1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the SelectionDAGISel class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/CodeGen/CodeGenCommonISel.h"
37 #include "llvm/CodeGen/FastISel.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/ISDOpcodes.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachinePassRegistry.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/SchedulerRegistry.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/StackProtector.h"
56 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetRegisterInfo.h"
60 #include "llvm/CodeGen/TargetSubtargetInfo.h"
61 #include "llvm/CodeGen/ValueTypes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DebugInfoMetadata.h"
66 #include "llvm/IR/DebugLoc.h"
67 #include "llvm/IR/DiagnosticInfo.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/InlineAsm.h"
71 #include "llvm/IR/InstIterator.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instruction.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsWebAssembly.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Statepoint.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/User.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/InitializePasses.h"
84 #include "llvm/MC/MCInstrDesc.h"
85 #include "llvm/MC/MCRegisterInfo.h"
86 #include "llvm/Pass.h"
87 #include "llvm/Support/BranchProbability.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CodeGen.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Compiler.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/ErrorHandling.h"
94 #include "llvm/Support/KnownBits.h"
95 #include "llvm/Support/MachineValueType.h"
96 #include "llvm/Support/Timer.h"
97 #include "llvm/Support/raw_ostream.h"
98 #include "llvm/Target/TargetIntrinsicInfo.h"
99 #include "llvm/Target/TargetMachine.h"
100 #include "llvm/Target/TargetOptions.h"
101 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
112 using namespace llvm
;
114 #define DEBUG_TYPE "isel"
116 STATISTIC(NumFastIselFailures
, "Number of instructions fast isel failed on");
117 STATISTIC(NumFastIselSuccess
, "Number of instructions fast isel selected");
118 STATISTIC(NumFastIselBlocks
, "Number of blocks selected entirely by fast isel");
119 STATISTIC(NumDAGBlocks
, "Number of blocks selected using DAG");
120 STATISTIC(NumDAGIselRetries
,"Number of times dag isel has to try another path");
121 STATISTIC(NumEntryBlocks
, "Number of entry blocks encountered");
122 STATISTIC(NumFastIselFailLowerArguments
,
123 "Number of entry blocks where fast isel failed to lower arguments");
125 static cl::opt
<int> EnableFastISelAbort(
126 "fast-isel-abort", cl::Hidden
,
127 cl::desc("Enable abort calls when \"fast\" instruction selection "
128 "fails to lower an instruction: 0 disable the abort, 1 will "
129 "abort but for args, calls and terminators, 2 will also "
130 "abort for argument lowering, and 3 will never fallback "
131 "to SelectionDAG."));
133 static cl::opt
<bool> EnableFastISelFallbackReport(
134 "fast-isel-report-on-fallback", cl::Hidden
,
135 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
136 "falls back to SelectionDAG."));
140 cl::desc("use Machine Branch Probability Info"),
141 cl::init(true), cl::Hidden
);
144 static cl::opt
<std::string
>
145 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden
,
146 cl::desc("Only display the basic block whose name "
147 "matches this for all view-*-dags options"));
149 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden
,
150 cl::desc("Pop up a window to show dags before the first "
151 "dag combine pass"));
153 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden
,
154 cl::desc("Pop up a window to show dags before legalize types"));
156 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden
,
157 cl::desc("Pop up a window to show dags before the post "
158 "legalize types dag combine pass"));
160 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden
,
161 cl::desc("Pop up a window to show dags before legalize"));
163 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden
,
164 cl::desc("Pop up a window to show dags before the second "
165 "dag combine pass"));
167 ViewISelDAGs("view-isel-dags", cl::Hidden
,
168 cl::desc("Pop up a window to show isel dags as they are selected"));
170 ViewSchedDAGs("view-sched-dags", cl::Hidden
,
171 cl::desc("Pop up a window to show sched dags as they are processed"));
173 ViewSUnitDAGs("view-sunit-dags", cl::Hidden
,
174 cl::desc("Pop up a window to show SUnit dags after they are processed"));
176 static const bool ViewDAGCombine1
= false, ViewLegalizeTypesDAGs
= false,
177 ViewDAGCombineLT
= false, ViewLegalizeDAGs
= false,
178 ViewDAGCombine2
= false, ViewISelDAGs
= false,
179 ViewSchedDAGs
= false, ViewSUnitDAGs
= false;
182 //===---------------------------------------------------------------------===//
184 /// RegisterScheduler class - Track the registration of instruction schedulers.
186 //===---------------------------------------------------------------------===//
187 MachinePassRegistry
<RegisterScheduler::FunctionPassCtor
>
188 RegisterScheduler::Registry
;
190 //===---------------------------------------------------------------------===//
192 /// ISHeuristic command line option for instruction schedulers.
194 //===---------------------------------------------------------------------===//
195 static cl::opt
<RegisterScheduler::FunctionPassCtor
, false,
196 RegisterPassParser
<RegisterScheduler
>>
197 ISHeuristic("pre-RA-sched",
198 cl::init(&createDefaultScheduler
), cl::Hidden
,
199 cl::desc("Instruction schedulers available (before register"
202 static RegisterScheduler
203 defaultListDAGScheduler("default", "Best scheduler for the target",
204 createDefaultScheduler
);
208 //===--------------------------------------------------------------------===//
209 /// This class is used by SelectionDAGISel to temporarily override
210 /// the optimization level on a per-function basis.
211 class OptLevelChanger
{
212 SelectionDAGISel
&IS
;
213 CodeGenOpt::Level SavedOptLevel
;
217 OptLevelChanger(SelectionDAGISel
&ISel
,
218 CodeGenOpt::Level NewOptLevel
) : IS(ISel
) {
219 SavedOptLevel
= IS
.OptLevel
;
220 SavedFastISel
= IS
.TM
.Options
.EnableFastISel
;
221 if (NewOptLevel
== SavedOptLevel
)
223 IS
.OptLevel
= NewOptLevel
;
224 IS
.TM
.setOptLevel(NewOptLevel
);
225 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
226 << IS
.MF
->getFunction().getName() << "\n");
227 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
<< " ; After: -O"
228 << NewOptLevel
<< "\n");
229 if (NewOptLevel
== CodeGenOpt::None
) {
230 IS
.TM
.setFastISel(IS
.TM
.getO0WantsFastISel());
232 dbgs() << "\tFastISel is "
233 << (IS
.TM
.Options
.EnableFastISel
? "enabled" : "disabled")
239 if (IS
.OptLevel
== SavedOptLevel
)
241 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
242 << IS
.MF
->getFunction().getName() << "\n");
243 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS
.OptLevel
<< " ; After: -O"
244 << SavedOptLevel
<< "\n");
245 IS
.OptLevel
= SavedOptLevel
;
246 IS
.TM
.setOptLevel(SavedOptLevel
);
247 IS
.TM
.setFastISel(SavedFastISel
);
251 //===--------------------------------------------------------------------===//
252 /// createDefaultScheduler - This creates an instruction scheduler appropriate
254 ScheduleDAGSDNodes
* createDefaultScheduler(SelectionDAGISel
*IS
,
255 CodeGenOpt::Level OptLevel
) {
256 const TargetLowering
*TLI
= IS
->TLI
;
257 const TargetSubtargetInfo
&ST
= IS
->MF
->getSubtarget();
259 // Try first to see if the Target has its own way of selecting a scheduler
260 if (auto *SchedulerCtor
= ST
.getDAGScheduler(OptLevel
)) {
261 return SchedulerCtor(IS
, OptLevel
);
264 if (OptLevel
== CodeGenOpt::None
||
265 (ST
.enableMachineScheduler() && ST
.enableMachineSchedDefaultSched()) ||
266 TLI
->getSchedulingPreference() == Sched::Source
)
267 return createSourceListDAGScheduler(IS
, OptLevel
);
268 if (TLI
->getSchedulingPreference() == Sched::RegPressure
)
269 return createBURRListDAGScheduler(IS
, OptLevel
);
270 if (TLI
->getSchedulingPreference() == Sched::Hybrid
)
271 return createHybridListDAGScheduler(IS
, OptLevel
);
272 if (TLI
->getSchedulingPreference() == Sched::VLIW
)
273 return createVLIWDAGScheduler(IS
, OptLevel
);
274 if (TLI
->getSchedulingPreference() == Sched::Fast
)
275 return createFastDAGScheduler(IS
, OptLevel
);
276 if (TLI
->getSchedulingPreference() == Sched::Linearize
)
277 return createDAGLinearizer(IS
, OptLevel
);
278 assert(TLI
->getSchedulingPreference() == Sched::ILP
&&
279 "Unknown sched type!");
280 return createILPListDAGScheduler(IS
, OptLevel
);
283 } // end namespace llvm
285 // EmitInstrWithCustomInserter - This method should be implemented by targets
286 // that mark instructions with the 'usesCustomInserter' flag. These
287 // instructions are special in various ways, which require special support to
288 // insert. The specified MachineInstr is created but not inserted into any
289 // basic blocks, and this method is called to expand it into a sequence of
290 // instructions, potentially also creating new basic blocks and control flow.
291 // When new basic blocks are inserted and the edges from MBB to its successors
292 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
295 TargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
296 MachineBasicBlock
*MBB
) const {
298 dbgs() << "If a target marks an instruction with "
299 "'usesCustomInserter', it must implement "
300 "TargetLowering::EmitInstrWithCustomInserter!\n";
302 llvm_unreachable(nullptr);
305 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
306 SDNode
*Node
) const {
307 assert(!MI
.hasPostISelHook() &&
308 "If a target marks an instruction with 'hasPostISelHook', "
309 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
312 //===----------------------------------------------------------------------===//
313 // SelectionDAGISel code
314 //===----------------------------------------------------------------------===//
316 SelectionDAGISel::SelectionDAGISel(TargetMachine
&tm
, CodeGenOpt::Level OL
)
317 : MachineFunctionPass(ID
), TM(tm
), FuncInfo(new FunctionLoweringInfo()),
318 SwiftError(new SwiftErrorValueTracking()),
319 CurDAG(new SelectionDAG(tm
, OL
)),
320 SDB(std::make_unique
<SelectionDAGBuilder
>(*CurDAG
, *FuncInfo
, *SwiftError
,
322 AA(), GFI(), OptLevel(OL
), DAGSize(0) {
323 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
324 initializeBranchProbabilityInfoWrapperPassPass(
325 *PassRegistry::getPassRegistry());
326 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
327 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
330 SelectionDAGISel::~SelectionDAGISel() {
335 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage
&AU
) const {
336 if (OptLevel
!= CodeGenOpt::None
)
337 AU
.addRequired
<AAResultsWrapperPass
>();
338 AU
.addRequired
<GCModuleInfo
>();
339 AU
.addRequired
<StackProtector
>();
340 AU
.addPreserved
<GCModuleInfo
>();
341 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
342 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
343 if (UseMBPI
&& OptLevel
!= CodeGenOpt::None
)
344 AU
.addRequired
<BranchProbabilityInfoWrapperPass
>();
345 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
346 if (OptLevel
!= CodeGenOpt::None
)
347 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU
);
348 MachineFunctionPass::getAnalysisUsage(AU
);
351 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
352 /// may trap on it. In this case we have to split the edge so that the path
353 /// through the predecessor block that doesn't go to the phi block doesn't
354 /// execute the possibly trapping instruction. If available, we pass domtree
355 /// and loop info to be updated when we split critical edges. This is because
356 /// SelectionDAGISel preserves these analyses.
357 /// This is required for correctness, so it must be done at -O0.
359 static void SplitCriticalSideEffectEdges(Function
&Fn
, DominatorTree
*DT
,
361 // Loop for blocks with phi nodes.
362 for (BasicBlock
&BB
: Fn
) {
363 PHINode
*PN
= dyn_cast
<PHINode
>(BB
.begin());
367 // For each block with a PHI node, check to see if any of the input values
368 // are potentially trapping constant expressions. Constant expressions are
369 // the only potentially trapping value that can occur as the argument to a
371 for (BasicBlock::iterator I
= BB
.begin(); (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
372 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
373 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(PN
->getIncomingValue(i
));
374 if (!CE
|| !CE
->canTrap()) continue;
376 // The only case we have to worry about is when the edge is critical.
377 // Since this block has a PHI Node, we assume it has multiple input
378 // edges: check to see if the pred has multiple successors.
379 BasicBlock
*Pred
= PN
->getIncomingBlock(i
);
380 if (Pred
->getTerminator()->getNumSuccessors() == 1)
383 // Okay, we have to split this edge.
385 Pred
->getTerminator(), GetSuccessorNumber(Pred
, &BB
),
386 CriticalEdgeSplittingOptions(DT
, LI
).setMergeIdenticalEdges());
392 static void computeUsesMSVCFloatingPoint(const Triple
&TT
, const Function
&F
,
393 MachineModuleInfo
&MMI
) {
394 // Only needed for MSVC
395 if (!TT
.isWindowsMSVCEnvironment())
398 // If it's already set, nothing to do.
399 if (MMI
.usesMSVCFloatingPoint())
402 for (const Instruction
&I
: instructions(F
)) {
403 if (I
.getType()->isFPOrFPVectorTy()) {
404 MMI
.setUsesMSVCFloatingPoint(true);
407 for (const auto &Op
: I
.operands()) {
408 if (Op
->getType()->isFPOrFPVectorTy()) {
409 MMI
.setUsesMSVCFloatingPoint(true);
416 bool SelectionDAGISel::runOnMachineFunction(MachineFunction
&mf
) {
417 // If we already selected that function, we do not need to run SDISel.
418 if (mf
.getProperties().hasProperty(
419 MachineFunctionProperties::Property::Selected
))
421 // Do some sanity-checking on the command-line options.
422 assert((!EnableFastISelAbort
|| TM
.Options
.EnableFastISel
) &&
423 "-fast-isel-abort > 0 requires -fast-isel");
425 const Function
&Fn
= mf
.getFunction();
428 // Reset the target options before resetting the optimization
430 // FIXME: This is a horrible hack and should be processed via
431 // codegen looking at the optimization level explicitly when
432 // it wants to look at it.
433 TM
.resetTargetOptions(Fn
);
434 // Reset OptLevel to None for optnone functions.
435 CodeGenOpt::Level NewOptLevel
= OptLevel
;
436 if (OptLevel
!= CodeGenOpt::None
&& skipFunction(Fn
))
437 NewOptLevel
= CodeGenOpt::None
;
438 OptLevelChanger
OLC(*this, NewOptLevel
);
440 TII
= MF
->getSubtarget().getInstrInfo();
441 TLI
= MF
->getSubtarget().getTargetLowering();
442 RegInfo
= &MF
->getRegInfo();
443 LibInfo
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(Fn
);
444 GFI
= Fn
.hasGC() ? &getAnalysis
<GCModuleInfo
>().getFunctionInfo(Fn
) : nullptr;
445 ORE
= std::make_unique
<OptimizationRemarkEmitter
>(&Fn
);
446 auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
447 DominatorTree
*DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
448 auto *LIWP
= getAnalysisIfAvailable
<LoopInfoWrapperPass
>();
449 LoopInfo
*LI
= LIWP
? &LIWP
->getLoopInfo() : nullptr;
450 auto *PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
451 BlockFrequencyInfo
*BFI
= nullptr;
452 if (PSI
&& PSI
->hasProfileSummary() && OptLevel
!= CodeGenOpt::None
)
453 BFI
= &getAnalysis
<LazyBlockFrequencyInfoPass
>().getBFI();
455 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn
.getName() << "\n");
457 SplitCriticalSideEffectEdges(const_cast<Function
&>(Fn
), DT
, LI
);
459 CurDAG
->init(*MF
, *ORE
, this, LibInfo
,
460 getAnalysisIfAvailable
<LegacyDivergenceAnalysis
>(), PSI
, BFI
);
461 FuncInfo
->set(Fn
, *MF
, CurDAG
);
462 SwiftError
->setFunction(*MF
);
464 // Now get the optional analyzes if we want to.
465 // This is based on the possibly changed OptLevel (after optnone is taken
466 // into account). That's unfortunate but OK because it just means we won't
467 // ask for passes that have been required anyway.
469 if (UseMBPI
&& OptLevel
!= CodeGenOpt::None
)
470 FuncInfo
->BPI
= &getAnalysis
<BranchProbabilityInfoWrapperPass
>().getBPI();
472 FuncInfo
->BPI
= nullptr;
474 if (OptLevel
!= CodeGenOpt::None
)
475 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
479 SDB
->init(GFI
, AA
, LibInfo
);
481 MF
->setHasInlineAsm(false);
483 FuncInfo
->SplitCSR
= false;
485 // We split CSR if the target supports it for the given function
486 // and the function has only return exits.
487 if (OptLevel
!= CodeGenOpt::None
&& TLI
->supportSplitCSR(MF
)) {
488 FuncInfo
->SplitCSR
= true;
490 // Collect all the return blocks.
491 for (const BasicBlock
&BB
: Fn
) {
492 if (!succ_empty(&BB
))
495 const Instruction
*Term
= BB
.getTerminator();
496 if (isa
<UnreachableInst
>(Term
) || isa
<ReturnInst
>(Term
))
499 // Bail out if the exit block is not Return nor Unreachable.
500 FuncInfo
->SplitCSR
= false;
505 MachineBasicBlock
*EntryMBB
= &MF
->front();
506 if (FuncInfo
->SplitCSR
)
507 // This performs initialization so lowering for SplitCSR will be correct.
508 TLI
->initializeSplitCSR(EntryMBB
);
510 SelectAllBasicBlocks(Fn
);
511 if (FastISelFailed
&& EnableFastISelFallbackReport
) {
512 DiagnosticInfoISelFallback
DiagFallback(Fn
);
513 Fn
.getContext().diagnose(DiagFallback
);
516 // Replace forward-declared registers with the registers containing
517 // the desired value.
518 // Note: it is important that this happens **before** the call to
519 // EmitLiveInCopies, since implementations can skip copies of unused
520 // registers. If we don't apply the reg fixups before, some registers may
521 // appear as unused and will be skipped, resulting in bad MI.
522 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
523 for (DenseMap
<Register
, Register
>::iterator I
= FuncInfo
->RegFixups
.begin(),
524 E
= FuncInfo
->RegFixups
.end();
526 Register From
= I
->first
;
527 Register To
= I
->second
;
528 // If To is also scheduled to be replaced, find what its ultimate
531 DenseMap
<Register
, Register
>::iterator J
= FuncInfo
->RegFixups
.find(To
);
536 // Make sure the new register has a sufficiently constrained register class.
537 if (Register::isVirtualRegister(From
) && Register::isVirtualRegister(To
))
538 MRI
.constrainRegClass(To
, MRI
.getRegClass(From
));
541 // Replacing one register with another won't touch the kill flags.
542 // We need to conservatively clear the kill flags as a kill on the old
543 // register might dominate existing uses of the new register.
544 if (!MRI
.use_empty(To
))
545 MRI
.clearKillFlags(From
);
546 MRI
.replaceRegWith(From
, To
);
549 // If the first basic block in the function has live ins that need to be
550 // copied into vregs, emit the copies into the top of the block before
551 // emitting the code for the block.
552 const TargetRegisterInfo
&TRI
= *MF
->getSubtarget().getRegisterInfo();
553 RegInfo
->EmitLiveInCopies(EntryMBB
, TRI
, *TII
);
555 // Insert copies in the entry block and the return blocks.
556 if (FuncInfo
->SplitCSR
) {
557 SmallVector
<MachineBasicBlock
*, 4> Returns
;
558 // Collect all the return blocks.
559 for (MachineBasicBlock
&MBB
: mf
) {
560 if (!MBB
.succ_empty())
563 MachineBasicBlock::iterator Term
= MBB
.getFirstTerminator();
564 if (Term
!= MBB
.end() && Term
->isReturn()) {
565 Returns
.push_back(&MBB
);
569 TLI
->insertCopiesSplitCSR(EntryMBB
, Returns
);
572 DenseMap
<unsigned, unsigned> LiveInMap
;
573 if (!FuncInfo
->ArgDbgValues
.empty())
574 for (std::pair
<unsigned, unsigned> LI
: RegInfo
->liveins())
576 LiveInMap
.insert(LI
);
578 // Insert DBG_VALUE instructions for function arguments to the entry block.
579 bool InstrRef
= MF
->useDebugInstrRef();
580 for (unsigned i
= 0, e
= FuncInfo
->ArgDbgValues
.size(); i
!= e
; ++i
) {
581 MachineInstr
*MI
= FuncInfo
->ArgDbgValues
[e
- i
- 1];
582 assert(MI
->getOpcode() != TargetOpcode::DBG_VALUE_LIST
&&
583 "Function parameters should not be described by DBG_VALUE_LIST.");
584 bool hasFI
= MI
->getOperand(0).isFI();
586 hasFI
? TRI
.getFrameRegister(*MF
) : MI
->getOperand(0).getReg();
587 if (Register::isPhysicalRegister(Reg
))
588 EntryMBB
->insert(EntryMBB
->begin(), MI
);
590 MachineInstr
*Def
= RegInfo
->getVRegDef(Reg
);
592 MachineBasicBlock::iterator InsertPos
= Def
;
593 // FIXME: VR def may not be in entry block.
594 Def
->getParent()->insert(std::next(InsertPos
), MI
);
596 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
597 << Register::virtReg2Index(Reg
) << "\n");
600 // Don't try and extend through copies in instruction referencing mode.
604 // If Reg is live-in then update debug info to track its copy in a vreg.
605 DenseMap
<unsigned, unsigned>::iterator LDI
= LiveInMap
.find(Reg
);
606 if (LDI
!= LiveInMap
.end()) {
607 assert(!hasFI
&& "There's no handling of frame pointer updating here yet "
609 MachineInstr
*Def
= RegInfo
->getVRegDef(LDI
->second
);
610 MachineBasicBlock::iterator InsertPos
= Def
;
611 const MDNode
*Variable
= MI
->getDebugVariable();
612 const MDNode
*Expr
= MI
->getDebugExpression();
613 DebugLoc DL
= MI
->getDebugLoc();
614 bool IsIndirect
= MI
->isIndirectDebugValue();
616 assert(MI
->getOperand(1).getImm() == 0 &&
617 "DBG_VALUE with nonzero offset");
618 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
619 "Expected inlined-at fields to agree");
620 assert(MI
->getOpcode() != TargetOpcode::DBG_VALUE_LIST
&&
621 "Didn't expect to see a DBG_VALUE_LIST here");
622 // Def is never a terminator here, so it is ok to increment InsertPos.
623 BuildMI(*EntryMBB
, ++InsertPos
, DL
, TII
->get(TargetOpcode::DBG_VALUE
),
624 IsIndirect
, LDI
->second
, Variable
, Expr
);
626 // If this vreg is directly copied into an exported register then
627 // that COPY instructions also need DBG_VALUE, if it is the only
628 // user of LDI->second.
629 MachineInstr
*CopyUseMI
= nullptr;
630 for (MachineRegisterInfo::use_instr_iterator
631 UI
= RegInfo
->use_instr_begin(LDI
->second
),
632 E
= RegInfo
->use_instr_end(); UI
!= E
; ) {
633 MachineInstr
*UseMI
= &*(UI
++);
634 if (UseMI
->isDebugValue()) continue;
635 if (UseMI
->isCopy() && !CopyUseMI
&& UseMI
->getParent() == EntryMBB
) {
636 CopyUseMI
= UseMI
; continue;
638 // Otherwise this is another use or second copy use.
639 CopyUseMI
= nullptr; break;
642 TRI
.getRegSizeInBits(LDI
->second
, MRI
) ==
643 TRI
.getRegSizeInBits(CopyUseMI
->getOperand(0).getReg(), MRI
)) {
644 // Use MI's debug location, which describes where Variable was
645 // declared, rather than whatever is attached to CopyUseMI.
646 MachineInstr
*NewMI
=
647 BuildMI(*MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsIndirect
,
648 CopyUseMI
->getOperand(0).getReg(), Variable
, Expr
);
649 MachineBasicBlock::iterator Pos
= CopyUseMI
;
650 EntryMBB
->insertAfter(Pos
, NewMI
);
655 // For debug-info, in instruction referencing mode, we need to perform some
656 // post-isel maintenence.
657 MF
->finalizeDebugInstrRefs();
659 // Determine if there are any calls in this machine function.
660 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
661 for (const auto &MBB
: *MF
) {
662 if (MFI
.hasCalls() && MF
->hasInlineAsm())
665 for (const auto &MI
: MBB
) {
666 const MCInstrDesc
&MCID
= TII
->get(MI
.getOpcode());
667 if ((MCID
.isCall() && !MCID
.isReturn()) ||
668 MI
.isStackAligningInlineAsm()) {
669 MFI
.setHasCalls(true);
671 if (MI
.isInlineAsm()) {
672 MF
->setHasInlineAsm(true);
677 // Determine if there is a call to setjmp in the machine function.
678 MF
->setExposesReturnsTwice(Fn
.callsFunctionThatReturnsTwice());
680 // Determine if floating point is used for msvc
681 computeUsesMSVCFloatingPoint(TM
.getTargetTriple(), Fn
, MF
->getMMI());
683 // Release function-specific state. SDB and CurDAG are already cleared
687 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
688 LLVM_DEBUG(MF
->print(dbgs()));
693 static void reportFastISelFailure(MachineFunction
&MF
,
694 OptimizationRemarkEmitter
&ORE
,
695 OptimizationRemarkMissed
&R
,
697 // Print the function name explicitly if we don't have a debug location (which
698 // makes the diagnostic less useful) or if we're going to emit a raw error.
699 if (!R
.getLocation().isValid() || ShouldAbort
)
700 R
<< (" (in function: " + MF
.getName() + ")").str();
703 report_fatal_error(Twine(R
.getMsg()));
708 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin
,
709 BasicBlock::const_iterator End
,
711 // Allow creating illegal types during DAG building for the basic block.
712 CurDAG
->NewNodesMustHaveLegalTypes
= false;
714 // Lower the instructions. If a call is emitted as a tail call, cease emitting
715 // nodes for this block.
716 for (BasicBlock::const_iterator I
= Begin
; I
!= End
&& !SDB
->HasTailCall
; ++I
) {
717 if (!ElidedArgCopyInstrs
.count(&*I
))
721 // Make sure the root of the DAG is up-to-date.
722 CurDAG
->setRoot(SDB
->getControlRoot());
723 HadTailCall
= SDB
->HasTailCall
;
724 SDB
->resolveOrClearDbgInfo();
727 // Final step, emit the lowered DAG as machine code.
731 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
732 SmallPtrSet
<SDNode
*, 16> Added
;
733 SmallVector
<SDNode
*, 128> Worklist
;
735 Worklist
.push_back(CurDAG
->getRoot().getNode());
736 Added
.insert(CurDAG
->getRoot().getNode());
741 SDNode
*N
= Worklist
.pop_back_val();
743 // Otherwise, add all chain operands to the worklist.
744 for (const SDValue
&Op
: N
->op_values())
745 if (Op
.getValueType() == MVT::Other
&& Added
.insert(Op
.getNode()).second
)
746 Worklist
.push_back(Op
.getNode());
748 // If this is a CopyToReg with a vreg dest, process it.
749 if (N
->getOpcode() != ISD::CopyToReg
)
752 unsigned DestReg
= cast
<RegisterSDNode
>(N
->getOperand(1))->getReg();
753 if (!Register::isVirtualRegister(DestReg
))
756 // Ignore non-integer values.
757 SDValue Src
= N
->getOperand(2);
758 EVT SrcVT
= Src
.getValueType();
759 if (!SrcVT
.isInteger())
762 unsigned NumSignBits
= CurDAG
->ComputeNumSignBits(Src
);
763 Known
= CurDAG
->computeKnownBits(Src
);
764 FuncInfo
->AddLiveOutRegInfo(DestReg
, NumSignBits
, Known
);
765 } while (!Worklist
.empty());
768 void SelectionDAGISel::CodeGenAndEmitDAG() {
769 StringRef GroupName
= "sdag";
770 StringRef GroupDescription
= "Instruction Selection and Scheduling";
771 std::string BlockName
;
772 bool MatchFilterBB
= false; (void)MatchFilterBB
;
774 TargetTransformInfo
&TTI
=
775 getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(*FuncInfo
->Fn
);
778 // Pre-type legalization allow creation of any node types.
779 CurDAG
->NewNodesMustHaveLegalTypes
= false;
782 MatchFilterBB
= (FilterDAGBasicBlockName
.empty() ||
783 FilterDAGBasicBlockName
==
784 FuncInfo
->MBB
->getBasicBlock()->getName());
787 if (ViewDAGCombine1
|| ViewLegalizeTypesDAGs
|| ViewDAGCombineLT
||
788 ViewLegalizeDAGs
|| ViewDAGCombine2
|| ViewISelDAGs
|| ViewSchedDAGs
||
793 (MF
->getName() + ":" + FuncInfo
->MBB
->getBasicBlock()->getName()).str();
795 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
796 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
801 if (TTI
.hasBranchDivergence())
802 CurDAG
->VerifyDAGDivergence();
805 if (ViewDAGCombine1
&& MatchFilterBB
)
806 CurDAG
->viewGraph("dag-combine1 input for " + BlockName
);
808 // Run the DAG combiner in pre-legalize mode.
810 NamedRegionTimer
T("combine1", "DAG Combining 1", GroupName
,
811 GroupDescription
, TimePassesIsEnabled
);
812 CurDAG
->Combine(BeforeLegalizeTypes
, AA
, OptLevel
);
815 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
816 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
821 if (TTI
.hasBranchDivergence())
822 CurDAG
->VerifyDAGDivergence();
825 // Second step, hack on the DAG until it only uses operations and types that
826 // the target supports.
827 if (ViewLegalizeTypesDAGs
&& MatchFilterBB
)
828 CurDAG
->viewGraph("legalize-types input for " + BlockName
);
832 NamedRegionTimer
T("legalize_types", "Type Legalization", GroupName
,
833 GroupDescription
, TimePassesIsEnabled
);
834 Changed
= CurDAG
->LegalizeTypes();
837 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
838 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
843 if (TTI
.hasBranchDivergence())
844 CurDAG
->VerifyDAGDivergence();
847 // Only allow creation of legal node types.
848 CurDAG
->NewNodesMustHaveLegalTypes
= true;
851 if (ViewDAGCombineLT
&& MatchFilterBB
)
852 CurDAG
->viewGraph("dag-combine-lt input for " + BlockName
);
854 // Run the DAG combiner in post-type-legalize mode.
856 NamedRegionTimer
T("combine_lt", "DAG Combining after legalize types",
857 GroupName
, GroupDescription
, TimePassesIsEnabled
);
858 CurDAG
->Combine(AfterLegalizeTypes
, AA
, OptLevel
);
861 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
862 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
867 if (TTI
.hasBranchDivergence())
868 CurDAG
->VerifyDAGDivergence();
873 NamedRegionTimer
T("legalize_vec", "Vector Legalization", GroupName
,
874 GroupDescription
, TimePassesIsEnabled
);
875 Changed
= CurDAG
->LegalizeVectors();
879 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
880 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
885 if (TTI
.hasBranchDivergence())
886 CurDAG
->VerifyDAGDivergence();
890 NamedRegionTimer
T("legalize_types2", "Type Legalization 2", GroupName
,
891 GroupDescription
, TimePassesIsEnabled
);
892 CurDAG
->LegalizeTypes();
895 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
896 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
901 if (TTI
.hasBranchDivergence())
902 CurDAG
->VerifyDAGDivergence();
905 if (ViewDAGCombineLT
&& MatchFilterBB
)
906 CurDAG
->viewGraph("dag-combine-lv input for " + BlockName
);
908 // Run the DAG combiner in post-type-legalize mode.
910 NamedRegionTimer
T("combine_lv", "DAG Combining after legalize vectors",
911 GroupName
, GroupDescription
, TimePassesIsEnabled
);
912 CurDAG
->Combine(AfterLegalizeVectorOps
, AA
, OptLevel
);
915 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
916 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
921 if (TTI
.hasBranchDivergence())
922 CurDAG
->VerifyDAGDivergence();
926 if (ViewLegalizeDAGs
&& MatchFilterBB
)
927 CurDAG
->viewGraph("legalize input for " + BlockName
);
930 NamedRegionTimer
T("legalize", "DAG Legalization", GroupName
,
931 GroupDescription
, TimePassesIsEnabled
);
935 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
936 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
941 if (TTI
.hasBranchDivergence())
942 CurDAG
->VerifyDAGDivergence();
945 if (ViewDAGCombine2
&& MatchFilterBB
)
946 CurDAG
->viewGraph("dag-combine2 input for " + BlockName
);
948 // Run the DAG combiner in post-legalize mode.
950 NamedRegionTimer
T("combine2", "DAG Combining 2", GroupName
,
951 GroupDescription
, TimePassesIsEnabled
);
952 CurDAG
->Combine(AfterLegalizeDAG
, AA
, OptLevel
);
955 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
956 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
961 if (TTI
.hasBranchDivergence())
962 CurDAG
->VerifyDAGDivergence();
965 if (OptLevel
!= CodeGenOpt::None
)
966 ComputeLiveOutVRegInfo();
968 if (ViewISelDAGs
&& MatchFilterBB
)
969 CurDAG
->viewGraph("isel input for " + BlockName
);
971 // Third, instruction select all of the operations to machine code, adding the
972 // code to the MachineBasicBlock.
974 NamedRegionTimer
T("isel", "Instruction Selection", GroupName
,
975 GroupDescription
, TimePassesIsEnabled
);
976 DoInstructionSelection();
979 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
980 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
984 if (ViewSchedDAGs
&& MatchFilterBB
)
985 CurDAG
->viewGraph("scheduler input for " + BlockName
);
987 // Schedule machine code.
988 ScheduleDAGSDNodes
*Scheduler
= CreateScheduler();
990 NamedRegionTimer
T("sched", "Instruction Scheduling", GroupName
,
991 GroupDescription
, TimePassesIsEnabled
);
992 Scheduler
->Run(CurDAG
, FuncInfo
->MBB
);
995 if (ViewSUnitDAGs
&& MatchFilterBB
)
996 Scheduler
->viewGraph();
998 // Emit machine code to BB. This can change 'BB' to the last block being
1000 MachineBasicBlock
*FirstMBB
= FuncInfo
->MBB
, *LastMBB
;
1002 NamedRegionTimer
T("emit", "Instruction Creation", GroupName
,
1003 GroupDescription
, TimePassesIsEnabled
);
1005 // FuncInfo->InsertPt is passed by reference and set to the end of the
1006 // scheduled instructions.
1007 LastMBB
= FuncInfo
->MBB
= Scheduler
->EmitSchedule(FuncInfo
->InsertPt
);
1010 // If the block was split, make sure we update any references that are used to
1011 // update PHI nodes later on.
1012 if (FirstMBB
!= LastMBB
)
1013 SDB
->UpdateSplitBlock(FirstMBB
, LastMBB
);
1015 // Free the scheduler state.
1017 NamedRegionTimer
T("cleanup", "Instruction Scheduling Cleanup", GroupName
,
1018 GroupDescription
, TimePassesIsEnabled
);
1022 // Free the SelectionDAG state, now that we're finished with it.
1028 /// ISelUpdater - helper class to handle updates of the instruction selection
1030 class ISelUpdater
: public SelectionDAG::DAGUpdateListener
{
1031 SelectionDAG::allnodes_iterator
&ISelPosition
;
1034 ISelUpdater(SelectionDAG
&DAG
, SelectionDAG::allnodes_iterator
&isp
)
1035 : SelectionDAG::DAGUpdateListener(DAG
), ISelPosition(isp
) {}
1037 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1038 /// deleted is the current ISelPosition node, update ISelPosition.
1040 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
1041 if (ISelPosition
== SelectionDAG::allnodes_iterator(N
))
1046 } // end anonymous namespace
1048 // This function is used to enforce the topological node id property
1049 // leveraged during instruction selection. Before the selection process all
1050 // nodes are given a non-negative id such that all nodes have a greater id than
1051 // their operands. As this holds transitively we can prune checks that a node N
1052 // is a predecessor of M another by not recursively checking through M's
1053 // operands if N's ID is larger than M's ID. This significantly improves
1054 // performance of various legality checks (e.g. IsLegalToFold / UpdateChains).
1056 // However, when we fuse multiple nodes into a single node during the
1057 // selection we may induce a predecessor relationship between inputs and
1058 // outputs of distinct nodes being merged, violating the topological property.
1059 // Should a fused node have a successor which has yet to be selected,
1060 // our legality checks would be incorrect. To avoid this we mark all unselected
1061 // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x =>
1062 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1063 // We use bit-negation to more clearly enforce that node id -1 can only be
1064 // achieved by selected nodes. As the conversion is reversable to the original
1065 // Id, topological pruning can still be leveraged when looking for unselected
1066 // nodes. This method is called internally in all ISel replacement related
1068 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode
*Node
) {
1069 SmallVector
<SDNode
*, 4> Nodes
;
1070 Nodes
.push_back(Node
);
1072 while (!Nodes
.empty()) {
1073 SDNode
*N
= Nodes
.pop_back_val();
1074 for (auto *U
: N
->uses()) {
1075 auto UId
= U
->getNodeId();
1077 InvalidateNodeId(U
);
1084 // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a
1085 // NodeId with the equivalent node id which is invalid for topological
1087 void SelectionDAGISel::InvalidateNodeId(SDNode
*N
) {
1088 int InvalidId
= -(N
->getNodeId() + 1);
1089 N
->setNodeId(InvalidId
);
1092 // getUninvalidatedNodeId - get original uninvalidated node id.
1093 int SelectionDAGISel::getUninvalidatedNodeId(SDNode
*N
) {
1094 int Id
= N
->getNodeId();
1100 void SelectionDAGISel::DoInstructionSelection() {
1101 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1102 << printMBBReference(*FuncInfo
->MBB
) << " '"
1103 << FuncInfo
->MBB
->getName() << "'\n");
1105 PreprocessISelDAG();
1107 // Select target instructions for the DAG.
1109 // Number all nodes with a topological order and set DAGSize.
1110 DAGSize
= CurDAG
->AssignTopologicalOrder();
1112 // Create a dummy node (which is not added to allnodes), that adds
1113 // a reference to the root node, preventing it from being deleted,
1114 // and tracking any changes of the root.
1115 HandleSDNode
Dummy(CurDAG
->getRoot());
1116 SelectionDAG::allnodes_iterator
ISelPosition (CurDAG
->getRoot().getNode());
1119 // Make sure that ISelPosition gets properly updated when nodes are deleted
1120 // in calls made from this function.
1121 ISelUpdater
ISU(*CurDAG
, ISelPosition
);
1123 // The AllNodes list is now topological-sorted. Visit the
1124 // nodes by starting at the end of the list (the root of the
1125 // graph) and preceding back toward the beginning (the entry
1127 while (ISelPosition
!= CurDAG
->allnodes_begin()) {
1128 SDNode
*Node
= &*--ISelPosition
;
1129 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1130 // but there are currently some corner cases that it misses. Also, this
1131 // makes it theoretically possible to disable the DAGCombiner.
1132 if (Node
->use_empty())
1136 SmallVector
<SDNode
*, 4> Nodes
;
1137 Nodes
.push_back(Node
);
1139 while (!Nodes
.empty()) {
1140 auto N
= Nodes
.pop_back_val();
1141 if (N
->getOpcode() == ISD::TokenFactor
|| N
->getNodeId() < 0)
1143 for (const SDValue
&Op
: N
->op_values()) {
1144 if (Op
->getOpcode() == ISD::TokenFactor
)
1145 Nodes
.push_back(Op
.getNode());
1147 // We rely on topological ordering of node ids for checking for
1148 // cycles when fusing nodes during selection. All unselected nodes
1149 // successors of an already selected node should have a negative id.
1150 // This assertion will catch such cases. If this assertion triggers
1151 // it is likely you using DAG-level Value/Node replacement functions
1152 // (versus equivalent ISEL replacement) in backend-specific
1153 // selections. See comment in EnforceNodeIdInvariant for more
1155 assert(Op
->getNodeId() != -1 &&
1156 "Node has already selected predecessor node");
1162 // When we are using non-default rounding modes or FP exception behavior
1163 // FP operations are represented by StrictFP pseudo-operations. For
1164 // targets that do not (yet) understand strict FP operations directly,
1165 // we convert them to normal FP opcodes instead at this point. This
1166 // will allow them to be handled by existing target-specific instruction
1168 if (!TLI
->isStrictFPEnabled() && Node
->isStrictFPOpcode()) {
1169 // For some opcodes, we need to call TLI->getOperationAction using
1170 // the first operand type instead of the result type. Note that this
1171 // must match what SelectionDAGLegalize::LegalizeOp is doing.
1173 switch (Node
->getOpcode()) {
1174 case ISD::STRICT_SINT_TO_FP
:
1175 case ISD::STRICT_UINT_TO_FP
:
1176 case ISD::STRICT_LRINT
:
1177 case ISD::STRICT_LLRINT
:
1178 case ISD::STRICT_LROUND
:
1179 case ISD::STRICT_LLROUND
:
1180 case ISD::STRICT_FSETCC
:
1181 case ISD::STRICT_FSETCCS
:
1182 ActionVT
= Node
->getOperand(1).getValueType();
1185 ActionVT
= Node
->getValueType(0);
1188 if (TLI
->getOperationAction(Node
->getOpcode(), ActionVT
)
1189 == TargetLowering::Expand
)
1190 Node
= CurDAG
->mutateStrictFPToFP(Node
);
1193 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1194 Node
->dump(CurDAG
));
1199 CurDAG
->setRoot(Dummy
.getValue());
1202 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1204 PostprocessISelDAG();
1207 static bool hasExceptionPointerOrCodeUser(const CatchPadInst
*CPI
) {
1208 for (const User
*U
: CPI
->users()) {
1209 if (const IntrinsicInst
*EHPtrCall
= dyn_cast
<IntrinsicInst
>(U
)) {
1210 Intrinsic::ID IID
= EHPtrCall
->getIntrinsicID();
1211 if (IID
== Intrinsic::eh_exceptionpointer
||
1212 IID
== Intrinsic::eh_exceptioncode
)
1219 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1220 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1221 // and store the mapping in the function.
1222 static void mapWasmLandingPadIndex(MachineBasicBlock
*MBB
,
1223 const CatchPadInst
*CPI
) {
1224 MachineFunction
*MF
= MBB
->getParent();
1225 // In case of single catch (...), we don't emit LSDA, so we don't need
1226 // this information.
1227 bool IsSingleCatchAllClause
=
1228 CPI
->getNumArgOperands() == 1 &&
1229 cast
<Constant
>(CPI
->getArgOperand(0))->isNullValue();
1230 // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 []
1231 // and they don't need LSDA info
1232 bool IsCatchLongjmp
= CPI
->getNumArgOperands() == 0;
1233 if (!IsSingleCatchAllClause
&& !IsCatchLongjmp
) {
1234 // Create a mapping from landing pad label to landing pad index.
1235 bool IntrFound
= false;
1236 for (const User
*U
: CPI
->users()) {
1237 if (const auto *Call
= dyn_cast
<IntrinsicInst
>(U
)) {
1238 Intrinsic::ID IID
= Call
->getIntrinsicID();
1239 if (IID
== Intrinsic::wasm_landingpad_index
) {
1240 Value
*IndexArg
= Call
->getArgOperand(1);
1241 int Index
= cast
<ConstantInt
>(IndexArg
)->getZExtValue();
1242 MF
->setWasmLandingPadIndex(MBB
, Index
);
1248 assert(IntrFound
&& "wasm.landingpad.index intrinsic not found!");
1253 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1254 /// do other setup for EH landing-pad blocks.
1255 bool SelectionDAGISel::PrepareEHLandingPad() {
1256 MachineBasicBlock
*MBB
= FuncInfo
->MBB
;
1257 const Constant
*PersonalityFn
= FuncInfo
->Fn
->getPersonalityFn();
1258 const BasicBlock
*LLVMBB
= MBB
->getBasicBlock();
1259 const TargetRegisterClass
*PtrRC
=
1260 TLI
->getRegClassFor(TLI
->getPointerTy(CurDAG
->getDataLayout()));
1262 auto Pers
= classifyEHPersonality(PersonalityFn
);
1264 // Catchpads have one live-in register, which typically holds the exception
1266 if (isFuncletEHPersonality(Pers
)) {
1267 if (const auto *CPI
= dyn_cast
<CatchPadInst
>(LLVMBB
->getFirstNonPHI())) {
1268 if (hasExceptionPointerOrCodeUser(CPI
)) {
1269 // Get or create the virtual register to hold the pointer or code. Mark
1270 // the live in physreg and copy into the vreg.
1271 MCPhysReg EHPhysReg
= TLI
->getExceptionPointerRegister(PersonalityFn
);
1272 assert(EHPhysReg
&& "target lacks exception pointer register");
1273 MBB
->addLiveIn(EHPhysReg
);
1274 unsigned VReg
= FuncInfo
->getCatchPadExceptionPointerVReg(CPI
, PtrRC
);
1275 BuildMI(*MBB
, FuncInfo
->InsertPt
, SDB
->getCurDebugLoc(),
1276 TII
->get(TargetOpcode::COPY
), VReg
)
1277 .addReg(EHPhysReg
, RegState::Kill
);
1283 // Add a label to mark the beginning of the landing pad. Deletion of the
1284 // landing pad can thus be detected via the MachineModuleInfo.
1285 MCSymbol
*Label
= MF
->addLandingPad(MBB
);
1287 const MCInstrDesc
&II
= TII
->get(TargetOpcode::EH_LABEL
);
1288 BuildMI(*MBB
, FuncInfo
->InsertPt
, SDB
->getCurDebugLoc(), II
)
1291 // If the unwinder does not preserve all registers, ensure that the
1292 // function marks the clobbered registers as used.
1293 const TargetRegisterInfo
&TRI
= *MF
->getSubtarget().getRegisterInfo();
1294 if (auto *RegMask
= TRI
.getCustomEHPadPreservedMask(*MF
))
1295 MF
->getRegInfo().addPhysRegsUsedFromRegMask(RegMask
);
1297 if (Pers
== EHPersonality::Wasm_CXX
) {
1298 if (const auto *CPI
= dyn_cast
<CatchPadInst
>(LLVMBB
->getFirstNonPHI()))
1299 mapWasmLandingPadIndex(MBB
, CPI
);
1301 // Assign the call site to the landing pad's begin label.
1302 MF
->setCallSiteLandingPad(Label
, SDB
->LPadToCallSiteMap
[MBB
]);
1303 // Mark exception register as live in.
1304 if (unsigned Reg
= TLI
->getExceptionPointerRegister(PersonalityFn
))
1305 FuncInfo
->ExceptionPointerVirtReg
= MBB
->addLiveIn(Reg
, PtrRC
);
1306 // Mark exception selector register as live in.
1307 if (unsigned Reg
= TLI
->getExceptionSelectorRegister(PersonalityFn
))
1308 FuncInfo
->ExceptionSelectorVirtReg
= MBB
->addLiveIn(Reg
, PtrRC
);
1314 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1315 /// side-effect free and is either dead or folded into a generated instruction.
1316 /// Return false if it needs to be emitted.
1317 static bool isFoldedOrDeadInstruction(const Instruction
*I
,
1318 const FunctionLoweringInfo
&FuncInfo
) {
1319 return !I
->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1320 !I
->isTerminator() && // Terminators aren't folded.
1321 !isa
<DbgInfoIntrinsic
>(I
) && // Debug instructions aren't folded.
1322 !I
->isEHPad() && // EH pad instructions aren't folded.
1323 !FuncInfo
.isExportedInst(I
); // Exported instrs must be computed.
1326 /// Collect llvm.dbg.declare information. This is done after argument lowering
1327 /// in case the declarations refer to arguments.
1328 static void processDbgDeclares(FunctionLoweringInfo
&FuncInfo
) {
1329 MachineFunction
*MF
= FuncInfo
.MF
;
1330 const DataLayout
&DL
= MF
->getDataLayout();
1331 for (const BasicBlock
&BB
: *FuncInfo
.Fn
) {
1332 for (const Instruction
&I
: BB
) {
1333 const DbgDeclareInst
*DI
= dyn_cast
<DbgDeclareInst
>(&I
);
1337 assert(DI
->getVariable() && "Missing variable");
1338 assert(DI
->getDebugLoc() && "Missing location");
1339 const Value
*Address
= DI
->getAddress();
1341 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
1342 << " (bad address)\n");
1346 // Look through casts and constant offset GEPs. These mostly come from
1348 APInt
Offset(DL
.getTypeSizeInBits(Address
->getType()), 0);
1349 Address
= Address
->stripAndAccumulateInBoundsConstantOffsets(DL
, Offset
);
1351 // Check if the variable is a static alloca or a byval or inalloca
1352 // argument passed in memory. If it is not, then we will ignore this
1353 // intrinsic and handle this during isel like dbg.value.
1354 int FI
= std::numeric_limits
<int>::max();
1355 if (const auto *AI
= dyn_cast
<AllocaInst
>(Address
)) {
1356 auto SI
= FuncInfo
.StaticAllocaMap
.find(AI
);
1357 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
1359 } else if (const auto *Arg
= dyn_cast
<Argument
>(Address
))
1360 FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
1362 if (FI
== std::numeric_limits
<int>::max())
1365 DIExpression
*Expr
= DI
->getExpression();
1366 if (Offset
.getBoolValue())
1367 Expr
= DIExpression::prepend(Expr
, DIExpression::ApplyOffset
,
1368 Offset
.getZExtValue());
1369 LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI
1370 << ", " << *DI
<< "\n");
1371 MF
->setVariableDbgInfo(DI
->getVariable(), Expr
, FI
, DI
->getDebugLoc());
1376 void SelectionDAGISel::SelectAllBasicBlocks(const Function
&Fn
) {
1377 FastISelFailed
= false;
1378 // Initialize the Fast-ISel state, if needed.
1379 FastISel
*FastIS
= nullptr;
1380 if (TM
.Options
.EnableFastISel
) {
1381 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1382 FastIS
= TLI
->createFastISel(*FuncInfo
, LibInfo
);
1385 ReversePostOrderTraversal
<const Function
*> RPOT(&Fn
);
1387 // Lower arguments up front. An RPO iteration always visits the entry block
1389 assert(*RPOT
.begin() == &Fn
.getEntryBlock());
1392 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1393 FuncInfo
->MBB
= FuncInfo
->MBBMap
[&Fn
.getEntryBlock()];
1394 FuncInfo
->InsertPt
= FuncInfo
->MBB
->begin();
1396 CurDAG
->setFunctionLoweringInfo(FuncInfo
.get());
1401 // See if fast isel can lower the arguments.
1402 FastIS
->startNewBlock();
1403 if (!FastIS
->lowerArguments()) {
1404 FastISelFailed
= true;
1405 // Fast isel failed to lower these arguments
1406 ++NumFastIselFailLowerArguments
;
1408 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1410 &Fn
.getEntryBlock());
1411 R
<< "FastISel didn't lower all arguments: "
1412 << ore::NV("Prototype", Fn
.getType());
1413 reportFastISelFailure(*MF
, *ORE
, R
, EnableFastISelAbort
> 1);
1415 // Use SelectionDAG argument lowering
1417 CurDAG
->setRoot(SDB
->getControlRoot());
1419 CodeGenAndEmitDAG();
1422 // If we inserted any instructions at the beginning, make a note of
1423 // where they are, so we can be sure to emit subsequent instructions
1425 if (FuncInfo
->InsertPt
!= FuncInfo
->MBB
->begin())
1426 FastIS
->setLastLocalValue(&*std::prev(FuncInfo
->InsertPt
));
1428 FastIS
->setLastLocalValue(nullptr);
1431 bool Inserted
= SwiftError
->createEntriesInEntryBlock(SDB
->getCurDebugLoc());
1433 if (FastIS
&& Inserted
)
1434 FastIS
->setLastLocalValue(&*std::prev(FuncInfo
->InsertPt
));
1436 processDbgDeclares(*FuncInfo
);
1438 // Iterate over all basic blocks in the function.
1439 StackProtector
&SP
= getAnalysis
<StackProtector
>();
1440 for (const BasicBlock
*LLVMBB
: RPOT
) {
1441 if (OptLevel
!= CodeGenOpt::None
) {
1442 bool AllPredsVisited
= true;
1443 for (const BasicBlock
*Pred
: predecessors(LLVMBB
)) {
1444 if (!FuncInfo
->VisitedBBs
.count(Pred
)) {
1445 AllPredsVisited
= false;
1450 if (AllPredsVisited
) {
1451 for (const PHINode
&PN
: LLVMBB
->phis())
1452 FuncInfo
->ComputePHILiveOutRegInfo(&PN
);
1454 for (const PHINode
&PN
: LLVMBB
->phis())
1455 FuncInfo
->InvalidatePHILiveOutRegInfo(&PN
);
1458 FuncInfo
->VisitedBBs
.insert(LLVMBB
);
1461 BasicBlock::const_iterator
const Begin
=
1462 LLVMBB
->getFirstNonPHI()->getIterator();
1463 BasicBlock::const_iterator
const End
= LLVMBB
->end();
1464 BasicBlock::const_iterator BI
= End
;
1466 FuncInfo
->MBB
= FuncInfo
->MBBMap
[LLVMBB
];
1468 continue; // Some blocks like catchpads have no code or MBB.
1470 // Insert new instructions after any phi or argument setup code.
1471 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1473 // Setup an EH landing-pad block.
1474 FuncInfo
->ExceptionPointerVirtReg
= 0;
1475 FuncInfo
->ExceptionSelectorVirtReg
= 0;
1476 if (LLVMBB
->isEHPad())
1477 if (!PrepareEHLandingPad())
1480 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1482 if (LLVMBB
!= &Fn
.getEntryBlock())
1483 FastIS
->startNewBlock();
1485 unsigned NumFastIselRemaining
= std::distance(Begin
, End
);
1487 // Pre-assign swifterror vregs.
1488 SwiftError
->preassignVRegs(FuncInfo
->MBB
, Begin
, End
);
1490 // Do FastISel on as many instructions as possible.
1491 for (; BI
!= Begin
; --BI
) {
1492 const Instruction
*Inst
= &*std::prev(BI
);
1494 // If we no longer require this instruction, skip it.
1495 if (isFoldedOrDeadInstruction(Inst
, *FuncInfo
) ||
1496 ElidedArgCopyInstrs
.count(Inst
)) {
1497 --NumFastIselRemaining
;
1501 // Bottom-up: reset the insert pos at the top, after any local-value
1503 FastIS
->recomputeInsertPt();
1505 // Try to select the instruction with FastISel.
1506 if (FastIS
->selectInstruction(Inst
)) {
1507 --NumFastIselRemaining
;
1508 ++NumFastIselSuccess
;
1509 // If fast isel succeeded, skip over all the folded instructions, and
1510 // then see if there is a load right before the selected instructions.
1511 // Try to fold the load if so.
1512 const Instruction
*BeforeInst
= Inst
;
1513 while (BeforeInst
!= &*Begin
) {
1514 BeforeInst
= &*std::prev(BasicBlock::const_iterator(BeforeInst
));
1515 if (!isFoldedOrDeadInstruction(BeforeInst
, *FuncInfo
))
1518 if (BeforeInst
!= Inst
&& isa
<LoadInst
>(BeforeInst
) &&
1519 BeforeInst
->hasOneUse() &&
1520 FastIS
->tryToFoldLoad(cast
<LoadInst
>(BeforeInst
), Inst
)) {
1521 // If we succeeded, don't re-select the load.
1522 BI
= std::next(BasicBlock::const_iterator(BeforeInst
));
1523 --NumFastIselRemaining
;
1524 ++NumFastIselSuccess
;
1529 FastISelFailed
= true;
1531 // Then handle certain instructions as single-LLVM-Instruction blocks.
1532 // We cannot separate out GCrelocates to their own blocks since we need
1533 // to keep track of gc-relocates for a particular gc-statepoint. This is
1534 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1536 if (isa
<CallInst
>(Inst
) && !isa
<GCStatepointInst
>(Inst
) &&
1537 !isa
<GCRelocateInst
>(Inst
) && !isa
<GCResultInst
>(Inst
)) {
1538 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1539 Inst
->getDebugLoc(), LLVMBB
);
1541 R
<< "FastISel missed call";
1543 if (R
.isEnabled() || EnableFastISelAbort
) {
1544 std::string InstStrStorage
;
1545 raw_string_ostream
InstStr(InstStrStorage
);
1548 R
<< ": " << InstStr
.str();
1551 reportFastISelFailure(*MF
, *ORE
, R
, EnableFastISelAbort
> 2);
1553 if (!Inst
->getType()->isVoidTy() && !Inst
->getType()->isTokenTy() &&
1554 !Inst
->use_empty()) {
1555 Register
&R
= FuncInfo
->ValueMap
[Inst
];
1557 R
= FuncInfo
->CreateRegs(Inst
);
1560 bool HadTailCall
= false;
1561 MachineBasicBlock::iterator SavedInsertPt
= FuncInfo
->InsertPt
;
1562 SelectBasicBlock(Inst
->getIterator(), BI
, HadTailCall
);
1564 // If the call was emitted as a tail call, we're done with the block.
1565 // We also need to delete any previously emitted instructions.
1567 FastIS
->removeDeadCode(SavedInsertPt
, FuncInfo
->MBB
->end());
1572 // Recompute NumFastIselRemaining as Selection DAG instruction
1573 // selection may have handled the call, input args, etc.
1574 unsigned RemainingNow
= std::distance(Begin
, BI
);
1575 NumFastIselFailures
+= NumFastIselRemaining
- RemainingNow
;
1576 NumFastIselRemaining
= RemainingNow
;
1580 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1581 Inst
->getDebugLoc(), LLVMBB
);
1583 bool ShouldAbort
= EnableFastISelAbort
;
1584 if (Inst
->isTerminator()) {
1585 // Use a different message for terminator misses.
1586 R
<< "FastISel missed terminator";
1587 // Don't abort for terminator unless the level is really high
1588 ShouldAbort
= (EnableFastISelAbort
> 2);
1590 R
<< "FastISel missed";
1593 if (R
.isEnabled() || EnableFastISelAbort
) {
1594 std::string InstStrStorage
;
1595 raw_string_ostream
InstStr(InstStrStorage
);
1597 R
<< ": " << InstStr
.str();
1600 reportFastISelFailure(*MF
, *ORE
, R
, ShouldAbort
);
1602 NumFastIselFailures
+= NumFastIselRemaining
;
1606 FastIS
->recomputeInsertPt();
1609 if (SP
.shouldEmitSDCheck(*LLVMBB
)) {
1610 bool FunctionBasedInstrumentation
=
1611 TLI
->getSSPStackGuardCheck(*Fn
.getParent());
1612 SDB
->SPDescriptor
.initialize(LLVMBB
, FuncInfo
->MBBMap
[LLVMBB
],
1613 FunctionBasedInstrumentation
);
1619 ++NumFastIselBlocks
;
1622 // Run SelectionDAG instruction selection on the remainder of the block
1623 // not handled by FastISel. If FastISel is not run, this is the entire
1626 SelectBasicBlock(Begin
, BI
, HadTailCall
);
1628 // But if FastISel was run, we already selected some of the block.
1629 // If we emitted a tail-call, we need to delete any previously emitted
1630 // instruction that follows it.
1631 if (FastIS
&& HadTailCall
&& FuncInfo
->InsertPt
!= FuncInfo
->MBB
->end())
1632 FastIS
->removeDeadCode(FuncInfo
->InsertPt
, FuncInfo
->MBB
->end());
1636 FastIS
->finishBasicBlock();
1638 FuncInfo
->PHINodesToUpdate
.clear();
1639 ElidedArgCopyInstrs
.clear();
1642 SP
.copyToMachineFrameInfo(MF
->getFrameInfo());
1644 SwiftError
->propagateVRegs();
1647 SDB
->clearDanglingDebugInfo();
1648 SDB
->SPDescriptor
.resetPerFunctionState();
1652 SelectionDAGISel::FinishBasicBlock() {
1653 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1654 << FuncInfo
->PHINodesToUpdate
.size() << "\n";
1655 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
;
1657 << "Node " << i
<< " : (" << FuncInfo
->PHINodesToUpdate
[i
].first
1658 << ", " << FuncInfo
->PHINodesToUpdate
[i
].second
<< ")\n");
1660 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1661 // PHI nodes in successors.
1662 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
; ++i
) {
1663 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[i
].first
);
1664 assert(PHI
->isPHI() &&
1665 "This is not a machine PHI node that we are updating!");
1666 if (!FuncInfo
->MBB
->isSuccessor(PHI
->getParent()))
1668 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[i
].second
).addMBB(FuncInfo
->MBB
);
1671 // Handle stack protector.
1672 if (SDB
->SPDescriptor
.shouldEmitFunctionBasedCheckStackProtector()) {
1673 // The target provides a guard check function. There is no need to
1674 // generate error handling code or to split current basic block.
1675 MachineBasicBlock
*ParentMBB
= SDB
->SPDescriptor
.getParentMBB();
1677 // Add load and check to the basicblock.
1678 FuncInfo
->MBB
= ParentMBB
;
1679 FuncInfo
->InsertPt
=
1680 findSplitPointForStackProtector(ParentMBB
, *TII
);
1681 SDB
->visitSPDescriptorParent(SDB
->SPDescriptor
, ParentMBB
);
1682 CurDAG
->setRoot(SDB
->getRoot());
1684 CodeGenAndEmitDAG();
1686 // Clear the Per-BB State.
1687 SDB
->SPDescriptor
.resetPerBBState();
1688 } else if (SDB
->SPDescriptor
.shouldEmitStackProtector()) {
1689 MachineBasicBlock
*ParentMBB
= SDB
->SPDescriptor
.getParentMBB();
1690 MachineBasicBlock
*SuccessMBB
= SDB
->SPDescriptor
.getSuccessMBB();
1692 // Find the split point to split the parent mbb. At the same time copy all
1693 // physical registers used in the tail of parent mbb into virtual registers
1694 // before the split point and back into physical registers after the split
1695 // point. This prevents us needing to deal with Live-ins and many other
1696 // register allocation issues caused by us splitting the parent mbb. The
1697 // register allocator will clean up said virtual copies later on.
1698 MachineBasicBlock::iterator SplitPoint
=
1699 findSplitPointForStackProtector(ParentMBB
, *TII
);
1701 // Splice the terminator of ParentMBB into SuccessMBB.
1702 SuccessMBB
->splice(SuccessMBB
->end(), ParentMBB
,
1706 // Add compare/jump on neq/jump to the parent BB.
1707 FuncInfo
->MBB
= ParentMBB
;
1708 FuncInfo
->InsertPt
= ParentMBB
->end();
1709 SDB
->visitSPDescriptorParent(SDB
->SPDescriptor
, ParentMBB
);
1710 CurDAG
->setRoot(SDB
->getRoot());
1712 CodeGenAndEmitDAG();
1714 // CodeGen Failure MBB if we have not codegened it yet.
1715 MachineBasicBlock
*FailureMBB
= SDB
->SPDescriptor
.getFailureMBB();
1716 if (FailureMBB
->empty()) {
1717 FuncInfo
->MBB
= FailureMBB
;
1718 FuncInfo
->InsertPt
= FailureMBB
->end();
1719 SDB
->visitSPDescriptorFailure(SDB
->SPDescriptor
);
1720 CurDAG
->setRoot(SDB
->getRoot());
1722 CodeGenAndEmitDAG();
1725 // Clear the Per-BB State.
1726 SDB
->SPDescriptor
.resetPerBBState();
1729 // Lower each BitTestBlock.
1730 for (auto &BTB
: SDB
->SL
->BitTestCases
) {
1731 // Lower header first, if it wasn't already lowered
1733 // Set the current basic block to the mbb we wish to insert the code into
1734 FuncInfo
->MBB
= BTB
.Parent
;
1735 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1737 SDB
->visitBitTestHeader(BTB
, FuncInfo
->MBB
);
1738 CurDAG
->setRoot(SDB
->getRoot());
1740 CodeGenAndEmitDAG();
1743 BranchProbability UnhandledProb
= BTB
.Prob
;
1744 for (unsigned j
= 0, ej
= BTB
.Cases
.size(); j
!= ej
; ++j
) {
1745 UnhandledProb
-= BTB
.Cases
[j
].ExtraProb
;
1746 // Set the current basic block to the mbb we wish to insert the code into
1747 FuncInfo
->MBB
= BTB
.Cases
[j
].ThisBB
;
1748 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1751 // If all cases cover a contiguous range, it is not necessary to jump to
1752 // the default block after the last bit test fails. This is because the
1753 // range check during bit test header creation has guaranteed that every
1754 // case here doesn't go outside the range. In this case, there is no need
1755 // to perform the last bit test, as it will always be true. Instead, make
1756 // the second-to-last bit-test fall through to the target of the last bit
1757 // test, and delete the last bit test.
1759 MachineBasicBlock
*NextMBB
;
1760 if ((BTB
.ContiguousRange
|| BTB
.FallthroughUnreachable
) && j
+ 2 == ej
) {
1761 // Second-to-last bit-test with contiguous range or omitted range
1762 // check: fall through to the target of the final bit test.
1763 NextMBB
= BTB
.Cases
[j
+ 1].TargetBB
;
1764 } else if (j
+ 1 == ej
) {
1765 // For the last bit test, fall through to Default.
1766 NextMBB
= BTB
.Default
;
1768 // Otherwise, fall through to the next bit test.
1769 NextMBB
= BTB
.Cases
[j
+ 1].ThisBB
;
1772 SDB
->visitBitTestCase(BTB
, NextMBB
, UnhandledProb
, BTB
.Reg
, BTB
.Cases
[j
],
1775 CurDAG
->setRoot(SDB
->getRoot());
1777 CodeGenAndEmitDAG();
1779 if ((BTB
.ContiguousRange
|| BTB
.FallthroughUnreachable
) && j
+ 2 == ej
) {
1780 // Since we're not going to use the final bit test, remove it.
1781 BTB
.Cases
.pop_back();
1787 for (const std::pair
<MachineInstr
*, unsigned> &P
:
1788 FuncInfo
->PHINodesToUpdate
) {
1789 MachineInstrBuilder
PHI(*MF
, P
.first
);
1790 MachineBasicBlock
*PHIBB
= PHI
->getParent();
1791 assert(PHI
->isPHI() &&
1792 "This is not a machine PHI node that we are updating!");
1793 // This is "default" BB. We have two jumps to it. From "header" BB and
1794 // from last "case" BB, unless the latter was skipped.
1795 if (PHIBB
== BTB
.Default
) {
1796 PHI
.addReg(P
.second
).addMBB(BTB
.Parent
);
1797 if (!BTB
.ContiguousRange
) {
1798 PHI
.addReg(P
.second
).addMBB(BTB
.Cases
.back().ThisBB
);
1801 // One of "cases" BB.
1802 for (const SwitchCG::BitTestCase
&BT
: BTB
.Cases
) {
1803 MachineBasicBlock
* cBB
= BT
.ThisBB
;
1804 if (cBB
->isSuccessor(PHIBB
))
1805 PHI
.addReg(P
.second
).addMBB(cBB
);
1809 SDB
->SL
->BitTestCases
.clear();
1811 // If the JumpTable record is filled in, then we need to emit a jump table.
1812 // Updating the PHI nodes is tricky in this case, since we need to determine
1813 // whether the PHI is a successor of the range check MBB or the jump table MBB
1814 for (unsigned i
= 0, e
= SDB
->SL
->JTCases
.size(); i
!= e
; ++i
) {
1815 // Lower header first, if it wasn't already lowered
1816 if (!SDB
->SL
->JTCases
[i
].first
.Emitted
) {
1817 // Set the current basic block to the mbb we wish to insert the code into
1818 FuncInfo
->MBB
= SDB
->SL
->JTCases
[i
].first
.HeaderBB
;
1819 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1821 SDB
->visitJumpTableHeader(SDB
->SL
->JTCases
[i
].second
,
1822 SDB
->SL
->JTCases
[i
].first
, FuncInfo
->MBB
);
1823 CurDAG
->setRoot(SDB
->getRoot());
1825 CodeGenAndEmitDAG();
1828 // Set the current basic block to the mbb we wish to insert the code into
1829 FuncInfo
->MBB
= SDB
->SL
->JTCases
[i
].second
.MBB
;
1830 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1832 SDB
->visitJumpTable(SDB
->SL
->JTCases
[i
].second
);
1833 CurDAG
->setRoot(SDB
->getRoot());
1835 CodeGenAndEmitDAG();
1838 for (unsigned pi
= 0, pe
= FuncInfo
->PHINodesToUpdate
.size();
1840 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[pi
].first
);
1841 MachineBasicBlock
*PHIBB
= PHI
->getParent();
1842 assert(PHI
->isPHI() &&
1843 "This is not a machine PHI node that we are updating!");
1844 // "default" BB. We can go there only from header BB.
1845 if (PHIBB
== SDB
->SL
->JTCases
[i
].second
.Default
)
1846 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
)
1847 .addMBB(SDB
->SL
->JTCases
[i
].first
.HeaderBB
);
1848 // JT BB. Just iterate over successors here
1849 if (FuncInfo
->MBB
->isSuccessor(PHIBB
))
1850 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(FuncInfo
->MBB
);
1853 SDB
->SL
->JTCases
.clear();
1855 // If we generated any switch lowering information, build and codegen any
1856 // additional DAGs necessary.
1857 for (unsigned i
= 0, e
= SDB
->SL
->SwitchCases
.size(); i
!= e
; ++i
) {
1858 // Set the current basic block to the mbb we wish to insert the code into
1859 FuncInfo
->MBB
= SDB
->SL
->SwitchCases
[i
].ThisBB
;
1860 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1862 // Determine the unique successors.
1863 SmallVector
<MachineBasicBlock
*, 2> Succs
;
1864 Succs
.push_back(SDB
->SL
->SwitchCases
[i
].TrueBB
);
1865 if (SDB
->SL
->SwitchCases
[i
].TrueBB
!= SDB
->SL
->SwitchCases
[i
].FalseBB
)
1866 Succs
.push_back(SDB
->SL
->SwitchCases
[i
].FalseBB
);
1868 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1869 SDB
->visitSwitchCase(SDB
->SL
->SwitchCases
[i
], FuncInfo
->MBB
);
1870 CurDAG
->setRoot(SDB
->getRoot());
1872 CodeGenAndEmitDAG();
1874 // Remember the last block, now that any splitting is done, for use in
1875 // populating PHI nodes in successors.
1876 MachineBasicBlock
*ThisBB
= FuncInfo
->MBB
;
1878 // Handle any PHI nodes in successors of this chunk, as if we were coming
1879 // from the original BB before switch expansion. Note that PHI nodes can
1880 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1881 // handle them the right number of times.
1882 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
) {
1883 FuncInfo
->MBB
= Succs
[i
];
1884 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1885 // FuncInfo->MBB may have been removed from the CFG if a branch was
1887 if (ThisBB
->isSuccessor(FuncInfo
->MBB
)) {
1888 for (MachineBasicBlock::iterator
1889 MBBI
= FuncInfo
->MBB
->begin(), MBBE
= FuncInfo
->MBB
->end();
1890 MBBI
!= MBBE
&& MBBI
->isPHI(); ++MBBI
) {
1891 MachineInstrBuilder
PHI(*MF
, MBBI
);
1892 // This value for this PHI node is recorded in PHINodesToUpdate.
1893 for (unsigned pn
= 0; ; ++pn
) {
1894 assert(pn
!= FuncInfo
->PHINodesToUpdate
.size() &&
1895 "Didn't find PHI entry!");
1896 if (FuncInfo
->PHINodesToUpdate
[pn
].first
== PHI
) {
1897 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pn
].second
).addMBB(ThisBB
);
1905 SDB
->SL
->SwitchCases
.clear();
1908 /// Create the scheduler. If a specific scheduler was specified
1909 /// via the SchedulerRegistry, use it, otherwise select the
1910 /// one preferred by the target.
1912 ScheduleDAGSDNodes
*SelectionDAGISel::CreateScheduler() {
1913 return ISHeuristic(this, OptLevel
);
1916 //===----------------------------------------------------------------------===//
1917 // Helper functions used by the generated instruction selector.
1918 //===----------------------------------------------------------------------===//
1919 // Calls to these methods are generated by tblgen.
1921 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1922 /// the dag combiner simplified the 255, we still want to match. RHS is the
1923 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1924 /// specified in the .td file (e.g. 255).
1925 bool SelectionDAGISel::CheckAndMask(SDValue LHS
, ConstantSDNode
*RHS
,
1926 int64_t DesiredMaskS
) const {
1927 const APInt
&ActualMask
= RHS
->getAPIntValue();
1928 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
1930 // If the actual mask exactly matches, success!
1931 if (ActualMask
== DesiredMask
)
1934 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1935 if (!ActualMask
.isSubsetOf(DesiredMask
))
1938 // Otherwise, the DAG Combiner may have proven that the value coming in is
1939 // either already zero or is not demanded. Check for known zero input bits.
1940 APInt NeededMask
= DesiredMask
& ~ActualMask
;
1941 if (CurDAG
->MaskedValueIsZero(LHS
, NeededMask
))
1944 // TODO: check to see if missing bits are just not demanded.
1946 // Otherwise, this pattern doesn't match.
1950 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1951 /// the dag combiner simplified the 255, we still want to match. RHS is the
1952 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1953 /// specified in the .td file (e.g. 255).
1954 bool SelectionDAGISel::CheckOrMask(SDValue LHS
, ConstantSDNode
*RHS
,
1955 int64_t DesiredMaskS
) const {
1956 const APInt
&ActualMask
= RHS
->getAPIntValue();
1957 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
1959 // If the actual mask exactly matches, success!
1960 if (ActualMask
== DesiredMask
)
1963 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1964 if (!ActualMask
.isSubsetOf(DesiredMask
))
1967 // Otherwise, the DAG Combiner may have proven that the value coming in is
1968 // either already zero or is not demanded. Check for known zero input bits.
1969 APInt NeededMask
= DesiredMask
& ~ActualMask
;
1970 KnownBits Known
= CurDAG
->computeKnownBits(LHS
);
1972 // If all the missing bits in the or are already known to be set, match!
1973 if (NeededMask
.isSubsetOf(Known
.One
))
1976 // TODO: check to see if missing bits are just not demanded.
1978 // Otherwise, this pattern doesn't match.
1982 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1983 /// by tblgen. Others should not call it.
1984 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector
<SDValue
> &Ops
,
1986 std::vector
<SDValue
> InOps
;
1987 std::swap(InOps
, Ops
);
1989 Ops
.push_back(InOps
[InlineAsm::Op_InputChain
]); // 0
1990 Ops
.push_back(InOps
[InlineAsm::Op_AsmString
]); // 1
1991 Ops
.push_back(InOps
[InlineAsm::Op_MDNode
]); // 2, !srcloc
1992 Ops
.push_back(InOps
[InlineAsm::Op_ExtraInfo
]); // 3 (SideEffect, AlignStack)
1994 unsigned i
= InlineAsm::Op_FirstOperand
, e
= InOps
.size();
1995 if (InOps
[e
-1].getValueType() == MVT::Glue
)
1996 --e
; // Don't process a glue operand if it is here.
1999 unsigned Flags
= cast
<ConstantSDNode
>(InOps
[i
])->getZExtValue();
2000 if (!InlineAsm::isMemKind(Flags
)) {
2001 // Just skip over this operand, copying the operands verbatim.
2002 Ops
.insert(Ops
.end(), InOps
.begin()+i
,
2003 InOps
.begin()+i
+InlineAsm::getNumOperandRegisters(Flags
) + 1);
2004 i
+= InlineAsm::getNumOperandRegisters(Flags
) + 1;
2006 assert(InlineAsm::getNumOperandRegisters(Flags
) == 1 &&
2007 "Memory operand with multiple values?");
2009 unsigned TiedToOperand
;
2010 if (InlineAsm::isUseOperandTiedToDef(Flags
, TiedToOperand
)) {
2011 // We need the constraint ID from the operand this is tied to.
2012 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
2013 Flags
= cast
<ConstantSDNode
>(InOps
[CurOp
])->getZExtValue();
2014 for (; TiedToOperand
; --TiedToOperand
) {
2015 CurOp
+= InlineAsm::getNumOperandRegisters(Flags
)+1;
2016 Flags
= cast
<ConstantSDNode
>(InOps
[CurOp
])->getZExtValue();
2020 // Otherwise, this is a memory operand. Ask the target to select it.
2021 std::vector
<SDValue
> SelOps
;
2022 unsigned ConstraintID
= InlineAsm::getMemoryConstraintID(Flags
);
2023 if (SelectInlineAsmMemoryOperand(InOps
[i
+1], ConstraintID
, SelOps
))
2024 report_fatal_error("Could not match memory address. Inline asm"
2027 // Add this to the output node.
2029 InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, SelOps
.size());
2030 NewFlags
= InlineAsm::getFlagWordForMem(NewFlags
, ConstraintID
);
2031 Ops
.push_back(CurDAG
->getTargetConstant(NewFlags
, DL
, MVT::i32
));
2032 llvm::append_range(Ops
, SelOps
);
2037 // Add the glue input back if present.
2038 if (e
!= InOps
.size())
2039 Ops
.push_back(InOps
.back());
2042 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2045 static SDNode
*findGlueUse(SDNode
*N
) {
2046 unsigned FlagResNo
= N
->getNumValues()-1;
2047 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
2048 SDUse
&Use
= I
.getUse();
2049 if (Use
.getResNo() == FlagResNo
)
2050 return Use
.getUser();
2055 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2056 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2057 static bool findNonImmUse(SDNode
*Root
, SDNode
*Def
, SDNode
*ImmedUse
,
2058 bool IgnoreChains
) {
2059 SmallPtrSet
<const SDNode
*, 16> Visited
;
2060 SmallVector
<const SDNode
*, 16> WorkList
;
2061 // Only check if we have non-immediate uses of Def.
2062 if (ImmedUse
->isOnlyUserOf(Def
))
2065 // We don't care about paths to Def that go through ImmedUse so mark it
2066 // visited and mark non-def operands as used.
2067 Visited
.insert(ImmedUse
);
2068 for (const SDValue
&Op
: ImmedUse
->op_values()) {
2069 SDNode
*N
= Op
.getNode();
2070 // Ignore chain deps (they are validated by
2071 // HandleMergeInputChains) and immediate uses
2072 if ((Op
.getValueType() == MVT::Other
&& IgnoreChains
) || N
== Def
)
2074 if (!Visited
.insert(N
).second
)
2076 WorkList
.push_back(N
);
2079 // Initialize worklist to operands of Root.
2080 if (Root
!= ImmedUse
) {
2081 for (const SDValue
&Op
: Root
->op_values()) {
2082 SDNode
*N
= Op
.getNode();
2083 // Ignore chains (they are validated by HandleMergeInputChains)
2084 if ((Op
.getValueType() == MVT::Other
&& IgnoreChains
) || N
== Def
)
2086 if (!Visited
.insert(N
).second
)
2088 WorkList
.push_back(N
);
2092 return SDNode::hasPredecessorHelper(Def
, Visited
, WorkList
, 0, true);
2095 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2096 /// operand node N of U during instruction selection that starts at Root.
2097 bool SelectionDAGISel::IsProfitableToFold(SDValue N
, SDNode
*U
,
2098 SDNode
*Root
) const {
2099 if (OptLevel
== CodeGenOpt::None
) return false;
2100 return N
.hasOneUse();
2103 /// IsLegalToFold - Returns true if the specific operand node N of
2104 /// U can be folded during instruction selection that starts at Root.
2105 bool SelectionDAGISel::IsLegalToFold(SDValue N
, SDNode
*U
, SDNode
*Root
,
2106 CodeGenOpt::Level OptLevel
,
2107 bool IgnoreChains
) {
2108 if (OptLevel
== CodeGenOpt::None
) return false;
2110 // If Root use can somehow reach N through a path that that doesn't contain
2111 // U then folding N would create a cycle. e.g. In the following
2112 // diagram, Root can reach N through X. If N is folded into Root, then
2113 // X is both a predecessor and a successor of U.
2124 // * indicates nodes to be folded together.
2126 // If Root produces glue, then it gets (even more) interesting. Since it
2127 // will be "glued" together with its glue use in the scheduler, we need to
2128 // check if it might reach N.
2147 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2148 // (call it Fold), then X is a predecessor of GU and a successor of
2149 // Fold. But since Fold and GU are glued together, this will create
2150 // a cycle in the scheduling graph.
2152 // If the node has glue, walk down the graph to the "lowest" node in the
2154 EVT VT
= Root
->getValueType(Root
->getNumValues()-1);
2155 while (VT
== MVT::Glue
) {
2156 SDNode
*GU
= findGlueUse(Root
);
2160 VT
= Root
->getValueType(Root
->getNumValues()-1);
2162 // If our query node has a glue result with a use, we've walked up it. If
2163 // the user (which has already been selected) has a chain or indirectly uses
2164 // the chain, HandleMergeInputChains will not consider it. Because of
2165 // this, we cannot ignore chains in this predicate.
2166 IgnoreChains
= false;
2169 return !findNonImmUse(Root
, N
.getNode(), U
, IgnoreChains
);
2172 void SelectionDAGISel::Select_INLINEASM(SDNode
*N
) {
2175 std::vector
<SDValue
> Ops(N
->op_begin(), N
->op_end());
2176 SelectInlineAsmMemoryOperands(Ops
, DL
);
2178 const EVT VTs
[] = {MVT::Other
, MVT::Glue
};
2179 SDValue New
= CurDAG
->getNode(N
->getOpcode(), DL
, VTs
, Ops
);
2181 ReplaceUses(N
, New
.getNode());
2182 CurDAG
->RemoveDeadNode(N
);
2185 void SelectionDAGISel::Select_READ_REGISTER(SDNode
*Op
) {
2187 MDNodeSDNode
*MD
= cast
<MDNodeSDNode
>(Op
->getOperand(1));
2188 const MDString
*RegStr
= cast
<MDString
>(MD
->getMD()->getOperand(0));
2190 EVT VT
= Op
->getValueType(0);
2191 LLT Ty
= VT
.isSimple() ? getLLTForMVT(VT
.getSimpleVT()) : LLT();
2193 TLI
->getRegisterByName(RegStr
->getString().data(), Ty
,
2194 CurDAG
->getMachineFunction());
2195 SDValue New
= CurDAG
->getCopyFromReg(
2196 Op
->getOperand(0), dl
, Reg
, Op
->getValueType(0));
2198 ReplaceUses(Op
, New
.getNode());
2199 CurDAG
->RemoveDeadNode(Op
);
2202 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode
*Op
) {
2204 MDNodeSDNode
*MD
= cast
<MDNodeSDNode
>(Op
->getOperand(1));
2205 const MDString
*RegStr
= cast
<MDString
>(MD
->getMD()->getOperand(0));
2207 EVT VT
= Op
->getOperand(2).getValueType();
2208 LLT Ty
= VT
.isSimple() ? getLLTForMVT(VT
.getSimpleVT()) : LLT();
2210 Register Reg
= TLI
->getRegisterByName(RegStr
->getString().data(), Ty
,
2211 CurDAG
->getMachineFunction());
2212 SDValue New
= CurDAG
->getCopyToReg(
2213 Op
->getOperand(0), dl
, Reg
, Op
->getOperand(2));
2215 ReplaceUses(Op
, New
.getNode());
2216 CurDAG
->RemoveDeadNode(Op
);
2219 void SelectionDAGISel::Select_UNDEF(SDNode
*N
) {
2220 CurDAG
->SelectNodeTo(N
, TargetOpcode::IMPLICIT_DEF
, N
->getValueType(0));
2223 void SelectionDAGISel::Select_FREEZE(SDNode
*N
) {
2224 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2225 // If FREEZE instruction is added later, the code below must be changed as
2227 CurDAG
->SelectNodeTo(N
, TargetOpcode::COPY
, N
->getValueType(0),
2231 void SelectionDAGISel::Select_ARITH_FENCE(SDNode
*N
) {
2232 CurDAG
->SelectNodeTo(N
, TargetOpcode::ARITH_FENCE
, N
->getValueType(0),
2236 /// GetVBR - decode a vbr encoding whose top bit is set.
2237 LLVM_ATTRIBUTE_ALWAYS_INLINE
static uint64_t
2238 GetVBR(uint64_t Val
, const unsigned char *MatcherTable
, unsigned &Idx
) {
2239 assert(Val
>= 128 && "Not a VBR");
2240 Val
&= 127; // Remove first vbr bit.
2245 NextBits
= MatcherTable
[Idx
++];
2246 Val
|= (NextBits
&127) << Shift
;
2248 } while (NextBits
& 128);
2253 /// When a match is complete, this method updates uses of interior chain results
2254 /// to use the new results.
2255 void SelectionDAGISel::UpdateChains(
2256 SDNode
*NodeToMatch
, SDValue InputChain
,
2257 SmallVectorImpl
<SDNode
*> &ChainNodesMatched
, bool isMorphNodeTo
) {
2258 SmallVector
<SDNode
*, 4> NowDeadNodes
;
2260 // Now that all the normal results are replaced, we replace the chain and
2261 // glue results if present.
2262 if (!ChainNodesMatched
.empty()) {
2263 assert(InputChain
.getNode() &&
2264 "Matched input chains but didn't produce a chain");
2265 // Loop over all of the nodes we matched that produced a chain result.
2266 // Replace all the chain results with the final chain we ended up with.
2267 for (unsigned i
= 0, e
= ChainNodesMatched
.size(); i
!= e
; ++i
) {
2268 SDNode
*ChainNode
= ChainNodesMatched
[i
];
2269 // If ChainNode is null, it's because we replaced it on a previous
2270 // iteration and we cleared it out of the map. Just skip it.
2274 assert(ChainNode
->getOpcode() != ISD::DELETED_NODE
&&
2275 "Deleted node left in chain");
2277 // Don't replace the results of the root node if we're doing a
2279 if (ChainNode
== NodeToMatch
&& isMorphNodeTo
)
2282 SDValue ChainVal
= SDValue(ChainNode
, ChainNode
->getNumValues()-1);
2283 if (ChainVal
.getValueType() == MVT::Glue
)
2284 ChainVal
= ChainVal
.getValue(ChainVal
->getNumValues()-2);
2285 assert(ChainVal
.getValueType() == MVT::Other
&& "Not a chain?");
2286 SelectionDAG::DAGNodeDeletedListener
NDL(
2287 *CurDAG
, [&](SDNode
*N
, SDNode
*E
) {
2288 std::replace(ChainNodesMatched
.begin(), ChainNodesMatched
.end(), N
,
2289 static_cast<SDNode
*>(nullptr));
2291 if (ChainNode
->getOpcode() != ISD::TokenFactor
)
2292 ReplaceUses(ChainVal
, InputChain
);
2294 // If the node became dead and we haven't already seen it, delete it.
2295 if (ChainNode
!= NodeToMatch
&& ChainNode
->use_empty() &&
2296 !llvm::is_contained(NowDeadNodes
, ChainNode
))
2297 NowDeadNodes
.push_back(ChainNode
);
2301 if (!NowDeadNodes
.empty())
2302 CurDAG
->RemoveDeadNodes(NowDeadNodes
);
2304 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2307 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2308 /// operation for when the pattern matched at least one node with a chains. The
2309 /// input vector contains a list of all of the chained nodes that we match. We
2310 /// must determine if this is a valid thing to cover (i.e. matching it won't
2311 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2312 /// be used as the input node chain for the generated nodes.
2314 HandleMergeInputChains(SmallVectorImpl
<SDNode
*> &ChainNodesMatched
,
2315 SelectionDAG
*CurDAG
) {
2317 SmallPtrSet
<const SDNode
*, 16> Visited
;
2318 SmallVector
<const SDNode
*, 8> Worklist
;
2319 SmallVector
<SDValue
, 3> InputChains
;
2320 unsigned int Max
= 8192;
2322 // Quick exit on trivial merge.
2323 if (ChainNodesMatched
.size() == 1)
2324 return ChainNodesMatched
[0]->getOperand(0);
2326 // Add chains that aren't already added (internal). Peek through
2328 std::function
<void(const SDValue
)> AddChains
= [&](const SDValue V
) {
2329 if (V
.getValueType() != MVT::Other
)
2331 if (V
->getOpcode() == ISD::EntryToken
)
2333 if (!Visited
.insert(V
.getNode()).second
)
2335 if (V
->getOpcode() == ISD::TokenFactor
) {
2336 for (const SDValue
&Op
: V
->op_values())
2339 InputChains
.push_back(V
);
2342 for (auto *N
: ChainNodesMatched
) {
2343 Worklist
.push_back(N
);
2347 while (!Worklist
.empty())
2348 AddChains(Worklist
.pop_back_val()->getOperand(0));
2350 // Skip the search if there are no chain dependencies.
2351 if (InputChains
.size() == 0)
2352 return CurDAG
->getEntryNode();
2354 // If one of these chains is a successor of input, we must have a
2355 // node that is both the predecessor and successor of the
2356 // to-be-merged nodes. Fail.
2358 for (SDValue V
: InputChains
)
2359 Worklist
.push_back(V
.getNode());
2361 for (auto *N
: ChainNodesMatched
)
2362 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
, Max
, true))
2365 // Return merged chain.
2366 if (InputChains
.size() == 1)
2367 return InputChains
[0];
2368 return CurDAG
->getNode(ISD::TokenFactor
, SDLoc(ChainNodesMatched
[0]),
2369 MVT::Other
, InputChains
);
2372 /// MorphNode - Handle morphing a node in place for the selector.
2373 SDNode
*SelectionDAGISel::
2374 MorphNode(SDNode
*Node
, unsigned TargetOpc
, SDVTList VTList
,
2375 ArrayRef
<SDValue
> Ops
, unsigned EmitNodeInfo
) {
2376 // It is possible we're using MorphNodeTo to replace a node with no
2377 // normal results with one that has a normal result (or we could be
2378 // adding a chain) and the input could have glue and chains as well.
2379 // In this case we need to shift the operands down.
2380 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2381 // than the old isel though.
2382 int OldGlueResultNo
= -1, OldChainResultNo
= -1;
2384 unsigned NTMNumResults
= Node
->getNumValues();
2385 if (Node
->getValueType(NTMNumResults
-1) == MVT::Glue
) {
2386 OldGlueResultNo
= NTMNumResults
-1;
2387 if (NTMNumResults
!= 1 &&
2388 Node
->getValueType(NTMNumResults
-2) == MVT::Other
)
2389 OldChainResultNo
= NTMNumResults
-2;
2390 } else if (Node
->getValueType(NTMNumResults
-1) == MVT::Other
)
2391 OldChainResultNo
= NTMNumResults
-1;
2393 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2394 // that this deletes operands of the old node that become dead.
2395 SDNode
*Res
= CurDAG
->MorphNodeTo(Node
, ~TargetOpc
, VTList
, Ops
);
2397 // MorphNodeTo can operate in two ways: if an existing node with the
2398 // specified operands exists, it can just return it. Otherwise, it
2399 // updates the node in place to have the requested operands.
2401 // If we updated the node in place, reset the node ID. To the isel,
2402 // this should be just like a newly allocated machine node.
2406 unsigned ResNumResults
= Res
->getNumValues();
2407 // Move the glue if needed.
2408 if ((EmitNodeInfo
& OPFL_GlueOutput
) && OldGlueResultNo
!= -1 &&
2409 (unsigned)OldGlueResultNo
!= ResNumResults
-1)
2410 ReplaceUses(SDValue(Node
, OldGlueResultNo
),
2411 SDValue(Res
, ResNumResults
- 1));
2413 if ((EmitNodeInfo
& OPFL_GlueOutput
) != 0)
2416 // Move the chain reference if needed.
2417 if ((EmitNodeInfo
& OPFL_Chain
) && OldChainResultNo
!= -1 &&
2418 (unsigned)OldChainResultNo
!= ResNumResults
-1)
2419 ReplaceUses(SDValue(Node
, OldChainResultNo
),
2420 SDValue(Res
, ResNumResults
- 1));
2422 // Otherwise, no replacement happened because the node already exists. Replace
2423 // Uses of the old node with the new one.
2425 ReplaceNode(Node
, Res
);
2427 EnforceNodeIdInvariant(Res
);
2433 /// CheckSame - Implements OP_CheckSame.
2434 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2435 CheckSame(const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
2436 const SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
) {
2437 // Accept if it is exactly the same as a previously recorded node.
2438 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
2439 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckSame");
2440 return N
== RecordedNodes
[RecNo
].first
;
2443 /// CheckChildSame - Implements OP_CheckChildXSame.
2444 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool CheckChildSame(
2445 const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
2446 const SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
,
2448 if (ChildNo
>= N
.getNumOperands())
2449 return false; // Match fails if out of range child #.
2450 return ::CheckSame(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
),
2454 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2455 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2456 CheckPatternPredicate(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2457 const SelectionDAGISel
&SDISel
) {
2458 return SDISel
.CheckPatternPredicate(MatcherTable
[MatcherIndex
++]);
2461 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2462 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2463 CheckNodePredicate(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2464 const SelectionDAGISel
&SDISel
, SDNode
*N
) {
2465 return SDISel
.CheckNodePredicate(N
, MatcherTable
[MatcherIndex
++]);
2468 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2469 CheckOpcode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2471 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
2472 Opc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
2473 return N
->getOpcode() == Opc
;
2476 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2477 CheckType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
2478 const TargetLowering
*TLI
, const DataLayout
&DL
) {
2479 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2480 if (N
.getValueType() == VT
) return true;
2482 // Handle the case when VT is iPTR.
2483 return VT
== MVT::iPTR
&& N
.getValueType() == TLI
->getPointerTy(DL
);
2486 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2487 CheckChildType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2488 SDValue N
, const TargetLowering
*TLI
, const DataLayout
&DL
,
2490 if (ChildNo
>= N
.getNumOperands())
2491 return false; // Match fails if out of range child #.
2492 return ::CheckType(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
), TLI
,
2496 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2497 CheckCondCode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2499 return cast
<CondCodeSDNode
>(N
)->get() ==
2500 (ISD::CondCode
)MatcherTable
[MatcherIndex
++];
2503 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2504 CheckChild2CondCode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2506 if (2 >= N
.getNumOperands())
2508 return ::CheckCondCode(MatcherTable
, MatcherIndex
, N
.getOperand(2));
2511 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2512 CheckValueType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2513 SDValue N
, const TargetLowering
*TLI
, const DataLayout
&DL
) {
2514 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2515 if (cast
<VTSDNode
>(N
)->getVT() == VT
)
2518 // Handle the case when VT is iPTR.
2519 return VT
== MVT::iPTR
&& cast
<VTSDNode
>(N
)->getVT() == TLI
->getPointerTy(DL
);
2522 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
2523 // shifted left by 1.
2524 static uint64_t decodeSignRotatedValue(uint64_t V
) {
2529 // There is no such thing as -0 with integers. "-0" really means MININT.
2533 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2534 CheckInteger(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2536 int64_t Val
= MatcherTable
[MatcherIndex
++];
2538 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2540 Val
= decodeSignRotatedValue(Val
);
2542 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
);
2543 return C
&& C
->getSExtValue() == Val
;
2546 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2547 CheckChildInteger(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2548 SDValue N
, unsigned ChildNo
) {
2549 if (ChildNo
>= N
.getNumOperands())
2550 return false; // Match fails if out of range child #.
2551 return ::CheckInteger(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
));
2554 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2555 CheckAndImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2556 SDValue N
, const SelectionDAGISel
&SDISel
) {
2557 int64_t Val
= MatcherTable
[MatcherIndex
++];
2559 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2561 if (N
->getOpcode() != ISD::AND
) return false;
2563 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2564 return C
&& SDISel
.CheckAndMask(N
.getOperand(0), C
, Val
);
2567 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2568 CheckOrImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
2569 const SelectionDAGISel
&SDISel
) {
2570 int64_t Val
= MatcherTable
[MatcherIndex
++];
2572 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2574 if (N
->getOpcode() != ISD::OR
) return false;
2576 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2577 return C
&& SDISel
.CheckOrMask(N
.getOperand(0), C
, Val
);
2580 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2581 /// scope, evaluate the current node. If the current predicate is known to
2582 /// fail, set Result=true and return anything. If the current predicate is
2583 /// known to pass, set Result=false and return the MatcherIndex to continue
2584 /// with. If the current predicate is unknown, set Result=false and return the
2585 /// MatcherIndex to continue with.
2586 static unsigned IsPredicateKnownToFail(const unsigned char *Table
,
2587 unsigned Index
, SDValue N
,
2589 const SelectionDAGISel
&SDISel
,
2590 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
) {
2591 switch (Table
[Index
++]) {
2594 return Index
-1; // Could not evaluate this predicate.
2595 case SelectionDAGISel::OPC_CheckSame
:
2596 Result
= !::CheckSame(Table
, Index
, N
, RecordedNodes
);
2598 case SelectionDAGISel::OPC_CheckChild0Same
:
2599 case SelectionDAGISel::OPC_CheckChild1Same
:
2600 case SelectionDAGISel::OPC_CheckChild2Same
:
2601 case SelectionDAGISel::OPC_CheckChild3Same
:
2602 Result
= !::CheckChildSame(Table
, Index
, N
, RecordedNodes
,
2603 Table
[Index
-1] - SelectionDAGISel::OPC_CheckChild0Same
);
2605 case SelectionDAGISel::OPC_CheckPatternPredicate
:
2606 Result
= !::CheckPatternPredicate(Table
, Index
, SDISel
);
2608 case SelectionDAGISel::OPC_CheckPredicate
:
2609 Result
= !::CheckNodePredicate(Table
, Index
, SDISel
, N
.getNode());
2611 case SelectionDAGISel::OPC_CheckOpcode
:
2612 Result
= !::CheckOpcode(Table
, Index
, N
.getNode());
2614 case SelectionDAGISel::OPC_CheckType
:
2615 Result
= !::CheckType(Table
, Index
, N
, SDISel
.TLI
,
2616 SDISel
.CurDAG
->getDataLayout());
2618 case SelectionDAGISel::OPC_CheckTypeRes
: {
2619 unsigned Res
= Table
[Index
++];
2620 Result
= !::CheckType(Table
, Index
, N
.getValue(Res
), SDISel
.TLI
,
2621 SDISel
.CurDAG
->getDataLayout());
2624 case SelectionDAGISel::OPC_CheckChild0Type
:
2625 case SelectionDAGISel::OPC_CheckChild1Type
:
2626 case SelectionDAGISel::OPC_CheckChild2Type
:
2627 case SelectionDAGISel::OPC_CheckChild3Type
:
2628 case SelectionDAGISel::OPC_CheckChild4Type
:
2629 case SelectionDAGISel::OPC_CheckChild5Type
:
2630 case SelectionDAGISel::OPC_CheckChild6Type
:
2631 case SelectionDAGISel::OPC_CheckChild7Type
:
2632 Result
= !::CheckChildType(
2633 Table
, Index
, N
, SDISel
.TLI
, SDISel
.CurDAG
->getDataLayout(),
2634 Table
[Index
- 1] - SelectionDAGISel::OPC_CheckChild0Type
);
2636 case SelectionDAGISel::OPC_CheckCondCode
:
2637 Result
= !::CheckCondCode(Table
, Index
, N
);
2639 case SelectionDAGISel::OPC_CheckChild2CondCode
:
2640 Result
= !::CheckChild2CondCode(Table
, Index
, N
);
2642 case SelectionDAGISel::OPC_CheckValueType
:
2643 Result
= !::CheckValueType(Table
, Index
, N
, SDISel
.TLI
,
2644 SDISel
.CurDAG
->getDataLayout());
2646 case SelectionDAGISel::OPC_CheckInteger
:
2647 Result
= !::CheckInteger(Table
, Index
, N
);
2649 case SelectionDAGISel::OPC_CheckChild0Integer
:
2650 case SelectionDAGISel::OPC_CheckChild1Integer
:
2651 case SelectionDAGISel::OPC_CheckChild2Integer
:
2652 case SelectionDAGISel::OPC_CheckChild3Integer
:
2653 case SelectionDAGISel::OPC_CheckChild4Integer
:
2654 Result
= !::CheckChildInteger(Table
, Index
, N
,
2655 Table
[Index
-1] - SelectionDAGISel::OPC_CheckChild0Integer
);
2657 case SelectionDAGISel::OPC_CheckAndImm
:
2658 Result
= !::CheckAndImm(Table
, Index
, N
, SDISel
);
2660 case SelectionDAGISel::OPC_CheckOrImm
:
2661 Result
= !::CheckOrImm(Table
, Index
, N
, SDISel
);
2669 /// FailIndex - If this match fails, this is the index to continue with.
2672 /// NodeStack - The node stack when the scope was formed.
2673 SmallVector
<SDValue
, 4> NodeStack
;
2675 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2676 unsigned NumRecordedNodes
;
2678 /// NumMatchedMemRefs - The number of matched memref entries.
2679 unsigned NumMatchedMemRefs
;
2681 /// InputChain/InputGlue - The current chain/glue
2682 SDValue InputChain
, InputGlue
;
2684 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2685 bool HasChainNodesMatched
;
2688 /// \A DAG update listener to keep the matching state
2689 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2690 /// change the DAG while matching. X86 addressing mode matcher is an example
2692 class MatchStateUpdater
: public SelectionDAG::DAGUpdateListener
2694 SDNode
**NodeToMatch
;
2695 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
;
2696 SmallVectorImpl
<MatchScope
> &MatchScopes
;
2699 MatchStateUpdater(SelectionDAG
&DAG
, SDNode
**NodeToMatch
,
2700 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RN
,
2701 SmallVectorImpl
<MatchScope
> &MS
)
2702 : SelectionDAG::DAGUpdateListener(DAG
), NodeToMatch(NodeToMatch
),
2703 RecordedNodes(RN
), MatchScopes(MS
) {}
2705 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
2706 // Some early-returns here to avoid the search if we deleted the node or
2707 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2708 // do, so it's unnecessary to update matching state at that point).
2709 // Neither of these can occur currently because we only install this
2710 // update listener during matching a complex patterns.
2711 if (!E
|| E
->isMachineOpcode())
2713 // Check if NodeToMatch was updated.
2714 if (N
== *NodeToMatch
)
2716 // Performing linear search here does not matter because we almost never
2717 // run this code. You'd have to have a CSE during complex pattern
2719 for (auto &I
: RecordedNodes
)
2720 if (I
.first
.getNode() == N
)
2723 for (auto &I
: MatchScopes
)
2724 for (auto &J
: I
.NodeStack
)
2725 if (J
.getNode() == N
)
2730 } // end anonymous namespace
2732 void SelectionDAGISel::SelectCodeCommon(SDNode
*NodeToMatch
,
2733 const unsigned char *MatcherTable
,
2734 unsigned TableSize
) {
2735 // FIXME: Should these even be selected? Handle these cases in the caller?
2736 switch (NodeToMatch
->getOpcode()) {
2739 case ISD::EntryToken
: // These nodes remain the same.
2740 case ISD::BasicBlock
:
2742 case ISD::RegisterMask
:
2743 case ISD::HANDLENODE
:
2744 case ISD::MDNODE_SDNODE
:
2745 case ISD::TargetConstant
:
2746 case ISD::TargetConstantFP
:
2747 case ISD::TargetConstantPool
:
2748 case ISD::TargetFrameIndex
:
2749 case ISD::TargetExternalSymbol
:
2751 case ISD::TargetBlockAddress
:
2752 case ISD::TargetJumpTable
:
2753 case ISD::TargetGlobalTLSAddress
:
2754 case ISD::TargetGlobalAddress
:
2755 case ISD::TokenFactor
:
2756 case ISD::CopyFromReg
:
2757 case ISD::CopyToReg
:
2759 case ISD::ANNOTATION_LABEL
:
2760 case ISD::LIFETIME_START
:
2761 case ISD::LIFETIME_END
:
2762 case ISD::PSEUDO_PROBE
:
2763 NodeToMatch
->setNodeId(-1); // Mark selected.
2765 case ISD::AssertSext
:
2766 case ISD::AssertZext
:
2767 case ISD::AssertAlign
:
2768 ReplaceUses(SDValue(NodeToMatch
, 0), NodeToMatch
->getOperand(0));
2769 CurDAG
->RemoveDeadNode(NodeToMatch
);
2771 case ISD::INLINEASM
:
2772 case ISD::INLINEASM_BR
:
2773 Select_INLINEASM(NodeToMatch
);
2775 case ISD::READ_REGISTER
:
2776 Select_READ_REGISTER(NodeToMatch
);
2778 case ISD::WRITE_REGISTER
:
2779 Select_WRITE_REGISTER(NodeToMatch
);
2782 Select_UNDEF(NodeToMatch
);
2785 Select_FREEZE(NodeToMatch
);
2787 case ISD::ARITH_FENCE
:
2788 Select_ARITH_FENCE(NodeToMatch
);
2792 assert(!NodeToMatch
->isMachineOpcode() && "Node already selected!");
2794 // Set up the node stack with NodeToMatch as the only node on the stack.
2795 SmallVector
<SDValue
, 8> NodeStack
;
2796 SDValue N
= SDValue(NodeToMatch
, 0);
2797 NodeStack
.push_back(N
);
2799 // MatchScopes - Scopes used when matching, if a match failure happens, this
2800 // indicates where to continue checking.
2801 SmallVector
<MatchScope
, 8> MatchScopes
;
2803 // RecordedNodes - This is the set of nodes that have been recorded by the
2804 // state machine. The second value is the parent of the node, or null if the
2805 // root is recorded.
2806 SmallVector
<std::pair
<SDValue
, SDNode
*>, 8> RecordedNodes
;
2808 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2810 SmallVector
<MachineMemOperand
*, 2> MatchedMemRefs
;
2812 // These are the current input chain and glue for use when generating nodes.
2813 // Various Emit operations change these. For example, emitting a copytoreg
2814 // uses and updates these.
2815 SDValue InputChain
, InputGlue
;
2817 // ChainNodesMatched - If a pattern matches nodes that have input/output
2818 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2819 // which ones they are. The result is captured into this list so that we can
2820 // update the chain results when the pattern is complete.
2821 SmallVector
<SDNode
*, 3> ChainNodesMatched
;
2823 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2825 // Determine where to start the interpreter. Normally we start at opcode #0,
2826 // but if the state machine starts with an OPC_SwitchOpcode, then we
2827 // accelerate the first lookup (which is guaranteed to be hot) with the
2828 // OpcodeOffset table.
2829 unsigned MatcherIndex
= 0;
2831 if (!OpcodeOffset
.empty()) {
2832 // Already computed the OpcodeOffset table, just index into it.
2833 if (N
.getOpcode() < OpcodeOffset
.size())
2834 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
2835 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex
<< "\n");
2837 } else if (MatcherTable
[0] == OPC_SwitchOpcode
) {
2838 // Otherwise, the table isn't computed, but the state machine does start
2839 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2840 // is the first time we're selecting an instruction.
2843 // Get the size of this case.
2844 unsigned CaseSize
= MatcherTable
[Idx
++];
2846 CaseSize
= GetVBR(CaseSize
, MatcherTable
, Idx
);
2847 if (CaseSize
== 0) break;
2849 // Get the opcode, add the index to the table.
2850 uint16_t Opc
= MatcherTable
[Idx
++];
2851 Opc
|= (unsigned short)MatcherTable
[Idx
++] << 8;
2852 if (Opc
>= OpcodeOffset
.size())
2853 OpcodeOffset
.resize((Opc
+1)*2);
2854 OpcodeOffset
[Opc
] = Idx
;
2858 // Okay, do the lookup for the first opcode.
2859 if (N
.getOpcode() < OpcodeOffset
.size())
2860 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
2864 assert(MatcherIndex
< TableSize
&& "Invalid index");
2866 unsigned CurrentOpcodeIndex
= MatcherIndex
;
2868 BuiltinOpcodes Opcode
= (BuiltinOpcodes
)MatcherTable
[MatcherIndex
++];
2871 // Okay, the semantics of this operation are that we should push a scope
2872 // then evaluate the first child. However, pushing a scope only to have
2873 // the first check fail (which then pops it) is inefficient. If we can
2874 // determine immediately that the first check (or first several) will
2875 // immediately fail, don't even bother pushing a scope for them.
2879 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
2880 if (NumToSkip
& 128)
2881 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
2882 // Found the end of the scope with no match.
2883 if (NumToSkip
== 0) {
2888 FailIndex
= MatcherIndex
+NumToSkip
;
2890 unsigned MatcherIndexOfPredicate
= MatcherIndex
;
2891 (void)MatcherIndexOfPredicate
; // silence warning.
2893 // If we can't evaluate this predicate without pushing a scope (e.g. if
2894 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2895 // push the scope and evaluate the full predicate chain.
2897 MatcherIndex
= IsPredicateKnownToFail(MatcherTable
, MatcherIndex
, N
,
2898 Result
, *this, RecordedNodes
);
2903 dbgs() << " Skipped scope entry (due to false predicate) at "
2904 << "index " << MatcherIndexOfPredicate
<< ", continuing at "
2905 << FailIndex
<< "\n");
2906 ++NumDAGIselRetries
;
2908 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2909 // move to the next case.
2910 MatcherIndex
= FailIndex
;
2913 // If the whole scope failed to match, bail.
2914 if (FailIndex
== 0) break;
2916 // Push a MatchScope which indicates where to go if the first child fails
2918 MatchScope NewEntry
;
2919 NewEntry
.FailIndex
= FailIndex
;
2920 NewEntry
.NodeStack
.append(NodeStack
.begin(), NodeStack
.end());
2921 NewEntry
.NumRecordedNodes
= RecordedNodes
.size();
2922 NewEntry
.NumMatchedMemRefs
= MatchedMemRefs
.size();
2923 NewEntry
.InputChain
= InputChain
;
2924 NewEntry
.InputGlue
= InputGlue
;
2925 NewEntry
.HasChainNodesMatched
= !ChainNodesMatched
.empty();
2926 MatchScopes
.push_back(NewEntry
);
2929 case OPC_RecordNode
: {
2930 // Remember this node, it may end up being an operand in the pattern.
2931 SDNode
*Parent
= nullptr;
2932 if (NodeStack
.size() > 1)
2933 Parent
= NodeStack
[NodeStack
.size()-2].getNode();
2934 RecordedNodes
.push_back(std::make_pair(N
, Parent
));
2938 case OPC_RecordChild0
: case OPC_RecordChild1
:
2939 case OPC_RecordChild2
: case OPC_RecordChild3
:
2940 case OPC_RecordChild4
: case OPC_RecordChild5
:
2941 case OPC_RecordChild6
: case OPC_RecordChild7
: {
2942 unsigned ChildNo
= Opcode
-OPC_RecordChild0
;
2943 if (ChildNo
>= N
.getNumOperands())
2944 break; // Match fails if out of range child #.
2946 RecordedNodes
.push_back(std::make_pair(N
->getOperand(ChildNo
),
2950 case OPC_RecordMemRef
:
2951 if (auto *MN
= dyn_cast
<MemSDNode
>(N
))
2952 MatchedMemRefs
.push_back(MN
->getMemOperand());
2954 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N
->dump(CurDAG
);
2960 case OPC_CaptureGlueInput
:
2961 // If the current node has an input glue, capture it in InputGlue.
2962 if (N
->getNumOperands() != 0 &&
2963 N
->getOperand(N
->getNumOperands()-1).getValueType() == MVT::Glue
)
2964 InputGlue
= N
->getOperand(N
->getNumOperands()-1);
2967 case OPC_MoveChild
: {
2968 unsigned ChildNo
= MatcherTable
[MatcherIndex
++];
2969 if (ChildNo
>= N
.getNumOperands())
2970 break; // Match fails if out of range child #.
2971 N
= N
.getOperand(ChildNo
);
2972 NodeStack
.push_back(N
);
2976 case OPC_MoveChild0
: case OPC_MoveChild1
:
2977 case OPC_MoveChild2
: case OPC_MoveChild3
:
2978 case OPC_MoveChild4
: case OPC_MoveChild5
:
2979 case OPC_MoveChild6
: case OPC_MoveChild7
: {
2980 unsigned ChildNo
= Opcode
-OPC_MoveChild0
;
2981 if (ChildNo
>= N
.getNumOperands())
2982 break; // Match fails if out of range child #.
2983 N
= N
.getOperand(ChildNo
);
2984 NodeStack
.push_back(N
);
2988 case OPC_MoveParent
:
2989 // Pop the current node off the NodeStack.
2990 NodeStack
.pop_back();
2991 assert(!NodeStack
.empty() && "Node stack imbalance!");
2992 N
= NodeStack
.back();
2996 if (!::CheckSame(MatcherTable
, MatcherIndex
, N
, RecordedNodes
)) break;
2999 case OPC_CheckChild0Same
: case OPC_CheckChild1Same
:
3000 case OPC_CheckChild2Same
: case OPC_CheckChild3Same
:
3001 if (!::CheckChildSame(MatcherTable
, MatcherIndex
, N
, RecordedNodes
,
3002 Opcode
-OPC_CheckChild0Same
))
3006 case OPC_CheckPatternPredicate
:
3007 if (!::CheckPatternPredicate(MatcherTable
, MatcherIndex
, *this)) break;
3009 case OPC_CheckPredicate
:
3010 if (!::CheckNodePredicate(MatcherTable
, MatcherIndex
, *this,
3014 case OPC_CheckPredicateWithOperands
: {
3015 unsigned OpNum
= MatcherTable
[MatcherIndex
++];
3016 SmallVector
<SDValue
, 8> Operands
;
3018 for (unsigned i
= 0; i
< OpNum
; ++i
)
3019 Operands
.push_back(RecordedNodes
[MatcherTable
[MatcherIndex
++]].first
);
3021 unsigned PredNo
= MatcherTable
[MatcherIndex
++];
3022 if (!CheckNodePredicateWithOperands(N
.getNode(), PredNo
, Operands
))
3026 case OPC_CheckComplexPat
: {
3027 unsigned CPNum
= MatcherTable
[MatcherIndex
++];
3028 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3029 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckComplexPat");
3031 // If target can modify DAG during matching, keep the matching state
3033 std::unique_ptr
<MatchStateUpdater
> MSU
;
3034 if (ComplexPatternFuncMutatesDAG())
3035 MSU
.reset(new MatchStateUpdater(*CurDAG
, &NodeToMatch
, RecordedNodes
,
3038 if (!CheckComplexPattern(NodeToMatch
, RecordedNodes
[RecNo
].second
,
3039 RecordedNodes
[RecNo
].first
, CPNum
,
3044 case OPC_CheckOpcode
:
3045 if (!::CheckOpcode(MatcherTable
, MatcherIndex
, N
.getNode())) break;
3049 if (!::CheckType(MatcherTable
, MatcherIndex
, N
, TLI
,
3050 CurDAG
->getDataLayout()))
3054 case OPC_CheckTypeRes
: {
3055 unsigned Res
= MatcherTable
[MatcherIndex
++];
3056 if (!::CheckType(MatcherTable
, MatcherIndex
, N
.getValue(Res
), TLI
,
3057 CurDAG
->getDataLayout()))
3062 case OPC_SwitchOpcode
: {
3063 unsigned CurNodeOpcode
= N
.getOpcode();
3064 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
3067 // Get the size of this case.
3068 CaseSize
= MatcherTable
[MatcherIndex
++];
3070 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
3071 if (CaseSize
== 0) break;
3073 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
3074 Opc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
3076 // If the opcode matches, then we will execute this case.
3077 if (CurNodeOpcode
== Opc
)
3080 // Otherwise, skip over this case.
3081 MatcherIndex
+= CaseSize
;
3084 // If no cases matched, bail out.
3085 if (CaseSize
== 0) break;
3087 // Otherwise, execute the case we found.
3088 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart
<< " to "
3089 << MatcherIndex
<< "\n");
3093 case OPC_SwitchType
: {
3094 MVT CurNodeVT
= N
.getSimpleValueType();
3095 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
3098 // Get the size of this case.
3099 CaseSize
= MatcherTable
[MatcherIndex
++];
3101 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
3102 if (CaseSize
== 0) break;
3104 MVT CaseVT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3105 if (CaseVT
== MVT::iPTR
)
3106 CaseVT
= TLI
->getPointerTy(CurDAG
->getDataLayout());
3108 // If the VT matches, then we will execute this case.
3109 if (CurNodeVT
== CaseVT
)
3112 // Otherwise, skip over this case.
3113 MatcherIndex
+= CaseSize
;
3116 // If no cases matched, bail out.
3117 if (CaseSize
== 0) break;
3119 // Otherwise, execute the case we found.
3120 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT
).getEVTString()
3121 << "] from " << SwitchStart
<< " to " << MatcherIndex
3125 case OPC_CheckChild0Type
: case OPC_CheckChild1Type
:
3126 case OPC_CheckChild2Type
: case OPC_CheckChild3Type
:
3127 case OPC_CheckChild4Type
: case OPC_CheckChild5Type
:
3128 case OPC_CheckChild6Type
: case OPC_CheckChild7Type
:
3129 if (!::CheckChildType(MatcherTable
, MatcherIndex
, N
, TLI
,
3130 CurDAG
->getDataLayout(),
3131 Opcode
- OPC_CheckChild0Type
))
3134 case OPC_CheckCondCode
:
3135 if (!::CheckCondCode(MatcherTable
, MatcherIndex
, N
)) break;
3137 case OPC_CheckChild2CondCode
:
3138 if (!::CheckChild2CondCode(MatcherTable
, MatcherIndex
, N
)) break;
3140 case OPC_CheckValueType
:
3141 if (!::CheckValueType(MatcherTable
, MatcherIndex
, N
, TLI
,
3142 CurDAG
->getDataLayout()))
3145 case OPC_CheckInteger
:
3146 if (!::CheckInteger(MatcherTable
, MatcherIndex
, N
)) break;
3148 case OPC_CheckChild0Integer
: case OPC_CheckChild1Integer
:
3149 case OPC_CheckChild2Integer
: case OPC_CheckChild3Integer
:
3150 case OPC_CheckChild4Integer
:
3151 if (!::CheckChildInteger(MatcherTable
, MatcherIndex
, N
,
3152 Opcode
-OPC_CheckChild0Integer
)) break;
3154 case OPC_CheckAndImm
:
3155 if (!::CheckAndImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
3157 case OPC_CheckOrImm
:
3158 if (!::CheckOrImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
3160 case OPC_CheckImmAllOnesV
:
3161 if (!ISD::isConstantSplatVectorAllOnes(N
.getNode()))
3164 case OPC_CheckImmAllZerosV
:
3165 if (!ISD::isConstantSplatVectorAllZeros(N
.getNode()))
3169 case OPC_CheckFoldableChainNode
: {
3170 assert(NodeStack
.size() != 1 && "No parent node");
3171 // Verify that all intermediate nodes between the root and this one have
3172 // a single use (ignoring chains, which are handled in UpdateChains).
3173 bool HasMultipleUses
= false;
3174 for (unsigned i
= 1, e
= NodeStack
.size()-1; i
!= e
; ++i
) {
3175 unsigned NNonChainUses
= 0;
3176 SDNode
*NS
= NodeStack
[i
].getNode();
3177 for (auto UI
= NS
->use_begin(), UE
= NS
->use_end(); UI
!= UE
; ++UI
)
3178 if (UI
.getUse().getValueType() != MVT::Other
)
3179 if (++NNonChainUses
> 1) {
3180 HasMultipleUses
= true;
3183 if (HasMultipleUses
) break;
3185 if (HasMultipleUses
) break;
3187 // Check to see that the target thinks this is profitable to fold and that
3188 // we can fold it without inducing cycles in the graph.
3189 if (!IsProfitableToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
3191 !IsLegalToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
3192 NodeToMatch
, OptLevel
,
3193 true/*We validate our own chains*/))
3198 case OPC_EmitInteger
:
3199 case OPC_EmitStringInteger
: {
3200 MVT::SimpleValueType VT
=
3201 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3202 int64_t Val
= MatcherTable
[MatcherIndex
++];
3204 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
3205 if (Opcode
== OPC_EmitInteger
)
3206 Val
= decodeSignRotatedValue(Val
);
3207 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3208 CurDAG
->getTargetConstant(Val
, SDLoc(NodeToMatch
),
3212 case OPC_EmitRegister
: {
3213 MVT::SimpleValueType VT
=
3214 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3215 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
3216 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3217 CurDAG
->getRegister(RegNo
, VT
), nullptr));
3220 case OPC_EmitRegister2
: {
3221 // For targets w/ more than 256 register names, the register enum
3222 // values are stored in two bytes in the matcher table (just like
3224 MVT::SimpleValueType VT
=
3225 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3226 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
3227 RegNo
|= MatcherTable
[MatcherIndex
++] << 8;
3228 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3229 CurDAG
->getRegister(RegNo
, VT
), nullptr));
3233 case OPC_EmitConvertToTarget
: {
3234 // Convert from IMM/FPIMM to target version.
3235 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3236 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitConvertToTarget");
3237 SDValue Imm
= RecordedNodes
[RecNo
].first
;
3239 if (Imm
->getOpcode() == ISD::Constant
) {
3240 const ConstantInt
*Val
=cast
<ConstantSDNode
>(Imm
)->getConstantIntValue();
3241 Imm
= CurDAG
->getTargetConstant(*Val
, SDLoc(NodeToMatch
),
3242 Imm
.getValueType());
3243 } else if (Imm
->getOpcode() == ISD::ConstantFP
) {
3244 const ConstantFP
*Val
=cast
<ConstantFPSDNode
>(Imm
)->getConstantFPValue();
3245 Imm
= CurDAG
->getTargetConstantFP(*Val
, SDLoc(NodeToMatch
),
3246 Imm
.getValueType());
3249 RecordedNodes
.push_back(std::make_pair(Imm
, RecordedNodes
[RecNo
].second
));
3253 case OPC_EmitMergeInputChains1_0
: // OPC_EmitMergeInputChains, 1, 0
3254 case OPC_EmitMergeInputChains1_1
: // OPC_EmitMergeInputChains, 1, 1
3255 case OPC_EmitMergeInputChains1_2
: { // OPC_EmitMergeInputChains, 1, 2
3256 // These are space-optimized forms of OPC_EmitMergeInputChains.
3257 assert(!InputChain
.getNode() &&
3258 "EmitMergeInputChains should be the first chain producing node");
3259 assert(ChainNodesMatched
.empty() &&
3260 "Should only have one EmitMergeInputChains per match");
3262 // Read all of the chained nodes.
3263 unsigned RecNo
= Opcode
- OPC_EmitMergeInputChains1_0
;
3264 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitMergeInputChains");
3265 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
3267 // FIXME: What if other value results of the node have uses not matched
3269 if (ChainNodesMatched
.back() != NodeToMatch
&&
3270 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
3271 ChainNodesMatched
.clear();
3275 // Merge the input chains if they are not intra-pattern references.
3276 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
3278 if (!InputChain
.getNode())
3279 break; // Failed to merge.
3283 case OPC_EmitMergeInputChains
: {
3284 assert(!InputChain
.getNode() &&
3285 "EmitMergeInputChains should be the first chain producing node");
3286 // This node gets a list of nodes we matched in the input that have
3287 // chains. We want to token factor all of the input chains to these nodes
3288 // together. However, if any of the input chains is actually one of the
3289 // nodes matched in this pattern, then we have an intra-match reference.
3290 // Ignore these because the newly token factored chain should not refer to
3292 unsigned NumChains
= MatcherTable
[MatcherIndex
++];
3293 assert(NumChains
!= 0 && "Can't TF zero chains");
3295 assert(ChainNodesMatched
.empty() &&
3296 "Should only have one EmitMergeInputChains per match");
3298 // Read all of the chained nodes.
3299 for (unsigned i
= 0; i
!= NumChains
; ++i
) {
3300 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3301 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitMergeInputChains");
3302 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
3304 // FIXME: What if other value results of the node have uses not matched
3306 if (ChainNodesMatched
.back() != NodeToMatch
&&
3307 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
3308 ChainNodesMatched
.clear();
3313 // If the inner loop broke out, the match fails.
3314 if (ChainNodesMatched
.empty())
3317 // Merge the input chains if they are not intra-pattern references.
3318 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
3320 if (!InputChain
.getNode())
3321 break; // Failed to merge.
3326 case OPC_EmitCopyToReg
:
3327 case OPC_EmitCopyToReg2
: {
3328 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3329 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitCopyToReg");
3330 unsigned DestPhysReg
= MatcherTable
[MatcherIndex
++];
3331 if (Opcode
== OPC_EmitCopyToReg2
)
3332 DestPhysReg
|= MatcherTable
[MatcherIndex
++] << 8;
3334 if (!InputChain
.getNode())
3335 InputChain
= CurDAG
->getEntryNode();
3337 InputChain
= CurDAG
->getCopyToReg(InputChain
, SDLoc(NodeToMatch
),
3338 DestPhysReg
, RecordedNodes
[RecNo
].first
,
3341 InputGlue
= InputChain
.getValue(1);
3345 case OPC_EmitNodeXForm
: {
3346 unsigned XFormNo
= MatcherTable
[MatcherIndex
++];
3347 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3348 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitNodeXForm");
3349 SDValue Res
= RunSDNodeXForm(RecordedNodes
[RecNo
].first
, XFormNo
);
3350 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(Res
, nullptr));
3353 case OPC_Coverage
: {
3354 // This is emitted right before MorphNode/EmitNode.
3355 // So it should be safe to assume that this node has been selected
3356 unsigned index
= MatcherTable
[MatcherIndex
++];
3357 index
|= (MatcherTable
[MatcherIndex
++] << 8);
3358 dbgs() << "COVERED: " << getPatternForIndex(index
) << "\n";
3359 dbgs() << "INCLUDED: " << getIncludePathForIndex(index
) << "\n";
3363 case OPC_EmitNode
: case OPC_MorphNodeTo
:
3364 case OPC_EmitNode0
: case OPC_EmitNode1
: case OPC_EmitNode2
:
3365 case OPC_MorphNodeTo0
: case OPC_MorphNodeTo1
: case OPC_MorphNodeTo2
: {
3366 uint16_t TargetOpc
= MatcherTable
[MatcherIndex
++];
3367 TargetOpc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
3368 unsigned EmitNodeInfo
= MatcherTable
[MatcherIndex
++];
3369 // Get the result VT list.
3371 // If this is one of the compressed forms, get the number of VTs based
3372 // on the Opcode. Otherwise read the next byte from the table.
3373 if (Opcode
>= OPC_MorphNodeTo0
&& Opcode
<= OPC_MorphNodeTo2
)
3374 NumVTs
= Opcode
- OPC_MorphNodeTo0
;
3375 else if (Opcode
>= OPC_EmitNode0
&& Opcode
<= OPC_EmitNode2
)
3376 NumVTs
= Opcode
- OPC_EmitNode0
;
3378 NumVTs
= MatcherTable
[MatcherIndex
++];
3379 SmallVector
<EVT
, 4> VTs
;
3380 for (unsigned i
= 0; i
!= NumVTs
; ++i
) {
3381 MVT::SimpleValueType VT
=
3382 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3383 if (VT
== MVT::iPTR
)
3384 VT
= TLI
->getPointerTy(CurDAG
->getDataLayout()).SimpleTy
;
3388 if (EmitNodeInfo
& OPFL_Chain
)
3389 VTs
.push_back(MVT::Other
);
3390 if (EmitNodeInfo
& OPFL_GlueOutput
)
3391 VTs
.push_back(MVT::Glue
);
3393 // This is hot code, so optimize the two most common cases of 1 and 2
3396 if (VTs
.size() == 1)
3397 VTList
= CurDAG
->getVTList(VTs
[0]);
3398 else if (VTs
.size() == 2)
3399 VTList
= CurDAG
->getVTList(VTs
[0], VTs
[1]);
3401 VTList
= CurDAG
->getVTList(VTs
);
3403 // Get the operand list.
3404 unsigned NumOps
= MatcherTable
[MatcherIndex
++];
3405 SmallVector
<SDValue
, 8> Ops
;
3406 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
3407 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3409 RecNo
= GetVBR(RecNo
, MatcherTable
, MatcherIndex
);
3411 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitNode");
3412 Ops
.push_back(RecordedNodes
[RecNo
].first
);
3415 // If there are variadic operands to add, handle them now.
3416 if (EmitNodeInfo
& OPFL_VariadicInfo
) {
3417 // Determine the start index to copy from.
3418 unsigned FirstOpToCopy
= getNumFixedFromVariadicInfo(EmitNodeInfo
);
3419 FirstOpToCopy
+= (EmitNodeInfo
& OPFL_Chain
) ? 1 : 0;
3420 assert(NodeToMatch
->getNumOperands() >= FirstOpToCopy
&&
3421 "Invalid variadic node");
3422 // Copy all of the variadic operands, not including a potential glue
3424 for (unsigned i
= FirstOpToCopy
, e
= NodeToMatch
->getNumOperands();
3426 SDValue V
= NodeToMatch
->getOperand(i
);
3427 if (V
.getValueType() == MVT::Glue
) break;
3432 // If this has chain/glue inputs, add them.
3433 if (EmitNodeInfo
& OPFL_Chain
)
3434 Ops
.push_back(InputChain
);
3435 if ((EmitNodeInfo
& OPFL_GlueInput
) && InputGlue
.getNode() != nullptr)
3436 Ops
.push_back(InputGlue
);
3438 // Check whether any matched node could raise an FP exception. Since all
3439 // such nodes must have a chain, it suffices to check ChainNodesMatched.
3440 // We need to perform this check before potentially modifying one of the
3441 // nodes via MorphNode.
3442 bool MayRaiseFPException
= false;
3443 for (auto *N
: ChainNodesMatched
)
3444 if (mayRaiseFPException(N
) && !N
->getFlags().hasNoFPExcept()) {
3445 MayRaiseFPException
= true;
3450 MachineSDNode
*Res
= nullptr;
3451 bool IsMorphNodeTo
= Opcode
== OPC_MorphNodeTo
||
3452 (Opcode
>= OPC_MorphNodeTo0
&& Opcode
<= OPC_MorphNodeTo2
);
3453 if (!IsMorphNodeTo
) {
3454 // If this is a normal EmitNode command, just create the new node and
3455 // add the results to the RecordedNodes list.
3456 Res
= CurDAG
->getMachineNode(TargetOpc
, SDLoc(NodeToMatch
),
3459 // Add all the non-glue/non-chain results to the RecordedNodes list.
3460 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
3461 if (VTs
[i
] == MVT::Other
|| VTs
[i
] == MVT::Glue
) break;
3462 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(SDValue(Res
, i
),
3466 assert(NodeToMatch
->getOpcode() != ISD::DELETED_NODE
&&
3467 "NodeToMatch was removed partway through selection");
3468 SelectionDAG::DAGNodeDeletedListener
NDL(*CurDAG
, [&](SDNode
*N
,
3470 CurDAG
->salvageDebugInfo(*N
);
3471 auto &Chain
= ChainNodesMatched
;
3472 assert((!E
|| !is_contained(Chain
, N
)) &&
3473 "Chain node replaced during MorphNode");
3474 llvm::erase_value(Chain
, N
);
3476 Res
= cast
<MachineSDNode
>(MorphNode(NodeToMatch
, TargetOpc
, VTList
,
3477 Ops
, EmitNodeInfo
));
3480 // Set the NoFPExcept flag when no original matched node could
3481 // raise an FP exception, but the new node potentially might.
3482 if (!MayRaiseFPException
&& mayRaiseFPException(Res
)) {
3483 SDNodeFlags Flags
= Res
->getFlags();
3484 Flags
.setNoFPExcept(true);
3485 Res
->setFlags(Flags
);
3488 // If the node had chain/glue results, update our notion of the current
3490 if (EmitNodeInfo
& OPFL_GlueOutput
) {
3491 InputGlue
= SDValue(Res
, VTs
.size()-1);
3492 if (EmitNodeInfo
& OPFL_Chain
)
3493 InputChain
= SDValue(Res
, VTs
.size()-2);
3494 } else if (EmitNodeInfo
& OPFL_Chain
)
3495 InputChain
= SDValue(Res
, VTs
.size()-1);
3497 // If the OPFL_MemRefs glue is set on this node, slap all of the
3498 // accumulated memrefs onto it.
3500 // FIXME: This is vastly incorrect for patterns with multiple outputs
3501 // instructions that access memory and for ComplexPatterns that match
3503 if (EmitNodeInfo
& OPFL_MemRefs
) {
3504 // Only attach load or store memory operands if the generated
3505 // instruction may load or store.
3506 const MCInstrDesc
&MCID
= TII
->get(TargetOpc
);
3507 bool mayLoad
= MCID
.mayLoad();
3508 bool mayStore
= MCID
.mayStore();
3510 // We expect to have relatively few of these so just filter them into a
3511 // temporary buffer so that we can easily add them to the instruction.
3512 SmallVector
<MachineMemOperand
*, 4> FilteredMemRefs
;
3513 for (MachineMemOperand
*MMO
: MatchedMemRefs
) {
3514 if (MMO
->isLoad()) {
3516 FilteredMemRefs
.push_back(MMO
);
3517 } else if (MMO
->isStore()) {
3519 FilteredMemRefs
.push_back(MMO
);
3521 FilteredMemRefs
.push_back(MMO
);
3525 CurDAG
->setNodeMemRefs(Res
, FilteredMemRefs
);
3528 LLVM_DEBUG(if (!MatchedMemRefs
.empty() && Res
->memoperands_empty()) dbgs()
3529 << " Dropping mem operands\n";
3530 dbgs() << " " << (IsMorphNodeTo
? "Morphed" : "Created")
3532 Res
->dump(CurDAG
););
3534 // If this was a MorphNodeTo then we're completely done!
3535 if (IsMorphNodeTo
) {
3536 // Update chain uses.
3537 UpdateChains(Res
, InputChain
, ChainNodesMatched
, true);
3543 case OPC_CompleteMatch
: {
3544 // The match has been completed, and any new nodes (if any) have been
3545 // created. Patch up references to the matched dag to use the newly
3547 unsigned NumResults
= MatcherTable
[MatcherIndex
++];
3549 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
3550 unsigned ResSlot
= MatcherTable
[MatcherIndex
++];
3552 ResSlot
= GetVBR(ResSlot
, MatcherTable
, MatcherIndex
);
3554 assert(ResSlot
< RecordedNodes
.size() && "Invalid CompleteMatch");
3555 SDValue Res
= RecordedNodes
[ResSlot
].first
;
3557 assert(i
< NodeToMatch
->getNumValues() &&
3558 NodeToMatch
->getValueType(i
) != MVT::Other
&&
3559 NodeToMatch
->getValueType(i
) != MVT::Glue
&&
3560 "Invalid number of results to complete!");
3561 assert((NodeToMatch
->getValueType(i
) == Res
.getValueType() ||
3562 NodeToMatch
->getValueType(i
) == MVT::iPTR
||
3563 Res
.getValueType() == MVT::iPTR
||
3564 NodeToMatch
->getValueType(i
).getSizeInBits() ==
3565 Res
.getValueSizeInBits()) &&
3566 "invalid replacement");
3567 ReplaceUses(SDValue(NodeToMatch
, i
), Res
);
3570 // Update chain uses.
3571 UpdateChains(NodeToMatch
, InputChain
, ChainNodesMatched
, false);
3573 // If the root node defines glue, we need to update it to the glue result.
3574 // TODO: This never happens in our tests and I think it can be removed /
3575 // replaced with an assert, but if we do it this the way the change is
3577 if (NodeToMatch
->getValueType(NodeToMatch
->getNumValues() - 1) ==
3579 InputGlue
.getNode())
3580 ReplaceUses(SDValue(NodeToMatch
, NodeToMatch
->getNumValues() - 1),
3583 assert(NodeToMatch
->use_empty() &&
3584 "Didn't replace all uses of the node?");
3585 CurDAG
->RemoveDeadNode(NodeToMatch
);
3591 // If the code reached this point, then the match failed. See if there is
3592 // another child to try in the current 'Scope', otherwise pop it until we
3593 // find a case to check.
3594 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3596 ++NumDAGIselRetries
;
3598 if (MatchScopes
.empty()) {
3599 CannotYetSelect(NodeToMatch
);
3603 // Restore the interpreter state back to the point where the scope was
3605 MatchScope
&LastScope
= MatchScopes
.back();
3606 RecordedNodes
.resize(LastScope
.NumRecordedNodes
);
3608 NodeStack
.append(LastScope
.NodeStack
.begin(), LastScope
.NodeStack
.end());
3609 N
= NodeStack
.back();
3611 if (LastScope
.NumMatchedMemRefs
!= MatchedMemRefs
.size())
3612 MatchedMemRefs
.resize(LastScope
.NumMatchedMemRefs
);
3613 MatcherIndex
= LastScope
.FailIndex
;
3615 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex
<< "\n");
3617 InputChain
= LastScope
.InputChain
;
3618 InputGlue
= LastScope
.InputGlue
;
3619 if (!LastScope
.HasChainNodesMatched
)
3620 ChainNodesMatched
.clear();
3622 // Check to see what the offset is at the new MatcherIndex. If it is zero
3623 // we have reached the end of this scope, otherwise we have another child
3624 // in the current scope to try.
3625 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
3626 if (NumToSkip
& 128)
3627 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
3629 // If we have another child in this scope to match, update FailIndex and
3631 if (NumToSkip
!= 0) {
3632 LastScope
.FailIndex
= MatcherIndex
+NumToSkip
;
3636 // End of this scope, pop it and try the next child in the containing
3638 MatchScopes
.pop_back();
3643 /// Return whether the node may raise an FP exception.
3644 bool SelectionDAGISel::mayRaiseFPException(SDNode
*N
) const {
3645 // For machine opcodes, consult the MCID flag.
3646 if (N
->isMachineOpcode()) {
3647 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
3648 return MCID
.mayRaiseFPException();
3651 // For ISD opcodes, only StrictFP opcodes may raise an FP
3653 if (N
->isTargetOpcode())
3654 return N
->isTargetStrictFPOpcode();
3655 return N
->isStrictFPOpcode();
3658 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode
*N
) const {
3659 assert(N
->getOpcode() == ISD::OR
&& "Unexpected opcode");
3660 auto *C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3664 // Detect when "or" is used to add an offset to a stack object.
3665 if (auto *FN
= dyn_cast
<FrameIndexSDNode
>(N
->getOperand(0))) {
3666 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
3667 Align A
= MFI
.getObjectAlign(FN
->getIndex());
3668 int32_t Off
= C
->getSExtValue();
3669 // If the alleged offset fits in the zero bits guaranteed by
3670 // the alignment, then this or is really an add.
3671 return (Off
>= 0) && (((A
.value() - 1) & Off
) == unsigned(Off
));
3676 void SelectionDAGISel::CannotYetSelect(SDNode
*N
) {
3678 raw_string_ostream
Msg(msg
);
3679 Msg
<< "Cannot select: ";
3681 if (N
->getOpcode() != ISD::INTRINSIC_W_CHAIN
&&
3682 N
->getOpcode() != ISD::INTRINSIC_WO_CHAIN
&&
3683 N
->getOpcode() != ISD::INTRINSIC_VOID
) {
3684 N
->printrFull(Msg
, CurDAG
);
3685 Msg
<< "\nIn function: " << MF
->getName();
3687 bool HasInputChain
= N
->getOperand(0).getValueType() == MVT::Other
;
3689 cast
<ConstantSDNode
>(N
->getOperand(HasInputChain
))->getZExtValue();
3690 if (iid
< Intrinsic::num_intrinsics
)
3691 Msg
<< "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID
)iid
);
3692 else if (const TargetIntrinsicInfo
*TII
= TM
.getIntrinsicInfo())
3693 Msg
<< "target intrinsic %" << TII
->getName(iid
);
3695 Msg
<< "unknown intrinsic #" << iid
;
3697 report_fatal_error(Twine(Msg
.str()));
3700 char SelectionDAGISel::ID
= 0;