() << "Try promoting.\n");
7400 if (!VPH
.canPromote(ToBePromoted
) || !VPH
.shouldPromote(ToBePromoted
))
7403 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7405 VPH
.enqueueForPromotion(ToBePromoted
);
7406 Inst
= ToBePromoted
;
7411 /// For the instruction sequence of store below, F and I values
7412 /// are bundled together as an i64 value before being stored into memory.
7413 /// Sometimes it is more efficient to generate separate stores for F and I,
7414 /// which can remove the bitwise instructions or sink them to colder places.
7416 /// (store (or (zext (bitcast F to i32) to i64),
7417 /// (shl (zext I to i64), 32)), addr) -->
7418 /// (store F, addr) and (store I, addr+4)
7420 /// Similarly, splitting for other merged store can also be beneficial, like:
7421 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7422 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7423 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7424 /// For pair of {i16, i8}, i32 store --> two i16 stores.
7425 /// For pair of {i8, i8}, i16 store --> two i8 stores.
7427 /// We allow each target to determine specifically which kind of splitting is
7430 /// The store patterns are commonly seen from the simple code snippet below
7431 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7432 /// void goo(const std::pair<int, float> &);
7435 /// goo(std::make_pair(tmp, ftmp));
7439 /// Although we already have similar splitting in DAG Combine, we duplicate
7440 /// it in CodeGenPrepare to catch the case in which pattern is across
7441 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7442 /// during code expansion.
7443 static bool splitMergedValStore(StoreInst
&SI
, const DataLayout
&DL
,
7444 const TargetLowering
&TLI
) {
7445 // Handle simple but common cases only.
7446 Type
*StoreType
= SI
.getValueOperand()->getType();
7448 // The code below assumes shifting a value by <number of bits>,
7449 // whereas scalable vectors would have to be shifted by
7450 // <2log(vscale) + number of bits> in order to store the
7451 // low/high parts. Bailing out for now.
7452 if (isa
<ScalableVectorType
>(StoreType
))
7455 if (!DL
.typeSizeEqualsStoreSize(StoreType
) ||
7456 DL
.getTypeSizeInBits(StoreType
) == 0)
7459 unsigned HalfValBitSize
= DL
.getTypeSizeInBits(StoreType
) / 2;
7460 Type
*SplitStoreType
= Type::getIntNTy(SI
.getContext(), HalfValBitSize
);
7461 if (!DL
.typeSizeEqualsStoreSize(SplitStoreType
))
7464 // Don't split the store if it is volatile.
7465 if (SI
.isVolatile())
7468 // Match the following patterns:
7469 // (store (or (zext LValue to i64),
7470 // (shl (zext HValue to i64), 32)), HalfValBitSize)
7472 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7473 // (zext LValue to i64),
7474 // Expect both operands of OR and the first operand of SHL have only
7476 Value
*LValue
, *HValue
;
7477 if (!match(SI
.getValueOperand(),
7478 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue
))),
7479 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue
))),
7480 m_SpecificInt(HalfValBitSize
))))))
7483 // Check LValue and HValue are int with size less or equal than 32.
7484 if (!LValue
->getType()->isIntegerTy() ||
7485 DL
.getTypeSizeInBits(LValue
->getType()) > HalfValBitSize
||
7486 !HValue
->getType()->isIntegerTy() ||
7487 DL
.getTypeSizeInBits(HValue
->getType()) > HalfValBitSize
)
7490 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7491 // as the input of target query.
7492 auto *LBC
= dyn_cast
<BitCastInst
>(LValue
);
7493 auto *HBC
= dyn_cast
<BitCastInst
>(HValue
);
7494 EVT LowTy
= LBC
? EVT::getEVT(LBC
->getOperand(0)->getType())
7495 : EVT::getEVT(LValue
->getType());
7496 EVT HighTy
= HBC
? EVT::getEVT(HBC
->getOperand(0)->getType())
7497 : EVT::getEVT(HValue
->getType());
7498 if (!ForceSplitStore
&& !TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
7501 // Start to split store.
7502 IRBuilder
<> Builder(SI
.getContext());
7503 Builder
.SetInsertPoint(&SI
);
7505 // If LValue/HValue is a bitcast in another BB, create a new one in current
7506 // BB so it may be merged with the splitted stores by dag combiner.
7507 if (LBC
&& LBC
->getParent() != SI
.getParent())
7508 LValue
= Builder
.CreateBitCast(LBC
->getOperand(0), LBC
->getType());
7509 if (HBC
&& HBC
->getParent() != SI
.getParent())
7510 HValue
= Builder
.CreateBitCast(HBC
->getOperand(0), HBC
->getType());
7512 bool IsLE
= SI
.getModule()->getDataLayout().isLittleEndian();
7513 auto CreateSplitStore
= [&](Value
*V
, bool Upper
) {
7514 V
= Builder
.CreateZExtOrBitCast(V
, SplitStoreType
);
7515 Value
*Addr
= Builder
.CreateBitCast(
7517 SplitStoreType
->getPointerTo(SI
.getPointerAddressSpace()));
7518 Align Alignment
= SI
.getAlign();
7519 const bool IsOffsetStore
= (IsLE
&& Upper
) || (!IsLE
&& !Upper
);
7520 if (IsOffsetStore
) {
7521 Addr
= Builder
.CreateGEP(
7522 SplitStoreType
, Addr
,
7523 ConstantInt::get(Type::getInt32Ty(SI
.getContext()), 1));
7525 // When splitting the store in half, naturally one half will retain the
7526 // alignment of the original wider store, regardless of whether it was
7527 // over-aligned or not, while the other will require adjustment.
7528 Alignment
= commonAlignment(Alignment
, HalfValBitSize
/ 8);
7530 Builder
.CreateAlignedStore(V
, Addr
, Alignment
);
7533 CreateSplitStore(LValue
, false);
7534 CreateSplitStore(HValue
, true);
7536 // Delete the old store.
7537 SI
.eraseFromParent();
7541 // Return true if the GEP has two operands, the first operand is of a sequential
7542 // type, and the second operand is a constant.
7543 static bool GEPSequentialConstIndexed(GetElementPtrInst
*GEP
) {
7544 gep_type_iterator I
= gep_type_begin(*GEP
);
7545 return GEP
->getNumOperands() == 2 &&
7547 isa
<ConstantInt
>(GEP
->getOperand(1));
7550 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7551 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7552 // reducing liveness interference across those edges benefits global register
7553 // allocation. Currently handles only certain cases.
7555 // For example, unmerge %GEPI and %UGEPI as below.
7557 // ---------- BEFORE ----------
7562 // %GEPI = gep %GEPIOp, Idx
7564 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7565 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7566 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7569 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7570 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7575 // %UGEPI = gep %GEPIOp, UIdx
7577 // ---------------------------
7579 // ---------- AFTER ----------
7581 // ... (same as above)
7582 // (* %GEPI is still alive on the indirectbr edges)
7583 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7589 // %UGEPI = gep %GEPI, (UIdx-Idx)
7591 // ---------------------------
7593 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
7594 // no longer alive on them.
7596 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
7597 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
7598 // not to disable further simplications and optimizations as a result of GEP
7601 // Note this unmerging may increase the length of the data flow critical path
7602 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
7603 // between the register pressure and the length of data-flow critical
7604 // path. Restricting this to the uncommon IndirectBr case would minimize the
7605 // impact of potentially longer critical path, if any, and the impact on compile
7607 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst
*GEPI
,
7608 const TargetTransformInfo
*TTI
) {
7609 BasicBlock
*SrcBlock
= GEPI
->getParent();
7610 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
7611 // (non-IndirectBr) cases exit early here.
7612 if (!isa
<IndirectBrInst
>(SrcBlock
->getTerminator()))
7614 // Check that GEPI is a simple gep with a single constant index.
7615 if (!GEPSequentialConstIndexed(GEPI
))
7617 ConstantInt
*GEPIIdx
= cast
<ConstantInt
>(GEPI
->getOperand(1));
7618 // Check that GEPI is a cheap one.
7619 if (TTI
->getIntImmCost(GEPIIdx
->getValue(), GEPIIdx
->getType(),
7620 TargetTransformInfo::TCK_SizeAndLatency
)
7621 > TargetTransformInfo::TCC_Basic
)
7623 Value
*GEPIOp
= GEPI
->getOperand(0);
7624 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
7625 if (!isa
<Instruction
>(GEPIOp
))
7627 auto *GEPIOpI
= cast
<Instruction
>(GEPIOp
);
7628 if (GEPIOpI
->getParent() != SrcBlock
)
7630 // Check that GEP is used outside the block, meaning it's alive on the
7631 // IndirectBr edge(s).
7632 if (find_if(GEPI
->users(), [&](User
*Usr
) {
7633 if (auto *I
= dyn_cast
<Instruction
>(Usr
)) {
7634 if (I
->getParent() != SrcBlock
) {
7639 }) == GEPI
->users().end())
7641 // The second elements of the GEP chains to be unmerged.
7642 std::vector
<GetElementPtrInst
*> UGEPIs
;
7643 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7644 // on IndirectBr edges.
7645 for (User
*Usr
: GEPIOp
->users()) {
7646 if (Usr
== GEPI
) continue;
7647 // Check if Usr is an Instruction. If not, give up.
7648 if (!isa
<Instruction
>(Usr
))
7650 auto *UI
= cast
<Instruction
>(Usr
);
7651 // Check if Usr in the same block as GEPIOp, which is fine, skip.
7652 if (UI
->getParent() == SrcBlock
)
7654 // Check if Usr is a GEP. If not, give up.
7655 if (!isa
<GetElementPtrInst
>(Usr
))
7657 auto *UGEPI
= cast
<GetElementPtrInst
>(Usr
);
7658 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7659 // the pointer operand to it. If so, record it in the vector. If not, give
7661 if (!GEPSequentialConstIndexed(UGEPI
))
7663 if (UGEPI
->getOperand(0) != GEPIOp
)
7665 if (GEPIIdx
->getType() !=
7666 cast
<ConstantInt
>(UGEPI
->getOperand(1))->getType())
7668 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
7669 if (TTI
->getIntImmCost(UGEPIIdx
->getValue(), UGEPIIdx
->getType(),
7670 TargetTransformInfo::TCK_SizeAndLatency
)
7671 > TargetTransformInfo::TCC_Basic
)
7673 UGEPIs
.push_back(UGEPI
);
7675 if (UGEPIs
.size() == 0)
7677 // Check the materializing cost of (Uidx-Idx).
7678 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
7679 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
7680 APInt NewIdx
= UGEPIIdx
->getValue() - GEPIIdx
->getValue();
7681 InstructionCost ImmCost
= TTI
->getIntImmCost(
7682 NewIdx
, GEPIIdx
->getType(), TargetTransformInfo::TCK_SizeAndLatency
);
7683 if (ImmCost
> TargetTransformInfo::TCC_Basic
)
7686 // Now unmerge between GEPI and UGEPIs.
7687 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
7688 UGEPI
->setOperand(0, GEPI
);
7689 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
7690 Constant
*NewUGEPIIdx
=
7691 ConstantInt::get(GEPIIdx
->getType(),
7692 UGEPIIdx
->getValue() - GEPIIdx
->getValue());
7693 UGEPI
->setOperand(1, NewUGEPIIdx
);
7694 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7695 // inbounds to avoid UB.
7696 if (!GEPI
->isInBounds()) {
7697 UGEPI
->setIsInBounds(false);
7700 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7701 // alive on IndirectBr edges).
7702 assert(find_if(GEPIOp
->users(), [&](User
*Usr
) {
7703 return cast
<Instruction
>(Usr
)->getParent() != SrcBlock
;
7704 }) == GEPIOp
->users().end() && "GEPIOp is used outside SrcBlock");
7708 static bool optimizeBranch(BranchInst
*Branch
, const TargetLowering
&TLI
) {
7710 // %c = icmp ult %x, 8
7715 // %c = icmp eq %tc, 0
7717 // Creating the cmp to zero can be better for the backend, especially if the
7718 // lshr produces flags that can be used automatically.
7719 if (!TLI
.preferZeroCompareBranch() || !Branch
->isConditional())
7722 ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(Branch
->getCondition());
7723 if (!Cmp
|| !isa
<ConstantInt
>(Cmp
->getOperand(1)) || !Cmp
->hasOneUse())
7726 Value
*X
= Cmp
->getOperand(0);
7727 APInt CmpC
= cast
<ConstantInt
>(Cmp
->getOperand(1))->getValue();
7729 for (auto *U
: X
->users()) {
7730 Instruction
*UI
= dyn_cast
<Instruction
>(U
);
7731 // A quick dominance check
7733 (UI
->getParent() != Branch
->getParent() &&
7734 UI
->getParent() != Branch
->getSuccessor(0) &&
7735 UI
->getParent() != Branch
->getSuccessor(1)) ||
7736 (UI
->getParent() != Branch
->getParent() &&
7737 !UI
->getParent()->getSinglePredecessor()))
7740 if (CmpC
.isPowerOf2() && Cmp
->getPredicate() == ICmpInst::ICMP_ULT
&&
7741 match(UI
, m_Shr(m_Specific(X
), m_SpecificInt(CmpC
.logBase2())))) {
7742 IRBuilder
<> Builder(Branch
);
7743 if (UI
->getParent() != Branch
->getParent())
7744 UI
->moveBefore(Branch
);
7745 Value
*NewCmp
= Builder
.CreateCmp(ICmpInst::ICMP_EQ
, UI
,
7746 ConstantInt::get(UI
->getType(), 0));
7747 LLVM_DEBUG(dbgs() << "Converting " << *Cmp
<< "\n");
7748 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp
<< "\n");
7749 Cmp
->replaceAllUsesWith(NewCmp
);
7752 if (Cmp
->isEquality() &&
7753 (match(UI
, m_Add(m_Specific(X
), m_SpecificInt(-CmpC
))) ||
7754 match(UI
, m_Sub(m_Specific(X
), m_SpecificInt(CmpC
))))) {
7755 IRBuilder
<> Builder(Branch
);
7756 if (UI
->getParent() != Branch
->getParent())
7757 UI
->moveBefore(Branch
);
7758 Value
*NewCmp
= Builder
.CreateCmp(Cmp
->getPredicate(), UI
,
7759 ConstantInt::get(UI
->getType(), 0));
7760 LLVM_DEBUG(dbgs() << "Converting " << *Cmp
<< "\n");
7761 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp
<< "\n");
7762 Cmp
->replaceAllUsesWith(NewCmp
);
7769 bool CodeGenPrepare::optimizeInst(Instruction
*I
, bool &ModifiedDT
) {
7770 // Bail out if we inserted the instruction to prevent optimizations from
7771 // stepping on each other's toes.
7772 if (InsertedInsts
.count(I
))
7775 // TODO: Move into the switch on opcode below here.
7776 if (PHINode
*P
= dyn_cast
<PHINode
>(I
)) {
7777 // It is possible for very late stage optimizations (such as SimplifyCFG)
7778 // to introduce PHI nodes too late to be cleaned up. If we detect such a
7779 // trivial PHI, go ahead and zap it here.
7780 if (Value
*V
= SimplifyInstruction(P
, {*DL
, TLInfo
})) {
7781 LargeOffsetGEPMap
.erase(P
);
7782 P
->replaceAllUsesWith(V
);
7783 P
->eraseFromParent();
7790 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
7791 // If the source of the cast is a constant, then this should have
7792 // already been constant folded. The only reason NOT to constant fold
7793 // it is if something (e.g. LSR) was careful to place the constant
7794 // evaluation in a block other than then one that uses it (e.g. to hoist
7795 // the address of globals out of a loop). If this is the case, we don't
7796 // want to forward-subst the cast.
7797 if (isa
<Constant
>(CI
->getOperand(0)))
7800 if (OptimizeNoopCopyExpression(CI
, *TLI
, *DL
))
7803 if (isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
)) {
7804 /// Sink a zext or sext into its user blocks if the target type doesn't
7805 /// fit in one register
7806 if (TLI
->getTypeAction(CI
->getContext(),
7807 TLI
->getValueType(*DL
, CI
->getType())) ==
7808 TargetLowering::TypeExpandInteger
) {
7809 return SinkCast(CI
);
7811 bool MadeChange
= optimizeExt(I
);
7812 return MadeChange
| optimizeExtUses(I
);
7818 if (auto *Cmp
= dyn_cast
<CmpInst
>(I
))
7819 if (optimizeCmp(Cmp
, ModifiedDT
))
7822 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
7823 LI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
7824 bool Modified
= optimizeLoadExt(LI
);
7825 unsigned AS
= LI
->getPointerAddressSpace();
7826 Modified
|= optimizeMemoryInst(I
, I
->getOperand(0), LI
->getType(), AS
);
7830 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
7831 if (splitMergedValStore(*SI
, *DL
, *TLI
))
7833 SI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
7834 unsigned AS
= SI
->getPointerAddressSpace();
7835 return optimizeMemoryInst(I
, SI
->getOperand(1),
7836 SI
->getOperand(0)->getType(), AS
);
7839 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(I
)) {
7840 unsigned AS
= RMW
->getPointerAddressSpace();
7841 return optimizeMemoryInst(I
, RMW
->getPointerOperand(),
7842 RMW
->getType(), AS
);
7845 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
7846 unsigned AS
= CmpX
->getPointerAddressSpace();
7847 return optimizeMemoryInst(I
, CmpX
->getPointerOperand(),
7848 CmpX
->getCompareOperand()->getType(), AS
);
7851 BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(I
);
7853 if (BinOp
&& BinOp
->getOpcode() == Instruction::And
&& EnableAndCmpSinking
&&
7854 sinkAndCmp0Expression(BinOp
, *TLI
, InsertedInsts
))
7857 // TODO: Move this into the switch on opcode - it handles shifts already.
7858 if (BinOp
&& (BinOp
->getOpcode() == Instruction::AShr
||
7859 BinOp
->getOpcode() == Instruction::LShr
)) {
7860 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BinOp
->getOperand(1));
7861 if (CI
&& TLI
->hasExtractBitsInsn())
7862 if (OptimizeExtractBits(BinOp
, CI
, *TLI
, *DL
))
7866 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
7867 if (GEPI
->hasAllZeroIndices()) {
7868 /// The GEP operand must be a pointer, so must its result -> BitCast
7869 Instruction
*NC
= new BitCastInst(GEPI
->getOperand(0), GEPI
->getType(),
7870 GEPI
->getName(), GEPI
);
7871 NC
->setDebugLoc(GEPI
->getDebugLoc());
7872 GEPI
->replaceAllUsesWith(NC
);
7873 GEPI
->eraseFromParent();
7875 optimizeInst(NC
, ModifiedDT
);
7878 if (tryUnmergingGEPsAcrossIndirectBr(GEPI
, TTI
)) {
7884 if (FreezeInst
*FI
= dyn_cast
<FreezeInst
>(I
)) {
7885 // freeze(icmp a, const)) -> icmp (freeze a), const
7886 // This helps generate efficient conditional jumps.
7887 Instruction
*CmpI
= nullptr;
7888 if (ICmpInst
*II
= dyn_cast
<ICmpInst
>(FI
->getOperand(0)))
7890 else if (FCmpInst
*F
= dyn_cast
<FCmpInst
>(FI
->getOperand(0)))
7891 CmpI
= F
->getFastMathFlags().none() ? F
: nullptr;
7893 if (CmpI
&& CmpI
->hasOneUse()) {
7894 auto Op0
= CmpI
->getOperand(0), Op1
= CmpI
->getOperand(1);
7895 bool Const0
= isa
<ConstantInt
>(Op0
) || isa
<ConstantFP
>(Op0
) ||
7896 isa
<ConstantPointerNull
>(Op0
);
7897 bool Const1
= isa
<ConstantInt
>(Op1
) || isa
<ConstantFP
>(Op1
) ||
7898 isa
<ConstantPointerNull
>(Op1
);
7899 if (Const0
|| Const1
) {
7900 if (!Const0
|| !Const1
) {
7901 auto *F
= new FreezeInst(Const0
? Op1
: Op0
, "", CmpI
);
7903 CmpI
->setOperand(Const0
? 1 : 0, F
);
7905 FI
->replaceAllUsesWith(CmpI
);
7906 FI
->eraseFromParent();
7913 if (tryToSinkFreeOperands(I
))
7916 switch (I
->getOpcode()) {
7917 case Instruction::Shl
:
7918 case Instruction::LShr
:
7919 case Instruction::AShr
:
7920 return optimizeShiftInst(cast
<BinaryOperator
>(I
));
7921 case Instruction::Call
:
7922 return optimizeCallInst(cast
<CallInst
>(I
), ModifiedDT
);
7923 case Instruction::Select
:
7924 return optimizeSelectInst(cast
<SelectInst
>(I
));
7925 case Instruction::ShuffleVector
:
7926 return optimizeShuffleVectorInst(cast
<ShuffleVectorInst
>(I
));
7927 case Instruction::Switch
:
7928 return optimizeSwitchInst(cast
<SwitchInst
>(I
));
7929 case Instruction::ExtractElement
:
7930 return optimizeExtractElementInst(cast
<ExtractElementInst
>(I
));
7931 case Instruction::Br
:
7932 return optimizeBranch(cast
<BranchInst
>(I
), *TLI
);
7938 /// Given an OR instruction, check to see if this is a bitreverse
7939 /// idiom. If so, insert the new intrinsic and return true.
7940 bool CodeGenPrepare::makeBitReverse(Instruction
&I
) {
7941 if (!I
.getType()->isIntegerTy() ||
7942 !TLI
->isOperationLegalOrCustom(ISD::BITREVERSE
,
7943 TLI
->getValueType(*DL
, I
.getType(), true)))
7946 SmallVector
<Instruction
*, 4> Insts
;
7947 if (!recognizeBSwapOrBitReverseIdiom(&I
, false, true, Insts
))
7949 Instruction
*LastInst
= Insts
.back();
7950 I
.replaceAllUsesWith(LastInst
);
7951 RecursivelyDeleteTriviallyDeadInstructions(
7952 &I
, TLInfo
, nullptr, [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
7956 // In this pass we look for GEP and cast instructions that are used
7957 // across basic blocks and rewrite them to improve basic-block-at-a-time
7959 bool CodeGenPrepare::optimizeBlock(BasicBlock
&BB
, bool &ModifiedDT
) {
7961 bool MadeChange
= false;
7963 CurInstIterator
= BB
.begin();
7964 while (CurInstIterator
!= BB
.end()) {
7965 MadeChange
|= optimizeInst(&*CurInstIterator
++, ModifiedDT
);
7970 bool MadeBitReverse
= true;
7971 while (MadeBitReverse
) {
7972 MadeBitReverse
= false;
7973 for (auto &I
: reverse(BB
)) {
7974 if (makeBitReverse(I
)) {
7975 MadeBitReverse
= MadeChange
= true;
7980 MadeChange
|= dupRetToEnableTailCallOpts(&BB
, ModifiedDT
);
7985 // Some CGP optimizations may move or alter what's computed in a block. Check
7986 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
7987 bool CodeGenPrepare::fixupDbgValue(Instruction
*I
) {
7988 assert(isa
<DbgValueInst
>(I
));
7989 DbgValueInst
&DVI
= *cast
<DbgValueInst
>(I
);
7991 // Does this dbg.value refer to a sunk address calculation?
7992 bool AnyChange
= false;
7993 SmallDenseSet
<Value
*> LocationOps(DVI
.location_ops().begin(),
7994 DVI
.location_ops().end());
7995 for (Value
*Location
: LocationOps
) {
7996 WeakTrackingVH SunkAddrVH
= SunkAddrs
[Location
];
7997 Value
*SunkAddr
= SunkAddrVH
.pointsToAliveValue() ? SunkAddrVH
: nullptr;
7999 // Point dbg.value at locally computed address, which should give the best
8000 // opportunity to be accurately lowered. This update may change the type
8001 // of pointer being referred to; however this makes no difference to
8002 // debugging information, and we can't generate bitcasts that may affect
8004 DVI
.replaceVariableLocationOp(Location
, SunkAddr
);
8011 // A llvm.dbg.value may be using a value before its definition, due to
8012 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8013 // them by moving the dbg.value to immediately after the value definition.
8014 // FIXME: Ideally this should never be necessary, and this has the potential
8015 // to re-order dbg.value intrinsics.
8016 bool CodeGenPrepare::placeDbgValues(Function
&F
) {
8017 bool MadeChange
= false;
8018 DominatorTree
DT(F
);
8020 for (BasicBlock
&BB
: F
) {
8021 for (Instruction
&Insn
: llvm::make_early_inc_range(BB
)) {
8022 DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(&Insn
);
8026 SmallVector
<Instruction
*, 4> VIs
;
8027 for (Value
*V
: DVI
->getValues())
8028 if (Instruction
*VI
= dyn_cast_or_null
<Instruction
>(V
))
8031 // This DVI may depend on multiple instructions, complicating any
8032 // potential sink. This block takes the defensive approach, opting to
8033 // "undef" the DVI if it has more than one instruction and any of them do
8034 // not dominate DVI.
8035 for (Instruction
*VI
: VIs
) {
8036 if (VI
->isTerminator())
8039 // If VI is a phi in a block with an EHPad terminator, we can't insert
8041 if (isa
<PHINode
>(VI
) && VI
->getParent()->getTerminator()->isEHPad())
8044 // If the defining instruction dominates the dbg.value, we do not need
8045 // to move the dbg.value.
8046 if (DT
.dominates(VI
, DVI
))
8049 // If we depend on multiple instructions and any of them doesn't
8050 // dominate this DVI, we probably can't salvage it: moving it to
8051 // after any of the instructions could cause us to lose the others.
8052 if (VIs
.size() > 1) {
8055 << "Unable to find valid location for Debug Value, undefing:\n"
8061 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8062 << *DVI
<< ' ' << *VI
);
8063 DVI
->removeFromParent();
8064 if (isa
<PHINode
>(VI
))
8065 DVI
->insertBefore(&*VI
->getParent()->getFirstInsertionPt());
8067 DVI
->insertAfter(VI
);
8076 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8077 // probes can be chained dependencies of other regular DAG nodes and block DAG
8078 // combine optimizations.
8079 bool CodeGenPrepare::placePseudoProbes(Function
&F
) {
8080 bool MadeChange
= false;
8081 for (auto &Block
: F
) {
8082 // Move the rest probes to the beginning of the block.
8083 auto FirstInst
= Block
.getFirstInsertionPt();
8084 while (FirstInst
!= Block
.end() && FirstInst
->isDebugOrPseudoInst())
8086 BasicBlock::iterator
I(FirstInst
);
8088 while (I
!= Block
.end()) {
8089 if (auto *II
= dyn_cast
<PseudoProbeInst
>(I
++)) {
8090 II
->moveBefore(&*FirstInst
);
8098 /// Scale down both weights to fit into uint32_t.
8099 static void scaleWeights(uint64_t &NewTrue
, uint64_t &NewFalse
) {
8100 uint64_t NewMax
= (NewTrue
> NewFalse
) ? NewTrue
: NewFalse
;
8101 uint32_t Scale
= (NewMax
/ std::numeric_limits
<uint32_t>::max()) + 1;
8102 NewTrue
= NewTrue
/ Scale
;
8103 NewFalse
= NewFalse
/ Scale
;
8106 /// Some targets prefer to split a conditional branch like:
8108 /// %0 = icmp ne i32 %a, 0
8109 /// %1 = icmp ne i32 %b, 0
8110 /// %or.cond = or i1 %0, %1
8111 /// br i1 %or.cond, label %TrueBB, label %FalseBB
8113 /// into multiple branch instructions like:
8116 /// %0 = icmp ne i32 %a, 0
8117 /// br i1 %0, label %TrueBB, label %bb2
8119 /// %1 = icmp ne i32 %b, 0
8120 /// br i1 %1, label %TrueBB, label %FalseBB
8122 /// This usually allows instruction selection to do even further optimizations
8123 /// and combine the compare with the branch instruction. Currently this is
8124 /// applied for targets which have "cheap" jump instructions.
8126 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8128 bool CodeGenPrepare::splitBranchCondition(Function
&F
, bool &ModifiedDT
) {
8129 if (!TM
->Options
.EnableFastISel
|| TLI
->isJumpExpensive())
8132 bool MadeChange
= false;
8133 for (auto &BB
: F
) {
8134 // Does this BB end with the following?
8135 // %cond1 = icmp|fcmp|binary instruction ...
8136 // %cond2 = icmp|fcmp|binary instruction ...
8137 // %cond.or = or|and i1 %cond1, cond2
8138 // br i1 %cond.or label %dest1, label %dest2"
8139 Instruction
*LogicOp
;
8140 BasicBlock
*TBB
, *FBB
;
8141 if (!match(BB
.getTerminator(),
8142 m_Br(m_OneUse(m_Instruction(LogicOp
)), TBB
, FBB
)))
8145 auto *Br1
= cast
<BranchInst
>(BB
.getTerminator());
8146 if (Br1
->getMetadata(LLVMContext::MD_unpredictable
))
8149 // The merging of mostly empty BB can cause a degenerate branch.
8154 Value
*Cond1
, *Cond2
;
8156 m_LogicalAnd(m_OneUse(m_Value(Cond1
)), m_OneUse(m_Value(Cond2
)))))
8157 Opc
= Instruction::And
;
8158 else if (match(LogicOp
, m_LogicalOr(m_OneUse(m_Value(Cond1
)),
8159 m_OneUse(m_Value(Cond2
)))))
8160 Opc
= Instruction::Or
;
8164 auto IsGoodCond
= [](Value
*Cond
) {
8167 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8168 m_LogicalOr(m_Value(), m_Value()))));
8170 if (!IsGoodCond(Cond1
) || !IsGoodCond(Cond2
))
8173 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB
.dump());
8177 BasicBlock::Create(BB
.getContext(), BB
.getName() + ".cond.split",
8178 BB
.getParent(), BB
.getNextNode());
8180 // Update original basic block by using the first condition directly by the
8181 // branch instruction and removing the no longer needed and/or instruction.
8182 Br1
->setCondition(Cond1
);
8183 LogicOp
->eraseFromParent();
8185 // Depending on the condition we have to either replace the true or the
8186 // false successor of the original branch instruction.
8187 if (Opc
== Instruction::And
)
8188 Br1
->setSuccessor(0, TmpBB
);
8190 Br1
->setSuccessor(1, TmpBB
);
8192 // Fill in the new basic block.
8193 auto *Br2
= IRBuilder
<>(TmpBB
).CreateCondBr(Cond2
, TBB
, FBB
);
8194 if (auto *I
= dyn_cast
<Instruction
>(Cond2
)) {
8195 I
->removeFromParent();
8196 I
->insertBefore(Br2
);
8199 // Update PHI nodes in both successors. The original BB needs to be
8200 // replaced in one successor's PHI nodes, because the branch comes now from
8201 // the newly generated BB (NewBB). In the other successor we need to add one
8202 // incoming edge to the PHI nodes, because both branch instructions target
8203 // now the same successor. Depending on the original branch condition
8204 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8205 // we perform the correct update for the PHI nodes.
8206 // This doesn't change the successor order of the just created branch
8207 // instruction (or any other instruction).
8208 if (Opc
== Instruction::Or
)
8209 std::swap(TBB
, FBB
);
8211 // Replace the old BB with the new BB.
8212 TBB
->replacePhiUsesWith(&BB
, TmpBB
);
8214 // Add another incoming edge form the new BB.
8215 for (PHINode
&PN
: FBB
->phis()) {
8216 auto *Val
= PN
.getIncomingValueForBlock(&BB
);
8217 PN
.addIncoming(Val
, TmpBB
);
8220 // Update the branch weights (from SelectionDAGBuilder::
8221 // FindMergedConditions).
8222 if (Opc
== Instruction::Or
) {
8223 // Codegen X | Y as:
8232 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
8233 // The requirement is that
8234 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8235 // = TrueProb for original BB.
8236 // Assuming the original weights are A and B, one choice is to set BB1's
8237 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8239 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8240 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
8241 // TmpBB, but the math is more complicated.
8242 uint64_t TrueWeight
, FalseWeight
;
8243 if (Br1
->extractProfMetadata(TrueWeight
, FalseWeight
)) {
8244 uint64_t NewTrueWeight
= TrueWeight
;
8245 uint64_t NewFalseWeight
= TrueWeight
+ 2 * FalseWeight
;
8246 scaleWeights(NewTrueWeight
, NewFalseWeight
);
8247 Br1
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br1
->getContext())
8248 .createBranchWeights(TrueWeight
, FalseWeight
));
8250 NewTrueWeight
= TrueWeight
;
8251 NewFalseWeight
= 2 * FalseWeight
;
8252 scaleWeights(NewTrueWeight
, NewFalseWeight
);
8253 Br2
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br2
->getContext())
8254 .createBranchWeights(TrueWeight
, FalseWeight
));
8257 // Codegen X & Y as:
8265 // This requires creation of TmpBB after CurBB.
8267 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
8268 // The requirement is that
8269 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
8270 // = FalseProb for original BB.
8271 // Assuming the original weights are A and B, one choice is to set BB1's
8272 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
8274 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
8275 uint64_t TrueWeight
, FalseWeight
;
8276 if (Br1
->extractProfMetadata(TrueWeight
, FalseWeight
)) {
8277 uint64_t NewTrueWeight
= 2 * TrueWeight
+ FalseWeight
;
8278 uint64_t NewFalseWeight
= FalseWeight
;
8279 scaleWeights(NewTrueWeight
, NewFalseWeight
);
8280 Br1
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br1
->getContext())
8281 .createBranchWeights(TrueWeight
, FalseWeight
));
8283 NewTrueWeight
= 2 * TrueWeight
;
8284 NewFalseWeight
= FalseWeight
;
8285 scaleWeights(NewTrueWeight
, NewFalseWeight
);
8286 Br2
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br2
->getContext())
8287 .createBranchWeights(TrueWeight
, FalseWeight
));
8294 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB
.dump();