1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the SelectionDAG class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/RuntimeLibcalls.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetLowering.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MachineValueType.h"
66 #include "llvm/Support/ManagedStatic.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/Mutex.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Target/TargetOptions.h"
72 #include "llvm/Transforms/Utils/SizeOpts.h"
85 /// makeVTList - Return an instance of the SDVTList struct initialized with the
86 /// specified members.
87 static SDVTList
makeVTList(const EVT
*VTs
, unsigned NumVTs
) {
88 SDVTList Res
= {VTs
, NumVTs
};
92 // Default null implementations of the callbacks.
93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode
*, SDNode
*) {}
94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode
*) {}
95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode
*) {}
97 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
99 #define DEBUG_TYPE "selectiondag"
101 static cl::opt
<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
102 cl::Hidden
, cl::init(true),
103 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
105 static cl::opt
<int> MaxLdStGlue("ldstmemcpy-glue-max",
106 cl::desc("Number limit for gluing ld/st of memcpy."),
107 cl::Hidden
, cl::init(0));
109 static void NewSDValueDbgMsg(SDValue V
, StringRef Msg
, SelectionDAG
*G
) {
110 LLVM_DEBUG(dbgs() << Msg
; V
.getNode()->dump(G
););
113 //===----------------------------------------------------------------------===//
114 // ConstantFPSDNode Class
115 //===----------------------------------------------------------------------===//
117 /// isExactlyValue - We don't rely on operator== working on double values, as
118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
119 /// As such, this method can be used to do an exact bit-for-bit comparison of
120 /// two floating point values.
121 bool ConstantFPSDNode::isExactlyValue(const APFloat
& V
) const {
122 return getValueAPF().bitwiseIsEqual(V
);
125 bool ConstantFPSDNode::isValueValidForType(EVT VT
,
126 const APFloat
& Val
) {
127 assert(VT
.isFloatingPoint() && "Can only convert between FP types");
129 // convert modifies in place, so make a copy.
130 APFloat Val2
= APFloat(Val
);
132 (void) Val2
.convert(SelectionDAG::EVTToAPFloatSemantics(VT
),
133 APFloat::rmNearestTiesToEven
,
138 //===----------------------------------------------------------------------===//
140 //===----------------------------------------------------------------------===//
142 bool ISD::isConstantSplatVector(const SDNode
*N
, APInt
&SplatVal
) {
143 if (N
->getOpcode() == ISD::SPLAT_VECTOR
) {
145 N
->getValueType(0).getVectorElementType().getSizeInBits();
146 if (auto *Op0
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
147 SplatVal
= Op0
->getAPIntValue().truncOrSelf(EltSize
);
150 if (auto *Op0
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0))) {
151 SplatVal
= Op0
->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize
);
156 auto *BV
= dyn_cast
<BuildVectorSDNode
>(N
);
161 unsigned SplatBitSize
;
163 unsigned EltSize
= N
->getValueType(0).getVectorElementType().getSizeInBits();
164 return BV
->isConstantSplat(SplatVal
, SplatUndef
, SplatBitSize
, HasUndefs
,
166 EltSize
== SplatBitSize
;
169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
170 // specializations of the more general isConstantSplatVector()?
172 bool ISD::isConstantSplatVectorAllOnes(const SDNode
*N
, bool BuildVectorOnly
) {
173 // Look through a bit convert.
174 while (N
->getOpcode() == ISD::BITCAST
)
175 N
= N
->getOperand(0).getNode();
177 if (!BuildVectorOnly
&& N
->getOpcode() == ISD::SPLAT_VECTOR
) {
179 return isConstantSplatVector(N
, SplatVal
) && SplatVal
.isAllOnes();
182 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
184 unsigned i
= 0, e
= N
->getNumOperands();
186 // Skip over all of the undef values.
187 while (i
!= e
&& N
->getOperand(i
).isUndef())
190 // Do not accept an all-undef vector.
191 if (i
== e
) return false;
193 // Do not accept build_vectors that aren't all constants or which have non-~0
194 // elements. We have to be a bit careful here, as the type of the constant
195 // may not be the same as the type of the vector elements due to type
196 // legalization (the elements are promoted to a legal type for the target and
197 // a vector of a type may be legal when the base element type is not).
198 // We only want to check enough bits to cover the vector elements, because
199 // we care if the resultant vector is all ones, not whether the individual
201 SDValue NotZero
= N
->getOperand(i
);
202 unsigned EltSize
= N
->getValueType(0).getScalarSizeInBits();
203 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(NotZero
)) {
204 if (CN
->getAPIntValue().countTrailingOnes() < EltSize
)
206 } else if (ConstantFPSDNode
*CFPN
= dyn_cast
<ConstantFPSDNode
>(NotZero
)) {
207 if (CFPN
->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize
)
212 // Okay, we have at least one ~0 value, check to see if the rest match or are
213 // undefs. Even with the above element type twiddling, this should be OK, as
214 // the same type legalization should have applied to all the elements.
215 for (++i
; i
!= e
; ++i
)
216 if (N
->getOperand(i
) != NotZero
&& !N
->getOperand(i
).isUndef())
221 bool ISD::isConstantSplatVectorAllZeros(const SDNode
*N
, bool BuildVectorOnly
) {
222 // Look through a bit convert.
223 while (N
->getOpcode() == ISD::BITCAST
)
224 N
= N
->getOperand(0).getNode();
226 if (!BuildVectorOnly
&& N
->getOpcode() == ISD::SPLAT_VECTOR
) {
228 return isConstantSplatVector(N
, SplatVal
) && SplatVal
.isZero();
231 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
233 bool IsAllUndef
= true;
234 for (const SDValue
&Op
: N
->op_values()) {
238 // Do not accept build_vectors that aren't all constants or which have non-0
239 // elements. We have to be a bit careful here, as the type of the constant
240 // may not be the same as the type of the vector elements due to type
241 // legalization (the elements are promoted to a legal type for the target
242 // and a vector of a type may be legal when the base element type is not).
243 // We only want to check enough bits to cover the vector elements, because
244 // we care if the resultant vector is all zeros, not whether the individual
246 unsigned EltSize
= N
->getValueType(0).getScalarSizeInBits();
247 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Op
)) {
248 if (CN
->getAPIntValue().countTrailingZeros() < EltSize
)
250 } else if (ConstantFPSDNode
*CFPN
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
251 if (CFPN
->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize
)
257 // Do not accept an all-undef vector.
263 bool ISD::isBuildVectorAllOnes(const SDNode
*N
) {
264 return isConstantSplatVectorAllOnes(N
, /*BuildVectorOnly*/ true);
267 bool ISD::isBuildVectorAllZeros(const SDNode
*N
) {
268 return isConstantSplatVectorAllZeros(N
, /*BuildVectorOnly*/ true);
271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode
*N
) {
272 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
275 for (const SDValue
&Op
: N
->op_values()) {
278 if (!isa
<ConstantSDNode
>(Op
))
284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode
*N
) {
285 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
288 for (const SDValue
&Op
: N
->op_values()) {
291 if (!isa
<ConstantFPSDNode
>(Op
))
297 bool ISD::allOperandsUndef(const SDNode
*N
) {
298 // Return false if the node has no operands.
299 // This is "logically inconsistent" with the definition of "all" but
300 // is probably the desired behavior.
301 if (N
->getNumOperands() == 0)
303 return all_of(N
->op_values(), [](SDValue Op
) { return Op
.isUndef(); });
306 bool ISD::matchUnaryPredicate(SDValue Op
,
307 std::function
<bool(ConstantSDNode
*)> Match
,
309 // FIXME: Add support for scalar UNDEF cases?
310 if (auto *Cst
= dyn_cast
<ConstantSDNode
>(Op
))
313 // FIXME: Add support for vector UNDEF cases?
314 if (ISD::BUILD_VECTOR
!= Op
.getOpcode() &&
315 ISD::SPLAT_VECTOR
!= Op
.getOpcode())
318 EVT SVT
= Op
.getValueType().getScalarType();
319 for (unsigned i
= 0, e
= Op
.getNumOperands(); i
!= e
; ++i
) {
320 if (AllowUndefs
&& Op
.getOperand(i
).isUndef()) {
326 auto *Cst
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(i
));
327 if (!Cst
|| Cst
->getValueType(0) != SVT
|| !Match(Cst
))
333 bool ISD::matchBinaryPredicate(
334 SDValue LHS
, SDValue RHS
,
335 std::function
<bool(ConstantSDNode
*, ConstantSDNode
*)> Match
,
336 bool AllowUndefs
, bool AllowTypeMismatch
) {
337 if (!AllowTypeMismatch
&& LHS
.getValueType() != RHS
.getValueType())
340 // TODO: Add support for scalar UNDEF cases?
341 if (auto *LHSCst
= dyn_cast
<ConstantSDNode
>(LHS
))
342 if (auto *RHSCst
= dyn_cast
<ConstantSDNode
>(RHS
))
343 return Match(LHSCst
, RHSCst
);
345 // TODO: Add support for vector UNDEF cases?
346 if (LHS
.getOpcode() != RHS
.getOpcode() ||
347 (LHS
.getOpcode() != ISD::BUILD_VECTOR
&&
348 LHS
.getOpcode() != ISD::SPLAT_VECTOR
))
351 EVT SVT
= LHS
.getValueType().getScalarType();
352 for (unsigned i
= 0, e
= LHS
.getNumOperands(); i
!= e
; ++i
) {
353 SDValue LHSOp
= LHS
.getOperand(i
);
354 SDValue RHSOp
= RHS
.getOperand(i
);
355 bool LHSUndef
= AllowUndefs
&& LHSOp
.isUndef();
356 bool RHSUndef
= AllowUndefs
&& RHSOp
.isUndef();
357 auto *LHSCst
= dyn_cast
<ConstantSDNode
>(LHSOp
);
358 auto *RHSCst
= dyn_cast
<ConstantSDNode
>(RHSOp
);
359 if ((!LHSCst
&& !LHSUndef
) || (!RHSCst
&& !RHSUndef
))
361 if (!AllowTypeMismatch
&& (LHSOp
.getValueType() != SVT
||
362 LHSOp
.getValueType() != RHSOp
.getValueType()))
364 if (!Match(LHSCst
, RHSCst
))
370 ISD::NodeType
ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode
) {
371 switch (VecReduceOpcode
) {
373 llvm_unreachable("Expected VECREDUCE opcode");
374 case ISD::VECREDUCE_FADD
:
375 case ISD::VECREDUCE_SEQ_FADD
:
376 case ISD::VP_REDUCE_FADD
:
377 case ISD::VP_REDUCE_SEQ_FADD
:
379 case ISD::VECREDUCE_FMUL
:
380 case ISD::VECREDUCE_SEQ_FMUL
:
381 case ISD::VP_REDUCE_FMUL
:
382 case ISD::VP_REDUCE_SEQ_FMUL
:
384 case ISD::VECREDUCE_ADD
:
385 case ISD::VP_REDUCE_ADD
:
387 case ISD::VECREDUCE_MUL
:
388 case ISD::VP_REDUCE_MUL
:
390 case ISD::VECREDUCE_AND
:
391 case ISD::VP_REDUCE_AND
:
393 case ISD::VECREDUCE_OR
:
394 case ISD::VP_REDUCE_OR
:
396 case ISD::VECREDUCE_XOR
:
397 case ISD::VP_REDUCE_XOR
:
399 case ISD::VECREDUCE_SMAX
:
400 case ISD::VP_REDUCE_SMAX
:
402 case ISD::VECREDUCE_SMIN
:
403 case ISD::VP_REDUCE_SMIN
:
405 case ISD::VECREDUCE_UMAX
:
406 case ISD::VP_REDUCE_UMAX
:
408 case ISD::VECREDUCE_UMIN
:
409 case ISD::VP_REDUCE_UMIN
:
411 case ISD::VECREDUCE_FMAX
:
412 case ISD::VP_REDUCE_FMAX
:
414 case ISD::VECREDUCE_FMIN
:
415 case ISD::VP_REDUCE_FMIN
:
420 bool ISD::isVPOpcode(unsigned Opcode
) {
424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
427 #include "llvm/IR/VPIntrinsics.def"
431 bool ISD::isVPBinaryOp(unsigned Opcode
) {
435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
436 #define VP_PROPERTY_BINARYOP return true;
437 #define END_REGISTER_VP_SDNODE(VPSD) break;
438 #include "llvm/IR/VPIntrinsics.def"
443 bool ISD::isVPReduction(unsigned Opcode
) {
447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
449 #define END_REGISTER_VP_SDNODE(VPSD) break;
450 #include "llvm/IR/VPIntrinsics.def"
455 /// The operand position of the vector mask.
456 Optional
<unsigned> ISD::getVPMaskIdx(unsigned Opcode
) {
460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
463 #include "llvm/IR/VPIntrinsics.def"
467 /// The operand position of the explicit vector length parameter.
468 Optional
<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode
) {
472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
475 #include "llvm/IR/VPIntrinsics.def"
479 ISD::NodeType
ISD::getExtForLoadExtType(bool IsFP
, ISD::LoadExtType ExtType
) {
482 return IsFP
? ISD::FP_EXTEND
: ISD::ANY_EXTEND
;
484 return ISD::SIGN_EXTEND
;
486 return ISD::ZERO_EXTEND
;
491 llvm_unreachable("Invalid LoadExtType");
494 ISD::CondCode
ISD::getSetCCSwappedOperands(ISD::CondCode Operation
) {
495 // To perform this operation, we just need to swap the L and G bits of the
497 unsigned OldL
= (Operation
>> 2) & 1;
498 unsigned OldG
= (Operation
>> 1) & 1;
499 return ISD::CondCode((Operation
& ~6) | // Keep the N, U, E bits
500 (OldL
<< 1) | // New G bit
501 (OldG
<< 2)); // New L bit.
504 static ISD::CondCode
getSetCCInverseImpl(ISD::CondCode Op
, bool isIntegerLike
) {
505 unsigned Operation
= Op
;
507 Operation
^= 7; // Flip L, G, E bits, but not U.
509 Operation
^= 15; // Flip all of the condition bits.
511 if (Operation
> ISD::SETTRUE2
)
512 Operation
&= ~8; // Don't let N and U bits get set.
514 return ISD::CondCode(Operation
);
517 ISD::CondCode
ISD::getSetCCInverse(ISD::CondCode Op
, EVT Type
) {
518 return getSetCCInverseImpl(Op
, Type
.isInteger());
521 ISD::CondCode
ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op
,
522 bool isIntegerLike
) {
523 return getSetCCInverseImpl(Op
, isIntegerLike
);
526 /// For an integer comparison, return 1 if the comparison is a signed operation
527 /// and 2 if the result is an unsigned comparison. Return zero if the operation
528 /// does not depend on the sign of the input (setne and seteq).
529 static int isSignedOp(ISD::CondCode Opcode
) {
531 default: llvm_unreachable("Illegal integer setcc operation!");
533 case ISD::SETNE
: return 0;
537 case ISD::SETGE
: return 1;
541 case ISD::SETUGE
: return 2;
545 ISD::CondCode
ISD::getSetCCOrOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
547 bool IsInteger
= Type
.isInteger();
548 if (IsInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
549 // Cannot fold a signed integer setcc with an unsigned integer setcc.
550 return ISD::SETCC_INVALID
;
552 unsigned Op
= Op1
| Op2
; // Combine all of the condition bits.
554 // If the N and U bits get set, then the resultant comparison DOES suddenly
555 // care about orderedness, and it is true when ordered.
556 if (Op
> ISD::SETTRUE2
)
557 Op
&= ~16; // Clear the U bit if the N bit is set.
559 // Canonicalize illegal integer setcc's.
560 if (IsInteger
&& Op
== ISD::SETUNE
) // e.g. SETUGT | SETULT
563 return ISD::CondCode(Op
);
566 ISD::CondCode
ISD::getSetCCAndOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
568 bool IsInteger
= Type
.isInteger();
569 if (IsInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
570 // Cannot fold a signed setcc with an unsigned setcc.
571 return ISD::SETCC_INVALID
;
573 // Combine all of the condition bits.
574 ISD::CondCode Result
= ISD::CondCode(Op1
& Op2
);
576 // Canonicalize illegal integer setcc's.
580 case ISD::SETUO
: Result
= ISD::SETFALSE
; break; // SETUGT & SETULT
581 case ISD::SETOEQ
: // SETEQ & SETU[LG]E
582 case ISD::SETUEQ
: Result
= ISD::SETEQ
; break; // SETUGE & SETULE
583 case ISD::SETOLT
: Result
= ISD::SETULT
; break; // SETULT & SETNE
584 case ISD::SETOGT
: Result
= ISD::SETUGT
; break; // SETUGT & SETNE
591 //===----------------------------------------------------------------------===//
592 // SDNode Profile Support
593 //===----------------------------------------------------------------------===//
595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
596 static void AddNodeIDOpcode(FoldingSetNodeID
&ID
, unsigned OpC
) {
600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
601 /// solely with their pointer.
602 static void AddNodeIDValueTypes(FoldingSetNodeID
&ID
, SDVTList VTList
) {
603 ID
.AddPointer(VTList
.VTs
);
606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
607 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
608 ArrayRef
<SDValue
> Ops
) {
609 for (auto& Op
: Ops
) {
610 ID
.AddPointer(Op
.getNode());
611 ID
.AddInteger(Op
.getResNo());
615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
616 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
617 ArrayRef
<SDUse
> Ops
) {
618 for (auto& Op
: Ops
) {
619 ID
.AddPointer(Op
.getNode());
620 ID
.AddInteger(Op
.getResNo());
624 static void AddNodeIDNode(FoldingSetNodeID
&ID
, unsigned short OpC
,
625 SDVTList VTList
, ArrayRef
<SDValue
> OpList
) {
626 AddNodeIDOpcode(ID
, OpC
);
627 AddNodeIDValueTypes(ID
, VTList
);
628 AddNodeIDOperands(ID
, OpList
);
631 /// If this is an SDNode with special info, add this info to the NodeID data.
632 static void AddNodeIDCustom(FoldingSetNodeID
&ID
, const SDNode
*N
) {
633 switch (N
->getOpcode()) {
634 case ISD::TargetExternalSymbol
:
635 case ISD::ExternalSymbol
:
637 llvm_unreachable("Should only be used on nodes with operands");
638 default: break; // Normal nodes don't need extra info.
639 case ISD::TargetConstant
:
640 case ISD::Constant
: {
641 const ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
);
642 ID
.AddPointer(C
->getConstantIntValue());
643 ID
.AddBoolean(C
->isOpaque());
646 case ISD::TargetConstantFP
:
647 case ISD::ConstantFP
:
648 ID
.AddPointer(cast
<ConstantFPSDNode
>(N
)->getConstantFPValue());
650 case ISD::TargetGlobalAddress
:
651 case ISD::GlobalAddress
:
652 case ISD::TargetGlobalTLSAddress
:
653 case ISD::GlobalTLSAddress
: {
654 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(N
);
655 ID
.AddPointer(GA
->getGlobal());
656 ID
.AddInteger(GA
->getOffset());
657 ID
.AddInteger(GA
->getTargetFlags());
660 case ISD::BasicBlock
:
661 ID
.AddPointer(cast
<BasicBlockSDNode
>(N
)->getBasicBlock());
664 ID
.AddInteger(cast
<RegisterSDNode
>(N
)->getReg());
666 case ISD::RegisterMask
:
667 ID
.AddPointer(cast
<RegisterMaskSDNode
>(N
)->getRegMask());
670 ID
.AddPointer(cast
<SrcValueSDNode
>(N
)->getValue());
672 case ISD::FrameIndex
:
673 case ISD::TargetFrameIndex
:
674 ID
.AddInteger(cast
<FrameIndexSDNode
>(N
)->getIndex());
676 case ISD::LIFETIME_START
:
677 case ISD::LIFETIME_END
:
678 if (cast
<LifetimeSDNode
>(N
)->hasOffset()) {
679 ID
.AddInteger(cast
<LifetimeSDNode
>(N
)->getSize());
680 ID
.AddInteger(cast
<LifetimeSDNode
>(N
)->getOffset());
683 case ISD::PSEUDO_PROBE
:
684 ID
.AddInteger(cast
<PseudoProbeSDNode
>(N
)->getGuid());
685 ID
.AddInteger(cast
<PseudoProbeSDNode
>(N
)->getIndex());
686 ID
.AddInteger(cast
<PseudoProbeSDNode
>(N
)->getAttributes());
689 case ISD::TargetJumpTable
:
690 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getIndex());
691 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getTargetFlags());
693 case ISD::ConstantPool
:
694 case ISD::TargetConstantPool
: {
695 const ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(N
);
696 ID
.AddInteger(CP
->getAlign().value());
697 ID
.AddInteger(CP
->getOffset());
698 if (CP
->isMachineConstantPoolEntry())
699 CP
->getMachineCPVal()->addSelectionDAGCSEId(ID
);
701 ID
.AddPointer(CP
->getConstVal());
702 ID
.AddInteger(CP
->getTargetFlags());
705 case ISD::TargetIndex
: {
706 const TargetIndexSDNode
*TI
= cast
<TargetIndexSDNode
>(N
);
707 ID
.AddInteger(TI
->getIndex());
708 ID
.AddInteger(TI
->getOffset());
709 ID
.AddInteger(TI
->getTargetFlags());
713 const LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
714 ID
.AddInteger(LD
->getMemoryVT().getRawBits());
715 ID
.AddInteger(LD
->getRawSubclassData());
716 ID
.AddInteger(LD
->getPointerInfo().getAddrSpace());
720 const StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
721 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
722 ID
.AddInteger(ST
->getRawSubclassData());
723 ID
.AddInteger(ST
->getPointerInfo().getAddrSpace());
727 const VPLoadSDNode
*ELD
= cast
<VPLoadSDNode
>(N
);
728 ID
.AddInteger(ELD
->getMemoryVT().getRawBits());
729 ID
.AddInteger(ELD
->getRawSubclassData());
730 ID
.AddInteger(ELD
->getPointerInfo().getAddrSpace());
733 case ISD::VP_STORE
: {
734 const VPStoreSDNode
*EST
= cast
<VPStoreSDNode
>(N
);
735 ID
.AddInteger(EST
->getMemoryVT().getRawBits());
736 ID
.AddInteger(EST
->getRawSubclassData());
737 ID
.AddInteger(EST
->getPointerInfo().getAddrSpace());
740 case ISD::VP_GATHER
: {
741 const VPGatherSDNode
*EG
= cast
<VPGatherSDNode
>(N
);
742 ID
.AddInteger(EG
->getMemoryVT().getRawBits());
743 ID
.AddInteger(EG
->getRawSubclassData());
744 ID
.AddInteger(EG
->getPointerInfo().getAddrSpace());
747 case ISD::VP_SCATTER
: {
748 const VPScatterSDNode
*ES
= cast
<VPScatterSDNode
>(N
);
749 ID
.AddInteger(ES
->getMemoryVT().getRawBits());
750 ID
.AddInteger(ES
->getRawSubclassData());
751 ID
.AddInteger(ES
->getPointerInfo().getAddrSpace());
755 const MaskedLoadSDNode
*MLD
= cast
<MaskedLoadSDNode
>(N
);
756 ID
.AddInteger(MLD
->getMemoryVT().getRawBits());
757 ID
.AddInteger(MLD
->getRawSubclassData());
758 ID
.AddInteger(MLD
->getPointerInfo().getAddrSpace());
762 const MaskedStoreSDNode
*MST
= cast
<MaskedStoreSDNode
>(N
);
763 ID
.AddInteger(MST
->getMemoryVT().getRawBits());
764 ID
.AddInteger(MST
->getRawSubclassData());
765 ID
.AddInteger(MST
->getPointerInfo().getAddrSpace());
769 const MaskedGatherSDNode
*MG
= cast
<MaskedGatherSDNode
>(N
);
770 ID
.AddInteger(MG
->getMemoryVT().getRawBits());
771 ID
.AddInteger(MG
->getRawSubclassData());
772 ID
.AddInteger(MG
->getPointerInfo().getAddrSpace());
775 case ISD::MSCATTER
: {
776 const MaskedScatterSDNode
*MS
= cast
<MaskedScatterSDNode
>(N
);
777 ID
.AddInteger(MS
->getMemoryVT().getRawBits());
778 ID
.AddInteger(MS
->getRawSubclassData());
779 ID
.AddInteger(MS
->getPointerInfo().getAddrSpace());
782 case ISD::ATOMIC_CMP_SWAP
:
783 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
:
784 case ISD::ATOMIC_SWAP
:
785 case ISD::ATOMIC_LOAD_ADD
:
786 case ISD::ATOMIC_LOAD_SUB
:
787 case ISD::ATOMIC_LOAD_AND
:
788 case ISD::ATOMIC_LOAD_CLR
:
789 case ISD::ATOMIC_LOAD_OR
:
790 case ISD::ATOMIC_LOAD_XOR
:
791 case ISD::ATOMIC_LOAD_NAND
:
792 case ISD::ATOMIC_LOAD_MIN
:
793 case ISD::ATOMIC_LOAD_MAX
:
794 case ISD::ATOMIC_LOAD_UMIN
:
795 case ISD::ATOMIC_LOAD_UMAX
:
796 case ISD::ATOMIC_LOAD
:
797 case ISD::ATOMIC_STORE
: {
798 const AtomicSDNode
*AT
= cast
<AtomicSDNode
>(N
);
799 ID
.AddInteger(AT
->getMemoryVT().getRawBits());
800 ID
.AddInteger(AT
->getRawSubclassData());
801 ID
.AddInteger(AT
->getPointerInfo().getAddrSpace());
804 case ISD::PREFETCH
: {
805 const MemSDNode
*PF
= cast
<MemSDNode
>(N
);
806 ID
.AddInteger(PF
->getPointerInfo().getAddrSpace());
809 case ISD::VECTOR_SHUFFLE
: {
810 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
811 for (unsigned i
= 0, e
= N
->getValueType(0).getVectorNumElements();
813 ID
.AddInteger(SVN
->getMaskElt(i
));
816 case ISD::TargetBlockAddress
:
817 case ISD::BlockAddress
: {
818 const BlockAddressSDNode
*BA
= cast
<BlockAddressSDNode
>(N
);
819 ID
.AddPointer(BA
->getBlockAddress());
820 ID
.AddInteger(BA
->getOffset());
821 ID
.AddInteger(BA
->getTargetFlags());
824 } // end switch (N->getOpcode())
826 // Target specific memory nodes could also have address spaces to check.
827 if (N
->isTargetMemoryOpcode())
828 ID
.AddInteger(cast
<MemSDNode
>(N
)->getPointerInfo().getAddrSpace());
831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
833 static void AddNodeIDNode(FoldingSetNodeID
&ID
, const SDNode
*N
) {
834 AddNodeIDOpcode(ID
, N
->getOpcode());
835 // Add the return value info.
836 AddNodeIDValueTypes(ID
, N
->getVTList());
837 // Add the operand info.
838 AddNodeIDOperands(ID
, N
->ops());
840 // Handle SDNode leafs with special info.
841 AddNodeIDCustom(ID
, N
);
844 //===----------------------------------------------------------------------===//
845 // SelectionDAG Class
846 //===----------------------------------------------------------------------===//
848 /// doNotCSE - Return true if CSE should not be performed for this node.
849 static bool doNotCSE(SDNode
*N
) {
850 if (N
->getValueType(0) == MVT::Glue
)
851 return true; // Never CSE anything that produces a flag.
853 switch (N
->getOpcode()) {
855 case ISD::HANDLENODE
:
857 return true; // Never CSE these nodes.
860 // Check that remaining values produced are not flags.
861 for (unsigned i
= 1, e
= N
->getNumValues(); i
!= e
; ++i
)
862 if (N
->getValueType(i
) == MVT::Glue
)
863 return true; // Never CSE anything that produces a flag.
868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
870 void SelectionDAG::RemoveDeadNodes() {
871 // Create a dummy node (which is not added to allnodes), that adds a reference
872 // to the root node, preventing it from being deleted.
873 HandleSDNode
Dummy(getRoot());
875 SmallVector
<SDNode
*, 128> DeadNodes
;
877 // Add all obviously-dead nodes to the DeadNodes worklist.
878 for (SDNode
&Node
: allnodes())
879 if (Node
.use_empty())
880 DeadNodes
.push_back(&Node
);
882 RemoveDeadNodes(DeadNodes
);
884 // If the root changed (e.g. it was a dead load, update the root).
885 setRoot(Dummy
.getValue());
888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
889 /// given list, and any nodes that become unreachable as a result.
890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
) {
892 // Process the worklist, deleting the nodes and adding their uses to the
894 while (!DeadNodes
.empty()) {
895 SDNode
*N
= DeadNodes
.pop_back_val();
896 // Skip to next node if we've already managed to delete the node. This could
897 // happen if replacing a node causes a node previously added to the node to
899 if (N
->getOpcode() == ISD::DELETED_NODE
)
902 for (DAGUpdateListener
*DUL
= UpdateListeners
; DUL
; DUL
= DUL
->Next
)
903 DUL
->NodeDeleted(N
, nullptr);
905 // Take the node out of the appropriate CSE map.
906 RemoveNodeFromCSEMaps(N
);
908 // Next, brutally remove the operand list. This is safe to do, as there are
909 // no cycles in the graph.
910 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
912 SDNode
*Operand
= Use
.getNode();
915 // Now that we removed this operand, see if there are no uses of it left.
916 if (Operand
->use_empty())
917 DeadNodes
.push_back(Operand
);
924 void SelectionDAG::RemoveDeadNode(SDNode
*N
){
925 SmallVector
<SDNode
*, 16> DeadNodes(1, N
);
927 // Create a dummy node that adds a reference to the root node, preventing
928 // it from being deleted. (This matters if the root is an operand of the
930 HandleSDNode
Dummy(getRoot());
932 RemoveDeadNodes(DeadNodes
);
935 void SelectionDAG::DeleteNode(SDNode
*N
) {
936 // First take this out of the appropriate CSE map.
937 RemoveNodeFromCSEMaps(N
);
939 // Finally, remove uses due to operands of this node, remove from the
940 // AllNodes list, and delete the node.
941 DeleteNodeNotInCSEMaps(N
);
944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode
*N
) {
945 assert(N
->getIterator() != AllNodes
.begin() &&
946 "Cannot delete the entry node!");
947 assert(N
->use_empty() && "Cannot delete a node that is not dead!");
949 // Drop all of the operands and decrement used node's use counts.
955 void SDDbgInfo::add(SDDbgValue
*V
, bool isParameter
) {
956 assert(!(V
->isVariadic() && isParameter
));
958 ByvalParmDbgValues
.push_back(V
);
960 DbgValues
.push_back(V
);
961 for (const SDNode
*Node
: V
->getSDNodes())
963 DbgValMap
[Node
].push_back(V
);
966 void SDDbgInfo::erase(const SDNode
*Node
) {
967 DbgValMapType::iterator I
= DbgValMap
.find(Node
);
968 if (I
== DbgValMap
.end())
970 for (auto &Val
: I
->second
)
971 Val
->setIsInvalidated();
975 void SelectionDAG::DeallocateNode(SDNode
*N
) {
976 // If we have operands, deallocate them.
979 NodeAllocator
.Deallocate(AllNodes
.remove(N
));
981 // Set the opcode to DELETED_NODE to help catch bugs when node
982 // memory is reallocated.
983 // FIXME: There are places in SDag that have grown a dependency on the opcode
984 // value in the released node.
985 __asan_unpoison_memory_region(&N
->NodeType
, sizeof(N
->NodeType
));
986 N
->NodeType
= ISD::DELETED_NODE
;
988 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
989 // them and forget about that node.
994 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid.
995 static void VerifySDNode(SDNode
*N
) {
996 switch (N
->getOpcode()) {
999 case ISD::BUILD_PAIR
: {
1000 EVT VT
= N
->getValueType(0);
1001 assert(N
->getNumValues() == 1 && "Too many results!");
1002 assert(!VT
.isVector() && (VT
.isInteger() || VT
.isFloatingPoint()) &&
1003 "Wrong return type!");
1004 assert(N
->getNumOperands() == 2 && "Wrong number of operands!");
1005 assert(N
->getOperand(0).getValueType() == N
->getOperand(1).getValueType() &&
1006 "Mismatched operand types!");
1007 assert(N
->getOperand(0).getValueType().isInteger() == VT
.isInteger() &&
1008 "Wrong operand type!");
1009 assert(VT
.getSizeInBits() == 2 * N
->getOperand(0).getValueSizeInBits() &&
1010 "Wrong return type size");
1013 case ISD::BUILD_VECTOR
: {
1014 assert(N
->getNumValues() == 1 && "Too many results!");
1015 assert(N
->getValueType(0).isVector() && "Wrong return type!");
1016 assert(N
->getNumOperands() == N
->getValueType(0).getVectorNumElements() &&
1017 "Wrong number of operands!");
1018 EVT EltVT
= N
->getValueType(0).getVectorElementType();
1019 for (const SDUse
&Op
: N
->ops()) {
1020 assert((Op
.getValueType() == EltVT
||
1021 (EltVT
.isInteger() && Op
.getValueType().isInteger() &&
1022 EltVT
.bitsLE(Op
.getValueType()))) &&
1023 "Wrong operand type!");
1024 assert(Op
.getValueType() == N
->getOperand(0).getValueType() &&
1025 "Operands must all have the same type");
1033 /// Insert a newly allocated node into the DAG.
1035 /// Handles insertion into the all nodes list and CSE map, as well as
1036 /// verification and other common operations when a new node is allocated.
1037 void SelectionDAG::InsertNode(SDNode
*N
) {
1038 AllNodes
.push_back(N
);
1040 N
->PersistentId
= NextPersistentId
++;
1043 for (DAGUpdateListener
*DUL
= UpdateListeners
; DUL
; DUL
= DUL
->Next
)
1044 DUL
->NodeInserted(N
);
1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1048 /// correspond to it. This is useful when we're about to delete or repurpose
1049 /// the node. We don't want future request for structurally identical nodes
1050 /// to return N anymore.
1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode
*N
) {
1052 bool Erased
= false;
1053 switch (N
->getOpcode()) {
1054 case ISD::HANDLENODE
: return false; // noop.
1056 assert(CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] &&
1057 "Cond code doesn't exist!");
1058 Erased
= CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] != nullptr;
1059 CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] = nullptr;
1061 case ISD::ExternalSymbol
:
1062 Erased
= ExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
1064 case ISD::TargetExternalSymbol
: {
1065 ExternalSymbolSDNode
*ESN
= cast
<ExternalSymbolSDNode
>(N
);
1066 Erased
= TargetExternalSymbols
.erase(std::pair
<std::string
, unsigned>(
1067 ESN
->getSymbol(), ESN
->getTargetFlags()));
1070 case ISD::MCSymbol
: {
1071 auto *MCSN
= cast
<MCSymbolSDNode
>(N
);
1072 Erased
= MCSymbols
.erase(MCSN
->getMCSymbol());
1075 case ISD::VALUETYPE
: {
1076 EVT VT
= cast
<VTSDNode
>(N
)->getVT();
1077 if (VT
.isExtended()) {
1078 Erased
= ExtendedValueTypeNodes
.erase(VT
);
1080 Erased
= ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] != nullptr;
1081 ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] = nullptr;
1086 // Remove it from the CSE Map.
1087 assert(N
->getOpcode() != ISD::DELETED_NODE
&& "DELETED_NODE in CSEMap!");
1088 assert(N
->getOpcode() != ISD::EntryToken
&& "EntryToken in CSEMap!");
1089 Erased
= CSEMap
.RemoveNode(N
);
1093 // Verify that the node was actually in one of the CSE maps, unless it has a
1094 // flag result (which cannot be CSE'd) or is one of the special cases that are
1095 // not subject to CSE.
1096 if (!Erased
&& N
->getValueType(N
->getNumValues()-1) != MVT::Glue
&&
1097 !N
->isMachineOpcode() && !doNotCSE(N
)) {
1100 llvm_unreachable("Node is not in map!");
1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1108 /// node already exists, in which case transfer all its users to the existing
1109 /// node. This transfer can potentially trigger recursive merging.
1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode
*N
) {
1112 // For node types that aren't CSE'd, just act as if no identical node
1115 SDNode
*Existing
= CSEMap
.GetOrInsertNode(N
);
1116 if (Existing
!= N
) {
1117 // If there was already an existing matching node, use ReplaceAllUsesWith
1118 // to replace the dead one with the existing one. This can cause
1119 // recursive merging of other unrelated nodes down the line.
1120 ReplaceAllUsesWith(N
, Existing
);
1122 // N is now dead. Inform the listeners and delete it.
1123 for (DAGUpdateListener
*DUL
= UpdateListeners
; DUL
; DUL
= DUL
->Next
)
1124 DUL
->NodeDeleted(N
, Existing
);
1125 DeleteNodeNotInCSEMaps(N
);
1130 // If the node doesn't already exist, we updated it. Inform listeners.
1131 for (DAGUpdateListener
*DUL
= UpdateListeners
; DUL
; DUL
= DUL
->Next
)
1132 DUL
->NodeUpdated(N
);
1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1136 /// were replaced with those specified. If this node is never memoized,
1137 /// return null, otherwise return a pointer to the slot it would take. If a
1138 /// node already exists with these operands, the slot will be non-null.
1139 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, SDValue Op
,
1144 SDValue Ops
[] = { Op
};
1145 FoldingSetNodeID ID
;
1146 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
);
1147 AddNodeIDCustom(ID
, N
);
1148 SDNode
*Node
= FindNodeOrInsertPos(ID
, SDLoc(N
), InsertPos
);
1150 Node
->intersectFlagsWith(N
->getFlags());
1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1155 /// were replaced with those specified. If this node is never memoized,
1156 /// return null, otherwise return a pointer to the slot it would take. If a
1157 /// node already exists with these operands, the slot will be non-null.
1158 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
1159 SDValue Op1
, SDValue Op2
,
1164 SDValue Ops
[] = { Op1
, Op2
};
1165 FoldingSetNodeID ID
;
1166 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
);
1167 AddNodeIDCustom(ID
, N
);
1168 SDNode
*Node
= FindNodeOrInsertPos(ID
, SDLoc(N
), InsertPos
);
1170 Node
->intersectFlagsWith(N
->getFlags());
1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1175 /// were replaced with those specified. If this node is never memoized,
1176 /// return null, otherwise return a pointer to the slot it would take. If a
1177 /// node already exists with these operands, the slot will be non-null.
1178 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, ArrayRef
<SDValue
> Ops
,
1183 FoldingSetNodeID ID
;
1184 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
);
1185 AddNodeIDCustom(ID
, N
);
1186 SDNode
*Node
= FindNodeOrInsertPos(ID
, SDLoc(N
), InsertPos
);
1188 Node
->intersectFlagsWith(N
->getFlags());
1192 Align
SelectionDAG::getEVTAlign(EVT VT
) const {
1193 Type
*Ty
= VT
== MVT::iPTR
?
1194 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1195 VT
.getTypeForEVT(*getContext());
1197 return getDataLayout().getABITypeAlign(Ty
);
1200 // EntryNode could meaningfully have debug info if we can find it...
1201 SelectionDAG::SelectionDAG(const TargetMachine
&tm
, CodeGenOpt::Level OL
)
1202 : TM(tm
), OptLevel(OL
),
1203 EntryNode(ISD::EntryToken
, 0, DebugLoc(), getVTList(MVT::Other
)),
1204 Root(getEntryNode()) {
1205 InsertNode(&EntryNode
);
1206 DbgInfo
= new SDDbgInfo();
1209 void SelectionDAG::init(MachineFunction
&NewMF
,
1210 OptimizationRemarkEmitter
&NewORE
,
1211 Pass
*PassPtr
, const TargetLibraryInfo
*LibraryInfo
,
1212 LegacyDivergenceAnalysis
* Divergence
,
1213 ProfileSummaryInfo
*PSIin
,
1214 BlockFrequencyInfo
*BFIin
) {
1216 SDAGISelPass
= PassPtr
;
1218 TLI
= getSubtarget().getTargetLowering();
1219 TSI
= getSubtarget().getSelectionDAGInfo();
1220 LibInfo
= LibraryInfo
;
1221 Context
= &MF
->getFunction().getContext();
1227 SelectionDAG::~SelectionDAG() {
1228 assert(!UpdateListeners
&& "Dangling registered DAGUpdateListeners");
1230 OperandRecycler
.clear(OperandAllocator
);
1234 bool SelectionDAG::shouldOptForSize() const {
1235 return MF
->getFunction().hasOptSize() ||
1236 llvm::shouldOptimizeForSize(FLI
->MBB
->getBasicBlock(), PSI
, BFI
);
1239 void SelectionDAG::allnodes_clear() {
1240 assert(&*AllNodes
.begin() == &EntryNode
);
1241 AllNodes
.remove(AllNodes
.begin());
1242 while (!AllNodes
.empty())
1243 DeallocateNode(&AllNodes
.front());
1245 NextPersistentId
= 0;
1249 SDNode
*SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID
&ID
,
1251 SDNode
*N
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
1253 switch (N
->getOpcode()) {
1256 case ISD::ConstantFP
:
1257 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1258 "debug location. Use another overload.");
1264 SDNode
*SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID
&ID
,
1265 const SDLoc
&DL
, void *&InsertPos
) {
1266 SDNode
*N
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
1268 switch (N
->getOpcode()) {
1270 case ISD::ConstantFP
:
1271 // Erase debug location from the node if the node is used at several
1272 // different places. Do not propagate one location to all uses as it
1273 // will cause a worse single stepping debugging experience.
1274 if (N
->getDebugLoc() != DL
.getDebugLoc())
1275 N
->setDebugLoc(DebugLoc());
1278 // When the node's point of use is located earlier in the instruction
1279 // sequence than its prior point of use, update its debug info to the
1280 // earlier location.
1281 if (DL
.getIROrder() && DL
.getIROrder() < N
->getIROrder())
1282 N
->setDebugLoc(DL
.getDebugLoc());
1289 void SelectionDAG::clear() {
1291 OperandRecycler
.clear(OperandAllocator
);
1292 OperandAllocator
.Reset();
1295 ExtendedValueTypeNodes
.clear();
1296 ExternalSymbols
.clear();
1297 TargetExternalSymbols
.clear();
1299 SDCallSiteDbgInfo
.clear();
1300 std::fill(CondCodeNodes
.begin(), CondCodeNodes
.end(),
1301 static_cast<CondCodeSDNode
*>(nullptr));
1302 std::fill(ValueTypeNodes
.begin(), ValueTypeNodes
.end(),
1303 static_cast<SDNode
*>(nullptr));
1305 EntryNode
.UseList
= nullptr;
1306 InsertNode(&EntryNode
);
1307 Root
= getEntryNode();
1311 SDValue
SelectionDAG::getFPExtendOrRound(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1312 return VT
.bitsGT(Op
.getValueType())
1313 ? getNode(ISD::FP_EXTEND
, DL
, VT
, Op
)
1314 : getNode(ISD::FP_ROUND
, DL
, VT
, Op
, getIntPtrConstant(0, DL
));
1317 std::pair
<SDValue
, SDValue
>
1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op
, SDValue Chain
,
1319 const SDLoc
&DL
, EVT VT
) {
1320 assert(!VT
.bitsEq(Op
.getValueType()) &&
1321 "Strict no-op FP extend/round not allowed.");
1323 VT
.bitsGT(Op
.getValueType())
1324 ? getNode(ISD::STRICT_FP_EXTEND
, DL
, {VT
, MVT::Other
}, {Chain
, Op
})
1325 : getNode(ISD::STRICT_FP_ROUND
, DL
, {VT
, MVT::Other
},
1326 {Chain
, Op
, getIntPtrConstant(0, DL
)});
1328 return std::pair
<SDValue
, SDValue
>(Res
, SDValue(Res
.getNode(), 1));
1331 SDValue
SelectionDAG::getAnyExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1332 return VT
.bitsGT(Op
.getValueType()) ?
1333 getNode(ISD::ANY_EXTEND
, DL
, VT
, Op
) :
1334 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
1337 SDValue
SelectionDAG::getSExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1338 return VT
.bitsGT(Op
.getValueType()) ?
1339 getNode(ISD::SIGN_EXTEND
, DL
, VT
, Op
) :
1340 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
1343 SDValue
SelectionDAG::getZExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1344 return VT
.bitsGT(Op
.getValueType()) ?
1345 getNode(ISD::ZERO_EXTEND
, DL
, VT
, Op
) :
1346 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
1349 SDValue
SelectionDAG::getBoolExtOrTrunc(SDValue Op
, const SDLoc
&SL
, EVT VT
,
1351 if (VT
.bitsLE(Op
.getValueType()))
1352 return getNode(ISD::TRUNCATE
, SL
, VT
, Op
);
1354 TargetLowering::BooleanContent BType
= TLI
->getBooleanContents(OpVT
);
1355 return getNode(TLI
->getExtendForContent(BType
), SL
, VT
, Op
);
1358 SDValue
SelectionDAG::getZeroExtendInReg(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1359 EVT OpVT
= Op
.getValueType();
1360 assert(VT
.isInteger() && OpVT
.isInteger() &&
1361 "Cannot getZeroExtendInReg FP types");
1362 assert(VT
.isVector() == OpVT
.isVector() &&
1363 "getZeroExtendInReg type should be vector iff the operand "
1365 assert((!VT
.isVector() ||
1366 VT
.getVectorElementCount() == OpVT
.getVectorElementCount()) &&
1367 "Vector element counts must match in getZeroExtendInReg");
1368 assert(VT
.bitsLE(OpVT
) && "Not extending!");
1371 APInt Imm
= APInt::getLowBitsSet(OpVT
.getScalarSizeInBits(),
1372 VT
.getScalarSizeInBits());
1373 return getNode(ISD::AND
, DL
, OpVT
, Op
, getConstant(Imm
, DL
, OpVT
));
1376 SDValue
SelectionDAG::getPtrExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1377 // Only unsigned pointer semantics are supported right now. In the future this
1378 // might delegate to TLI to check pointer signedness.
1379 return getZExtOrTrunc(Op
, DL
, VT
);
1382 SDValue
SelectionDAG::getPtrExtendInReg(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1383 // Only unsigned pointer semantics are supported right now. In the future this
1384 // might delegate to TLI to check pointer signedness.
1385 return getZeroExtendInReg(Op
, DL
, VT
);
1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1389 SDValue
SelectionDAG::getNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
) {
1390 return getNode(ISD::XOR
, DL
, VT
, Val
, getAllOnesConstant(DL
, VT
));
1393 SDValue
SelectionDAG::getLogicalNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
) {
1394 SDValue TrueValue
= getBoolConstant(true, DL
, VT
, VT
);
1395 return getNode(ISD::XOR
, DL
, VT
, Val
, TrueValue
);
1398 SDValue
SelectionDAG::getBoolConstant(bool V
, const SDLoc
&DL
, EVT VT
,
1401 return getConstant(0, DL
, VT
);
1403 switch (TLI
->getBooleanContents(OpVT
)) {
1404 case TargetLowering::ZeroOrOneBooleanContent
:
1405 case TargetLowering::UndefinedBooleanContent
:
1406 return getConstant(1, DL
, VT
);
1407 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
1408 return getAllOnesConstant(DL
, VT
);
1410 llvm_unreachable("Unexpected boolean content enum!");
1413 SDValue
SelectionDAG::getConstant(uint64_t Val
, const SDLoc
&DL
, EVT VT
,
1414 bool isT
, bool isO
) {
1415 EVT EltVT
= VT
.getScalarType();
1416 assert((EltVT
.getSizeInBits() >= 64 ||
1417 (uint64_t)((int64_t)Val
>> EltVT
.getSizeInBits()) + 1 < 2) &&
1418 "getConstant with a uint64_t value that doesn't fit in the type!");
1419 return getConstant(APInt(EltVT
.getSizeInBits(), Val
), DL
, VT
, isT
, isO
);
1422 SDValue
SelectionDAG::getConstant(const APInt
&Val
, const SDLoc
&DL
, EVT VT
,
1423 bool isT
, bool isO
) {
1424 return getConstant(*ConstantInt::get(*Context
, Val
), DL
, VT
, isT
, isO
);
1427 SDValue
SelectionDAG::getConstant(const ConstantInt
&Val
, const SDLoc
&DL
,
1428 EVT VT
, bool isT
, bool isO
) {
1429 assert(VT
.isInteger() && "Cannot create FP integer constant!");
1431 EVT EltVT
= VT
.getScalarType();
1432 const ConstantInt
*Elt
= &Val
;
1434 // In some cases the vector type is legal but the element type is illegal and
1435 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1436 // inserted value (the type does not need to match the vector element type).
1437 // Any extra bits introduced will be truncated away.
1438 if (VT
.isVector() && TLI
->getTypeAction(*getContext(), EltVT
) ==
1439 TargetLowering::TypePromoteInteger
) {
1440 EltVT
= TLI
->getTypeToTransformTo(*getContext(), EltVT
);
1441 APInt NewVal
= Elt
->getValue().zextOrTrunc(EltVT
.getSizeInBits());
1442 Elt
= ConstantInt::get(*getContext(), NewVal
);
1444 // In other cases the element type is illegal and needs to be expanded, for
1445 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1446 // the value into n parts and use a vector type with n-times the elements.
1447 // Then bitcast to the type requested.
1448 // Legalizing constants too early makes the DAGCombiner's job harder so we
1449 // only legalize if the DAG tells us we must produce legal types.
1450 else if (NewNodesMustHaveLegalTypes
&& VT
.isVector() &&
1451 TLI
->getTypeAction(*getContext(), EltVT
) ==
1452 TargetLowering::TypeExpandInteger
) {
1453 const APInt
&NewVal
= Elt
->getValue();
1454 EVT ViaEltVT
= TLI
->getTypeToTransformTo(*getContext(), EltVT
);
1455 unsigned ViaEltSizeInBits
= ViaEltVT
.getSizeInBits();
1457 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1458 if (VT
.isScalableVector()) {
1459 assert(EltVT
.getSizeInBits() % ViaEltSizeInBits
== 0 &&
1460 "Can only handle an even split!");
1461 unsigned Parts
= EltVT
.getSizeInBits() / ViaEltSizeInBits
;
1463 SmallVector
<SDValue
, 2> ScalarParts
;
1464 for (unsigned i
= 0; i
!= Parts
; ++i
)
1465 ScalarParts
.push_back(getConstant(
1466 NewVal
.extractBits(ViaEltSizeInBits
, i
* ViaEltSizeInBits
), DL
,
1467 ViaEltVT
, isT
, isO
));
1469 return getNode(ISD::SPLAT_VECTOR_PARTS
, DL
, VT
, ScalarParts
);
1472 unsigned ViaVecNumElts
= VT
.getSizeInBits() / ViaEltSizeInBits
;
1473 EVT ViaVecVT
= EVT::getVectorVT(*getContext(), ViaEltVT
, ViaVecNumElts
);
1475 // Check the temporary vector is the correct size. If this fails then
1476 // getTypeToTransformTo() probably returned a type whose size (in bits)
1477 // isn't a power-of-2 factor of the requested type size.
1478 assert(ViaVecVT
.getSizeInBits() == VT
.getSizeInBits());
1480 SmallVector
<SDValue
, 2> EltParts
;
1481 for (unsigned i
= 0; i
< ViaVecNumElts
/ VT
.getVectorNumElements(); ++i
)
1482 EltParts
.push_back(getConstant(
1483 NewVal
.extractBits(ViaEltSizeInBits
, i
* ViaEltSizeInBits
), DL
,
1484 ViaEltVT
, isT
, isO
));
1486 // EltParts is currently in little endian order. If we actually want
1487 // big-endian order then reverse it now.
1488 if (getDataLayout().isBigEndian())
1489 std::reverse(EltParts
.begin(), EltParts
.end());
1491 // The elements must be reversed when the element order is different
1492 // to the endianness of the elements (because the BITCAST is itself a
1493 // vector shuffle in this situation). However, we do not need any code to
1494 // perform this reversal because getConstant() is producing a vector
1496 // This situation occurs in MIPS MSA.
1498 SmallVector
<SDValue
, 8> Ops
;
1499 for (unsigned i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
)
1500 llvm::append_range(Ops
, EltParts
);
1503 getNode(ISD::BITCAST
, DL
, VT
, getBuildVector(ViaVecVT
, DL
, Ops
));
1507 assert(Elt
->getBitWidth() == EltVT
.getSizeInBits() &&
1508 "APInt size does not match type size!");
1509 unsigned Opc
= isT
? ISD::TargetConstant
: ISD::Constant
;
1510 FoldingSetNodeID ID
;
1511 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), None
);
1515 SDNode
*N
= nullptr;
1516 if ((N
= FindNodeOrInsertPos(ID
, DL
, IP
)))
1518 return SDValue(N
, 0);
1521 N
= newSDNode
<ConstantSDNode
>(isT
, isO
, Elt
, EltVT
);
1522 CSEMap
.InsertNode(N
, IP
);
1524 NewSDValueDbgMsg(SDValue(N
, 0), "Creating constant: ", this);
1527 SDValue
Result(N
, 0);
1528 if (VT
.isScalableVector())
1529 Result
= getSplatVector(VT
, DL
, Result
);
1530 else if (VT
.isVector())
1531 Result
= getSplatBuildVector(VT
, DL
, Result
);
1536 SDValue
SelectionDAG::getIntPtrConstant(uint64_t Val
, const SDLoc
&DL
,
1538 return getConstant(Val
, DL
, TLI
->getPointerTy(getDataLayout()), isTarget
);
1541 SDValue
SelectionDAG::getShiftAmountConstant(uint64_t Val
, EVT VT
,
1542 const SDLoc
&DL
, bool LegalTypes
) {
1543 assert(VT
.isInteger() && "Shift amount is not an integer type!");
1544 EVT ShiftVT
= TLI
->getShiftAmountTy(VT
, getDataLayout(), LegalTypes
);
1545 return getConstant(Val
, DL
, ShiftVT
);
1548 SDValue
SelectionDAG::getVectorIdxConstant(uint64_t Val
, const SDLoc
&DL
,
1550 return getConstant(Val
, DL
, TLI
->getVectorIdxTy(getDataLayout()), isTarget
);
1553 SDValue
SelectionDAG::getConstantFP(const APFloat
&V
, const SDLoc
&DL
, EVT VT
,
1555 return getConstantFP(*ConstantFP::get(*getContext(), V
), DL
, VT
, isTarget
);
1558 SDValue
SelectionDAG::getConstantFP(const ConstantFP
&V
, const SDLoc
&DL
,
1559 EVT VT
, bool isTarget
) {
1560 assert(VT
.isFloatingPoint() && "Cannot create integer FP constant!");
1562 EVT EltVT
= VT
.getScalarType();
1564 // Do the map lookup using the actual bit pattern for the floating point
1565 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1566 // we don't have issues with SNANs.
1567 unsigned Opc
= isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
;
1568 FoldingSetNodeID ID
;
1569 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), None
);
1572 SDNode
*N
= nullptr;
1573 if ((N
= FindNodeOrInsertPos(ID
, DL
, IP
)))
1575 return SDValue(N
, 0);
1578 N
= newSDNode
<ConstantFPSDNode
>(isTarget
, &V
, EltVT
);
1579 CSEMap
.InsertNode(N
, IP
);
1583 SDValue
Result(N
, 0);
1584 if (VT
.isScalableVector())
1585 Result
= getSplatVector(VT
, DL
, Result
);
1586 else if (VT
.isVector())
1587 Result
= getSplatBuildVector(VT
, DL
, Result
);
1588 NewSDValueDbgMsg(Result
, "Creating fp constant: ", this);
1592 SDValue
SelectionDAG::getConstantFP(double Val
, const SDLoc
&DL
, EVT VT
,
1594 EVT EltVT
= VT
.getScalarType();
1595 if (EltVT
== MVT::f32
)
1596 return getConstantFP(APFloat((float)Val
), DL
, VT
, isTarget
);
1597 if (EltVT
== MVT::f64
)
1598 return getConstantFP(APFloat(Val
), DL
, VT
, isTarget
);
1599 if (EltVT
== MVT::f80
|| EltVT
== MVT::f128
|| EltVT
== MVT::ppcf128
||
1600 EltVT
== MVT::f16
|| EltVT
== MVT::bf16
) {
1602 APFloat APF
= APFloat(Val
);
1603 APF
.convert(EVTToAPFloatSemantics(EltVT
), APFloat::rmNearestTiesToEven
,
1605 return getConstantFP(APF
, DL
, VT
, isTarget
);
1607 llvm_unreachable("Unsupported type in getConstantFP");
1610 SDValue
SelectionDAG::getGlobalAddress(const GlobalValue
*GV
, const SDLoc
&DL
,
1611 EVT VT
, int64_t Offset
, bool isTargetGA
,
1612 unsigned TargetFlags
) {
1613 assert((TargetFlags
== 0 || isTargetGA
) &&
1614 "Cannot set target flags on target-independent globals");
1616 // Truncate (with sign-extension) the offset value to the pointer size.
1617 unsigned BitWidth
= getDataLayout().getPointerTypeSizeInBits(GV
->getType());
1619 Offset
= SignExtend64(Offset
, BitWidth
);
1622 if (GV
->isThreadLocal())
1623 Opc
= isTargetGA
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
;
1625 Opc
= isTargetGA
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
;
1627 FoldingSetNodeID ID
;
1628 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1630 ID
.AddInteger(Offset
);
1631 ID
.AddInteger(TargetFlags
);
1633 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
))
1634 return SDValue(E
, 0);
1636 auto *N
= newSDNode
<GlobalAddressSDNode
>(
1637 Opc
, DL
.getIROrder(), DL
.getDebugLoc(), GV
, VT
, Offset
, TargetFlags
);
1638 CSEMap
.InsertNode(N
, IP
);
1640 return SDValue(N
, 0);
1643 SDValue
SelectionDAG::getFrameIndex(int FI
, EVT VT
, bool isTarget
) {
1644 unsigned Opc
= isTarget
? ISD::TargetFrameIndex
: ISD::FrameIndex
;
1645 FoldingSetNodeID ID
;
1646 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1649 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1650 return SDValue(E
, 0);
1652 auto *N
= newSDNode
<FrameIndexSDNode
>(FI
, VT
, isTarget
);
1653 CSEMap
.InsertNode(N
, IP
);
1655 return SDValue(N
, 0);
1658 SDValue
SelectionDAG::getJumpTable(int JTI
, EVT VT
, bool isTarget
,
1659 unsigned TargetFlags
) {
1660 assert((TargetFlags
== 0 || isTarget
) &&
1661 "Cannot set target flags on target-independent jump tables");
1662 unsigned Opc
= isTarget
? ISD::TargetJumpTable
: ISD::JumpTable
;
1663 FoldingSetNodeID ID
;
1664 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1666 ID
.AddInteger(TargetFlags
);
1668 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1669 return SDValue(E
, 0);
1671 auto *N
= newSDNode
<JumpTableSDNode
>(JTI
, VT
, isTarget
, TargetFlags
);
1672 CSEMap
.InsertNode(N
, IP
);
1674 return SDValue(N
, 0);
1677 SDValue
SelectionDAG::getConstantPool(const Constant
*C
, EVT VT
,
1678 MaybeAlign Alignment
, int Offset
,
1679 bool isTarget
, unsigned TargetFlags
) {
1680 assert((TargetFlags
== 0 || isTarget
) &&
1681 "Cannot set target flags on target-independent globals");
1683 Alignment
= shouldOptForSize()
1684 ? getDataLayout().getABITypeAlign(C
->getType())
1685 : getDataLayout().getPrefTypeAlign(C
->getType());
1686 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1687 FoldingSetNodeID ID
;
1688 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1689 ID
.AddInteger(Alignment
->value());
1690 ID
.AddInteger(Offset
);
1692 ID
.AddInteger(TargetFlags
);
1694 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1695 return SDValue(E
, 0);
1697 auto *N
= newSDNode
<ConstantPoolSDNode
>(isTarget
, C
, VT
, Offset
, *Alignment
,
1699 CSEMap
.InsertNode(N
, IP
);
1701 SDValue V
= SDValue(N
, 0);
1702 NewSDValueDbgMsg(V
, "Creating new constant pool: ", this);
1706 SDValue
SelectionDAG::getConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
1707 MaybeAlign Alignment
, int Offset
,
1708 bool isTarget
, unsigned TargetFlags
) {
1709 assert((TargetFlags
== 0 || isTarget
) &&
1710 "Cannot set target flags on target-independent globals");
1712 Alignment
= getDataLayout().getPrefTypeAlign(C
->getType());
1713 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1714 FoldingSetNodeID ID
;
1715 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1716 ID
.AddInteger(Alignment
->value());
1717 ID
.AddInteger(Offset
);
1718 C
->addSelectionDAGCSEId(ID
);
1719 ID
.AddInteger(TargetFlags
);
1721 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1722 return SDValue(E
, 0);
1724 auto *N
= newSDNode
<ConstantPoolSDNode
>(isTarget
, C
, VT
, Offset
, *Alignment
,
1726 CSEMap
.InsertNode(N
, IP
);
1728 return SDValue(N
, 0);
1731 SDValue
SelectionDAG::getTargetIndex(int Index
, EVT VT
, int64_t Offset
,
1732 unsigned TargetFlags
) {
1733 FoldingSetNodeID ID
;
1734 AddNodeIDNode(ID
, ISD::TargetIndex
, getVTList(VT
), None
);
1735 ID
.AddInteger(Index
);
1736 ID
.AddInteger(Offset
);
1737 ID
.AddInteger(TargetFlags
);
1739 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1740 return SDValue(E
, 0);
1742 auto *N
= newSDNode
<TargetIndexSDNode
>(Index
, VT
, Offset
, TargetFlags
);
1743 CSEMap
.InsertNode(N
, IP
);
1745 return SDValue(N
, 0);
1748 SDValue
SelectionDAG::getBasicBlock(MachineBasicBlock
*MBB
) {
1749 FoldingSetNodeID ID
;
1750 AddNodeIDNode(ID
, ISD::BasicBlock
, getVTList(MVT::Other
), None
);
1753 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1754 return SDValue(E
, 0);
1756 auto *N
= newSDNode
<BasicBlockSDNode
>(MBB
);
1757 CSEMap
.InsertNode(N
, IP
);
1759 return SDValue(N
, 0);
1762 SDValue
SelectionDAG::getValueType(EVT VT
) {
1763 if (VT
.isSimple() && (unsigned)VT
.getSimpleVT().SimpleTy
>=
1764 ValueTypeNodes
.size())
1765 ValueTypeNodes
.resize(VT
.getSimpleVT().SimpleTy
+1);
1767 SDNode
*&N
= VT
.isExtended() ?
1768 ExtendedValueTypeNodes
[VT
] : ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
];
1770 if (N
) return SDValue(N
, 0);
1771 N
= newSDNode
<VTSDNode
>(VT
);
1773 return SDValue(N
, 0);
1776 SDValue
SelectionDAG::getExternalSymbol(const char *Sym
, EVT VT
) {
1777 SDNode
*&N
= ExternalSymbols
[Sym
];
1778 if (N
) return SDValue(N
, 0);
1779 N
= newSDNode
<ExternalSymbolSDNode
>(false, Sym
, 0, VT
);
1781 return SDValue(N
, 0);
1784 SDValue
SelectionDAG::getMCSymbol(MCSymbol
*Sym
, EVT VT
) {
1785 SDNode
*&N
= MCSymbols
[Sym
];
1787 return SDValue(N
, 0);
1788 N
= newSDNode
<MCSymbolSDNode
>(Sym
, VT
);
1790 return SDValue(N
, 0);
1793 SDValue
SelectionDAG::getTargetExternalSymbol(const char *Sym
, EVT VT
,
1794 unsigned TargetFlags
) {
1796 TargetExternalSymbols
[std::pair
<std::string
, unsigned>(Sym
, TargetFlags
)];
1797 if (N
) return SDValue(N
, 0);
1798 N
= newSDNode
<ExternalSymbolSDNode
>(true, Sym
, TargetFlags
, VT
);
1800 return SDValue(N
, 0);
1803 SDValue
SelectionDAG::getCondCode(ISD::CondCode Cond
) {
1804 if ((unsigned)Cond
>= CondCodeNodes
.size())
1805 CondCodeNodes
.resize(Cond
+1);
1807 if (!CondCodeNodes
[Cond
]) {
1808 auto *N
= newSDNode
<CondCodeSDNode
>(Cond
);
1809 CondCodeNodes
[Cond
] = N
;
1813 return SDValue(CondCodeNodes
[Cond
], 0);
1816 SDValue
SelectionDAG::getStepVector(const SDLoc
&DL
, EVT ResVT
) {
1817 APInt
One(ResVT
.getScalarSizeInBits(), 1);
1818 return getStepVector(DL
, ResVT
, One
);
1821 SDValue
SelectionDAG::getStepVector(const SDLoc
&DL
, EVT ResVT
, APInt StepVal
) {
1822 assert(ResVT
.getScalarSizeInBits() == StepVal
.getBitWidth());
1823 if (ResVT
.isScalableVector())
1825 ISD::STEP_VECTOR
, DL
, ResVT
,
1826 getTargetConstant(StepVal
, DL
, ResVT
.getVectorElementType()));
1828 SmallVector
<SDValue
, 16> OpsStepConstants
;
1829 for (uint64_t i
= 0; i
< ResVT
.getVectorNumElements(); i
++)
1830 OpsStepConstants
.push_back(
1831 getConstant(StepVal
* i
, DL
, ResVT
.getVectorElementType()));
1832 return getBuildVector(ResVT
, DL
, OpsStepConstants
);
1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1837 static void commuteShuffle(SDValue
&N1
, SDValue
&N2
, MutableArrayRef
<int> M
) {
1839 ShuffleVectorSDNode::commuteMask(M
);
1842 SDValue
SelectionDAG::getVectorShuffle(EVT VT
, const SDLoc
&dl
, SDValue N1
,
1843 SDValue N2
, ArrayRef
<int> Mask
) {
1844 assert(VT
.getVectorNumElements() == Mask
.size() &&
1845 "Must have the same number of vector elements as mask elements!");
1846 assert(VT
== N1
.getValueType() && VT
== N2
.getValueType() &&
1847 "Invalid VECTOR_SHUFFLE");
1849 // Canonicalize shuffle undef, undef -> undef
1850 if (N1
.isUndef() && N2
.isUndef())
1851 return getUNDEF(VT
);
1853 // Validate that all indices in Mask are within the range of the elements
1854 // input to the shuffle.
1855 int NElts
= Mask
.size();
1856 assert(llvm::all_of(Mask
,
1857 [&](int M
) { return M
< (NElts
* 2) && M
>= -1; }) &&
1858 "Index out of range");
1860 // Copy the mask so we can do any needed cleanup.
1861 SmallVector
<int, 8> MaskVec(Mask
.begin(), Mask
.end());
1863 // Canonicalize shuffle v, v -> v, undef
1866 for (int i
= 0; i
!= NElts
; ++i
)
1867 if (MaskVec
[i
] >= NElts
) MaskVec
[i
] -= NElts
;
1870 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1872 commuteShuffle(N1
, N2
, MaskVec
);
1874 if (TLI
->hasVectorBlend()) {
1875 // If shuffling a splat, try to blend the splat instead. We do this here so
1876 // that even when this arises during lowering we don't have to re-handle it.
1877 auto BlendSplat
= [&](BuildVectorSDNode
*BV
, int Offset
) {
1878 BitVector UndefElements
;
1879 SDValue Splat
= BV
->getSplatValue(&UndefElements
);
1883 for (int i
= 0; i
< NElts
; ++i
) {
1884 if (MaskVec
[i
] < Offset
|| MaskVec
[i
] >= (Offset
+ NElts
))
1887 // If this input comes from undef, mark it as such.
1888 if (UndefElements
[MaskVec
[i
] - Offset
]) {
1893 // If we can blend a non-undef lane, use that instead.
1894 if (!UndefElements
[i
])
1895 MaskVec
[i
] = i
+ Offset
;
1898 if (auto *N1BV
= dyn_cast
<BuildVectorSDNode
>(N1
))
1899 BlendSplat(N1BV
, 0);
1900 if (auto *N2BV
= dyn_cast
<BuildVectorSDNode
>(N2
))
1901 BlendSplat(N2BV
, NElts
);
1904 // Canonicalize all index into lhs, -> shuffle lhs, undef
1905 // Canonicalize all index into rhs, -> shuffle rhs, undef
1906 bool AllLHS
= true, AllRHS
= true;
1907 bool N2Undef
= N2
.isUndef();
1908 for (int i
= 0; i
!= NElts
; ++i
) {
1909 if (MaskVec
[i
] >= NElts
) {
1914 } else if (MaskVec
[i
] >= 0) {
1918 if (AllLHS
&& AllRHS
)
1919 return getUNDEF(VT
);
1920 if (AllLHS
&& !N2Undef
)
1924 commuteShuffle(N1
, N2
, MaskVec
);
1926 // Reset our undef status after accounting for the mask.
1927 N2Undef
= N2
.isUndef();
1928 // Re-check whether both sides ended up undef.
1929 if (N1
.isUndef() && N2Undef
)
1930 return getUNDEF(VT
);
1932 // If Identity shuffle return that node.
1933 bool Identity
= true, AllSame
= true;
1934 for (int i
= 0; i
!= NElts
; ++i
) {
1935 if (MaskVec
[i
] >= 0 && MaskVec
[i
] != i
) Identity
= false;
1936 if (MaskVec
[i
] != MaskVec
[0]) AllSame
= false;
1938 if (Identity
&& NElts
)
1941 // Shuffling a constant splat doesn't change the result.
1945 // Look through any bitcasts. We check that these don't change the number
1946 // (and size) of elements and just changes their types.
1947 while (V
.getOpcode() == ISD::BITCAST
)
1948 V
= V
->getOperand(0);
1950 // A splat should always show up as a build vector node.
1951 if (auto *BV
= dyn_cast
<BuildVectorSDNode
>(V
)) {
1952 BitVector UndefElements
;
1953 SDValue Splat
= BV
->getSplatValue(&UndefElements
);
1954 // If this is a splat of an undef, shuffling it is also undef.
1955 if (Splat
&& Splat
.isUndef())
1956 return getUNDEF(VT
);
1959 V
.getValueType().getVectorNumElements() == VT
.getVectorNumElements();
1961 // We only have a splat which can skip shuffles if there is a splatted
1962 // value and no undef lanes rearranged by the shuffle.
1963 if (Splat
&& UndefElements
.none()) {
1964 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1965 // number of elements match or the value splatted is a zero constant.
1968 if (auto *C
= dyn_cast
<ConstantSDNode
>(Splat
))
1973 // If the shuffle itself creates a splat, build the vector directly.
1974 if (AllSame
&& SameNumElts
) {
1975 EVT BuildVT
= BV
->getValueType(0);
1976 const SDValue
&Splatted
= BV
->getOperand(MaskVec
[0]);
1977 SDValue NewBV
= getSplatBuildVector(BuildVT
, dl
, Splatted
);
1979 // We may have jumped through bitcasts, so the type of the
1980 // BUILD_VECTOR may not match the type of the shuffle.
1982 NewBV
= getNode(ISD::BITCAST
, dl
, VT
, NewBV
);
1988 FoldingSetNodeID ID
;
1989 SDValue Ops
[2] = { N1
, N2
};
1990 AddNodeIDNode(ID
, ISD::VECTOR_SHUFFLE
, getVTList(VT
), Ops
);
1991 for (int i
= 0; i
!= NElts
; ++i
)
1992 ID
.AddInteger(MaskVec
[i
]);
1995 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
))
1996 return SDValue(E
, 0);
1998 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1999 // SDNode doesn't have access to it. This memory will be "leaked" when
2000 // the node is deallocated, but recovered when the NodeAllocator is released.
2001 int *MaskAlloc
= OperandAllocator
.Allocate
<int>(NElts
);
2002 llvm::copy(MaskVec
, MaskAlloc
);
2004 auto *N
= newSDNode
<ShuffleVectorSDNode
>(VT
, dl
.getIROrder(),
2005 dl
.getDebugLoc(), MaskAlloc
);
2006 createOperands(N
, Ops
);
2008 CSEMap
.InsertNode(N
, IP
);
2010 SDValue V
= SDValue(N
, 0);
2011 NewSDValueDbgMsg(V
, "Creating new node: ", this);
2015 SDValue
SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode
&SV
) {
2016 EVT VT
= SV
.getValueType(0);
2017 SmallVector
<int, 8> MaskVec(SV
.getMask().begin(), SV
.getMask().end());
2018 ShuffleVectorSDNode::commuteMask(MaskVec
);
2020 SDValue Op0
= SV
.getOperand(0);
2021 SDValue Op1
= SV
.getOperand(1);
2022 return getVectorShuffle(VT
, SDLoc(&SV
), Op1
, Op0
, MaskVec
);
2025 SDValue
SelectionDAG::getRegister(unsigned RegNo
, EVT VT
) {
2026 FoldingSetNodeID ID
;
2027 AddNodeIDNode(ID
, ISD::Register
, getVTList(VT
), None
);
2028 ID
.AddInteger(RegNo
);
2030 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
2031 return SDValue(E
, 0);
2033 auto *N
= newSDNode
<RegisterSDNode
>(RegNo
, VT
);
2034 N
->SDNodeBits
.IsDivergent
= TLI
->isSDNodeSourceOfDivergence(N
, FLI
, DA
);
2035 CSEMap
.InsertNode(N
, IP
);
2037 return SDValue(N
, 0);
2040 SDValue
SelectionDAG::getRegisterMask(const uint32_t *RegMask
) {
2041 FoldingSetNodeID ID
;
2042 AddNodeIDNode(ID
, ISD::RegisterMask
, getVTList(MVT::Untyped
), None
);
2043 ID
.AddPointer(RegMask
);
2045 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
2046 return SDValue(E
, 0);
2048 auto *N
= newSDNode
<RegisterMaskSDNode
>(RegMask
);
2049 CSEMap
.InsertNode(N
, IP
);
2051 return SDValue(N
, 0);
2054 SDValue
SelectionDAG::getEHLabel(const SDLoc
&dl
, SDValue Root
,
2056 return getLabelNode(ISD::EH_LABEL
, dl
, Root
, Label
);
2059 SDValue
SelectionDAG::getLabelNode(unsigned Opcode
, const SDLoc
&dl
,
2060 SDValue Root
, MCSymbol
*Label
) {
2061 FoldingSetNodeID ID
;
2062 SDValue Ops
[] = { Root
};
2063 AddNodeIDNode(ID
, Opcode
, getVTList(MVT::Other
), Ops
);
2064 ID
.AddPointer(Label
);
2066 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
2067 return SDValue(E
, 0);
2070 newSDNode
<LabelSDNode
>(Opcode
, dl
.getIROrder(), dl
.getDebugLoc(), Label
);
2071 createOperands(N
, Ops
);
2073 CSEMap
.InsertNode(N
, IP
);
2075 return SDValue(N
, 0);
2078 SDValue
SelectionDAG::getBlockAddress(const BlockAddress
*BA
, EVT VT
,
2079 int64_t Offset
, bool isTarget
,
2080 unsigned TargetFlags
) {
2081 unsigned Opc
= isTarget
? ISD::TargetBlockAddress
: ISD::BlockAddress
;
2083 FoldingSetNodeID ID
;
2084 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
2086 ID
.AddInteger(Offset
);
2087 ID
.AddInteger(TargetFlags
);
2089 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
2090 return SDValue(E
, 0);
2092 auto *N
= newSDNode
<BlockAddressSDNode
>(Opc
, VT
, BA
, Offset
, TargetFlags
);
2093 CSEMap
.InsertNode(N
, IP
);
2095 return SDValue(N
, 0);
2098 SDValue
SelectionDAG::getSrcValue(const Value
*V
) {
2099 FoldingSetNodeID ID
;
2100 AddNodeIDNode(ID
, ISD::SRCVALUE
, getVTList(MVT::Other
), None
);
2104 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
2105 return SDValue(E
, 0);
2107 auto *N
= newSDNode
<SrcValueSDNode
>(V
);
2108 CSEMap
.InsertNode(N
, IP
);
2110 return SDValue(N
, 0);
2113 SDValue
SelectionDAG::getMDNode(const MDNode
*MD
) {
2114 FoldingSetNodeID ID
;
2115 AddNodeIDNode(ID
, ISD::MDNODE_SDNODE
, getVTList(MVT::Other
), None
);
2119 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
2120 return SDValue(E
, 0);
2122 auto *N
= newSDNode
<MDNodeSDNode
>(MD
);
2123 CSEMap
.InsertNode(N
, IP
);
2125 return SDValue(N
, 0);
2128 SDValue
SelectionDAG::getBitcast(EVT VT
, SDValue V
) {
2129 if (VT
== V
.getValueType())
2132 return getNode(ISD::BITCAST
, SDLoc(V
), VT
, V
);
2135 SDValue
SelectionDAG::getAddrSpaceCast(const SDLoc
&dl
, EVT VT
, SDValue Ptr
,
2136 unsigned SrcAS
, unsigned DestAS
) {
2137 SDValue Ops
[] = {Ptr
};
2138 FoldingSetNodeID ID
;
2139 AddNodeIDNode(ID
, ISD::ADDRSPACECAST
, getVTList(VT
), Ops
);
2140 ID
.AddInteger(SrcAS
);
2141 ID
.AddInteger(DestAS
);
2144 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
))
2145 return SDValue(E
, 0);
2147 auto *N
= newSDNode
<AddrSpaceCastSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(),
2149 createOperands(N
, Ops
);
2151 CSEMap
.InsertNode(N
, IP
);
2153 return SDValue(N
, 0);
2156 SDValue
SelectionDAG::getFreeze(SDValue V
) {
2157 return getNode(ISD::FREEZE
, SDLoc(V
), V
.getValueType(), V
);
2160 /// getShiftAmountOperand - Return the specified value casted to
2161 /// the target's desired shift amount type.
2162 SDValue
SelectionDAG::getShiftAmountOperand(EVT LHSTy
, SDValue Op
) {
2163 EVT OpTy
= Op
.getValueType();
2164 EVT ShTy
= TLI
->getShiftAmountTy(LHSTy
, getDataLayout());
2165 if (OpTy
== ShTy
|| OpTy
.isVector()) return Op
;
2167 return getZExtOrTrunc(Op
, SDLoc(Op
), ShTy
);
2170 SDValue
SelectionDAG::expandVAArg(SDNode
*Node
) {
2172 const TargetLowering
&TLI
= getTargetLoweringInfo();
2173 const Value
*V
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
2174 EVT VT
= Node
->getValueType(0);
2175 SDValue Tmp1
= Node
->getOperand(0);
2176 SDValue Tmp2
= Node
->getOperand(1);
2177 const MaybeAlign
MA(Node
->getConstantOperandVal(3));
2179 SDValue VAListLoad
= getLoad(TLI
.getPointerTy(getDataLayout()), dl
, Tmp1
,
2180 Tmp2
, MachinePointerInfo(V
));
2181 SDValue VAList
= VAListLoad
;
2183 if (MA
&& *MA
> TLI
.getMinStackArgumentAlignment()) {
2184 VAList
= getNode(ISD::ADD
, dl
, VAList
.getValueType(), VAList
,
2185 getConstant(MA
->value() - 1, dl
, VAList
.getValueType()));
2188 getNode(ISD::AND
, dl
, VAList
.getValueType(), VAList
,
2189 getConstant(-(int64_t)MA
->value(), dl
, VAList
.getValueType()));
2192 // Increment the pointer, VAList, to the next vaarg
2193 Tmp1
= getNode(ISD::ADD
, dl
, VAList
.getValueType(), VAList
,
2194 getConstant(getDataLayout().getTypeAllocSize(
2195 VT
.getTypeForEVT(*getContext())),
2196 dl
, VAList
.getValueType()));
2197 // Store the incremented VAList to the legalized pointer
2199 getStore(VAListLoad
.getValue(1), dl
, Tmp1
, Tmp2
, MachinePointerInfo(V
));
2200 // Load the actual argument out of the pointer VAList
2201 return getLoad(VT
, dl
, Tmp1
, VAList
, MachinePointerInfo());
2204 SDValue
SelectionDAG::expandVACopy(SDNode
*Node
) {
2206 const TargetLowering
&TLI
= getTargetLoweringInfo();
2207 // This defaults to loading a pointer from the input and storing it to the
2208 // output, returning the chain.
2209 const Value
*VD
= cast
<SrcValueSDNode
>(Node
->getOperand(3))->getValue();
2210 const Value
*VS
= cast
<SrcValueSDNode
>(Node
->getOperand(4))->getValue();
2212 getLoad(TLI
.getPointerTy(getDataLayout()), dl
, Node
->getOperand(0),
2213 Node
->getOperand(2), MachinePointerInfo(VS
));
2214 return getStore(Tmp1
.getValue(1), dl
, Tmp1
, Node
->getOperand(1),
2215 MachinePointerInfo(VD
));
2218 Align
SelectionDAG::getReducedAlign(EVT VT
, bool UseABI
) {
2219 const DataLayout
&DL
= getDataLayout();
2220 Type
*Ty
= VT
.getTypeForEVT(*getContext());
2221 Align RedAlign
= UseABI
? DL
.getABITypeAlign(Ty
) : DL
.getPrefTypeAlign(Ty
);
2223 if (TLI
->isTypeLegal(VT
) || !VT
.isVector())
2226 const TargetFrameLowering
*TFI
= MF
->getSubtarget().getFrameLowering();
2227 const Align StackAlign
= TFI
->getStackAlign();
2229 // See if we can choose a smaller ABI alignment in cases where it's an
2230 // illegal vector type that will get broken down.
2231 if (RedAlign
> StackAlign
) {
2234 unsigned NumIntermediates
;
2235 TLI
->getVectorTypeBreakdown(*getContext(), VT
, IntermediateVT
,
2236 NumIntermediates
, RegisterVT
);
2237 Ty
= IntermediateVT
.getTypeForEVT(*getContext());
2238 Align RedAlign2
= UseABI
? DL
.getABITypeAlign(Ty
) : DL
.getPrefTypeAlign(Ty
);
2239 if (RedAlign2
< RedAlign
)
2240 RedAlign
= RedAlign2
;
2246 SDValue
SelectionDAG::CreateStackTemporary(TypeSize Bytes
, Align Alignment
) {
2247 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
2248 const TargetFrameLowering
*TFI
= MF
->getSubtarget().getFrameLowering();
2250 if (Bytes
.isScalable())
2251 StackID
= TFI
->getStackIDForScalableVectors();
2252 // The stack id gives an indication of whether the object is scalable or
2253 // not, so it's safe to pass in the minimum size here.
2254 int FrameIdx
= MFI
.CreateStackObject(Bytes
.getKnownMinSize(), Alignment
,
2255 false, nullptr, StackID
);
2256 return getFrameIndex(FrameIdx
, TLI
->getFrameIndexTy(getDataLayout()));
2259 SDValue
SelectionDAG::CreateStackTemporary(EVT VT
, unsigned minAlign
) {
2260 Type
*Ty
= VT
.getTypeForEVT(*getContext());
2262 std::max(getDataLayout().getPrefTypeAlign(Ty
), Align(minAlign
));
2263 return CreateStackTemporary(VT
.getStoreSize(), StackAlign
);
2266 SDValue
SelectionDAG::CreateStackTemporary(EVT VT1
, EVT VT2
) {
2267 TypeSize VT1Size
= VT1
.getStoreSize();
2268 TypeSize VT2Size
= VT2
.getStoreSize();
2269 assert(VT1Size
.isScalable() == VT2Size
.isScalable() &&
2270 "Don't know how to choose the maximum size when creating a stack "
2273 VT1Size
.getKnownMinSize() > VT2Size
.getKnownMinSize() ? VT1Size
: VT2Size
;
2275 Type
*Ty1
= VT1
.getTypeForEVT(*getContext());
2276 Type
*Ty2
= VT2
.getTypeForEVT(*getContext());
2277 const DataLayout
&DL
= getDataLayout();
2278 Align Align
= std::max(DL
.getPrefTypeAlign(Ty1
), DL
.getPrefTypeAlign(Ty2
));
2279 return CreateStackTemporary(Bytes
, Align
);
2282 SDValue
SelectionDAG::FoldSetCC(EVT VT
, SDValue N1
, SDValue N2
,
2283 ISD::CondCode Cond
, const SDLoc
&dl
) {
2284 EVT OpVT
= N1
.getValueType();
2286 // These setcc operations always fold.
2290 case ISD::SETFALSE2
: return getBoolConstant(false, dl
, VT
, OpVT
);
2292 case ISD::SETTRUE2
: return getBoolConstant(true, dl
, VT
, OpVT
);
2304 assert(!OpVT
.isInteger() && "Illegal setcc for integer!");
2308 if (OpVT
.isInteger()) {
2309 // For EQ and NE, we can always pick a value for the undef to make the
2310 // predicate pass or fail, so we can return undef.
2311 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2312 // icmp eq/ne X, undef -> undef.
2313 if ((N1
.isUndef() || N2
.isUndef()) &&
2314 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
))
2315 return getUNDEF(VT
);
2317 // If both operands are undef, we can return undef for int comparison.
2318 // icmp undef, undef -> undef.
2319 if (N1
.isUndef() && N2
.isUndef())
2320 return getUNDEF(VT
);
2322 // icmp X, X -> true/false
2323 // icmp X, undef -> true/false because undef could be X.
2325 return getBoolConstant(ISD::isTrueWhenEqual(Cond
), dl
, VT
, OpVT
);
2328 if (ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
)) {
2329 const APInt
&C2
= N2C
->getAPIntValue();
2330 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
)) {
2331 const APInt
&C1
= N1C
->getAPIntValue();
2333 return getBoolConstant(ICmpInst::compare(C1
, C2
, getICmpCondCode(Cond
)),
2338 auto *N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
2339 auto *N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
);
2341 if (N1CFP
&& N2CFP
) {
2342 APFloat::cmpResult R
= N1CFP
->getValueAPF().compare(N2CFP
->getValueAPF());
2345 case ISD::SETEQ
: if (R
==APFloat::cmpUnordered
)
2346 return getUNDEF(VT
);
2348 case ISD::SETOEQ
: return getBoolConstant(R
==APFloat::cmpEqual
, dl
, VT
,
2350 case ISD::SETNE
: if (R
==APFloat::cmpUnordered
)
2351 return getUNDEF(VT
);
2353 case ISD::SETONE
: return getBoolConstant(R
==APFloat::cmpGreaterThan
||
2354 R
==APFloat::cmpLessThan
, dl
, VT
,
2356 case ISD::SETLT
: if (R
==APFloat::cmpUnordered
)
2357 return getUNDEF(VT
);
2359 case ISD::SETOLT
: return getBoolConstant(R
==APFloat::cmpLessThan
, dl
, VT
,
2361 case ISD::SETGT
: if (R
==APFloat::cmpUnordered
)
2362 return getUNDEF(VT
);
2364 case ISD::SETOGT
: return getBoolConstant(R
==APFloat::cmpGreaterThan
, dl
,
2366 case ISD::SETLE
: if (R
==APFloat::cmpUnordered
)
2367 return getUNDEF(VT
);
2369 case ISD::SETOLE
: return getBoolConstant(R
==APFloat::cmpLessThan
||
2370 R
==APFloat::cmpEqual
, dl
, VT
,
2372 case ISD::SETGE
: if (R
==APFloat::cmpUnordered
)
2373 return getUNDEF(VT
);
2375 case ISD::SETOGE
: return getBoolConstant(R
==APFloat::cmpGreaterThan
||
2376 R
==APFloat::cmpEqual
, dl
, VT
, OpVT
);
2377 case ISD::SETO
: return getBoolConstant(R
!=APFloat::cmpUnordered
, dl
, VT
,
2379 case ISD::SETUO
: return getBoolConstant(R
==APFloat::cmpUnordered
, dl
, VT
,
2381 case ISD::SETUEQ
: return getBoolConstant(R
==APFloat::cmpUnordered
||
2382 R
==APFloat::cmpEqual
, dl
, VT
,
2384 case ISD::SETUNE
: return getBoolConstant(R
!=APFloat::cmpEqual
, dl
, VT
,
2386 case ISD::SETULT
: return getBoolConstant(R
==APFloat::cmpUnordered
||
2387 R
==APFloat::cmpLessThan
, dl
, VT
,
2389 case ISD::SETUGT
: return getBoolConstant(R
==APFloat::cmpGreaterThan
||
2390 R
==APFloat::cmpUnordered
, dl
, VT
,
2392 case ISD::SETULE
: return getBoolConstant(R
!=APFloat::cmpGreaterThan
, dl
,
2394 case ISD::SETUGE
: return getBoolConstant(R
!=APFloat::cmpLessThan
, dl
, VT
,
2397 } else if (N1CFP
&& OpVT
.isSimple() && !N2
.isUndef()) {
2398 // Ensure that the constant occurs on the RHS.
2399 ISD::CondCode SwappedCond
= ISD::getSetCCSwappedOperands(Cond
);
2400 if (!TLI
->isCondCodeLegal(SwappedCond
, OpVT
.getSimpleVT()))
2402 return getSetCC(dl
, VT
, N2
, N1
, SwappedCond
);
2403 } else if ((N2CFP
&& N2CFP
->getValueAPF().isNaN()) ||
2404 (OpVT
.isFloatingPoint() && (N1
.isUndef() || N2
.isUndef()))) {
2405 // If an operand is known to be a nan (or undef that could be a nan), we can
2407 // Choosing NaN for the undef will always make unordered comparison succeed
2408 // and ordered comparison fails.
2409 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2410 switch (ISD::getUnorderedFlavor(Cond
)) {
2412 llvm_unreachable("Unknown flavor!");
2413 case 0: // Known false.
2414 return getBoolConstant(false, dl
, VT
, OpVT
);
2415 case 1: // Known true.
2416 return getBoolConstant(true, dl
, VT
, OpVT
);
2417 case 2: // Undefined.
2418 return getUNDEF(VT
);
2422 // Could not fold it.
2426 /// See if the specified operand can be simplified with the knowledge that only
2427 /// the bits specified by DemandedBits are used.
2428 /// TODO: really we should be making this into the DAG equivalent of
2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2430 SDValue
SelectionDAG::GetDemandedBits(SDValue V
, const APInt
&DemandedBits
) {
2431 EVT VT
= V
.getValueType();
2433 if (VT
.isScalableVector())
2436 APInt DemandedElts
= VT
.isVector()
2437 ? APInt::getAllOnes(VT
.getVectorNumElements())
2439 return GetDemandedBits(V
, DemandedBits
, DemandedElts
);
2442 /// See if the specified operand can be simplified with the knowledge that only
2443 /// the bits specified by DemandedBits are used in the elements specified by
2445 /// TODO: really we should be making this into the DAG equivalent of
2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2447 SDValue
SelectionDAG::GetDemandedBits(SDValue V
, const APInt
&DemandedBits
,
2448 const APInt
&DemandedElts
) {
2449 switch (V
.getOpcode()) {
2451 return TLI
->SimplifyMultipleUseDemandedBits(V
, DemandedBits
, DemandedElts
,
2453 case ISD::Constant
: {
2454 const APInt
&CVal
= cast
<ConstantSDNode
>(V
)->getAPIntValue();
2455 APInt NewVal
= CVal
& DemandedBits
;
2457 return getConstant(NewVal
, SDLoc(V
), V
.getValueType());
2461 // Only look at single-use SRLs.
2462 if (!V
.getNode()->hasOneUse())
2464 if (auto *RHSC
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1))) {
2465 // See if we can recursively simplify the LHS.
2466 unsigned Amt
= RHSC
->getZExtValue();
2468 // Watch out for shift count overflow though.
2469 if (Amt
>= DemandedBits
.getBitWidth())
2471 APInt SrcDemandedBits
= DemandedBits
<< Amt
;
2472 if (SDValue SimplifyLHS
=
2473 GetDemandedBits(V
.getOperand(0), SrcDemandedBits
))
2474 return getNode(ISD::SRL
, SDLoc(V
), V
.getValueType(), SimplifyLHS
,
2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2483 /// use this predicate to simplify operations downstream.
2484 bool SelectionDAG::SignBitIsZero(SDValue Op
, unsigned Depth
) const {
2485 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
2486 return MaskedValueIsZero(Op
, APInt::getSignMask(BitWidth
), Depth
);
2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2490 /// this predicate to simplify operations downstream. Mask is known to be zero
2491 /// for bits that V cannot have.
2492 bool SelectionDAG::MaskedValueIsZero(SDValue V
, const APInt
&Mask
,
2493 unsigned Depth
) const {
2494 return Mask
.isSubsetOf(computeKnownBits(V
, Depth
).Zero
);
2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2498 /// DemandedElts. We use this predicate to simplify operations downstream.
2499 /// Mask is known to be zero for bits that V cannot have.
2500 bool SelectionDAG::MaskedValueIsZero(SDValue V
, const APInt
&Mask
,
2501 const APInt
&DemandedElts
,
2502 unsigned Depth
) const {
2503 return Mask
.isSubsetOf(computeKnownBits(V
, DemandedElts
, Depth
).Zero
);
2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V
, const APInt
&Mask
,
2508 unsigned Depth
) const {
2509 return Mask
.isSubsetOf(computeKnownBits(V
, Depth
).One
);
2512 /// isSplatValue - Return true if the vector V has the same value
2513 /// across all DemandedElts. For scalable vectors it does not make
2514 /// sense to specify which elements are demanded or undefined, therefore
2515 /// they are simply ignored.
2516 bool SelectionDAG::isSplatValue(SDValue V
, const APInt
&DemandedElts
,
2517 APInt
&UndefElts
, unsigned Depth
) const {
2518 unsigned Opcode
= V
.getOpcode();
2519 EVT VT
= V
.getValueType();
2520 assert(VT
.isVector() && "Vector type expected");
2522 if (!VT
.isScalableVector() && !DemandedElts
)
2523 return false; // No demanded elts, better to assume we don't know anything.
2525 if (Depth
>= MaxRecursionDepth
)
2526 return false; // Limit search depth.
2528 // Deal with some common cases here that work for both fixed and scalable
2531 case ISD::SPLAT_VECTOR
:
2532 UndefElts
= V
.getOperand(0).isUndef()
2533 ? APInt::getAllOnes(DemandedElts
.getBitWidth())
2534 : APInt(DemandedElts
.getBitWidth(), 0);
2541 APInt UndefLHS
, UndefRHS
;
2542 SDValue LHS
= V
.getOperand(0);
2543 SDValue RHS
= V
.getOperand(1);
2544 if (isSplatValue(LHS
, DemandedElts
, UndefLHS
, Depth
+ 1) &&
2545 isSplatValue(RHS
, DemandedElts
, UndefRHS
, Depth
+ 1)) {
2546 UndefElts
= UndefLHS
| UndefRHS
;
2553 case ISD::SIGN_EXTEND
:
2554 case ISD::ZERO_EXTEND
:
2555 return isSplatValue(V
.getOperand(0), DemandedElts
, UndefElts
, Depth
+ 1);
2557 if (Opcode
>= ISD::BUILTIN_OP_END
|| Opcode
== ISD::INTRINSIC_WO_CHAIN
||
2558 Opcode
== ISD::INTRINSIC_W_CHAIN
|| Opcode
== ISD::INTRINSIC_VOID
)
2559 return TLI
->isSplatValueForTargetNode(V
, DemandedElts
, UndefElts
, Depth
);
2563 // We don't support other cases than those above for scalable vectors at
2565 if (VT
.isScalableVector())
2568 unsigned NumElts
= VT
.getVectorNumElements();
2569 assert(NumElts
== DemandedElts
.getBitWidth() && "Vector size mismatch");
2570 UndefElts
= APInt::getZero(NumElts
);
2573 case ISD::BUILD_VECTOR
: {
2575 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2576 SDValue Op
= V
.getOperand(i
);
2578 UndefElts
.setBit(i
);
2581 if (!DemandedElts
[i
])
2583 if (Scl
&& Scl
!= Op
)
2589 case ISD::VECTOR_SHUFFLE
: {
2590 // Check if this is a shuffle node doing a splat.
2591 // TODO: Do we need to handle shuffle(splat, undef, mask)?
2592 int SplatIndex
= -1;
2593 ArrayRef
<int> Mask
= cast
<ShuffleVectorSDNode
>(V
)->getMask();
2594 for (int i
= 0; i
!= (int)NumElts
; ++i
) {
2597 UndefElts
.setBit(i
);
2600 if (!DemandedElts
[i
])
2602 if (0 <= SplatIndex
&& SplatIndex
!= M
)
2608 case ISD::EXTRACT_SUBVECTOR
: {
2609 // Offset the demanded elts by the subvector index.
2610 SDValue Src
= V
.getOperand(0);
2611 // We don't support scalable vectors at the moment.
2612 if (Src
.getValueType().isScalableVector())
2614 uint64_t Idx
= V
.getConstantOperandVal(1);
2615 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2617 APInt DemandedSrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
2618 if (isSplatValue(Src
, DemandedSrcElts
, UndefSrcElts
, Depth
+ 1)) {
2619 UndefElts
= UndefSrcElts
.extractBits(NumElts
, Idx
);
2624 case ISD::ANY_EXTEND_VECTOR_INREG
:
2625 case ISD::SIGN_EXTEND_VECTOR_INREG
:
2626 case ISD::ZERO_EXTEND_VECTOR_INREG
: {
2627 // Widen the demanded elts by the src element count.
2628 SDValue Src
= V
.getOperand(0);
2629 // We don't support scalable vectors at the moment.
2630 if (Src
.getValueType().isScalableVector())
2632 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2634 APInt DemandedSrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
);
2635 if (isSplatValue(Src
, DemandedSrcElts
, UndefSrcElts
, Depth
+ 1)) {
2636 UndefElts
= UndefSrcElts
.truncOrSelf(NumElts
);
2646 /// Helper wrapper to main isSplatValue function.
2647 bool SelectionDAG::isSplatValue(SDValue V
, bool AllowUndefs
) const {
2648 EVT VT
= V
.getValueType();
2649 assert(VT
.isVector() && "Vector type expected");
2654 // For now we don't support this with scalable vectors.
2655 if (!VT
.isScalableVector())
2656 DemandedElts
= APInt::getAllOnes(VT
.getVectorNumElements());
2657 return isSplatValue(V
, DemandedElts
, UndefElts
) &&
2658 (AllowUndefs
|| !UndefElts
);
2661 SDValue
SelectionDAG::getSplatSourceVector(SDValue V
, int &SplatIdx
) {
2662 V
= peekThroughExtractSubvectors(V
);
2664 EVT VT
= V
.getValueType();
2665 unsigned Opcode
= V
.getOpcode();
2671 if (!VT
.isScalableVector())
2672 DemandedElts
= APInt::getAllOnes(VT
.getVectorNumElements());
2674 if (isSplatValue(V
, DemandedElts
, UndefElts
)) {
2675 if (VT
.isScalableVector()) {
2676 // DemandedElts and UndefElts are ignored for scalable vectors, since
2677 // the only supported cases are SPLAT_VECTOR nodes.
2680 // Handle case where all demanded elements are UNDEF.
2681 if (DemandedElts
.isSubsetOf(UndefElts
)) {
2683 return getUNDEF(VT
);
2685 SplatIdx
= (UndefElts
& DemandedElts
).countTrailingOnes();
2691 case ISD::SPLAT_VECTOR
:
2694 case ISD::VECTOR_SHUFFLE
: {
2695 if (VT
.isScalableVector())
2698 // Check if this is a shuffle node doing a splat.
2699 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2700 // getTargetVShiftNode currently struggles without the splat source.
2701 auto *SVN
= cast
<ShuffleVectorSDNode
>(V
);
2702 if (!SVN
->isSplat())
2704 int Idx
= SVN
->getSplatIndex();
2705 int NumElts
= V
.getValueType().getVectorNumElements();
2706 SplatIdx
= Idx
% NumElts
;
2707 return V
.getOperand(Idx
/ NumElts
);
2714 SDValue
SelectionDAG::getSplatValue(SDValue V
, bool LegalTypes
) {
2716 if (SDValue SrcVector
= getSplatSourceVector(V
, SplatIdx
)) {
2717 EVT SVT
= SrcVector
.getValueType().getScalarType();
2719 if (LegalTypes
&& !TLI
->isTypeLegal(SVT
)) {
2720 if (!SVT
.isInteger())
2722 LegalSVT
= TLI
->getTypeToTransformTo(*getContext(), LegalSVT
);
2723 if (LegalSVT
.bitsLT(SVT
))
2726 return getNode(ISD::EXTRACT_VECTOR_ELT
, SDLoc(V
), LegalSVT
, SrcVector
,
2727 getVectorIdxConstant(SplatIdx
, SDLoc(V
)));
2733 SelectionDAG::getValidShiftAmountConstant(SDValue V
,
2734 const APInt
&DemandedElts
) const {
2735 assert((V
.getOpcode() == ISD::SHL
|| V
.getOpcode() == ISD::SRL
||
2736 V
.getOpcode() == ISD::SRA
) &&
2737 "Unknown shift node");
2738 unsigned BitWidth
= V
.getScalarValueSizeInBits();
2739 if (ConstantSDNode
*SA
= isConstOrConstSplat(V
.getOperand(1), DemandedElts
)) {
2740 // Shifting more than the bitwidth is not valid.
2741 const APInt
&ShAmt
= SA
->getAPIntValue();
2742 if (ShAmt
.ult(BitWidth
))
2748 const APInt
*SelectionDAG::getValidMinimumShiftAmountConstant(
2749 SDValue V
, const APInt
&DemandedElts
) const {
2750 assert((V
.getOpcode() == ISD::SHL
|| V
.getOpcode() == ISD::SRL
||
2751 V
.getOpcode() == ISD::SRA
) &&
2752 "Unknown shift node");
2753 if (const APInt
*ValidAmt
= getValidShiftAmountConstant(V
, DemandedElts
))
2755 unsigned BitWidth
= V
.getScalarValueSizeInBits();
2756 auto *BV
= dyn_cast
<BuildVectorSDNode
>(V
.getOperand(1));
2759 const APInt
*MinShAmt
= nullptr;
2760 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
2761 if (!DemandedElts
[i
])
2763 auto *SA
= dyn_cast
<ConstantSDNode
>(BV
->getOperand(i
));
2766 // Shifting more than the bitwidth is not valid.
2767 const APInt
&ShAmt
= SA
->getAPIntValue();
2768 if (ShAmt
.uge(BitWidth
))
2770 if (MinShAmt
&& MinShAmt
->ule(ShAmt
))
2777 const APInt
*SelectionDAG::getValidMaximumShiftAmountConstant(
2778 SDValue V
, const APInt
&DemandedElts
) const {
2779 assert((V
.getOpcode() == ISD::SHL
|| V
.getOpcode() == ISD::SRL
||
2780 V
.getOpcode() == ISD::SRA
) &&
2781 "Unknown shift node");
2782 if (const APInt
*ValidAmt
= getValidShiftAmountConstant(V
, DemandedElts
))
2784 unsigned BitWidth
= V
.getScalarValueSizeInBits();
2785 auto *BV
= dyn_cast
<BuildVectorSDNode
>(V
.getOperand(1));
2788 const APInt
*MaxShAmt
= nullptr;
2789 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
2790 if (!DemandedElts
[i
])
2792 auto *SA
= dyn_cast
<ConstantSDNode
>(BV
->getOperand(i
));
2795 // Shifting more than the bitwidth is not valid.
2796 const APInt
&ShAmt
= SA
->getAPIntValue();
2797 if (ShAmt
.uge(BitWidth
))
2799 if (MaxShAmt
&& MaxShAmt
->uge(ShAmt
))
2806 /// Determine which bits of Op are known to be either zero or one and return
2807 /// them in Known. For vectors, the known bits are those that are shared by
2808 /// every vector element.
2809 KnownBits
SelectionDAG::computeKnownBits(SDValue Op
, unsigned Depth
) const {
2810 EVT VT
= Op
.getValueType();
2812 // TOOD: Until we have a plan for how to represent demanded elements for
2813 // scalable vectors, we can just bail out for now.
2814 if (Op
.getValueType().isScalableVector()) {
2815 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
2816 return KnownBits(BitWidth
);
2819 APInt DemandedElts
= VT
.isVector()
2820 ? APInt::getAllOnes(VT
.getVectorNumElements())
2822 return computeKnownBits(Op
, DemandedElts
, Depth
);
2825 /// Determine which bits of Op are known to be either zero or one and return
2826 /// them in Known. The DemandedElts argument allows us to only collect the known
2827 /// bits that are shared by the requested vector elements.
2828 KnownBits
SelectionDAG::computeKnownBits(SDValue Op
, const APInt
&DemandedElts
,
2829 unsigned Depth
) const {
2830 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
2832 KnownBits
Known(BitWidth
); // Don't know anything.
2834 // TOOD: Until we have a plan for how to represent demanded elements for
2835 // scalable vectors, we can just bail out for now.
2836 if (Op
.getValueType().isScalableVector())
2839 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
2840 // We know all of the bits for a constant!
2841 return KnownBits::makeConstant(C
->getAPIntValue());
2843 if (auto *C
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
2844 // We know all of the bits for a constant fp!
2845 return KnownBits::makeConstant(C
->getValueAPF().bitcastToAPInt());
2848 if (Depth
>= MaxRecursionDepth
)
2849 return Known
; // Limit search depth.
2852 unsigned NumElts
= DemandedElts
.getBitWidth();
2853 assert((!Op
.getValueType().isVector() ||
2854 NumElts
== Op
.getValueType().getVectorNumElements()) &&
2855 "Unexpected vector size");
2858 return Known
; // No demanded elts, better to assume we don't know anything.
2860 unsigned Opcode
= Op
.getOpcode();
2862 case ISD::BUILD_VECTOR
:
2863 // Collect the known bits that are shared by every demanded vector element.
2864 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
2865 for (unsigned i
= 0, e
= Op
.getNumOperands(); i
!= e
; ++i
) {
2866 if (!DemandedElts
[i
])
2869 SDValue SrcOp
= Op
.getOperand(i
);
2870 Known2
= computeKnownBits(SrcOp
, Depth
+ 1);
2872 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2873 if (SrcOp
.getValueSizeInBits() != BitWidth
) {
2874 assert(SrcOp
.getValueSizeInBits() > BitWidth
&&
2875 "Expected BUILD_VECTOR implicit truncation");
2876 Known2
= Known2
.trunc(BitWidth
);
2879 // Known bits are the values that are shared by every demanded element.
2880 Known
= KnownBits::commonBits(Known
, Known2
);
2882 // If we don't know any bits, early out.
2883 if (Known
.isUnknown())
2887 case ISD::VECTOR_SHUFFLE
: {
2888 // Collect the known bits that are shared by every vector element referenced
2890 APInt
DemandedLHS(NumElts
, 0), DemandedRHS(NumElts
, 0);
2891 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
2892 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
);
2893 assert(NumElts
== SVN
->getMask().size() && "Unexpected vector size");
2894 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2895 if (!DemandedElts
[i
])
2898 int M
= SVN
->getMaskElt(i
);
2900 // For UNDEF elements, we don't know anything about the common state of
2901 // the shuffle result.
2903 DemandedLHS
.clearAllBits();
2904 DemandedRHS
.clearAllBits();
2908 if ((unsigned)M
< NumElts
)
2909 DemandedLHS
.setBit((unsigned)M
% NumElts
);
2911 DemandedRHS
.setBit((unsigned)M
% NumElts
);
2913 // Known bits are the values that are shared by every demanded element.
2914 if (!!DemandedLHS
) {
2915 SDValue LHS
= Op
.getOperand(0);
2916 Known2
= computeKnownBits(LHS
, DemandedLHS
, Depth
+ 1);
2917 Known
= KnownBits::commonBits(Known
, Known2
);
2919 // If we don't know any bits, early out.
2920 if (Known
.isUnknown())
2922 if (!!DemandedRHS
) {
2923 SDValue RHS
= Op
.getOperand(1);
2924 Known2
= computeKnownBits(RHS
, DemandedRHS
, Depth
+ 1);
2925 Known
= KnownBits::commonBits(Known
, Known2
);
2929 case ISD::CONCAT_VECTORS
: {
2930 // Split DemandedElts and test each of the demanded subvectors.
2931 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
2932 EVT SubVectorVT
= Op
.getOperand(0).getValueType();
2933 unsigned NumSubVectorElts
= SubVectorVT
.getVectorNumElements();
2934 unsigned NumSubVectors
= Op
.getNumOperands();
2935 for (unsigned i
= 0; i
!= NumSubVectors
; ++i
) {
2937 DemandedElts
.extractBits(NumSubVectorElts
, i
* NumSubVectorElts
);
2938 if (!!DemandedSub
) {
2939 SDValue Sub
= Op
.getOperand(i
);
2940 Known2
= computeKnownBits(Sub
, DemandedSub
, Depth
+ 1);
2941 Known
= KnownBits::commonBits(Known
, Known2
);
2943 // If we don't know any bits, early out.
2944 if (Known
.isUnknown())
2949 case ISD::INSERT_SUBVECTOR
: {
2950 // Demand any elements from the subvector and the remainder from the src its
2952 SDValue Src
= Op
.getOperand(0);
2953 SDValue Sub
= Op
.getOperand(1);
2954 uint64_t Idx
= Op
.getConstantOperandVal(2);
2955 unsigned NumSubElts
= Sub
.getValueType().getVectorNumElements();
2956 APInt DemandedSubElts
= DemandedElts
.extractBits(NumSubElts
, Idx
);
2957 APInt DemandedSrcElts
= DemandedElts
;
2958 DemandedSrcElts
.insertBits(APInt::getZero(NumSubElts
), Idx
);
2960 Known
.One
.setAllBits();
2961 Known
.Zero
.setAllBits();
2962 if (!!DemandedSubElts
) {
2963 Known
= computeKnownBits(Sub
, DemandedSubElts
, Depth
+ 1);
2964 if (Known
.isUnknown())
2965 break; // early-out.
2967 if (!!DemandedSrcElts
) {
2968 Known2
= computeKnownBits(Src
, DemandedSrcElts
, Depth
+ 1);
2969 Known
= KnownBits::commonBits(Known
, Known2
);
2973 case ISD::EXTRACT_SUBVECTOR
: {
2974 // Offset the demanded elts by the subvector index.
2975 SDValue Src
= Op
.getOperand(0);
2976 // Bail until we can represent demanded elements for scalable vectors.
2977 if (Src
.getValueType().isScalableVector())
2979 uint64_t Idx
= Op
.getConstantOperandVal(1);
2980 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2981 APInt DemandedSrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
2982 Known
= computeKnownBits(Src
, DemandedSrcElts
, Depth
+ 1);
2985 case ISD::SCALAR_TO_VECTOR
: {
2986 // We know about scalar_to_vector as much as we know about it source,
2987 // which becomes the first element of otherwise unknown vector.
2988 if (DemandedElts
!= 1)
2991 SDValue N0
= Op
.getOperand(0);
2992 Known
= computeKnownBits(N0
, Depth
+ 1);
2993 if (N0
.getValueSizeInBits() != BitWidth
)
2994 Known
= Known
.trunc(BitWidth
);
2998 case ISD::BITCAST
: {
2999 SDValue N0
= Op
.getOperand(0);
3000 EVT SubVT
= N0
.getValueType();
3001 unsigned SubBitWidth
= SubVT
.getScalarSizeInBits();
3003 // Ignore bitcasts from unsupported types.
3004 if (!(SubVT
.isInteger() || SubVT
.isFloatingPoint()))
3007 // Fast handling of 'identity' bitcasts.
3008 if (BitWidth
== SubBitWidth
) {
3009 Known
= computeKnownBits(N0
, DemandedElts
, Depth
+ 1);
3013 bool IsLE
= getDataLayout().isLittleEndian();
3015 // Bitcast 'small element' vector to 'large element' scalar/vector.
3016 if ((BitWidth
% SubBitWidth
) == 0) {
3017 assert(N0
.getValueType().isVector() && "Expected bitcast from vector");
3019 // Collect known bits for the (larger) output by collecting the known
3020 // bits from each set of sub elements and shift these into place.
3021 // We need to separately call computeKnownBits for each set of
3022 // sub elements as the knownbits for each is likely to be different.
3023 unsigned SubScale
= BitWidth
/ SubBitWidth
;
3024 APInt
SubDemandedElts(NumElts
* SubScale
, 0);
3025 for (unsigned i
= 0; i
!= NumElts
; ++i
)
3026 if (DemandedElts
[i
])
3027 SubDemandedElts
.setBit(i
* SubScale
);
3029 for (unsigned i
= 0; i
!= SubScale
; ++i
) {
3030 Known2
= computeKnownBits(N0
, SubDemandedElts
.shl(i
),
3032 unsigned Shifts
= IsLE
? i
: SubScale
- 1 - i
;
3033 Known
.insertBits(Known2
, SubBitWidth
* Shifts
);
3037 // Bitcast 'large element' scalar/vector to 'small element' vector.
3038 if ((SubBitWidth
% BitWidth
) == 0) {
3039 assert(Op
.getValueType().isVector() && "Expected bitcast to vector");
3041 // Collect known bits for the (smaller) output by collecting the known
3042 // bits from the overlapping larger input elements and extracting the
3043 // sub sections we actually care about.
3044 unsigned SubScale
= SubBitWidth
/ BitWidth
;
3045 APInt SubDemandedElts
=
3046 APIntOps::ScaleBitMask(DemandedElts
, NumElts
/ SubScale
);
3047 Known2
= computeKnownBits(N0
, SubDemandedElts
, Depth
+ 1);
3049 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
3050 for (unsigned i
= 0; i
!= NumElts
; ++i
)
3051 if (DemandedElts
[i
]) {
3052 unsigned Shifts
= IsLE
? i
: NumElts
- 1 - i
;
3053 unsigned Offset
= (Shifts
% SubScale
) * BitWidth
;
3054 Known
= KnownBits::commonBits(Known
,
3055 Known2
.extractBits(BitWidth
, Offset
));
3056 // If we don't know any bits, early out.
3057 if (Known
.isUnknown())
3064 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3065 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3070 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3071 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3076 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3077 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3082 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3083 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3084 Known
= KnownBits::mul(Known
, Known2
);
3088 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3089 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3090 Known
= KnownBits::mulhu(Known
, Known2
);
3094 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3095 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3096 Known
= KnownBits::mulhs(Known
, Known2
);
3099 case ISD::UMUL_LOHI
: {
3100 assert((Op
.getResNo() == 0 || Op
.getResNo() == 1) && "Unknown result");
3101 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3102 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3103 if (Op
.getResNo() == 0)
3104 Known
= KnownBits::mul(Known
, Known2
);
3106 Known
= KnownBits::mulhu(Known
, Known2
);
3109 case ISD::SMUL_LOHI
: {
3110 assert((Op
.getResNo() == 0 || Op
.getResNo() == 1) && "Unknown result");
3111 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3112 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3113 if (Op
.getResNo() == 0)
3114 Known
= KnownBits::mul(Known
, Known2
);
3116 Known
= KnownBits::mulhs(Known
, Known2
);
3120 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3121 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3122 Known
= KnownBits::udiv(Known
, Known2
);
3127 Known
= computeKnownBits(Op
.getOperand(2), DemandedElts
, Depth
+1);
3128 // If we don't know any bits, early out.
3129 if (Known
.isUnknown())
3131 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+1);
3133 // Only known if known in both the LHS and RHS.
3134 Known
= KnownBits::commonBits(Known
, Known2
);
3136 case ISD::SELECT_CC
:
3137 Known
= computeKnownBits(Op
.getOperand(3), DemandedElts
, Depth
+1);
3138 // If we don't know any bits, early out.
3139 if (Known
.isUnknown())
3141 Known2
= computeKnownBits(Op
.getOperand(2), DemandedElts
, Depth
+1);
3143 // Only known if known in both the LHS and RHS.
3144 Known
= KnownBits::commonBits(Known
, Known2
);
3148 if (Op
.getResNo() != 1)
3150 // The boolean result conforms to getBooleanContents.
3151 // If we know the result of a setcc has the top bits zero, use this info.
3152 // We know that we have an integer-based boolean since these operations
3153 // are only available for integer.
3154 if (TLI
->getBooleanContents(Op
.getValueType().isVector(), false) ==
3155 TargetLowering::ZeroOrOneBooleanContent
&&
3157 Known
.Zero
.setBitsFrom(1);
3160 case ISD::STRICT_FSETCC
:
3161 case ISD::STRICT_FSETCCS
: {
3162 unsigned OpNo
= Op
->isStrictFPOpcode() ? 1 : 0;
3163 // If we know the result of a setcc has the top bits zero, use this info.
3164 if (TLI
->getBooleanContents(Op
.getOperand(OpNo
).getValueType()) ==
3165 TargetLowering::ZeroOrOneBooleanContent
&&
3167 Known
.Zero
.setBitsFrom(1);
3171 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3172 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3173 Known
= KnownBits::shl(Known
, Known2
);
3175 // Minimum shift low bits are known zero.
3176 if (const APInt
*ShMinAmt
=
3177 getValidMinimumShiftAmountConstant(Op
, DemandedElts
))
3178 Known
.Zero
.setLowBits(ShMinAmt
->getZExtValue());
3181 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3182 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3183 Known
= KnownBits::lshr(Known
, Known2
);
3185 // Minimum shift high bits are known zero.
3186 if (const APInt
*ShMinAmt
=
3187 getValidMinimumShiftAmountConstant(Op
, DemandedElts
))
3188 Known
.Zero
.setHighBits(ShMinAmt
->getZExtValue());
3191 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3192 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3193 Known
= KnownBits::ashr(Known
, Known2
);
3194 // TODO: Add minimum shift high known sign bits.
3198 if (ConstantSDNode
*C
= isConstOrConstSplat(Op
.getOperand(2), DemandedElts
)) {
3199 unsigned Amt
= C
->getAPIntValue().urem(BitWidth
);
3201 // For fshl, 0-shift returns the 1st arg.
3202 // For fshr, 0-shift returns the 2nd arg.
3204 Known
= computeKnownBits(Op
.getOperand(Opcode
== ISD::FSHL
? 0 : 1),
3205 DemandedElts
, Depth
+ 1);
3209 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3210 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3211 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3212 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3213 if (Opcode
== ISD::FSHL
) {
3216 Known2
.One
.lshrInPlace(BitWidth
- Amt
);
3217 Known2
.Zero
.lshrInPlace(BitWidth
- Amt
);
3219 Known
.One
<<= BitWidth
- Amt
;
3220 Known
.Zero
<<= BitWidth
- Amt
;
3221 Known2
.One
.lshrInPlace(Amt
);
3222 Known2
.Zero
.lshrInPlace(Amt
);
3224 Known
.One
|= Known2
.One
;
3225 Known
.Zero
|= Known2
.Zero
;
3228 case ISD::SIGN_EXTEND_INREG
: {
3229 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3230 EVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
3231 Known
= Known
.sextInReg(EVT
.getScalarSizeInBits());
3235 case ISD::CTTZ_ZERO_UNDEF
: {
3236 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3237 // If we have a known 1, its position is our upper bound.
3238 unsigned PossibleTZ
= Known2
.countMaxTrailingZeros();
3239 unsigned LowBits
= Log2_32(PossibleTZ
) + 1;
3240 Known
.Zero
.setBitsFrom(LowBits
);
3244 case ISD::CTLZ_ZERO_UNDEF
: {
3245 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3246 // If we have a known 1, its position is our upper bound.
3247 unsigned PossibleLZ
= Known2
.countMaxLeadingZeros();
3248 unsigned LowBits
= Log2_32(PossibleLZ
) + 1;
3249 Known
.Zero
.setBitsFrom(LowBits
);
3253 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3254 // If we know some of the bits are zero, they can't be one.
3255 unsigned PossibleOnes
= Known2
.countMaxPopulation();
3256 Known
.Zero
.setBitsFrom(Log2_32(PossibleOnes
) + 1);
3260 // Parity returns 0 everywhere but the LSB.
3261 Known
.Zero
.setBitsFrom(1);
3265 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
3266 const Constant
*Cst
= TLI
->getTargetConstantFromLoad(LD
);
3267 if (ISD::isNON_EXTLoad(LD
) && Cst
) {
3268 // Determine any common known bits from the loaded constant pool value.
3269 Type
*CstTy
= Cst
->getType();
3270 if ((NumElts
* BitWidth
) == CstTy
->getPrimitiveSizeInBits()) {
3271 // If its a vector splat, then we can (quickly) reuse the scalar path.
3272 // NOTE: We assume all elements match and none are UNDEF.
3273 if (CstTy
->isVectorTy()) {
3274 if (const Constant
*Splat
= Cst
->getSplatValue()) {
3276 CstTy
= Cst
->getType();
3279 // TODO - do we need to handle different bitwidths?
3280 if (CstTy
->isVectorTy() && BitWidth
== CstTy
->getScalarSizeInBits()) {
3281 // Iterate across all vector elements finding common known bits.
3282 Known
.One
.setAllBits();
3283 Known
.Zero
.setAllBits();
3284 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
3285 if (!DemandedElts
[i
])
3287 if (Constant
*Elt
= Cst
->getAggregateElement(i
)) {
3288 if (auto *CInt
= dyn_cast
<ConstantInt
>(Elt
)) {
3289 const APInt
&Value
= CInt
->getValue();
3291 Known
.Zero
&= ~Value
;
3294 if (auto *CFP
= dyn_cast
<ConstantFP
>(Elt
)) {
3295 APInt Value
= CFP
->getValueAPF().bitcastToAPInt();
3297 Known
.Zero
&= ~Value
;
3301 Known
.One
.clearAllBits();
3302 Known
.Zero
.clearAllBits();
3305 } else if (BitWidth
== CstTy
->getPrimitiveSizeInBits()) {
3306 if (auto *CInt
= dyn_cast
<ConstantInt
>(Cst
)) {
3307 Known
= KnownBits::makeConstant(CInt
->getValue());
3308 } else if (auto *CFP
= dyn_cast
<ConstantFP
>(Cst
)) {
3310 KnownBits::makeConstant(CFP
->getValueAPF().bitcastToAPInt());
3314 } else if (ISD::isZEXTLoad(Op
.getNode()) && Op
.getResNo() == 0) {
3315 // If this is a ZEXTLoad and we are looking at the loaded value.
3316 EVT VT
= LD
->getMemoryVT();
3317 unsigned MemBits
= VT
.getScalarSizeInBits();
3318 Known
.Zero
.setBitsFrom(MemBits
);
3319 } else if (const MDNode
*Ranges
= LD
->getRanges()) {
3320 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
)
3321 computeKnownBitsFromRangeMetadata(*Ranges
, Known
);
3325 case ISD::ZERO_EXTEND_VECTOR_INREG
: {
3326 EVT InVT
= Op
.getOperand(0).getValueType();
3327 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InVT
.getVectorNumElements());
3328 Known
= computeKnownBits(Op
.getOperand(0), InDemandedElts
, Depth
+ 1);
3329 Known
= Known
.zext(BitWidth
);
3332 case ISD::ZERO_EXTEND
: {
3333 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3334 Known
= Known
.zext(BitWidth
);
3337 case ISD::SIGN_EXTEND_VECTOR_INREG
: {
3338 EVT InVT
= Op
.getOperand(0).getValueType();
3339 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InVT
.getVectorNumElements());
3340 Known
= computeKnownBits(Op
.getOperand(0), InDemandedElts
, Depth
+ 1);
3341 // If the sign bit is known to be zero or one, then sext will extend
3342 // it to the top bits, else it will just zext.
3343 Known
= Known
.sext(BitWidth
);
3346 case ISD::SIGN_EXTEND
: {
3347 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3348 // If the sign bit is known to be zero or one, then sext will extend
3349 // it to the top bits, else it will just zext.
3350 Known
= Known
.sext(BitWidth
);
3353 case ISD::ANY_EXTEND_VECTOR_INREG
: {
3354 EVT InVT
= Op
.getOperand(0).getValueType();
3355 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InVT
.getVectorNumElements());
3356 Known
= computeKnownBits(Op
.getOperand(0), InDemandedElts
, Depth
+ 1);
3357 Known
= Known
.anyext(BitWidth
);
3360 case ISD::ANY_EXTEND
: {
3361 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3362 Known
= Known
.anyext(BitWidth
);
3365 case ISD::TRUNCATE
: {
3366 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3367 Known
= Known
.trunc(BitWidth
);
3370 case ISD::AssertZext
: {
3371 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
3372 APInt InMask
= APInt::getLowBitsSet(BitWidth
, VT
.getSizeInBits());
3373 Known
= computeKnownBits(Op
.getOperand(0), Depth
+1);
3374 Known
.Zero
|= (~InMask
);
3375 Known
.One
&= (~Known
.Zero
);
3378 case ISD::AssertAlign
: {
3379 unsigned LogOfAlign
= Log2(cast
<AssertAlignSDNode
>(Op
)->getAlign());
3380 assert(LogOfAlign
!= 0);
3381 // If a node is guaranteed to be aligned, set low zero bits accordingly as
3382 // well as clearing one bits.
3383 Known
.Zero
.setLowBits(LogOfAlign
);
3384 Known
.One
.clearLowBits(LogOfAlign
);
3388 // All bits are zero except the low bit.
3389 Known
.Zero
.setBitsFrom(1);
3393 if (Op
.getResNo() == 1) {
3394 // If we know the result of a setcc has the top bits zero, use this info.
3395 if (TLI
->getBooleanContents(Op
.getOperand(0).getValueType()) ==
3396 TargetLowering::ZeroOrOneBooleanContent
&&
3398 Known
.Zero
.setBitsFrom(1);
3404 assert(Op
.getResNo() == 0 &&
3405 "We only compute knownbits for the difference here.");
3407 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3408 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3409 Known
= KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3416 if (Op
.getResNo() == 1) {
3417 // If we know the result of a setcc has the top bits zero, use this info.
3418 if (TLI
->getBooleanContents(Op
.getOperand(0).getValueType()) ==
3419 TargetLowering::ZeroOrOneBooleanContent
&&
3421 Known
.Zero
.setBitsFrom(1);
3428 assert(Op
.getResNo() == 0 && "We only compute knownbits for the sum here.");
3430 // With ADDE and ADDCARRY, a carry bit may be added in.
3432 if (Opcode
== ISD::ADDE
)
3433 // Can't track carry from glue, set carry to unknown.
3435 else if (Opcode
== ISD::ADDCARRY
)
3436 // TODO: Compute known bits for the carry operand. Not sure if it is worth
3437 // the trouble (how often will we find a known carry bit). And I haven't
3438 // tested this very much yet, but something like this might work:
3439 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3440 // Carry = Carry.zextOrTrunc(1, false);
3445 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3446 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3447 Known
= KnownBits::computeForAddCarry(Known
, Known2
, Carry
);
3451 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3452 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3453 Known
= KnownBits::srem(Known
, Known2
);
3457 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3458 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3459 Known
= KnownBits::urem(Known
, Known2
);
3462 case ISD::EXTRACT_ELEMENT
: {
3463 Known
= computeKnownBits(Op
.getOperand(0), Depth
+1);
3464 const unsigned Index
= Op
.getConstantOperandVal(1);
3465 const unsigned EltBitWidth
= Op
.getValueSizeInBits();
3467 // Remove low part of known bits mask
3468 Known
.Zero
= Known
.Zero
.getHiBits(Known
.getBitWidth() - Index
* EltBitWidth
);
3469 Known
.One
= Known
.One
.getHiBits(Known
.getBitWidth() - Index
* EltBitWidth
);
3471 // Remove high part of known bit mask
3472 Known
= Known
.trunc(EltBitWidth
);
3475 case ISD::EXTRACT_VECTOR_ELT
: {
3476 SDValue InVec
= Op
.getOperand(0);
3477 SDValue EltNo
= Op
.getOperand(1);
3478 EVT VecVT
= InVec
.getValueType();
3479 // computeKnownBits not yet implemented for scalable vectors.
3480 if (VecVT
.isScalableVector())
3482 const unsigned EltBitWidth
= VecVT
.getScalarSizeInBits();
3483 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
3485 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3486 // anything about the extended bits.
3487 if (BitWidth
> EltBitWidth
)
3488 Known
= Known
.trunc(EltBitWidth
);
3490 // If we know the element index, just demand that vector element, else for
3491 // an unknown element index, ignore DemandedElts and demand them all.
3492 APInt DemandedSrcElts
= APInt::getAllOnes(NumSrcElts
);
3493 auto *ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
);
3494 if (ConstEltNo
&& ConstEltNo
->getAPIntValue().ult(NumSrcElts
))
3496 APInt::getOneBitSet(NumSrcElts
, ConstEltNo
->getZExtValue());
3498 Known
= computeKnownBits(InVec
, DemandedSrcElts
, Depth
+ 1);
3499 if (BitWidth
> EltBitWidth
)
3500 Known
= Known
.anyext(BitWidth
);
3503 case ISD::INSERT_VECTOR_ELT
: {
3504 // If we know the element index, split the demand between the
3505 // source vector and the inserted element, otherwise assume we need
3506 // the original demanded vector elements and the value.
3507 SDValue InVec
= Op
.getOperand(0);
3508 SDValue InVal
= Op
.getOperand(1);
3509 SDValue EltNo
= Op
.getOperand(2);
3510 bool DemandedVal
= true;
3511 APInt DemandedVecElts
= DemandedElts
;
3512 auto *CEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
);
3513 if (CEltNo
&& CEltNo
->getAPIntValue().ult(NumElts
)) {
3514 unsigned EltIdx
= CEltNo
->getZExtValue();
3515 DemandedVal
= !!DemandedElts
[EltIdx
];
3516 DemandedVecElts
.clearBit(EltIdx
);
3518 Known
.One
.setAllBits();
3519 Known
.Zero
.setAllBits();
3521 Known2
= computeKnownBits(InVal
, Depth
+ 1);
3522 Known
= KnownBits::commonBits(Known
, Known2
.zextOrTrunc(BitWidth
));
3524 if (!!DemandedVecElts
) {
3525 Known2
= computeKnownBits(InVec
, DemandedVecElts
, Depth
+ 1);
3526 Known
= KnownBits::commonBits(Known
, Known2
);
3530 case ISD::BITREVERSE
: {
3531 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3532 Known
= Known2
.reverseBits();
3536 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3537 Known
= Known2
.byteSwap();
3541 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3542 Known
= Known2
.abs();
3545 case ISD::USUBSAT
: {
3546 // The result of usubsat will never be larger than the LHS.
3547 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3548 Known
.Zero
.setHighBits(Known2
.countMinLeadingZeros());
3552 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3553 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3554 Known
= KnownBits::umin(Known
, Known2
);
3558 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3559 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3560 Known
= KnownBits::umax(Known
, Known2
);
3565 // If we have a clamp pattern, we know that the number of sign bits will be
3566 // the minimum of the clamp min/max range.
3567 bool IsMax
= (Opcode
== ISD::SMAX
);
3568 ConstantSDNode
*CstLow
= nullptr, *CstHigh
= nullptr;
3569 if ((CstLow
= isConstOrConstSplat(Op
.getOperand(1), DemandedElts
)))
3570 if (Op
.getOperand(0).getOpcode() == (IsMax
? ISD::SMIN
: ISD::SMAX
))
3572 isConstOrConstSplat(Op
.getOperand(0).getOperand(1), DemandedElts
);
3573 if (CstLow
&& CstHigh
) {
3575 std::swap(CstLow
, CstHigh
);
3577 const APInt
&ValueLow
= CstLow
->getAPIntValue();
3578 const APInt
&ValueHigh
= CstHigh
->getAPIntValue();
3579 if (ValueLow
.sle(ValueHigh
)) {
3580 unsigned LowSignBits
= ValueLow
.getNumSignBits();
3581 unsigned HighSignBits
= ValueHigh
.getNumSignBits();
3582 unsigned MinSignBits
= std::min(LowSignBits
, HighSignBits
);
3583 if (ValueLow
.isNegative() && ValueHigh
.isNegative()) {
3584 Known
.One
.setHighBits(MinSignBits
);
3587 if (ValueLow
.isNonNegative() && ValueHigh
.isNonNegative()) {
3588 Known
.Zero
.setHighBits(MinSignBits
);
3594 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3595 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3597 Known
= KnownBits::smax(Known
, Known2
);
3599 Known
= KnownBits::smin(Known
, Known2
);
3602 case ISD::FP_TO_UINT_SAT
: {
3603 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3604 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
3605 Known
.Zero
|= APInt::getBitsSetFrom(BitWidth
, VT
.getScalarSizeInBits());
3608 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
:
3609 if (Op
.getResNo() == 1) {
3610 // The boolean result conforms to getBooleanContents.
3611 // If we know the result of a setcc has the top bits zero, use this info.
3612 // We know that we have an integer-based boolean since these operations
3613 // are only available for integer.
3614 if (TLI
->getBooleanContents(Op
.getValueType().isVector(), false) ==
3615 TargetLowering::ZeroOrOneBooleanContent
&&
3617 Known
.Zero
.setBitsFrom(1);
3621 case ISD::ATOMIC_CMP_SWAP
:
3622 case ISD::ATOMIC_SWAP
:
3623 case ISD::ATOMIC_LOAD_ADD
:
3624 case ISD::ATOMIC_LOAD_SUB
:
3625 case ISD::ATOMIC_LOAD_AND
:
3626 case ISD::ATOMIC_LOAD_CLR
:
3627 case ISD::ATOMIC_LOAD_OR
:
3628 case ISD::ATOMIC_LOAD_XOR
:
3629 case ISD::ATOMIC_LOAD_NAND
:
3630 case ISD::ATOMIC_LOAD_MIN
:
3631 case ISD::ATOMIC_LOAD_MAX
:
3632 case ISD::ATOMIC_LOAD_UMIN
:
3633 case ISD::ATOMIC_LOAD_UMAX
:
3634 case ISD::ATOMIC_LOAD
: {
3636 cast
<AtomicSDNode
>(Op
)->getMemoryVT().getScalarSizeInBits();
3637 // If we are looking at the loaded value.
3638 if (Op
.getResNo() == 0) {
3639 if (TLI
->getExtendForAtomicOps() == ISD::ZERO_EXTEND
)
3640 Known
.Zero
.setBitsFrom(MemBits
);
3644 case ISD::FrameIndex
:
3645 case ISD::TargetFrameIndex
:
3646 TLI
->computeKnownBitsForFrameIndex(cast
<FrameIndexSDNode
>(Op
)->getIndex(),
3647 Known
, getMachineFunction());
3651 if (Opcode
< ISD::BUILTIN_OP_END
)
3654 case ISD::INTRINSIC_WO_CHAIN
:
3655 case ISD::INTRINSIC_W_CHAIN
:
3656 case ISD::INTRINSIC_VOID
:
3657 // Allow the target to implement this method for its nodes.
3658 TLI
->computeKnownBitsForTargetNode(Op
, Known
, DemandedElts
, *this, Depth
);
3662 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
3666 SelectionDAG::OverflowKind
SelectionDAG::computeOverflowKind(SDValue N0
,
3668 // X + 0 never overflow
3669 if (isNullConstant(N1
))
3672 KnownBits N1Known
= computeKnownBits(N1
);
3673 if (N1Known
.Zero
.getBoolValue()) {
3674 KnownBits N0Known
= computeKnownBits(N0
);
3677 (void)N0Known
.getMaxValue().uadd_ov(N1Known
.getMaxValue(), overflow
);
3682 // mulhi + 1 never overflow
3683 if (N0
.getOpcode() == ISD::UMUL_LOHI
&& N0
.getResNo() == 1 &&
3684 (N1Known
.getMaxValue() & 0x01) == N1Known
.getMaxValue())
3687 if (N1
.getOpcode() == ISD::UMUL_LOHI
&& N1
.getResNo() == 1) {
3688 KnownBits N0Known
= computeKnownBits(N0
);
3690 if ((N0Known
.getMaxValue() & 0x01) == N0Known
.getMaxValue())
3694 return OFK_Sometime
;
3697 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val
) const {
3698 EVT OpVT
= Val
.getValueType();
3699 unsigned BitWidth
= OpVT
.getScalarSizeInBits();
3701 // Is the constant a known power of 2?
3702 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(Val
))
3703 return Const
->getAPIntValue().zextOrTrunc(BitWidth
).isPowerOf2();
3705 // A left-shift of a constant one will have exactly one bit set because
3706 // shifting the bit off the end is undefined.
3707 if (Val
.getOpcode() == ISD::SHL
) {
3708 auto *C
= isConstOrConstSplat(Val
.getOperand(0));
3709 if (C
&& C
->getAPIntValue() == 1)
3713 // Similarly, a logical right-shift of a constant sign-bit will have exactly
3715 if (Val
.getOpcode() == ISD::SRL
) {
3716 auto *C
= isConstOrConstSplat(Val
.getOperand(0));
3717 if (C
&& C
->getAPIntValue().isSignMask())
3721 // Are all operands of a build vector constant powers of two?
3722 if (Val
.getOpcode() == ISD::BUILD_VECTOR
)
3723 if (llvm::all_of(Val
->ops(), [BitWidth
](SDValue E
) {
3724 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(E
))
3725 return C
->getAPIntValue().zextOrTrunc(BitWidth
).isPowerOf2();
3730 // Is the operand of a splat vector a constant power of two?
3731 if (Val
.getOpcode() == ISD::SPLAT_VECTOR
)
3732 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
->getOperand(0)))
3733 if (C
->getAPIntValue().zextOrTrunc(BitWidth
).isPowerOf2())
3736 // More could be done here, though the above checks are enough
3737 // to handle some common cases.
3739 // Fall back to computeKnownBits to catch other known cases.
3740 KnownBits Known
= computeKnownBits(Val
);
3741 return (Known
.countMaxPopulation() == 1) && (Known
.countMinPopulation() == 1);
3744 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, unsigned Depth
) const {
3745 EVT VT
= Op
.getValueType();
3747 // TODO: Assume we don't know anything for now.
3748 if (VT
.isScalableVector())
3751 APInt DemandedElts
= VT
.isVector()
3752 ? APInt::getAllOnes(VT
.getVectorNumElements())
3754 return ComputeNumSignBits(Op
, DemandedElts
, Depth
);
3757 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, const APInt
&DemandedElts
,
3758 unsigned Depth
) const {
3759 EVT VT
= Op
.getValueType();
3760 assert((VT
.isInteger() || VT
.isFloatingPoint()) && "Invalid VT!");
3761 unsigned VTBits
= VT
.getScalarSizeInBits();
3762 unsigned NumElts
= DemandedElts
.getBitWidth();
3764 unsigned FirstAnswer
= 1;
3766 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
3767 const APInt
&Val
= C
->getAPIntValue();
3768 return Val
.getNumSignBits();
3771 if (Depth
>= MaxRecursionDepth
)
3772 return 1; // Limit search depth.
3774 if (!DemandedElts
|| VT
.isScalableVector())
3775 return 1; // No demanded elts, better to assume we don't know anything.
3777 unsigned Opcode
= Op
.getOpcode();
3780 case ISD::AssertSext
:
3781 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
3782 return VTBits
-Tmp
+1;
3783 case ISD::AssertZext
:
3784 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
3787 case ISD::BUILD_VECTOR
:
3789 for (unsigned i
= 0, e
= Op
.getNumOperands(); (i
< e
) && (Tmp
> 1); ++i
) {
3790 if (!DemandedElts
[i
])
3793 SDValue SrcOp
= Op
.getOperand(i
);
3794 Tmp2
= ComputeNumSignBits(SrcOp
, Depth
+ 1);
3796 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3797 if (SrcOp
.getValueSizeInBits() != VTBits
) {
3798 assert(SrcOp
.getValueSizeInBits() > VTBits
&&
3799 "Expected BUILD_VECTOR implicit truncation");
3800 unsigned ExtraBits
= SrcOp
.getValueSizeInBits() - VTBits
;
3801 Tmp2
= (Tmp2
> ExtraBits
? Tmp2
- ExtraBits
: 1);
3803 Tmp
= std::min(Tmp
, Tmp2
);
3807 case ISD::VECTOR_SHUFFLE
: {
3808 // Collect the minimum number of sign bits that are shared by every vector
3809 // element referenced by the shuffle.
3810 APInt
DemandedLHS(NumElts
, 0), DemandedRHS(NumElts
, 0);
3811 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
);
3812 assert(NumElts
== SVN
->getMask().size() && "Unexpected vector size");
3813 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
3814 int M
= SVN
->getMaskElt(i
);
3815 if (!DemandedElts
[i
])
3817 // For UNDEF elements, we don't know anything about the common state of
3818 // the shuffle result.
3821 if ((unsigned)M
< NumElts
)
3822 DemandedLHS
.setBit((unsigned)M
% NumElts
);
3824 DemandedRHS
.setBit((unsigned)M
% NumElts
);
3826 Tmp
= std::numeric_limits
<unsigned>::max();
3828 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedLHS
, Depth
+ 1);
3829 if (!!DemandedRHS
) {
3830 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), DemandedRHS
, Depth
+ 1);
3831 Tmp
= std::min(Tmp
, Tmp2
);
3833 // If we don't know anything, early out and try computeKnownBits fall-back.
3836 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
3840 case ISD::BITCAST
: {
3841 SDValue N0
= Op
.getOperand(0);
3842 EVT SrcVT
= N0
.getValueType();
3843 unsigned SrcBits
= SrcVT
.getScalarSizeInBits();
3845 // Ignore bitcasts from unsupported types..
3846 if (!(SrcVT
.isInteger() || SrcVT
.isFloatingPoint()))
3849 // Fast handling of 'identity' bitcasts.
3850 if (VTBits
== SrcBits
)
3851 return ComputeNumSignBits(N0
, DemandedElts
, Depth
+ 1);
3853 bool IsLE
= getDataLayout().isLittleEndian();
3855 // Bitcast 'large element' scalar/vector to 'small element' vector.
3856 if ((SrcBits
% VTBits
) == 0) {
3857 assert(VT
.isVector() && "Expected bitcast to vector");
3859 unsigned Scale
= SrcBits
/ VTBits
;
3860 APInt SrcDemandedElts
=
3861 APIntOps::ScaleBitMask(DemandedElts
, NumElts
/ Scale
);
3863 // Fast case - sign splat can be simply split across the small elements.
3864 Tmp
= ComputeNumSignBits(N0
, SrcDemandedElts
, Depth
+ 1);
3868 // Slow case - determine how far the sign extends into each sub-element.
3870 for (unsigned i
= 0; i
!= NumElts
; ++i
)
3871 if (DemandedElts
[i
]) {
3872 unsigned SubOffset
= i
% Scale
;
3873 SubOffset
= (IsLE
? ((Scale
- 1) - SubOffset
) : SubOffset
);
3874 SubOffset
= SubOffset
* VTBits
;
3875 if (Tmp
<= SubOffset
)
3877 Tmp2
= std::min(Tmp2
, Tmp
- SubOffset
);
3884 case ISD::FP_TO_SINT_SAT
:
3885 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
3886 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getScalarSizeInBits();
3887 return VTBits
- Tmp
+ 1;
3888 case ISD::SIGN_EXTEND
:
3889 Tmp
= VTBits
- Op
.getOperand(0).getScalarValueSizeInBits();
3890 return ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+1) + Tmp
;
3891 case ISD::SIGN_EXTEND_INREG
:
3892 // Max of the input and what this extends.
3893 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getScalarSizeInBits();
3895 Tmp2
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+1);
3896 return std::max(Tmp
, Tmp2
);
3897 case ISD::SIGN_EXTEND_VECTOR_INREG
: {
3898 SDValue Src
= Op
.getOperand(0);
3899 EVT SrcVT
= Src
.getValueType();
3900 APInt DemandedSrcElts
= DemandedElts
.zextOrSelf(SrcVT
.getVectorNumElements());
3901 Tmp
= VTBits
- SrcVT
.getScalarSizeInBits();
3902 return ComputeNumSignBits(Src
, DemandedSrcElts
, Depth
+1) + Tmp
;
3905 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3906 // SRA X, C -> adds C sign bits.
3907 if (const APInt
*ShAmt
=
3908 getValidMinimumShiftAmountConstant(Op
, DemandedElts
))
3909 Tmp
= std::min
<uint64_t>(Tmp
+ ShAmt
->getZExtValue(), VTBits
);
3912 if (const APInt
*ShAmt
=
3913 getValidMaximumShiftAmountConstant(Op
, DemandedElts
)) {
3914 // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3915 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3916 if (ShAmt
->ult(Tmp
))
3917 return Tmp
- ShAmt
->getZExtValue();
3922 case ISD::XOR
: // NOT is handled here.
3923 // Logical binary ops preserve the number of sign bits at the worst.
3924 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+1);
3926 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), DemandedElts
, Depth
+1);
3927 FirstAnswer
= std::min(Tmp
, Tmp2
);
3928 // We computed what we know about the sign bits as our first
3929 // answer. Now proceed to the generic code that uses
3930 // computeKnownBits, and pick whichever answer is better.
3936 Tmp
= ComputeNumSignBits(Op
.getOperand(1), DemandedElts
, Depth
+1);
3937 if (Tmp
== 1) return 1; // Early out.
3938 Tmp2
= ComputeNumSignBits(Op
.getOperand(2), DemandedElts
, Depth
+1);
3939 return std::min(Tmp
, Tmp2
);
3940 case ISD::SELECT_CC
:
3941 Tmp
= ComputeNumSignBits(Op
.getOperand(2), DemandedElts
, Depth
+1);
3942 if (Tmp
== 1) return 1; // Early out.
3943 Tmp2
= ComputeNumSignBits(Op
.getOperand(3), DemandedElts
, Depth
+1);
3944 return std::min(Tmp
, Tmp2
);
3948 // If we have a clamp pattern, we know that the number of sign bits will be
3949 // the minimum of the clamp min/max range.
3950 bool IsMax
= (Opcode
== ISD::SMAX
);
3951 ConstantSDNode
*CstLow
= nullptr, *CstHigh
= nullptr;
3952 if ((CstLow
= isConstOrConstSplat(Op
.getOperand(1), DemandedElts
)))
3953 if (Op
.getOperand(0).getOpcode() == (IsMax
? ISD::SMIN
: ISD::SMAX
))
3955 isConstOrConstSplat(Op
.getOperand(0).getOperand(1), DemandedElts
);
3956 if (CstLow
&& CstHigh
) {
3958 std::swap(CstLow
, CstHigh
);
3959 if (CstLow
->getAPIntValue().sle(CstHigh
->getAPIntValue())) {
3960 Tmp
= CstLow
->getAPIntValue().getNumSignBits();
3961 Tmp2
= CstHigh
->getAPIntValue().getNumSignBits();
3962 return std::min(Tmp
, Tmp2
);
3966 // Fallback - just get the minimum number of sign bits of the operands.
3967 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3969 return 1; // Early out.
3970 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3971 return std::min(Tmp
, Tmp2
);
3975 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3977 return 1; // Early out.
3978 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3979 return std::min(Tmp
, Tmp2
);
3986 if (Op
.getResNo() != 1)
3988 // The boolean result conforms to getBooleanContents. Fall through.
3989 // If setcc returns 0/-1, all bits are sign bits.
3990 // We know that we have an integer-based boolean since these operations
3991 // are only available for integer.
3992 if (TLI
->getBooleanContents(VT
.isVector(), false) ==
3993 TargetLowering::ZeroOrNegativeOneBooleanContent
)
3997 case ISD::STRICT_FSETCC
:
3998 case ISD::STRICT_FSETCCS
: {
3999 unsigned OpNo
= Op
->isStrictFPOpcode() ? 1 : 0;
4000 // If setcc returns 0/-1, all bits are sign bits.
4001 if (TLI
->getBooleanContents(Op
.getOperand(OpNo
).getValueType()) ==
4002 TargetLowering::ZeroOrNegativeOneBooleanContent
)
4008 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
4010 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4014 if (ConstantSDNode
*C
=
4015 isConstOrConstSplat(Op
.getOperand(1), DemandedElts
)) {
4016 unsigned RotAmt
= C
->getAPIntValue().urem(VTBits
);
4018 // Handle rotate right by N like a rotate left by 32-N.
4019 if (Opcode
== ISD::ROTR
)
4020 RotAmt
= (VTBits
- RotAmt
) % VTBits
;
4022 // If we aren't rotating out all of the known-in sign bits, return the
4023 // number that are left. This handles rotl(sext(x), 1) for example.
4024 if (Tmp
> (RotAmt
+ 1)) return (Tmp
- RotAmt
);
4029 // Add can have at most one carry bit. Thus we know that the output
4030 // is, at worst, one more bit than the inputs.
4031 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
4032 if (Tmp
== 1) return 1; // Early out.
4034 // Special case decrementing a value (ADD X, -1):
4035 if (ConstantSDNode
*CRHS
=
4036 isConstOrConstSplat(Op
.getOperand(1), DemandedElts
))
4037 if (CRHS
->isAllOnes()) {
4039 computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
4041 // If the input is known to be 0 or 1, the output is 0/-1, which is all
4043 if ((Known
.Zero
| 1).isAllOnes())
4046 // If we are subtracting one from a positive number, there is no carry
4047 // out of the result.
4048 if (Known
.isNonNegative())
4052 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
4053 if (Tmp2
== 1) return 1; // Early out.
4054 return std::min(Tmp
, Tmp2
) - 1;
4056 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
4057 if (Tmp2
== 1) return 1; // Early out.
4060 if (ConstantSDNode
*CLHS
=
4061 isConstOrConstSplat(Op
.getOperand(0), DemandedElts
))
4062 if (CLHS
->isZero()) {
4064 computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
4065 // If the input is known to be 0 or 1, the output is 0/-1, which is all
4067 if ((Known
.Zero
| 1).isAllOnes())
4070 // If the input is known to be positive (the sign bit is known clear),
4071 // the output of the NEG has the same number of sign bits as the input.
4072 if (Known
.isNonNegative())
4075 // Otherwise, we treat this like a SUB.
4078 // Sub can have at most one carry bit. Thus we know that the output
4079 // is, at worst, one more bit than the inputs.
4080 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
4081 if (Tmp
== 1) return 1; // Early out.
4082 return std::min(Tmp
, Tmp2
) - 1;
4084 // The output of the Mul can be at most twice the valid bits in the inputs.
4085 unsigned SignBitsOp0
= ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
4086 if (SignBitsOp0
== 1)
4088 unsigned SignBitsOp1
= ComputeNumSignBits(Op
.getOperand(1), Depth
+ 1);
4089 if (SignBitsOp1
== 1)
4091 unsigned OutValidBits
=
4092 (VTBits
- SignBitsOp0
+ 1) + (VTBits
- SignBitsOp1
+ 1);
4093 return OutValidBits
> VTBits
? 1 : VTBits
- OutValidBits
+ 1;
4096 // The sign bit is the LHS's sign bit, except when the result of the
4097 // remainder is zero. The magnitude of the result should be less than or
4098 // equal to the magnitude of the LHS. Therefore, the result should have
4099 // at least as many sign bits as the left hand side.
4100 return ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
4101 case ISD::TRUNCATE
: {
4102 // Check if the sign bits of source go down as far as the truncated value.
4103 unsigned NumSrcBits
= Op
.getOperand(0).getScalarValueSizeInBits();
4104 unsigned NumSrcSignBits
= ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
4105 if (NumSrcSignBits
> (NumSrcBits
- VTBits
))
4106 return NumSrcSignBits
- (NumSrcBits
- VTBits
);
4109 case ISD::EXTRACT_ELEMENT
: {
4110 const int KnownSign
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
4111 const int BitWidth
= Op
.getValueSizeInBits();
4112 const int Items
= Op
.getOperand(0).getValueSizeInBits() / BitWidth
;
4114 // Get reverse index (starting from 1), Op1 value indexes elements from
4115 // little end. Sign starts at big end.
4116 const int rIndex
= Items
- 1 - Op
.getConstantOperandVal(1);
4118 // If the sign portion ends in our element the subtraction gives correct
4119 // result. Otherwise it gives either negative or > bitwidth result
4120 return std::max(std::min(KnownSign
- rIndex
* BitWidth
, BitWidth
), 0);
4122 case ISD::INSERT_VECTOR_ELT
: {
4123 // If we know the element index, split the demand between the
4124 // source vector and the inserted element, otherwise assume we need
4125 // the original demanded vector elements and the value.
4126 SDValue InVec
= Op
.getOperand(0);
4127 SDValue InVal
= Op
.getOperand(1);
4128 SDValue EltNo
= Op
.getOperand(2);
4129 bool DemandedVal
= true;
4130 APInt DemandedVecElts
= DemandedElts
;
4131 auto *CEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
);
4132 if (CEltNo
&& CEltNo
->getAPIntValue().ult(NumElts
)) {
4133 unsigned EltIdx
= CEltNo
->getZExtValue();
4134 DemandedVal
= !!DemandedElts
[EltIdx
];
4135 DemandedVecElts
.clearBit(EltIdx
);
4137 Tmp
= std::numeric_limits
<unsigned>::max();
4139 // TODO - handle implicit truncation of inserted elements.
4140 if (InVal
.getScalarValueSizeInBits() != VTBits
)
4142 Tmp2
= ComputeNumSignBits(InVal
, Depth
+ 1);
4143 Tmp
= std::min(Tmp
, Tmp2
);
4145 if (!!DemandedVecElts
) {
4146 Tmp2
= ComputeNumSignBits(InVec
, DemandedVecElts
, Depth
+ 1);
4147 Tmp
= std::min(Tmp
, Tmp2
);
4149 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
4152 case ISD::EXTRACT_VECTOR_ELT
: {
4153 SDValue InVec
= Op
.getOperand(0);
4154 SDValue EltNo
= Op
.getOperand(1);
4155 EVT VecVT
= InVec
.getValueType();
4156 // ComputeNumSignBits not yet implemented for scalable vectors.
4157 if (VecVT
.isScalableVector())
4159 const unsigned BitWidth
= Op
.getValueSizeInBits();
4160 const unsigned EltBitWidth
= Op
.getOperand(0).getScalarValueSizeInBits();
4161 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
4163 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4164 // anything about sign bits. But if the sizes match we can derive knowledge
4165 // about sign bits from the vector operand.
4166 if (BitWidth
!= EltBitWidth
)
4169 // If we know the element index, just demand that vector element, else for
4170 // an unknown element index, ignore DemandedElts and demand them all.
4171 APInt DemandedSrcElts
= APInt::getAllOnes(NumSrcElts
);
4172 auto *ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
);
4173 if (ConstEltNo
&& ConstEltNo
->getAPIntValue().ult(NumSrcElts
))
4175 APInt::getOneBitSet(NumSrcElts
, ConstEltNo
->getZExtValue());
4177 return ComputeNumSignBits(InVec
, DemandedSrcElts
, Depth
+ 1);
4179 case ISD::EXTRACT_SUBVECTOR
: {
4180 // Offset the demanded elts by the subvector index.
4181 SDValue Src
= Op
.getOperand(0);
4182 // Bail until we can represent demanded elements for scalable vectors.
4183 if (Src
.getValueType().isScalableVector())
4185 uint64_t Idx
= Op
.getConstantOperandVal(1);
4186 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
4187 APInt DemandedSrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
4188 return ComputeNumSignBits(Src
, DemandedSrcElts
, Depth
+ 1);
4190 case ISD::CONCAT_VECTORS
: {
4191 // Determine the minimum number of sign bits across all demanded
4192 // elts of the input vectors. Early out if the result is already 1.
4193 Tmp
= std::numeric_limits
<unsigned>::max();
4194 EVT SubVectorVT
= Op
.getOperand(0).getValueType();
4195 unsigned NumSubVectorElts
= SubVectorVT
.getVectorNumElements();
4196 unsigned NumSubVectors
= Op
.getNumOperands();
4197 for (unsigned i
= 0; (i
< NumSubVectors
) && (Tmp
> 1); ++i
) {
4199 DemandedElts
.extractBits(NumSubVectorElts
, i
* NumSubVectorElts
);
4202 Tmp2
= ComputeNumSignBits(Op
.getOperand(i
), DemandedSub
, Depth
+ 1);
4203 Tmp
= std::min(Tmp
, Tmp2
);
4205 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
4208 case ISD::INSERT_SUBVECTOR
: {
4209 // Demand any elements from the subvector and the remainder from the src its
4211 SDValue Src
= Op
.getOperand(0);
4212 SDValue Sub
= Op
.getOperand(1);
4213 uint64_t Idx
= Op
.getConstantOperandVal(2);
4214 unsigned NumSubElts
= Sub
.getValueType().getVectorNumElements();
4215 APInt DemandedSubElts
= DemandedElts
.extractBits(NumSubElts
, Idx
);
4216 APInt DemandedSrcElts
= DemandedElts
;
4217 DemandedSrcElts
.insertBits(APInt::getZero(NumSubElts
), Idx
);
4219 Tmp
= std::numeric_limits
<unsigned>::max();
4220 if (!!DemandedSubElts
) {
4221 Tmp
= ComputeNumSignBits(Sub
, DemandedSubElts
, Depth
+ 1);
4223 return 1; // early-out
4225 if (!!DemandedSrcElts
) {
4226 Tmp2
= ComputeNumSignBits(Src
, DemandedSrcElts
, Depth
+ 1);
4227 Tmp
= std::min(Tmp
, Tmp2
);
4229 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
4232 case ISD::ATOMIC_CMP_SWAP
:
4233 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
:
4234 case ISD::ATOMIC_SWAP
:
4235 case ISD::ATOMIC_LOAD_ADD
:
4236 case ISD::ATOMIC_LOAD_SUB
:
4237 case ISD::ATOMIC_LOAD_AND
:
4238 case ISD::ATOMIC_LOAD_CLR
:
4239 case ISD::ATOMIC_LOAD_OR
:
4240 case ISD::ATOMIC_LOAD_XOR
:
4241 case ISD::ATOMIC_LOAD_NAND
:
4242 case ISD::ATOMIC_LOAD_MIN
:
4243 case ISD::ATOMIC_LOAD_MAX
:
4244 case ISD::ATOMIC_LOAD_UMIN
:
4245 case ISD::ATOMIC_LOAD_UMAX
:
4246 case ISD::ATOMIC_LOAD
: {
4247 Tmp
= cast
<AtomicSDNode
>(Op
)->getMemoryVT().getScalarSizeInBits();
4248 // If we are looking at the loaded value.
4249 if (Op
.getResNo() == 0) {
4251 return 1; // early-out
4252 if (TLI
->getExtendForAtomicOps() == ISD::SIGN_EXTEND
)
4253 return VTBits
- Tmp
+ 1;
4254 if (TLI
->getExtendForAtomicOps() == ISD::ZERO_EXTEND
)
4255 return VTBits
- Tmp
;
4261 // If we are looking at the loaded value of the SDNode.
4262 if (Op
.getResNo() == 0) {
4263 // Handle LOADX separately here. EXTLOAD case will fallthrough.
4264 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
)) {
4265 unsigned ExtType
= LD
->getExtensionType();
4268 case ISD::SEXTLOAD
: // e.g. i16->i32 = '17' bits known.
4269 Tmp
= LD
->getMemoryVT().getScalarSizeInBits();
4270 return VTBits
- Tmp
+ 1;
4271 case ISD::ZEXTLOAD
: // e.g. i16->i32 = '16' bits known.
4272 Tmp
= LD
->getMemoryVT().getScalarSizeInBits();
4273 return VTBits
- Tmp
;
4274 case ISD::NON_EXTLOAD
:
4275 if (const Constant
*Cst
= TLI
->getTargetConstantFromLoad(LD
)) {
4276 // We only need to handle vectors - computeKnownBits should handle
4278 Type
*CstTy
= Cst
->getType();
4279 if (CstTy
->isVectorTy() &&
4280 (NumElts
* VTBits
) == CstTy
->getPrimitiveSizeInBits()) {
4282 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
4283 if (!DemandedElts
[i
])
4285 if (Constant
*Elt
= Cst
->getAggregateElement(i
)) {
4286 if (auto *CInt
= dyn_cast
<ConstantInt
>(Elt
)) {
4287 const APInt
&Value
= CInt
->getValue();
4288 Tmp
= std::min(Tmp
, Value
.getNumSignBits());
4291 if (auto *CFP
= dyn_cast
<ConstantFP
>(Elt
)) {
4292 APInt Value
= CFP
->getValueAPF().bitcastToAPInt();
4293 Tmp
= std::min(Tmp
, Value
.getNumSignBits());
4297 // Unknown type. Conservatively assume no bits match sign bit.
4308 // Allow the target to implement this method for its nodes.
4309 if (Opcode
>= ISD::BUILTIN_OP_END
||
4310 Opcode
== ISD::INTRINSIC_WO_CHAIN
||
4311 Opcode
== ISD::INTRINSIC_W_CHAIN
||
4312 Opcode
== ISD::INTRINSIC_VOID
) {
4314 TLI
->ComputeNumSignBitsForTargetNode(Op
, DemandedElts
, *this, Depth
);
4316 FirstAnswer
= std::max(FirstAnswer
, NumBits
);
4319 // Finally, if we can prove that the top bits of the result are 0's or 1's,
4320 // use this information.
4321 KnownBits Known
= computeKnownBits(Op
, DemandedElts
, Depth
);
4322 return std::max(FirstAnswer
, Known
.countMinSignBits());
4325 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op
,
4326 unsigned Depth
) const {
4327 unsigned SignBits
= ComputeNumSignBits(Op
, Depth
);
4328 return Op
.getScalarValueSizeInBits() - SignBits
+ 1;
4331 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op
,
4332 const APInt
&DemandedElts
,
4333 unsigned Depth
) const {
4334 unsigned SignBits
= ComputeNumSignBits(Op
, DemandedElts
, Depth
);
4335 return Op
.getScalarValueSizeInBits() - SignBits
+ 1;
4338 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op
, bool PoisonOnly
,
4339 unsigned Depth
) const {
4340 // Early out for FREEZE.
4341 if (Op
.getOpcode() == ISD::FREEZE
)
4344 // TODO: Assume we don't know anything for now.
4345 EVT VT
= Op
.getValueType();
4346 if (VT
.isScalableVector())
4349 APInt DemandedElts
= VT
.isVector()
4350 ? APInt::getAllOnes(VT
.getVectorNumElements())
4352 return isGuaranteedNotToBeUndefOrPoison(Op
, DemandedElts
, PoisonOnly
, Depth
);
4355 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op
,
4356 const APInt
&DemandedElts
,
4358 unsigned Depth
) const {
4359 unsigned Opcode
= Op
.getOpcode();
4361 // Early out for FREEZE.
4362 if (Opcode
== ISD::FREEZE
)
4365 if (Depth
>= MaxRecursionDepth
)
4366 return false; // Limit search depth.
4368 if (isIntOrFPConstant(Op
))
4375 case ISD::BUILD_VECTOR
:
4376 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4377 // this shouldn't affect the result.
4378 for (unsigned i
= 0, e
= Op
.getNumOperands(); i
< e
; ++i
) {
4379 if (!DemandedElts
[i
])
4381 if (!isGuaranteedNotToBeUndefOrPoison(Op
.getOperand(i
), PoisonOnly
,
4387 // TODO: Search for noundef attributes from library functions.
4389 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4392 // Allow the target to implement this method for its nodes.
4393 if (Opcode
>= ISD::BUILTIN_OP_END
|| Opcode
== ISD::INTRINSIC_WO_CHAIN
||
4394 Opcode
== ISD::INTRINSIC_W_CHAIN
|| Opcode
== ISD::INTRINSIC_VOID
)
4395 return TLI
->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4396 Op
, DemandedElts
, *this, PoisonOnly
, Depth
);
4403 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op
) const {
4404 if ((Op
.getOpcode() != ISD::ADD
&& Op
.getOpcode() != ISD::OR
) ||
4405 !isa
<ConstantSDNode
>(Op
.getOperand(1)))
4408 if (Op
.getOpcode() == ISD::OR
&&
4409 !MaskedValueIsZero(Op
.getOperand(0), Op
.getConstantOperandAPInt(1)))
4415 bool SelectionDAG::isKnownNeverNaN(SDValue Op
, bool SNaN
, unsigned Depth
) const {
4416 // If we're told that NaNs won't happen, assume they won't.
4417 if (getTarget().Options
.NoNaNsFPMath
|| Op
->getFlags().hasNoNaNs())
4420 if (Depth
>= MaxRecursionDepth
)
4421 return false; // Limit search depth.
4423 // TODO: Handle vectors.
4424 // If the value is a constant, we can obviously see if it is a NaN or not.
4425 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
4426 return !C
->getValueAPF().isNaN() ||
4427 (SNaN
&& !C
->getValueAPF().isSignaling());
4430 unsigned Opcode
= Op
.getOpcode();
4441 // TODO: Need isKnownNeverInfinity
4444 case ISD::FCANONICALIZE
:
4451 case ISD::FROUNDEVEN
:
4453 case ISD::FNEARBYINT
: {
4456 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4460 case ISD::FCOPYSIGN
: {
4461 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4464 return isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4465 isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4466 case ISD::FP_EXTEND
:
4467 case ISD::FP_ROUND
: {
4470 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4472 case ISD::SINT_TO_FP
:
4473 case ISD::UINT_TO_FP
:
4479 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4480 isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4481 isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4483 case ISD::FSQRT
: // Need is known positive
4491 // TODO: Refine on operand
4495 case ISD::FMAXNUM
: {
4496 // Only one needs to be known not-nan, since it will be returned if the
4497 // other ends up being one.
4498 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) ||
4499 isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4501 case ISD::FMINNUM_IEEE
:
4502 case ISD::FMAXNUM_IEEE
: {
4505 // This can return a NaN if either operand is an sNaN, or if both operands
4507 return (isKnownNeverNaN(Op
.getOperand(0), false, Depth
+ 1) &&
4508 isKnownNeverSNaN(Op
.getOperand(1), Depth
+ 1)) ||
4509 (isKnownNeverNaN(Op
.getOperand(1), false, Depth
+ 1) &&
4510 isKnownNeverSNaN(Op
.getOperand(0), Depth
+ 1));
4513 case ISD::FMAXIMUM
: {
4514 // TODO: Does this quiet or return the origina NaN as-is?
4515 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4516 isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4518 case ISD::EXTRACT_VECTOR_ELT
: {
4519 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4522 if (Opcode
>= ISD::BUILTIN_OP_END
||
4523 Opcode
== ISD::INTRINSIC_WO_CHAIN
||
4524 Opcode
== ISD::INTRINSIC_W_CHAIN
||
4525 Opcode
== ISD::INTRINSIC_VOID
) {
4526 return TLI
->isKnownNeverNaNForTargetNode(Op
, *this, SNaN
, Depth
);
4533 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op
) const {
4534 assert(Op
.getValueType().isFloatingPoint() &&
4535 "Floating point type expected");
4537 // If the value is a constant, we can obviously see if it is a zero or not.
4538 // TODO: Add BuildVector support.
4539 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Op
))
4540 return !C
->isZero();
4544 bool SelectionDAG::isKnownNeverZero(SDValue Op
) const {
4545 assert(!Op
.getValueType().isFloatingPoint() &&
4546 "Floating point types unsupported - use isKnownNeverZeroFloat");
4548 // If the value is a constant, we can obviously see if it is a zero or not.
4549 if (ISD::matchUnaryPredicate(Op
,
4550 [](ConstantSDNode
*C
) { return !C
->isZero(); }))
4553 // TODO: Recognize more cases here.
4554 switch (Op
.getOpcode()) {
4557 if (isKnownNeverZero(Op
.getOperand(1)) ||
4558 isKnownNeverZero(Op
.getOperand(0)))
4566 bool SelectionDAG::isEqualTo(SDValue A
, SDValue B
) const {
4567 // Check the obvious case.
4568 if (A
== B
) return true;
4570 // For for negative and positive zero.
4571 if (const ConstantFPSDNode
*CA
= dyn_cast
<ConstantFPSDNode
>(A
))
4572 if (const ConstantFPSDNode
*CB
= dyn_cast
<ConstantFPSDNode
>(B
))
4573 if (CA
->isZero() && CB
->isZero()) return true;
4575 // Otherwise they may not be equal.
4579 // FIXME: unify with llvm::haveNoCommonBitsSet.
4580 bool SelectionDAG::haveNoCommonBitsSet(SDValue A
, SDValue B
) const {
4581 assert(A
.getValueType() == B
.getValueType() &&
4582 "Values must have the same type");
4583 // Match masked merge pattern (X & ~M) op (Y & M)
4584 if (A
->getOpcode() == ISD::AND
&& B
->getOpcode() == ISD::AND
) {
4585 auto MatchNoCommonBitsPattern
= [&](SDValue NotM
, SDValue And
) {
4586 if (isBitwiseNot(NotM
, true)) {
4587 SDValue NotOperand
= NotM
->getOperand(0);
4588 return NotOperand
== And
->getOperand(0) ||
4589 NotOperand
== And
->getOperand(1);
4593 if (MatchNoCommonBitsPattern(A
->getOperand(0), B
) ||
4594 MatchNoCommonBitsPattern(A
->getOperand(1), B
) ||
4595 MatchNoCommonBitsPattern(B
->getOperand(0), A
) ||
4596 MatchNoCommonBitsPattern(B
->getOperand(1), A
))
4599 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A
),
4600 computeKnownBits(B
));
4603 static SDValue
FoldSTEP_VECTOR(const SDLoc
&DL
, EVT VT
, SDValue Step
,
4604 SelectionDAG
&DAG
) {
4605 if (cast
<ConstantSDNode
>(Step
)->isZero())
4606 return DAG
.getConstant(0, DL
, VT
);
4611 static SDValue
FoldBUILD_VECTOR(const SDLoc
&DL
, EVT VT
,
4612 ArrayRef
<SDValue
> Ops
,
4613 SelectionDAG
&DAG
) {
4614 int NumOps
= Ops
.size();
4615 assert(NumOps
!= 0 && "Can't build an empty vector!");
4616 assert(!VT
.isScalableVector() &&
4617 "BUILD_VECTOR cannot be used with scalable types");
4618 assert(VT
.getVectorNumElements() == (unsigned)NumOps
&&
4619 "Incorrect element count in BUILD_VECTOR!");
4621 // BUILD_VECTOR of UNDEFs is UNDEF.
4622 if (llvm::all_of(Ops
, [](SDValue Op
) { return Op
.isUndef(); }))
4623 return DAG
.getUNDEF(VT
);
4625 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4626 SDValue IdentitySrc
;
4627 bool IsIdentity
= true;
4628 for (int i
= 0; i
!= NumOps
; ++i
) {
4629 if (Ops
[i
].getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
4630 Ops
[i
].getOperand(0).getValueType() != VT
||
4631 (IdentitySrc
&& Ops
[i
].getOperand(0) != IdentitySrc
) ||
4632 !isa
<ConstantSDNode
>(Ops
[i
].getOperand(1)) ||
4633 cast
<ConstantSDNode
>(Ops
[i
].getOperand(1))->getAPIntValue() != i
) {
4637 IdentitySrc
= Ops
[i
].getOperand(0);
4645 /// Try to simplify vector concatenation to an input value, undef, or build
4647 static SDValue
foldCONCAT_VECTORS(const SDLoc
&DL
, EVT VT
,
4648 ArrayRef
<SDValue
> Ops
,
4649 SelectionDAG
&DAG
) {
4650 assert(!Ops
.empty() && "Can't concatenate an empty list of vectors!");
4651 assert(llvm::all_of(Ops
,
4653 return Ops
[0].getValueType() == Op
.getValueType();
4655 "Concatenation of vectors with inconsistent value types!");
4656 assert((Ops
[0].getValueType().getVectorElementCount() * Ops
.size()) ==
4657 VT
.getVectorElementCount() &&
4658 "Incorrect element count in vector concatenation!");
4660 if (Ops
.size() == 1)
4663 // Concat of UNDEFs is UNDEF.
4664 if (llvm::all_of(Ops
, [](SDValue Op
) { return Op
.isUndef(); }))
4665 return DAG
.getUNDEF(VT
);
4667 // Scan the operands and look for extract operations from a single source
4668 // that correspond to insertion at the same location via this concatenation:
4669 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4670 SDValue IdentitySrc
;
4671 bool IsIdentity
= true;
4672 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
4673 SDValue Op
= Ops
[i
];
4674 unsigned IdentityIndex
= i
* Op
.getValueType().getVectorMinNumElements();
4675 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
||
4676 Op
.getOperand(0).getValueType() != VT
||
4677 (IdentitySrc
&& Op
.getOperand(0) != IdentitySrc
) ||
4678 Op
.getConstantOperandVal(1) != IdentityIndex
) {
4682 assert((!IdentitySrc
|| IdentitySrc
== Op
.getOperand(0)) &&
4683 "Unexpected identity source vector for concat of extracts");
4684 IdentitySrc
= Op
.getOperand(0);
4687 assert(IdentitySrc
&& "Failed to set source vector of extracts");
4691 // The code below this point is only designed to work for fixed width
4692 // vectors, so we bail out for now.
4693 if (VT
.isScalableVector())
4696 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4697 // simplified to one big BUILD_VECTOR.
4698 // FIXME: Add support for SCALAR_TO_VECTOR as well.
4699 EVT SVT
= VT
.getScalarType();
4700 SmallVector
<SDValue
, 16> Elts
;
4701 for (SDValue Op
: Ops
) {
4702 EVT OpVT
= Op
.getValueType();
4704 Elts
.append(OpVT
.getVectorNumElements(), DAG
.getUNDEF(SVT
));
4705 else if (Op
.getOpcode() == ISD::BUILD_VECTOR
)
4706 Elts
.append(Op
->op_begin(), Op
->op_end());
4711 // BUILD_VECTOR requires all inputs to be of the same type, find the
4712 // maximum type and extend them all.
4713 for (SDValue Op
: Elts
)
4714 SVT
= (SVT
.bitsLT(Op
.getValueType()) ? Op
.getValueType() : SVT
);
4716 if (SVT
.bitsGT(VT
.getScalarType())) {
4717 for (SDValue
&Op
: Elts
) {
4719 Op
= DAG
.getUNDEF(SVT
);
4721 Op
= DAG
.getTargetLoweringInfo().isZExtFree(Op
.getValueType(), SVT
)
4722 ? DAG
.getZExtOrTrunc(Op
, DL
, SVT
)
4723 : DAG
.getSExtOrTrunc(Op
, DL
, SVT
);
4727 SDValue V
= DAG
.getBuildVector(VT
, DL
, Elts
);
4728 NewSDValueDbgMsg(V
, "New node fold concat vectors: ", &DAG
);
4732 /// Gets or creates the specified node.
4733 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
) {
4734 FoldingSetNodeID ID
;
4735 AddNodeIDNode(ID
, Opcode
, getVTList(VT
), None
);
4737 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
))
4738 return SDValue(E
, 0);
4740 auto *N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(),
4742 CSEMap
.InsertNode(N
, IP
);
4745 SDValue V
= SDValue(N
, 0);
4746 NewSDValueDbgMsg(V
, "Creating new node: ", this);
4750 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
4754 Flags
= Inserter
->getFlags();
4755 return getNode(Opcode
, DL
, VT
, Operand
, Flags
);
4758 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
4759 SDValue Operand
, const SDNodeFlags Flags
) {
4760 assert(Operand
.getOpcode() != ISD::DELETED_NODE
&&
4761 "Operand is DELETED_NODE!");
4762 // Constant fold unary operations with an integer constant operand. Even
4763 // opaque constant will be folded, because the folding of unary operations
4764 // doesn't create new constants with different values. Nevertheless, the
4765 // opaque flag is preserved during folding to prevent future folding with
4767 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Operand
)) {
4768 const APInt
&Val
= C
->getAPIntValue();
4771 case ISD::SIGN_EXTEND
:
4772 return getConstant(Val
.sextOrTrunc(VT
.getSizeInBits()), DL
, VT
,
4773 C
->isTargetOpcode(), C
->isOpaque());
4778 case ISD::ZERO_EXTEND
:
4779 return getConstant(Val
.zextOrTrunc(VT
.getSizeInBits()), DL
, VT
,
4780 C
->isTargetOpcode(), C
->isOpaque());
4781 case ISD::ANY_EXTEND
:
4782 // Some targets like RISCV prefer to sign extend some types.
4783 if (TLI
->isSExtCheaperThanZExt(Operand
.getValueType(), VT
))
4784 return getConstant(Val
.sextOrTrunc(VT
.getSizeInBits()), DL
, VT
,
4785 C
->isTargetOpcode(), C
->isOpaque());
4786 return getConstant(Val
.zextOrTrunc(VT
.getSizeInBits()), DL
, VT
,
4787 C
->isTargetOpcode(), C
->isOpaque());
4788 case ISD::UINT_TO_FP
:
4789 case ISD::SINT_TO_FP
: {
4790 APFloat
apf(EVTToAPFloatSemantics(VT
),
4791 APInt::getZero(VT
.getSizeInBits()));
4792 (void)apf
.convertFromAPInt(Val
,
4793 Opcode
==ISD::SINT_TO_FP
,
4794 APFloat::rmNearestTiesToEven
);
4795 return getConstantFP(apf
, DL
, VT
);
4798 if (VT
== MVT::f16
&& C
->getValueType(0) == MVT::i16
)
4799 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val
), DL
, VT
);
4800 if (VT
== MVT::f32
&& C
->getValueType(0) == MVT::i32
)
4801 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val
), DL
, VT
);
4802 if (VT
== MVT::f64
&& C
->getValueType(0) == MVT::i64
)
4803 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val
), DL
, VT
);
4804 if (VT
== MVT::f128
&& C
->getValueType(0) == MVT::i128
)
4805 return getConstantFP(APFloat(APFloat::IEEEquad(), Val
), DL
, VT
);
4808 return getConstant(Val
.abs(), DL
, VT
, C
->isTargetOpcode(),
4810 case ISD::BITREVERSE
:
4811 return getConstant(Val
.reverseBits(), DL
, VT
, C
->isTargetOpcode(),
4814 return getConstant(Val
.byteSwap(), DL
, VT
, C
->isTargetOpcode(),
4817 return getConstant(Val
.countPopulation(), DL
, VT
, C
->isTargetOpcode(),
4820 case ISD::CTLZ_ZERO_UNDEF
:
4821 return getConstant(Val
.countLeadingZeros(), DL
, VT
, C
->isTargetOpcode(),
4824 case ISD::CTTZ_ZERO_UNDEF
:
4825 return getConstant(Val
.countTrailingZeros(), DL
, VT
, C
->isTargetOpcode(),
4827 case ISD::FP16_TO_FP
: {
4829 APFloat
FPV(APFloat::IEEEhalf(),
4830 (Val
.getBitWidth() == 16) ? Val
: Val
.trunc(16));
4832 // This can return overflow, underflow, or inexact; we don't care.
4833 // FIXME need to be more flexible about rounding mode.
4834 (void)FPV
.convert(EVTToAPFloatSemantics(VT
),
4835 APFloat::rmNearestTiesToEven
, &Ignored
);
4836 return getConstantFP(FPV
, DL
, VT
);
4838 case ISD::STEP_VECTOR
: {
4839 if (SDValue V
= FoldSTEP_VECTOR(DL
, VT
, Operand
, *this))
4846 // Constant fold unary operations with a floating point constant operand.
4847 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Operand
)) {
4848 APFloat V
= C
->getValueAPF(); // make copy
4852 return getConstantFP(V
, DL
, VT
);
4855 return getConstantFP(V
, DL
, VT
);
4857 APFloat::opStatus fs
= V
.roundToIntegral(APFloat::rmTowardPositive
);
4858 if (fs
== APFloat::opOK
|| fs
== APFloat::opInexact
)
4859 return getConstantFP(V
, DL
, VT
);
4863 APFloat::opStatus fs
= V
.roundToIntegral(APFloat::rmTowardZero
);
4864 if (fs
== APFloat::opOK
|| fs
== APFloat::opInexact
)
4865 return getConstantFP(V
, DL
, VT
);
4869 APFloat::opStatus fs
= V
.roundToIntegral(APFloat::rmTowardNegative
);
4870 if (fs
== APFloat::opOK
|| fs
== APFloat::opInexact
)
4871 return getConstantFP(V
, DL
, VT
);
4874 case ISD::FP_EXTEND
: {
4876 // This can return overflow, underflow, or inexact; we don't care.
4877 // FIXME need to be more flexible about rounding mode.
4878 (void)V
.convert(EVTToAPFloatSemantics(VT
),
4879 APFloat::rmNearestTiesToEven
, &ignored
);
4880 return getConstantFP(V
, DL
, VT
);
4882 case ISD::FP_TO_SINT
:
4883 case ISD::FP_TO_UINT
: {
4885 APSInt
IntVal(VT
.getSizeInBits(), Opcode
== ISD::FP_TO_UINT
);
4886 // FIXME need to be more flexible about rounding mode.
4887 APFloat::opStatus s
=
4888 V
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &ignored
);
4889 if (s
== APFloat::opInvalidOp
) // inexact is OK, in fact usual
4891 return getConstant(IntVal
, DL
, VT
);
4894 if (VT
== MVT::i16
&& C
->getValueType(0) == MVT::f16
)
4895 return getConstant((uint16_t)V
.bitcastToAPInt().getZExtValue(), DL
, VT
);
4896 if (VT
== MVT::i16
&& C
->getValueType(0) == MVT::bf16
)
4897 return getConstant((uint16_t)V
.bitcastToAPInt().getZExtValue(), DL
, VT
);
4898 if (VT
== MVT::i32
&& C
->getValueType(0) == MVT::f32
)
4899 return getConstant((uint32_t)V
.bitcastToAPInt().getZExtValue(), DL
, VT
);
4900 if (VT
== MVT::i64
&& C
->getValueType(0) == MVT::f64
)
4901 return getConstant(V
.bitcastToAPInt().getZExtValue(), DL
, VT
);
4903 case ISD::FP_TO_FP16
: {
4905 // This can return overflow, underflow, or inexact; we don't care.
4906 // FIXME need to be more flexible about rounding mode.
4907 (void)V
.convert(APFloat::IEEEhalf(),
4908 APFloat::rmNearestTiesToEven
, &Ignored
);
4909 return getConstant(V
.bitcastToAPInt().getZExtValue(), DL
, VT
);
4914 // Constant fold unary operations with a vector integer or float operand.
4917 // FIXME: Entirely reasonable to perform folding of other unary
4918 // operations here as the need arises.
4925 case ISD::FP_EXTEND
:
4926 case ISD::FP_TO_SINT
:
4927 case ISD::FP_TO_UINT
:
4929 case ISD::ANY_EXTEND
:
4930 case ISD::ZERO_EXTEND
:
4931 case ISD::SIGN_EXTEND
:
4932 case ISD::UINT_TO_FP
:
4933 case ISD::SINT_TO_FP
:
4935 case ISD::BITREVERSE
:
4938 case ISD::CTLZ_ZERO_UNDEF
:
4940 case ISD::CTTZ_ZERO_UNDEF
:
4942 SDValue Ops
= {Operand
};
4943 if (SDValue Fold
= FoldConstantArithmetic(Opcode
, DL
, VT
, Ops
))
4948 unsigned OpOpcode
= Operand
.getNode()->getOpcode();
4950 case ISD::STEP_VECTOR
:
4951 assert(VT
.isScalableVector() &&
4952 "STEP_VECTOR can only be used with scalable types");
4953 assert(OpOpcode
== ISD::TargetConstant
&&
4954 VT
.getVectorElementType() == Operand
.getValueType() &&
4955 "Unexpected step operand");
4958 assert(VT
== Operand
.getValueType() && "Unexpected VT!");
4960 case ISD::TokenFactor
:
4961 case ISD::MERGE_VALUES
:
4962 case ISD::CONCAT_VECTORS
:
4963 return Operand
; // Factor, merge or concat of one node? No need.
4964 case ISD::BUILD_VECTOR
: {
4965 // Attempt to simplify BUILD_VECTOR.
4966 SDValue Ops
[] = {Operand
};
4967 if (SDValue V
= FoldBUILD_VECTOR(DL
, VT
, Ops
, *this))
4971 case ISD::FP_ROUND
: llvm_unreachable("Invalid method to make FP_ROUND node");
4972 case ISD::FP_EXTEND
:
4973 assert(VT
.isFloatingPoint() &&
4974 Operand
.getValueType().isFloatingPoint() && "Invalid FP cast!");
4975 if (Operand
.getValueType() == VT
) return Operand
; // noop conversion.
4976 assert((!VT
.isVector() ||
4977 VT
.getVectorElementCount() ==
4978 Operand
.getValueType().getVectorElementCount()) &&
4979 "Vector element count mismatch!");
4980 assert(Operand
.getValueType().bitsLT(VT
) &&
4981 "Invalid fpext node, dst < src!");
4982 if (Operand
.isUndef())
4983 return getUNDEF(VT
);
4985 case ISD::FP_TO_SINT
:
4986 case ISD::FP_TO_UINT
:
4987 if (Operand
.isUndef())
4988 return getUNDEF(VT
);
4990 case ISD::SINT_TO_FP
:
4991 case ISD::UINT_TO_FP
:
4992 // [us]itofp(undef) = 0, because the result value is bounded.
4993 if (Operand
.isUndef())
4994 return getConstantFP(0.0, DL
, VT
);
4996 case ISD::SIGN_EXTEND
:
4997 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
4998 "Invalid SIGN_EXTEND!");
4999 assert(VT
.isVector() == Operand
.getValueType().isVector() &&
5000 "SIGN_EXTEND result type type should be vector iff the operand "
5002 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
5003 assert((!VT
.isVector() ||
5004 VT
.getVectorElementCount() ==
5005 Operand
.getValueType().getVectorElementCount()) &&
5006 "Vector element count mismatch!");
5007 assert(Operand
.getValueType().bitsLT(VT
) &&
5008 "Invalid sext node, dst < src!");
5009 if (OpOpcode
== ISD::SIGN_EXTEND
|| OpOpcode
== ISD::ZERO_EXTEND
)
5010 return getNode(OpOpcode
, DL
, VT
, Operand
.getOperand(0));
5011 if (OpOpcode
== ISD::UNDEF
)
5012 // sext(undef) = 0, because the top bits will all be the same.
5013 return getConstant(0, DL
, VT
);
5015 case ISD::ZERO_EXTEND
:
5016 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
5017 "Invalid ZERO_EXTEND!");
5018 assert(VT
.isVector() == Operand
.getValueType().isVector() &&
5019 "ZERO_EXTEND result type type should be vector iff the operand "
5021 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
5022 assert((!VT
.isVector() ||
5023 VT
.getVectorElementCount() ==
5024 Operand
.getValueType().getVectorElementCount()) &&
5025 "Vector element count mismatch!");
5026 assert(Operand
.getValueType().bitsLT(VT
) &&
5027 "Invalid zext node, dst < src!");
5028 if (OpOpcode
== ISD::ZERO_EXTEND
) // (zext (zext x)) -> (zext x)
5029 return getNode(ISD::ZERO_EXTEND
, DL
, VT
, Operand
.getOperand(0));
5030 if (OpOpcode
== ISD::UNDEF
)
5031 // zext(undef) = 0, because the top bits will be zero.
5032 return getConstant(0, DL
, VT
);
5034 case ISD::ANY_EXTEND
:
5035 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
5036 "Invalid ANY_EXTEND!");
5037 assert(VT
.isVector() == Operand
.getValueType().isVector() &&
5038 "ANY_EXTEND result type type should be vector iff the operand "
5040 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
5041 assert((!VT
.isVector() ||
5042 VT
.getVectorElementCount() ==
5043 Operand
.getValueType().getVectorElementCount()) &&
5044 "Vector element count mismatch!");
5045 assert(Operand
.getValueType().bitsLT(VT
) &&
5046 "Invalid anyext node, dst < src!");
5048 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
5049 OpOpcode
== ISD::ANY_EXTEND
)
5050 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
5051 return getNode(OpOpcode
, DL
, VT
, Operand
.getOperand(0));
5052 if (OpOpcode
== ISD::UNDEF
)
5053 return getUNDEF(VT
);
5055 // (ext (trunc x)) -> x
5056 if (OpOpcode
== ISD::TRUNCATE
) {
5057 SDValue OpOp
= Operand
.getOperand(0);
5058 if (OpOp
.getValueType() == VT
) {
5059 transferDbgValues(Operand
, OpOp
);
5065 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
5066 "Invalid TRUNCATE!");
5067 assert(VT
.isVector() == Operand
.getValueType().isVector() &&
5068 "TRUNCATE result type type should be vector iff the operand "
5070 if (Operand
.getValueType() == VT
) return Operand
; // noop truncate
5071 assert((!VT
.isVector() ||
5072 VT
.getVectorElementCount() ==
5073 Operand
.getValueType().getVectorElementCount()) &&
5074 "Vector element count mismatch!");
5075 assert(Operand
.getValueType().bitsGT(VT
) &&
5076 "Invalid truncate node, src < dst!");
5077 if (OpOpcode
== ISD::TRUNCATE
)
5078 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getOperand(0));
5079 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
5080 OpOpcode
== ISD::ANY_EXTEND
) {
5081 // If the source is smaller than the dest, we still need an extend.
5082 if (Operand
.getOperand(0).getValueType().getScalarType()
5083 .bitsLT(VT
.getScalarType()))
5084 return getNode(OpOpcode
, DL
, VT
, Operand
.getOperand(0));
5085 if (Operand
.getOperand(0).getValueType().bitsGT(VT
))
5086 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getOperand(0));
5087 return Operand
.getOperand(0);
5089 if (OpOpcode
== ISD::UNDEF
)
5090 return getUNDEF(VT
);
5091 if (OpOpcode
== ISD::VSCALE
&& !NewNodesMustHaveLegalTypes
)
5092 return getVScale(DL
, VT
, Operand
.getConstantOperandAPInt(0));
5094 case ISD::ANY_EXTEND_VECTOR_INREG
:
5095 case ISD::ZERO_EXTEND_VECTOR_INREG
:
5096 case ISD::SIGN_EXTEND_VECTOR_INREG
:
5097 assert(VT
.isVector() && "This DAG node is restricted to vector types.");
5098 assert(Operand
.getValueType().bitsLE(VT
) &&
5099 "The input must be the same size or smaller than the result.");
5100 assert(VT
.getVectorMinNumElements() <
5101 Operand
.getValueType().getVectorMinNumElements() &&
5102 "The destination vector type must have fewer lanes than the input.");
5105 assert(VT
.isInteger() && VT
== Operand
.getValueType() &&
5107 if (OpOpcode
== ISD::UNDEF
)
5108 return getUNDEF(VT
);
5111 assert(VT
.isInteger() && VT
== Operand
.getValueType() &&
5113 assert((VT
.getScalarSizeInBits() % 16 == 0) &&
5114 "BSWAP types must be a multiple of 16 bits!");
5115 if (OpOpcode
== ISD::UNDEF
)
5116 return getUNDEF(VT
);
5118 case ISD::BITREVERSE
:
5119 assert(VT
.isInteger() && VT
== Operand
.getValueType() &&
5120 "Invalid BITREVERSE!");
5121 if (OpOpcode
== ISD::UNDEF
)
5122 return getUNDEF(VT
);
5125 assert(VT
.getSizeInBits() == Operand
.getValueSizeInBits() &&
5126 "Cannot BITCAST between types of different sizes!");
5127 if (VT
== Operand
.getValueType()) return Operand
; // noop conversion.
5128 if (OpOpcode
== ISD::BITCAST
) // bitconv(bitconv(x)) -> bitconv(x)
5129 return getNode(ISD::BITCAST
, DL
, VT
, Operand
.getOperand(0));
5130 if (OpOpcode
== ISD::UNDEF
)
5131 return getUNDEF(VT
);
5133 case ISD::SCALAR_TO_VECTOR
:
5134 assert(VT
.isVector() && !Operand
.getValueType().isVector() &&
5135 (VT
.getVectorElementType() == Operand
.getValueType() ||
5136 (VT
.getVectorElementType().isInteger() &&
5137 Operand
.getValueType().isInteger() &&
5138 VT
.getVectorElementType().bitsLE(Operand
.getValueType()))) &&
5139 "Illegal SCALAR_TO_VECTOR node!");
5140 if (OpOpcode
== ISD::UNDEF
)
5141 return getUNDEF(VT
);
5142 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5143 if (OpOpcode
== ISD::EXTRACT_VECTOR_ELT
&&
5144 isa
<ConstantSDNode
>(Operand
.getOperand(1)) &&
5145 Operand
.getConstantOperandVal(1) == 0 &&
5146 Operand
.getOperand(0).getValueType() == VT
)
5147 return Operand
.getOperand(0);
5150 // Negation of an unknown bag of bits is still completely undefined.
5151 if (OpOpcode
== ISD::UNDEF
)
5152 return getUNDEF(VT
);
5154 if (OpOpcode
== ISD::FNEG
) // --X -> X
5155 return Operand
.getOperand(0);
5158 if (OpOpcode
== ISD::FNEG
) // abs(-X) -> abs(X)
5159 return getNode(ISD::FABS
, DL
, VT
, Operand
.getOperand(0));
5162 assert(VT
== Operand
.getValueType() && "Unexpected VT!");
5165 if (Operand
.getValueType().getScalarType() == MVT::i1
)
5170 if (Operand
.getValueType().getScalarType() == MVT::i1
)
5171 return getNOT(DL
, Operand
, Operand
.getValueType());
5173 case ISD::VECREDUCE_SMIN
:
5174 case ISD::VECREDUCE_UMAX
:
5175 if (Operand
.getValueType().getScalarType() == MVT::i1
)
5176 return getNode(ISD::VECREDUCE_OR
, DL
, VT
, Operand
);
5178 case ISD::VECREDUCE_SMAX
:
5179 case ISD::VECREDUCE_UMIN
:
5180 if (Operand
.getValueType().getScalarType() == MVT::i1
)
5181 return getNode(ISD::VECREDUCE_AND
, DL
, VT
, Operand
);
5186 SDVTList VTs
= getVTList(VT
);
5187 SDValue Ops
[] = {Operand
};
5188 if (VT
!= MVT::Glue
) { // Don't CSE flag producing nodes
5189 FoldingSetNodeID ID
;
5190 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
5192 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
)) {
5193 E
->intersectFlagsWith(Flags
);
5194 return SDValue(E
, 0);
5197 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
5199 createOperands(N
, Ops
);
5200 CSEMap
.InsertNode(N
, IP
);
5202 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
5203 createOperands(N
, Ops
);
5207 SDValue V
= SDValue(N
, 0);
5208 NewSDValueDbgMsg(V
, "Creating new node: ", this);
5212 static llvm::Optional
<APInt
> FoldValue(unsigned Opcode
, const APInt
&C1
,
5215 case ISD::ADD
: return C1
+ C2
;
5216 case ISD::SUB
: return C1
- C2
;
5217 case ISD::MUL
: return C1
* C2
;
5218 case ISD::AND
: return C1
& C2
;
5219 case ISD::OR
: return C1
| C2
;
5220 case ISD::XOR
: return C1
^ C2
;
5221 case ISD::SHL
: return C1
<< C2
;
5222 case ISD::SRL
: return C1
.lshr(C2
);
5223 case ISD::SRA
: return C1
.ashr(C2
);
5224 case ISD::ROTL
: return C1
.rotl(C2
);
5225 case ISD::ROTR
: return C1
.rotr(C2
);
5226 case ISD::SMIN
: return C1
.sle(C2
) ? C1
: C2
;
5227 case ISD::SMAX
: return C1
.sge(C2
) ? C1
: C2
;
5228 case ISD::UMIN
: return C1
.ule(C2
) ? C1
: C2
;
5229 case ISD::UMAX
: return C1
.uge(C2
) ? C1
: C2
;
5230 case ISD::SADDSAT
: return C1
.sadd_sat(C2
);
5231 case ISD::UADDSAT
: return C1
.uadd_sat(C2
);
5232 case ISD::SSUBSAT
: return C1
.ssub_sat(C2
);
5233 case ISD::USUBSAT
: return C1
.usub_sat(C2
);
5235 if (!C2
.getBoolValue())
5239 if (!C2
.getBoolValue())
5243 if (!C2
.getBoolValue())
5247 if (!C2
.getBoolValue())
5251 unsigned FullWidth
= C1
.getBitWidth() * 2;
5252 APInt C1Ext
= C1
.sext(FullWidth
);
5253 APInt C2Ext
= C2
.sext(FullWidth
);
5254 return (C1Ext
* C2Ext
).extractBits(C1
.getBitWidth(), C1
.getBitWidth());
5257 unsigned FullWidth
= C1
.getBitWidth() * 2;
5258 APInt C1Ext
= C1
.zext(FullWidth
);
5259 APInt C2Ext
= C2
.zext(FullWidth
);
5260 return (C1Ext
* C2Ext
).extractBits(C1
.getBitWidth(), C1
.getBitWidth());
5266 SDValue
SelectionDAG::FoldSymbolOffset(unsigned Opcode
, EVT VT
,
5267 const GlobalAddressSDNode
*GA
,
5269 if (GA
->getOpcode() != ISD::GlobalAddress
)
5271 if (!TLI
->isOffsetFoldingLegal(GA
))
5273 auto *C2
= dyn_cast
<ConstantSDNode
>(N2
);
5276 int64_t Offset
= C2
->getSExtValue();
5278 case ISD::ADD
: break;
5279 case ISD::SUB
: Offset
= -uint64_t(Offset
); break;
5280 default: return SDValue();
5282 return getGlobalAddress(GA
->getGlobal(), SDLoc(C2
), VT
,
5283 GA
->getOffset() + uint64_t(Offset
));
5286 bool SelectionDAG::isUndef(unsigned Opcode
, ArrayRef
<SDValue
> Ops
) {
5292 // If a divisor is zero/undef or any element of a divisor vector is
5293 // zero/undef, the whole op is undef.
5294 assert(Ops
.size() == 2 && "Div/rem should have 2 operands");
5295 SDValue Divisor
= Ops
[1];
5296 if (Divisor
.isUndef() || isNullConstant(Divisor
))
5299 return ISD::isBuildVectorOfConstantSDNodes(Divisor
.getNode()) &&
5300 llvm::any_of(Divisor
->op_values(),
5301 [](SDValue V
) { return V
.isUndef() ||
5302 isNullConstant(V
); });
5303 // TODO: Handle signed overflow.
5305 // TODO: Handle oversized shifts.
5311 SDValue
SelectionDAG::FoldConstantArithmetic(unsigned Opcode
, const SDLoc
&DL
,
5312 EVT VT
, ArrayRef
<SDValue
> Ops
) {
5313 // If the opcode is a target-specific ISD node, there's nothing we can
5314 // do here and the operand rules may not line up with the below, so
5316 // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5317 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5318 // foldCONCAT_VECTORS in getNode before this is called.
5319 if (Opcode
>= ISD::BUILTIN_OP_END
|| Opcode
== ISD::CONCAT_VECTORS
)
5322 unsigned NumOps
= Ops
.size();
5326 if (isUndef(Opcode
, Ops
))
5327 return getUNDEF(VT
);
5329 // Handle binops special cases.
5331 if (SDValue CFP
= foldConstantFPMath(Opcode
, DL
, VT
, Ops
[0], Ops
[1]))
5334 if (auto *C1
= dyn_cast
<ConstantSDNode
>(Ops
[0])) {
5335 if (auto *C2
= dyn_cast
<ConstantSDNode
>(Ops
[1])) {
5336 if (C1
->isOpaque() || C2
->isOpaque())
5339 Optional
<APInt
> FoldAttempt
=
5340 FoldValue(Opcode
, C1
->getAPIntValue(), C2
->getAPIntValue());
5344 SDValue Folded
= getConstant(FoldAttempt
.getValue(), DL
, VT
);
5345 assert((!Folded
|| !VT
.isVector()) &&
5346 "Can't fold vectors ops with scalar operands");
5351 // fold (add Sym, c) -> Sym+c
5352 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Ops
[0]))
5353 return FoldSymbolOffset(Opcode
, VT
, GA
, Ops
[1].getNode());
5354 if (TLI
->isCommutativeBinOp(Opcode
))
5355 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Ops
[1]))
5356 return FoldSymbolOffset(Opcode
, VT
, GA
, Ops
[0].getNode());
5359 // This is for vector folding only from here on.
5363 ElementCount NumElts
= VT
.getVectorElementCount();
5365 // See if we can fold through bitcasted integer ops.
5366 // TODO: Can we handle undef elements?
5367 if (NumOps
== 2 && VT
.isFixedLengthVector() && VT
.isInteger() &&
5368 Ops
[0].getValueType() == VT
&& Ops
[1].getValueType() == VT
&&
5369 Ops
[0].getOpcode() == ISD::BITCAST
&&
5370 Ops
[1].getOpcode() == ISD::BITCAST
) {
5371 SDValue N1
= peekThroughBitcasts(Ops
[0]);
5372 SDValue N2
= peekThroughBitcasts(Ops
[1]);
5373 auto *BV1
= dyn_cast
<BuildVectorSDNode
>(N1
);
5374 auto *BV2
= dyn_cast
<BuildVectorSDNode
>(N2
);
5375 EVT BVVT
= N1
.getValueType();
5376 if (BV1
&& BV2
&& BVVT
.isInteger() && BVVT
== N2
.getValueType()) {
5377 bool IsLE
= getDataLayout().isLittleEndian();
5378 unsigned EltBits
= VT
.getScalarSizeInBits();
5379 SmallVector
<APInt
> RawBits1
, RawBits2
;
5380 BitVector UndefElts1
, UndefElts2
;
5381 if (BV1
->getConstantRawBits(IsLE
, EltBits
, RawBits1
, UndefElts1
) &&
5382 BV2
->getConstantRawBits(IsLE
, EltBits
, RawBits2
, UndefElts2
) &&
5383 UndefElts1
.none() && UndefElts2
.none()) {
5384 SmallVector
<APInt
> RawBits
;
5385 for (unsigned I
= 0, E
= NumElts
.getFixedValue(); I
!= E
; ++I
) {
5386 Optional
<APInt
> Fold
= FoldValue(Opcode
, RawBits1
[I
], RawBits2
[I
]);
5389 RawBits
.push_back(Fold
.getValue());
5391 if (RawBits
.size() == NumElts
.getFixedValue()) {
5392 // We have constant folded, but we need to cast this again back to
5393 // the original (possibly legalized) type.
5394 SmallVector
<APInt
> DstBits
;
5395 BitVector DstUndefs
;
5396 BuildVectorSDNode::recastRawBits(IsLE
, BVVT
.getScalarSizeInBits(),
5397 DstBits
, RawBits
, DstUndefs
,
5398 BitVector(RawBits
.size(), false));
5399 EVT BVEltVT
= BV1
->getOperand(0).getValueType();
5400 unsigned BVEltBits
= BVEltVT
.getSizeInBits();
5401 SmallVector
<SDValue
> Ops(DstBits
.size(), getUNDEF(BVEltVT
));
5402 for (unsigned I
= 0, E
= DstBits
.size(); I
!= E
; ++I
) {
5405 Ops
[I
] = getConstant(DstBits
[I
].sextOrSelf(BVEltBits
), DL
, BVEltVT
);
5407 return getBitcast(VT
, getBuildVector(BVVT
, DL
, Ops
));
5413 auto IsScalarOrSameVectorSize
= [NumElts
](const SDValue
&Op
) {
5414 return !Op
.getValueType().isVector() ||
5415 Op
.getValueType().getVectorElementCount() == NumElts
;
5418 auto IsBuildVectorSplatVectorOrUndef
= [](const SDValue
&Op
) {
5419 return Op
.isUndef() || Op
.getOpcode() == ISD::CONDCODE
||
5420 Op
.getOpcode() == ISD::BUILD_VECTOR
||
5421 Op
.getOpcode() == ISD::SPLAT_VECTOR
;
5424 // All operands must be vector types with the same number of elements as
5425 // the result type and must be either UNDEF or a build/splat vector
5426 // or UNDEF scalars.
5427 if (!llvm::all_of(Ops
, IsBuildVectorSplatVectorOrUndef
) ||
5428 !llvm::all_of(Ops
, IsScalarOrSameVectorSize
))
5431 // If we are comparing vectors, then the result needs to be a i1 boolean
5432 // that is then sign-extended back to the legal result type.
5433 EVT SVT
= (Opcode
== ISD::SETCC
? MVT::i1
: VT
.getScalarType());
5435 // Find legal integer scalar type for constant promotion and
5436 // ensure that its scalar size is at least as large as source.
5437 EVT LegalSVT
= VT
.getScalarType();
5438 if (NewNodesMustHaveLegalTypes
&& LegalSVT
.isInteger()) {
5439 LegalSVT
= TLI
->getTypeToTransformTo(*getContext(), LegalSVT
);
5440 if (LegalSVT
.bitsLT(VT
.getScalarType()))
5444 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5445 // only have one operand to check. For fixed-length vector types we may have
5446 // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5447 unsigned NumVectorElts
= NumElts
.isScalable() ? 1 : NumElts
.getFixedValue();
5449 // Constant fold each scalar lane separately.
5450 SmallVector
<SDValue
, 4> ScalarResults
;
5451 for (unsigned I
= 0; I
!= NumVectorElts
; I
++) {
5452 SmallVector
<SDValue
, 4> ScalarOps
;
5453 for (SDValue Op
: Ops
) {
5454 EVT InSVT
= Op
.getValueType().getScalarType();
5455 if (Op
.getOpcode() != ISD::BUILD_VECTOR
&&
5456 Op
.getOpcode() != ISD::SPLAT_VECTOR
) {
5458 ScalarOps
.push_back(getUNDEF(InSVT
));
5460 ScalarOps
.push_back(Op
);
5465 Op
.getOperand(Op
.getOpcode() == ISD::SPLAT_VECTOR
? 0 : I
);
5466 EVT ScalarVT
= ScalarOp
.getValueType();
5468 // Build vector (integer) scalar operands may need implicit
5469 // truncation - do this before constant folding.
5470 if (ScalarVT
.isInteger() && ScalarVT
.bitsGT(InSVT
))
5471 ScalarOp
= getNode(ISD::TRUNCATE
, DL
, InSVT
, ScalarOp
);
5473 ScalarOps
.push_back(ScalarOp
);
5476 // Constant fold the scalar operands.
5477 SDValue ScalarResult
= getNode(Opcode
, DL
, SVT
, ScalarOps
);
5479 // Legalize the (integer) scalar constant if necessary.
5480 if (LegalSVT
!= SVT
)
5481 ScalarResult
= getNode(ISD::SIGN_EXTEND
, DL
, LegalSVT
, ScalarResult
);
5483 // Scalar folding only succeeded if the result is a constant or UNDEF.
5484 if (!ScalarResult
.isUndef() && ScalarResult
.getOpcode() != ISD::Constant
&&
5485 ScalarResult
.getOpcode() != ISD::ConstantFP
)
5487 ScalarResults
.push_back(ScalarResult
);
5490 SDValue V
= NumElts
.isScalable() ? getSplatVector(VT
, DL
, ScalarResults
[0])
5491 : getBuildVector(VT
, DL
, ScalarResults
);
5492 NewSDValueDbgMsg(V
, "New node fold constant vector: ", this);
5496 SDValue
SelectionDAG::foldConstantFPMath(unsigned Opcode
, const SDLoc
&DL
,
5497 EVT VT
, SDValue N1
, SDValue N2
) {
5498 // TODO: We don't do any constant folding for strict FP opcodes here, but we
5499 // should. That will require dealing with a potentially non-default
5500 // rounding mode, checking the "opStatus" return value from the APFloat
5501 // math calculations, and possibly other variations.
5502 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
, /*AllowUndefs*/ false);
5503 ConstantFPSDNode
*N2CFP
= isConstOrConstSplatFP(N2
, /*AllowUndefs*/ false);
5504 if (N1CFP
&& N2CFP
) {
5505 APFloat C1
= N1CFP
->getValueAPF(); // make copy
5506 const APFloat
&C2
= N2CFP
->getValueAPF();
5509 C1
.add(C2
, APFloat::rmNearestTiesToEven
);
5510 return getConstantFP(C1
, DL
, VT
);
5512 C1
.subtract(C2
, APFloat::rmNearestTiesToEven
);
5513 return getConstantFP(C1
, DL
, VT
);
5515 C1
.multiply(C2
, APFloat::rmNearestTiesToEven
);
5516 return getConstantFP(C1
, DL
, VT
);
5518 C1
.divide(C2
, APFloat::rmNearestTiesToEven
);
5519 return getConstantFP(C1
, DL
, VT
);
5522 return getConstantFP(C1
, DL
, VT
);
5523 case ISD::FCOPYSIGN
:
5525 return getConstantFP(C1
, DL
, VT
);
5527 return getConstantFP(minnum(C1
, C2
), DL
, VT
);
5529 return getConstantFP(maxnum(C1
, C2
), DL
, VT
);
5531 return getConstantFP(minimum(C1
, C2
), DL
, VT
);
5533 return getConstantFP(maximum(C1
, C2
), DL
, VT
);
5537 if (N1CFP
&& Opcode
== ISD::FP_ROUND
) {
5538 APFloat C1
= N1CFP
->getValueAPF(); // make copy
5540 // This can return overflow, underflow, or inexact; we don't care.
5541 // FIXME need to be more flexible about rounding mode.
5542 (void) C1
.convert(EVTToAPFloatSemantics(VT
), APFloat::rmNearestTiesToEven
,
5544 return getConstantFP(C1
, DL
, VT
);
5549 // -0.0 - undef --> undef (consistent with "fneg undef")
5550 if (ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N1
, /*AllowUndefs*/ true))
5551 if (N1C
&& N1C
->getValueAPF().isNegZero() && N2
.isUndef())
5552 return getUNDEF(VT
);
5559 // If both operands are undef, the result is undef. If 1 operand is undef,
5560 // the result is NaN. This should match the behavior of the IR optimizer.
5561 if (N1
.isUndef() && N2
.isUndef())
5562 return getUNDEF(VT
);
5563 if (N1
.isUndef() || N2
.isUndef())
5564 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT
)), DL
, VT
);
5569 SDValue
SelectionDAG::getAssertAlign(const SDLoc
&DL
, SDValue Val
, Align A
) {
5570 assert(Val
.getValueType().isInteger() && "Invalid AssertAlign!");
5572 // There's no need to assert on a byte-aligned pointer. All pointers are at
5573 // least byte aligned.
5577 FoldingSetNodeID ID
;
5578 AddNodeIDNode(ID
, ISD::AssertAlign
, getVTList(Val
.getValueType()), {Val
});
5579 ID
.AddInteger(A
.value());
5582 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
))
5583 return SDValue(E
, 0);
5585 auto *N
= newSDNode
<AssertAlignSDNode
>(DL
.getIROrder(), DL
.getDebugLoc(),
5586 Val
.getValueType(), A
);
5587 createOperands(N
, {Val
});
5589 CSEMap
.InsertNode(N
, IP
);
5593 NewSDValueDbgMsg(V
, "Creating new node: ", this);
5597 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
5598 SDValue N1
, SDValue N2
) {
5601 Flags
= Inserter
->getFlags();
5602 return getNode(Opcode
, DL
, VT
, N1
, N2
, Flags
);
5605 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
5606 SDValue N1
, SDValue N2
, const SDNodeFlags Flags
) {
5607 assert(N1
.getOpcode() != ISD::DELETED_NODE
&&
5608 N2
.getOpcode() != ISD::DELETED_NODE
&&
5609 "Operand is DELETED_NODE!");
5610 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
5611 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
);
5612 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
5613 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
);
5615 // Canonicalize constant to RHS if commutative.
5616 if (TLI
->isCommutativeBinOp(Opcode
)) {
5618 std::swap(N1C
, N2C
);
5620 } else if (N1CFP
&& !N2CFP
) {
5621 std::swap(N1CFP
, N2CFP
);
5628 case ISD::TokenFactor
:
5629 assert(VT
== MVT::Other
&& N1
.getValueType() == MVT::Other
&&
5630 N2
.getValueType() == MVT::Other
&& "Invalid token factor!");
5631 // Fold trivial token factors.
5632 if (N1
.getOpcode() == ISD::EntryToken
) return N2
;
5633 if (N2
.getOpcode() == ISD::EntryToken
) return N1
;
5634 if (N1
== N2
) return N1
;
5636 case ISD::BUILD_VECTOR
: {
5637 // Attempt to simplify BUILD_VECTOR.
5638 SDValue Ops
[] = {N1
, N2
};
5639 if (SDValue V
= FoldBUILD_VECTOR(DL
, VT
, Ops
, *this))
5643 case ISD::CONCAT_VECTORS
: {
5644 SDValue Ops
[] = {N1
, N2
};
5645 if (SDValue V
= foldCONCAT_VECTORS(DL
, VT
, Ops
, *this))
5650 assert(VT
.isInteger() && "This operator does not apply to FP types!");
5651 assert(N1
.getValueType() == N2
.getValueType() &&
5652 N1
.getValueType() == VT
&& "Binary operator types must match!");
5653 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
5654 // worth handling here.
5655 if (N2C
&& N2C
->isZero())
5657 if (N2C
&& N2C
->isAllOnes()) // X & -1 -> X
5664 assert(VT
.isInteger() && "This operator does not apply to FP types!");
5665 assert(N1
.getValueType() == N2
.getValueType() &&
5666 N1
.getValueType() == VT
&& "Binary operator types must match!");
5667 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
5668 // it's worth handling here.
5669 if (N2C
&& N2C
->isZero())
5671 if ((Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) && VT
.isVector() &&
5672 VT
.getVectorElementType() == MVT::i1
)
5673 return getNode(ISD::XOR
, DL
, VT
, N1
, N2
);
5676 assert(VT
.isInteger() && "This operator does not apply to FP types!");
5677 assert(N1
.getValueType() == N2
.getValueType() &&
5678 N1
.getValueType() == VT
&& "Binary operator types must match!");
5679 if (VT
.isVector() && VT
.getVectorElementType() == MVT::i1
)
5680 return getNode(ISD::AND
, DL
, VT
, N1
, N2
);
5681 if (N2C
&& (N1
.getOpcode() == ISD::VSCALE
) && Flags
.hasNoSignedWrap()) {
5682 const APInt
&MulImm
= N1
->getConstantOperandAPInt(0);
5683 const APInt
&N2CImm
= N2C
->getAPIntValue();
5684 return getVScale(DL
, VT
, MulImm
* N2CImm
);
5697 assert(VT
.isInteger() && "This operator does not apply to FP types!");
5698 assert(N1
.getValueType() == N2
.getValueType() &&
5699 N1
.getValueType() == VT
&& "Binary operator types must match!");
5700 if (VT
.isVector() && VT
.getVectorElementType() == MVT::i1
) {
5701 // fold (add_sat x, y) -> (or x, y) for bool types.
5702 if (Opcode
== ISD::SADDSAT
|| Opcode
== ISD::UADDSAT
)
5703 return getNode(ISD::OR
, DL
, VT
, N1
, N2
);
5704 // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5705 if (Opcode
== ISD::SSUBSAT
|| Opcode
== ISD::USUBSAT
)
5706 return getNode(ISD::AND
, DL
, VT
, N1
, getNOT(DL
, N2
, VT
));
5711 assert(VT
.isInteger() && "This operator does not apply to FP types!");
5712 assert(N1
.getValueType() == N2
.getValueType() &&
5713 N1
.getValueType() == VT
&& "Binary operator types must match!");
5714 if (VT
.isVector() && VT
.getVectorElementType() == MVT::i1
)
5715 return getNode(ISD::OR
, DL
, VT
, N1
, N2
);
5719 assert(VT
.isInteger() && "This operator does not apply to FP types!");
5720 assert(N1
.getValueType() == N2
.getValueType() &&
5721 N1
.getValueType() == VT
&& "Binary operator types must match!");
5722 if (VT
.isVector() && VT
.getVectorElementType() == MVT::i1
)
5723 return getNode(ISD::AND
, DL
, VT
, N1
, N2
);
5730 assert(VT
.isFloatingPoint() && "This operator only applies to FP types!");
5731 assert(N1
.getValueType() == N2
.getValueType() &&
5732 N1
.getValueType() == VT
&& "Binary operator types must match!");
5733 if (SDValue V
= simplifyFPBinop(Opcode
, N1
, N2
, Flags
))
5736 case ISD::FCOPYSIGN
: // N1 and result must match. N1/N2 need not match.
5737 assert(N1
.getValueType() == VT
&&
5738 N1
.getValueType().isFloatingPoint() &&
5739 N2
.getValueType().isFloatingPoint() &&
5740 "Invalid FCOPYSIGN!");
5743 if (N2C
&& (N1
.getOpcode() == ISD::VSCALE
) && Flags
.hasNoSignedWrap()) {
5744 const APInt
&MulImm
= N1
->getConstantOperandAPInt(0);
5745 const APInt
&ShiftImm
= N2C
->getAPIntValue();
5746 return getVScale(DL
, VT
, MulImm
<< ShiftImm
);
5751 if (SDValue V
= simplifyShift(N1
, N2
))
5756 assert(VT
== N1
.getValueType() &&
5757 "Shift operators return type must be the same as their first arg");
5758 assert(VT
.isInteger() && N2
.getValueType().isInteger() &&
5759 "Shifts only work on integers");
5760 assert((!VT
.isVector() || VT
== N2
.getValueType()) &&
5761 "Vector shift amounts must be in the same as their first arg");
5762 // Verify that the shift amount VT is big enough to hold valid shift
5763 // amounts. This catches things like trying to shift an i1024 value by an
5764 // i8, which is easy to fall into in generic code that uses
5765 // TLI.getShiftAmount().
5766 assert(N2
.getValueType().getScalarSizeInBits() >=
5767 Log2_32_Ceil(VT
.getScalarSizeInBits()) &&
5768 "Invalid use of small shift amount with oversized value!");
5770 // Always fold shifts of i1 values so the code generator doesn't need to
5771 // handle them. Since we know the size of the shift has to be less than the
5772 // size of the value, the shift/rotate count is guaranteed to be zero.
5775 if (N2C
&& N2C
->isZero())
5779 assert(VT
.isFloatingPoint() &&
5780 N1
.getValueType().isFloatingPoint() &&
5781 VT
.bitsLE(N1
.getValueType()) &&
5782 N2C
&& (N2C
->getZExtValue() == 0 || N2C
->getZExtValue() == 1) &&
5783 "Invalid FP_ROUND!");
5784 if (N1
.getValueType() == VT
) return N1
; // noop conversion.
5786 case ISD::AssertSext
:
5787 case ISD::AssertZext
: {
5788 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
5789 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
5790 assert(VT
.isInteger() && EVT
.isInteger() &&
5791 "Cannot *_EXTEND_INREG FP types");
5792 assert(!EVT
.isVector() &&
5793 "AssertSExt/AssertZExt type should be the vector element type "
5794 "rather than the vector type!");
5795 assert(EVT
.bitsLE(VT
.getScalarType()) && "Not extending!");
5796 if (VT
.getScalarType() == EVT
) return N1
; // noop assertion.
5799 case ISD::SIGN_EXTEND_INREG
: {
5800 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
5801 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
5802 assert(VT
.isInteger() && EVT
.isInteger() &&
5803 "Cannot *_EXTEND_INREG FP types");
5804 assert(EVT
.isVector() == VT
.isVector() &&
5805 "SIGN_EXTEND_INREG type should be vector iff the operand "
5807 assert((!EVT
.isVector() ||
5808 EVT
.getVectorElementCount() == VT
.getVectorElementCount()) &&
5809 "Vector element counts must match in SIGN_EXTEND_INREG");
5810 assert(EVT
.bitsLE(VT
) && "Not extending!");
5811 if (EVT
== VT
) return N1
; // Not actually extending
5813 auto SignExtendInReg
= [&](APInt Val
, llvm::EVT ConstantVT
) {
5814 unsigned FromBits
= EVT
.getScalarSizeInBits();
5815 Val
<<= Val
.getBitWidth() - FromBits
;
5816 Val
.ashrInPlace(Val
.getBitWidth() - FromBits
);
5817 return getConstant(Val
, DL
, ConstantVT
);
5821 const APInt
&Val
= N1C
->getAPIntValue();
5822 return SignExtendInReg(Val
, VT
);
5825 if (ISD::isBuildVectorOfConstantSDNodes(N1
.getNode())) {
5826 SmallVector
<SDValue
, 8> Ops
;
5827 llvm::EVT OpVT
= N1
.getOperand(0).getValueType();
5828 for (int i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
) {
5829 SDValue Op
= N1
.getOperand(i
);
5831 Ops
.push_back(getUNDEF(OpVT
));
5834 ConstantSDNode
*C
= cast
<ConstantSDNode
>(Op
);
5835 APInt Val
= C
->getAPIntValue();
5836 Ops
.push_back(SignExtendInReg(Val
, OpVT
));
5838 return getBuildVector(VT
, DL
, Ops
);
5842 case ISD::FP_TO_SINT_SAT
:
5843 case ISD::FP_TO_UINT_SAT
: {
5844 assert(VT
.isInteger() && cast
<VTSDNode
>(N2
)->getVT().isInteger() &&
5845 N1
.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5846 assert(N1
.getValueType().isVector() == VT
.isVector() &&
5847 "FP_TO_*INT_SAT type should be vector iff the operand type is "
5849 assert((!VT
.isVector() || VT
.getVectorNumElements() ==
5850 N1
.getValueType().getVectorNumElements()) &&
5851 "Vector element counts must match in FP_TO_*INT_SAT");
5852 assert(!cast
<VTSDNode
>(N2
)->getVT().isVector() &&
5853 "Type to saturate to must be a scalar.");
5854 assert(cast
<VTSDNode
>(N2
)->getVT().bitsLE(VT
.getScalarType()) &&
5858 case ISD::EXTRACT_VECTOR_ELT
:
5859 assert(VT
.getSizeInBits() >= N1
.getValueType().getScalarSizeInBits() &&
5860 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5861 element type of the vector.");
5863 // Extract from an undefined value or using an undefined index is undefined.
5864 if (N1
.isUndef() || N2
.isUndef())
5865 return getUNDEF(VT
);
5867 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5868 // vectors. For scalable vectors we will provide appropriate support for
5869 // dealing with arbitrary indices.
5870 if (N2C
&& N1
.getValueType().isFixedLengthVector() &&
5871 N2C
->getAPIntValue().uge(N1
.getValueType().getVectorNumElements()))
5872 return getUNDEF(VT
);
5874 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5875 // expanding copies of large vectors from registers. This only works for
5876 // fixed length vectors, since we need to know the exact number of
5878 if (N2C
&& N1
.getOperand(0).getValueType().isFixedLengthVector() &&
5879 N1
.getOpcode() == ISD::CONCAT_VECTORS
&& N1
.getNumOperands() > 0) {
5881 N1
.getOperand(0).getValueType().getVectorNumElements();
5882 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
,
5883 N1
.getOperand(N2C
->getZExtValue() / Factor
),
5884 getVectorIdxConstant(N2C
->getZExtValue() % Factor
, DL
));
5887 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5888 // lowering is expanding large vector constants.
5889 if (N2C
&& (N1
.getOpcode() == ISD::BUILD_VECTOR
||
5890 N1
.getOpcode() == ISD::SPLAT_VECTOR
)) {
5891 assert((N1
.getOpcode() != ISD::BUILD_VECTOR
||
5892 N1
.getValueType().isFixedLengthVector()) &&
5893 "BUILD_VECTOR used for scalable vectors");
5895 N1
.getOpcode() == ISD::BUILD_VECTOR
? N2C
->getZExtValue() : 0;
5896 SDValue Elt
= N1
.getOperand(Index
);
5898 if (VT
!= Elt
.getValueType())
5899 // If the vector element type is not legal, the BUILD_VECTOR operands
5900 // are promoted and implicitly truncated, and the result implicitly
5901 // extended. Make that explicit here.
5902 Elt
= getAnyExtOrTrunc(Elt
, DL
, VT
);
5907 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5908 // operations are lowered to scalars.
5909 if (N1
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
5910 // If the indices are the same, return the inserted element else
5911 // if the indices are known different, extract the element from
5912 // the original vector.
5913 SDValue N1Op2
= N1
.getOperand(2);
5914 ConstantSDNode
*N1Op2C
= dyn_cast
<ConstantSDNode
>(N1Op2
);
5916 if (N1Op2C
&& N2C
) {
5917 if (N1Op2C
->getZExtValue() == N2C
->getZExtValue()) {
5918 if (VT
== N1
.getOperand(1).getValueType())
5919 return N1
.getOperand(1);
5920 return getSExtOrTrunc(N1
.getOperand(1), DL
, VT
);
5922 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0), N2
);
5926 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5927 // when vector types are scalarized and v1iX is legal.
5928 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5929 // Here we are completely ignoring the extract element index (N2),
5930 // which is fine for fixed width vectors, since any index other than 0
5931 // is undefined anyway. However, this cannot be ignored for scalable
5932 // vectors - in theory we could support this, but we don't want to do this
5933 // without a profitability check.
5934 if (N1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
5935 N1
.getValueType().isFixedLengthVector() &&
5936 N1
.getValueType().getVectorNumElements() == 1) {
5937 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0),
5941 case ISD::EXTRACT_ELEMENT
:
5942 assert(N2C
&& (unsigned)N2C
->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5943 assert(!N1
.getValueType().isVector() && !VT
.isVector() &&
5944 (N1
.getValueType().isInteger() == VT
.isInteger()) &&
5945 N1
.getValueType() != VT
&&
5946 "Wrong types for EXTRACT_ELEMENT!");
5948 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5949 // 64-bit integers into 32-bit parts. Instead of building the extract of
5950 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5951 if (N1
.getOpcode() == ISD::BUILD_PAIR
)
5952 return N1
.getOperand(N2C
->getZExtValue());
5954 // EXTRACT_ELEMENT of a constant int is also very common.
5956 unsigned ElementSize
= VT
.getSizeInBits();
5957 unsigned Shift
= ElementSize
* N2C
->getZExtValue();
5958 const APInt
&Val
= N1C
->getAPIntValue();
5959 return getConstant(Val
.extractBits(ElementSize
, Shift
), DL
, VT
);
5962 case ISD::EXTRACT_SUBVECTOR
: {
5963 EVT N1VT
= N1
.getValueType();
5964 assert(VT
.isVector() && N1VT
.isVector() &&
5965 "Extract subvector VTs must be vectors!");
5966 assert(VT
.getVectorElementType() == N1VT
.getVectorElementType() &&
5967 "Extract subvector VTs must have the same element type!");
5968 assert((VT
.isFixedLengthVector() || N1VT
.isScalableVector()) &&
5969 "Cannot extract a scalable vector from a fixed length vector!");
5970 assert((VT
.isScalableVector() != N1VT
.isScalableVector() ||
5971 VT
.getVectorMinNumElements() <= N1VT
.getVectorMinNumElements()) &&
5972 "Extract subvector must be from larger vector to smaller vector!");
5973 assert(N2C
&& "Extract subvector index must be a constant");
5974 assert((VT
.isScalableVector() != N1VT
.isScalableVector() ||
5975 (VT
.getVectorMinNumElements() + N2C
->getZExtValue()) <=
5976 N1VT
.getVectorMinNumElements()) &&
5977 "Extract subvector overflow!");
5978 assert(N2C
->getAPIntValue().getBitWidth() ==
5979 TLI
->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5980 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5982 // Trivial extraction.
5986 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5988 return getUNDEF(VT
);
5990 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5991 // the concat have the same type as the extract.
5992 if (N1
.getOpcode() == ISD::CONCAT_VECTORS
&& N1
.getNumOperands() > 0 &&
5993 VT
== N1
.getOperand(0).getValueType()) {
5994 unsigned Factor
= VT
.getVectorMinNumElements();
5995 return N1
.getOperand(N2C
->getZExtValue() / Factor
);
5998 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5999 // during shuffle legalization.
6000 if (N1
.getOpcode() == ISD::INSERT_SUBVECTOR
&& N2
== N1
.getOperand(2) &&
6001 VT
== N1
.getOperand(1).getValueType())
6002 return N1
.getOperand(1);
6007 // Perform trivial constant folding.
6008 if (SDValue SV
= FoldConstantArithmetic(Opcode
, DL
, VT
, {N1
, N2
}))
6011 // Canonicalize an UNDEF to the RHS, even over a constant.
6013 if (TLI
->isCommutativeBinOp(Opcode
)) {
6017 case ISD::SIGN_EXTEND_INREG
:
6019 return getUNDEF(VT
); // fold op(undef, arg2) -> undef
6026 return getConstant(0, DL
, VT
); // fold op(undef, arg2) -> 0
6031 // Fold a bunch of operators when the RHS is undef.
6036 // Handle undef ^ undef -> 0 special case. This is a common
6038 return getConstant(0, DL
, VT
);
6046 return getUNDEF(VT
); // fold op(arg1, undef) -> undef
6051 return getConstant(0, DL
, VT
); // fold op(arg1, undef) -> 0
6055 return getAllOnesConstant(DL
, VT
);
6059 // Memoize this node if possible.
6061 SDVTList VTs
= getVTList(VT
);
6062 SDValue Ops
[] = {N1
, N2
};
6063 if (VT
!= MVT::Glue
) {
6064 FoldingSetNodeID ID
;
6065 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
6067 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
)) {
6068 E
->intersectFlagsWith(Flags
);
6069 return SDValue(E
, 0);
6072 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
6074 createOperands(N
, Ops
);
6075 CSEMap
.InsertNode(N
, IP
);
6077 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
6078 createOperands(N
, Ops
);
6082 SDValue V
= SDValue(N
, 0);
6083 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6087 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
6088 SDValue N1
, SDValue N2
, SDValue N3
) {
6091 Flags
= Inserter
->getFlags();
6092 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
, Flags
);
6095 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
6096 SDValue N1
, SDValue N2
, SDValue N3
,
6097 const SDNodeFlags Flags
) {
6098 assert(N1
.getOpcode() != ISD::DELETED_NODE
&&
6099 N2
.getOpcode() != ISD::DELETED_NODE
&&
6100 N3
.getOpcode() != ISD::DELETED_NODE
&&
6101 "Operand is DELETED_NODE!");
6102 // Perform various simplifications.
6105 assert(VT
.isFloatingPoint() && "This operator only applies to FP types!");
6106 assert(N1
.getValueType() == VT
&& N2
.getValueType() == VT
&&
6107 N3
.getValueType() == VT
&& "FMA types must match!");
6108 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
6109 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
);
6110 ConstantFPSDNode
*N3CFP
= dyn_cast
<ConstantFPSDNode
>(N3
);
6111 if (N1CFP
&& N2CFP
&& N3CFP
) {
6112 APFloat V1
= N1CFP
->getValueAPF();
6113 const APFloat
&V2
= N2CFP
->getValueAPF();
6114 const APFloat
&V3
= N3CFP
->getValueAPF();
6115 V1
.fusedMultiplyAdd(V2
, V3
, APFloat::rmNearestTiesToEven
);
6116 return getConstantFP(V1
, DL
, VT
);
6120 case ISD::BUILD_VECTOR
: {
6121 // Attempt to simplify BUILD_VECTOR.
6122 SDValue Ops
[] = {N1
, N2
, N3
};
6123 if (SDValue V
= FoldBUILD_VECTOR(DL
, VT
, Ops
, *this))
6127 case ISD::CONCAT_VECTORS
: {
6128 SDValue Ops
[] = {N1
, N2
, N3
};
6129 if (SDValue V
= foldCONCAT_VECTORS(DL
, VT
, Ops
, *this))
6134 assert(VT
.isInteger() && "SETCC result type must be an integer!");
6135 assert(N1
.getValueType() == N2
.getValueType() &&
6136 "SETCC operands must have the same type!");
6137 assert(VT
.isVector() == N1
.getValueType().isVector() &&
6138 "SETCC type should be vector iff the operand type is vector!");
6139 assert((!VT
.isVector() || VT
.getVectorElementCount() ==
6140 N1
.getValueType().getVectorElementCount()) &&
6141 "SETCC vector element counts must match!");
6142 // Use FoldSetCC to simplify SETCC's.
6143 if (SDValue V
= FoldSetCC(VT
, N1
, N2
, cast
<CondCodeSDNode
>(N3
)->get(), DL
))
6145 // Vector constant folding.
6146 SDValue Ops
[] = {N1
, N2
, N3
};
6147 if (SDValue V
= FoldConstantArithmetic(Opcode
, DL
, VT
, Ops
)) {
6148 NewSDValueDbgMsg(V
, "New node vector constant folding: ", this);
6155 if (SDValue V
= simplifySelect(N1
, N2
, N3
))
6158 case ISD::VECTOR_SHUFFLE
:
6159 llvm_unreachable("should use getVectorShuffle constructor!");
6160 case ISD::VECTOR_SPLICE
: {
6161 if (cast
<ConstantSDNode
>(N3
)->isNullValue())
6165 case ISD::INSERT_VECTOR_ELT
: {
6166 ConstantSDNode
*N3C
= dyn_cast
<ConstantSDNode
>(N3
);
6167 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6168 // for scalable vectors where we will generate appropriate code to
6169 // deal with out-of-bounds cases correctly.
6170 if (N3C
&& N1
.getValueType().isFixedLengthVector() &&
6171 N3C
->getZExtValue() >= N1
.getValueType().getVectorNumElements())
6172 return getUNDEF(VT
);
6174 // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6176 return getUNDEF(VT
);
6178 // If the inserted element is an UNDEF, just use the input vector.
6184 case ISD::INSERT_SUBVECTOR
: {
6185 // Inserting undef into undef is still undef.
6186 if (N1
.isUndef() && N2
.isUndef())
6187 return getUNDEF(VT
);
6189 EVT N2VT
= N2
.getValueType();
6190 assert(VT
== N1
.getValueType() &&
6191 "Dest and insert subvector source types must match!");
6192 assert(VT
.isVector() && N2VT
.isVector() &&
6193 "Insert subvector VTs must be vectors!");
6194 assert((VT
.isScalableVector() || N2VT
.isFixedLengthVector()) &&
6195 "Cannot insert a scalable vector into a fixed length vector!");
6196 assert((VT
.isScalableVector() != N2VT
.isScalableVector() ||
6197 VT
.getVectorMinNumElements() >= N2VT
.getVectorMinNumElements()) &&
6198 "Insert subvector must be from smaller vector to larger vector!");
6199 assert(isa
<ConstantSDNode
>(N3
) &&
6200 "Insert subvector index must be constant");
6201 assert((VT
.isScalableVector() != N2VT
.isScalableVector() ||
6202 (N2VT
.getVectorMinNumElements() +
6203 cast
<ConstantSDNode
>(N3
)->getZExtValue()) <=
6204 VT
.getVectorMinNumElements()) &&
6205 "Insert subvector overflow!");
6206 assert(cast
<ConstantSDNode
>(N3
)->getAPIntValue().getBitWidth() ==
6207 TLI
->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6208 "Constant index for INSERT_SUBVECTOR has an invalid size");
6210 // Trivial insertion.
6214 // If this is an insert of an extracted vector into an undef vector, we
6215 // can just use the input to the extract.
6216 if (N1
.isUndef() && N2
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
6217 N2
.getOperand(1) == N3
&& N2
.getOperand(0).getValueType() == VT
)
6218 return N2
.getOperand(0);
6222 // Fold bit_convert nodes from a type to themselves.
6223 if (N1
.getValueType() == VT
)
6228 // Memoize node if it doesn't produce a flag.
6230 SDVTList VTs
= getVTList(VT
);
6231 SDValue Ops
[] = {N1
, N2
, N3
};
6232 if (VT
!= MVT::Glue
) {
6233 FoldingSetNodeID ID
;
6234 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
6236 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
)) {
6237 E
->intersectFlagsWith(Flags
);
6238 return SDValue(E
, 0);
6241 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
6243 createOperands(N
, Ops
);
6244 CSEMap
.InsertNode(N
, IP
);
6246 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
6247 createOperands(N
, Ops
);
6251 SDValue V
= SDValue(N
, 0);
6252 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6256 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
6257 SDValue N1
, SDValue N2
, SDValue N3
, SDValue N4
) {
6258 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
6259 return getNode(Opcode
, DL
, VT
, Ops
);
6262 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
6263 SDValue N1
, SDValue N2
, SDValue N3
, SDValue N4
,
6265 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
6266 return getNode(Opcode
, DL
, VT
, Ops
);
6269 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6270 /// the incoming stack arguments to be loaded from the stack.
6271 SDValue
SelectionDAG::getStackArgumentTokenFactor(SDValue Chain
) {
6272 SmallVector
<SDValue
, 8> ArgChains
;
6274 // Include the original chain at the beginning of the list. When this is
6275 // used by target LowerCall hooks, this helps legalize find the
6276 // CALLSEQ_BEGIN node.
6277 ArgChains
.push_back(Chain
);
6279 // Add a chain value for each stack argument.
6280 for (SDNode
*U
: getEntryNode().getNode()->uses())
6281 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(U
))
6282 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr()))
6283 if (FI
->getIndex() < 0)
6284 ArgChains
.push_back(SDValue(L
, 1));
6286 // Build a tokenfactor for all the chains.
6287 return getNode(ISD::TokenFactor
, SDLoc(Chain
), MVT::Other
, ArgChains
);
6290 /// getMemsetValue - Vectorized representation of the memset value
6292 static SDValue
getMemsetValue(SDValue Value
, EVT VT
, SelectionDAG
&DAG
,
6294 assert(!Value
.isUndef());
6296 unsigned NumBits
= VT
.getScalarSizeInBits();
6297 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Value
)) {
6298 assert(C
->getAPIntValue().getBitWidth() == 8);
6299 APInt Val
= APInt::getSplat(NumBits
, C
->getAPIntValue());
6300 if (VT
.isInteger()) {
6301 bool IsOpaque
= VT
.getSizeInBits() > 64 ||
6302 !DAG
.getTargetLoweringInfo().isLegalStoreImmediate(C
->getSExtValue());
6303 return DAG
.getConstant(Val
, dl
, VT
, false, IsOpaque
);
6305 return DAG
.getConstantFP(APFloat(DAG
.EVTToAPFloatSemantics(VT
), Val
), dl
,
6309 assert(Value
.getValueType() == MVT::i8
&& "memset with non-byte fill value?");
6310 EVT IntVT
= VT
.getScalarType();
6311 if (!IntVT
.isInteger())
6312 IntVT
= EVT::getIntegerVT(*DAG
.getContext(), IntVT
.getSizeInBits());
6314 Value
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, IntVT
, Value
);
6316 // Use a multiplication with 0x010101... to extend the input to the
6318 APInt Magic
= APInt::getSplat(NumBits
, APInt(8, 0x01));
6319 Value
= DAG
.getNode(ISD::MUL
, dl
, IntVT
, Value
,
6320 DAG
.getConstant(Magic
, dl
, IntVT
));
6323 if (VT
!= Value
.getValueType() && !VT
.isInteger())
6324 Value
= DAG
.getBitcast(VT
.getScalarType(), Value
);
6325 if (VT
!= Value
.getValueType())
6326 Value
= DAG
.getSplatBuildVector(VT
, dl
, Value
);
6331 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6332 /// used when a memcpy is turned into a memset when the source is a constant
6334 static SDValue
getMemsetStringVal(EVT VT
, const SDLoc
&dl
, SelectionDAG
&DAG
,
6335 const TargetLowering
&TLI
,
6336 const ConstantDataArraySlice
&Slice
) {
6337 // Handle vector with all elements zero.
6338 if (Slice
.Array
== nullptr) {
6340 return DAG
.getConstant(0, dl
, VT
);
6341 if (VT
== MVT::f32
|| VT
== MVT::f64
|| VT
== MVT::f128
)
6342 return DAG
.getConstantFP(0.0, dl
, VT
);
6343 if (VT
.isVector()) {
6344 unsigned NumElts
= VT
.getVectorNumElements();
6345 MVT EltVT
= (VT
.getVectorElementType() == MVT::f32
) ? MVT::i32
: MVT::i64
;
6346 return DAG
.getNode(ISD::BITCAST
, dl
, VT
,
6347 DAG
.getConstant(0, dl
,
6348 EVT::getVectorVT(*DAG
.getContext(),
6351 llvm_unreachable("Expected type!");
6354 assert(!VT
.isVector() && "Can't handle vector type here!");
6355 unsigned NumVTBits
= VT
.getSizeInBits();
6356 unsigned NumVTBytes
= NumVTBits
/ 8;
6357 unsigned NumBytes
= std::min(NumVTBytes
, unsigned(Slice
.Length
));
6359 APInt
Val(NumVTBits
, 0);
6360 if (DAG
.getDataLayout().isLittleEndian()) {
6361 for (unsigned i
= 0; i
!= NumBytes
; ++i
)
6362 Val
|= (uint64_t)(unsigned char)Slice
[i
] << i
*8;
6364 for (unsigned i
= 0; i
!= NumBytes
; ++i
)
6365 Val
|= (uint64_t)(unsigned char)Slice
[i
] << (NumVTBytes
-i
-1)*8;
6368 // If the "cost" of materializing the integer immediate is less than the cost
6369 // of a load, then it is cost effective to turn the load into the immediate.
6370 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
6371 if (TLI
.shouldConvertConstantLoadToIntImm(Val
, Ty
))
6372 return DAG
.getConstant(Val
, dl
, VT
);
6376 SDValue
SelectionDAG::getMemBasePlusOffset(SDValue Base
, TypeSize Offset
,
6378 const SDNodeFlags Flags
) {
6379 EVT VT
= Base
.getValueType();
6382 if (Offset
.isScalable())
6383 Index
= getVScale(DL
, Base
.getValueType(),
6384 APInt(Base
.getValueSizeInBits().getFixedSize(),
6385 Offset
.getKnownMinSize()));
6387 Index
= getConstant(Offset
.getFixedSize(), DL
, VT
);
6389 return getMemBasePlusOffset(Base
, Index
, DL
, Flags
);
6392 SDValue
SelectionDAG::getMemBasePlusOffset(SDValue Ptr
, SDValue Offset
,
6394 const SDNodeFlags Flags
) {
6395 assert(Offset
.getValueType().isInteger());
6396 EVT BasePtrVT
= Ptr
.getValueType();
6397 return getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
, Offset
, Flags
);
6400 /// Returns true if memcpy source is constant data.
6401 static bool isMemSrcFromConstant(SDValue Src
, ConstantDataArraySlice
&Slice
) {
6402 uint64_t SrcDelta
= 0;
6403 GlobalAddressSDNode
*G
= nullptr;
6404 if (Src
.getOpcode() == ISD::GlobalAddress
)
6405 G
= cast
<GlobalAddressSDNode
>(Src
);
6406 else if (Src
.getOpcode() == ISD::ADD
&&
6407 Src
.getOperand(0).getOpcode() == ISD::GlobalAddress
&&
6408 Src
.getOperand(1).getOpcode() == ISD::Constant
) {
6409 G
= cast
<GlobalAddressSDNode
>(Src
.getOperand(0));
6410 SrcDelta
= cast
<ConstantSDNode
>(Src
.getOperand(1))->getZExtValue();
6415 return getConstantDataArrayInfo(G
->getGlobal(), Slice
, 8,
6416 SrcDelta
+ G
->getOffset());
6419 static bool shouldLowerMemFuncForSize(const MachineFunction
&MF
,
6420 SelectionDAG
&DAG
) {
6421 // On Darwin, -Os means optimize for size without hurting performance, so
6422 // only really optimize for size when -Oz (MinSize) is used.
6423 if (MF
.getTarget().getTargetTriple().isOSDarwin())
6424 return MF
.getFunction().hasMinSize();
6425 return DAG
.shouldOptForSize();
6428 static void chainLoadsAndStoresForMemcpy(SelectionDAG
&DAG
, const SDLoc
&dl
,
6429 SmallVector
<SDValue
, 32> &OutChains
, unsigned From
,
6430 unsigned To
, SmallVector
<SDValue
, 16> &OutLoadChains
,
6431 SmallVector
<SDValue
, 16> &OutStoreChains
) {
6432 assert(OutLoadChains
.size() && "Missing loads in memcpy inlining");
6433 assert(OutStoreChains
.size() && "Missing stores in memcpy inlining");
6434 SmallVector
<SDValue
, 16> GluedLoadChains
;
6435 for (unsigned i
= From
; i
< To
; ++i
) {
6436 OutChains
.push_back(OutLoadChains
[i
]);
6437 GluedLoadChains
.push_back(OutLoadChains
[i
]);
6440 // Chain for all loads.
6441 SDValue LoadToken
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
6444 for (unsigned i
= From
; i
< To
; ++i
) {
6445 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(OutStoreChains
[i
]);
6446 SDValue NewStore
= DAG
.getTruncStore(LoadToken
, dl
, ST
->getValue(),
6447 ST
->getBasePtr(), ST
->getMemoryVT(),
6448 ST
->getMemOperand());
6449 OutChains
.push_back(NewStore
);
6453 static SDValue
getMemcpyLoadsAndStores(SelectionDAG
&DAG
, const SDLoc
&dl
,
6454 SDValue Chain
, SDValue Dst
, SDValue Src
,
6455 uint64_t Size
, Align Alignment
,
6456 bool isVol
, bool AlwaysInline
,
6457 MachinePointerInfo DstPtrInfo
,
6458 MachinePointerInfo SrcPtrInfo
,
6459 const AAMDNodes
&AAInfo
) {
6460 // Turn a memcpy of undef to nop.
6461 // FIXME: We need to honor volatile even is Src is undef.
6465 // Expand memcpy to a series of load and store ops if the size operand falls
6466 // below a certain threshold.
6467 // TODO: In the AlwaysInline case, if the size is big then generate a loop
6468 // rather than maybe a humongous number of loads and stores.
6469 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6470 const DataLayout
&DL
= DAG
.getDataLayout();
6471 LLVMContext
&C
= *DAG
.getContext();
6472 std::vector
<EVT
> MemOps
;
6473 bool DstAlignCanChange
= false;
6474 MachineFunction
&MF
= DAG
.getMachineFunction();
6475 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
6476 bool OptSize
= shouldLowerMemFuncForSize(MF
, DAG
);
6477 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
6478 if (FI
&& !MFI
.isFixedObjectIndex(FI
->getIndex()))
6479 DstAlignCanChange
= true;
6480 MaybeAlign SrcAlign
= DAG
.InferPtrAlign(Src
);
6481 if (!SrcAlign
|| Alignment
> *SrcAlign
)
6482 SrcAlign
= Alignment
;
6483 assert(SrcAlign
&& "SrcAlign must be set");
6484 ConstantDataArraySlice Slice
;
6485 // If marked as volatile, perform a copy even when marked as constant.
6486 bool CopyFromConstant
= !isVol
&& isMemSrcFromConstant(Src
, Slice
);
6487 bool isZeroConstant
= CopyFromConstant
&& Slice
.Array
== nullptr;
6488 unsigned Limit
= AlwaysInline
? ~0U : TLI
.getMaxStoresPerMemcpy(OptSize
);
6489 const MemOp Op
= isZeroConstant
6490 ? MemOp::Set(Size
, DstAlignCanChange
, Alignment
,
6491 /*IsZeroMemset*/ true, isVol
)
6492 : MemOp::Copy(Size
, DstAlignCanChange
, Alignment
,
6493 *SrcAlign
, isVol
, CopyFromConstant
);
6494 if (!TLI
.findOptimalMemOpLowering(
6495 MemOps
, Limit
, Op
, DstPtrInfo
.getAddrSpace(),
6496 SrcPtrInfo
.getAddrSpace(), MF
.getFunction().getAttributes()))
6499 if (DstAlignCanChange
) {
6500 Type
*Ty
= MemOps
[0].getTypeForEVT(C
);
6501 Align NewAlign
= DL
.getABITypeAlign(Ty
);
6503 // Don't promote to an alignment that would require dynamic stack
6505 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
6506 if (!TRI
->hasStackRealignment(MF
))
6507 while (NewAlign
> Alignment
&& DL
.exceedsNaturalStackAlignment(NewAlign
))
6508 NewAlign
= NewAlign
/ 2;
6510 if (NewAlign
> Alignment
) {
6511 // Give the stack frame object a larger alignment if needed.
6512 if (MFI
.getObjectAlign(FI
->getIndex()) < NewAlign
)
6513 MFI
.setObjectAlignment(FI
->getIndex(), NewAlign
);
6514 Alignment
= NewAlign
;
6518 // Prepare AAInfo for loads/stores after lowering this memcpy.
6519 AAMDNodes NewAAInfo
= AAInfo
;
6520 NewAAInfo
.TBAA
= NewAAInfo
.TBAAStruct
= nullptr;
6522 MachineMemOperand::Flags MMOFlags
=
6523 isVol
? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone
;
6524 SmallVector
<SDValue
, 16> OutLoadChains
;
6525 SmallVector
<SDValue
, 16> OutStoreChains
;
6526 SmallVector
<SDValue
, 32> OutChains
;
6527 unsigned NumMemOps
= MemOps
.size();
6528 uint64_t SrcOff
= 0, DstOff
= 0;
6529 for (unsigned i
= 0; i
!= NumMemOps
; ++i
) {
6531 unsigned VTSize
= VT
.getSizeInBits() / 8;
6532 SDValue Value
, Store
;
6534 if (VTSize
> Size
) {
6535 // Issuing an unaligned load / store pair that overlaps with the previous
6536 // pair. Adjust the offset accordingly.
6537 assert(i
== NumMemOps
-1 && i
!= 0);
6538 SrcOff
-= VTSize
- Size
;
6539 DstOff
-= VTSize
- Size
;
6542 if (CopyFromConstant
&&
6543 (isZeroConstant
|| (VT
.isInteger() && !VT
.isVector()))) {
6544 // It's unlikely a store of a vector immediate can be done in a single
6545 // instruction. It would require a load from a constantpool first.
6546 // We only handle zero vectors here.
6547 // FIXME: Handle other cases where store of vector immediate is done in
6548 // a single instruction.
6549 ConstantDataArraySlice SubSlice
;
6550 if (SrcOff
< Slice
.Length
) {
6552 SubSlice
.move(SrcOff
);
6554 // This is an out-of-bounds access and hence UB. Pretend we read zero.
6555 SubSlice
.Array
= nullptr;
6556 SubSlice
.Offset
= 0;
6557 SubSlice
.Length
= VTSize
;
6559 Value
= getMemsetStringVal(VT
, dl
, DAG
, TLI
, SubSlice
);
6560 if (Value
.getNode()) {
6561 Store
= DAG
.getStore(
6563 DAG
.getMemBasePlusOffset(Dst
, TypeSize::Fixed(DstOff
), dl
),
6564 DstPtrInfo
.getWithOffset(DstOff
), Alignment
, MMOFlags
, NewAAInfo
);
6565 OutChains
.push_back(Store
);
6569 if (!Store
.getNode()) {
6570 // The type might not be legal for the target. This should only happen
6571 // if the type is smaller than a legal type, as on PPC, so the right
6572 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
6573 // to Load/Store if NVT==VT.
6574 // FIXME does the case above also need this?
6575 EVT NVT
= TLI
.getTypeToTransformTo(C
, VT
);
6576 assert(NVT
.bitsGE(VT
));
6578 bool isDereferenceable
=
6579 SrcPtrInfo
.getWithOffset(SrcOff
).isDereferenceable(VTSize
, C
, DL
);
6580 MachineMemOperand::Flags SrcMMOFlags
= MMOFlags
;
6581 if (isDereferenceable
)
6582 SrcMMOFlags
|= MachineMemOperand::MODereferenceable
;
6584 Value
= DAG
.getExtLoad(
6585 ISD::EXTLOAD
, dl
, NVT
, Chain
,
6586 DAG
.getMemBasePlusOffset(Src
, TypeSize::Fixed(SrcOff
), dl
),
6587 SrcPtrInfo
.getWithOffset(SrcOff
), VT
,
6588 commonAlignment(*SrcAlign
, SrcOff
), SrcMMOFlags
, NewAAInfo
);
6589 OutLoadChains
.push_back(Value
.getValue(1));
6591 Store
= DAG
.getTruncStore(
6593 DAG
.getMemBasePlusOffset(Dst
, TypeSize::Fixed(DstOff
), dl
),
6594 DstPtrInfo
.getWithOffset(DstOff
), VT
, Alignment
, MMOFlags
, NewAAInfo
);
6595 OutStoreChains
.push_back(Store
);
6602 unsigned GluedLdStLimit
= MaxLdStGlue
== 0 ?
6603 TLI
.getMaxGluedStoresPerMemcpy() : MaxLdStGlue
;
6604 unsigned NumLdStInMemcpy
= OutStoreChains
.size();
6606 if (NumLdStInMemcpy
) {
6607 // It may be that memcpy might be converted to memset if it's memcpy
6608 // of constants. In such a case, we won't have loads and stores, but
6609 // just stores. In the absence of loads, there is nothing to gang up.
6610 if ((GluedLdStLimit
<= 1) || !EnableMemCpyDAGOpt
) {
6611 // If target does not care, just leave as it.
6612 for (unsigned i
= 0; i
< NumLdStInMemcpy
; ++i
) {
6613 OutChains
.push_back(OutLoadChains
[i
]);
6614 OutChains
.push_back(OutStoreChains
[i
]);
6617 // Ld/St less than/equal limit set by target.
6618 if (NumLdStInMemcpy
<= GluedLdStLimit
) {
6619 chainLoadsAndStoresForMemcpy(DAG
, dl
, OutChains
, 0,
6620 NumLdStInMemcpy
, OutLoadChains
,
6623 unsigned NumberLdChain
= NumLdStInMemcpy
/ GluedLdStLimit
;
6624 unsigned RemainingLdStInMemcpy
= NumLdStInMemcpy
% GluedLdStLimit
;
6625 unsigned GlueIter
= 0;
6627 for (unsigned cnt
= 0; cnt
< NumberLdChain
; ++cnt
) {
6628 unsigned IndexFrom
= NumLdStInMemcpy
- GlueIter
- GluedLdStLimit
;
6629 unsigned IndexTo
= NumLdStInMemcpy
- GlueIter
;
6631 chainLoadsAndStoresForMemcpy(DAG
, dl
, OutChains
, IndexFrom
, IndexTo
,
6632 OutLoadChains
, OutStoreChains
);
6633 GlueIter
+= GluedLdStLimit
;
6637 if (RemainingLdStInMemcpy
) {
6638 chainLoadsAndStoresForMemcpy(DAG
, dl
, OutChains
, 0,
6639 RemainingLdStInMemcpy
, OutLoadChains
,
6645 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
);
6648 static SDValue
getMemmoveLoadsAndStores(SelectionDAG
&DAG
, const SDLoc
&dl
,
6649 SDValue Chain
, SDValue Dst
, SDValue Src
,
6650 uint64_t Size
, Align Alignment
,
6651 bool isVol
, bool AlwaysInline
,
6652 MachinePointerInfo DstPtrInfo
,
6653 MachinePointerInfo SrcPtrInfo
,
6654 const AAMDNodes
&AAInfo
) {
6655 // Turn a memmove of undef to nop.
6656 // FIXME: We need to honor volatile even is Src is undef.
6660 // Expand memmove to a series of load and store ops if the size operand falls
6661 // below a certain threshold.
6662 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6663 const DataLayout
&DL
= DAG
.getDataLayout();
6664 LLVMContext
&C
= *DAG
.getContext();
6665 std::vector
<EVT
> MemOps
;
6666 bool DstAlignCanChange
= false;
6667 MachineFunction
&MF
= DAG
.getMachineFunction();
6668 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
6669 bool OptSize
= shouldLowerMemFuncForSize(MF
, DAG
);
6670 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
6671 if (FI
&& !MFI
.isFixedObjectIndex(FI
->getIndex()))
6672 DstAlignCanChange
= true;
6673 MaybeAlign SrcAlign
= DAG
.InferPtrAlign(Src
);
6674 if (!SrcAlign
|| Alignment
> *SrcAlign
)
6675 SrcAlign
= Alignment
;
6676 assert(SrcAlign
&& "SrcAlign must be set");
6677 unsigned Limit
= AlwaysInline
? ~0U : TLI
.getMaxStoresPerMemmove(OptSize
);
6678 if (!TLI
.findOptimalMemOpLowering(
6680 MemOp::Copy(Size
, DstAlignCanChange
, Alignment
, *SrcAlign
,
6681 /*IsVolatile*/ true),
6682 DstPtrInfo
.getAddrSpace(), SrcPtrInfo
.getAddrSpace(),
6683 MF
.getFunction().getAttributes()))
6686 if (DstAlignCanChange
) {
6687 Type
*Ty
= MemOps
[0].getTypeForEVT(C
);
6688 Align NewAlign
= DL
.getABITypeAlign(Ty
);
6689 if (NewAlign
> Alignment
) {
6690 // Give the stack frame object a larger alignment if needed.
6691 if (MFI
.getObjectAlign(FI
->getIndex()) < NewAlign
)
6692 MFI
.setObjectAlignment(FI
->getIndex(), NewAlign
);
6693 Alignment
= NewAlign
;
6697 // Prepare AAInfo for loads/stores after lowering this memmove.
6698 AAMDNodes NewAAInfo
= AAInfo
;
6699 NewAAInfo
.TBAA
= NewAAInfo
.TBAAStruct
= nullptr;
6701 MachineMemOperand::Flags MMOFlags
=
6702 isVol
? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone
;
6703 uint64_t SrcOff
= 0, DstOff
= 0;
6704 SmallVector
<SDValue
, 8> LoadValues
;
6705 SmallVector
<SDValue
, 8> LoadChains
;
6706 SmallVector
<SDValue
, 8> OutChains
;
6707 unsigned NumMemOps
= MemOps
.size();
6708 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
6710 unsigned VTSize
= VT
.getSizeInBits() / 8;
6713 bool isDereferenceable
=
6714 SrcPtrInfo
.getWithOffset(SrcOff
).isDereferenceable(VTSize
, C
, DL
);
6715 MachineMemOperand::Flags SrcMMOFlags
= MMOFlags
;
6716 if (isDereferenceable
)
6717 SrcMMOFlags
|= MachineMemOperand::MODereferenceable
;
6719 Value
= DAG
.getLoad(
6721 DAG
.getMemBasePlusOffset(Src
, TypeSize::Fixed(SrcOff
), dl
),
6722 SrcPtrInfo
.getWithOffset(SrcOff
), *SrcAlign
, SrcMMOFlags
, NewAAInfo
);
6723 LoadValues
.push_back(Value
);
6724 LoadChains
.push_back(Value
.getValue(1));
6727 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, LoadChains
);
6729 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
6731 unsigned VTSize
= VT
.getSizeInBits() / 8;
6734 Store
= DAG
.getStore(
6735 Chain
, dl
, LoadValues
[i
],
6736 DAG
.getMemBasePlusOffset(Dst
, TypeSize::Fixed(DstOff
), dl
),
6737 DstPtrInfo
.getWithOffset(DstOff
), Alignment
, MMOFlags
, NewAAInfo
);
6738 OutChains
.push_back(Store
);
6742 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
);
6745 /// Lower the call to 'memset' intrinsic function into a series of store
6748 /// \param DAG Selection DAG where lowered code is placed.
6749 /// \param dl Link to corresponding IR location.
6750 /// \param Chain Control flow dependency.
6751 /// \param Dst Pointer to destination memory location.
6752 /// \param Src Value of byte to write into the memory.
6753 /// \param Size Number of bytes to write.
6754 /// \param Alignment Alignment of the destination in bytes.
6755 /// \param isVol True if destination is volatile.
6756 /// \param DstPtrInfo IR information on the memory pointer.
6757 /// \returns New head in the control flow, if lowering was successful, empty
6758 /// SDValue otherwise.
6760 /// The function tries to replace 'llvm.memset' intrinsic with several store
6761 /// operations and value calculation code. This is usually profitable for small
6763 static SDValue
getMemsetStores(SelectionDAG
&DAG
, const SDLoc
&dl
,
6764 SDValue Chain
, SDValue Dst
, SDValue Src
,
6765 uint64_t Size
, Align Alignment
, bool isVol
,
6766 MachinePointerInfo DstPtrInfo
,
6767 const AAMDNodes
&AAInfo
) {
6768 // Turn a memset of undef to nop.
6769 // FIXME: We need to honor volatile even is Src is undef.
6773 // Expand memset to a series of load/store ops if the size operand
6774 // falls below a certain threshold.
6775 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6776 std::vector
<EVT
> MemOps
;
6777 bool DstAlignCanChange
= false;
6778 MachineFunction
&MF
= DAG
.getMachineFunction();
6779 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
6780 bool OptSize
= shouldLowerMemFuncForSize(MF
, DAG
);
6781 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
6782 if (FI
&& !MFI
.isFixedObjectIndex(FI
->getIndex()))
6783 DstAlignCanChange
= true;
6785 isa
<ConstantSDNode
>(Src
) && cast
<ConstantSDNode
>(Src
)->isZero();
6786 if (!TLI
.findOptimalMemOpLowering(
6787 MemOps
, TLI
.getMaxStoresPerMemset(OptSize
),
6788 MemOp::Set(Size
, DstAlignCanChange
, Alignment
, IsZeroVal
, isVol
),
6789 DstPtrInfo
.getAddrSpace(), ~0u, MF
.getFunction().getAttributes()))
6792 if (DstAlignCanChange
) {
6793 Type
*Ty
= MemOps
[0].getTypeForEVT(*DAG
.getContext());
6794 Align NewAlign
= DAG
.getDataLayout().getABITypeAlign(Ty
);
6795 if (NewAlign
> Alignment
) {
6796 // Give the stack frame object a larger alignment if needed.
6797 if (MFI
.getObjectAlign(FI
->getIndex()) < NewAlign
)
6798 MFI
.setObjectAlignment(FI
->getIndex(), NewAlign
);
6799 Alignment
= NewAlign
;
6803 SmallVector
<SDValue
, 8> OutChains
;
6804 uint64_t DstOff
= 0;
6805 unsigned NumMemOps
= MemOps
.size();
6807 // Find the largest store and generate the bit pattern for it.
6808 EVT LargestVT
= MemOps
[0];
6809 for (unsigned i
= 1; i
< NumMemOps
; i
++)
6810 if (MemOps
[i
].bitsGT(LargestVT
))
6811 LargestVT
= MemOps
[i
];
6812 SDValue MemSetValue
= getMemsetValue(Src
, LargestVT
, DAG
, dl
);
6814 // Prepare AAInfo for loads/stores after lowering this memset.
6815 AAMDNodes NewAAInfo
= AAInfo
;
6816 NewAAInfo
.TBAA
= NewAAInfo
.TBAAStruct
= nullptr;
6818 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
6820 unsigned VTSize
= VT
.getSizeInBits() / 8;
6821 if (VTSize
> Size
) {
6822 // Issuing an unaligned load / store pair that overlaps with the previous
6823 // pair. Adjust the offset accordingly.
6824 assert(i
== NumMemOps
-1 && i
!= 0);
6825 DstOff
-= VTSize
- Size
;
6828 // If this store is smaller than the largest store see whether we can get
6829 // the smaller value for free with a truncate.
6830 SDValue Value
= MemSetValue
;
6831 if (VT
.bitsLT(LargestVT
)) {
6832 if (!LargestVT
.isVector() && !VT
.isVector() &&
6833 TLI
.isTruncateFree(LargestVT
, VT
))
6834 Value
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, MemSetValue
);
6836 Value
= getMemsetValue(Src
, VT
, DAG
, dl
);
6838 assert(Value
.getValueType() == VT
&& "Value with wrong type.");
6839 SDValue Store
= DAG
.getStore(
6841 DAG
.getMemBasePlusOffset(Dst
, TypeSize::Fixed(DstOff
), dl
),
6842 DstPtrInfo
.getWithOffset(DstOff
), Alignment
,
6843 isVol
? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone
,
6845 OutChains
.push_back(Store
);
6846 DstOff
+= VT
.getSizeInBits() / 8;
6850 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
);
6853 static void checkAddrSpaceIsValidForLibcall(const TargetLowering
*TLI
,
6855 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6856 // pointer operands can be losslessly bitcasted to pointers of address space 0
6857 if (AS
!= 0 && !TLI
->getTargetMachine().isNoopAddrSpaceCast(AS
, 0)) {
6858 report_fatal_error("cannot lower memory intrinsic in address space " +
6863 SDValue
SelectionDAG::getMemcpy(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
6864 SDValue Src
, SDValue Size
, Align Alignment
,
6865 bool isVol
, bool AlwaysInline
, bool isTailCall
,
6866 MachinePointerInfo DstPtrInfo
,
6867 MachinePointerInfo SrcPtrInfo
,
6868 const AAMDNodes
&AAInfo
) {
6869 // Check to see if we should lower the memcpy to loads and stores first.
6870 // For cases within the target-specified limits, this is the best choice.
6871 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
6873 // Memcpy with size zero? Just return the original chain.
6874 if (ConstantSize
->isZero())
6877 SDValue Result
= getMemcpyLoadsAndStores(
6878 *this, dl
, Chain
, Dst
, Src
, ConstantSize
->getZExtValue(), Alignment
,
6879 isVol
, false, DstPtrInfo
, SrcPtrInfo
, AAInfo
);
6880 if (Result
.getNode())
6884 // Then check to see if we should lower the memcpy with target-specific
6885 // code. If the target chooses to do this, this is the next best.
6887 SDValue Result
= TSI
->EmitTargetCodeForMemcpy(
6888 *this, dl
, Chain
, Dst
, Src
, Size
, Alignment
, isVol
, AlwaysInline
,
6889 DstPtrInfo
, SrcPtrInfo
);
6890 if (Result
.getNode())
6894 // If we really need inline code and the target declined to provide it,
6895 // use a (potentially long) sequence of loads and stores.
6897 assert(ConstantSize
&& "AlwaysInline requires a constant size!");
6898 return getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
6899 ConstantSize
->getZExtValue(), Alignment
,
6900 isVol
, true, DstPtrInfo
, SrcPtrInfo
, AAInfo
);
6903 checkAddrSpaceIsValidForLibcall(TLI
, DstPtrInfo
.getAddrSpace());
6904 checkAddrSpaceIsValidForLibcall(TLI
, SrcPtrInfo
.getAddrSpace());
6906 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6907 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6908 // respect volatile, so they may do things like read or write memory
6909 // beyond the given memory regions. But fixing this isn't easy, and most
6910 // people don't care.
6912 // Emit a library call.
6913 TargetLowering::ArgListTy Args
;
6914 TargetLowering::ArgListEntry Entry
;
6915 Entry
.Ty
= Type::getInt8PtrTy(*getContext());
6916 Entry
.Node
= Dst
; Args
.push_back(Entry
);
6917 Entry
.Node
= Src
; Args
.push_back(Entry
);
6919 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
6920 Entry
.Node
= Size
; Args
.push_back(Entry
);
6921 // FIXME: pass in SDLoc
6922 TargetLowering::CallLoweringInfo
CLI(*this);
6925 .setLibCallee(TLI
->getLibcallCallingConv(RTLIB::MEMCPY
),
6926 Dst
.getValueType().getTypeForEVT(*getContext()),
6927 getExternalSymbol(TLI
->getLibcallName(RTLIB::MEMCPY
),
6928 TLI
->getPointerTy(getDataLayout())),
6931 .setTailCall(isTailCall
);
6933 std::pair
<SDValue
,SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6934 return CallResult
.second
;
6937 SDValue
SelectionDAG::getAtomicMemcpy(SDValue Chain
, const SDLoc
&dl
,
6938 SDValue Dst
, unsigned DstAlign
,
6939 SDValue Src
, unsigned SrcAlign
,
6940 SDValue Size
, Type
*SizeTy
,
6941 unsigned ElemSz
, bool isTailCall
,
6942 MachinePointerInfo DstPtrInfo
,
6943 MachinePointerInfo SrcPtrInfo
) {
6944 // Emit a library call.
6945 TargetLowering::ArgListTy Args
;
6946 TargetLowering::ArgListEntry Entry
;
6947 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
6949 Args
.push_back(Entry
);
6952 Args
.push_back(Entry
);
6956 Args
.push_back(Entry
);
6958 RTLIB::Libcall LibraryCall
=
6959 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz
);
6960 if (LibraryCall
== RTLIB::UNKNOWN_LIBCALL
)
6961 report_fatal_error("Unsupported element size");
6963 TargetLowering::CallLoweringInfo
CLI(*this);
6966 .setLibCallee(TLI
->getLibcallCallingConv(LibraryCall
),
6967 Type::getVoidTy(*getContext()),
6968 getExternalSymbol(TLI
->getLibcallName(LibraryCall
),
6969 TLI
->getPointerTy(getDataLayout())),
6972 .setTailCall(isTailCall
);
6974 std::pair
<SDValue
, SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6975 return CallResult
.second
;
6978 SDValue
SelectionDAG::getMemmove(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
6979 SDValue Src
, SDValue Size
, Align Alignment
,
6980 bool isVol
, bool isTailCall
,
6981 MachinePointerInfo DstPtrInfo
,
6982 MachinePointerInfo SrcPtrInfo
,
6983 const AAMDNodes
&AAInfo
) {
6984 // Check to see if we should lower the memmove to loads and stores first.
6985 // For cases within the target-specified limits, this is the best choice.
6986 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
6988 // Memmove with size zero? Just return the original chain.
6989 if (ConstantSize
->isZero())
6992 SDValue Result
= getMemmoveLoadsAndStores(
6993 *this, dl
, Chain
, Dst
, Src
, ConstantSize
->getZExtValue(), Alignment
,
6994 isVol
, false, DstPtrInfo
, SrcPtrInfo
, AAInfo
);
6995 if (Result
.getNode())
6999 // Then check to see if we should lower the memmove with target-specific
7000 // code. If the target chooses to do this, this is the next best.
7003 TSI
->EmitTargetCodeForMemmove(*this, dl
, Chain
, Dst
, Src
, Size
,
7004 Alignment
, isVol
, DstPtrInfo
, SrcPtrInfo
);
7005 if (Result
.getNode())
7009 checkAddrSpaceIsValidForLibcall(TLI
, DstPtrInfo
.getAddrSpace());
7010 checkAddrSpaceIsValidForLibcall(TLI
, SrcPtrInfo
.getAddrSpace());
7012 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7013 // not be safe. See memcpy above for more details.
7015 // Emit a library call.
7016 TargetLowering::ArgListTy Args
;
7017 TargetLowering::ArgListEntry Entry
;
7018 Entry
.Ty
= Type::getInt8PtrTy(*getContext());
7019 Entry
.Node
= Dst
; Args
.push_back(Entry
);
7020 Entry
.Node
= Src
; Args
.push_back(Entry
);
7022 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
7023 Entry
.Node
= Size
; Args
.push_back(Entry
);
7024 // FIXME: pass in SDLoc
7025 TargetLowering::CallLoweringInfo
CLI(*this);
7028 .setLibCallee(TLI
->getLibcallCallingConv(RTLIB::MEMMOVE
),
7029 Dst
.getValueType().getTypeForEVT(*getContext()),
7030 getExternalSymbol(TLI
->getLibcallName(RTLIB::MEMMOVE
),
7031 TLI
->getPointerTy(getDataLayout())),
7034 .setTailCall(isTailCall
);
7036 std::pair
<SDValue
,SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
7037 return CallResult
.second
;
7040 SDValue
SelectionDAG::getAtomicMemmove(SDValue Chain
, const SDLoc
&dl
,
7041 SDValue Dst
, unsigned DstAlign
,
7042 SDValue Src
, unsigned SrcAlign
,
7043 SDValue Size
, Type
*SizeTy
,
7044 unsigned ElemSz
, bool isTailCall
,
7045 MachinePointerInfo DstPtrInfo
,
7046 MachinePointerInfo SrcPtrInfo
) {
7047 // Emit a library call.
7048 TargetLowering::ArgListTy Args
;
7049 TargetLowering::ArgListEntry Entry
;
7050 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
7052 Args
.push_back(Entry
);
7055 Args
.push_back(Entry
);
7059 Args
.push_back(Entry
);
7061 RTLIB::Libcall LibraryCall
=
7062 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz
);
7063 if (LibraryCall
== RTLIB::UNKNOWN_LIBCALL
)
7064 report_fatal_error("Unsupported element size");
7066 TargetLowering::CallLoweringInfo
CLI(*this);
7069 .setLibCallee(TLI
->getLibcallCallingConv(LibraryCall
),
7070 Type::getVoidTy(*getContext()),
7071 getExternalSymbol(TLI
->getLibcallName(LibraryCall
),
7072 TLI
->getPointerTy(getDataLayout())),
7075 .setTailCall(isTailCall
);
7077 std::pair
<SDValue
, SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
7078 return CallResult
.second
;
7081 SDValue
SelectionDAG::getMemset(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
7082 SDValue Src
, SDValue Size
, Align Alignment
,
7083 bool isVol
, bool isTailCall
,
7084 MachinePointerInfo DstPtrInfo
,
7085 const AAMDNodes
&AAInfo
) {
7086 // Check to see if we should lower the memset to stores first.
7087 // For cases within the target-specified limits, this is the best choice.
7088 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
7090 // Memset with size zero? Just return the original chain.
7091 if (ConstantSize
->isZero())
7094 SDValue Result
= getMemsetStores(*this, dl
, Chain
, Dst
, Src
,
7095 ConstantSize
->getZExtValue(), Alignment
,
7096 isVol
, DstPtrInfo
, AAInfo
);
7098 if (Result
.getNode())
7102 // Then check to see if we should lower the memset with target-specific
7103 // code. If the target chooses to do this, this is the next best.
7105 SDValue Result
= TSI
->EmitTargetCodeForMemset(
7106 *this, dl
, Chain
, Dst
, Src
, Size
, Alignment
, isVol
, DstPtrInfo
);
7107 if (Result
.getNode())
7111 checkAddrSpaceIsValidForLibcall(TLI
, DstPtrInfo
.getAddrSpace());
7113 // Emit a library call.
7114 TargetLowering::ArgListTy Args
;
7115 TargetLowering::ArgListEntry Entry
;
7116 Entry
.Node
= Dst
; Entry
.Ty
= Type::getInt8PtrTy(*getContext());
7117 Args
.push_back(Entry
);
7119 Entry
.Ty
= Src
.getValueType().getTypeForEVT(*getContext());
7120 Args
.push_back(Entry
);
7122 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
7123 Args
.push_back(Entry
);
7125 // FIXME: pass in SDLoc
7126 TargetLowering::CallLoweringInfo
CLI(*this);
7129 .setLibCallee(TLI
->getLibcallCallingConv(RTLIB::MEMSET
),
7130 Dst
.getValueType().getTypeForEVT(*getContext()),
7131 getExternalSymbol(TLI
->getLibcallName(RTLIB::MEMSET
),
7132 TLI
->getPointerTy(getDataLayout())),
7135 .setTailCall(isTailCall
);
7137 std::pair
<SDValue
,SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
7138 return CallResult
.second
;
7141 SDValue
SelectionDAG::getAtomicMemset(SDValue Chain
, const SDLoc
&dl
,
7142 SDValue Dst
, unsigned DstAlign
,
7143 SDValue Value
, SDValue Size
, Type
*SizeTy
,
7144 unsigned ElemSz
, bool isTailCall
,
7145 MachinePointerInfo DstPtrInfo
) {
7146 // Emit a library call.
7147 TargetLowering::ArgListTy Args
;
7148 TargetLowering::ArgListEntry Entry
;
7149 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
7151 Args
.push_back(Entry
);
7153 Entry
.Ty
= Type::getInt8Ty(*getContext());
7155 Args
.push_back(Entry
);
7159 Args
.push_back(Entry
);
7161 RTLIB::Libcall LibraryCall
=
7162 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz
);
7163 if (LibraryCall
== RTLIB::UNKNOWN_LIBCALL
)
7164 report_fatal_error("Unsupported element size");
7166 TargetLowering::CallLoweringInfo
CLI(*this);
7169 .setLibCallee(TLI
->getLibcallCallingConv(LibraryCall
),
7170 Type::getVoidTy(*getContext()),
7171 getExternalSymbol(TLI
->getLibcallName(LibraryCall
),
7172 TLI
->getPointerTy(getDataLayout())),
7175 .setTailCall(isTailCall
);
7177 std::pair
<SDValue
, SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
7178 return CallResult
.second
;
7181 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
7182 SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
7183 MachineMemOperand
*MMO
) {
7184 FoldingSetNodeID ID
;
7185 ID
.AddInteger(MemVT
.getRawBits());
7186 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
);
7187 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
7189 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
7190 cast
<AtomicSDNode
>(E
)->refineAlignment(MMO
);
7191 return SDValue(E
, 0);
7194 auto *N
= newSDNode
<AtomicSDNode
>(Opcode
, dl
.getIROrder(), dl
.getDebugLoc(),
7195 VTList
, MemVT
, MMO
);
7196 createOperands(N
, Ops
);
7198 CSEMap
.InsertNode(N
, IP
);
7200 return SDValue(N
, 0);
7203 SDValue
SelectionDAG::getAtomicCmpSwap(unsigned Opcode
, const SDLoc
&dl
,
7204 EVT MemVT
, SDVTList VTs
, SDValue Chain
,
7205 SDValue Ptr
, SDValue Cmp
, SDValue Swp
,
7206 MachineMemOperand
*MMO
) {
7207 assert(Opcode
== ISD::ATOMIC_CMP_SWAP
||
7208 Opcode
== ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
);
7209 assert(Cmp
.getValueType() == Swp
.getValueType() && "Invalid Atomic Op Types");
7211 SDValue Ops
[] = {Chain
, Ptr
, Cmp
, Swp
};
7212 return getAtomic(Opcode
, dl
, MemVT
, VTs
, Ops
, MMO
);
7215 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
7216 SDValue Chain
, SDValue Ptr
, SDValue Val
,
7217 MachineMemOperand
*MMO
) {
7218 assert((Opcode
== ISD::ATOMIC_LOAD_ADD
||
7219 Opcode
== ISD::ATOMIC_LOAD_SUB
||
7220 Opcode
== ISD::ATOMIC_LOAD_AND
||
7221 Opcode
== ISD::ATOMIC_LOAD_CLR
||
7222 Opcode
== ISD::ATOMIC_LOAD_OR
||
7223 Opcode
== ISD::ATOMIC_LOAD_XOR
||
7224 Opcode
== ISD::ATOMIC_LOAD_NAND
||
7225 Opcode
== ISD::ATOMIC_LOAD_MIN
||
7226 Opcode
== ISD::ATOMIC_LOAD_MAX
||
7227 Opcode
== ISD::ATOMIC_LOAD_UMIN
||
7228 Opcode
== ISD::ATOMIC_LOAD_UMAX
||
7229 Opcode
== ISD::ATOMIC_LOAD_FADD
||
7230 Opcode
== ISD::ATOMIC_LOAD_FSUB
||
7231 Opcode
== ISD::ATOMIC_SWAP
||
7232 Opcode
== ISD::ATOMIC_STORE
) &&
7233 "Invalid Atomic Op");
7235 EVT VT
= Val
.getValueType();
7237 SDVTList VTs
= Opcode
== ISD::ATOMIC_STORE
? getVTList(MVT::Other
) :
7238 getVTList(VT
, MVT::Other
);
7239 SDValue Ops
[] = {Chain
, Ptr
, Val
};
7240 return getAtomic(Opcode
, dl
, MemVT
, VTs
, Ops
, MMO
);
7243 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
7244 EVT VT
, SDValue Chain
, SDValue Ptr
,
7245 MachineMemOperand
*MMO
) {
7246 assert(Opcode
== ISD::ATOMIC_LOAD
&& "Invalid Atomic Op");
7248 SDVTList VTs
= getVTList(VT
, MVT::Other
);
7249 SDValue Ops
[] = {Chain
, Ptr
};
7250 return getAtomic(Opcode
, dl
, MemVT
, VTs
, Ops
, MMO
);
7253 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7254 SDValue
SelectionDAG::getMergeValues(ArrayRef
<SDValue
> Ops
, const SDLoc
&dl
) {
7255 if (Ops
.size() == 1)
7258 SmallVector
<EVT
, 4> VTs
;
7259 VTs
.reserve(Ops
.size());
7260 for (const SDValue
&Op
: Ops
)
7261 VTs
.push_back(Op
.getValueType());
7262 return getNode(ISD::MERGE_VALUES
, dl
, getVTList(VTs
), Ops
);
7265 SDValue
SelectionDAG::getMemIntrinsicNode(
7266 unsigned Opcode
, const SDLoc
&dl
, SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
7267 EVT MemVT
, MachinePointerInfo PtrInfo
, Align Alignment
,
7268 MachineMemOperand::Flags Flags
, uint64_t Size
, const AAMDNodes
&AAInfo
) {
7269 if (!Size
&& MemVT
.isScalableVector())
7270 Size
= MemoryLocation::UnknownSize
;
7272 Size
= MemVT
.getStoreSize();
7274 MachineFunction
&MF
= getMachineFunction();
7275 MachineMemOperand
*MMO
=
7276 MF
.getMachineMemOperand(PtrInfo
, Flags
, Size
, Alignment
, AAInfo
);
7278 return getMemIntrinsicNode(Opcode
, dl
, VTList
, Ops
, MemVT
, MMO
);
7281 SDValue
SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, const SDLoc
&dl
,
7283 ArrayRef
<SDValue
> Ops
, EVT MemVT
,
7284 MachineMemOperand
*MMO
) {
7285 assert((Opcode
== ISD::INTRINSIC_VOID
||
7286 Opcode
== ISD::INTRINSIC_W_CHAIN
||
7287 Opcode
== ISD::PREFETCH
||
7288 ((int)Opcode
<= std::numeric_limits
<int>::max() &&
7289 (int)Opcode
>= ISD::FIRST_TARGET_MEMORY_OPCODE
)) &&
7290 "Opcode is not a memory-accessing opcode!");
7292 // Memoize the node unless it returns a flag.
7293 MemIntrinsicSDNode
*N
;
7294 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Glue
) {
7295 FoldingSetNodeID ID
;
7296 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
);
7297 ID
.AddInteger(getSyntheticNodeSubclassData
<MemIntrinsicSDNode
>(
7298 Opcode
, dl
.getIROrder(), VTList
, MemVT
, MMO
));
7299 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
7301 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
7302 cast
<MemIntrinsicSDNode
>(E
)->refineAlignment(MMO
);
7303 return SDValue(E
, 0);
7306 N
= newSDNode
<MemIntrinsicSDNode
>(Opcode
, dl
.getIROrder(), dl
.getDebugLoc(),
7307 VTList
, MemVT
, MMO
);
7308 createOperands(N
, Ops
);
7310 CSEMap
.InsertNode(N
, IP
);
7312 N
= newSDNode
<MemIntrinsicSDNode
>(Opcode
, dl
.getIROrder(), dl
.getDebugLoc(),
7313 VTList
, MemVT
, MMO
);
7314 createOperands(N
, Ops
);
7318 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7322 SDValue
SelectionDAG::getLifetimeNode(bool IsStart
, const SDLoc
&dl
,
7323 SDValue Chain
, int FrameIndex
,
7324 int64_t Size
, int64_t Offset
) {
7325 const unsigned Opcode
= IsStart
? ISD::LIFETIME_START
: ISD::LIFETIME_END
;
7326 const auto VTs
= getVTList(MVT::Other
);
7329 getFrameIndex(FrameIndex
,
7330 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7333 FoldingSetNodeID ID
;
7334 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
7335 ID
.AddInteger(FrameIndex
);
7336 ID
.AddInteger(Size
);
7337 ID
.AddInteger(Offset
);
7339 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
))
7340 return SDValue(E
, 0);
7342 LifetimeSDNode
*N
= newSDNode
<LifetimeSDNode
>(
7343 Opcode
, dl
.getIROrder(), dl
.getDebugLoc(), VTs
, Size
, Offset
);
7344 createOperands(N
, Ops
);
7345 CSEMap
.InsertNode(N
, IP
);
7348 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7352 SDValue
SelectionDAG::getPseudoProbeNode(const SDLoc
&Dl
, SDValue Chain
,
7353 uint64_t Guid
, uint64_t Index
,
7355 const unsigned Opcode
= ISD::PSEUDO_PROBE
;
7356 const auto VTs
= getVTList(MVT::Other
);
7357 SDValue Ops
[] = {Chain
};
7358 FoldingSetNodeID ID
;
7359 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
7360 ID
.AddInteger(Guid
);
7361 ID
.AddInteger(Index
);
7363 if (SDNode
*E
= FindNodeOrInsertPos(ID
, Dl
, IP
))
7364 return SDValue(E
, 0);
7366 auto *N
= newSDNode
<PseudoProbeSDNode
>(
7367 Opcode
, Dl
.getIROrder(), Dl
.getDebugLoc(), VTs
, Guid
, Index
, Attr
);
7368 createOperands(N
, Ops
);
7369 CSEMap
.InsertNode(N
, IP
);
7372 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7376 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7377 /// MachinePointerInfo record from it. This is particularly useful because the
7378 /// code generator has many cases where it doesn't bother passing in a
7379 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7380 static MachinePointerInfo
InferPointerInfo(const MachinePointerInfo
&Info
,
7381 SelectionDAG
&DAG
, SDValue Ptr
,
7382 int64_t Offset
= 0) {
7383 // If this is FI+Offset, we can model it.
7384 if (const FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
))
7385 return MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(),
7386 FI
->getIndex(), Offset
);
7388 // If this is (FI+Offset1)+Offset2, we can model it.
7389 if (Ptr
.getOpcode() != ISD::ADD
||
7390 !isa
<ConstantSDNode
>(Ptr
.getOperand(1)) ||
7391 !isa
<FrameIndexSDNode
>(Ptr
.getOperand(0)))
7394 int FI
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
7395 return MachinePointerInfo::getFixedStack(
7396 DAG
.getMachineFunction(), FI
,
7397 Offset
+ cast
<ConstantSDNode
>(Ptr
.getOperand(1))->getSExtValue());
7400 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7401 /// MachinePointerInfo record from it. This is particularly useful because the
7402 /// code generator has many cases where it doesn't bother passing in a
7403 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7404 static MachinePointerInfo
InferPointerInfo(const MachinePointerInfo
&Info
,
7405 SelectionDAG
&DAG
, SDValue Ptr
,
7407 // If the 'Offset' value isn't a constant, we can't handle this.
7408 if (ConstantSDNode
*OffsetNode
= dyn_cast
<ConstantSDNode
>(OffsetOp
))
7409 return InferPointerInfo(Info
, DAG
, Ptr
, OffsetNode
->getSExtValue());
7410 if (OffsetOp
.isUndef())
7411 return InferPointerInfo(Info
, DAG
, Ptr
);
7415 SDValue
SelectionDAG::getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
,
7416 EVT VT
, const SDLoc
&dl
, SDValue Chain
,
7417 SDValue Ptr
, SDValue Offset
,
7418 MachinePointerInfo PtrInfo
, EVT MemVT
,
7420 MachineMemOperand::Flags MMOFlags
,
7421 const AAMDNodes
&AAInfo
, const MDNode
*Ranges
) {
7422 assert(Chain
.getValueType() == MVT::Other
&&
7423 "Invalid chain type");
7425 MMOFlags
|= MachineMemOperand::MOLoad
;
7426 assert((MMOFlags
& MachineMemOperand::MOStore
) == 0);
7427 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7429 if (PtrInfo
.V
.isNull())
7430 PtrInfo
= InferPointerInfo(PtrInfo
, *this, Ptr
, Offset
);
7432 uint64_t Size
= MemoryLocation::getSizeOrUnknown(MemVT
.getStoreSize());
7433 MachineFunction
&MF
= getMachineFunction();
7434 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(PtrInfo
, MMOFlags
, Size
,
7435 Alignment
, AAInfo
, Ranges
);
7436 return getLoad(AM
, ExtType
, VT
, dl
, Chain
, Ptr
, Offset
, MemVT
, MMO
);
7439 SDValue
SelectionDAG::getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
,
7440 EVT VT
, const SDLoc
&dl
, SDValue Chain
,
7441 SDValue Ptr
, SDValue Offset
, EVT MemVT
,
7442 MachineMemOperand
*MMO
) {
7444 ExtType
= ISD::NON_EXTLOAD
;
7445 } else if (ExtType
== ISD::NON_EXTLOAD
) {
7446 assert(VT
== MemVT
&& "Non-extending load from different memory type!");
7449 assert(MemVT
.getScalarType().bitsLT(VT
.getScalarType()) &&
7450 "Should only be an extending load, not truncating!");
7451 assert(VT
.isInteger() == MemVT
.isInteger() &&
7452 "Cannot convert from FP to Int or Int -> FP!");
7453 assert(VT
.isVector() == MemVT
.isVector() &&
7454 "Cannot use an ext load to convert to or from a vector!");
7455 assert((!VT
.isVector() ||
7456 VT
.getVectorElementCount() == MemVT
.getVectorElementCount()) &&
7457 "Cannot use an ext load to change the number of vector elements!");
7460 bool Indexed
= AM
!= ISD::UNINDEXED
;
7461 assert((Indexed
|| Offset
.isUndef()) && "Unindexed load with an offset!");
7463 SDVTList VTs
= Indexed
?
7464 getVTList(VT
, Ptr
.getValueType(), MVT::Other
) : getVTList(VT
, MVT::Other
);
7465 SDValue Ops
[] = { Chain
, Ptr
, Offset
};
7466 FoldingSetNodeID ID
;
7467 AddNodeIDNode(ID
, ISD::LOAD
, VTs
, Ops
);
7468 ID
.AddInteger(MemVT
.getRawBits());
7469 ID
.AddInteger(getSyntheticNodeSubclassData
<LoadSDNode
>(
7470 dl
.getIROrder(), VTs
, AM
, ExtType
, MemVT
, MMO
));
7471 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
7473 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
7474 cast
<LoadSDNode
>(E
)->refineAlignment(MMO
);
7475 return SDValue(E
, 0);
7477 auto *N
= newSDNode
<LoadSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
, AM
,
7478 ExtType
, MemVT
, MMO
);
7479 createOperands(N
, Ops
);
7481 CSEMap
.InsertNode(N
, IP
);
7484 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7488 SDValue
SelectionDAG::getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
7489 SDValue Ptr
, MachinePointerInfo PtrInfo
,
7490 MaybeAlign Alignment
,
7491 MachineMemOperand::Flags MMOFlags
,
7492 const AAMDNodes
&AAInfo
, const MDNode
*Ranges
) {
7493 SDValue Undef
= getUNDEF(Ptr
.getValueType());
7494 return getLoad(ISD::UNINDEXED
, ISD::NON_EXTLOAD
, VT
, dl
, Chain
, Ptr
, Undef
,
7495 PtrInfo
, VT
, Alignment
, MMOFlags
, AAInfo
, Ranges
);
7498 SDValue
SelectionDAG::getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
7499 SDValue Ptr
, MachineMemOperand
*MMO
) {
7500 SDValue Undef
= getUNDEF(Ptr
.getValueType());
7501 return getLoad(ISD::UNINDEXED
, ISD::NON_EXTLOAD
, VT
, dl
, Chain
, Ptr
, Undef
,
7505 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
,
7506 EVT VT
, SDValue Chain
, SDValue Ptr
,
7507 MachinePointerInfo PtrInfo
, EVT MemVT
,
7508 MaybeAlign Alignment
,
7509 MachineMemOperand::Flags MMOFlags
,
7510 const AAMDNodes
&AAInfo
) {
7511 SDValue Undef
= getUNDEF(Ptr
.getValueType());
7512 return getLoad(ISD::UNINDEXED
, ExtType
, VT
, dl
, Chain
, Ptr
, Undef
, PtrInfo
,
7513 MemVT
, Alignment
, MMOFlags
, AAInfo
);
7516 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
,
7517 EVT VT
, SDValue Chain
, SDValue Ptr
, EVT MemVT
,
7518 MachineMemOperand
*MMO
) {
7519 SDValue Undef
= getUNDEF(Ptr
.getValueType());
7520 return getLoad(ISD::UNINDEXED
, ExtType
, VT
, dl
, Chain
, Ptr
, Undef
,
7524 SDValue
SelectionDAG::getIndexedLoad(SDValue OrigLoad
, const SDLoc
&dl
,
7525 SDValue Base
, SDValue Offset
,
7526 ISD::MemIndexedMode AM
) {
7527 LoadSDNode
*LD
= cast
<LoadSDNode
>(OrigLoad
);
7528 assert(LD
->getOffset().isUndef() && "Load is already a indexed load!");
7529 // Don't propagate the invariant or dereferenceable flags.
7531 LD
->getMemOperand()->getFlags() &
7532 ~(MachineMemOperand::MOInvariant
| MachineMemOperand::MODereferenceable
);
7533 return getLoad(AM
, LD
->getExtensionType(), OrigLoad
.getValueType(), dl
,
7534 LD
->getChain(), Base
, Offset
, LD
->getPointerInfo(),
7535 LD
->getMemoryVT(), LD
->getAlign(), MMOFlags
, LD
->getAAInfo());
7538 SDValue
SelectionDAG::getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
7539 SDValue Ptr
, MachinePointerInfo PtrInfo
,
7541 MachineMemOperand::Flags MMOFlags
,
7542 const AAMDNodes
&AAInfo
) {
7543 assert(Chain
.getValueType() == MVT::Other
&& "Invalid chain type");
7545 MMOFlags
|= MachineMemOperand::MOStore
;
7546 assert((MMOFlags
& MachineMemOperand::MOLoad
) == 0);
7548 if (PtrInfo
.V
.isNull())
7549 PtrInfo
= InferPointerInfo(PtrInfo
, *this, Ptr
);
7551 MachineFunction
&MF
= getMachineFunction();
7553 MemoryLocation::getSizeOrUnknown(Val
.getValueType().getStoreSize());
7554 MachineMemOperand
*MMO
=
7555 MF
.getMachineMemOperand(PtrInfo
, MMOFlags
, Size
, Alignment
, AAInfo
);
7556 return getStore(Chain
, dl
, Val
, Ptr
, MMO
);
7559 SDValue
SelectionDAG::getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
7560 SDValue Ptr
, MachineMemOperand
*MMO
) {
7561 assert(Chain
.getValueType() == MVT::Other
&&
7562 "Invalid chain type");
7563 EVT VT
= Val
.getValueType();
7564 SDVTList VTs
= getVTList(MVT::Other
);
7565 SDValue Undef
= getUNDEF(Ptr
.getValueType());
7566 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
7567 FoldingSetNodeID ID
;
7568 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
);
7569 ID
.AddInteger(VT
.getRawBits());
7570 ID
.AddInteger(getSyntheticNodeSubclassData
<StoreSDNode
>(
7571 dl
.getIROrder(), VTs
, ISD::UNINDEXED
, false, VT
, MMO
));
7572 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
7574 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
7575 cast
<StoreSDNode
>(E
)->refineAlignment(MMO
);
7576 return SDValue(E
, 0);
7578 auto *N
= newSDNode
<StoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
7579 ISD::UNINDEXED
, false, VT
, MMO
);
7580 createOperands(N
, Ops
);
7582 CSEMap
.InsertNode(N
, IP
);
7585 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7589 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
7590 SDValue Ptr
, MachinePointerInfo PtrInfo
,
7591 EVT SVT
, Align Alignment
,
7592 MachineMemOperand::Flags MMOFlags
,
7593 const AAMDNodes
&AAInfo
) {
7594 assert(Chain
.getValueType() == MVT::Other
&&
7595 "Invalid chain type");
7597 MMOFlags
|= MachineMemOperand::MOStore
;
7598 assert((MMOFlags
& MachineMemOperand::MOLoad
) == 0);
7600 if (PtrInfo
.V
.isNull())
7601 PtrInfo
= InferPointerInfo(PtrInfo
, *this, Ptr
);
7603 MachineFunction
&MF
= getMachineFunction();
7604 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
7605 PtrInfo
, MMOFlags
, MemoryLocation::getSizeOrUnknown(SVT
.getStoreSize()),
7607 return getTruncStore(Chain
, dl
, Val
, Ptr
, SVT
, MMO
);
7610 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
7611 SDValue Ptr
, EVT SVT
,
7612 MachineMemOperand
*MMO
) {
7613 EVT VT
= Val
.getValueType();
7615 assert(Chain
.getValueType() == MVT::Other
&&
7616 "Invalid chain type");
7618 return getStore(Chain
, dl
, Val
, Ptr
, MMO
);
7620 assert(SVT
.getScalarType().bitsLT(VT
.getScalarType()) &&
7621 "Should only be a truncating store, not extending!");
7622 assert(VT
.isInteger() == SVT
.isInteger() &&
7623 "Can't do FP-INT conversion!");
7624 assert(VT
.isVector() == SVT
.isVector() &&
7625 "Cannot use trunc store to convert to or from a vector!");
7626 assert((!VT
.isVector() ||
7627 VT
.getVectorElementCount() == SVT
.getVectorElementCount()) &&
7628 "Cannot use trunc store to change the number of vector elements!");
7630 SDVTList VTs
= getVTList(MVT::Other
);
7631 SDValue Undef
= getUNDEF(Ptr
.getValueType());
7632 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
7633 FoldingSetNodeID ID
;
7634 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
);
7635 ID
.AddInteger(SVT
.getRawBits());
7636 ID
.AddInteger(getSyntheticNodeSubclassData
<StoreSDNode
>(
7637 dl
.getIROrder(), VTs
, ISD::UNINDEXED
, true, SVT
, MMO
));
7638 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
7640 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
7641 cast
<StoreSDNode
>(E
)->refineAlignment(MMO
);
7642 return SDValue(E
, 0);
7644 auto *N
= newSDNode
<StoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
7645 ISD::UNINDEXED
, true, SVT
, MMO
);
7646 createOperands(N
, Ops
);
7648 CSEMap
.InsertNode(N
, IP
);
7651 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7655 SDValue
SelectionDAG::getIndexedStore(SDValue OrigStore
, const SDLoc
&dl
,
7656 SDValue Base
, SDValue Offset
,
7657 ISD::MemIndexedMode AM
) {
7658 StoreSDNode
*ST
= cast
<StoreSDNode
>(OrigStore
);
7659 assert(ST
->getOffset().isUndef() && "Store is already a indexed store!");
7660 SDVTList VTs
= getVTList(Base
.getValueType(), MVT::Other
);
7661 SDValue Ops
[] = { ST
->getChain(), ST
->getValue(), Base
, Offset
};
7662 FoldingSetNodeID ID
;
7663 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
);
7664 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
7665 ID
.AddInteger(ST
->getRawSubclassData());
7666 ID
.AddInteger(ST
->getPointerInfo().getAddrSpace());
7668 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
))
7669 return SDValue(E
, 0);
7671 auto *N
= newSDNode
<StoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
, AM
,
7672 ST
->isTruncatingStore(), ST
->getMemoryVT(),
7673 ST
->getMemOperand());
7674 createOperands(N
, Ops
);
7676 CSEMap
.InsertNode(N
, IP
);
7679 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7683 SDValue
SelectionDAG::getLoadVP(
7684 ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
, EVT VT
, const SDLoc
&dl
,
7685 SDValue Chain
, SDValue Ptr
, SDValue Offset
, SDValue Mask
, SDValue EVL
,
7686 MachinePointerInfo PtrInfo
, EVT MemVT
, Align Alignment
,
7687 MachineMemOperand::Flags MMOFlags
, const AAMDNodes
&AAInfo
,
7688 const MDNode
*Ranges
, bool IsExpanding
) {
7689 assert(Chain
.getValueType() == MVT::Other
&& "Invalid chain type");
7691 MMOFlags
|= MachineMemOperand::MOLoad
;
7692 assert((MMOFlags
& MachineMemOperand::MOStore
) == 0);
7693 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7695 if (PtrInfo
.V
.isNull())
7696 PtrInfo
= InferPointerInfo(PtrInfo
, *this, Ptr
, Offset
);
7698 uint64_t Size
= MemoryLocation::getSizeOrUnknown(MemVT
.getStoreSize());
7699 MachineFunction
&MF
= getMachineFunction();
7700 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(PtrInfo
, MMOFlags
, Size
,
7701 Alignment
, AAInfo
, Ranges
);
7702 return getLoadVP(AM
, ExtType
, VT
, dl
, Chain
, Ptr
, Offset
, Mask
, EVL
, MemVT
,
7706 SDValue
SelectionDAG::getLoadVP(ISD::MemIndexedMode AM
,
7707 ISD::LoadExtType ExtType
, EVT VT
,
7708 const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
7709 SDValue Offset
, SDValue Mask
, SDValue EVL
,
7710 EVT MemVT
, MachineMemOperand
*MMO
,
7712 bool Indexed
= AM
!= ISD::UNINDEXED
;
7713 assert((Indexed
|| Offset
.isUndef()) && "Unindexed load with an offset!");
7715 SDVTList VTs
= Indexed
? getVTList(VT
, Ptr
.getValueType(), MVT::Other
)
7716 : getVTList(VT
, MVT::Other
);
7717 SDValue Ops
[] = {Chain
, Ptr
, Offset
, Mask
, EVL
};
7718 FoldingSetNodeID ID
;
7719 AddNodeIDNode(ID
, ISD::VP_LOAD
, VTs
, Ops
);
7720 ID
.AddInteger(VT
.getRawBits());
7721 ID
.AddInteger(getSyntheticNodeSubclassData
<VPLoadSDNode
>(
7722 dl
.getIROrder(), VTs
, AM
, ExtType
, IsExpanding
, MemVT
, MMO
));
7723 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
7725 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
7726 cast
<VPLoadSDNode
>(E
)->refineAlignment(MMO
);
7727 return SDValue(E
, 0);
7729 auto *N
= newSDNode
<VPLoadSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
, AM
,
7730 ExtType
, IsExpanding
, MemVT
, MMO
);
7731 createOperands(N
, Ops
);
7733 CSEMap
.InsertNode(N
, IP
);
7736 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7740 SDValue
SelectionDAG::getLoadVP(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
7741 SDValue Ptr
, SDValue Mask
, SDValue EVL
,
7742 MachinePointerInfo PtrInfo
,
7743 MaybeAlign Alignment
,
7744 MachineMemOperand::Flags MMOFlags
,
7745 const AAMDNodes
&AAInfo
, const MDNode
*Ranges
,
7747 SDValue Undef
= getUNDEF(Ptr
.getValueType());
7748 return getLoadVP(ISD::UNINDEXED
, ISD::NON_EXTLOAD
, VT
, dl
, Chain
, Ptr
, Undef
,
7749 Mask
, EVL
, PtrInfo
, VT
, Alignment
, MMOFlags
, AAInfo
, Ranges
,
7753 SDValue
SelectionDAG::getLoadVP(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
7754 SDValue Ptr
, SDValue Mask
, SDValue EVL
,
7755 MachineMemOperand
*MMO
, bool IsExpanding
) {
7756 SDValue Undef
= getUNDEF(Ptr
.getValueType());
7757 return getLoadVP(ISD::UNINDEXED
, ISD::NON_EXTLOAD
, VT
, dl
, Chain
, Ptr
, Undef
,
7758 Mask
, EVL
, VT
, MMO
, IsExpanding
);
7761 SDValue
SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType
, const SDLoc
&dl
,
7762 EVT VT
, SDValue Chain
, SDValue Ptr
,
7763 SDValue Mask
, SDValue EVL
,
7764 MachinePointerInfo PtrInfo
, EVT MemVT
,
7765 MaybeAlign Alignment
,
7766 MachineMemOperand::Flags MMOFlags
,
7767 const AAMDNodes
&AAInfo
, bool IsExpanding
) {
7768 SDValue Undef
= getUNDEF(Ptr
.getValueType());
7769 return getLoadVP(ISD::UNINDEXED
, ExtType
, VT
, dl
, Chain
, Ptr
, Undef
, Mask
,
7770 EVL
, PtrInfo
, MemVT
, Alignment
, MMOFlags
, AAInfo
, nullptr,
7774 SDValue
SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType
, const SDLoc
&dl
,
7775 EVT VT
, SDValue Chain
, SDValue Ptr
,
7776 SDValue Mask
, SDValue EVL
, EVT MemVT
,
7777 MachineMemOperand
*MMO
, bool IsExpanding
) {
7778 SDValue Undef
= getUNDEF(Ptr
.getValueType());
7779 return getLoadVP(ISD::UNINDEXED
, ExtType
, VT
, dl
, Chain
, Ptr
, Undef
, Mask
,
7780 EVL
, MemVT
, MMO
, IsExpanding
);
7783 SDValue
SelectionDAG::getIndexedLoadVP(SDValue OrigLoad
, const SDLoc
&dl
,
7784 SDValue Base
, SDValue Offset
,
7785 ISD::MemIndexedMode AM
) {
7786 auto *LD
= cast
<VPLoadSDNode
>(OrigLoad
);
7787 assert(LD
->getOffset().isUndef() && "Load is already a indexed load!");
7788 // Don't propagate the invariant or dereferenceable flags.
7790 LD
->getMemOperand()->getFlags() &
7791 ~(MachineMemOperand::MOInvariant
| MachineMemOperand::MODereferenceable
);
7792 return getLoadVP(AM
, LD
->getExtensionType(), OrigLoad
.getValueType(), dl
,
7793 LD
->getChain(), Base
, Offset
, LD
->getMask(),
7794 LD
->getVectorLength(), LD
->getPointerInfo(),
7795 LD
->getMemoryVT(), LD
->getAlign(), MMOFlags
, LD
->getAAInfo(),
7796 nullptr, LD
->isExpandingLoad());
7799 SDValue
SelectionDAG::getStoreVP(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
7800 SDValue Ptr
, SDValue Offset
, SDValue Mask
,
7801 SDValue EVL
, EVT MemVT
, MachineMemOperand
*MMO
,
7802 ISD::MemIndexedMode AM
, bool IsTruncating
,
7803 bool IsCompressing
) {
7804 assert(Chain
.getValueType() == MVT::Other
&& "Invalid chain type");
7805 bool Indexed
= AM
!= ISD::UNINDEXED
;
7806 assert((Indexed
|| Offset
.isUndef()) && "Unindexed vp_store with an offset!");
7807 SDVTList VTs
= Indexed
? getVTList(Ptr
.getValueType(), MVT::Other
)
7808 : getVTList(MVT::Other
);
7809 SDValue Ops
[] = {Chain
, Val
, Ptr
, Offset
, Mask
, EVL
};
7810 FoldingSetNodeID ID
;
7811 AddNodeIDNode(ID
, ISD::VP_STORE
, VTs
, Ops
);
7812 ID
.AddInteger(MemVT
.getRawBits());
7813 ID
.AddInteger(getSyntheticNodeSubclassData
<VPStoreSDNode
>(
7814 dl
.getIROrder(), VTs
, AM
, IsTruncating
, IsCompressing
, MemVT
, MMO
));
7815 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
7817 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
7818 cast
<VPStoreSDNode
>(E
)->refineAlignment(MMO
);
7819 return SDValue(E
, 0);
7821 auto *N
= newSDNode
<VPStoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
, AM
,
7822 IsTruncating
, IsCompressing
, MemVT
, MMO
);
7823 createOperands(N
, Ops
);
7825 CSEMap
.InsertNode(N
, IP
);
7828 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7832 SDValue
SelectionDAG::getTruncStoreVP(SDValue Chain
, const SDLoc
&dl
,
7833 SDValue Val
, SDValue Ptr
, SDValue Mask
,
7834 SDValue EVL
, MachinePointerInfo PtrInfo
,
7835 EVT SVT
, Align Alignment
,
7836 MachineMemOperand::Flags MMOFlags
,
7837 const AAMDNodes
&AAInfo
,
7838 bool IsCompressing
) {
7839 assert(Chain
.getValueType() == MVT::Other
&& "Invalid chain type");
7841 MMOFlags
|= MachineMemOperand::MOStore
;
7842 assert((MMOFlags
& MachineMemOperand::MOLoad
) == 0);
7844 if (PtrInfo
.V
.isNull())
7845 PtrInfo
= InferPointerInfo(PtrInfo
, *this, Ptr
);
7847 MachineFunction
&MF
= getMachineFunction();
7848 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
7849 PtrInfo
, MMOFlags
, MemoryLocation::getSizeOrUnknown(SVT
.getStoreSize()),
7851 return getTruncStoreVP(Chain
, dl
, Val
, Ptr
, Mask
, EVL
, SVT
, MMO
,
7855 SDValue
SelectionDAG::getTruncStoreVP(SDValue Chain
, const SDLoc
&dl
,
7856 SDValue Val
, SDValue Ptr
, SDValue Mask
,
7857 SDValue EVL
, EVT SVT
,
7858 MachineMemOperand
*MMO
,
7859 bool IsCompressing
) {
7860 EVT VT
= Val
.getValueType();
7862 assert(Chain
.getValueType() == MVT::Other
&& "Invalid chain type");
7864 return getStoreVP(Chain
, dl
, Val
, Ptr
, getUNDEF(Ptr
.getValueType()), Mask
,
7865 EVL
, VT
, MMO
, ISD::UNINDEXED
,
7866 /*IsTruncating*/ false, IsCompressing
);
7868 assert(SVT
.getScalarType().bitsLT(VT
.getScalarType()) &&
7869 "Should only be a truncating store, not extending!");
7870 assert(VT
.isInteger() == SVT
.isInteger() && "Can't do FP-INT conversion!");
7871 assert(VT
.isVector() == SVT
.isVector() &&
7872 "Cannot use trunc store to convert to or from a vector!");
7873 assert((!VT
.isVector() ||
7874 VT
.getVectorElementCount() == SVT
.getVectorElementCount()) &&
7875 "Cannot use trunc store to change the number of vector elements!");
7877 SDVTList VTs
= getVTList(MVT::Other
);
7878 SDValue Undef
= getUNDEF(Ptr
.getValueType());
7879 SDValue Ops
[] = {Chain
, Val
, Ptr
, Undef
, Mask
, EVL
};
7880 FoldingSetNodeID ID
;
7881 AddNodeIDNode(ID
, ISD::VP_STORE
, VTs
, Ops
);
7882 ID
.AddInteger(SVT
.getRawBits());
7883 ID
.AddInteger(getSyntheticNodeSubclassData
<VPStoreSDNode
>(
7884 dl
.getIROrder(), VTs
, ISD::UNINDEXED
, true, IsCompressing
, SVT
, MMO
));
7885 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
7887 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
7888 cast
<VPStoreSDNode
>(E
)->refineAlignment(MMO
);
7889 return SDValue(E
, 0);
7892 newSDNode
<VPStoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
7893 ISD::UNINDEXED
, true, IsCompressing
, SVT
, MMO
);
7894 createOperands(N
, Ops
);
7896 CSEMap
.InsertNode(N
, IP
);
7899 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7903 SDValue
SelectionDAG::getIndexedStoreVP(SDValue OrigStore
, const SDLoc
&dl
,
7904 SDValue Base
, SDValue Offset
,
7905 ISD::MemIndexedMode AM
) {
7906 auto *ST
= cast
<VPStoreSDNode
>(OrigStore
);
7907 assert(ST
->getOffset().isUndef() && "Store is already an indexed store!");
7908 SDVTList VTs
= getVTList(Base
.getValueType(), MVT::Other
);
7909 SDValue Ops
[] = {ST
->getChain(), ST
->getValue(), Base
,
7910 Offset
, ST
->getMask(), ST
->getVectorLength()};
7911 FoldingSetNodeID ID
;
7912 AddNodeIDNode(ID
, ISD::VP_STORE
, VTs
, Ops
);
7913 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
7914 ID
.AddInteger(ST
->getRawSubclassData());
7915 ID
.AddInteger(ST
->getPointerInfo().getAddrSpace());
7917 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
))
7918 return SDValue(E
, 0);
7920 auto *N
= newSDNode
<VPStoreSDNode
>(
7921 dl
.getIROrder(), dl
.getDebugLoc(), VTs
, AM
, ST
->isTruncatingStore(),
7922 ST
->isCompressingStore(), ST
->getMemoryVT(), ST
->getMemOperand());
7923 createOperands(N
, Ops
);
7925 CSEMap
.InsertNode(N
, IP
);
7928 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7932 SDValue
SelectionDAG::getGatherVP(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
7933 ArrayRef
<SDValue
> Ops
, MachineMemOperand
*MMO
,
7934 ISD::MemIndexType IndexType
) {
7935 assert(Ops
.size() == 6 && "Incompatible number of operands");
7937 FoldingSetNodeID ID
;
7938 AddNodeIDNode(ID
, ISD::VP_GATHER
, VTs
, Ops
);
7939 ID
.AddInteger(VT
.getRawBits());
7940 ID
.AddInteger(getSyntheticNodeSubclassData
<VPGatherSDNode
>(
7941 dl
.getIROrder(), VTs
, VT
, MMO
, IndexType
));
7942 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
7944 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
7945 cast
<VPGatherSDNode
>(E
)->refineAlignment(MMO
);
7946 return SDValue(E
, 0);
7949 auto *N
= newSDNode
<VPGatherSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
7950 VT
, MMO
, IndexType
);
7951 createOperands(N
, Ops
);
7953 assert(N
->getMask().getValueType().getVectorElementCount() ==
7954 N
->getValueType(0).getVectorElementCount() &&
7955 "Vector width mismatch between mask and data");
7956 assert(N
->getIndex().getValueType().getVectorElementCount().isScalable() ==
7957 N
->getValueType(0).getVectorElementCount().isScalable() &&
7958 "Scalable flags of index and data do not match");
7959 assert(ElementCount::isKnownGE(
7960 N
->getIndex().getValueType().getVectorElementCount(),
7961 N
->getValueType(0).getVectorElementCount()) &&
7962 "Vector width mismatch between index and data");
7963 assert(isa
<ConstantSDNode
>(N
->getScale()) &&
7964 cast
<ConstantSDNode
>(N
->getScale())->getAPIntValue().isPowerOf2() &&
7965 "Scale should be a constant power of 2");
7967 CSEMap
.InsertNode(N
, IP
);
7970 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7974 SDValue
SelectionDAG::getScatterVP(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
7975 ArrayRef
<SDValue
> Ops
,
7976 MachineMemOperand
*MMO
,
7977 ISD::MemIndexType IndexType
) {
7978 assert(Ops
.size() == 7 && "Incompatible number of operands");
7980 FoldingSetNodeID ID
;
7981 AddNodeIDNode(ID
, ISD::VP_SCATTER
, VTs
, Ops
);
7982 ID
.AddInteger(VT
.getRawBits());
7983 ID
.AddInteger(getSyntheticNodeSubclassData
<VPScatterSDNode
>(
7984 dl
.getIROrder(), VTs
, VT
, MMO
, IndexType
));
7985 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
7987 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
7988 cast
<VPScatterSDNode
>(E
)->refineAlignment(MMO
);
7989 return SDValue(E
, 0);
7991 auto *N
= newSDNode
<VPScatterSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
7992 VT
, MMO
, IndexType
);
7993 createOperands(N
, Ops
);
7995 assert(N
->getMask().getValueType().getVectorElementCount() ==
7996 N
->getValue().getValueType().getVectorElementCount() &&
7997 "Vector width mismatch between mask and data");
7999 N
->getIndex().getValueType().getVectorElementCount().isScalable() ==
8000 N
->getValue().getValueType().getVectorElementCount().isScalable() &&
8001 "Scalable flags of index and data do not match");
8002 assert(ElementCount::isKnownGE(
8003 N
->getIndex().getValueType().getVectorElementCount(),
8004 N
->getValue().getValueType().getVectorElementCount()) &&
8005 "Vector width mismatch between index and data");
8006 assert(isa
<ConstantSDNode
>(N
->getScale()) &&
8007 cast
<ConstantSDNode
>(N
->getScale())->getAPIntValue().isPowerOf2() &&
8008 "Scale should be a constant power of 2");
8010 CSEMap
.InsertNode(N
, IP
);
8013 NewSDValueDbgMsg(V
, "Creating new node: ", this);
8017 SDValue
SelectionDAG::getMaskedLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
8018 SDValue Base
, SDValue Offset
, SDValue Mask
,
8019 SDValue PassThru
, EVT MemVT
,
8020 MachineMemOperand
*MMO
,
8021 ISD::MemIndexedMode AM
,
8022 ISD::LoadExtType ExtTy
, bool isExpanding
) {
8023 bool Indexed
= AM
!= ISD::UNINDEXED
;
8024 assert((Indexed
|| Offset
.isUndef()) &&
8025 "Unindexed masked load with an offset!");
8026 SDVTList VTs
= Indexed
? getVTList(VT
, Base
.getValueType(), MVT::Other
)
8027 : getVTList(VT
, MVT::Other
);
8028 SDValue Ops
[] = {Chain
, Base
, Offset
, Mask
, PassThru
};
8029 FoldingSetNodeID ID
;
8030 AddNodeIDNode(ID
, ISD::MLOAD
, VTs
, Ops
);
8031 ID
.AddInteger(MemVT
.getRawBits());
8032 ID
.AddInteger(getSyntheticNodeSubclassData
<MaskedLoadSDNode
>(
8033 dl
.getIROrder(), VTs
, AM
, ExtTy
, isExpanding
, MemVT
, MMO
));
8034 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
8036 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
8037 cast
<MaskedLoadSDNode
>(E
)->refineAlignment(MMO
);
8038 return SDValue(E
, 0);
8040 auto *N
= newSDNode
<MaskedLoadSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
8041 AM
, ExtTy
, isExpanding
, MemVT
, MMO
);
8042 createOperands(N
, Ops
);
8044 CSEMap
.InsertNode(N
, IP
);
8047 NewSDValueDbgMsg(V
, "Creating new node: ", this);
8051 SDValue
SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad
, const SDLoc
&dl
,
8052 SDValue Base
, SDValue Offset
,
8053 ISD::MemIndexedMode AM
) {
8054 MaskedLoadSDNode
*LD
= cast
<MaskedLoadSDNode
>(OrigLoad
);
8055 assert(LD
->getOffset().isUndef() && "Masked load is already a indexed load!");
8056 return getMaskedLoad(OrigLoad
.getValueType(), dl
, LD
->getChain(), Base
,
8057 Offset
, LD
->getMask(), LD
->getPassThru(),
8058 LD
->getMemoryVT(), LD
->getMemOperand(), AM
,
8059 LD
->getExtensionType(), LD
->isExpandingLoad());
8062 SDValue
SelectionDAG::getMaskedStore(SDValue Chain
, const SDLoc
&dl
,
8063 SDValue Val
, SDValue Base
, SDValue Offset
,
8064 SDValue Mask
, EVT MemVT
,
8065 MachineMemOperand
*MMO
,
8066 ISD::MemIndexedMode AM
, bool IsTruncating
,
8067 bool IsCompressing
) {
8068 assert(Chain
.getValueType() == MVT::Other
&&
8069 "Invalid chain type");
8070 bool Indexed
= AM
!= ISD::UNINDEXED
;
8071 assert((Indexed
|| Offset
.isUndef()) &&
8072 "Unindexed masked store with an offset!");
8073 SDVTList VTs
= Indexed
? getVTList(Base
.getValueType(), MVT::Other
)
8074 : getVTList(MVT::Other
);
8075 SDValue Ops
[] = {Chain
, Val
, Base
, Offset
, Mask
};
8076 FoldingSetNodeID ID
;
8077 AddNodeIDNode(ID
, ISD::MSTORE
, VTs
, Ops
);
8078 ID
.AddInteger(MemVT
.getRawBits());
8079 ID
.AddInteger(getSyntheticNodeSubclassData
<MaskedStoreSDNode
>(
8080 dl
.getIROrder(), VTs
, AM
, IsTruncating
, IsCompressing
, MemVT
, MMO
));
8081 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
8083 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
8084 cast
<MaskedStoreSDNode
>(E
)->refineAlignment(MMO
);
8085 return SDValue(E
, 0);
8088 newSDNode
<MaskedStoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
, AM
,
8089 IsTruncating
, IsCompressing
, MemVT
, MMO
);
8090 createOperands(N
, Ops
);
8092 CSEMap
.InsertNode(N
, IP
);
8095 NewSDValueDbgMsg(V
, "Creating new node: ", this);
8099 SDValue
SelectionDAG::getIndexedMaskedStore(SDValue OrigStore
, const SDLoc
&dl
,
8100 SDValue Base
, SDValue Offset
,
8101 ISD::MemIndexedMode AM
) {
8102 MaskedStoreSDNode
*ST
= cast
<MaskedStoreSDNode
>(OrigStore
);
8103 assert(ST
->getOffset().isUndef() &&
8104 "Masked store is already a indexed store!");
8105 return getMaskedStore(ST
->getChain(), dl
, ST
->getValue(), Base
, Offset
,
8106 ST
->getMask(), ST
->getMemoryVT(), ST
->getMemOperand(),
8107 AM
, ST
->isTruncatingStore(), ST
->isCompressingStore());
8110 SDValue
SelectionDAG::getMaskedGather(SDVTList VTs
, EVT MemVT
, const SDLoc
&dl
,
8111 ArrayRef
<SDValue
> Ops
,
8112 MachineMemOperand
*MMO
,
8113 ISD::MemIndexType IndexType
,
8114 ISD::LoadExtType ExtTy
) {
8115 assert(Ops
.size() == 6 && "Incompatible number of operands");
8117 FoldingSetNodeID ID
;
8118 AddNodeIDNode(ID
, ISD::MGATHER
, VTs
, Ops
);
8119 ID
.AddInteger(MemVT
.getRawBits());
8120 ID
.AddInteger(getSyntheticNodeSubclassData
<MaskedGatherSDNode
>(
8121 dl
.getIROrder(), VTs
, MemVT
, MMO
, IndexType
, ExtTy
));
8122 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
8124 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
8125 cast
<MaskedGatherSDNode
>(E
)->refineAlignment(MMO
);
8126 return SDValue(E
, 0);
8129 IndexType
= TLI
->getCanonicalIndexType(IndexType
, MemVT
, Ops
[4]);
8130 auto *N
= newSDNode
<MaskedGatherSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(),
8131 VTs
, MemVT
, MMO
, IndexType
, ExtTy
);
8132 createOperands(N
, Ops
);
8134 assert(N
->getPassThru().getValueType() == N
->getValueType(0) &&
8135 "Incompatible type of the PassThru value in MaskedGatherSDNode");
8136 assert(N
->getMask().getValueType().getVectorElementCount() ==
8137 N
->getValueType(0).getVectorElementCount() &&
8138 "Vector width mismatch between mask and data");
8139 assert(N
->getIndex().getValueType().getVectorElementCount().isScalable() ==
8140 N
->getValueType(0).getVectorElementCount().isScalable() &&
8141 "Scalable flags of index and data do not match");
8142 assert(ElementCount::isKnownGE(
8143 N
->getIndex().getValueType().getVectorElementCount(),
8144 N
->getValueType(0).getVectorElementCount()) &&
8145 "Vector width mismatch between index and data");
8146 assert(isa
<ConstantSDNode
>(N
->getScale()) &&
8147 cast
<ConstantSDNode
>(N
->getScale())->getAPIntValue().isPowerOf2() &&
8148 "Scale should be a constant power of 2");
8150 CSEMap
.InsertNode(N
, IP
);
8153 NewSDValueDbgMsg(V
, "Creating new node: ", this);
8157 SDValue
SelectionDAG::getMaskedScatter(SDVTList VTs
, EVT MemVT
, const SDLoc
&dl
,
8158 ArrayRef
<SDValue
> Ops
,
8159 MachineMemOperand
*MMO
,
8160 ISD::MemIndexType IndexType
,
8162 assert(Ops
.size() == 6 && "Incompatible number of operands");
8164 FoldingSetNodeID ID
;
8165 AddNodeIDNode(ID
, ISD::MSCATTER
, VTs
, Ops
);
8166 ID
.AddInteger(MemVT
.getRawBits());
8167 ID
.AddInteger(getSyntheticNodeSubclassData
<MaskedScatterSDNode
>(
8168 dl
.getIROrder(), VTs
, MemVT
, MMO
, IndexType
, IsTrunc
));
8169 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
8171 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
8172 cast
<MaskedScatterSDNode
>(E
)->refineAlignment(MMO
);
8173 return SDValue(E
, 0);
8176 IndexType
= TLI
->getCanonicalIndexType(IndexType
, MemVT
, Ops
[4]);
8177 auto *N
= newSDNode
<MaskedScatterSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(),
8178 VTs
, MemVT
, MMO
, IndexType
, IsTrunc
);
8179 createOperands(N
, Ops
);
8181 assert(N
->getMask().getValueType().getVectorElementCount() ==
8182 N
->getValue().getValueType().getVectorElementCount() &&
8183 "Vector width mismatch between mask and data");
8185 N
->getIndex().getValueType().getVectorElementCount().isScalable() ==
8186 N
->getValue().getValueType().getVectorElementCount().isScalable() &&
8187 "Scalable flags of index and data do not match");
8188 assert(ElementCount::isKnownGE(
8189 N
->getIndex().getValueType().getVectorElementCount(),
8190 N
->getValue().getValueType().getVectorElementCount()) &&
8191 "Vector width mismatch between index and data");
8192 assert(isa
<ConstantSDNode
>(N
->getScale()) &&
8193 cast
<ConstantSDNode
>(N
->getScale())->getAPIntValue().isPowerOf2() &&
8194 "Scale should be a constant power of 2");
8196 CSEMap
.InsertNode(N
, IP
);
8199 NewSDValueDbgMsg(V
, "Creating new node: ", this);
8203 SDValue
SelectionDAG::simplifySelect(SDValue Cond
, SDValue T
, SDValue F
) {
8204 // select undef, T, F --> T (if T is a constant), otherwise F
8205 // select, ?, undef, F --> F
8206 // select, ?, T, undef --> T
8208 return isConstantValueOfAnyType(T
) ? T
: F
;
8214 // select true, T, F --> T
8215 // select false, T, F --> F
8216 if (auto *CondC
= dyn_cast
<ConstantSDNode
>(Cond
))
8217 return CondC
->isZero() ? F
: T
;
8219 // TODO: This should simplify VSELECT with constant condition using something
8220 // like this (but check boolean contents to be complete?):
8221 // if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8223 // if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8226 // select ?, T, T --> T
8233 SDValue
SelectionDAG::simplifyShift(SDValue X
, SDValue Y
) {
8234 // shift undef, Y --> 0 (can always assume that the undef value is 0)
8236 return getConstant(0, SDLoc(X
.getNode()), X
.getValueType());
8237 // shift X, undef --> undef (because it may shift by the bitwidth)
8239 return getUNDEF(X
.getValueType());
8243 if (isNullOrNullSplat(X
) || isNullOrNullSplat(Y
))
8246 // shift X, C >= bitwidth(X) --> undef
8247 // All vector elements must be too big (or undef) to avoid partial undefs.
8248 auto isShiftTooBig
= [X
](ConstantSDNode
*Val
) {
8249 return !Val
|| Val
->getAPIntValue().uge(X
.getScalarValueSizeInBits());
8251 if (ISD::matchUnaryPredicate(Y
, isShiftTooBig
, true))
8252 return getUNDEF(X
.getValueType());
8257 SDValue
SelectionDAG::simplifyFPBinop(unsigned Opcode
, SDValue X
, SDValue Y
,
8258 SDNodeFlags Flags
) {
8259 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8260 // (an undef operand can be chosen to be Nan/Inf), then the result of this
8261 // operation is poison. That result can be relaxed to undef.
8262 ConstantFPSDNode
*XC
= isConstOrConstSplatFP(X
, /* AllowUndefs */ true);
8263 ConstantFPSDNode
*YC
= isConstOrConstSplatFP(Y
, /* AllowUndefs */ true);
8264 bool HasNan
= (XC
&& XC
->getValueAPF().isNaN()) ||
8265 (YC
&& YC
->getValueAPF().isNaN());
8266 bool HasInf
= (XC
&& XC
->getValueAPF().isInfinity()) ||
8267 (YC
&& YC
->getValueAPF().isInfinity());
8269 if (Flags
.hasNoNaNs() && (HasNan
|| X
.isUndef() || Y
.isUndef()))
8270 return getUNDEF(X
.getValueType());
8272 if (Flags
.hasNoInfs() && (HasInf
|| X
.isUndef() || Y
.isUndef()))
8273 return getUNDEF(X
.getValueType());
8279 if (Opcode
== ISD::FADD
)
8280 if (YC
->getValueAPF().isNegZero())
8284 if (Opcode
== ISD::FSUB
)
8285 if (YC
->getValueAPF().isPosZero())
8290 if (Opcode
== ISD::FMUL
|| Opcode
== ISD::FDIV
)
8291 if (YC
->getValueAPF().isExactlyValue(1.0))
8295 if (Opcode
== ISD::FMUL
&& Flags
.hasNoNaNs() && Flags
.hasNoSignedZeros())
8296 if (YC
->getValueAPF().isZero())
8297 return getConstantFP(0.0, SDLoc(Y
), Y
.getValueType());
8302 SDValue
SelectionDAG::getVAArg(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
8303 SDValue Ptr
, SDValue SV
, unsigned Align
) {
8304 SDValue Ops
[] = { Chain
, Ptr
, SV
, getTargetConstant(Align
, dl
, MVT::i32
) };
8305 return getNode(ISD::VAARG
, dl
, getVTList(VT
, MVT::Other
), Ops
);
8308 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
8309 ArrayRef
<SDUse
> Ops
) {
8310 switch (Ops
.size()) {
8311 case 0: return getNode(Opcode
, DL
, VT
);
8312 case 1: return getNode(Opcode
, DL
, VT
, static_cast<const SDValue
>(Ops
[0]));
8313 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
8314 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
8318 // Copy from an SDUse array into an SDValue array for use with
8319 // the regular getNode logic.
8320 SmallVector
<SDValue
, 8> NewOps(Ops
.begin(), Ops
.end());
8321 return getNode(Opcode
, DL
, VT
, NewOps
);
8324 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
8325 ArrayRef
<SDValue
> Ops
) {
8328 Flags
= Inserter
->getFlags();
8329 return getNode(Opcode
, DL
, VT
, Ops
, Flags
);
8332 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
8333 ArrayRef
<SDValue
> Ops
, const SDNodeFlags Flags
) {
8334 unsigned NumOps
= Ops
.size();
8336 case 0: return getNode(Opcode
, DL
, VT
);
8337 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0], Flags
);
8338 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Flags
);
8339 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2], Flags
);
8344 for (auto &Op
: Ops
)
8345 assert(Op
.getOpcode() != ISD::DELETED_NODE
&&
8346 "Operand is DELETED_NODE!");
8351 case ISD::BUILD_VECTOR
:
8352 // Attempt to simplify BUILD_VECTOR.
8353 if (SDValue V
= FoldBUILD_VECTOR(DL
, VT
, Ops
, *this))
8356 case ISD::CONCAT_VECTORS
:
8357 if (SDValue V
= foldCONCAT_VECTORS(DL
, VT
, Ops
, *this))
8360 case ISD::SELECT_CC
:
8361 assert(NumOps
== 5 && "SELECT_CC takes 5 operands!");
8362 assert(Ops
[0].getValueType() == Ops
[1].getValueType() &&
8363 "LHS and RHS of condition must have same type!");
8364 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
8365 "True and False arms of SelectCC must have same type!");
8366 assert(Ops
[2].getValueType() == VT
&&
8367 "select_cc node must be of same type as true and false value!");
8370 assert(NumOps
== 5 && "BR_CC takes 5 operands!");
8371 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
8372 "LHS/RHS of comparison should match types!");
8378 SDVTList VTs
= getVTList(VT
);
8380 if (VT
!= MVT::Glue
) {
8381 FoldingSetNodeID ID
;
8382 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
8385 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
))
8386 return SDValue(E
, 0);
8388 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
8389 createOperands(N
, Ops
);
8391 CSEMap
.InsertNode(N
, IP
);
8393 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
8394 createOperands(N
, Ops
);
8400 NewSDValueDbgMsg(V
, "Creating new node: ", this);
8404 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
,
8405 ArrayRef
<EVT
> ResultTys
, ArrayRef
<SDValue
> Ops
) {
8406 return getNode(Opcode
, DL
, getVTList(ResultTys
), Ops
);
8409 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
8410 ArrayRef
<SDValue
> Ops
) {
8413 Flags
= Inserter
->getFlags();
8414 return getNode(Opcode
, DL
, VTList
, Ops
, Flags
);
8417 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
8418 ArrayRef
<SDValue
> Ops
, const SDNodeFlags Flags
) {
8419 if (VTList
.NumVTs
== 1)
8420 return getNode(Opcode
, DL
, VTList
.VTs
[0], Ops
);
8423 for (auto &Op
: Ops
)
8424 assert(Op
.getOpcode() != ISD::DELETED_NODE
&&
8425 "Operand is DELETED_NODE!");
8429 case ISD::STRICT_FP_EXTEND
:
8430 assert(VTList
.NumVTs
== 2 && Ops
.size() == 2 &&
8431 "Invalid STRICT_FP_EXTEND!");
8432 assert(VTList
.VTs
[0].isFloatingPoint() &&
8433 Ops
[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8434 assert(VTList
.VTs
[0].isVector() == Ops
[1].getValueType().isVector() &&
8435 "STRICT_FP_EXTEND result type should be vector iff the operand "
8437 assert((!VTList
.VTs
[0].isVector() ||
8438 VTList
.VTs
[0].getVectorNumElements() ==
8439 Ops
[1].getValueType().getVectorNumElements()) &&
8440 "Vector element count mismatch!");
8441 assert(Ops
[1].getValueType().bitsLT(VTList
.VTs
[0]) &&
8442 "Invalid fpext node, dst <= src!");
8444 case ISD::STRICT_FP_ROUND
:
8445 assert(VTList
.NumVTs
== 2 && Ops
.size() == 3 && "Invalid STRICT_FP_ROUND!");
8446 assert(VTList
.VTs
[0].isVector() == Ops
[1].getValueType().isVector() &&
8447 "STRICT_FP_ROUND result type should be vector iff the operand "
8449 assert((!VTList
.VTs
[0].isVector() ||
8450 VTList
.VTs
[0].getVectorNumElements() ==
8451 Ops
[1].getValueType().getVectorNumElements()) &&
8452 "Vector element count mismatch!");
8453 assert(VTList
.VTs
[0].isFloatingPoint() &&
8454 Ops
[1].getValueType().isFloatingPoint() &&
8455 VTList
.VTs
[0].bitsLT(Ops
[1].getValueType()) &&
8456 isa
<ConstantSDNode
>(Ops
[2]) &&
8457 (cast
<ConstantSDNode
>(Ops
[2])->getZExtValue() == 0 ||
8458 cast
<ConstantSDNode
>(Ops
[2])->getZExtValue() == 1) &&
8459 "Invalid STRICT_FP_ROUND!");
8462 // FIXME: figure out how to safely handle things like
8463 // int foo(int x) { return 1 << (x & 255); }
8464 // int bar() { return foo(256); }
8465 case ISD::SRA_PARTS
:
8466 case ISD::SRL_PARTS
:
8467 case ISD::SHL_PARTS
:
8468 if (N3
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
8469 cast
<VTSDNode
>(N3
.getOperand(1))->getVT() != MVT::i1
)
8470 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
8471 else if (N3
.getOpcode() == ISD::AND
)
8472 if (ConstantSDNode
*AndRHS
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(1))) {
8473 // If the and is only masking out bits that cannot effect the shift,
8474 // eliminate the and.
8475 unsigned NumBits
= VT
.getScalarSizeInBits()*2;
8476 if ((AndRHS
->getValue() & (NumBits
-1)) == NumBits
-1)
8477 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
8483 // Memoize the node unless it returns a flag.
8485 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Glue
) {
8486 FoldingSetNodeID ID
;
8487 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
);
8489 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
))
8490 return SDValue(E
, 0);
8492 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTList
);
8493 createOperands(N
, Ops
);
8494 CSEMap
.InsertNode(N
, IP
);
8496 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTList
);
8497 createOperands(N
, Ops
);
8503 NewSDValueDbgMsg(V
, "Creating new node: ", this);
8507 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
,
8509 return getNode(Opcode
, DL
, VTList
, None
);
8512 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
8514 SDValue Ops
[] = { N1
};
8515 return getNode(Opcode
, DL
, VTList
, Ops
);
8518 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
8519 SDValue N1
, SDValue N2
) {
8520 SDValue Ops
[] = { N1
, N2
};
8521 return getNode(Opcode
, DL
, VTList
, Ops
);
8524 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
8525 SDValue N1
, SDValue N2
, SDValue N3
) {
8526 SDValue Ops
[] = { N1
, N2
, N3
};
8527 return getNode(Opcode
, DL
, VTList
, Ops
);
8530 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
8531 SDValue N1
, SDValue N2
, SDValue N3
, SDValue N4
) {
8532 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
8533 return getNode(Opcode
, DL
, VTList
, Ops
);
8536 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
8537 SDValue N1
, SDValue N2
, SDValue N3
, SDValue N4
,
8539 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
8540 return getNode(Opcode
, DL
, VTList
, Ops
);
8543 SDVTList
SelectionDAG::getVTList(EVT VT
) {
8544 return makeVTList(SDNode::getValueTypeList(VT
), 1);
8547 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
) {
8548 FoldingSetNodeID ID
;
8550 ID
.AddInteger(VT1
.getRawBits());
8551 ID
.AddInteger(VT2
.getRawBits());
8554 SDVTListNode
*Result
= VTListMap
.FindNodeOrInsertPos(ID
, IP
);
8556 EVT
*Array
= Allocator
.Allocate
<EVT
>(2);
8559 Result
= new (Allocator
) SDVTListNode(ID
.Intern(Allocator
), Array
, 2);
8560 VTListMap
.InsertNode(Result
, IP
);
8562 return Result
->getSDVTList();
8565 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
) {
8566 FoldingSetNodeID ID
;
8568 ID
.AddInteger(VT1
.getRawBits());
8569 ID
.AddInteger(VT2
.getRawBits());
8570 ID
.AddInteger(VT3
.getRawBits());
8573 SDVTListNode
*Result
= VTListMap
.FindNodeOrInsertPos(ID
, IP
);
8575 EVT
*Array
= Allocator
.Allocate
<EVT
>(3);
8579 Result
= new (Allocator
) SDVTListNode(ID
.Intern(Allocator
), Array
, 3);
8580 VTListMap
.InsertNode(Result
, IP
);
8582 return Result
->getSDVTList();
8585 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
) {
8586 FoldingSetNodeID ID
;
8588 ID
.AddInteger(VT1
.getRawBits());
8589 ID
.AddInteger(VT2
.getRawBits());
8590 ID
.AddInteger(VT3
.getRawBits());
8591 ID
.AddInteger(VT4
.getRawBits());
8594 SDVTListNode
*Result
= VTListMap
.FindNodeOrInsertPos(ID
, IP
);
8596 EVT
*Array
= Allocator
.Allocate
<EVT
>(4);
8601 Result
= new (Allocator
) SDVTListNode(ID
.Intern(Allocator
), Array
, 4);
8602 VTListMap
.InsertNode(Result
, IP
);
8604 return Result
->getSDVTList();
8607 SDVTList
SelectionDAG::getVTList(ArrayRef
<EVT
> VTs
) {
8608 unsigned NumVTs
= VTs
.size();
8609 FoldingSetNodeID ID
;
8610 ID
.AddInteger(NumVTs
);
8611 for (unsigned index
= 0; index
< NumVTs
; index
++) {
8612 ID
.AddInteger(VTs
[index
].getRawBits());
8616 SDVTListNode
*Result
= VTListMap
.FindNodeOrInsertPos(ID
, IP
);
8618 EVT
*Array
= Allocator
.Allocate
<EVT
>(NumVTs
);
8619 llvm::copy(VTs
, Array
);
8620 Result
= new (Allocator
) SDVTListNode(ID
.Intern(Allocator
), Array
, NumVTs
);
8621 VTListMap
.InsertNode(Result
, IP
);
8623 return Result
->getSDVTList();
8627 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8628 /// specified operands. If the resultant node already exists in the DAG,
8629 /// this does not modify the specified node, instead it returns the node that
8630 /// already exists. If the resultant node does not exist in the DAG, the
8631 /// input node is returned. As a degenerate case, if you specify the same
8632 /// input operands as the node already has, the input node is returned.
8633 SDNode
*SelectionDAG::UpdateNodeOperands(SDNode
*N
, SDValue Op
) {
8634 assert(N
->getNumOperands() == 1 && "Update with wrong number of operands");
8636 // Check to see if there is no change.
8637 if (Op
== N
->getOperand(0)) return N
;
8639 // See if the modified node already exists.
8640 void *InsertPos
= nullptr;
8641 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op
, InsertPos
))
8644 // Nope it doesn't. Remove the node from its current place in the maps.
8646 if (!RemoveNodeFromCSEMaps(N
))
8647 InsertPos
= nullptr;
8649 // Now we update the operands.
8650 N
->OperandList
[0].set(Op
);
8652 updateDivergence(N
);
8653 // If this gets put into a CSE map, add it.
8654 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
8658 SDNode
*SelectionDAG::UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
) {
8659 assert(N
->getNumOperands() == 2 && "Update with wrong number of operands");
8661 // Check to see if there is no change.
8662 if (Op1
== N
->getOperand(0) && Op2
== N
->getOperand(1))
8663 return N
; // No operands changed, just return the input node.
8665 // See if the modified node already exists.
8666 void *InsertPos
= nullptr;
8667 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op1
, Op2
, InsertPos
))
8670 // Nope it doesn't. Remove the node from its current place in the maps.
8672 if (!RemoveNodeFromCSEMaps(N
))
8673 InsertPos
= nullptr;
8675 // Now we update the operands.
8676 if (N
->OperandList
[0] != Op1
)
8677 N
->OperandList
[0].set(Op1
);
8678 if (N
->OperandList
[1] != Op2
)
8679 N
->OperandList
[1].set(Op2
);
8681 updateDivergence(N
);
8682 // If this gets put into a CSE map, add it.
8683 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
8687 SDNode
*SelectionDAG::
8688 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
, SDValue Op3
) {
8689 SDValue Ops
[] = { Op1
, Op2
, Op3
};
8690 return UpdateNodeOperands(N
, Ops
);
8693 SDNode
*SelectionDAG::
8694 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
8695 SDValue Op3
, SDValue Op4
) {
8696 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
};
8697 return UpdateNodeOperands(N
, Ops
);
8700 SDNode
*SelectionDAG::
8701 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
8702 SDValue Op3
, SDValue Op4
, SDValue Op5
) {
8703 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
, Op5
};
8704 return UpdateNodeOperands(N
, Ops
);
8707 SDNode
*SelectionDAG::
8708 UpdateNodeOperands(SDNode
*N
, ArrayRef
<SDValue
> Ops
) {
8709 unsigned NumOps
= Ops
.size();
8710 assert(N
->getNumOperands() == NumOps
&&
8711 "Update with wrong number of operands");
8713 // If no operands changed just return the input node.
8714 if (std::equal(Ops
.begin(), Ops
.end(), N
->op_begin()))
8717 // See if the modified node already exists.
8718 void *InsertPos
= nullptr;
8719 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Ops
, InsertPos
))
8722 // Nope it doesn't. Remove the node from its current place in the maps.
8724 if (!RemoveNodeFromCSEMaps(N
))
8725 InsertPos
= nullptr;
8727 // Now we update the operands.
8728 for (unsigned i
= 0; i
!= NumOps
; ++i
)
8729 if (N
->OperandList
[i
] != Ops
[i
])
8730 N
->OperandList
[i
].set(Ops
[i
]);
8732 updateDivergence(N
);
8733 // If this gets put into a CSE map, add it.
8734 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
8738 /// DropOperands - Release the operands and set this node to have
8740 void SDNode::DropOperands() {
8741 // Unlike the code in MorphNodeTo that does this, we don't need to
8742 // watch for dead nodes here.
8743 for (op_iterator I
= op_begin(), E
= op_end(); I
!= E
; ) {
8749 void SelectionDAG::setNodeMemRefs(MachineSDNode
*N
,
8750 ArrayRef
<MachineMemOperand
*> NewMemRefs
) {
8751 if (NewMemRefs
.empty()) {
8756 // Check if we can avoid allocating by storing a single reference directly.
8757 if (NewMemRefs
.size() == 1) {
8758 N
->MemRefs
= NewMemRefs
[0];
8763 MachineMemOperand
**MemRefsBuffer
=
8764 Allocator
.template Allocate
<MachineMemOperand
*>(NewMemRefs
.size());
8765 llvm::copy(NewMemRefs
, MemRefsBuffer
);
8766 N
->MemRefs
= MemRefsBuffer
;
8767 N
->NumMemRefs
= static_cast<int>(NewMemRefs
.size());
8770 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8773 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
8775 SDVTList VTs
= getVTList(VT
);
8776 return SelectNodeTo(N
, MachineOpc
, VTs
, None
);
8779 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
8780 EVT VT
, SDValue Op1
) {
8781 SDVTList VTs
= getVTList(VT
);
8782 SDValue Ops
[] = { Op1
};
8783 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
8786 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
8787 EVT VT
, SDValue Op1
,
8789 SDVTList VTs
= getVTList(VT
);
8790 SDValue Ops
[] = { Op1
, Op2
};
8791 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
8794 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
8795 EVT VT
, SDValue Op1
,
8796 SDValue Op2
, SDValue Op3
) {
8797 SDVTList VTs
= getVTList(VT
);
8798 SDValue Ops
[] = { Op1
, Op2
, Op3
};
8799 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
8802 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
8803 EVT VT
, ArrayRef
<SDValue
> Ops
) {
8804 SDVTList VTs
= getVTList(VT
);
8805 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
8808 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
8809 EVT VT1
, EVT VT2
, ArrayRef
<SDValue
> Ops
) {
8810 SDVTList VTs
= getVTList(VT1
, VT2
);
8811 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
8814 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
8816 SDVTList VTs
= getVTList(VT1
, VT2
);
8817 return SelectNodeTo(N
, MachineOpc
, VTs
, None
);
8820 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
8821 EVT VT1
, EVT VT2
, EVT VT3
,
8822 ArrayRef
<SDValue
> Ops
) {
8823 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
8824 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
8827 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
8829 SDValue Op1
, SDValue Op2
) {
8830 SDVTList VTs
= getVTList(VT1
, VT2
);
8831 SDValue Ops
[] = { Op1
, Op2
};
8832 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
8835 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
8836 SDVTList VTs
,ArrayRef
<SDValue
> Ops
) {
8837 SDNode
*New
= MorphNodeTo(N
, ~MachineOpc
, VTs
, Ops
);
8838 // Reset the NodeID to -1.
8841 ReplaceAllUsesWith(N
, New
);
8847 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8848 /// the line number information on the merged node since it is not possible to
8849 /// preserve the information that operation is associated with multiple lines.
8850 /// This will make the debugger working better at -O0, were there is a higher
8851 /// probability having other instructions associated with that line.
8853 /// For IROrder, we keep the smaller of the two
8854 SDNode
*SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode
*N
, const SDLoc
&OLoc
) {
8855 DebugLoc NLoc
= N
->getDebugLoc();
8856 if (NLoc
&& OptLevel
== CodeGenOpt::None
&& OLoc
.getDebugLoc() != NLoc
) {
8857 N
->setDebugLoc(DebugLoc());
8859 unsigned Order
= std::min(N
->getIROrder(), OLoc
.getIROrder());
8860 N
->setIROrder(Order
);
8864 /// MorphNodeTo - This *mutates* the specified node to have the specified
8865 /// return type, opcode, and operands.
8867 /// Note that MorphNodeTo returns the resultant node. If there is already a
8868 /// node of the specified opcode and operands, it returns that node instead of
8869 /// the current one. Note that the SDLoc need not be the same.
8871 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8872 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8873 /// node, and because it doesn't require CSE recalculation for any of
8874 /// the node's users.
8876 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8877 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8878 /// the legalizer which maintain worklists that would need to be updated when
8879 /// deleting things.
8880 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
8881 SDVTList VTs
, ArrayRef
<SDValue
> Ops
) {
8882 // If an identical node already exists, use it.
8884 if (VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Glue
) {
8885 FoldingSetNodeID ID
;
8886 AddNodeIDNode(ID
, Opc
, VTs
, Ops
);
8887 if (SDNode
*ON
= FindNodeOrInsertPos(ID
, SDLoc(N
), IP
))
8888 return UpdateSDLocOnMergeSDNode(ON
, SDLoc(N
));
8891 if (!RemoveNodeFromCSEMaps(N
))
8894 // Start the morphing.
8896 N
->ValueList
= VTs
.VTs
;
8897 N
->NumValues
= VTs
.NumVTs
;
8899 // Clear the operands list, updating used nodes to remove this from their
8900 // use list. Keep track of any operands that become dead as a result.
8901 SmallPtrSet
<SDNode
*, 16> DeadNodeSet
;
8902 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
8904 SDNode
*Used
= Use
.getNode();
8906 if (Used
->use_empty())
8907 DeadNodeSet
.insert(Used
);
8910 // For MachineNode, initialize the memory references information.
8911 if (MachineSDNode
*MN
= dyn_cast
<MachineSDNode
>(N
))
8914 // Swap for an appropriately sized array from the recycler.
8916 createOperands(N
, Ops
);
8918 // Delete any nodes that are still dead after adding the uses for the
8920 if (!DeadNodeSet
.empty()) {
8921 SmallVector
<SDNode
*, 16> DeadNodes
;
8922 for (SDNode
*N
: DeadNodeSet
)
8924 DeadNodes
.push_back(N
);
8925 RemoveDeadNodes(DeadNodes
);
8929 CSEMap
.InsertNode(N
, IP
); // Memoize the new node.
8933 SDNode
* SelectionDAG::mutateStrictFPToFP(SDNode
*Node
) {
8934 unsigned OrigOpc
= Node
->getOpcode();
8938 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8939 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8940 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8941 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8942 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8943 #include "llvm/IR/ConstrainedOps.def"
8946 assert(Node
->getNumValues() == 2 && "Unexpected number of results!");
8948 // We're taking this node out of the chain, so we need to re-link things.
8949 SDValue InputChain
= Node
->getOperand(0);
8950 SDValue OutputChain
= SDValue(Node
, 1);
8951 ReplaceAllUsesOfValueWith(OutputChain
, InputChain
);
8953 SmallVector
<SDValue
, 3> Ops
;
8954 for (unsigned i
= 1, e
= Node
->getNumOperands(); i
!= e
; ++i
)
8955 Ops
.push_back(Node
->getOperand(i
));
8957 SDVTList VTs
= getVTList(Node
->getValueType(0));
8958 SDNode
*Res
= MorphNodeTo(Node
, NewOpc
, VTs
, Ops
);
8960 // MorphNodeTo can operate in two ways: if an existing node with the
8961 // specified operands exists, it can just return it. Otherwise, it
8962 // updates the node in place to have the requested operands.
8964 // If we updated the node in place, reset the node ID. To the isel,
8965 // this should be just like a newly allocated machine node.
8968 ReplaceAllUsesWith(Node
, Res
);
8969 RemoveDeadNode(Node
);
8975 /// getMachineNode - These are used for target selectors to create a new node
8976 /// with specified return type(s), MachineInstr opcode, and operands.
8978 /// Note that getMachineNode returns the resultant node. If there is already a
8979 /// node of the specified opcode and operands, it returns that node instead of
8980 /// the current one.
8981 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
8983 SDVTList VTs
= getVTList(VT
);
8984 return getMachineNode(Opcode
, dl
, VTs
, None
);
8987 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
8988 EVT VT
, SDValue Op1
) {
8989 SDVTList VTs
= getVTList(VT
);
8990 SDValue Ops
[] = { Op1
};
8991 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
8994 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
8995 EVT VT
, SDValue Op1
, SDValue Op2
) {
8996 SDVTList VTs
= getVTList(VT
);
8997 SDValue Ops
[] = { Op1
, Op2
};
8998 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
9001 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
9002 EVT VT
, SDValue Op1
, SDValue Op2
,
9004 SDVTList VTs
= getVTList(VT
);
9005 SDValue Ops
[] = { Op1
, Op2
, Op3
};
9006 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
9009 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
9010 EVT VT
, ArrayRef
<SDValue
> Ops
) {
9011 SDVTList VTs
= getVTList(VT
);
9012 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
9015 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
9016 EVT VT1
, EVT VT2
, SDValue Op1
,
9018 SDVTList VTs
= getVTList(VT1
, VT2
);
9019 SDValue Ops
[] = { Op1
, Op2
};
9020 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
9023 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
9024 EVT VT1
, EVT VT2
, SDValue Op1
,
9025 SDValue Op2
, SDValue Op3
) {
9026 SDVTList VTs
= getVTList(VT1
, VT2
);
9027 SDValue Ops
[] = { Op1
, Op2
, Op3
};
9028 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
9031 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
9033 ArrayRef
<SDValue
> Ops
) {
9034 SDVTList VTs
= getVTList(VT1
, VT2
);
9035 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
9038 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
9039 EVT VT1
, EVT VT2
, EVT VT3
,
9040 SDValue Op1
, SDValue Op2
) {
9041 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
9042 SDValue Ops
[] = { Op1
, Op2
};
9043 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
9046 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
9047 EVT VT1
, EVT VT2
, EVT VT3
,
9048 SDValue Op1
, SDValue Op2
,
9050 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
9051 SDValue Ops
[] = { Op1
, Op2
, Op3
};
9052 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
9055 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
9056 EVT VT1
, EVT VT2
, EVT VT3
,
9057 ArrayRef
<SDValue
> Ops
) {
9058 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
9059 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
9062 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
9063 ArrayRef
<EVT
> ResultTys
,
9064 ArrayRef
<SDValue
> Ops
) {
9065 SDVTList VTs
= getVTList(ResultTys
);
9066 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
9069 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&DL
,
9071 ArrayRef
<SDValue
> Ops
) {
9072 bool DoCSE
= VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Glue
;
9077 FoldingSetNodeID ID
;
9078 AddNodeIDNode(ID
, ~Opcode
, VTs
, Ops
);
9080 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
)) {
9081 return cast
<MachineSDNode
>(UpdateSDLocOnMergeSDNode(E
, DL
));
9085 // Allocate a new MachineSDNode.
9086 N
= newSDNode
<MachineSDNode
>(~Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
9087 createOperands(N
, Ops
);
9090 CSEMap
.InsertNode(N
, IP
);
9093 NewSDValueDbgMsg(SDValue(N
, 0), "Creating new machine node: ", this);
9097 /// getTargetExtractSubreg - A convenience function for creating
9098 /// TargetOpcode::EXTRACT_SUBREG nodes.
9099 SDValue
SelectionDAG::getTargetExtractSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
9101 SDValue SRIdxVal
= getTargetConstant(SRIdx
, DL
, MVT::i32
);
9102 SDNode
*Subreg
= getMachineNode(TargetOpcode::EXTRACT_SUBREG
, DL
,
9103 VT
, Operand
, SRIdxVal
);
9104 return SDValue(Subreg
, 0);
9107 /// getTargetInsertSubreg - A convenience function for creating
9108 /// TargetOpcode::INSERT_SUBREG nodes.
9109 SDValue
SelectionDAG::getTargetInsertSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
9110 SDValue Operand
, SDValue Subreg
) {
9111 SDValue SRIdxVal
= getTargetConstant(SRIdx
, DL
, MVT::i32
);
9112 SDNode
*Result
= getMachineNode(TargetOpcode::INSERT_SUBREG
, DL
,
9113 VT
, Operand
, Subreg
, SRIdxVal
);
9114 return SDValue(Result
, 0);
9117 /// getNodeIfExists - Get the specified node if it's already available, or
9118 /// else return NULL.
9119 SDNode
*SelectionDAG::getNodeIfExists(unsigned Opcode
, SDVTList VTList
,
9120 ArrayRef
<SDValue
> Ops
) {
9123 Flags
= Inserter
->getFlags();
9124 return getNodeIfExists(Opcode
, VTList
, Ops
, Flags
);
9127 SDNode
*SelectionDAG::getNodeIfExists(unsigned Opcode
, SDVTList VTList
,
9128 ArrayRef
<SDValue
> Ops
,
9129 const SDNodeFlags Flags
) {
9130 if (VTList
.VTs
[VTList
.NumVTs
- 1] != MVT::Glue
) {
9131 FoldingSetNodeID ID
;
9132 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
);
9134 if (SDNode
*E
= FindNodeOrInsertPos(ID
, SDLoc(), IP
)) {
9135 E
->intersectFlagsWith(Flags
);
9142 /// doesNodeExist - Check if a node exists without modifying its flags.
9143 bool SelectionDAG::doesNodeExist(unsigned Opcode
, SDVTList VTList
,
9144 ArrayRef
<SDValue
> Ops
) {
9145 if (VTList
.VTs
[VTList
.NumVTs
- 1] != MVT::Glue
) {
9146 FoldingSetNodeID ID
;
9147 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
);
9149 if (FindNodeOrInsertPos(ID
, SDLoc(), IP
))
9155 /// getDbgValue - Creates a SDDbgValue node.
9158 SDDbgValue
*SelectionDAG::getDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
9159 SDNode
*N
, unsigned R
, bool IsIndirect
,
9160 const DebugLoc
&DL
, unsigned O
) {
9161 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
9162 "Expected inlined-at fields to agree");
9163 return new (DbgInfo
->getAlloc())
9164 SDDbgValue(DbgInfo
->getAlloc(), Var
, Expr
, SDDbgOperand::fromNode(N
, R
),
9165 {}, IsIndirect
, DL
, O
,
9166 /*IsVariadic=*/false);
9170 SDDbgValue
*SelectionDAG::getConstantDbgValue(DIVariable
*Var
,
9173 const DebugLoc
&DL
, unsigned O
) {
9174 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
9175 "Expected inlined-at fields to agree");
9176 return new (DbgInfo
->getAlloc())
9177 SDDbgValue(DbgInfo
->getAlloc(), Var
, Expr
, SDDbgOperand::fromConst(C
), {},
9178 /*IsIndirect=*/false, DL
, O
,
9179 /*IsVariadic=*/false);
9183 SDDbgValue
*SelectionDAG::getFrameIndexDbgValue(DIVariable
*Var
,
9184 DIExpression
*Expr
, unsigned FI
,
9188 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
9189 "Expected inlined-at fields to agree");
9190 return getFrameIndexDbgValue(Var
, Expr
, FI
, {}, IsIndirect
, DL
, O
);
9193 /// FrameIndex with dependencies
9194 SDDbgValue
*SelectionDAG::getFrameIndexDbgValue(DIVariable
*Var
,
9195 DIExpression
*Expr
, unsigned FI
,
9196 ArrayRef
<SDNode
*> Dependencies
,
9200 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
9201 "Expected inlined-at fields to agree");
9202 return new (DbgInfo
->getAlloc())
9203 SDDbgValue(DbgInfo
->getAlloc(), Var
, Expr
, SDDbgOperand::fromFrameIdx(FI
),
9204 Dependencies
, IsIndirect
, DL
, O
,
9205 /*IsVariadic=*/false);
9209 SDDbgValue
*SelectionDAG::getVRegDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
9210 unsigned VReg
, bool IsIndirect
,
9211 const DebugLoc
&DL
, unsigned O
) {
9212 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
9213 "Expected inlined-at fields to agree");
9214 return new (DbgInfo
->getAlloc())
9215 SDDbgValue(DbgInfo
->getAlloc(), Var
, Expr
, SDDbgOperand::fromVReg(VReg
),
9216 {}, IsIndirect
, DL
, O
,
9217 /*IsVariadic=*/false);
9220 SDDbgValue
*SelectionDAG::getDbgValueList(DIVariable
*Var
, DIExpression
*Expr
,
9221 ArrayRef
<SDDbgOperand
> Locs
,
9222 ArrayRef
<SDNode
*> Dependencies
,
9223 bool IsIndirect
, const DebugLoc
&DL
,
9224 unsigned O
, bool IsVariadic
) {
9225 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
9226 "Expected inlined-at fields to agree");
9227 return new (DbgInfo
->getAlloc())
9228 SDDbgValue(DbgInfo
->getAlloc(), Var
, Expr
, Locs
, Dependencies
, IsIndirect
,
9232 void SelectionDAG::transferDbgValues(SDValue From
, SDValue To
,
9233 unsigned OffsetInBits
, unsigned SizeInBits
,
9234 bool InvalidateDbg
) {
9235 SDNode
*FromNode
= From
.getNode();
9236 SDNode
*ToNode
= To
.getNode();
9237 assert(FromNode
&& ToNode
&& "Can't modify dbg values");
9240 // TODO: assert(From != To && "Redundant dbg value transfer");
9241 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9242 if (From
== To
|| FromNode
== ToNode
)
9245 if (!FromNode
->getHasDebugValue())
9248 SDDbgOperand FromLocOp
=
9249 SDDbgOperand::fromNode(From
.getNode(), From
.getResNo());
9250 SDDbgOperand ToLocOp
= SDDbgOperand::fromNode(To
.getNode(), To
.getResNo());
9252 SmallVector
<SDDbgValue
*, 2> ClonedDVs
;
9253 for (SDDbgValue
*Dbg
: GetDbgValues(FromNode
)) {
9254 if (Dbg
->isInvalidated())
9257 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9259 // Create a new location ops vector that is equal to the old vector, but
9260 // with each instance of FromLocOp replaced with ToLocOp.
9261 bool Changed
= false;
9262 auto NewLocOps
= Dbg
->copyLocationOps();
9264 NewLocOps
.begin(), NewLocOps
.end(),
9265 [&Changed
, FromLocOp
](const SDDbgOperand
&Op
) {
9266 bool Match
= Op
== FromLocOp
;
9271 // Ignore this SDDbgValue if we didn't find a matching location.
9275 DIVariable
*Var
= Dbg
->getVariable();
9276 auto *Expr
= Dbg
->getExpression();
9277 // If a fragment is requested, update the expression.
9279 // When splitting a larger (e.g., sign-extended) value whose
9280 // lower bits are described with an SDDbgValue, do not attempt
9281 // to transfer the SDDbgValue to the upper bits.
9282 if (auto FI
= Expr
->getFragmentInfo())
9283 if (OffsetInBits
+ SizeInBits
> FI
->SizeInBits
)
9285 auto Fragment
= DIExpression::createFragmentExpression(Expr
, OffsetInBits
,
9292 auto AdditionalDependencies
= Dbg
->getAdditionalDependencies();
9293 // Clone the SDDbgValue and move it to To.
9294 SDDbgValue
*Clone
= getDbgValueList(
9295 Var
, Expr
, NewLocOps
, AdditionalDependencies
, Dbg
->isIndirect(),
9296 Dbg
->getDebugLoc(), std::max(ToNode
->getIROrder(), Dbg
->getOrder()),
9298 ClonedDVs
.push_back(Clone
);
9300 if (InvalidateDbg
) {
9301 // Invalidate value and indicate the SDDbgValue should not be emitted.
9302 Dbg
->setIsInvalidated();
9303 Dbg
->setIsEmitted();
9307 for (SDDbgValue
*Dbg
: ClonedDVs
) {
9308 assert(is_contained(Dbg
->getSDNodes(), ToNode
) &&
9309 "Transferred DbgValues should depend on the new SDNode");
9310 AddDbgValue(Dbg
, false);
9314 void SelectionDAG::salvageDebugInfo(SDNode
&N
) {
9315 if (!N
.getHasDebugValue())
9318 SmallVector
<SDDbgValue
*, 2> ClonedDVs
;
9319 for (auto DV
: GetDbgValues(&N
)) {
9320 if (DV
->isInvalidated())
9322 switch (N
.getOpcode()) {
9326 SDValue N0
= N
.getOperand(0);
9327 SDValue N1
= N
.getOperand(1);
9328 if (!isConstantIntBuildVectorOrConstantInt(N0
) &&
9329 isConstantIntBuildVectorOrConstantInt(N1
)) {
9330 uint64_t Offset
= N
.getConstantOperandVal(1);
9332 // Rewrite an ADD constant node into a DIExpression. Since we are
9333 // performing arithmetic to compute the variable's *value* in the
9334 // DIExpression, we need to mark the expression with a
9335 // DW_OP_stack_value.
9336 auto *DIExpr
= DV
->getExpression();
9337 auto NewLocOps
= DV
->copyLocationOps();
9338 bool Changed
= false;
9339 for (size_t i
= 0; i
< NewLocOps
.size(); ++i
) {
9340 // We're not given a ResNo to compare against because the whole
9341 // node is going away. We know that any ISD::ADD only has one
9342 // result, so we can assume any node match is using the result.
9343 if (NewLocOps
[i
].getKind() != SDDbgOperand::SDNODE
||
9344 NewLocOps
[i
].getSDNode() != &N
)
9346 NewLocOps
[i
] = SDDbgOperand::fromNode(N0
.getNode(), N0
.getResNo());
9347 SmallVector
<uint64_t, 3> ExprOps
;
9348 DIExpression::appendOffset(ExprOps
, Offset
);
9349 DIExpr
= DIExpression::appendOpsToArg(DIExpr
, ExprOps
, i
, true);
9353 assert(Changed
&& "Salvage target doesn't use N");
9355 auto AdditionalDependencies
= DV
->getAdditionalDependencies();
9356 SDDbgValue
*Clone
= getDbgValueList(DV
->getVariable(), DIExpr
,
9357 NewLocOps
, AdditionalDependencies
,
9358 DV
->isIndirect(), DV
->getDebugLoc(),
9359 DV
->getOrder(), DV
->isVariadic());
9360 ClonedDVs
.push_back(Clone
);
9361 DV
->setIsInvalidated();
9363 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9364 N0
.getNode()->dumprFull(this);
9365 dbgs() << " into " << *DIExpr
<< '\n');
9370 for (SDDbgValue
*Dbg
: ClonedDVs
) {
9371 assert(!Dbg
->getSDNodes().empty() &&
9372 "Salvaged DbgValue should depend on a new SDNode");
9373 AddDbgValue(Dbg
, false);
9377 /// Creates a SDDbgLabel node.
9378 SDDbgLabel
*SelectionDAG::getDbgLabel(DILabel
*Label
,
9379 const DebugLoc
&DL
, unsigned O
) {
9380 assert(cast
<DILabel
>(Label
)->isValidLocationForIntrinsic(DL
) &&
9381 "Expected inlined-at fields to agree");
9382 return new (DbgInfo
->getAlloc()) SDDbgLabel(Label
, DL
, O
);
9387 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9388 /// pointed to by a use iterator is deleted, increment the use iterator
9389 /// so that it doesn't dangle.
9391 class RAUWUpdateListener
: public SelectionDAG::DAGUpdateListener
{
9392 SDNode::use_iterator
&UI
;
9393 SDNode::use_iterator
&UE
;
9395 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
9396 // Increment the iterator as needed.
9397 while (UI
!= UE
&& N
== *UI
)
9402 RAUWUpdateListener(SelectionDAG
&d
,
9403 SDNode::use_iterator
&ui
,
9404 SDNode::use_iterator
&ue
)
9405 : SelectionDAG::DAGUpdateListener(d
), UI(ui
), UE(ue
) {}
9408 } // end anonymous namespace
9410 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9411 /// This can cause recursive merging of nodes in the DAG.
9413 /// This version assumes From has a single result value.
9415 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN
, SDValue To
) {
9416 SDNode
*From
= FromN
.getNode();
9417 assert(From
->getNumValues() == 1 && FromN
.getResNo() == 0 &&
9418 "Cannot replace with this method!");
9419 assert(From
!= To
.getNode() && "Cannot replace uses of with self");
9421 // Preserve Debug Values
9422 transferDbgValues(FromN
, To
);
9424 // Iterate over all the existing uses of From. New uses will be added
9425 // to the beginning of the use list, which we avoid visiting.
9426 // This specifically avoids visiting uses of From that arise while the
9427 // replacement is happening, because any such uses would be the result
9428 // of CSE: If an existing node looks like From after one of its operands
9429 // is replaced by To, we don't want to replace of all its users with To
9430 // too. See PR3018 for more info.
9431 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
9432 RAUWUpdateListener
Listener(*this, UI
, UE
);
9436 // This node is about to morph, remove its old self from the CSE maps.
9437 RemoveNodeFromCSEMaps(User
);
9439 // A user can appear in a use list multiple times, and when this
9440 // happens the uses are usually next to each other in the list.
9441 // To help reduce the number of CSE recomputations, process all
9442 // the uses of this user that we can find this way.
9444 SDUse
&Use
= UI
.getUse();
9447 if (To
->isDivergent() != From
->isDivergent())
9448 updateDivergence(User
);
9449 } while (UI
!= UE
&& *UI
== User
);
9450 // Now that we have modified User, add it back to the CSE maps. If it
9451 // already exists there, recursively merge the results together.
9452 AddModifiedNodeToCSEMaps(User
);
9455 // If we just RAUW'd the root, take note.
9456 if (FromN
== getRoot())
9460 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9461 /// This can cause recursive merging of nodes in the DAG.
9463 /// This version assumes that for each value of From, there is a
9464 /// corresponding value in To in the same position with the same type.
9466 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
) {
9468 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
9469 assert((!From
->hasAnyUseOfValue(i
) ||
9470 From
->getValueType(i
) == To
->getValueType(i
)) &&
9471 "Cannot use this version of ReplaceAllUsesWith!");
9474 // Handle the trivial case.
9478 // Preserve Debug Info. Only do this if there's a use.
9479 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
9480 if (From
->hasAnyUseOfValue(i
)) {
9481 assert((i
< To
->getNumValues()) && "Invalid To location");
9482 transferDbgValues(SDValue(From
, i
), SDValue(To
, i
));
9485 // Iterate over just the existing users of From. See the comments in
9486 // the ReplaceAllUsesWith above.
9487 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
9488 RAUWUpdateListener
Listener(*this, UI
, UE
);
9492 // This node is about to morph, remove its old self from the CSE maps.
9493 RemoveNodeFromCSEMaps(User
);
9495 // A user can appear in a use list multiple times, and when this
9496 // happens the uses are usually next to each other in the list.
9497 // To help reduce the number of CSE recomputations, process all
9498 // the uses of this user that we can find this way.
9500 SDUse
&Use
= UI
.getUse();
9503 if (To
->isDivergent() != From
->isDivergent())
9504 updateDivergence(User
);
9505 } while (UI
!= UE
&& *UI
== User
);
9507 // Now that we have modified User, add it back to the CSE maps. If it
9508 // already exists there, recursively merge the results together.
9509 AddModifiedNodeToCSEMaps(User
);
9512 // If we just RAUW'd the root, take note.
9513 if (From
== getRoot().getNode())
9514 setRoot(SDValue(To
, getRoot().getResNo()));
9517 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9518 /// This can cause recursive merging of nodes in the DAG.
9520 /// This version can replace From with any result values. To must match the
9521 /// number and types of values returned by From.
9522 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, const SDValue
*To
) {
9523 if (From
->getNumValues() == 1) // Handle the simple case efficiently.
9524 return ReplaceAllUsesWith(SDValue(From
, 0), To
[0]);
9526 // Preserve Debug Info.
9527 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
9528 transferDbgValues(SDValue(From
, i
), To
[i
]);
9530 // Iterate over just the existing users of From. See the comments in
9531 // the ReplaceAllUsesWith above.
9532 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
9533 RAUWUpdateListener
Listener(*this, UI
, UE
);
9537 // This node is about to morph, remove its old self from the CSE maps.
9538 RemoveNodeFromCSEMaps(User
);
9540 // A user can appear in a use list multiple times, and when this happens the
9541 // uses are usually next to each other in the list. To help reduce the
9542 // number of CSE and divergence recomputations, process all the uses of this
9543 // user that we can find this way.
9544 bool To_IsDivergent
= false;
9546 SDUse
&Use
= UI
.getUse();
9547 const SDValue
&ToOp
= To
[Use
.getResNo()];
9550 To_IsDivergent
|= ToOp
->isDivergent();
9551 } while (UI
!= UE
&& *UI
== User
);
9553 if (To_IsDivergent
!= From
->isDivergent())
9554 updateDivergence(User
);
9556 // Now that we have modified User, add it back to the CSE maps. If it
9557 // already exists there, recursively merge the results together.
9558 AddModifiedNodeToCSEMaps(User
);
9561 // If we just RAUW'd the root, take note.
9562 if (From
== getRoot().getNode())
9563 setRoot(SDValue(To
[getRoot().getResNo()]));
9566 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9567 /// uses of other values produced by From.getNode() alone. The Deleted
9568 /// vector is handled the same way as for ReplaceAllUsesWith.
9569 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
){
9570 // Handle the really simple, really trivial case efficiently.
9571 if (From
== To
) return;
9573 // Handle the simple, trivial, case efficiently.
9574 if (From
.getNode()->getNumValues() == 1) {
9575 ReplaceAllUsesWith(From
, To
);
9579 // Preserve Debug Info.
9580 transferDbgValues(From
, To
);
9582 // Iterate over just the existing users of From. See the comments in
9583 // the ReplaceAllUsesWith above.
9584 SDNode::use_iterator UI
= From
.getNode()->use_begin(),
9585 UE
= From
.getNode()->use_end();
9586 RAUWUpdateListener
Listener(*this, UI
, UE
);
9589 bool UserRemovedFromCSEMaps
= false;
9591 // A user can appear in a use list multiple times, and when this
9592 // happens the uses are usually next to each other in the list.
9593 // To help reduce the number of CSE recomputations, process all
9594 // the uses of this user that we can find this way.
9596 SDUse
&Use
= UI
.getUse();
9598 // Skip uses of different values from the same node.
9599 if (Use
.getResNo() != From
.getResNo()) {
9604 // If this node hasn't been modified yet, it's still in the CSE maps,
9605 // so remove its old self from the CSE maps.
9606 if (!UserRemovedFromCSEMaps
) {
9607 RemoveNodeFromCSEMaps(User
);
9608 UserRemovedFromCSEMaps
= true;
9613 if (To
->isDivergent() != From
->isDivergent())
9614 updateDivergence(User
);
9615 } while (UI
!= UE
&& *UI
== User
);
9616 // We are iterating over all uses of the From node, so if a use
9617 // doesn't use the specific value, no changes are made.
9618 if (!UserRemovedFromCSEMaps
)
9621 // Now that we have modified User, add it back to the CSE maps. If it
9622 // already exists there, recursively merge the results together.
9623 AddModifiedNodeToCSEMaps(User
);
9626 // If we just RAUW'd the root, take note.
9627 if (From
== getRoot())
9633 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9634 /// to record information about a use.
9641 /// operator< - Sort Memos by User.
9642 bool operator<(const UseMemo
&L
, const UseMemo
&R
) {
9643 return (intptr_t)L
.User
< (intptr_t)R
.User
;
9646 } // end anonymous namespace
9648 bool SelectionDAG::calculateDivergence(SDNode
*N
) {
9649 if (TLI
->isSDNodeAlwaysUniform(N
)) {
9650 assert(!TLI
->isSDNodeSourceOfDivergence(N
, FLI
, DA
) &&
9651 "Conflicting divergence information!");
9654 if (TLI
->isSDNodeSourceOfDivergence(N
, FLI
, DA
))
9656 for (auto &Op
: N
->ops()) {
9657 if (Op
.Val
.getValueType() != MVT::Other
&& Op
.getNode()->isDivergent())
9663 void SelectionDAG::updateDivergence(SDNode
*N
) {
9664 SmallVector
<SDNode
*, 16> Worklist(1, N
);
9666 N
= Worklist
.pop_back_val();
9667 bool IsDivergent
= calculateDivergence(N
);
9668 if (N
->SDNodeBits
.IsDivergent
!= IsDivergent
) {
9669 N
->SDNodeBits
.IsDivergent
= IsDivergent
;
9670 llvm::append_range(Worklist
, N
->uses());
9672 } while (!Worklist
.empty());
9675 void SelectionDAG::CreateTopologicalOrder(std::vector
<SDNode
*> &Order
) {
9676 DenseMap
<SDNode
*, unsigned> Degree
;
9677 Order
.reserve(AllNodes
.size());
9678 for (auto &N
: allnodes()) {
9679 unsigned NOps
= N
.getNumOperands();
9682 Order
.push_back(&N
);
9684 for (size_t I
= 0; I
!= Order
.size(); ++I
) {
9685 SDNode
*N
= Order
[I
];
9686 for (auto U
: N
->uses()) {
9687 unsigned &UnsortedOps
= Degree
[U
];
9688 if (0 == --UnsortedOps
)
9695 void SelectionDAG::VerifyDAGDivergence() {
9696 std::vector
<SDNode
*> TopoOrder
;
9697 CreateTopologicalOrder(TopoOrder
);
9698 for (auto *N
: TopoOrder
) {
9699 assert(calculateDivergence(N
) == N
->isDivergent() &&
9700 "Divergence bit inconsistency detected");
9705 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9706 /// uses of other values produced by From.getNode() alone. The same value
9707 /// may appear in both the From and To list. The Deleted vector is
9708 /// handled the same way as for ReplaceAllUsesWith.
9709 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue
*From
,
9712 // Handle the simple, trivial case efficiently.
9714 return ReplaceAllUsesOfValueWith(*From
, *To
);
9716 transferDbgValues(*From
, *To
);
9718 // Read up all the uses and make records of them. This helps
9719 // processing new uses that are introduced during the
9720 // replacement process.
9721 SmallVector
<UseMemo
, 4> Uses
;
9722 for (unsigned i
= 0; i
!= Num
; ++i
) {
9723 unsigned FromResNo
= From
[i
].getResNo();
9724 SDNode
*FromNode
= From
[i
].getNode();
9725 for (SDNode::use_iterator UI
= FromNode
->use_begin(),
9726 E
= FromNode
->use_end(); UI
!= E
; ++UI
) {
9727 SDUse
&Use
= UI
.getUse();
9728 if (Use
.getResNo() == FromResNo
) {
9729 UseMemo Memo
= { *UI
, i
, &Use
};
9730 Uses
.push_back(Memo
);
9735 // Sort the uses, so that all the uses from a given User are together.
9738 for (unsigned UseIndex
= 0, UseIndexEnd
= Uses
.size();
9739 UseIndex
!= UseIndexEnd
; ) {
9740 // We know that this user uses some value of From. If it is the right
9741 // value, update it.
9742 SDNode
*User
= Uses
[UseIndex
].User
;
9744 // This node is about to morph, remove its old self from the CSE maps.
9745 RemoveNodeFromCSEMaps(User
);
9747 // The Uses array is sorted, so all the uses for a given User
9748 // are next to each other in the list.
9749 // To help reduce the number of CSE recomputations, process all
9750 // the uses of this user that we can find this way.
9752 unsigned i
= Uses
[UseIndex
].Index
;
9753 SDUse
&Use
= *Uses
[UseIndex
].Use
;
9757 } while (UseIndex
!= UseIndexEnd
&& Uses
[UseIndex
].User
== User
);
9759 // Now that we have modified User, add it back to the CSE maps. If it
9760 // already exists there, recursively merge the results together.
9761 AddModifiedNodeToCSEMaps(User
);
9765 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9766 /// based on their topological order. It returns the maximum id and a vector
9767 /// of the SDNodes* in assigned order by reference.
9768 unsigned SelectionDAG::AssignTopologicalOrder() {
9769 unsigned DAGSize
= 0;
9771 // SortedPos tracks the progress of the algorithm. Nodes before it are
9772 // sorted, nodes after it are unsorted. When the algorithm completes
9773 // it is at the end of the list.
9774 allnodes_iterator SortedPos
= allnodes_begin();
9776 // Visit all the nodes. Move nodes with no operands to the front of
9777 // the list immediately. Annotate nodes that do have operands with their
9778 // operand count. Before we do this, the Node Id fields of the nodes
9779 // may contain arbitrary values. After, the Node Id fields for nodes
9780 // before SortedPos will contain the topological sort index, and the
9781 // Node Id fields for nodes At SortedPos and after will contain the
9782 // count of outstanding operands.
9783 for (SDNode
&N
: llvm::make_early_inc_range(allnodes())) {
9784 checkForCycles(&N
, this);
9785 unsigned Degree
= N
.getNumOperands();
9787 // A node with no uses, add it to the result array immediately.
9788 N
.setNodeId(DAGSize
++);
9789 allnodes_iterator
Q(&N
);
9791 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(Q
));
9792 assert(SortedPos
!= AllNodes
.end() && "Overran node list");
9795 // Temporarily use the Node Id as scratch space for the degree count.
9796 N
.setNodeId(Degree
);
9800 // Visit all the nodes. As we iterate, move nodes into sorted order,
9801 // such that by the time the end is reached all nodes will be sorted.
9802 for (SDNode
&Node
: allnodes()) {
9804 checkForCycles(N
, this);
9805 // N is in sorted position, so all its uses have one less operand
9806 // that needs to be sorted.
9807 for (SDNode
*P
: N
->uses()) {
9808 unsigned Degree
= P
->getNodeId();
9809 assert(Degree
!= 0 && "Invalid node degree");
9812 // All of P's operands are sorted, so P may sorted now.
9813 P
->setNodeId(DAGSize
++);
9814 if (P
->getIterator() != SortedPos
)
9815 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(P
));
9816 assert(SortedPos
!= AllNodes
.end() && "Overran node list");
9819 // Update P's outstanding operand count.
9820 P
->setNodeId(Degree
);
9823 if (Node
.getIterator() == SortedPos
) {
9825 allnodes_iterator
I(N
);
9827 dbgs() << "Overran sorted position:\n";
9828 S
->dumprFull(this); dbgs() << "\n";
9829 dbgs() << "Checking if this is due to cycles\n";
9830 checkForCycles(this, true);
9832 llvm_unreachable(nullptr);
9836 assert(SortedPos
== AllNodes
.end() &&
9837 "Topological sort incomplete!");
9838 assert(AllNodes
.front().getOpcode() == ISD::EntryToken
&&
9839 "First node in topological sort is not the entry token!");
9840 assert(AllNodes
.front().getNodeId() == 0 &&
9841 "First node in topological sort has non-zero id!");
9842 assert(AllNodes
.front().getNumOperands() == 0 &&
9843 "First node in topological sort has operands!");
9844 assert(AllNodes
.back().getNodeId() == (int)DAGSize
-1 &&
9845 "Last node in topologic sort has unexpected id!");
9846 assert(AllNodes
.back().use_empty() &&
9847 "Last node in topologic sort has users!");
9848 assert(DAGSize
== allnodes_size() && "Node count mismatch!");
9852 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9853 /// value is produced by SD.
9854 void SelectionDAG::AddDbgValue(SDDbgValue
*DB
, bool isParameter
) {
9855 for (SDNode
*SD
: DB
->getSDNodes()) {
9858 assert(DbgInfo
->getSDDbgValues(SD
).empty() || SD
->getHasDebugValue());
9859 SD
->setHasDebugValue(true);
9861 DbgInfo
->add(DB
, isParameter
);
9864 void SelectionDAG::AddDbgLabel(SDDbgLabel
*DB
) { DbgInfo
->add(DB
); }
9866 SDValue
SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain
,
9867 SDValue NewMemOpChain
) {
9868 assert(isa
<MemSDNode
>(NewMemOpChain
) && "Expected a memop node");
9869 assert(NewMemOpChain
.getValueType() == MVT::Other
&& "Expected a token VT");
9870 // The new memory operation must have the same position as the old load in
9871 // terms of memory dependency. Create a TokenFactor for the old load and new
9872 // memory operation and update uses of the old load's output chain to use that
9874 if (OldChain
== NewMemOpChain
|| OldChain
.use_empty())
9875 return NewMemOpChain
;
9877 SDValue TokenFactor
= getNode(ISD::TokenFactor
, SDLoc(OldChain
), MVT::Other
,
9878 OldChain
, NewMemOpChain
);
9879 ReplaceAllUsesOfValueWith(OldChain
, TokenFactor
);
9880 UpdateNodeOperands(TokenFactor
.getNode(), OldChain
, NewMemOpChain
);
9884 SDValue
SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode
*OldLoad
,
9886 assert(isa
<MemSDNode
>(NewMemOp
.getNode()) && "Expected a memop node");
9887 SDValue OldChain
= SDValue(OldLoad
, 1);
9888 SDValue NewMemOpChain
= NewMemOp
.getValue(1);
9889 return makeEquivalentMemoryOrdering(OldChain
, NewMemOpChain
);
9892 SDValue
SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op
,
9893 Function
**OutFunction
) {
9894 assert(isa
<ExternalSymbolSDNode
>(Op
) && "Node should be an ExternalSymbol");
9896 auto *Symbol
= cast
<ExternalSymbolSDNode
>(Op
)->getSymbol();
9897 auto *Module
= MF
->getFunction().getParent();
9898 auto *Function
= Module
->getFunction(Symbol
);
9900 if (OutFunction
!= nullptr)
9901 *OutFunction
= Function
;
9903 if (Function
!= nullptr) {
9904 auto PtrTy
= TLI
->getPointerTy(getDataLayout(), Function
->getAddressSpace());
9905 return getGlobalAddress(Function
, SDLoc(Op
), PtrTy
);
9908 std::string ErrorStr
;
9909 raw_string_ostream
ErrorFormatter(ErrorStr
);
9910 ErrorFormatter
<< "Undefined external symbol ";
9911 ErrorFormatter
<< '"' << Symbol
<< '"';
9912 report_fatal_error(Twine(ErrorFormatter
.str()));
9915 //===----------------------------------------------------------------------===//
9917 //===----------------------------------------------------------------------===//
9919 bool llvm::isNullConstant(SDValue V
) {
9920 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(V
);
9921 return Const
!= nullptr && Const
->isZero();
9924 bool llvm::isNullFPConstant(SDValue V
) {
9925 ConstantFPSDNode
*Const
= dyn_cast
<ConstantFPSDNode
>(V
);
9926 return Const
!= nullptr && Const
->isZero() && !Const
->isNegative();
9929 bool llvm::isAllOnesConstant(SDValue V
) {
9930 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(V
);
9931 return Const
!= nullptr && Const
->isAllOnes();
9934 bool llvm::isOneConstant(SDValue V
) {
9935 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(V
);
9936 return Const
!= nullptr && Const
->isOne();
9939 SDValue
llvm::peekThroughBitcasts(SDValue V
) {
9940 while (V
.getOpcode() == ISD::BITCAST
)
9941 V
= V
.getOperand(0);
9945 SDValue
llvm::peekThroughOneUseBitcasts(SDValue V
) {
9946 while (V
.getOpcode() == ISD::BITCAST
&& V
.getOperand(0).hasOneUse())
9947 V
= V
.getOperand(0);
9951 SDValue
llvm::peekThroughExtractSubvectors(SDValue V
) {
9952 while (V
.getOpcode() == ISD::EXTRACT_SUBVECTOR
)
9953 V
= V
.getOperand(0);
9957 bool llvm::isBitwiseNot(SDValue V
, bool AllowUndefs
) {
9958 if (V
.getOpcode() != ISD::XOR
)
9960 V
= peekThroughBitcasts(V
.getOperand(1));
9961 unsigned NumBits
= V
.getScalarValueSizeInBits();
9963 isConstOrConstSplat(V
, AllowUndefs
, /*AllowTruncation*/ true);
9964 return C
&& (C
->getAPIntValue().countTrailingOnes() >= NumBits
);
9967 ConstantSDNode
*llvm::isConstOrConstSplat(SDValue N
, bool AllowUndefs
,
9968 bool AllowTruncation
) {
9969 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
))
9972 // SplatVectors can truncate their operands. Ignore that case here unless
9973 // AllowTruncation is set.
9974 if (N
->getOpcode() == ISD::SPLAT_VECTOR
) {
9975 EVT VecEltVT
= N
->getValueType(0).getVectorElementType();
9976 if (auto *CN
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
9977 EVT CVT
= CN
->getValueType(0);
9978 assert(CVT
.bitsGE(VecEltVT
) && "Illegal splat_vector element extension");
9979 if (AllowTruncation
|| CVT
== VecEltVT
)
9984 if (BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
9985 BitVector UndefElements
;
9986 ConstantSDNode
*CN
= BV
->getConstantSplatNode(&UndefElements
);
9988 // BuildVectors can truncate their operands. Ignore that case here unless
9989 // AllowTruncation is set.
9990 if (CN
&& (UndefElements
.none() || AllowUndefs
)) {
9991 EVT CVT
= CN
->getValueType(0);
9992 EVT NSVT
= N
.getValueType().getScalarType();
9993 assert(CVT
.bitsGE(NSVT
) && "Illegal build vector element extension");
9994 if (AllowTruncation
|| (CVT
== NSVT
))
10002 ConstantSDNode
*llvm::isConstOrConstSplat(SDValue N
, const APInt
&DemandedElts
,
10004 bool AllowTruncation
) {
10005 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
))
10008 if (BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
10009 BitVector UndefElements
;
10010 ConstantSDNode
*CN
= BV
->getConstantSplatNode(DemandedElts
, &UndefElements
);
10012 // BuildVectors can truncate their operands. Ignore that case here unless
10013 // AllowTruncation is set.
10014 if (CN
&& (UndefElements
.none() || AllowUndefs
)) {
10015 EVT CVT
= CN
->getValueType(0);
10016 EVT NSVT
= N
.getValueType().getScalarType();
10017 assert(CVT
.bitsGE(NSVT
) && "Illegal build vector element extension");
10018 if (AllowTruncation
|| (CVT
== NSVT
))
10026 ConstantFPSDNode
*llvm::isConstOrConstSplatFP(SDValue N
, bool AllowUndefs
) {
10027 if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(N
))
10030 if (BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
10031 BitVector UndefElements
;
10032 ConstantFPSDNode
*CN
= BV
->getConstantFPSplatNode(&UndefElements
);
10033 if (CN
&& (UndefElements
.none() || AllowUndefs
))
10037 if (N
.getOpcode() == ISD::SPLAT_VECTOR
)
10038 if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(N
.getOperand(0)))
10044 ConstantFPSDNode
*llvm::isConstOrConstSplatFP(SDValue N
,
10045 const APInt
&DemandedElts
,
10046 bool AllowUndefs
) {
10047 if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(N
))
10050 if (BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
10051 BitVector UndefElements
;
10052 ConstantFPSDNode
*CN
=
10053 BV
->getConstantFPSplatNode(DemandedElts
, &UndefElements
);
10054 if (CN
&& (UndefElements
.none() || AllowUndefs
))
10061 bool llvm::isNullOrNullSplat(SDValue N
, bool AllowUndefs
) {
10062 // TODO: may want to use peekThroughBitcast() here.
10063 ConstantSDNode
*C
=
10064 isConstOrConstSplat(N
, AllowUndefs
, /*AllowTruncation=*/true);
10065 return C
&& C
->isZero();
10068 bool llvm::isOneOrOneSplat(SDValue N
, bool AllowUndefs
) {
10069 // TODO: may want to use peekThroughBitcast() here.
10070 unsigned BitWidth
= N
.getScalarValueSizeInBits();
10071 ConstantSDNode
*C
= isConstOrConstSplat(N
, AllowUndefs
);
10072 return C
&& C
->isOne() && C
->getValueSizeInBits(0) == BitWidth
;
10075 bool llvm::isAllOnesOrAllOnesSplat(SDValue N
, bool AllowUndefs
) {
10076 N
= peekThroughBitcasts(N
);
10077 unsigned BitWidth
= N
.getScalarValueSizeInBits();
10078 ConstantSDNode
*C
= isConstOrConstSplat(N
, AllowUndefs
);
10079 return C
&& C
->isAllOnes() && C
->getValueSizeInBits(0) == BitWidth
;
10082 HandleSDNode::~HandleSDNode() {
10086 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc
, unsigned Order
,
10087 const DebugLoc
&DL
,
10088 const GlobalValue
*GA
, EVT VT
,
10089 int64_t o
, unsigned TF
)
10090 : SDNode(Opc
, Order
, DL
, getSDVTList(VT
)), Offset(o
), TargetFlags(TF
) {
10094 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order
, const DebugLoc
&dl
,
10095 EVT VT
, unsigned SrcAS
,
10097 : SDNode(ISD::ADDRSPACECAST
, Order
, dl
, getSDVTList(VT
)),
10098 SrcAddrSpace(SrcAS
), DestAddrSpace(DestAS
) {}
10100 MemSDNode::MemSDNode(unsigned Opc
, unsigned Order
, const DebugLoc
&dl
,
10101 SDVTList VTs
, EVT memvt
, MachineMemOperand
*mmo
)
10102 : SDNode(Opc
, Order
, dl
, VTs
), MemoryVT(memvt
), MMO(mmo
) {
10103 MemSDNodeBits
.IsVolatile
= MMO
->isVolatile();
10104 MemSDNodeBits
.IsNonTemporal
= MMO
->isNonTemporal();
10105 MemSDNodeBits
.IsDereferenceable
= MMO
->isDereferenceable();
10106 MemSDNodeBits
.IsInvariant
= MMO
->isInvariant();
10108 // We check here that the size of the memory operand fits within the size of
10109 // the MMO. This is because the MMO might indicate only a possible address
10110 // range instead of specifying the affected memory addresses precisely.
10111 // TODO: Make MachineMemOperands aware of scalable vectors.
10112 assert(memvt
.getStoreSize().getKnownMinSize() <= MMO
->getSize() &&
10116 /// Profile - Gather unique data for the node.
10118 void SDNode::Profile(FoldingSetNodeID
&ID
) const {
10119 AddNodeIDNode(ID
, this);
10125 std::vector
<EVT
> VTs
;
10128 VTs
.reserve(MVT::VALUETYPE_SIZE
);
10129 for (unsigned i
= 0; i
< MVT::VALUETYPE_SIZE
; ++i
)
10130 VTs
.push_back(MVT((MVT::SimpleValueType
)i
));
10134 } // end anonymous namespace
10136 static ManagedStatic
<std::set
<EVT
, EVT::compareRawBits
>> EVTs
;
10137 static ManagedStatic
<EVTArray
> SimpleVTArray
;
10138 static ManagedStatic
<sys::SmartMutex
<true>> VTMutex
;
10140 /// getValueTypeList - Return a pointer to the specified value type.
10142 const EVT
*SDNode::getValueTypeList(EVT VT
) {
10143 if (VT
.isExtended()) {
10144 sys::SmartScopedLock
<true> Lock(*VTMutex
);
10145 return &(*EVTs
->insert(VT
).first
);
10147 assert(VT
.getSimpleVT() < MVT::VALUETYPE_SIZE
&& "Value type out of range!");
10148 return &SimpleVTArray
->VTs
[VT
.getSimpleVT().SimpleTy
];
10151 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10152 /// indicated value. This method ignores uses of other values defined by this
10154 bool SDNode::hasNUsesOfValue(unsigned NUses
, unsigned Value
) const {
10155 assert(Value
< getNumValues() && "Bad value!");
10157 // TODO: Only iterate over uses of a given value of the node
10158 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
) {
10159 if (UI
.getUse().getResNo() == Value
) {
10166 // Found exactly the right number of uses?
10170 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10171 /// value. This method ignores uses of other values defined by this operation.
10172 bool SDNode::hasAnyUseOfValue(unsigned Value
) const {
10173 assert(Value
< getNumValues() && "Bad value!");
10175 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
)
10176 if (UI
.getUse().getResNo() == Value
)
10182 /// isOnlyUserOf - Return true if this node is the only use of N.
10183 bool SDNode::isOnlyUserOf(const SDNode
*N
) const {
10185 for (const SDNode
*User
: N
->uses()) {
10195 /// Return true if the only users of N are contained in Nodes.
10196 bool SDNode::areOnlyUsersOf(ArrayRef
<const SDNode
*> Nodes
, const SDNode
*N
) {
10198 for (const SDNode
*User
: N
->uses()) {
10199 if (llvm::is_contained(Nodes
, User
))
10208 /// isOperand - Return true if this node is an operand of N.
10209 bool SDValue::isOperandOf(const SDNode
*N
) const {
10210 return is_contained(N
->op_values(), *this);
10213 bool SDNode::isOperandOf(const SDNode
*N
) const {
10214 return any_of(N
->op_values(),
10215 [this](SDValue Op
) { return this == Op
.getNode(); });
10218 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10219 /// be a chain) reaches the specified operand without crossing any
10220 /// side-effecting instructions on any chain path. In practice, this looks
10221 /// through token factors and non-volatile loads. In order to remain efficient,
10222 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10224 /// Note that we only need to examine chains when we're searching for
10225 /// side-effects; SelectionDAG requires that all side-effects are represented
10226 /// by chains, even if another operand would force a specific ordering. This
10227 /// constraint is necessary to allow transformations like splitting loads.
10228 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest
,
10229 unsigned Depth
) const {
10230 if (*this == Dest
) return true;
10232 // Don't search too deeply, we just want to be able to see through
10233 // TokenFactor's etc.
10234 if (Depth
== 0) return false;
10236 // If this is a token factor, all inputs to the TF happen in parallel.
10237 if (getOpcode() == ISD::TokenFactor
) {
10238 // First, try a shallow search.
10239 if (is_contained((*this)->ops(), Dest
)) {
10240 // We found the chain we want as an operand of this TokenFactor.
10241 // Essentially, we reach the chain without side-effects if we could
10242 // serialize the TokenFactor into a simple chain of operations with
10243 // Dest as the last operation. This is automatically true if the
10244 // chain has one use: there are no other ordering constraints.
10245 // If the chain has more than one use, we give up: some other
10246 // use of Dest might force a side-effect between Dest and the current
10248 if (Dest
.hasOneUse())
10251 // Next, try a deep search: check whether every operand of the TokenFactor
10253 return llvm::all_of((*this)->ops(), [=](SDValue Op
) {
10254 return Op
.reachesChainWithoutSideEffects(Dest
, Depth
- 1);
10258 // Loads don't have side effects, look through them.
10259 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(*this)) {
10260 if (Ld
->isUnordered())
10261 return Ld
->getChain().reachesChainWithoutSideEffects(Dest
, Depth
-1);
10266 bool SDNode::hasPredecessor(const SDNode
*N
) const {
10267 SmallPtrSet
<const SDNode
*, 32> Visited
;
10268 SmallVector
<const SDNode
*, 16> Worklist
;
10269 Worklist
.push_back(this);
10270 return hasPredecessorHelper(N
, Visited
, Worklist
);
10273 void SDNode::intersectFlagsWith(const SDNodeFlags Flags
) {
10274 this->Flags
.intersectWith(Flags
);
10278 SelectionDAG::matchBinOpReduction(SDNode
*Extract
, ISD::NodeType
&BinOp
,
10279 ArrayRef
<ISD::NodeType
> CandidateBinOps
,
10280 bool AllowPartials
) {
10281 // The pattern must end in an extract from index 0.
10282 if (Extract
->getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
10283 !isNullConstant(Extract
->getOperand(1)))
10286 // Match against one of the candidate binary ops.
10287 SDValue Op
= Extract
->getOperand(0);
10288 if (llvm::none_of(CandidateBinOps
, [Op
](ISD::NodeType BinOp
) {
10289 return Op
.getOpcode() == unsigned(BinOp
);
10293 // Floating-point reductions may require relaxed constraints on the final step
10294 // of the reduction because they may reorder intermediate operations.
10295 unsigned CandidateBinOp
= Op
.getOpcode();
10296 if (Op
.getValueType().isFloatingPoint()) {
10297 SDNodeFlags Flags
= Op
->getFlags();
10298 switch (CandidateBinOp
) {
10300 if (!Flags
.hasNoSignedZeros() || !Flags
.hasAllowReassociation())
10304 llvm_unreachable("Unhandled FP opcode for binop reduction");
10308 // Matching failed - attempt to see if we did enough stages that a partial
10309 // reduction from a subvector is possible.
10310 auto PartialReduction
= [&](SDValue Op
, unsigned NumSubElts
) {
10311 if (!AllowPartials
|| !Op
)
10313 EVT OpVT
= Op
.getValueType();
10314 EVT OpSVT
= OpVT
.getScalarType();
10315 EVT SubVT
= EVT::getVectorVT(*getContext(), OpSVT
, NumSubElts
);
10316 if (!TLI
->isExtractSubvectorCheap(SubVT
, OpVT
, 0))
10318 BinOp
= (ISD::NodeType
)CandidateBinOp
;
10319 return getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(Op
), SubVT
, Op
,
10320 getVectorIdxConstant(0, SDLoc(Op
)));
10323 // At each stage, we're looking for something that looks like:
10324 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10325 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10326 // i32 undef, i32 undef, i32 undef, i32 undef>
10327 // %a = binop <8 x i32> %op, %s
10328 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10329 // we expect something like:
10330 // <4,5,6,7,u,u,u,u>
10331 // <2,3,u,u,u,u,u,u>
10332 // <1,u,u,u,u,u,u,u>
10333 // While a partial reduction match would be:
10334 // <2,3,u,u,u,u,u,u>
10335 // <1,u,u,u,u,u,u,u>
10336 unsigned Stages
= Log2_32(Op
.getValueType().getVectorNumElements());
10338 for (unsigned i
= 0; i
< Stages
; ++i
) {
10339 unsigned MaskEnd
= (1 << i
);
10341 if (Op
.getOpcode() != CandidateBinOp
)
10342 return PartialReduction(PrevOp
, MaskEnd
);
10344 SDValue Op0
= Op
.getOperand(0);
10345 SDValue Op1
= Op
.getOperand(1);
10347 ShuffleVectorSDNode
*Shuffle
= dyn_cast
<ShuffleVectorSDNode
>(Op0
);
10351 Shuffle
= dyn_cast
<ShuffleVectorSDNode
>(Op1
);
10355 // The first operand of the shuffle should be the same as the other operand
10357 if (!Shuffle
|| Shuffle
->getOperand(0) != Op
)
10358 return PartialReduction(PrevOp
, MaskEnd
);
10360 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10361 for (int Index
= 0; Index
< (int)MaskEnd
; ++Index
)
10362 if (Shuffle
->getMaskElt(Index
) != (int)(MaskEnd
+ Index
))
10363 return PartialReduction(PrevOp
, MaskEnd
);
10368 // Handle subvector reductions, which tend to appear after the shuffle
10369 // reduction stages.
10370 while (Op
.getOpcode() == CandidateBinOp
) {
10371 unsigned NumElts
= Op
.getValueType().getVectorNumElements();
10372 SDValue Op0
= Op
.getOperand(0);
10373 SDValue Op1
= Op
.getOperand(1);
10374 if (Op0
.getOpcode() != ISD::EXTRACT_SUBVECTOR
||
10375 Op1
.getOpcode() != ISD::EXTRACT_SUBVECTOR
||
10376 Op0
.getOperand(0) != Op1
.getOperand(0))
10378 SDValue Src
= Op0
.getOperand(0);
10379 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
10380 if (NumSrcElts
!= (2 * NumElts
))
10382 if (!(Op0
.getConstantOperandAPInt(1) == 0 &&
10383 Op1
.getConstantOperandAPInt(1) == NumElts
) &&
10384 !(Op1
.getConstantOperandAPInt(1) == 0 &&
10385 Op0
.getConstantOperandAPInt(1) == NumElts
))
10390 BinOp
= (ISD::NodeType
)CandidateBinOp
;
10394 SDValue
SelectionDAG::UnrollVectorOp(SDNode
*N
, unsigned ResNE
) {
10395 assert(N
->getNumValues() == 1 &&
10396 "Can't unroll a vector with multiple results!");
10398 EVT VT
= N
->getValueType(0);
10399 unsigned NE
= VT
.getVectorNumElements();
10400 EVT EltVT
= VT
.getVectorElementType();
10403 SmallVector
<SDValue
, 8> Scalars
;
10404 SmallVector
<SDValue
, 4> Operands(N
->getNumOperands());
10406 // If ResNE is 0, fully unroll the vector op.
10409 else if (NE
> ResNE
)
10413 for (i
= 0; i
!= NE
; ++i
) {
10414 for (unsigned j
= 0, e
= N
->getNumOperands(); j
!= e
; ++j
) {
10415 SDValue Operand
= N
->getOperand(j
);
10416 EVT OperandVT
= Operand
.getValueType();
10417 if (OperandVT
.isVector()) {
10418 // A vector operand; extract a single element.
10419 EVT OperandEltVT
= OperandVT
.getVectorElementType();
10420 Operands
[j
] = getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, OperandEltVT
,
10421 Operand
, getVectorIdxConstant(i
, dl
));
10423 // A scalar operand; just use it as is.
10424 Operands
[j
] = Operand
;
10428 switch (N
->getOpcode()) {
10430 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
, Operands
,
10435 Scalars
.push_back(getNode(ISD::SELECT
, dl
, EltVT
, Operands
));
10442 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
, Operands
[0],
10443 getShiftAmountOperand(Operands
[0].getValueType(),
10446 case ISD::SIGN_EXTEND_INREG
: {
10447 EVT ExtVT
= cast
<VTSDNode
>(Operands
[1])->getVT().getVectorElementType();
10448 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
,
10450 getValueType(ExtVT
)));
10455 for (; i
< ResNE
; ++i
)
10456 Scalars
.push_back(getUNDEF(EltVT
));
10458 EVT VecVT
= EVT::getVectorVT(*getContext(), EltVT
, ResNE
);
10459 return getBuildVector(VecVT
, dl
, Scalars
);
10462 std::pair
<SDValue
, SDValue
> SelectionDAG::UnrollVectorOverflowOp(
10463 SDNode
*N
, unsigned ResNE
) {
10464 unsigned Opcode
= N
->getOpcode();
10465 assert((Opcode
== ISD::UADDO
|| Opcode
== ISD::SADDO
||
10466 Opcode
== ISD::USUBO
|| Opcode
== ISD::SSUBO
||
10467 Opcode
== ISD::UMULO
|| Opcode
== ISD::SMULO
) &&
10468 "Expected an overflow opcode");
10470 EVT ResVT
= N
->getValueType(0);
10471 EVT OvVT
= N
->getValueType(1);
10472 EVT ResEltVT
= ResVT
.getVectorElementType();
10473 EVT OvEltVT
= OvVT
.getVectorElementType();
10476 // If ResNE is 0, fully unroll the vector op.
10477 unsigned NE
= ResVT
.getVectorNumElements();
10480 else if (NE
> ResNE
)
10483 SmallVector
<SDValue
, 8> LHSScalars
;
10484 SmallVector
<SDValue
, 8> RHSScalars
;
10485 ExtractVectorElements(N
->getOperand(0), LHSScalars
, 0, NE
);
10486 ExtractVectorElements(N
->getOperand(1), RHSScalars
, 0, NE
);
10488 EVT SVT
= TLI
->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT
);
10489 SDVTList VTs
= getVTList(ResEltVT
, SVT
);
10490 SmallVector
<SDValue
, 8> ResScalars
;
10491 SmallVector
<SDValue
, 8> OvScalars
;
10492 for (unsigned i
= 0; i
< NE
; ++i
) {
10493 SDValue Res
= getNode(Opcode
, dl
, VTs
, LHSScalars
[i
], RHSScalars
[i
]);
10495 getSelect(dl
, OvEltVT
, Res
.getValue(1),
10496 getBoolConstant(true, dl
, OvEltVT
, ResVT
),
10497 getConstant(0, dl
, OvEltVT
));
10499 ResScalars
.push_back(Res
);
10500 OvScalars
.push_back(Ov
);
10503 ResScalars
.append(ResNE
- NE
, getUNDEF(ResEltVT
));
10504 OvScalars
.append(ResNE
- NE
, getUNDEF(OvEltVT
));
10506 EVT NewResVT
= EVT::getVectorVT(*getContext(), ResEltVT
, ResNE
);
10507 EVT NewOvVT
= EVT::getVectorVT(*getContext(), OvEltVT
, ResNE
);
10508 return std::make_pair(getBuildVector(NewResVT
, dl
, ResScalars
),
10509 getBuildVector(NewOvVT
, dl
, OvScalars
));
10512 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode
*LD
,
10516 if (LD
->isVolatile() || Base
->isVolatile())
10518 // TODO: probably too restrictive for atomics, revisit
10519 if (!LD
->isSimple())
10521 if (LD
->isIndexed() || Base
->isIndexed())
10523 if (LD
->getChain() != Base
->getChain())
10525 EVT VT
= LD
->getValueType(0);
10526 if (VT
.getSizeInBits() / 8 != Bytes
)
10529 auto BaseLocDecomp
= BaseIndexOffset::match(Base
, *this);
10530 auto LocDecomp
= BaseIndexOffset::match(LD
, *this);
10532 int64_t Offset
= 0;
10533 if (BaseLocDecomp
.equalBaseIndex(LocDecomp
, *this, Offset
))
10534 return (Dist
* Bytes
== Offset
);
10538 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10539 /// if it cannot be inferred.
10540 MaybeAlign
SelectionDAG::InferPtrAlign(SDValue Ptr
) const {
10541 // If this is a GlobalAddress + cst, return the alignment.
10542 const GlobalValue
*GV
= nullptr;
10543 int64_t GVOffset
= 0;
10544 if (TLI
->isGAPlusOffset(Ptr
.getNode(), GV
, GVOffset
)) {
10545 unsigned PtrWidth
= getDataLayout().getPointerTypeSizeInBits(GV
->getType());
10546 KnownBits
Known(PtrWidth
);
10547 llvm::computeKnownBits(GV
, Known
, getDataLayout());
10548 unsigned AlignBits
= Known
.countMinTrailingZeros();
10550 return commonAlignment(Align(1ull << std::min(31U, AlignBits
)), GVOffset
);
10553 // If this is a direct reference to a stack slot, use information about the
10554 // stack slot's alignment.
10555 int FrameIdx
= INT_MIN
;
10556 int64_t FrameOffset
= 0;
10557 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
)) {
10558 FrameIdx
= FI
->getIndex();
10559 } else if (isBaseWithConstantOffset(Ptr
) &&
10560 isa
<FrameIndexSDNode
>(Ptr
.getOperand(0))) {
10562 FrameIdx
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
10563 FrameOffset
= Ptr
.getConstantOperandVal(1);
10566 if (FrameIdx
!= INT_MIN
) {
10567 const MachineFrameInfo
&MFI
= getMachineFunction().getFrameInfo();
10568 return commonAlignment(MFI
.getObjectAlign(FrameIdx
), FrameOffset
);
10574 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10575 /// which is split (or expanded) into two not necessarily identical pieces.
10576 std::pair
<EVT
, EVT
> SelectionDAG::GetSplitDestVTs(const EVT
&VT
) const {
10577 // Currently all types are split in half.
10579 if (!VT
.isVector())
10580 LoVT
= HiVT
= TLI
->getTypeToTransformTo(*getContext(), VT
);
10582 LoVT
= HiVT
= VT
.getHalfNumVectorElementsVT(*getContext());
10584 return std::make_pair(LoVT
, HiVT
);
10587 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10588 /// type, dependent on an enveloping VT that has been split into two identical
10589 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10590 std::pair
<EVT
, EVT
>
10591 SelectionDAG::GetDependentSplitDestVTs(const EVT
&VT
, const EVT
&EnvVT
,
10592 bool *HiIsEmpty
) const {
10593 EVT EltTp
= VT
.getVectorElementType();
10595 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty)
10596 // custom VL=9 with enveloping VL=8/8 yields 8/1
10597 // custom VL=10 with enveloping VL=8/8 yields 8/2
10599 ElementCount VTNumElts
= VT
.getVectorElementCount();
10600 ElementCount EnvNumElts
= EnvVT
.getVectorElementCount();
10601 assert(VTNumElts
.isScalable() == EnvNumElts
.isScalable() &&
10602 "Mixing fixed width and scalable vectors when enveloping a type");
10604 if (VTNumElts
.getKnownMinValue() > EnvNumElts
.getKnownMinValue()) {
10605 LoVT
= EVT::getVectorVT(*getContext(), EltTp
, EnvNumElts
);
10606 HiVT
= EVT::getVectorVT(*getContext(), EltTp
, VTNumElts
- EnvNumElts
);
10607 *HiIsEmpty
= false;
10609 // Flag that hi type has zero storage size, but return split envelop type
10610 // (this would be easier if vector types with zero elements were allowed).
10611 LoVT
= EVT::getVectorVT(*getContext(), EltTp
, VTNumElts
);
10612 HiVT
= EVT::getVectorVT(*getContext(), EltTp
, EnvNumElts
);
10615 return std::make_pair(LoVT
, HiVT
);
10618 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10620 std::pair
<SDValue
, SDValue
>
10621 SelectionDAG::SplitVector(const SDValue
&N
, const SDLoc
&DL
, const EVT
&LoVT
,
10623 assert(LoVT
.isScalableVector() == HiVT
.isScalableVector() &&
10624 LoVT
.isScalableVector() == N
.getValueType().isScalableVector() &&
10625 "Splitting vector with an invalid mixture of fixed and scalable "
10627 assert(LoVT
.getVectorMinNumElements() + HiVT
.getVectorMinNumElements() <=
10628 N
.getValueType().getVectorMinNumElements() &&
10629 "More vector elements requested than available!");
10632 getNode(ISD::EXTRACT_SUBVECTOR
, DL
, LoVT
, N
, getVectorIdxConstant(0, DL
));
10633 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10634 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10635 // IDX with the runtime scaling factor of the result vector type. For
10636 // fixed-width result vectors, that runtime scaling factor is 1.
10637 Hi
= getNode(ISD::EXTRACT_SUBVECTOR
, DL
, HiVT
, N
,
10638 getVectorIdxConstant(LoVT
.getVectorMinNumElements(), DL
));
10639 return std::make_pair(Lo
, Hi
);
10642 std::pair
<SDValue
, SDValue
> SelectionDAG::SplitEVL(SDValue N
, EVT VecVT
,
10644 // Split the vector length parameter.
10645 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
10646 EVT VT
= N
.getValueType();
10647 assert(VecVT
.getVectorElementCount().isKnownEven() &&
10648 "Expecting the mask to be an evenly-sized vector");
10649 unsigned HalfMinNumElts
= VecVT
.getVectorMinNumElements() / 2;
10650 SDValue HalfNumElts
=
10651 VecVT
.isFixedLengthVector()
10652 ? getConstant(HalfMinNumElts
, DL
, VT
)
10653 : getVScale(DL
, VT
, APInt(VT
.getScalarSizeInBits(), HalfMinNumElts
));
10654 SDValue Lo
= getNode(ISD::UMIN
, DL
, VT
, N
, HalfNumElts
);
10655 SDValue Hi
= getNode(ISD::USUBSAT
, DL
, VT
, N
, HalfNumElts
);
10656 return std::make_pair(Lo
, Hi
);
10659 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10660 SDValue
SelectionDAG::WidenVector(const SDValue
&N
, const SDLoc
&DL
) {
10661 EVT VT
= N
.getValueType();
10662 EVT WideVT
= EVT::getVectorVT(*getContext(), VT
.getVectorElementType(),
10663 NextPowerOf2(VT
.getVectorNumElements()));
10664 return getNode(ISD::INSERT_SUBVECTOR
, DL
, WideVT
, getUNDEF(WideVT
), N
,
10665 getVectorIdxConstant(0, DL
));
10668 void SelectionDAG::ExtractVectorElements(SDValue Op
,
10669 SmallVectorImpl
<SDValue
> &Args
,
10670 unsigned Start
, unsigned Count
,
10672 EVT VT
= Op
.getValueType();
10674 Count
= VT
.getVectorNumElements();
10675 if (EltVT
== EVT())
10676 EltVT
= VT
.getVectorElementType();
10678 for (unsigned i
= Start
, e
= Start
+ Count
; i
!= e
; ++i
) {
10679 Args
.push_back(getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, EltVT
, Op
,
10680 getVectorIdxConstant(i
, SL
)));
10684 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10685 unsigned GlobalAddressSDNode::getAddressSpace() const {
10686 return getGlobal()->getType()->getAddressSpace();
10689 Type
*ConstantPoolSDNode::getType() const {
10690 if (isMachineConstantPoolEntry())
10691 return Val
.MachineCPVal
->getType();
10692 return Val
.ConstVal
->getType();
10695 bool BuildVectorSDNode::isConstantSplat(APInt
&SplatValue
, APInt
&SplatUndef
,
10696 unsigned &SplatBitSize
,
10697 bool &HasAnyUndefs
,
10698 unsigned MinSplatBits
,
10699 bool IsBigEndian
) const {
10700 EVT VT
= getValueType(0);
10701 assert(VT
.isVector() && "Expected a vector type");
10702 unsigned VecWidth
= VT
.getSizeInBits();
10703 if (MinSplatBits
> VecWidth
)
10706 // FIXME: The widths are based on this node's type, but build vectors can
10707 // truncate their operands.
10708 SplatValue
= APInt(VecWidth
, 0);
10709 SplatUndef
= APInt(VecWidth
, 0);
10711 // Get the bits. Bits with undefined values (when the corresponding element
10712 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10713 // in SplatValue. If any of the values are not constant, give up and return
10715 unsigned int NumOps
= getNumOperands();
10716 assert(NumOps
> 0 && "isConstantSplat has 0-size build vector");
10717 unsigned EltWidth
= VT
.getScalarSizeInBits();
10719 for (unsigned j
= 0; j
< NumOps
; ++j
) {
10720 unsigned i
= IsBigEndian
? NumOps
- 1 - j
: j
;
10721 SDValue OpVal
= getOperand(i
);
10722 unsigned BitPos
= j
* EltWidth
;
10724 if (OpVal
.isUndef())
10725 SplatUndef
.setBits(BitPos
, BitPos
+ EltWidth
);
10726 else if (auto *CN
= dyn_cast
<ConstantSDNode
>(OpVal
))
10727 SplatValue
.insertBits(CN
->getAPIntValue().zextOrTrunc(EltWidth
), BitPos
);
10728 else if (auto *CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
))
10729 SplatValue
.insertBits(CN
->getValueAPF().bitcastToAPInt(), BitPos
);
10734 // The build_vector is all constants or undefs. Find the smallest element
10735 // size that splats the vector.
10736 HasAnyUndefs
= (SplatUndef
!= 0);
10738 // FIXME: This does not work for vectors with elements less than 8 bits.
10739 while (VecWidth
> 8) {
10740 unsigned HalfSize
= VecWidth
/ 2;
10741 APInt HighValue
= SplatValue
.extractBits(HalfSize
, HalfSize
);
10742 APInt LowValue
= SplatValue
.extractBits(HalfSize
, 0);
10743 APInt HighUndef
= SplatUndef
.extractBits(HalfSize
, HalfSize
);
10744 APInt LowUndef
= SplatUndef
.extractBits(HalfSize
, 0);
10746 // If the two halves do not match (ignoring undef bits), stop here.
10747 if ((HighValue
& ~LowUndef
) != (LowValue
& ~HighUndef
) ||
10748 MinSplatBits
> HalfSize
)
10751 SplatValue
= HighValue
| LowValue
;
10752 SplatUndef
= HighUndef
& LowUndef
;
10754 VecWidth
= HalfSize
;
10757 SplatBitSize
= VecWidth
;
10761 SDValue
BuildVectorSDNode::getSplatValue(const APInt
&DemandedElts
,
10762 BitVector
*UndefElements
) const {
10763 unsigned NumOps
= getNumOperands();
10764 if (UndefElements
) {
10765 UndefElements
->clear();
10766 UndefElements
->resize(NumOps
);
10768 assert(NumOps
== DemandedElts
.getBitWidth() && "Unexpected vector size");
10772 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
10773 if (!DemandedElts
[i
])
10775 SDValue Op
= getOperand(i
);
10776 if (Op
.isUndef()) {
10778 (*UndefElements
)[i
] = true;
10779 } else if (!Splatted
) {
10781 } else if (Splatted
!= Op
) {
10787 unsigned FirstDemandedIdx
= DemandedElts
.countTrailingZeros();
10788 assert(getOperand(FirstDemandedIdx
).isUndef() &&
10789 "Can only have a splat without a constant for all undefs.");
10790 return getOperand(FirstDemandedIdx
);
10796 SDValue
BuildVectorSDNode::getSplatValue(BitVector
*UndefElements
) const {
10797 APInt DemandedElts
= APInt::getAllOnes(getNumOperands());
10798 return getSplatValue(DemandedElts
, UndefElements
);
10801 bool BuildVectorSDNode::getRepeatedSequence(const APInt
&DemandedElts
,
10802 SmallVectorImpl
<SDValue
> &Sequence
,
10803 BitVector
*UndefElements
) const {
10804 unsigned NumOps
= getNumOperands();
10806 if (UndefElements
) {
10807 UndefElements
->clear();
10808 UndefElements
->resize(NumOps
);
10810 assert(NumOps
== DemandedElts
.getBitWidth() && "Unexpected vector size");
10811 if (!DemandedElts
|| NumOps
< 2 || !isPowerOf2_32(NumOps
))
10814 // Set the undefs even if we don't find a sequence (like getSplatValue).
10816 for (unsigned I
= 0; I
!= NumOps
; ++I
)
10817 if (DemandedElts
[I
] && getOperand(I
).isUndef())
10818 (*UndefElements
)[I
] = true;
10820 // Iteratively widen the sequence length looking for repetitions.
10821 for (unsigned SeqLen
= 1; SeqLen
< NumOps
; SeqLen
*= 2) {
10822 Sequence
.append(SeqLen
, SDValue());
10823 for (unsigned I
= 0; I
!= NumOps
; ++I
) {
10824 if (!DemandedElts
[I
])
10826 SDValue
&SeqOp
= Sequence
[I
% SeqLen
];
10827 SDValue Op
= getOperand(I
);
10828 if (Op
.isUndef()) {
10833 if (SeqOp
&& !SeqOp
.isUndef() && SeqOp
!= Op
) {
10839 if (!Sequence
.empty())
10843 assert(Sequence
.empty() && "Failed to empty non-repeating sequence pattern");
10847 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl
<SDValue
> &Sequence
,
10848 BitVector
*UndefElements
) const {
10849 APInt DemandedElts
= APInt::getAllOnes(getNumOperands());
10850 return getRepeatedSequence(DemandedElts
, Sequence
, UndefElements
);
10854 BuildVectorSDNode::getConstantSplatNode(const APInt
&DemandedElts
,
10855 BitVector
*UndefElements
) const {
10856 return dyn_cast_or_null
<ConstantSDNode
>(
10857 getSplatValue(DemandedElts
, UndefElements
));
10861 BuildVectorSDNode::getConstantSplatNode(BitVector
*UndefElements
) const {
10862 return dyn_cast_or_null
<ConstantSDNode
>(getSplatValue(UndefElements
));
10866 BuildVectorSDNode::getConstantFPSplatNode(const APInt
&DemandedElts
,
10867 BitVector
*UndefElements
) const {
10868 return dyn_cast_or_null
<ConstantFPSDNode
>(
10869 getSplatValue(DemandedElts
, UndefElements
));
10873 BuildVectorSDNode::getConstantFPSplatNode(BitVector
*UndefElements
) const {
10874 return dyn_cast_or_null
<ConstantFPSDNode
>(getSplatValue(UndefElements
));
10878 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector
*UndefElements
,
10879 uint32_t BitWidth
) const {
10880 if (ConstantFPSDNode
*CN
=
10881 dyn_cast_or_null
<ConstantFPSDNode
>(getSplatValue(UndefElements
))) {
10883 APSInt
IntVal(BitWidth
);
10884 const APFloat
&APF
= CN
->getValueAPF();
10885 if (APF
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &IsExact
) !=
10890 return IntVal
.exactLogBase2();
10895 bool BuildVectorSDNode::getConstantRawBits(
10896 bool IsLittleEndian
, unsigned DstEltSizeInBits
,
10897 SmallVectorImpl
<APInt
> &RawBitElements
, BitVector
&UndefElements
) const {
10898 // Early-out if this contains anything but Undef/Constant/ConstantFP.
10902 unsigned NumSrcOps
= getNumOperands();
10903 unsigned SrcEltSizeInBits
= getValueType(0).getScalarSizeInBits();
10904 assert(((NumSrcOps
* SrcEltSizeInBits
) % DstEltSizeInBits
) == 0 &&
10905 "Invalid bitcast scale");
10907 // Extract raw src bits.
10908 SmallVector
<APInt
> SrcBitElements(NumSrcOps
,
10909 APInt::getNullValue(SrcEltSizeInBits
));
10910 BitVector
SrcUndeElements(NumSrcOps
, false);
10912 for (unsigned I
= 0; I
!= NumSrcOps
; ++I
) {
10913 SDValue Op
= getOperand(I
);
10914 if (Op
.isUndef()) {
10915 SrcUndeElements
.set(I
);
10918 auto *CInt
= dyn_cast
<ConstantSDNode
>(Op
);
10919 auto *CFP
= dyn_cast
<ConstantFPSDNode
>(Op
);
10920 assert((CInt
|| CFP
) && "Unknown constant");
10921 SrcBitElements
[I
] =
10922 CInt
? CInt
->getAPIntValue().truncOrSelf(SrcEltSizeInBits
)
10923 : CFP
->getValueAPF().bitcastToAPInt();
10926 // Recast to dst width.
10927 recastRawBits(IsLittleEndian
, DstEltSizeInBits
, RawBitElements
,
10928 SrcBitElements
, UndefElements
, SrcUndeElements
);
10932 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian
,
10933 unsigned DstEltSizeInBits
,
10934 SmallVectorImpl
<APInt
> &DstBitElements
,
10935 ArrayRef
<APInt
> SrcBitElements
,
10936 BitVector
&DstUndefElements
,
10937 const BitVector
&SrcUndefElements
) {
10938 unsigned NumSrcOps
= SrcBitElements
.size();
10939 unsigned SrcEltSizeInBits
= SrcBitElements
[0].getBitWidth();
10940 assert(((NumSrcOps
* SrcEltSizeInBits
) % DstEltSizeInBits
) == 0 &&
10941 "Invalid bitcast scale");
10942 assert(NumSrcOps
== SrcUndefElements
.size() &&
10943 "Vector size mismatch");
10945 unsigned NumDstOps
= (NumSrcOps
* SrcEltSizeInBits
) / DstEltSizeInBits
;
10946 DstUndefElements
.clear();
10947 DstUndefElements
.resize(NumDstOps
, false);
10948 DstBitElements
.assign(NumDstOps
, APInt::getNullValue(DstEltSizeInBits
));
10950 // Concatenate src elements constant bits together into dst element.
10951 if (SrcEltSizeInBits
<= DstEltSizeInBits
) {
10952 unsigned Scale
= DstEltSizeInBits
/ SrcEltSizeInBits
;
10953 for (unsigned I
= 0; I
!= NumDstOps
; ++I
) {
10954 DstUndefElements
.set(I
);
10955 APInt
&DstBits
= DstBitElements
[I
];
10956 for (unsigned J
= 0; J
!= Scale
; ++J
) {
10957 unsigned Idx
= (I
* Scale
) + (IsLittleEndian
? J
: (Scale
- J
- 1));
10958 if (SrcUndefElements
[Idx
])
10960 DstUndefElements
.reset(I
);
10961 const APInt
&SrcBits
= SrcBitElements
[Idx
];
10962 assert(SrcBits
.getBitWidth() == SrcEltSizeInBits
&&
10963 "Illegal constant bitwidths");
10964 DstBits
.insertBits(SrcBits
, J
* SrcEltSizeInBits
);
10970 // Split src element constant bits into dst elements.
10971 unsigned Scale
= SrcEltSizeInBits
/ DstEltSizeInBits
;
10972 for (unsigned I
= 0; I
!= NumSrcOps
; ++I
) {
10973 if (SrcUndefElements
[I
]) {
10974 DstUndefElements
.set(I
* Scale
, (I
+ 1) * Scale
);
10977 const APInt
&SrcBits
= SrcBitElements
[I
];
10978 for (unsigned J
= 0; J
!= Scale
; ++J
) {
10979 unsigned Idx
= (I
* Scale
) + (IsLittleEndian
? J
: (Scale
- J
- 1));
10980 APInt
&DstBits
= DstBitElements
[Idx
];
10981 DstBits
= SrcBits
.extractBits(DstEltSizeInBits
, J
* DstEltSizeInBits
);
10986 bool BuildVectorSDNode::isConstant() const {
10987 for (const SDValue
&Op
: op_values()) {
10988 unsigned Opc
= Op
.getOpcode();
10989 if (Opc
!= ISD::UNDEF
&& Opc
!= ISD::Constant
&& Opc
!= ISD::ConstantFP
)
10995 bool ShuffleVectorSDNode::isSplatMask(const int *Mask
, EVT VT
) {
10996 // Find the first non-undef value in the shuffle mask.
10998 for (i
= 0, e
= VT
.getVectorNumElements(); i
!= e
&& Mask
[i
] < 0; ++i
)
11001 // If all elements are undefined, this shuffle can be considered a splat
11002 // (although it should eventually get simplified away completely).
11006 // Make sure all remaining elements are either undef or the same as the first
11007 // non-undef value.
11008 for (int Idx
= Mask
[i
]; i
!= e
; ++i
)
11009 if (Mask
[i
] >= 0 && Mask
[i
] != Idx
)
11014 // Returns the SDNode if it is a constant integer BuildVector
11015 // or constant integer.
11016 SDNode
*SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N
) const {
11017 if (isa
<ConstantSDNode
>(N
))
11018 return N
.getNode();
11019 if (ISD::isBuildVectorOfConstantSDNodes(N
.getNode()))
11020 return N
.getNode();
11021 // Treat a GlobalAddress supporting constant offset folding as a
11022 // constant integer.
11023 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N
))
11024 if (GA
->getOpcode() == ISD::GlobalAddress
&&
11025 TLI
->isOffsetFoldingLegal(GA
))
11027 if ((N
.getOpcode() == ISD::SPLAT_VECTOR
) &&
11028 isa
<ConstantSDNode
>(N
.getOperand(0)))
11029 return N
.getNode();
11033 // Returns the SDNode if it is a constant float BuildVector
11034 // or constant float.
11035 SDNode
*SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N
) const {
11036 if (isa
<ConstantFPSDNode
>(N
))
11037 return N
.getNode();
11039 if (ISD::isBuildVectorOfConstantFPSDNodes(N
.getNode()))
11040 return N
.getNode();
11045 void SelectionDAG::createOperands(SDNode
*Node
, ArrayRef
<SDValue
> Vals
) {
11046 assert(!Node
->OperandList
&& "Node already has operands");
11047 assert(SDNode::getMaxNumOperands() >= Vals
.size() &&
11048 "too many operands to fit into SDNode");
11049 SDUse
*Ops
= OperandRecycler
.allocate(
11050 ArrayRecycler
<SDUse
>::Capacity::get(Vals
.size()), OperandAllocator
);
11052 bool IsDivergent
= false;
11053 for (unsigned I
= 0; I
!= Vals
.size(); ++I
) {
11054 Ops
[I
].setUser(Node
);
11055 Ops
[I
].setInitial(Vals
[I
]);
11056 if (Ops
[I
].Val
.getValueType() != MVT::Other
) // Skip Chain. It does not carry divergence.
11057 IsDivergent
|= Ops
[I
].getNode()->isDivergent();
11059 Node
->NumOperands
= Vals
.size();
11060 Node
->OperandList
= Ops
;
11061 if (!TLI
->isSDNodeAlwaysUniform(Node
)) {
11062 IsDivergent
|= TLI
->isSDNodeSourceOfDivergence(Node
, FLI
, DA
);
11063 Node
->SDNodeBits
.IsDivergent
= IsDivergent
;
11065 checkForCycles(Node
);
11068 SDValue
SelectionDAG::getTokenFactor(const SDLoc
&DL
,
11069 SmallVectorImpl
<SDValue
> &Vals
) {
11070 size_t Limit
= SDNode::getMaxNumOperands();
11071 while (Vals
.size() > Limit
) {
11072 unsigned SliceIdx
= Vals
.size() - Limit
;
11073 auto ExtractedTFs
= ArrayRef
<SDValue
>(Vals
).slice(SliceIdx
, Limit
);
11074 SDValue NewTF
= getNode(ISD::TokenFactor
, DL
, MVT::Other
, ExtractedTFs
);
11075 Vals
.erase(Vals
.begin() + SliceIdx
, Vals
.end());
11076 Vals
.emplace_back(NewTF
);
11078 return getNode(ISD::TokenFactor
, DL
, MVT::Other
, Vals
);
11081 SDValue
SelectionDAG::getNeutralElement(unsigned Opcode
, const SDLoc
&DL
,
11082 EVT VT
, SDNodeFlags Flags
) {
11090 return getConstant(0, DL
, VT
);
11092 return getConstant(1, DL
, VT
);
11095 return getAllOnesConstant(DL
, VT
);
11097 return getConstant(APInt::getSignedMinValue(VT
.getSizeInBits()), DL
, VT
);
11099 return getConstant(APInt::getSignedMaxValue(VT
.getSizeInBits()), DL
, VT
);
11101 return getConstantFP(-0.0, DL
, VT
);
11103 return getConstantFP(1.0, DL
, VT
);
11105 case ISD::FMAXNUM
: {
11106 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11107 const fltSemantics
&Semantics
= EVTToAPFloatSemantics(VT
);
11108 APFloat NeutralAF
= !Flags
.hasNoNaNs() ? APFloat::getQNaN(Semantics
) :
11109 !Flags
.hasNoInfs() ? APFloat::getInf(Semantics
) :
11110 APFloat::getLargest(Semantics
);
11111 if (Opcode
== ISD::FMAXNUM
)
11112 NeutralAF
.changeSign();
11114 return getConstantFP(NeutralAF
, DL
, VT
);
11120 static void checkForCyclesHelper(const SDNode
*N
,
11121 SmallPtrSetImpl
<const SDNode
*> &Visited
,
11122 SmallPtrSetImpl
<const SDNode
*> &Checked
,
11123 const llvm::SelectionDAG
*DAG
) {
11124 // If this node has already been checked, don't check it again.
11125 if (Checked
.count(N
))
11128 // If a node has already been visited on this depth-first walk, reject it as
11130 if (!Visited
.insert(N
).second
) {
11131 errs() << "Detected cycle in SelectionDAG\n";
11132 dbgs() << "Offending node:\n";
11133 N
->dumprFull(DAG
); dbgs() << "\n";
11137 for (const SDValue
&Op
: N
->op_values())
11138 checkForCyclesHelper(Op
.getNode(), Visited
, Checked
, DAG
);
11145 void llvm::checkForCycles(const llvm::SDNode
*N
,
11146 const llvm::SelectionDAG
*DAG
,
11149 bool check
= force
;
11150 #ifdef EXPENSIVE_CHECKS
11152 #endif // EXPENSIVE_CHECKS
11154 assert(N
&& "Checking nonexistent SDNode");
11155 SmallPtrSet
<const SDNode
*, 32> visited
;
11156 SmallPtrSet
<const SDNode
*, 32> checked
;
11157 checkForCyclesHelper(N
, visited
, checked
, DAG
);
11162 void llvm::checkForCycles(const llvm::SelectionDAG
*DAG
, bool force
) {
11163 checkForCycles(DAG
->getRoot().getNode(), DAG
, force
);