[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
blob77e11b3645887f5b2c0eaf6569631b000a0519f1
1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/CodeGen/CodeGenCommonISel.h"
37 #include "llvm/CodeGen/FastISel.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/ISDOpcodes.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachinePassRegistry.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/SchedulerRegistry.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/StackProtector.h"
56 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetRegisterInfo.h"
60 #include "llvm/CodeGen/TargetSubtargetInfo.h"
61 #include "llvm/CodeGen/ValueTypes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DebugInfoMetadata.h"
66 #include "llvm/IR/DebugLoc.h"
67 #include "llvm/IR/DiagnosticInfo.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/InlineAsm.h"
71 #include "llvm/IR/InstIterator.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instruction.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsWebAssembly.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Statepoint.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/User.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/InitializePasses.h"
84 #include "llvm/MC/MCInstrDesc.h"
85 #include "llvm/MC/MCRegisterInfo.h"
86 #include "llvm/Pass.h"
87 #include "llvm/Support/BranchProbability.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CodeGen.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Compiler.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/ErrorHandling.h"
94 #include "llvm/Support/KnownBits.h"
95 #include "llvm/Support/MachineValueType.h"
96 #include "llvm/Support/Timer.h"
97 #include "llvm/Support/raw_ostream.h"
98 #include "llvm/Target/TargetIntrinsicInfo.h"
99 #include "llvm/Target/TargetMachine.h"
100 #include "llvm/Target/TargetOptions.h"
101 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
102 #include <algorithm>
103 #include <cassert>
104 #include <cstdint>
105 #include <iterator>
106 #include <limits>
107 #include <memory>
108 #include <string>
109 #include <utility>
110 #include <vector>
112 using namespace llvm;
114 #define DEBUG_TYPE "isel"
116 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
117 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
118 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
119 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
120 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
121 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
122 STATISTIC(NumFastIselFailLowerArguments,
123 "Number of entry blocks where fast isel failed to lower arguments");
125 static cl::opt<int> EnableFastISelAbort(
126 "fast-isel-abort", cl::Hidden,
127 cl::desc("Enable abort calls when \"fast\" instruction selection "
128 "fails to lower an instruction: 0 disable the abort, 1 will "
129 "abort but for args, calls and terminators, 2 will also "
130 "abort for argument lowering, and 3 will never fallback "
131 "to SelectionDAG."));
133 static cl::opt<bool> EnableFastISelFallbackReport(
134 "fast-isel-report-on-fallback", cl::Hidden,
135 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
136 "falls back to SelectionDAG."));
138 static cl::opt<bool>
139 UseMBPI("use-mbpi",
140 cl::desc("use Machine Branch Probability Info"),
141 cl::init(true), cl::Hidden);
143 #ifndef NDEBUG
144 static cl::opt<std::string>
145 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
146 cl::desc("Only display the basic block whose name "
147 "matches this for all view-*-dags options"));
148 static cl::opt<bool>
149 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
150 cl::desc("Pop up a window to show dags before the first "
151 "dag combine pass"));
152 static cl::opt<bool>
153 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
154 cl::desc("Pop up a window to show dags before legalize types"));
155 static cl::opt<bool>
156 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
157 cl::desc("Pop up a window to show dags before the post "
158 "legalize types dag combine pass"));
159 static cl::opt<bool>
160 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
161 cl::desc("Pop up a window to show dags before legalize"));
162 static cl::opt<bool>
163 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
164 cl::desc("Pop up a window to show dags before the second "
165 "dag combine pass"));
166 static cl::opt<bool>
167 ViewISelDAGs("view-isel-dags", cl::Hidden,
168 cl::desc("Pop up a window to show isel dags as they are selected"));
169 static cl::opt<bool>
170 ViewSchedDAGs("view-sched-dags", cl::Hidden,
171 cl::desc("Pop up a window to show sched dags as they are processed"));
172 static cl::opt<bool>
173 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
174 cl::desc("Pop up a window to show SUnit dags after they are processed"));
175 #else
176 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
177 ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
178 ViewDAGCombine2 = false, ViewISelDAGs = false,
179 ViewSchedDAGs = false, ViewSUnitDAGs = false;
180 #endif
182 //===---------------------------------------------------------------------===//
184 /// RegisterScheduler class - Track the registration of instruction schedulers.
186 //===---------------------------------------------------------------------===//
187 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
188 RegisterScheduler::Registry;
190 //===---------------------------------------------------------------------===//
192 /// ISHeuristic command line option for instruction schedulers.
194 //===---------------------------------------------------------------------===//
195 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
196 RegisterPassParser<RegisterScheduler>>
197 ISHeuristic("pre-RA-sched",
198 cl::init(&createDefaultScheduler), cl::Hidden,
199 cl::desc("Instruction schedulers available (before register"
200 " allocation):"));
202 static RegisterScheduler
203 defaultListDAGScheduler("default", "Best scheduler for the target",
204 createDefaultScheduler);
206 namespace llvm {
208 //===--------------------------------------------------------------------===//
209 /// This class is used by SelectionDAGISel to temporarily override
210 /// the optimization level on a per-function basis.
211 class OptLevelChanger {
212 SelectionDAGISel &IS;
213 CodeGenOpt::Level SavedOptLevel;
214 bool SavedFastISel;
216 public:
217 OptLevelChanger(SelectionDAGISel &ISel,
218 CodeGenOpt::Level NewOptLevel) : IS(ISel) {
219 SavedOptLevel = IS.OptLevel;
220 SavedFastISel = IS.TM.Options.EnableFastISel;
221 if (NewOptLevel == SavedOptLevel)
222 return;
223 IS.OptLevel = NewOptLevel;
224 IS.TM.setOptLevel(NewOptLevel);
225 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
226 << IS.MF->getFunction().getName() << "\n");
227 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
228 << NewOptLevel << "\n");
229 if (NewOptLevel == CodeGenOpt::None) {
230 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
231 LLVM_DEBUG(
232 dbgs() << "\tFastISel is "
233 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
234 << "\n");
238 ~OptLevelChanger() {
239 if (IS.OptLevel == SavedOptLevel)
240 return;
241 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
242 << IS.MF->getFunction().getName() << "\n");
243 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
244 << SavedOptLevel << "\n");
245 IS.OptLevel = SavedOptLevel;
246 IS.TM.setOptLevel(SavedOptLevel);
247 IS.TM.setFastISel(SavedFastISel);
251 //===--------------------------------------------------------------------===//
252 /// createDefaultScheduler - This creates an instruction scheduler appropriate
253 /// for the target.
254 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
255 CodeGenOpt::Level OptLevel) {
256 const TargetLowering *TLI = IS->TLI;
257 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
259 // Try first to see if the Target has its own way of selecting a scheduler
260 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
261 return SchedulerCtor(IS, OptLevel);
264 if (OptLevel == CodeGenOpt::None ||
265 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
266 TLI->getSchedulingPreference() == Sched::Source)
267 return createSourceListDAGScheduler(IS, OptLevel);
268 if (TLI->getSchedulingPreference() == Sched::RegPressure)
269 return createBURRListDAGScheduler(IS, OptLevel);
270 if (TLI->getSchedulingPreference() == Sched::Hybrid)
271 return createHybridListDAGScheduler(IS, OptLevel);
272 if (TLI->getSchedulingPreference() == Sched::VLIW)
273 return createVLIWDAGScheduler(IS, OptLevel);
274 if (TLI->getSchedulingPreference() == Sched::Fast)
275 return createFastDAGScheduler(IS, OptLevel);
276 if (TLI->getSchedulingPreference() == Sched::Linearize)
277 return createDAGLinearizer(IS, OptLevel);
278 assert(TLI->getSchedulingPreference() == Sched::ILP &&
279 "Unknown sched type!");
280 return createILPListDAGScheduler(IS, OptLevel);
283 } // end namespace llvm
285 // EmitInstrWithCustomInserter - This method should be implemented by targets
286 // that mark instructions with the 'usesCustomInserter' flag. These
287 // instructions are special in various ways, which require special support to
288 // insert. The specified MachineInstr is created but not inserted into any
289 // basic blocks, and this method is called to expand it into a sequence of
290 // instructions, potentially also creating new basic blocks and control flow.
291 // When new basic blocks are inserted and the edges from MBB to its successors
292 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
293 // DenseMap.
294 MachineBasicBlock *
295 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
296 MachineBasicBlock *MBB) const {
297 #ifndef NDEBUG
298 dbgs() << "If a target marks an instruction with "
299 "'usesCustomInserter', it must implement "
300 "TargetLowering::EmitInstrWithCustomInserter!\n";
301 #endif
302 llvm_unreachable(nullptr);
305 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
306 SDNode *Node) const {
307 assert(!MI.hasPostISelHook() &&
308 "If a target marks an instruction with 'hasPostISelHook', "
309 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
312 //===----------------------------------------------------------------------===//
313 // SelectionDAGISel code
314 //===----------------------------------------------------------------------===//
316 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL)
317 : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
318 SwiftError(new SwiftErrorValueTracking()),
319 CurDAG(new SelectionDAG(tm, OL)),
320 SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
321 OL)),
322 AA(), GFI(), OptLevel(OL), DAGSize(0) {
323 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
324 initializeBranchProbabilityInfoWrapperPassPass(
325 *PassRegistry::getPassRegistry());
326 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
327 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
330 SelectionDAGISel::~SelectionDAGISel() {
331 delete CurDAG;
332 delete SwiftError;
335 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
336 if (OptLevel != CodeGenOpt::None)
337 AU.addRequired<AAResultsWrapperPass>();
338 AU.addRequired<GCModuleInfo>();
339 AU.addRequired<StackProtector>();
340 AU.addPreserved<GCModuleInfo>();
341 AU.addRequired<TargetLibraryInfoWrapperPass>();
342 AU.addRequired<TargetTransformInfoWrapperPass>();
343 if (UseMBPI && OptLevel != CodeGenOpt::None)
344 AU.addRequired<BranchProbabilityInfoWrapperPass>();
345 AU.addRequired<ProfileSummaryInfoWrapperPass>();
346 if (OptLevel != CodeGenOpt::None)
347 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
348 MachineFunctionPass::getAnalysisUsage(AU);
351 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
352 /// may trap on it. In this case we have to split the edge so that the path
353 /// through the predecessor block that doesn't go to the phi block doesn't
354 /// execute the possibly trapping instruction. If available, we pass domtree
355 /// and loop info to be updated when we split critical edges. This is because
356 /// SelectionDAGISel preserves these analyses.
357 /// This is required for correctness, so it must be done at -O0.
359 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
360 LoopInfo *LI) {
361 // Loop for blocks with phi nodes.
362 for (BasicBlock &BB : Fn) {
363 PHINode *PN = dyn_cast<PHINode>(BB.begin());
364 if (!PN) continue;
366 ReprocessBlock:
367 // For each block with a PHI node, check to see if any of the input values
368 // are potentially trapping constant expressions. Constant expressions are
369 // the only potentially trapping value that can occur as the argument to a
370 // PHI.
371 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
372 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
373 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
374 if (!CE || !CE->canTrap()) continue;
376 // The only case we have to worry about is when the edge is critical.
377 // Since this block has a PHI Node, we assume it has multiple input
378 // edges: check to see if the pred has multiple successors.
379 BasicBlock *Pred = PN->getIncomingBlock(i);
380 if (Pred->getTerminator()->getNumSuccessors() == 1)
381 continue;
383 // Okay, we have to split this edge.
384 SplitCriticalEdge(
385 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
386 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
387 goto ReprocessBlock;
392 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
393 MachineModuleInfo &MMI) {
394 // Only needed for MSVC
395 if (!TT.isWindowsMSVCEnvironment())
396 return;
398 // If it's already set, nothing to do.
399 if (MMI.usesMSVCFloatingPoint())
400 return;
402 for (const Instruction &I : instructions(F)) {
403 if (I.getType()->isFPOrFPVectorTy()) {
404 MMI.setUsesMSVCFloatingPoint(true);
405 return;
407 for (const auto &Op : I.operands()) {
408 if (Op->getType()->isFPOrFPVectorTy()) {
409 MMI.setUsesMSVCFloatingPoint(true);
410 return;
416 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
417 // If we already selected that function, we do not need to run SDISel.
418 if (mf.getProperties().hasProperty(
419 MachineFunctionProperties::Property::Selected))
420 return false;
421 // Do some sanity-checking on the command-line options.
422 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
423 "-fast-isel-abort > 0 requires -fast-isel");
425 const Function &Fn = mf.getFunction();
426 MF = &mf;
428 // Reset the target options before resetting the optimization
429 // level below.
430 // FIXME: This is a horrible hack and should be processed via
431 // codegen looking at the optimization level explicitly when
432 // it wants to look at it.
433 TM.resetTargetOptions(Fn);
434 // Reset OptLevel to None for optnone functions.
435 CodeGenOpt::Level NewOptLevel = OptLevel;
436 if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
437 NewOptLevel = CodeGenOpt::None;
438 OptLevelChanger OLC(*this, NewOptLevel);
440 TII = MF->getSubtarget().getInstrInfo();
441 TLI = MF->getSubtarget().getTargetLowering();
442 RegInfo = &MF->getRegInfo();
443 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
444 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
445 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
446 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
447 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
448 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
449 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
450 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
451 BlockFrequencyInfo *BFI = nullptr;
452 if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None)
453 BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
455 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
457 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
459 CurDAG->init(*MF, *ORE, this, LibInfo,
460 getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI);
461 FuncInfo->set(Fn, *MF, CurDAG);
462 SwiftError->setFunction(*MF);
464 // Now get the optional analyzes if we want to.
465 // This is based on the possibly changed OptLevel (after optnone is taken
466 // into account). That's unfortunate but OK because it just means we won't
467 // ask for passes that have been required anyway.
469 if (UseMBPI && OptLevel != CodeGenOpt::None)
470 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
471 else
472 FuncInfo->BPI = nullptr;
474 if (OptLevel != CodeGenOpt::None)
475 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
476 else
477 AA = nullptr;
479 SDB->init(GFI, AA, LibInfo);
481 MF->setHasInlineAsm(false);
483 FuncInfo->SplitCSR = false;
485 // We split CSR if the target supports it for the given function
486 // and the function has only return exits.
487 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
488 FuncInfo->SplitCSR = true;
490 // Collect all the return blocks.
491 for (const BasicBlock &BB : Fn) {
492 if (!succ_empty(&BB))
493 continue;
495 const Instruction *Term = BB.getTerminator();
496 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
497 continue;
499 // Bail out if the exit block is not Return nor Unreachable.
500 FuncInfo->SplitCSR = false;
501 break;
505 MachineBasicBlock *EntryMBB = &MF->front();
506 if (FuncInfo->SplitCSR)
507 // This performs initialization so lowering for SplitCSR will be correct.
508 TLI->initializeSplitCSR(EntryMBB);
510 SelectAllBasicBlocks(Fn);
511 if (FastISelFailed && EnableFastISelFallbackReport) {
512 DiagnosticInfoISelFallback DiagFallback(Fn);
513 Fn.getContext().diagnose(DiagFallback);
516 // Replace forward-declared registers with the registers containing
517 // the desired value.
518 // Note: it is important that this happens **before** the call to
519 // EmitLiveInCopies, since implementations can skip copies of unused
520 // registers. If we don't apply the reg fixups before, some registers may
521 // appear as unused and will be skipped, resulting in bad MI.
522 MachineRegisterInfo &MRI = MF->getRegInfo();
523 for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
524 E = FuncInfo->RegFixups.end();
525 I != E; ++I) {
526 Register From = I->first;
527 Register To = I->second;
528 // If To is also scheduled to be replaced, find what its ultimate
529 // replacement is.
530 while (true) {
531 DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
532 if (J == E)
533 break;
534 To = J->second;
536 // Make sure the new register has a sufficiently constrained register class.
537 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
538 MRI.constrainRegClass(To, MRI.getRegClass(From));
539 // Replace it.
541 // Replacing one register with another won't touch the kill flags.
542 // We need to conservatively clear the kill flags as a kill on the old
543 // register might dominate existing uses of the new register.
544 if (!MRI.use_empty(To))
545 MRI.clearKillFlags(From);
546 MRI.replaceRegWith(From, To);
549 // If the first basic block in the function has live ins that need to be
550 // copied into vregs, emit the copies into the top of the block before
551 // emitting the code for the block.
552 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
553 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
555 // Insert copies in the entry block and the return blocks.
556 if (FuncInfo->SplitCSR) {
557 SmallVector<MachineBasicBlock*, 4> Returns;
558 // Collect all the return blocks.
559 for (MachineBasicBlock &MBB : mf) {
560 if (!MBB.succ_empty())
561 continue;
563 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
564 if (Term != MBB.end() && Term->isReturn()) {
565 Returns.push_back(&MBB);
566 continue;
569 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
572 DenseMap<unsigned, unsigned> LiveInMap;
573 if (!FuncInfo->ArgDbgValues.empty())
574 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
575 if (LI.second)
576 LiveInMap.insert(LI);
578 // Insert DBG_VALUE instructions for function arguments to the entry block.
579 bool InstrRef = MF->useDebugInstrRef();
580 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
581 MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1];
582 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
583 "Function parameters should not be described by DBG_VALUE_LIST.");
584 bool hasFI = MI->getOperand(0).isFI();
585 Register Reg =
586 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
587 if (Register::isPhysicalRegister(Reg))
588 EntryMBB->insert(EntryMBB->begin(), MI);
589 else {
590 MachineInstr *Def = RegInfo->getVRegDef(Reg);
591 if (Def) {
592 MachineBasicBlock::iterator InsertPos = Def;
593 // FIXME: VR def may not be in entry block.
594 Def->getParent()->insert(std::next(InsertPos), MI);
595 } else
596 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
597 << Register::virtReg2Index(Reg) << "\n");
600 // Don't try and extend through copies in instruction referencing mode.
601 if (InstrRef)
602 continue;
604 // If Reg is live-in then update debug info to track its copy in a vreg.
605 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
606 if (LDI != LiveInMap.end()) {
607 assert(!hasFI && "There's no handling of frame pointer updating here yet "
608 "- add if needed");
609 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
610 MachineBasicBlock::iterator InsertPos = Def;
611 const MDNode *Variable = MI->getDebugVariable();
612 const MDNode *Expr = MI->getDebugExpression();
613 DebugLoc DL = MI->getDebugLoc();
614 bool IsIndirect = MI->isIndirectDebugValue();
615 if (IsIndirect)
616 assert(MI->getOperand(1).getImm() == 0 &&
617 "DBG_VALUE with nonzero offset");
618 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
619 "Expected inlined-at fields to agree");
620 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
621 "Didn't expect to see a DBG_VALUE_LIST here");
622 // Def is never a terminator here, so it is ok to increment InsertPos.
623 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
624 IsIndirect, LDI->second, Variable, Expr);
626 // If this vreg is directly copied into an exported register then
627 // that COPY instructions also need DBG_VALUE, if it is the only
628 // user of LDI->second.
629 MachineInstr *CopyUseMI = nullptr;
630 for (MachineRegisterInfo::use_instr_iterator
631 UI = RegInfo->use_instr_begin(LDI->second),
632 E = RegInfo->use_instr_end(); UI != E; ) {
633 MachineInstr *UseMI = &*(UI++);
634 if (UseMI->isDebugValue()) continue;
635 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
636 CopyUseMI = UseMI; continue;
638 // Otherwise this is another use or second copy use.
639 CopyUseMI = nullptr; break;
641 if (CopyUseMI &&
642 TRI.getRegSizeInBits(LDI->second, MRI) ==
643 TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
644 // Use MI's debug location, which describes where Variable was
645 // declared, rather than whatever is attached to CopyUseMI.
646 MachineInstr *NewMI =
647 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
648 CopyUseMI->getOperand(0).getReg(), Variable, Expr);
649 MachineBasicBlock::iterator Pos = CopyUseMI;
650 EntryMBB->insertAfter(Pos, NewMI);
655 // For debug-info, in instruction referencing mode, we need to perform some
656 // post-isel maintenence.
657 MF->finalizeDebugInstrRefs();
659 // Determine if there are any calls in this machine function.
660 MachineFrameInfo &MFI = MF->getFrameInfo();
661 for (const auto &MBB : *MF) {
662 if (MFI.hasCalls() && MF->hasInlineAsm())
663 break;
665 for (const auto &MI : MBB) {
666 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
667 if ((MCID.isCall() && !MCID.isReturn()) ||
668 MI.isStackAligningInlineAsm()) {
669 MFI.setHasCalls(true);
671 if (MI.isInlineAsm()) {
672 MF->setHasInlineAsm(true);
677 // Determine if there is a call to setjmp in the machine function.
678 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
680 // Determine if floating point is used for msvc
681 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
683 // Release function-specific state. SDB and CurDAG are already cleared
684 // at this point.
685 FuncInfo->clear();
687 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
688 LLVM_DEBUG(MF->print(dbgs()));
690 return true;
693 static void reportFastISelFailure(MachineFunction &MF,
694 OptimizationRemarkEmitter &ORE,
695 OptimizationRemarkMissed &R,
696 bool ShouldAbort) {
697 // Print the function name explicitly if we don't have a debug location (which
698 // makes the diagnostic less useful) or if we're going to emit a raw error.
699 if (!R.getLocation().isValid() || ShouldAbort)
700 R << (" (in function: " + MF.getName() + ")").str();
702 if (ShouldAbort)
703 report_fatal_error(Twine(R.getMsg()));
705 ORE.emit(R);
708 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
709 BasicBlock::const_iterator End,
710 bool &HadTailCall) {
711 // Allow creating illegal types during DAG building for the basic block.
712 CurDAG->NewNodesMustHaveLegalTypes = false;
714 // Lower the instructions. If a call is emitted as a tail call, cease emitting
715 // nodes for this block.
716 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
717 if (!ElidedArgCopyInstrs.count(&*I))
718 SDB->visit(*I);
721 // Make sure the root of the DAG is up-to-date.
722 CurDAG->setRoot(SDB->getControlRoot());
723 HadTailCall = SDB->HasTailCall;
724 SDB->resolveOrClearDbgInfo();
725 SDB->clear();
727 // Final step, emit the lowered DAG as machine code.
728 CodeGenAndEmitDAG();
731 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
732 SmallPtrSet<SDNode *, 16> Added;
733 SmallVector<SDNode*, 128> Worklist;
735 Worklist.push_back(CurDAG->getRoot().getNode());
736 Added.insert(CurDAG->getRoot().getNode());
738 KnownBits Known;
740 do {
741 SDNode *N = Worklist.pop_back_val();
743 // Otherwise, add all chain operands to the worklist.
744 for (const SDValue &Op : N->op_values())
745 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
746 Worklist.push_back(Op.getNode());
748 // If this is a CopyToReg with a vreg dest, process it.
749 if (N->getOpcode() != ISD::CopyToReg)
750 continue;
752 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
753 if (!Register::isVirtualRegister(DestReg))
754 continue;
756 // Ignore non-integer values.
757 SDValue Src = N->getOperand(2);
758 EVT SrcVT = Src.getValueType();
759 if (!SrcVT.isInteger())
760 continue;
762 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
763 Known = CurDAG->computeKnownBits(Src);
764 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
765 } while (!Worklist.empty());
768 void SelectionDAGISel::CodeGenAndEmitDAG() {
769 StringRef GroupName = "sdag";
770 StringRef GroupDescription = "Instruction Selection and Scheduling";
771 std::string BlockName;
772 bool MatchFilterBB = false; (void)MatchFilterBB;
773 #ifndef NDEBUG
774 TargetTransformInfo &TTI =
775 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
776 #endif
778 // Pre-type legalization allow creation of any node types.
779 CurDAG->NewNodesMustHaveLegalTypes = false;
781 #ifndef NDEBUG
782 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
783 FilterDAGBasicBlockName ==
784 FuncInfo->MBB->getBasicBlock()->getName());
785 #endif
786 #ifdef NDEBUG
787 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
788 ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
789 ViewSUnitDAGs)
790 #endif
792 BlockName =
793 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
795 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
796 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
797 << "'\n";
798 CurDAG->dump());
800 #ifndef NDEBUG
801 if (TTI.hasBranchDivergence())
802 CurDAG->VerifyDAGDivergence();
803 #endif
805 if (ViewDAGCombine1 && MatchFilterBB)
806 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
808 // Run the DAG combiner in pre-legalize mode.
810 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
811 GroupDescription, TimePassesIsEnabled);
812 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
815 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
816 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
817 << "'\n";
818 CurDAG->dump());
820 #ifndef NDEBUG
821 if (TTI.hasBranchDivergence())
822 CurDAG->VerifyDAGDivergence();
823 #endif
825 // Second step, hack on the DAG until it only uses operations and types that
826 // the target supports.
827 if (ViewLegalizeTypesDAGs && MatchFilterBB)
828 CurDAG->viewGraph("legalize-types input for " + BlockName);
830 bool Changed;
832 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
833 GroupDescription, TimePassesIsEnabled);
834 Changed = CurDAG->LegalizeTypes();
837 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
838 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
839 << "'\n";
840 CurDAG->dump());
842 #ifndef NDEBUG
843 if (TTI.hasBranchDivergence())
844 CurDAG->VerifyDAGDivergence();
845 #endif
847 // Only allow creation of legal node types.
848 CurDAG->NewNodesMustHaveLegalTypes = true;
850 if (Changed) {
851 if (ViewDAGCombineLT && MatchFilterBB)
852 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
854 // Run the DAG combiner in post-type-legalize mode.
856 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
857 GroupName, GroupDescription, TimePassesIsEnabled);
858 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
861 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
862 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
863 << "'\n";
864 CurDAG->dump());
866 #ifndef NDEBUG
867 if (TTI.hasBranchDivergence())
868 CurDAG->VerifyDAGDivergence();
869 #endif
873 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
874 GroupDescription, TimePassesIsEnabled);
875 Changed = CurDAG->LegalizeVectors();
878 if (Changed) {
879 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
880 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
881 << "'\n";
882 CurDAG->dump());
884 #ifndef NDEBUG
885 if (TTI.hasBranchDivergence())
886 CurDAG->VerifyDAGDivergence();
887 #endif
890 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
891 GroupDescription, TimePassesIsEnabled);
892 CurDAG->LegalizeTypes();
895 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
896 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
897 << "'\n";
898 CurDAG->dump());
900 #ifndef NDEBUG
901 if (TTI.hasBranchDivergence())
902 CurDAG->VerifyDAGDivergence();
903 #endif
905 if (ViewDAGCombineLT && MatchFilterBB)
906 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
908 // Run the DAG combiner in post-type-legalize mode.
910 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
911 GroupName, GroupDescription, TimePassesIsEnabled);
912 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
915 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
916 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
917 << "'\n";
918 CurDAG->dump());
920 #ifndef NDEBUG
921 if (TTI.hasBranchDivergence())
922 CurDAG->VerifyDAGDivergence();
923 #endif
926 if (ViewLegalizeDAGs && MatchFilterBB)
927 CurDAG->viewGraph("legalize input for " + BlockName);
930 NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
931 GroupDescription, TimePassesIsEnabled);
932 CurDAG->Legalize();
935 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
936 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
937 << "'\n";
938 CurDAG->dump());
940 #ifndef NDEBUG
941 if (TTI.hasBranchDivergence())
942 CurDAG->VerifyDAGDivergence();
943 #endif
945 if (ViewDAGCombine2 && MatchFilterBB)
946 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
948 // Run the DAG combiner in post-legalize mode.
950 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
951 GroupDescription, TimePassesIsEnabled);
952 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
955 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
956 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
957 << "'\n";
958 CurDAG->dump());
960 #ifndef NDEBUG
961 if (TTI.hasBranchDivergence())
962 CurDAG->VerifyDAGDivergence();
963 #endif
965 if (OptLevel != CodeGenOpt::None)
966 ComputeLiveOutVRegInfo();
968 if (ViewISelDAGs && MatchFilterBB)
969 CurDAG->viewGraph("isel input for " + BlockName);
971 // Third, instruction select all of the operations to machine code, adding the
972 // code to the MachineBasicBlock.
974 NamedRegionTimer T("isel", "Instruction Selection", GroupName,
975 GroupDescription, TimePassesIsEnabled);
976 DoInstructionSelection();
979 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
980 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
981 << "'\n";
982 CurDAG->dump());
984 if (ViewSchedDAGs && MatchFilterBB)
985 CurDAG->viewGraph("scheduler input for " + BlockName);
987 // Schedule machine code.
988 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
990 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
991 GroupDescription, TimePassesIsEnabled);
992 Scheduler->Run(CurDAG, FuncInfo->MBB);
995 if (ViewSUnitDAGs && MatchFilterBB)
996 Scheduler->viewGraph();
998 // Emit machine code to BB. This can change 'BB' to the last block being
999 // inserted into.
1000 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
1002 NamedRegionTimer T("emit", "Instruction Creation", GroupName,
1003 GroupDescription, TimePassesIsEnabled);
1005 // FuncInfo->InsertPt is passed by reference and set to the end of the
1006 // scheduled instructions.
1007 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
1010 // If the block was split, make sure we update any references that are used to
1011 // update PHI nodes later on.
1012 if (FirstMBB != LastMBB)
1013 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
1015 // Free the scheduler state.
1017 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
1018 GroupDescription, TimePassesIsEnabled);
1019 delete Scheduler;
1022 // Free the SelectionDAG state, now that we're finished with it.
1023 CurDAG->clear();
1026 namespace {
1028 /// ISelUpdater - helper class to handle updates of the instruction selection
1029 /// graph.
1030 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1031 SelectionDAG::allnodes_iterator &ISelPosition;
1033 public:
1034 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1035 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1037 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1038 /// deleted is the current ISelPosition node, update ISelPosition.
1040 void NodeDeleted(SDNode *N, SDNode *E) override {
1041 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1042 ++ISelPosition;
1046 } // end anonymous namespace
1048 // This function is used to enforce the topological node id property
1049 // leveraged during instruction selection. Before the selection process all
1050 // nodes are given a non-negative id such that all nodes have a greater id than
1051 // their operands. As this holds transitively we can prune checks that a node N
1052 // is a predecessor of M another by not recursively checking through M's
1053 // operands if N's ID is larger than M's ID. This significantly improves
1054 // performance of various legality checks (e.g. IsLegalToFold / UpdateChains).
1056 // However, when we fuse multiple nodes into a single node during the
1057 // selection we may induce a predecessor relationship between inputs and
1058 // outputs of distinct nodes being merged, violating the topological property.
1059 // Should a fused node have a successor which has yet to be selected,
1060 // our legality checks would be incorrect. To avoid this we mark all unselected
1061 // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x =>
1062 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1063 // We use bit-negation to more clearly enforce that node id -1 can only be
1064 // achieved by selected nodes. As the conversion is reversable to the original
1065 // Id, topological pruning can still be leveraged when looking for unselected
1066 // nodes. This method is called internally in all ISel replacement related
1067 // functions.
1068 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1069 SmallVector<SDNode *, 4> Nodes;
1070 Nodes.push_back(Node);
1072 while (!Nodes.empty()) {
1073 SDNode *N = Nodes.pop_back_val();
1074 for (auto *U : N->uses()) {
1075 auto UId = U->getNodeId();
1076 if (UId > 0) {
1077 InvalidateNodeId(U);
1078 Nodes.push_back(U);
1084 // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a
1085 // NodeId with the equivalent node id which is invalid for topological
1086 // pruning.
1087 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1088 int InvalidId = -(N->getNodeId() + 1);
1089 N->setNodeId(InvalidId);
1092 // getUninvalidatedNodeId - get original uninvalidated node id.
1093 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1094 int Id = N->getNodeId();
1095 if (Id < -1)
1096 return -(Id + 1);
1097 return Id;
1100 void SelectionDAGISel::DoInstructionSelection() {
1101 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1102 << printMBBReference(*FuncInfo->MBB) << " '"
1103 << FuncInfo->MBB->getName() << "'\n");
1105 PreprocessISelDAG();
1107 // Select target instructions for the DAG.
1109 // Number all nodes with a topological order and set DAGSize.
1110 DAGSize = CurDAG->AssignTopologicalOrder();
1112 // Create a dummy node (which is not added to allnodes), that adds
1113 // a reference to the root node, preventing it from being deleted,
1114 // and tracking any changes of the root.
1115 HandleSDNode Dummy(CurDAG->getRoot());
1116 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1117 ++ISelPosition;
1119 // Make sure that ISelPosition gets properly updated when nodes are deleted
1120 // in calls made from this function.
1121 ISelUpdater ISU(*CurDAG, ISelPosition);
1123 // The AllNodes list is now topological-sorted. Visit the
1124 // nodes by starting at the end of the list (the root of the
1125 // graph) and preceding back toward the beginning (the entry
1126 // node).
1127 while (ISelPosition != CurDAG->allnodes_begin()) {
1128 SDNode *Node = &*--ISelPosition;
1129 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1130 // but there are currently some corner cases that it misses. Also, this
1131 // makes it theoretically possible to disable the DAGCombiner.
1132 if (Node->use_empty())
1133 continue;
1135 #ifndef NDEBUG
1136 SmallVector<SDNode *, 4> Nodes;
1137 Nodes.push_back(Node);
1139 while (!Nodes.empty()) {
1140 auto N = Nodes.pop_back_val();
1141 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1142 continue;
1143 for (const SDValue &Op : N->op_values()) {
1144 if (Op->getOpcode() == ISD::TokenFactor)
1145 Nodes.push_back(Op.getNode());
1146 else {
1147 // We rely on topological ordering of node ids for checking for
1148 // cycles when fusing nodes during selection. All unselected nodes
1149 // successors of an already selected node should have a negative id.
1150 // This assertion will catch such cases. If this assertion triggers
1151 // it is likely you using DAG-level Value/Node replacement functions
1152 // (versus equivalent ISEL replacement) in backend-specific
1153 // selections. See comment in EnforceNodeIdInvariant for more
1154 // details.
1155 assert(Op->getNodeId() != -1 &&
1156 "Node has already selected predecessor node");
1160 #endif
1162 // When we are using non-default rounding modes or FP exception behavior
1163 // FP operations are represented by StrictFP pseudo-operations. For
1164 // targets that do not (yet) understand strict FP operations directly,
1165 // we convert them to normal FP opcodes instead at this point. This
1166 // will allow them to be handled by existing target-specific instruction
1167 // selectors.
1168 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1169 // For some opcodes, we need to call TLI->getOperationAction using
1170 // the first operand type instead of the result type. Note that this
1171 // must match what SelectionDAGLegalize::LegalizeOp is doing.
1172 EVT ActionVT;
1173 switch (Node->getOpcode()) {
1174 case ISD::STRICT_SINT_TO_FP:
1175 case ISD::STRICT_UINT_TO_FP:
1176 case ISD::STRICT_LRINT:
1177 case ISD::STRICT_LLRINT:
1178 case ISD::STRICT_LROUND:
1179 case ISD::STRICT_LLROUND:
1180 case ISD::STRICT_FSETCC:
1181 case ISD::STRICT_FSETCCS:
1182 ActionVT = Node->getOperand(1).getValueType();
1183 break;
1184 default:
1185 ActionVT = Node->getValueType(0);
1186 break;
1188 if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1189 == TargetLowering::Expand)
1190 Node = CurDAG->mutateStrictFPToFP(Node);
1193 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1194 Node->dump(CurDAG));
1196 Select(Node);
1199 CurDAG->setRoot(Dummy.getValue());
1202 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1204 PostprocessISelDAG();
1207 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1208 for (const User *U : CPI->users()) {
1209 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1210 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1211 if (IID == Intrinsic::eh_exceptionpointer ||
1212 IID == Intrinsic::eh_exceptioncode)
1213 return true;
1216 return false;
1219 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1220 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1221 // and store the mapping in the function.
1222 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1223 const CatchPadInst *CPI) {
1224 MachineFunction *MF = MBB->getParent();
1225 // In case of single catch (...), we don't emit LSDA, so we don't need
1226 // this information.
1227 bool IsSingleCatchAllClause =
1228 CPI->getNumArgOperands() == 1 &&
1229 cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1230 // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 []
1231 // and they don't need LSDA info
1232 bool IsCatchLongjmp = CPI->getNumArgOperands() == 0;
1233 if (!IsSingleCatchAllClause && !IsCatchLongjmp) {
1234 // Create a mapping from landing pad label to landing pad index.
1235 bool IntrFound = false;
1236 for (const User *U : CPI->users()) {
1237 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1238 Intrinsic::ID IID = Call->getIntrinsicID();
1239 if (IID == Intrinsic::wasm_landingpad_index) {
1240 Value *IndexArg = Call->getArgOperand(1);
1241 int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1242 MF->setWasmLandingPadIndex(MBB, Index);
1243 IntrFound = true;
1244 break;
1248 assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1249 (void)IntrFound;
1253 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1254 /// do other setup for EH landing-pad blocks.
1255 bool SelectionDAGISel::PrepareEHLandingPad() {
1256 MachineBasicBlock *MBB = FuncInfo->MBB;
1257 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1258 const BasicBlock *LLVMBB = MBB->getBasicBlock();
1259 const TargetRegisterClass *PtrRC =
1260 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1262 auto Pers = classifyEHPersonality(PersonalityFn);
1264 // Catchpads have one live-in register, which typically holds the exception
1265 // pointer or code.
1266 if (isFuncletEHPersonality(Pers)) {
1267 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1268 if (hasExceptionPointerOrCodeUser(CPI)) {
1269 // Get or create the virtual register to hold the pointer or code. Mark
1270 // the live in physreg and copy into the vreg.
1271 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1272 assert(EHPhysReg && "target lacks exception pointer register");
1273 MBB->addLiveIn(EHPhysReg);
1274 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1275 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1276 TII->get(TargetOpcode::COPY), VReg)
1277 .addReg(EHPhysReg, RegState::Kill);
1280 return true;
1283 // Add a label to mark the beginning of the landing pad. Deletion of the
1284 // landing pad can thus be detected via the MachineModuleInfo.
1285 MCSymbol *Label = MF->addLandingPad(MBB);
1287 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1288 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1289 .addSym(Label);
1291 // If the unwinder does not preserve all registers, ensure that the
1292 // function marks the clobbered registers as used.
1293 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
1294 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
1295 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
1297 if (Pers == EHPersonality::Wasm_CXX) {
1298 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1299 mapWasmLandingPadIndex(MBB, CPI);
1300 } else {
1301 // Assign the call site to the landing pad's begin label.
1302 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1303 // Mark exception register as live in.
1304 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1305 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1306 // Mark exception selector register as live in.
1307 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1308 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1311 return true;
1314 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1315 /// side-effect free and is either dead or folded into a generated instruction.
1316 /// Return false if it needs to be emitted.
1317 static bool isFoldedOrDeadInstruction(const Instruction *I,
1318 const FunctionLoweringInfo &FuncInfo) {
1319 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1320 !I->isTerminator() && // Terminators aren't folded.
1321 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1322 !I->isEHPad() && // EH pad instructions aren't folded.
1323 !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1326 /// Collect llvm.dbg.declare information. This is done after argument lowering
1327 /// in case the declarations refer to arguments.
1328 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1329 MachineFunction *MF = FuncInfo.MF;
1330 const DataLayout &DL = MF->getDataLayout();
1331 for (const BasicBlock &BB : *FuncInfo.Fn) {
1332 for (const Instruction &I : BB) {
1333 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1334 if (!DI)
1335 continue;
1337 assert(DI->getVariable() && "Missing variable");
1338 assert(DI->getDebugLoc() && "Missing location");
1339 const Value *Address = DI->getAddress();
1340 if (!Address) {
1341 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
1342 << " (bad address)\n");
1343 continue;
1346 // Look through casts and constant offset GEPs. These mostly come from
1347 // inalloca.
1348 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1349 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1351 // Check if the variable is a static alloca or a byval or inalloca
1352 // argument passed in memory. If it is not, then we will ignore this
1353 // intrinsic and handle this during isel like dbg.value.
1354 int FI = std::numeric_limits<int>::max();
1355 if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1356 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1357 if (SI != FuncInfo.StaticAllocaMap.end())
1358 FI = SI->second;
1359 } else if (const auto *Arg = dyn_cast<Argument>(Address))
1360 FI = FuncInfo.getArgumentFrameIndex(Arg);
1362 if (FI == std::numeric_limits<int>::max())
1363 continue;
1365 DIExpression *Expr = DI->getExpression();
1366 if (Offset.getBoolValue())
1367 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1368 Offset.getZExtValue());
1369 LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI
1370 << ", " << *DI << "\n");
1371 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1376 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1377 FastISelFailed = false;
1378 // Initialize the Fast-ISel state, if needed.
1379 FastISel *FastIS = nullptr;
1380 if (TM.Options.EnableFastISel) {
1381 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1382 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1385 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1387 // Lower arguments up front. An RPO iteration always visits the entry block
1388 // first.
1389 assert(*RPOT.begin() == &Fn.getEntryBlock());
1390 ++NumEntryBlocks;
1392 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1393 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1394 FuncInfo->InsertPt = FuncInfo->MBB->begin();
1396 CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1398 if (!FastIS) {
1399 LowerArguments(Fn);
1400 } else {
1401 // See if fast isel can lower the arguments.
1402 FastIS->startNewBlock();
1403 if (!FastIS->lowerArguments()) {
1404 FastISelFailed = true;
1405 // Fast isel failed to lower these arguments
1406 ++NumFastIselFailLowerArguments;
1408 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1409 Fn.getSubprogram(),
1410 &Fn.getEntryBlock());
1411 R << "FastISel didn't lower all arguments: "
1412 << ore::NV("Prototype", Fn.getType());
1413 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1415 // Use SelectionDAG argument lowering
1416 LowerArguments(Fn);
1417 CurDAG->setRoot(SDB->getControlRoot());
1418 SDB->clear();
1419 CodeGenAndEmitDAG();
1422 // If we inserted any instructions at the beginning, make a note of
1423 // where they are, so we can be sure to emit subsequent instructions
1424 // after them.
1425 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1426 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1427 else
1428 FastIS->setLastLocalValue(nullptr);
1431 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1433 if (FastIS && Inserted)
1434 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1436 processDbgDeclares(*FuncInfo);
1438 // Iterate over all basic blocks in the function.
1439 StackProtector &SP = getAnalysis<StackProtector>();
1440 for (const BasicBlock *LLVMBB : RPOT) {
1441 if (OptLevel != CodeGenOpt::None) {
1442 bool AllPredsVisited = true;
1443 for (const BasicBlock *Pred : predecessors(LLVMBB)) {
1444 if (!FuncInfo->VisitedBBs.count(Pred)) {
1445 AllPredsVisited = false;
1446 break;
1450 if (AllPredsVisited) {
1451 for (const PHINode &PN : LLVMBB->phis())
1452 FuncInfo->ComputePHILiveOutRegInfo(&PN);
1453 } else {
1454 for (const PHINode &PN : LLVMBB->phis())
1455 FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1458 FuncInfo->VisitedBBs.insert(LLVMBB);
1461 BasicBlock::const_iterator const Begin =
1462 LLVMBB->getFirstNonPHI()->getIterator();
1463 BasicBlock::const_iterator const End = LLVMBB->end();
1464 BasicBlock::const_iterator BI = End;
1466 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1467 if (!FuncInfo->MBB)
1468 continue; // Some blocks like catchpads have no code or MBB.
1470 // Insert new instructions after any phi or argument setup code.
1471 FuncInfo->InsertPt = FuncInfo->MBB->end();
1473 // Setup an EH landing-pad block.
1474 FuncInfo->ExceptionPointerVirtReg = 0;
1475 FuncInfo->ExceptionSelectorVirtReg = 0;
1476 if (LLVMBB->isEHPad())
1477 if (!PrepareEHLandingPad())
1478 continue;
1480 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1481 if (FastIS) {
1482 if (LLVMBB != &Fn.getEntryBlock())
1483 FastIS->startNewBlock();
1485 unsigned NumFastIselRemaining = std::distance(Begin, End);
1487 // Pre-assign swifterror vregs.
1488 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1490 // Do FastISel on as many instructions as possible.
1491 for (; BI != Begin; --BI) {
1492 const Instruction *Inst = &*std::prev(BI);
1494 // If we no longer require this instruction, skip it.
1495 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1496 ElidedArgCopyInstrs.count(Inst)) {
1497 --NumFastIselRemaining;
1498 continue;
1501 // Bottom-up: reset the insert pos at the top, after any local-value
1502 // instructions.
1503 FastIS->recomputeInsertPt();
1505 // Try to select the instruction with FastISel.
1506 if (FastIS->selectInstruction(Inst)) {
1507 --NumFastIselRemaining;
1508 ++NumFastIselSuccess;
1509 // If fast isel succeeded, skip over all the folded instructions, and
1510 // then see if there is a load right before the selected instructions.
1511 // Try to fold the load if so.
1512 const Instruction *BeforeInst = Inst;
1513 while (BeforeInst != &*Begin) {
1514 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1515 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1516 break;
1518 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1519 BeforeInst->hasOneUse() &&
1520 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1521 // If we succeeded, don't re-select the load.
1522 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1523 --NumFastIselRemaining;
1524 ++NumFastIselSuccess;
1526 continue;
1529 FastISelFailed = true;
1531 // Then handle certain instructions as single-LLVM-Instruction blocks.
1532 // We cannot separate out GCrelocates to their own blocks since we need
1533 // to keep track of gc-relocates for a particular gc-statepoint. This is
1534 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1535 // visitGCRelocate.
1536 if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
1537 !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
1538 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1539 Inst->getDebugLoc(), LLVMBB);
1541 R << "FastISel missed call";
1543 if (R.isEnabled() || EnableFastISelAbort) {
1544 std::string InstStrStorage;
1545 raw_string_ostream InstStr(InstStrStorage);
1546 InstStr << *Inst;
1548 R << ": " << InstStr.str();
1551 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1553 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1554 !Inst->use_empty()) {
1555 Register &R = FuncInfo->ValueMap[Inst];
1556 if (!R)
1557 R = FuncInfo->CreateRegs(Inst);
1560 bool HadTailCall = false;
1561 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1562 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1564 // If the call was emitted as a tail call, we're done with the block.
1565 // We also need to delete any previously emitted instructions.
1566 if (HadTailCall) {
1567 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1568 --BI;
1569 break;
1572 // Recompute NumFastIselRemaining as Selection DAG instruction
1573 // selection may have handled the call, input args, etc.
1574 unsigned RemainingNow = std::distance(Begin, BI);
1575 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1576 NumFastIselRemaining = RemainingNow;
1577 continue;
1580 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1581 Inst->getDebugLoc(), LLVMBB);
1583 bool ShouldAbort = EnableFastISelAbort;
1584 if (Inst->isTerminator()) {
1585 // Use a different message for terminator misses.
1586 R << "FastISel missed terminator";
1587 // Don't abort for terminator unless the level is really high
1588 ShouldAbort = (EnableFastISelAbort > 2);
1589 } else {
1590 R << "FastISel missed";
1593 if (R.isEnabled() || EnableFastISelAbort) {
1594 std::string InstStrStorage;
1595 raw_string_ostream InstStr(InstStrStorage);
1596 InstStr << *Inst;
1597 R << ": " << InstStr.str();
1600 reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1602 NumFastIselFailures += NumFastIselRemaining;
1603 break;
1606 FastIS->recomputeInsertPt();
1609 if (SP.shouldEmitSDCheck(*LLVMBB)) {
1610 bool FunctionBasedInstrumentation =
1611 TLI->getSSPStackGuardCheck(*Fn.getParent());
1612 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1613 FunctionBasedInstrumentation);
1616 if (Begin != BI)
1617 ++NumDAGBlocks;
1618 else
1619 ++NumFastIselBlocks;
1621 if (Begin != BI) {
1622 // Run SelectionDAG instruction selection on the remainder of the block
1623 // not handled by FastISel. If FastISel is not run, this is the entire
1624 // block.
1625 bool HadTailCall;
1626 SelectBasicBlock(Begin, BI, HadTailCall);
1628 // But if FastISel was run, we already selected some of the block.
1629 // If we emitted a tail-call, we need to delete any previously emitted
1630 // instruction that follows it.
1631 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1632 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1635 if (FastIS)
1636 FastIS->finishBasicBlock();
1637 FinishBasicBlock();
1638 FuncInfo->PHINodesToUpdate.clear();
1639 ElidedArgCopyInstrs.clear();
1642 SP.copyToMachineFrameInfo(MF->getFrameInfo());
1644 SwiftError->propagateVRegs();
1646 delete FastIS;
1647 SDB->clearDanglingDebugInfo();
1648 SDB->SPDescriptor.resetPerFunctionState();
1651 void
1652 SelectionDAGISel::FinishBasicBlock() {
1653 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1654 << FuncInfo->PHINodesToUpdate.size() << "\n";
1655 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1656 ++i) dbgs()
1657 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1658 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1660 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1661 // PHI nodes in successors.
1662 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1663 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1664 assert(PHI->isPHI() &&
1665 "This is not a machine PHI node that we are updating!");
1666 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1667 continue;
1668 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1671 // Handle stack protector.
1672 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1673 // The target provides a guard check function. There is no need to
1674 // generate error handling code or to split current basic block.
1675 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1677 // Add load and check to the basicblock.
1678 FuncInfo->MBB = ParentMBB;
1679 FuncInfo->InsertPt =
1680 findSplitPointForStackProtector(ParentMBB, *TII);
1681 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1682 CurDAG->setRoot(SDB->getRoot());
1683 SDB->clear();
1684 CodeGenAndEmitDAG();
1686 // Clear the Per-BB State.
1687 SDB->SPDescriptor.resetPerBBState();
1688 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1689 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1690 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1692 // Find the split point to split the parent mbb. At the same time copy all
1693 // physical registers used in the tail of parent mbb into virtual registers
1694 // before the split point and back into physical registers after the split
1695 // point. This prevents us needing to deal with Live-ins and many other
1696 // register allocation issues caused by us splitting the parent mbb. The
1697 // register allocator will clean up said virtual copies later on.
1698 MachineBasicBlock::iterator SplitPoint =
1699 findSplitPointForStackProtector(ParentMBB, *TII);
1701 // Splice the terminator of ParentMBB into SuccessMBB.
1702 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1703 SplitPoint,
1704 ParentMBB->end());
1706 // Add compare/jump on neq/jump to the parent BB.
1707 FuncInfo->MBB = ParentMBB;
1708 FuncInfo->InsertPt = ParentMBB->end();
1709 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1710 CurDAG->setRoot(SDB->getRoot());
1711 SDB->clear();
1712 CodeGenAndEmitDAG();
1714 // CodeGen Failure MBB if we have not codegened it yet.
1715 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1716 if (FailureMBB->empty()) {
1717 FuncInfo->MBB = FailureMBB;
1718 FuncInfo->InsertPt = FailureMBB->end();
1719 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1720 CurDAG->setRoot(SDB->getRoot());
1721 SDB->clear();
1722 CodeGenAndEmitDAG();
1725 // Clear the Per-BB State.
1726 SDB->SPDescriptor.resetPerBBState();
1729 // Lower each BitTestBlock.
1730 for (auto &BTB : SDB->SL->BitTestCases) {
1731 // Lower header first, if it wasn't already lowered
1732 if (!BTB.Emitted) {
1733 // Set the current basic block to the mbb we wish to insert the code into
1734 FuncInfo->MBB = BTB.Parent;
1735 FuncInfo->InsertPt = FuncInfo->MBB->end();
1736 // Emit the code
1737 SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1738 CurDAG->setRoot(SDB->getRoot());
1739 SDB->clear();
1740 CodeGenAndEmitDAG();
1743 BranchProbability UnhandledProb = BTB.Prob;
1744 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1745 UnhandledProb -= BTB.Cases[j].ExtraProb;
1746 // Set the current basic block to the mbb we wish to insert the code into
1747 FuncInfo->MBB = BTB.Cases[j].ThisBB;
1748 FuncInfo->InsertPt = FuncInfo->MBB->end();
1749 // Emit the code
1751 // If all cases cover a contiguous range, it is not necessary to jump to
1752 // the default block after the last bit test fails. This is because the
1753 // range check during bit test header creation has guaranteed that every
1754 // case here doesn't go outside the range. In this case, there is no need
1755 // to perform the last bit test, as it will always be true. Instead, make
1756 // the second-to-last bit-test fall through to the target of the last bit
1757 // test, and delete the last bit test.
1759 MachineBasicBlock *NextMBB;
1760 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
1761 // Second-to-last bit-test with contiguous range or omitted range
1762 // check: fall through to the target of the final bit test.
1763 NextMBB = BTB.Cases[j + 1].TargetBB;
1764 } else if (j + 1 == ej) {
1765 // For the last bit test, fall through to Default.
1766 NextMBB = BTB.Default;
1767 } else {
1768 // Otherwise, fall through to the next bit test.
1769 NextMBB = BTB.Cases[j + 1].ThisBB;
1772 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1773 FuncInfo->MBB);
1775 CurDAG->setRoot(SDB->getRoot());
1776 SDB->clear();
1777 CodeGenAndEmitDAG();
1779 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
1780 // Since we're not going to use the final bit test, remove it.
1781 BTB.Cases.pop_back();
1782 break;
1786 // Update PHI Nodes
1787 for (const std::pair<MachineInstr *, unsigned> &P :
1788 FuncInfo->PHINodesToUpdate) {
1789 MachineInstrBuilder PHI(*MF, P.first);
1790 MachineBasicBlock *PHIBB = PHI->getParent();
1791 assert(PHI->isPHI() &&
1792 "This is not a machine PHI node that we are updating!");
1793 // This is "default" BB. We have two jumps to it. From "header" BB and
1794 // from last "case" BB, unless the latter was skipped.
1795 if (PHIBB == BTB.Default) {
1796 PHI.addReg(P.second).addMBB(BTB.Parent);
1797 if (!BTB.ContiguousRange) {
1798 PHI.addReg(P.second).addMBB(BTB.Cases.back().ThisBB);
1801 // One of "cases" BB.
1802 for (const SwitchCG::BitTestCase &BT : BTB.Cases) {
1803 MachineBasicBlock* cBB = BT.ThisBB;
1804 if (cBB->isSuccessor(PHIBB))
1805 PHI.addReg(P.second).addMBB(cBB);
1809 SDB->SL->BitTestCases.clear();
1811 // If the JumpTable record is filled in, then we need to emit a jump table.
1812 // Updating the PHI nodes is tricky in this case, since we need to determine
1813 // whether the PHI is a successor of the range check MBB or the jump table MBB
1814 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1815 // Lower header first, if it wasn't already lowered
1816 if (!SDB->SL->JTCases[i].first.Emitted) {
1817 // Set the current basic block to the mbb we wish to insert the code into
1818 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1819 FuncInfo->InsertPt = FuncInfo->MBB->end();
1820 // Emit the code
1821 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1822 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1823 CurDAG->setRoot(SDB->getRoot());
1824 SDB->clear();
1825 CodeGenAndEmitDAG();
1828 // Set the current basic block to the mbb we wish to insert the code into
1829 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1830 FuncInfo->InsertPt = FuncInfo->MBB->end();
1831 // Emit the code
1832 SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1833 CurDAG->setRoot(SDB->getRoot());
1834 SDB->clear();
1835 CodeGenAndEmitDAG();
1837 // Update PHI Nodes
1838 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1839 pi != pe; ++pi) {
1840 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1841 MachineBasicBlock *PHIBB = PHI->getParent();
1842 assert(PHI->isPHI() &&
1843 "This is not a machine PHI node that we are updating!");
1844 // "default" BB. We can go there only from header BB.
1845 if (PHIBB == SDB->SL->JTCases[i].second.Default)
1846 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1847 .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1848 // JT BB. Just iterate over successors here
1849 if (FuncInfo->MBB->isSuccessor(PHIBB))
1850 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1853 SDB->SL->JTCases.clear();
1855 // If we generated any switch lowering information, build and codegen any
1856 // additional DAGs necessary.
1857 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1858 // Set the current basic block to the mbb we wish to insert the code into
1859 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1860 FuncInfo->InsertPt = FuncInfo->MBB->end();
1862 // Determine the unique successors.
1863 SmallVector<MachineBasicBlock *, 2> Succs;
1864 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1865 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1866 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1868 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1869 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1870 CurDAG->setRoot(SDB->getRoot());
1871 SDB->clear();
1872 CodeGenAndEmitDAG();
1874 // Remember the last block, now that any splitting is done, for use in
1875 // populating PHI nodes in successors.
1876 MachineBasicBlock *ThisBB = FuncInfo->MBB;
1878 // Handle any PHI nodes in successors of this chunk, as if we were coming
1879 // from the original BB before switch expansion. Note that PHI nodes can
1880 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1881 // handle them the right number of times.
1882 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1883 FuncInfo->MBB = Succs[i];
1884 FuncInfo->InsertPt = FuncInfo->MBB->end();
1885 // FuncInfo->MBB may have been removed from the CFG if a branch was
1886 // constant folded.
1887 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1888 for (MachineBasicBlock::iterator
1889 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1890 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1891 MachineInstrBuilder PHI(*MF, MBBI);
1892 // This value for this PHI node is recorded in PHINodesToUpdate.
1893 for (unsigned pn = 0; ; ++pn) {
1894 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1895 "Didn't find PHI entry!");
1896 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1897 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1898 break;
1905 SDB->SL->SwitchCases.clear();
1908 /// Create the scheduler. If a specific scheduler was specified
1909 /// via the SchedulerRegistry, use it, otherwise select the
1910 /// one preferred by the target.
1912 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1913 return ISHeuristic(this, OptLevel);
1916 //===----------------------------------------------------------------------===//
1917 // Helper functions used by the generated instruction selector.
1918 //===----------------------------------------------------------------------===//
1919 // Calls to these methods are generated by tblgen.
1921 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1922 /// the dag combiner simplified the 255, we still want to match. RHS is the
1923 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1924 /// specified in the .td file (e.g. 255).
1925 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1926 int64_t DesiredMaskS) const {
1927 const APInt &ActualMask = RHS->getAPIntValue();
1928 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1930 // If the actual mask exactly matches, success!
1931 if (ActualMask == DesiredMask)
1932 return true;
1934 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1935 if (!ActualMask.isSubsetOf(DesiredMask))
1936 return false;
1938 // Otherwise, the DAG Combiner may have proven that the value coming in is
1939 // either already zero or is not demanded. Check for known zero input bits.
1940 APInt NeededMask = DesiredMask & ~ActualMask;
1941 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1942 return true;
1944 // TODO: check to see if missing bits are just not demanded.
1946 // Otherwise, this pattern doesn't match.
1947 return false;
1950 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1951 /// the dag combiner simplified the 255, we still want to match. RHS is the
1952 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1953 /// specified in the .td file (e.g. 255).
1954 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1955 int64_t DesiredMaskS) const {
1956 const APInt &ActualMask = RHS->getAPIntValue();
1957 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1959 // If the actual mask exactly matches, success!
1960 if (ActualMask == DesiredMask)
1961 return true;
1963 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1964 if (!ActualMask.isSubsetOf(DesiredMask))
1965 return false;
1967 // Otherwise, the DAG Combiner may have proven that the value coming in is
1968 // either already zero or is not demanded. Check for known zero input bits.
1969 APInt NeededMask = DesiredMask & ~ActualMask;
1970 KnownBits Known = CurDAG->computeKnownBits(LHS);
1972 // If all the missing bits in the or are already known to be set, match!
1973 if (NeededMask.isSubsetOf(Known.One))
1974 return true;
1976 // TODO: check to see if missing bits are just not demanded.
1978 // Otherwise, this pattern doesn't match.
1979 return false;
1982 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1983 /// by tblgen. Others should not call it.
1984 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
1985 const SDLoc &DL) {
1986 std::vector<SDValue> InOps;
1987 std::swap(InOps, Ops);
1989 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1990 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
1991 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
1992 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
1994 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1995 if (InOps[e-1].getValueType() == MVT::Glue)
1996 --e; // Don't process a glue operand if it is here.
1998 while (i != e) {
1999 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2000 if (!InlineAsm::isMemKind(Flags)) {
2001 // Just skip over this operand, copying the operands verbatim.
2002 Ops.insert(Ops.end(), InOps.begin()+i,
2003 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2004 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2005 } else {
2006 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2007 "Memory operand with multiple values?");
2009 unsigned TiedToOperand;
2010 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2011 // We need the constraint ID from the operand this is tied to.
2012 unsigned CurOp = InlineAsm::Op_FirstOperand;
2013 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2014 for (; TiedToOperand; --TiedToOperand) {
2015 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2016 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2020 // Otherwise, this is a memory operand. Ask the target to select it.
2021 std::vector<SDValue> SelOps;
2022 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2023 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2024 report_fatal_error("Could not match memory address. Inline asm"
2025 " failure!");
2027 // Add this to the output node.
2028 unsigned NewFlags =
2029 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2030 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2031 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2032 llvm::append_range(Ops, SelOps);
2033 i += 2;
2037 // Add the glue input back if present.
2038 if (e != InOps.size())
2039 Ops.push_back(InOps.back());
2042 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2043 /// SDNode.
2045 static SDNode *findGlueUse(SDNode *N) {
2046 unsigned FlagResNo = N->getNumValues()-1;
2047 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2048 SDUse &Use = I.getUse();
2049 if (Use.getResNo() == FlagResNo)
2050 return Use.getUser();
2052 return nullptr;
2055 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2056 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2057 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2058 bool IgnoreChains) {
2059 SmallPtrSet<const SDNode *, 16> Visited;
2060 SmallVector<const SDNode *, 16> WorkList;
2061 // Only check if we have non-immediate uses of Def.
2062 if (ImmedUse->isOnlyUserOf(Def))
2063 return false;
2065 // We don't care about paths to Def that go through ImmedUse so mark it
2066 // visited and mark non-def operands as used.
2067 Visited.insert(ImmedUse);
2068 for (const SDValue &Op : ImmedUse->op_values()) {
2069 SDNode *N = Op.getNode();
2070 // Ignore chain deps (they are validated by
2071 // HandleMergeInputChains) and immediate uses
2072 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2073 continue;
2074 if (!Visited.insert(N).second)
2075 continue;
2076 WorkList.push_back(N);
2079 // Initialize worklist to operands of Root.
2080 if (Root != ImmedUse) {
2081 for (const SDValue &Op : Root->op_values()) {
2082 SDNode *N = Op.getNode();
2083 // Ignore chains (they are validated by HandleMergeInputChains)
2084 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2085 continue;
2086 if (!Visited.insert(N).second)
2087 continue;
2088 WorkList.push_back(N);
2092 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2095 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2096 /// operand node N of U during instruction selection that starts at Root.
2097 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2098 SDNode *Root) const {
2099 if (OptLevel == CodeGenOpt::None) return false;
2100 return N.hasOneUse();
2103 /// IsLegalToFold - Returns true if the specific operand node N of
2104 /// U can be folded during instruction selection that starts at Root.
2105 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2106 CodeGenOpt::Level OptLevel,
2107 bool IgnoreChains) {
2108 if (OptLevel == CodeGenOpt::None) return false;
2110 // If Root use can somehow reach N through a path that that doesn't contain
2111 // U then folding N would create a cycle. e.g. In the following
2112 // diagram, Root can reach N through X. If N is folded into Root, then
2113 // X is both a predecessor and a successor of U.
2115 // [N*] //
2116 // ^ ^ //
2117 // / \ //
2118 // [U*] [X]? //
2119 // ^ ^ //
2120 // \ / //
2121 // \ / //
2122 // [Root*] //
2124 // * indicates nodes to be folded together.
2126 // If Root produces glue, then it gets (even more) interesting. Since it
2127 // will be "glued" together with its glue use in the scheduler, we need to
2128 // check if it might reach N.
2130 // [N*] //
2131 // ^ ^ //
2132 // / \ //
2133 // [U*] [X]? //
2134 // ^ ^ //
2135 // \ \ //
2136 // \ | //
2137 // [Root*] | //
2138 // ^ | //
2139 // f | //
2140 // | / //
2141 // [Y] / //
2142 // ^ / //
2143 // f / //
2144 // | / //
2145 // [GU] //
2147 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2148 // (call it Fold), then X is a predecessor of GU and a successor of
2149 // Fold. But since Fold and GU are glued together, this will create
2150 // a cycle in the scheduling graph.
2152 // If the node has glue, walk down the graph to the "lowest" node in the
2153 // glueged set.
2154 EVT VT = Root->getValueType(Root->getNumValues()-1);
2155 while (VT == MVT::Glue) {
2156 SDNode *GU = findGlueUse(Root);
2157 if (!GU)
2158 break;
2159 Root = GU;
2160 VT = Root->getValueType(Root->getNumValues()-1);
2162 // If our query node has a glue result with a use, we've walked up it. If
2163 // the user (which has already been selected) has a chain or indirectly uses
2164 // the chain, HandleMergeInputChains will not consider it. Because of
2165 // this, we cannot ignore chains in this predicate.
2166 IgnoreChains = false;
2169 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2172 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2173 SDLoc DL(N);
2175 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2176 SelectInlineAsmMemoryOperands(Ops, DL);
2178 const EVT VTs[] = {MVT::Other, MVT::Glue};
2179 SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
2180 New->setNodeId(-1);
2181 ReplaceUses(N, New.getNode());
2182 CurDAG->RemoveDeadNode(N);
2185 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2186 SDLoc dl(Op);
2187 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2188 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2190 EVT VT = Op->getValueType(0);
2191 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2192 Register Reg =
2193 TLI->getRegisterByName(RegStr->getString().data(), Ty,
2194 CurDAG->getMachineFunction());
2195 SDValue New = CurDAG->getCopyFromReg(
2196 Op->getOperand(0), dl, Reg, Op->getValueType(0));
2197 New->setNodeId(-1);
2198 ReplaceUses(Op, New.getNode());
2199 CurDAG->RemoveDeadNode(Op);
2202 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2203 SDLoc dl(Op);
2204 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2205 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2207 EVT VT = Op->getOperand(2).getValueType();
2208 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2210 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2211 CurDAG->getMachineFunction());
2212 SDValue New = CurDAG->getCopyToReg(
2213 Op->getOperand(0), dl, Reg, Op->getOperand(2));
2214 New->setNodeId(-1);
2215 ReplaceUses(Op, New.getNode());
2216 CurDAG->RemoveDeadNode(Op);
2219 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2220 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2223 void SelectionDAGISel::Select_FREEZE(SDNode *N) {
2224 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2225 // If FREEZE instruction is added later, the code below must be changed as
2226 // well.
2227 CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
2228 N->getOperand(0));
2231 void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) {
2232 CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0),
2233 N->getOperand(0));
2236 /// GetVBR - decode a vbr encoding whose top bit is set.
2237 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
2238 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2239 assert(Val >= 128 && "Not a VBR");
2240 Val &= 127; // Remove first vbr bit.
2242 unsigned Shift = 7;
2243 uint64_t NextBits;
2244 do {
2245 NextBits = MatcherTable[Idx++];
2246 Val |= (NextBits&127) << Shift;
2247 Shift += 7;
2248 } while (NextBits & 128);
2250 return Val;
2253 /// When a match is complete, this method updates uses of interior chain results
2254 /// to use the new results.
2255 void SelectionDAGISel::UpdateChains(
2256 SDNode *NodeToMatch, SDValue InputChain,
2257 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2258 SmallVector<SDNode*, 4> NowDeadNodes;
2260 // Now that all the normal results are replaced, we replace the chain and
2261 // glue results if present.
2262 if (!ChainNodesMatched.empty()) {
2263 assert(InputChain.getNode() &&
2264 "Matched input chains but didn't produce a chain");
2265 // Loop over all of the nodes we matched that produced a chain result.
2266 // Replace all the chain results with the final chain we ended up with.
2267 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2268 SDNode *ChainNode = ChainNodesMatched[i];
2269 // If ChainNode is null, it's because we replaced it on a previous
2270 // iteration and we cleared it out of the map. Just skip it.
2271 if (!ChainNode)
2272 continue;
2274 assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2275 "Deleted node left in chain");
2277 // Don't replace the results of the root node if we're doing a
2278 // MorphNodeTo.
2279 if (ChainNode == NodeToMatch && isMorphNodeTo)
2280 continue;
2282 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2283 if (ChainVal.getValueType() == MVT::Glue)
2284 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2285 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2286 SelectionDAG::DAGNodeDeletedListener NDL(
2287 *CurDAG, [&](SDNode *N, SDNode *E) {
2288 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2289 static_cast<SDNode *>(nullptr));
2291 if (ChainNode->getOpcode() != ISD::TokenFactor)
2292 ReplaceUses(ChainVal, InputChain);
2294 // If the node became dead and we haven't already seen it, delete it.
2295 if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2296 !llvm::is_contained(NowDeadNodes, ChainNode))
2297 NowDeadNodes.push_back(ChainNode);
2301 if (!NowDeadNodes.empty())
2302 CurDAG->RemoveDeadNodes(NowDeadNodes);
2304 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2307 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2308 /// operation for when the pattern matched at least one node with a chains. The
2309 /// input vector contains a list of all of the chained nodes that we match. We
2310 /// must determine if this is a valid thing to cover (i.e. matching it won't
2311 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2312 /// be used as the input node chain for the generated nodes.
2313 static SDValue
2314 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2315 SelectionDAG *CurDAG) {
2317 SmallPtrSet<const SDNode *, 16> Visited;
2318 SmallVector<const SDNode *, 8> Worklist;
2319 SmallVector<SDValue, 3> InputChains;
2320 unsigned int Max = 8192;
2322 // Quick exit on trivial merge.
2323 if (ChainNodesMatched.size() == 1)
2324 return ChainNodesMatched[0]->getOperand(0);
2326 // Add chains that aren't already added (internal). Peek through
2327 // token factors.
2328 std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2329 if (V.getValueType() != MVT::Other)
2330 return;
2331 if (V->getOpcode() == ISD::EntryToken)
2332 return;
2333 if (!Visited.insert(V.getNode()).second)
2334 return;
2335 if (V->getOpcode() == ISD::TokenFactor) {
2336 for (const SDValue &Op : V->op_values())
2337 AddChains(Op);
2338 } else
2339 InputChains.push_back(V);
2342 for (auto *N : ChainNodesMatched) {
2343 Worklist.push_back(N);
2344 Visited.insert(N);
2347 while (!Worklist.empty())
2348 AddChains(Worklist.pop_back_val()->getOperand(0));
2350 // Skip the search if there are no chain dependencies.
2351 if (InputChains.size() == 0)
2352 return CurDAG->getEntryNode();
2354 // If one of these chains is a successor of input, we must have a
2355 // node that is both the predecessor and successor of the
2356 // to-be-merged nodes. Fail.
2357 Visited.clear();
2358 for (SDValue V : InputChains)
2359 Worklist.push_back(V.getNode());
2361 for (auto *N : ChainNodesMatched)
2362 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2363 return SDValue();
2365 // Return merged chain.
2366 if (InputChains.size() == 1)
2367 return InputChains[0];
2368 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2369 MVT::Other, InputChains);
2372 /// MorphNode - Handle morphing a node in place for the selector.
2373 SDNode *SelectionDAGISel::
2374 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2375 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2376 // It is possible we're using MorphNodeTo to replace a node with no
2377 // normal results with one that has a normal result (or we could be
2378 // adding a chain) and the input could have glue and chains as well.
2379 // In this case we need to shift the operands down.
2380 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2381 // than the old isel though.
2382 int OldGlueResultNo = -1, OldChainResultNo = -1;
2384 unsigned NTMNumResults = Node->getNumValues();
2385 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2386 OldGlueResultNo = NTMNumResults-1;
2387 if (NTMNumResults != 1 &&
2388 Node->getValueType(NTMNumResults-2) == MVT::Other)
2389 OldChainResultNo = NTMNumResults-2;
2390 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2391 OldChainResultNo = NTMNumResults-1;
2393 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2394 // that this deletes operands of the old node that become dead.
2395 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2397 // MorphNodeTo can operate in two ways: if an existing node with the
2398 // specified operands exists, it can just return it. Otherwise, it
2399 // updates the node in place to have the requested operands.
2400 if (Res == Node) {
2401 // If we updated the node in place, reset the node ID. To the isel,
2402 // this should be just like a newly allocated machine node.
2403 Res->setNodeId(-1);
2406 unsigned ResNumResults = Res->getNumValues();
2407 // Move the glue if needed.
2408 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2409 (unsigned)OldGlueResultNo != ResNumResults-1)
2410 ReplaceUses(SDValue(Node, OldGlueResultNo),
2411 SDValue(Res, ResNumResults - 1));
2413 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2414 --ResNumResults;
2416 // Move the chain reference if needed.
2417 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2418 (unsigned)OldChainResultNo != ResNumResults-1)
2419 ReplaceUses(SDValue(Node, OldChainResultNo),
2420 SDValue(Res, ResNumResults - 1));
2422 // Otherwise, no replacement happened because the node already exists. Replace
2423 // Uses of the old node with the new one.
2424 if (Res != Node) {
2425 ReplaceNode(Node, Res);
2426 } else {
2427 EnforceNodeIdInvariant(Res);
2430 return Res;
2433 /// CheckSame - Implements OP_CheckSame.
2434 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2435 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2436 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) {
2437 // Accept if it is exactly the same as a previously recorded node.
2438 unsigned RecNo = MatcherTable[MatcherIndex++];
2439 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2440 return N == RecordedNodes[RecNo].first;
2443 /// CheckChildSame - Implements OP_CheckChildXSame.
2444 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame(
2445 const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2446 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes,
2447 unsigned ChildNo) {
2448 if (ChildNo >= N.getNumOperands())
2449 return false; // Match fails if out of range child #.
2450 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2451 RecordedNodes);
2454 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2455 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2456 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2457 const SelectionDAGISel &SDISel) {
2458 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2461 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2462 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2463 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2464 const SelectionDAGISel &SDISel, SDNode *N) {
2465 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2468 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2469 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2470 SDNode *N) {
2471 uint16_t Opc = MatcherTable[MatcherIndex++];
2472 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2473 return N->getOpcode() == Opc;
2476 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2477 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2478 const TargetLowering *TLI, const DataLayout &DL) {
2479 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2480 if (N.getValueType() == VT) return true;
2482 // Handle the case when VT is iPTR.
2483 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2486 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2487 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2488 SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2489 unsigned ChildNo) {
2490 if (ChildNo >= N.getNumOperands())
2491 return false; // Match fails if out of range child #.
2492 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2493 DL);
2496 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2497 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2498 SDValue N) {
2499 return cast<CondCodeSDNode>(N)->get() ==
2500 (ISD::CondCode)MatcherTable[MatcherIndex++];
2503 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2504 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2505 SDValue N) {
2506 if (2 >= N.getNumOperands())
2507 return false;
2508 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2511 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2512 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2513 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2514 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2515 if (cast<VTSDNode>(N)->getVT() == VT)
2516 return true;
2518 // Handle the case when VT is iPTR.
2519 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2522 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
2523 // shifted left by 1.
2524 static uint64_t decodeSignRotatedValue(uint64_t V) {
2525 if ((V & 1) == 0)
2526 return V >> 1;
2527 if (V != 1)
2528 return -(V >> 1);
2529 // There is no such thing as -0 with integers. "-0" really means MININT.
2530 return 1ULL << 63;
2533 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2534 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2535 SDValue N) {
2536 int64_t Val = MatcherTable[MatcherIndex++];
2537 if (Val & 128)
2538 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2540 Val = decodeSignRotatedValue(Val);
2542 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2543 return C && C->getSExtValue() == Val;
2546 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2547 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2548 SDValue N, unsigned ChildNo) {
2549 if (ChildNo >= N.getNumOperands())
2550 return false; // Match fails if out of range child #.
2551 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2554 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2555 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2556 SDValue N, const SelectionDAGISel &SDISel) {
2557 int64_t Val = MatcherTable[MatcherIndex++];
2558 if (Val & 128)
2559 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2561 if (N->getOpcode() != ISD::AND) return false;
2563 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2564 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2567 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2568 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2569 const SelectionDAGISel &SDISel) {
2570 int64_t Val = MatcherTable[MatcherIndex++];
2571 if (Val & 128)
2572 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2574 if (N->getOpcode() != ISD::OR) return false;
2576 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2577 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2580 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2581 /// scope, evaluate the current node. If the current predicate is known to
2582 /// fail, set Result=true and return anything. If the current predicate is
2583 /// known to pass, set Result=false and return the MatcherIndex to continue
2584 /// with. If the current predicate is unknown, set Result=false and return the
2585 /// MatcherIndex to continue with.
2586 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2587 unsigned Index, SDValue N,
2588 bool &Result,
2589 const SelectionDAGISel &SDISel,
2590 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2591 switch (Table[Index++]) {
2592 default:
2593 Result = false;
2594 return Index-1; // Could not evaluate this predicate.
2595 case SelectionDAGISel::OPC_CheckSame:
2596 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2597 return Index;
2598 case SelectionDAGISel::OPC_CheckChild0Same:
2599 case SelectionDAGISel::OPC_CheckChild1Same:
2600 case SelectionDAGISel::OPC_CheckChild2Same:
2601 case SelectionDAGISel::OPC_CheckChild3Same:
2602 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2603 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2604 return Index;
2605 case SelectionDAGISel::OPC_CheckPatternPredicate:
2606 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2607 return Index;
2608 case SelectionDAGISel::OPC_CheckPredicate:
2609 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2610 return Index;
2611 case SelectionDAGISel::OPC_CheckOpcode:
2612 Result = !::CheckOpcode(Table, Index, N.getNode());
2613 return Index;
2614 case SelectionDAGISel::OPC_CheckType:
2615 Result = !::CheckType(Table, Index, N, SDISel.TLI,
2616 SDISel.CurDAG->getDataLayout());
2617 return Index;
2618 case SelectionDAGISel::OPC_CheckTypeRes: {
2619 unsigned Res = Table[Index++];
2620 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2621 SDISel.CurDAG->getDataLayout());
2622 return Index;
2624 case SelectionDAGISel::OPC_CheckChild0Type:
2625 case SelectionDAGISel::OPC_CheckChild1Type:
2626 case SelectionDAGISel::OPC_CheckChild2Type:
2627 case SelectionDAGISel::OPC_CheckChild3Type:
2628 case SelectionDAGISel::OPC_CheckChild4Type:
2629 case SelectionDAGISel::OPC_CheckChild5Type:
2630 case SelectionDAGISel::OPC_CheckChild6Type:
2631 case SelectionDAGISel::OPC_CheckChild7Type:
2632 Result = !::CheckChildType(
2633 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2634 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2635 return Index;
2636 case SelectionDAGISel::OPC_CheckCondCode:
2637 Result = !::CheckCondCode(Table, Index, N);
2638 return Index;
2639 case SelectionDAGISel::OPC_CheckChild2CondCode:
2640 Result = !::CheckChild2CondCode(Table, Index, N);
2641 return Index;
2642 case SelectionDAGISel::OPC_CheckValueType:
2643 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2644 SDISel.CurDAG->getDataLayout());
2645 return Index;
2646 case SelectionDAGISel::OPC_CheckInteger:
2647 Result = !::CheckInteger(Table, Index, N);
2648 return Index;
2649 case SelectionDAGISel::OPC_CheckChild0Integer:
2650 case SelectionDAGISel::OPC_CheckChild1Integer:
2651 case SelectionDAGISel::OPC_CheckChild2Integer:
2652 case SelectionDAGISel::OPC_CheckChild3Integer:
2653 case SelectionDAGISel::OPC_CheckChild4Integer:
2654 Result = !::CheckChildInteger(Table, Index, N,
2655 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2656 return Index;
2657 case SelectionDAGISel::OPC_CheckAndImm:
2658 Result = !::CheckAndImm(Table, Index, N, SDISel);
2659 return Index;
2660 case SelectionDAGISel::OPC_CheckOrImm:
2661 Result = !::CheckOrImm(Table, Index, N, SDISel);
2662 return Index;
2666 namespace {
2668 struct MatchScope {
2669 /// FailIndex - If this match fails, this is the index to continue with.
2670 unsigned FailIndex;
2672 /// NodeStack - The node stack when the scope was formed.
2673 SmallVector<SDValue, 4> NodeStack;
2675 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2676 unsigned NumRecordedNodes;
2678 /// NumMatchedMemRefs - The number of matched memref entries.
2679 unsigned NumMatchedMemRefs;
2681 /// InputChain/InputGlue - The current chain/glue
2682 SDValue InputChain, InputGlue;
2684 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2685 bool HasChainNodesMatched;
2688 /// \A DAG update listener to keep the matching state
2689 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2690 /// change the DAG while matching. X86 addressing mode matcher is an example
2691 /// for this.
2692 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2694 SDNode **NodeToMatch;
2695 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2696 SmallVectorImpl<MatchScope> &MatchScopes;
2698 public:
2699 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2700 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2701 SmallVectorImpl<MatchScope> &MS)
2702 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2703 RecordedNodes(RN), MatchScopes(MS) {}
2705 void NodeDeleted(SDNode *N, SDNode *E) override {
2706 // Some early-returns here to avoid the search if we deleted the node or
2707 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2708 // do, so it's unnecessary to update matching state at that point).
2709 // Neither of these can occur currently because we only install this
2710 // update listener during matching a complex patterns.
2711 if (!E || E->isMachineOpcode())
2712 return;
2713 // Check if NodeToMatch was updated.
2714 if (N == *NodeToMatch)
2715 *NodeToMatch = E;
2716 // Performing linear search here does not matter because we almost never
2717 // run this code. You'd have to have a CSE during complex pattern
2718 // matching.
2719 for (auto &I : RecordedNodes)
2720 if (I.first.getNode() == N)
2721 I.first.setNode(E);
2723 for (auto &I : MatchScopes)
2724 for (auto &J : I.NodeStack)
2725 if (J.getNode() == N)
2726 J.setNode(E);
2730 } // end anonymous namespace
2732 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2733 const unsigned char *MatcherTable,
2734 unsigned TableSize) {
2735 // FIXME: Should these even be selected? Handle these cases in the caller?
2736 switch (NodeToMatch->getOpcode()) {
2737 default:
2738 break;
2739 case ISD::EntryToken: // These nodes remain the same.
2740 case ISD::BasicBlock:
2741 case ISD::Register:
2742 case ISD::RegisterMask:
2743 case ISD::HANDLENODE:
2744 case ISD::MDNODE_SDNODE:
2745 case ISD::TargetConstant:
2746 case ISD::TargetConstantFP:
2747 case ISD::TargetConstantPool:
2748 case ISD::TargetFrameIndex:
2749 case ISD::TargetExternalSymbol:
2750 case ISD::MCSymbol:
2751 case ISD::TargetBlockAddress:
2752 case ISD::TargetJumpTable:
2753 case ISD::TargetGlobalTLSAddress:
2754 case ISD::TargetGlobalAddress:
2755 case ISD::TokenFactor:
2756 case ISD::CopyFromReg:
2757 case ISD::CopyToReg:
2758 case ISD::EH_LABEL:
2759 case ISD::ANNOTATION_LABEL:
2760 case ISD::LIFETIME_START:
2761 case ISD::LIFETIME_END:
2762 case ISD::PSEUDO_PROBE:
2763 NodeToMatch->setNodeId(-1); // Mark selected.
2764 return;
2765 case ISD::AssertSext:
2766 case ISD::AssertZext:
2767 case ISD::AssertAlign:
2768 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2769 CurDAG->RemoveDeadNode(NodeToMatch);
2770 return;
2771 case ISD::INLINEASM:
2772 case ISD::INLINEASM_BR:
2773 Select_INLINEASM(NodeToMatch);
2774 return;
2775 case ISD::READ_REGISTER:
2776 Select_READ_REGISTER(NodeToMatch);
2777 return;
2778 case ISD::WRITE_REGISTER:
2779 Select_WRITE_REGISTER(NodeToMatch);
2780 return;
2781 case ISD::UNDEF:
2782 Select_UNDEF(NodeToMatch);
2783 return;
2784 case ISD::FREEZE:
2785 Select_FREEZE(NodeToMatch);
2786 return;
2787 case ISD::ARITH_FENCE:
2788 Select_ARITH_FENCE(NodeToMatch);
2789 return;
2792 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2794 // Set up the node stack with NodeToMatch as the only node on the stack.
2795 SmallVector<SDValue, 8> NodeStack;
2796 SDValue N = SDValue(NodeToMatch, 0);
2797 NodeStack.push_back(N);
2799 // MatchScopes - Scopes used when matching, if a match failure happens, this
2800 // indicates where to continue checking.
2801 SmallVector<MatchScope, 8> MatchScopes;
2803 // RecordedNodes - This is the set of nodes that have been recorded by the
2804 // state machine. The second value is the parent of the node, or null if the
2805 // root is recorded.
2806 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2808 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2809 // pattern.
2810 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2812 // These are the current input chain and glue for use when generating nodes.
2813 // Various Emit operations change these. For example, emitting a copytoreg
2814 // uses and updates these.
2815 SDValue InputChain, InputGlue;
2817 // ChainNodesMatched - If a pattern matches nodes that have input/output
2818 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2819 // which ones they are. The result is captured into this list so that we can
2820 // update the chain results when the pattern is complete.
2821 SmallVector<SDNode*, 3> ChainNodesMatched;
2823 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2825 // Determine where to start the interpreter. Normally we start at opcode #0,
2826 // but if the state machine starts with an OPC_SwitchOpcode, then we
2827 // accelerate the first lookup (which is guaranteed to be hot) with the
2828 // OpcodeOffset table.
2829 unsigned MatcherIndex = 0;
2831 if (!OpcodeOffset.empty()) {
2832 // Already computed the OpcodeOffset table, just index into it.
2833 if (N.getOpcode() < OpcodeOffset.size())
2834 MatcherIndex = OpcodeOffset[N.getOpcode()];
2835 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
2837 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2838 // Otherwise, the table isn't computed, but the state machine does start
2839 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2840 // is the first time we're selecting an instruction.
2841 unsigned Idx = 1;
2842 while (true) {
2843 // Get the size of this case.
2844 unsigned CaseSize = MatcherTable[Idx++];
2845 if (CaseSize & 128)
2846 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2847 if (CaseSize == 0) break;
2849 // Get the opcode, add the index to the table.
2850 uint16_t Opc = MatcherTable[Idx++];
2851 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2852 if (Opc >= OpcodeOffset.size())
2853 OpcodeOffset.resize((Opc+1)*2);
2854 OpcodeOffset[Opc] = Idx;
2855 Idx += CaseSize;
2858 // Okay, do the lookup for the first opcode.
2859 if (N.getOpcode() < OpcodeOffset.size())
2860 MatcherIndex = OpcodeOffset[N.getOpcode()];
2863 while (true) {
2864 assert(MatcherIndex < TableSize && "Invalid index");
2865 #ifndef NDEBUG
2866 unsigned CurrentOpcodeIndex = MatcherIndex;
2867 #endif
2868 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2869 switch (Opcode) {
2870 case OPC_Scope: {
2871 // Okay, the semantics of this operation are that we should push a scope
2872 // then evaluate the first child. However, pushing a scope only to have
2873 // the first check fail (which then pops it) is inefficient. If we can
2874 // determine immediately that the first check (or first several) will
2875 // immediately fail, don't even bother pushing a scope for them.
2876 unsigned FailIndex;
2878 while (true) {
2879 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2880 if (NumToSkip & 128)
2881 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2882 // Found the end of the scope with no match.
2883 if (NumToSkip == 0) {
2884 FailIndex = 0;
2885 break;
2888 FailIndex = MatcherIndex+NumToSkip;
2890 unsigned MatcherIndexOfPredicate = MatcherIndex;
2891 (void)MatcherIndexOfPredicate; // silence warning.
2893 // If we can't evaluate this predicate without pushing a scope (e.g. if
2894 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2895 // push the scope and evaluate the full predicate chain.
2896 bool Result;
2897 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2898 Result, *this, RecordedNodes);
2899 if (!Result)
2900 break;
2902 LLVM_DEBUG(
2903 dbgs() << " Skipped scope entry (due to false predicate) at "
2904 << "index " << MatcherIndexOfPredicate << ", continuing at "
2905 << FailIndex << "\n");
2906 ++NumDAGIselRetries;
2908 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2909 // move to the next case.
2910 MatcherIndex = FailIndex;
2913 // If the whole scope failed to match, bail.
2914 if (FailIndex == 0) break;
2916 // Push a MatchScope which indicates where to go if the first child fails
2917 // to match.
2918 MatchScope NewEntry;
2919 NewEntry.FailIndex = FailIndex;
2920 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2921 NewEntry.NumRecordedNodes = RecordedNodes.size();
2922 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2923 NewEntry.InputChain = InputChain;
2924 NewEntry.InputGlue = InputGlue;
2925 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2926 MatchScopes.push_back(NewEntry);
2927 continue;
2929 case OPC_RecordNode: {
2930 // Remember this node, it may end up being an operand in the pattern.
2931 SDNode *Parent = nullptr;
2932 if (NodeStack.size() > 1)
2933 Parent = NodeStack[NodeStack.size()-2].getNode();
2934 RecordedNodes.push_back(std::make_pair(N, Parent));
2935 continue;
2938 case OPC_RecordChild0: case OPC_RecordChild1:
2939 case OPC_RecordChild2: case OPC_RecordChild3:
2940 case OPC_RecordChild4: case OPC_RecordChild5:
2941 case OPC_RecordChild6: case OPC_RecordChild7: {
2942 unsigned ChildNo = Opcode-OPC_RecordChild0;
2943 if (ChildNo >= N.getNumOperands())
2944 break; // Match fails if out of range child #.
2946 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2947 N.getNode()));
2948 continue;
2950 case OPC_RecordMemRef:
2951 if (auto *MN = dyn_cast<MemSDNode>(N))
2952 MatchedMemRefs.push_back(MN->getMemOperand());
2953 else {
2954 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
2955 dbgs() << '\n');
2958 continue;
2960 case OPC_CaptureGlueInput:
2961 // If the current node has an input glue, capture it in InputGlue.
2962 if (N->getNumOperands() != 0 &&
2963 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2964 InputGlue = N->getOperand(N->getNumOperands()-1);
2965 continue;
2967 case OPC_MoveChild: {
2968 unsigned ChildNo = MatcherTable[MatcherIndex++];
2969 if (ChildNo >= N.getNumOperands())
2970 break; // Match fails if out of range child #.
2971 N = N.getOperand(ChildNo);
2972 NodeStack.push_back(N);
2973 continue;
2976 case OPC_MoveChild0: case OPC_MoveChild1:
2977 case OPC_MoveChild2: case OPC_MoveChild3:
2978 case OPC_MoveChild4: case OPC_MoveChild5:
2979 case OPC_MoveChild6: case OPC_MoveChild7: {
2980 unsigned ChildNo = Opcode-OPC_MoveChild0;
2981 if (ChildNo >= N.getNumOperands())
2982 break; // Match fails if out of range child #.
2983 N = N.getOperand(ChildNo);
2984 NodeStack.push_back(N);
2985 continue;
2988 case OPC_MoveParent:
2989 // Pop the current node off the NodeStack.
2990 NodeStack.pop_back();
2991 assert(!NodeStack.empty() && "Node stack imbalance!");
2992 N = NodeStack.back();
2993 continue;
2995 case OPC_CheckSame:
2996 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2997 continue;
2999 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3000 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3001 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3002 Opcode-OPC_CheckChild0Same))
3003 break;
3004 continue;
3006 case OPC_CheckPatternPredicate:
3007 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3008 continue;
3009 case OPC_CheckPredicate:
3010 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3011 N.getNode()))
3012 break;
3013 continue;
3014 case OPC_CheckPredicateWithOperands: {
3015 unsigned OpNum = MatcherTable[MatcherIndex++];
3016 SmallVector<SDValue, 8> Operands;
3018 for (unsigned i = 0; i < OpNum; ++i)
3019 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3021 unsigned PredNo = MatcherTable[MatcherIndex++];
3022 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3023 break;
3024 continue;
3026 case OPC_CheckComplexPat: {
3027 unsigned CPNum = MatcherTable[MatcherIndex++];
3028 unsigned RecNo = MatcherTable[MatcherIndex++];
3029 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3031 // If target can modify DAG during matching, keep the matching state
3032 // consistent.
3033 std::unique_ptr<MatchStateUpdater> MSU;
3034 if (ComplexPatternFuncMutatesDAG())
3035 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3036 MatchScopes));
3038 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3039 RecordedNodes[RecNo].first, CPNum,
3040 RecordedNodes))
3041 break;
3042 continue;
3044 case OPC_CheckOpcode:
3045 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3046 continue;
3048 case OPC_CheckType:
3049 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3050 CurDAG->getDataLayout()))
3051 break;
3052 continue;
3054 case OPC_CheckTypeRes: {
3055 unsigned Res = MatcherTable[MatcherIndex++];
3056 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3057 CurDAG->getDataLayout()))
3058 break;
3059 continue;
3062 case OPC_SwitchOpcode: {
3063 unsigned CurNodeOpcode = N.getOpcode();
3064 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3065 unsigned CaseSize;
3066 while (true) {
3067 // Get the size of this case.
3068 CaseSize = MatcherTable[MatcherIndex++];
3069 if (CaseSize & 128)
3070 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3071 if (CaseSize == 0) break;
3073 uint16_t Opc = MatcherTable[MatcherIndex++];
3074 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3076 // If the opcode matches, then we will execute this case.
3077 if (CurNodeOpcode == Opc)
3078 break;
3080 // Otherwise, skip over this case.
3081 MatcherIndex += CaseSize;
3084 // If no cases matched, bail out.
3085 if (CaseSize == 0) break;
3087 // Otherwise, execute the case we found.
3088 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
3089 << MatcherIndex << "\n");
3090 continue;
3093 case OPC_SwitchType: {
3094 MVT CurNodeVT = N.getSimpleValueType();
3095 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3096 unsigned CaseSize;
3097 while (true) {
3098 // Get the size of this case.
3099 CaseSize = MatcherTable[MatcherIndex++];
3100 if (CaseSize & 128)
3101 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3102 if (CaseSize == 0) break;
3104 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3105 if (CaseVT == MVT::iPTR)
3106 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3108 // If the VT matches, then we will execute this case.
3109 if (CurNodeVT == CaseVT)
3110 break;
3112 // Otherwise, skip over this case.
3113 MatcherIndex += CaseSize;
3116 // If no cases matched, bail out.
3117 if (CaseSize == 0) break;
3119 // Otherwise, execute the case we found.
3120 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3121 << "] from " << SwitchStart << " to " << MatcherIndex
3122 << '\n');
3123 continue;
3125 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3126 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3127 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3128 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3129 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3130 CurDAG->getDataLayout(),
3131 Opcode - OPC_CheckChild0Type))
3132 break;
3133 continue;
3134 case OPC_CheckCondCode:
3135 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3136 continue;
3137 case OPC_CheckChild2CondCode:
3138 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3139 continue;
3140 case OPC_CheckValueType:
3141 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3142 CurDAG->getDataLayout()))
3143 break;
3144 continue;
3145 case OPC_CheckInteger:
3146 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3147 continue;
3148 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3149 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3150 case OPC_CheckChild4Integer:
3151 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3152 Opcode-OPC_CheckChild0Integer)) break;
3153 continue;
3154 case OPC_CheckAndImm:
3155 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3156 continue;
3157 case OPC_CheckOrImm:
3158 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3159 continue;
3160 case OPC_CheckImmAllOnesV:
3161 if (!ISD::isConstantSplatVectorAllOnes(N.getNode()))
3162 break;
3163 continue;
3164 case OPC_CheckImmAllZerosV:
3165 if (!ISD::isConstantSplatVectorAllZeros(N.getNode()))
3166 break;
3167 continue;
3169 case OPC_CheckFoldableChainNode: {
3170 assert(NodeStack.size() != 1 && "No parent node");
3171 // Verify that all intermediate nodes between the root and this one have
3172 // a single use (ignoring chains, which are handled in UpdateChains).
3173 bool HasMultipleUses = false;
3174 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3175 unsigned NNonChainUses = 0;
3176 SDNode *NS = NodeStack[i].getNode();
3177 for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3178 if (UI.getUse().getValueType() != MVT::Other)
3179 if (++NNonChainUses > 1) {
3180 HasMultipleUses = true;
3181 break;
3183 if (HasMultipleUses) break;
3185 if (HasMultipleUses) break;
3187 // Check to see that the target thinks this is profitable to fold and that
3188 // we can fold it without inducing cycles in the graph.
3189 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3190 NodeToMatch) ||
3191 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3192 NodeToMatch, OptLevel,
3193 true/*We validate our own chains*/))
3194 break;
3196 continue;
3198 case OPC_EmitInteger:
3199 case OPC_EmitStringInteger: {
3200 MVT::SimpleValueType VT =
3201 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3202 int64_t Val = MatcherTable[MatcherIndex++];
3203 if (Val & 128)
3204 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3205 if (Opcode == OPC_EmitInteger)
3206 Val = decodeSignRotatedValue(Val);
3207 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3208 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3209 VT), nullptr));
3210 continue;
3212 case OPC_EmitRegister: {
3213 MVT::SimpleValueType VT =
3214 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3215 unsigned RegNo = MatcherTable[MatcherIndex++];
3216 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3217 CurDAG->getRegister(RegNo, VT), nullptr));
3218 continue;
3220 case OPC_EmitRegister2: {
3221 // For targets w/ more than 256 register names, the register enum
3222 // values are stored in two bytes in the matcher table (just like
3223 // opcodes).
3224 MVT::SimpleValueType VT =
3225 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3226 unsigned RegNo = MatcherTable[MatcherIndex++];
3227 RegNo |= MatcherTable[MatcherIndex++] << 8;
3228 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3229 CurDAG->getRegister(RegNo, VT), nullptr));
3230 continue;
3233 case OPC_EmitConvertToTarget: {
3234 // Convert from IMM/FPIMM to target version.
3235 unsigned RecNo = MatcherTable[MatcherIndex++];
3236 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3237 SDValue Imm = RecordedNodes[RecNo].first;
3239 if (Imm->getOpcode() == ISD::Constant) {
3240 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3241 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3242 Imm.getValueType());
3243 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3244 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3245 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3246 Imm.getValueType());
3249 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3250 continue;
3253 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3254 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
3255 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
3256 // These are space-optimized forms of OPC_EmitMergeInputChains.
3257 assert(!InputChain.getNode() &&
3258 "EmitMergeInputChains should be the first chain producing node");
3259 assert(ChainNodesMatched.empty() &&
3260 "Should only have one EmitMergeInputChains per match");
3262 // Read all of the chained nodes.
3263 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3264 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3265 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3267 // FIXME: What if other value results of the node have uses not matched
3268 // by this pattern?
3269 if (ChainNodesMatched.back() != NodeToMatch &&
3270 !RecordedNodes[RecNo].first.hasOneUse()) {
3271 ChainNodesMatched.clear();
3272 break;
3275 // Merge the input chains if they are not intra-pattern references.
3276 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3278 if (!InputChain.getNode())
3279 break; // Failed to merge.
3280 continue;
3283 case OPC_EmitMergeInputChains: {
3284 assert(!InputChain.getNode() &&
3285 "EmitMergeInputChains should be the first chain producing node");
3286 // This node gets a list of nodes we matched in the input that have
3287 // chains. We want to token factor all of the input chains to these nodes
3288 // together. However, if any of the input chains is actually one of the
3289 // nodes matched in this pattern, then we have an intra-match reference.
3290 // Ignore these because the newly token factored chain should not refer to
3291 // the old nodes.
3292 unsigned NumChains = MatcherTable[MatcherIndex++];
3293 assert(NumChains != 0 && "Can't TF zero chains");
3295 assert(ChainNodesMatched.empty() &&
3296 "Should only have one EmitMergeInputChains per match");
3298 // Read all of the chained nodes.
3299 for (unsigned i = 0; i != NumChains; ++i) {
3300 unsigned RecNo = MatcherTable[MatcherIndex++];
3301 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3302 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3304 // FIXME: What if other value results of the node have uses not matched
3305 // by this pattern?
3306 if (ChainNodesMatched.back() != NodeToMatch &&
3307 !RecordedNodes[RecNo].first.hasOneUse()) {
3308 ChainNodesMatched.clear();
3309 break;
3313 // If the inner loop broke out, the match fails.
3314 if (ChainNodesMatched.empty())
3315 break;
3317 // Merge the input chains if they are not intra-pattern references.
3318 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3320 if (!InputChain.getNode())
3321 break; // Failed to merge.
3323 continue;
3326 case OPC_EmitCopyToReg:
3327 case OPC_EmitCopyToReg2: {
3328 unsigned RecNo = MatcherTable[MatcherIndex++];
3329 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3330 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3331 if (Opcode == OPC_EmitCopyToReg2)
3332 DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3334 if (!InputChain.getNode())
3335 InputChain = CurDAG->getEntryNode();
3337 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3338 DestPhysReg, RecordedNodes[RecNo].first,
3339 InputGlue);
3341 InputGlue = InputChain.getValue(1);
3342 continue;
3345 case OPC_EmitNodeXForm: {
3346 unsigned XFormNo = MatcherTable[MatcherIndex++];
3347 unsigned RecNo = MatcherTable[MatcherIndex++];
3348 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3349 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3350 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3351 continue;
3353 case OPC_Coverage: {
3354 // This is emitted right before MorphNode/EmitNode.
3355 // So it should be safe to assume that this node has been selected
3356 unsigned index = MatcherTable[MatcherIndex++];
3357 index |= (MatcherTable[MatcherIndex++] << 8);
3358 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3359 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3360 continue;
3363 case OPC_EmitNode: case OPC_MorphNodeTo:
3364 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
3365 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3366 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3367 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3368 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3369 // Get the result VT list.
3370 unsigned NumVTs;
3371 // If this is one of the compressed forms, get the number of VTs based
3372 // on the Opcode. Otherwise read the next byte from the table.
3373 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3374 NumVTs = Opcode - OPC_MorphNodeTo0;
3375 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3376 NumVTs = Opcode - OPC_EmitNode0;
3377 else
3378 NumVTs = MatcherTable[MatcherIndex++];
3379 SmallVector<EVT, 4> VTs;
3380 for (unsigned i = 0; i != NumVTs; ++i) {
3381 MVT::SimpleValueType VT =
3382 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3383 if (VT == MVT::iPTR)
3384 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3385 VTs.push_back(VT);
3388 if (EmitNodeInfo & OPFL_Chain)
3389 VTs.push_back(MVT::Other);
3390 if (EmitNodeInfo & OPFL_GlueOutput)
3391 VTs.push_back(MVT::Glue);
3393 // This is hot code, so optimize the two most common cases of 1 and 2
3394 // results.
3395 SDVTList VTList;
3396 if (VTs.size() == 1)
3397 VTList = CurDAG->getVTList(VTs[0]);
3398 else if (VTs.size() == 2)
3399 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3400 else
3401 VTList = CurDAG->getVTList(VTs);
3403 // Get the operand list.
3404 unsigned NumOps = MatcherTable[MatcherIndex++];
3405 SmallVector<SDValue, 8> Ops;
3406 for (unsigned i = 0; i != NumOps; ++i) {
3407 unsigned RecNo = MatcherTable[MatcherIndex++];
3408 if (RecNo & 128)
3409 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3411 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3412 Ops.push_back(RecordedNodes[RecNo].first);
3415 // If there are variadic operands to add, handle them now.
3416 if (EmitNodeInfo & OPFL_VariadicInfo) {
3417 // Determine the start index to copy from.
3418 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3419 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3420 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3421 "Invalid variadic node");
3422 // Copy all of the variadic operands, not including a potential glue
3423 // input.
3424 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3425 i != e; ++i) {
3426 SDValue V = NodeToMatch->getOperand(i);
3427 if (V.getValueType() == MVT::Glue) break;
3428 Ops.push_back(V);
3432 // If this has chain/glue inputs, add them.
3433 if (EmitNodeInfo & OPFL_Chain)
3434 Ops.push_back(InputChain);
3435 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3436 Ops.push_back(InputGlue);
3438 // Check whether any matched node could raise an FP exception. Since all
3439 // such nodes must have a chain, it suffices to check ChainNodesMatched.
3440 // We need to perform this check before potentially modifying one of the
3441 // nodes via MorphNode.
3442 bool MayRaiseFPException = false;
3443 for (auto *N : ChainNodesMatched)
3444 if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) {
3445 MayRaiseFPException = true;
3446 break;
3449 // Create the node.
3450 MachineSDNode *Res = nullptr;
3451 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3452 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3453 if (!IsMorphNodeTo) {
3454 // If this is a normal EmitNode command, just create the new node and
3455 // add the results to the RecordedNodes list.
3456 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3457 VTList, Ops);
3459 // Add all the non-glue/non-chain results to the RecordedNodes list.
3460 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3461 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3462 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3463 nullptr));
3465 } else {
3466 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3467 "NodeToMatch was removed partway through selection");
3468 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3469 SDNode *E) {
3470 CurDAG->salvageDebugInfo(*N);
3471 auto &Chain = ChainNodesMatched;
3472 assert((!E || !is_contained(Chain, N)) &&
3473 "Chain node replaced during MorphNode");
3474 llvm::erase_value(Chain, N);
3476 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3477 Ops, EmitNodeInfo));
3480 // Set the NoFPExcept flag when no original matched node could
3481 // raise an FP exception, but the new node potentially might.
3482 if (!MayRaiseFPException && mayRaiseFPException(Res)) {
3483 SDNodeFlags Flags = Res->getFlags();
3484 Flags.setNoFPExcept(true);
3485 Res->setFlags(Flags);
3488 // If the node had chain/glue results, update our notion of the current
3489 // chain and glue.
3490 if (EmitNodeInfo & OPFL_GlueOutput) {
3491 InputGlue = SDValue(Res, VTs.size()-1);
3492 if (EmitNodeInfo & OPFL_Chain)
3493 InputChain = SDValue(Res, VTs.size()-2);
3494 } else if (EmitNodeInfo & OPFL_Chain)
3495 InputChain = SDValue(Res, VTs.size()-1);
3497 // If the OPFL_MemRefs glue is set on this node, slap all of the
3498 // accumulated memrefs onto it.
3500 // FIXME: This is vastly incorrect for patterns with multiple outputs
3501 // instructions that access memory and for ComplexPatterns that match
3502 // loads.
3503 if (EmitNodeInfo & OPFL_MemRefs) {
3504 // Only attach load or store memory operands if the generated
3505 // instruction may load or store.
3506 const MCInstrDesc &MCID = TII->get(TargetOpc);
3507 bool mayLoad = MCID.mayLoad();
3508 bool mayStore = MCID.mayStore();
3510 // We expect to have relatively few of these so just filter them into a
3511 // temporary buffer so that we can easily add them to the instruction.
3512 SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3513 for (MachineMemOperand *MMO : MatchedMemRefs) {
3514 if (MMO->isLoad()) {
3515 if (mayLoad)
3516 FilteredMemRefs.push_back(MMO);
3517 } else if (MMO->isStore()) {
3518 if (mayStore)
3519 FilteredMemRefs.push_back(MMO);
3520 } else {
3521 FilteredMemRefs.push_back(MMO);
3525 CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3528 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3529 << " Dropping mem operands\n";
3530 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created")
3531 << " node: ";
3532 Res->dump(CurDAG););
3534 // If this was a MorphNodeTo then we're completely done!
3535 if (IsMorphNodeTo) {
3536 // Update chain uses.
3537 UpdateChains(Res, InputChain, ChainNodesMatched, true);
3538 return;
3540 continue;
3543 case OPC_CompleteMatch: {
3544 // The match has been completed, and any new nodes (if any) have been
3545 // created. Patch up references to the matched dag to use the newly
3546 // created nodes.
3547 unsigned NumResults = MatcherTable[MatcherIndex++];
3549 for (unsigned i = 0; i != NumResults; ++i) {
3550 unsigned ResSlot = MatcherTable[MatcherIndex++];
3551 if (ResSlot & 128)
3552 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3554 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3555 SDValue Res = RecordedNodes[ResSlot].first;
3557 assert(i < NodeToMatch->getNumValues() &&
3558 NodeToMatch->getValueType(i) != MVT::Other &&
3559 NodeToMatch->getValueType(i) != MVT::Glue &&
3560 "Invalid number of results to complete!");
3561 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3562 NodeToMatch->getValueType(i) == MVT::iPTR ||
3563 Res.getValueType() == MVT::iPTR ||
3564 NodeToMatch->getValueType(i).getSizeInBits() ==
3565 Res.getValueSizeInBits()) &&
3566 "invalid replacement");
3567 ReplaceUses(SDValue(NodeToMatch, i), Res);
3570 // Update chain uses.
3571 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3573 // If the root node defines glue, we need to update it to the glue result.
3574 // TODO: This never happens in our tests and I think it can be removed /
3575 // replaced with an assert, but if we do it this the way the change is
3576 // NFC.
3577 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3578 MVT::Glue &&
3579 InputGlue.getNode())
3580 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3581 InputGlue);
3583 assert(NodeToMatch->use_empty() &&
3584 "Didn't replace all uses of the node?");
3585 CurDAG->RemoveDeadNode(NodeToMatch);
3587 return;
3591 // If the code reached this point, then the match failed. See if there is
3592 // another child to try in the current 'Scope', otherwise pop it until we
3593 // find a case to check.
3594 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3595 << "\n");
3596 ++NumDAGIselRetries;
3597 while (true) {
3598 if (MatchScopes.empty()) {
3599 CannotYetSelect(NodeToMatch);
3600 return;
3603 // Restore the interpreter state back to the point where the scope was
3604 // formed.
3605 MatchScope &LastScope = MatchScopes.back();
3606 RecordedNodes.resize(LastScope.NumRecordedNodes);
3607 NodeStack.clear();
3608 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3609 N = NodeStack.back();
3611 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3612 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3613 MatcherIndex = LastScope.FailIndex;
3615 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
3617 InputChain = LastScope.InputChain;
3618 InputGlue = LastScope.InputGlue;
3619 if (!LastScope.HasChainNodesMatched)
3620 ChainNodesMatched.clear();
3622 // Check to see what the offset is at the new MatcherIndex. If it is zero
3623 // we have reached the end of this scope, otherwise we have another child
3624 // in the current scope to try.
3625 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3626 if (NumToSkip & 128)
3627 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3629 // If we have another child in this scope to match, update FailIndex and
3630 // try it.
3631 if (NumToSkip != 0) {
3632 LastScope.FailIndex = MatcherIndex+NumToSkip;
3633 break;
3636 // End of this scope, pop it and try the next child in the containing
3637 // scope.
3638 MatchScopes.pop_back();
3643 /// Return whether the node may raise an FP exception.
3644 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
3645 // For machine opcodes, consult the MCID flag.
3646 if (N->isMachineOpcode()) {
3647 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
3648 return MCID.mayRaiseFPException();
3651 // For ISD opcodes, only StrictFP opcodes may raise an FP
3652 // exception.
3653 if (N->isTargetOpcode())
3654 return N->isTargetStrictFPOpcode();
3655 return N->isStrictFPOpcode();
3658 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3659 assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3660 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3661 if (!C)
3662 return false;
3664 // Detect when "or" is used to add an offset to a stack object.
3665 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3666 MachineFrameInfo &MFI = MF->getFrameInfo();
3667 Align A = MFI.getObjectAlign(FN->getIndex());
3668 int32_t Off = C->getSExtValue();
3669 // If the alleged offset fits in the zero bits guaranteed by
3670 // the alignment, then this or is really an add.
3671 return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
3673 return false;
3676 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3677 std::string msg;
3678 raw_string_ostream Msg(msg);
3679 Msg << "Cannot select: ";
3681 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3682 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3683 N->getOpcode() != ISD::INTRINSIC_VOID) {
3684 N->printrFull(Msg, CurDAG);
3685 Msg << "\nIn function: " << MF->getName();
3686 } else {
3687 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3688 unsigned iid =
3689 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3690 if (iid < Intrinsic::num_intrinsics)
3691 Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid);
3692 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3693 Msg << "target intrinsic %" << TII->getName(iid);
3694 else
3695 Msg << "unknown intrinsic #" << iid;
3697 report_fatal_error(Twine(Msg.str()));
3700 char SelectionDAGISel::ID = 0;