[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldELF.cpp
blobf92618afdff6d0b8c679bde37bb3c6d3d145757d
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/BinaryFormat/ELF.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MemoryBuffer.h"
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::support::endian;
29 #define DEBUG_TYPE "dyld"
31 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
33 static void or32AArch64Imm(void *L, uint64_t Imm) {
34 or32le(L, (Imm & 0xFFF) << 10);
37 template <class T> static void write(bool isBE, void *P, T V) {
38 isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
41 static void write32AArch64Addr(void *L, uint64_t Imm) {
42 uint32_t ImmLo = (Imm & 0x3) << 29;
43 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val, int Start, int End) {
51 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
52 return (Val >> Start) & Mask;
55 namespace {
57 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
58 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
60 typedef typename ELFT::uint addr_type;
62 DyldELFObject(ELFObjectFile<ELFT> &&Obj);
64 public:
65 static Expected<std::unique_ptr<DyldELFObject>>
66 create(MemoryBufferRef Wrapper);
68 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
70 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
72 // Methods for type inquiry through isa, cast and dyn_cast
73 static bool classof(const Binary *v) {
74 return (isa<ELFObjectFile<ELFT>>(v) &&
75 classof(cast<ELFObjectFile<ELFT>>(v)));
77 static bool classof(const ELFObjectFile<ELFT> *v) {
78 return v->isDyldType();
84 // The MemoryBuffer passed into this constructor is just a wrapper around the
85 // actual memory. Ultimately, the Binary parent class will take ownership of
86 // this MemoryBuffer object but not the underlying memory.
87 template <class ELFT>
88 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
89 : ELFObjectFile<ELFT>(std::move(Obj)) {
90 this->isDyldELFObject = true;
93 template <class ELFT>
94 Expected<std::unique_ptr<DyldELFObject<ELFT>>>
95 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
96 auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
97 if (auto E = Obj.takeError())
98 return std::move(E);
99 std::unique_ptr<DyldELFObject<ELFT>> Ret(
100 new DyldELFObject<ELFT>(std::move(*Obj)));
101 return std::move(Ret);
104 template <class ELFT>
105 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
106 uint64_t Addr) {
107 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
108 Elf_Shdr *shdr =
109 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
111 // This assumes the address passed in matches the target address bitness
112 // The template-based type cast handles everything else.
113 shdr->sh_addr = static_cast<addr_type>(Addr);
116 template <class ELFT>
117 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
118 uint64_t Addr) {
120 Elf_Sym *sym = const_cast<Elf_Sym *>(
121 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
123 // This assumes the address passed in matches the target address bitness
124 // The template-based type cast handles everything else.
125 sym->st_value = static_cast<addr_type>(Addr);
128 class LoadedELFObjectInfo final
129 : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
130 RuntimeDyld::LoadedObjectInfo> {
131 public:
132 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
133 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
135 OwningBinary<ObjectFile>
136 getObjectForDebug(const ObjectFile &Obj) const override;
139 template <typename ELFT>
140 static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
141 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
142 const LoadedELFObjectInfo &L) {
143 typedef typename ELFT::Shdr Elf_Shdr;
144 typedef typename ELFT::uint addr_type;
146 Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
147 DyldELFObject<ELFT>::create(Buffer);
148 if (Error E = ObjOrErr.takeError())
149 return std::move(E);
151 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
153 // Iterate over all sections in the object.
154 auto SI = SourceObject.section_begin();
155 for (const auto &Sec : Obj->sections()) {
156 Expected<StringRef> NameOrErr = Sec.getName();
157 if (!NameOrErr) {
158 consumeError(NameOrErr.takeError());
159 continue;
162 if (*NameOrErr != "") {
163 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
164 Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
165 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
167 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
168 // This assumes that the address passed in matches the target address
169 // bitness. The template-based type cast handles everything else.
170 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
173 ++SI;
176 return std::move(Obj);
179 static OwningBinary<ObjectFile>
180 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
181 assert(Obj.isELF() && "Not an ELF object file.");
183 std::unique_ptr<MemoryBuffer> Buffer =
184 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
186 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
187 handleAllErrors(DebugObj.takeError());
188 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
189 DebugObj =
190 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
191 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
192 DebugObj =
193 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
194 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
195 DebugObj =
196 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
197 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
198 DebugObj =
199 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
200 else
201 llvm_unreachable("Unexpected ELF format");
203 handleAllErrors(DebugObj.takeError());
204 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
207 OwningBinary<ObjectFile>
208 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
209 return createELFDebugObject(Obj, *this);
212 } // anonymous namespace
214 namespace llvm {
216 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
217 JITSymbolResolver &Resolver)
218 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
219 RuntimeDyldELF::~RuntimeDyldELF() {}
221 void RuntimeDyldELF::registerEHFrames() {
222 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
223 SID EHFrameSID = UnregisteredEHFrameSections[i];
224 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
225 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
226 size_t EHFrameSize = Sections[EHFrameSID].getSize();
227 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
229 UnregisteredEHFrameSections.clear();
232 std::unique_ptr<RuntimeDyldELF>
233 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
234 RuntimeDyld::MemoryManager &MemMgr,
235 JITSymbolResolver &Resolver) {
236 switch (Arch) {
237 default:
238 return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
239 case Triple::mips:
240 case Triple::mipsel:
241 case Triple::mips64:
242 case Triple::mips64el:
243 return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
247 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
248 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
249 if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
250 return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
251 else {
252 HasError = true;
253 raw_string_ostream ErrStream(ErrorStr);
254 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
255 return nullptr;
259 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
260 uint64_t Offset, uint64_t Value,
261 uint32_t Type, int64_t Addend,
262 uint64_t SymOffset) {
263 switch (Type) {
264 default:
265 report_fatal_error("Relocation type not implemented yet!");
266 break;
267 case ELF::R_X86_64_NONE:
268 break;
269 case ELF::R_X86_64_8: {
270 Value += Addend;
271 assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN);
272 uint8_t TruncatedAddr = (Value & 0xFF);
273 *Section.getAddressWithOffset(Offset) = TruncatedAddr;
274 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
275 << format("%p\n", Section.getAddressWithOffset(Offset)));
276 break;
278 case ELF::R_X86_64_16: {
279 Value += Addend;
280 assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN);
281 uint16_t TruncatedAddr = (Value & 0xFFFF);
282 support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) =
283 TruncatedAddr;
284 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
285 << format("%p\n", Section.getAddressWithOffset(Offset)));
286 break;
288 case ELF::R_X86_64_64: {
289 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
290 Value + Addend;
291 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
292 << format("%p\n", Section.getAddressWithOffset(Offset)));
293 break;
295 case ELF::R_X86_64_32:
296 case ELF::R_X86_64_32S: {
297 Value += Addend;
298 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
299 (Type == ELF::R_X86_64_32S &&
300 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
301 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
302 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
303 TruncatedAddr;
304 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
305 << format("%p\n", Section.getAddressWithOffset(Offset)));
306 break;
308 case ELF::R_X86_64_PC8: {
309 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
310 int64_t RealOffset = Value + Addend - FinalAddress;
311 assert(isInt<8>(RealOffset));
312 int8_t TruncOffset = (RealOffset & 0xFF);
313 Section.getAddress()[Offset] = TruncOffset;
314 break;
316 case ELF::R_X86_64_PC32: {
317 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
318 int64_t RealOffset = Value + Addend - FinalAddress;
319 assert(isInt<32>(RealOffset));
320 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
321 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
322 TruncOffset;
323 break;
325 case ELF::R_X86_64_PC64: {
326 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
327 int64_t RealOffset = Value + Addend - FinalAddress;
328 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
329 RealOffset;
330 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
331 << format("%p\n", FinalAddress));
332 break;
334 case ELF::R_X86_64_GOTOFF64: {
335 // Compute Value - GOTBase.
336 uint64_t GOTBase = 0;
337 for (const auto &Section : Sections) {
338 if (Section.getName() == ".got") {
339 GOTBase = Section.getLoadAddressWithOffset(0);
340 break;
343 assert(GOTBase != 0 && "missing GOT");
344 int64_t GOTOffset = Value - GOTBase + Addend;
345 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
346 break;
348 case ELF::R_X86_64_DTPMOD64: {
349 // We only have one DSO, so the module id is always 1.
350 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1;
351 break;
353 case ELF::R_X86_64_DTPOFF64:
354 case ELF::R_X86_64_TPOFF64: {
355 // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
356 // offset in the *initial* TLS block. Since we are statically linking, all
357 // TLS blocks already exist in the initial block, so resolve both
358 // relocations equally.
359 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
360 Value + Addend;
361 break;
363 case ELF::R_X86_64_DTPOFF32:
364 case ELF::R_X86_64_TPOFF32: {
365 // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
366 // be resolved equally.
367 int64_t RealValue = Value + Addend;
368 assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
369 int32_t TruncValue = RealValue;
370 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
371 TruncValue;
372 break;
377 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
378 uint64_t Offset, uint32_t Value,
379 uint32_t Type, int32_t Addend) {
380 switch (Type) {
381 case ELF::R_386_32: {
382 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
383 Value + Addend;
384 break;
386 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
387 // reach any 32 bit address.
388 case ELF::R_386_PLT32:
389 case ELF::R_386_PC32: {
390 uint32_t FinalAddress =
391 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
392 uint32_t RealOffset = Value + Addend - FinalAddress;
393 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
394 RealOffset;
395 break;
397 default:
398 // There are other relocation types, but it appears these are the
399 // only ones currently used by the LLVM ELF object writer
400 report_fatal_error("Relocation type not implemented yet!");
401 break;
405 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
406 uint64_t Offset, uint64_t Value,
407 uint32_t Type, int64_t Addend) {
408 uint32_t *TargetPtr =
409 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
410 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
411 // Data should use target endian. Code should always use little endian.
412 bool isBE = Arch == Triple::aarch64_be;
414 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
415 << format("%llx", Section.getAddressWithOffset(Offset))
416 << " FinalAddress: 0x" << format("%llx", FinalAddress)
417 << " Value: 0x" << format("%llx", Value) << " Type: 0x"
418 << format("%x", Type) << " Addend: 0x"
419 << format("%llx", Addend) << "\n");
421 switch (Type) {
422 default:
423 report_fatal_error("Relocation type not implemented yet!");
424 break;
425 case ELF::R_AARCH64_NONE:
426 break;
427 case ELF::R_AARCH64_ABS16: {
428 uint64_t Result = Value + Addend;
429 assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
430 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
431 break;
433 case ELF::R_AARCH64_ABS32: {
434 uint64_t Result = Value + Addend;
435 assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
436 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
437 break;
439 case ELF::R_AARCH64_ABS64:
440 write(isBE, TargetPtr, Value + Addend);
441 break;
442 case ELF::R_AARCH64_PLT32: {
443 uint64_t Result = Value + Addend - FinalAddress;
444 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
445 static_cast<int64_t>(Result) <= INT32_MAX);
446 write(isBE, TargetPtr, static_cast<uint32_t>(Result));
447 break;
449 case ELF::R_AARCH64_PREL32: {
450 uint64_t Result = Value + Addend - FinalAddress;
451 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
452 static_cast<int64_t>(Result) <= UINT32_MAX);
453 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
454 break;
456 case ELF::R_AARCH64_PREL64:
457 write(isBE, TargetPtr, Value + Addend - FinalAddress);
458 break;
459 case ELF::R_AARCH64_CONDBR19: {
460 uint64_t BranchImm = Value + Addend - FinalAddress;
462 assert(isInt<21>(BranchImm));
463 *TargetPtr &= 0xff00001fU;
464 // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
465 or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
466 break;
468 case ELF::R_AARCH64_TSTBR14: {
469 uint64_t BranchImm = Value + Addend - FinalAddress;
471 assert(isInt<16>(BranchImm));
473 *TargetPtr &= 0xfff8001fU;
474 // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
475 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) << 3);
476 break;
478 case ELF::R_AARCH64_CALL26: // fallthrough
479 case ELF::R_AARCH64_JUMP26: {
480 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
481 // calculation.
482 uint64_t BranchImm = Value + Addend - FinalAddress;
484 // "Check that -2^27 <= result < 2^27".
485 assert(isInt<28>(BranchImm));
486 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
487 break;
489 case ELF::R_AARCH64_MOVW_UABS_G3:
490 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
491 break;
492 case ELF::R_AARCH64_MOVW_UABS_G2_NC:
493 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
494 break;
495 case ELF::R_AARCH64_MOVW_UABS_G1_NC:
496 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
497 break;
498 case ELF::R_AARCH64_MOVW_UABS_G0_NC:
499 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
500 break;
501 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
502 // Operation: Page(S+A) - Page(P)
503 uint64_t Result =
504 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
506 // Check that -2^32 <= X < 2^32
507 assert(isInt<33>(Result) && "overflow check failed for relocation");
509 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
510 // from bits 32:12 of X.
511 write32AArch64Addr(TargetPtr, Result >> 12);
512 break;
514 case ELF::R_AARCH64_ADD_ABS_LO12_NC:
515 // Operation: S + A
516 // Immediate goes in bits 21:10 of LD/ST instruction, taken
517 // from bits 11:0 of X
518 or32AArch64Imm(TargetPtr, Value + Addend);
519 break;
520 case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
521 // Operation: S + A
522 // Immediate goes in bits 21:10 of LD/ST instruction, taken
523 // from bits 11:0 of X
524 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
525 break;
526 case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
527 // Operation: S + A
528 // Immediate goes in bits 21:10 of LD/ST instruction, taken
529 // from bits 11:1 of X
530 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
531 break;
532 case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
533 // Operation: S + A
534 // Immediate goes in bits 21:10 of LD/ST instruction, taken
535 // from bits 11:2 of X
536 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
537 break;
538 case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
539 // Operation: S + A
540 // Immediate goes in bits 21:10 of LD/ST instruction, taken
541 // from bits 11:3 of X
542 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
543 break;
544 case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
545 // Operation: S + A
546 // Immediate goes in bits 21:10 of LD/ST instruction, taken
547 // from bits 11:4 of X
548 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
549 break;
550 case ELF::R_AARCH64_LD_PREL_LO19: {
551 // Operation: S + A - P
552 uint64_t Result = Value + Addend - FinalAddress;
554 // "Check that -2^20 <= result < 2^20".
555 assert(isInt<21>(Result));
557 *TargetPtr &= 0xff00001fU;
558 // Immediate goes in bits 23:5 of LD imm instruction, taken
559 // from bits 20:2 of X
560 *TargetPtr |= ((Result & 0xffc) << (5 - 2));
561 break;
563 case ELF::R_AARCH64_ADR_PREL_LO21: {
564 // Operation: S + A - P
565 uint64_t Result = Value + Addend - FinalAddress;
567 // "Check that -2^20 <= result < 2^20".
568 assert(isInt<21>(Result));
570 *TargetPtr &= 0x9f00001fU;
571 // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
572 // from bits 20:0 of X
573 *TargetPtr |= ((Result & 0xffc) << (5 - 2));
574 *TargetPtr |= (Result & 0x3) << 29;
575 break;
580 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
581 uint64_t Offset, uint32_t Value,
582 uint32_t Type, int32_t Addend) {
583 // TODO: Add Thumb relocations.
584 uint32_t *TargetPtr =
585 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
586 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
587 Value += Addend;
589 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
590 << Section.getAddressWithOffset(Offset)
591 << " FinalAddress: " << format("%p", FinalAddress)
592 << " Value: " << format("%x", Value)
593 << " Type: " << format("%x", Type)
594 << " Addend: " << format("%x", Addend) << "\n");
596 switch (Type) {
597 default:
598 llvm_unreachable("Not implemented relocation type!");
600 case ELF::R_ARM_NONE:
601 break;
602 // Write a 31bit signed offset
603 case ELF::R_ARM_PREL31:
604 support::ulittle32_t::ref{TargetPtr} =
605 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
606 ((Value - FinalAddress) & ~0x80000000);
607 break;
608 case ELF::R_ARM_TARGET1:
609 case ELF::R_ARM_ABS32:
610 support::ulittle32_t::ref{TargetPtr} = Value;
611 break;
612 // Write first 16 bit of 32 bit value to the mov instruction.
613 // Last 4 bit should be shifted.
614 case ELF::R_ARM_MOVW_ABS_NC:
615 case ELF::R_ARM_MOVT_ABS:
616 if (Type == ELF::R_ARM_MOVW_ABS_NC)
617 Value = Value & 0xFFFF;
618 else if (Type == ELF::R_ARM_MOVT_ABS)
619 Value = (Value >> 16) & 0xFFFF;
620 support::ulittle32_t::ref{TargetPtr} =
621 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
622 (((Value >> 12) & 0xF) << 16);
623 break;
624 // Write 24 bit relative value to the branch instruction.
625 case ELF::R_ARM_PC24: // Fall through.
626 case ELF::R_ARM_CALL: // Fall through.
627 case ELF::R_ARM_JUMP24:
628 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
629 RelValue = (RelValue & 0x03FFFFFC) >> 2;
630 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
631 support::ulittle32_t::ref{TargetPtr} =
632 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
633 break;
637 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
638 if (Arch == Triple::UnknownArch ||
639 !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
640 IsMipsO32ABI = false;
641 IsMipsN32ABI = false;
642 IsMipsN64ABI = false;
643 return;
645 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
646 unsigned AbiVariant = E->getPlatformFlags();
647 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
648 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
650 IsMipsN64ABI = Obj.getFileFormatName().equals("elf64-mips");
653 // Return the .TOC. section and offset.
654 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
655 ObjSectionToIDMap &LocalSections,
656 RelocationValueRef &Rel) {
657 // Set a default SectionID in case we do not find a TOC section below.
658 // This may happen for references to TOC base base (sym@toc, .odp
659 // relocation) without a .toc directive. In this case just use the
660 // first section (which is usually the .odp) since the code won't
661 // reference the .toc base directly.
662 Rel.SymbolName = nullptr;
663 Rel.SectionID = 0;
665 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
666 // order. The TOC starts where the first of these sections starts.
667 for (auto &Section : Obj.sections()) {
668 Expected<StringRef> NameOrErr = Section.getName();
669 if (!NameOrErr)
670 return NameOrErr.takeError();
671 StringRef SectionName = *NameOrErr;
673 if (SectionName == ".got"
674 || SectionName == ".toc"
675 || SectionName == ".tocbss"
676 || SectionName == ".plt") {
677 if (auto SectionIDOrErr =
678 findOrEmitSection(Obj, Section, false, LocalSections))
679 Rel.SectionID = *SectionIDOrErr;
680 else
681 return SectionIDOrErr.takeError();
682 break;
686 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
687 // thus permitting a full 64 Kbytes segment.
688 Rel.Addend = 0x8000;
690 return Error::success();
693 // Returns the sections and offset associated with the ODP entry referenced
694 // by Symbol.
695 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
696 ObjSectionToIDMap &LocalSections,
697 RelocationValueRef &Rel) {
698 // Get the ELF symbol value (st_value) to compare with Relocation offset in
699 // .opd entries
700 for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
701 si != se; ++si) {
703 Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
704 if (!RelSecOrErr)
705 report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
707 section_iterator RelSecI = *RelSecOrErr;
708 if (RelSecI == Obj.section_end())
709 continue;
711 Expected<StringRef> NameOrErr = RelSecI->getName();
712 if (!NameOrErr)
713 return NameOrErr.takeError();
714 StringRef RelSectionName = *NameOrErr;
716 if (RelSectionName != ".opd")
717 continue;
719 for (elf_relocation_iterator i = si->relocation_begin(),
720 e = si->relocation_end();
721 i != e;) {
722 // The R_PPC64_ADDR64 relocation indicates the first field
723 // of a .opd entry
724 uint64_t TypeFunc = i->getType();
725 if (TypeFunc != ELF::R_PPC64_ADDR64) {
726 ++i;
727 continue;
730 uint64_t TargetSymbolOffset = i->getOffset();
731 symbol_iterator TargetSymbol = i->getSymbol();
732 int64_t Addend;
733 if (auto AddendOrErr = i->getAddend())
734 Addend = *AddendOrErr;
735 else
736 return AddendOrErr.takeError();
738 ++i;
739 if (i == e)
740 break;
742 // Just check if following relocation is a R_PPC64_TOC
743 uint64_t TypeTOC = i->getType();
744 if (TypeTOC != ELF::R_PPC64_TOC)
745 continue;
747 // Finally compares the Symbol value and the target symbol offset
748 // to check if this .opd entry refers to the symbol the relocation
749 // points to.
750 if (Rel.Addend != (int64_t)TargetSymbolOffset)
751 continue;
753 section_iterator TSI = Obj.section_end();
754 if (auto TSIOrErr = TargetSymbol->getSection())
755 TSI = *TSIOrErr;
756 else
757 return TSIOrErr.takeError();
758 assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
760 bool IsCode = TSI->isText();
761 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
762 LocalSections))
763 Rel.SectionID = *SectionIDOrErr;
764 else
765 return SectionIDOrErr.takeError();
766 Rel.Addend = (intptr_t)Addend;
767 return Error::success();
770 llvm_unreachable("Attempting to get address of ODP entry!");
773 // Relocation masks following the #lo(value), #hi(value), #ha(value),
774 // #higher(value), #highera(value), #highest(value), and #highesta(value)
775 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
776 // document.
778 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
780 static inline uint16_t applyPPChi(uint64_t value) {
781 return (value >> 16) & 0xffff;
784 static inline uint16_t applyPPCha (uint64_t value) {
785 return ((value + 0x8000) >> 16) & 0xffff;
788 static inline uint16_t applyPPChigher(uint64_t value) {
789 return (value >> 32) & 0xffff;
792 static inline uint16_t applyPPChighera (uint64_t value) {
793 return ((value + 0x8000) >> 32) & 0xffff;
796 static inline uint16_t applyPPChighest(uint64_t value) {
797 return (value >> 48) & 0xffff;
800 static inline uint16_t applyPPChighesta (uint64_t value) {
801 return ((value + 0x8000) >> 48) & 0xffff;
804 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
805 uint64_t Offset, uint64_t Value,
806 uint32_t Type, int64_t Addend) {
807 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
808 switch (Type) {
809 default:
810 report_fatal_error("Relocation type not implemented yet!");
811 break;
812 case ELF::R_PPC_ADDR16_LO:
813 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
814 break;
815 case ELF::R_PPC_ADDR16_HI:
816 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
817 break;
818 case ELF::R_PPC_ADDR16_HA:
819 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
820 break;
824 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
825 uint64_t Offset, uint64_t Value,
826 uint32_t Type, int64_t Addend) {
827 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
828 switch (Type) {
829 default:
830 report_fatal_error("Relocation type not implemented yet!");
831 break;
832 case ELF::R_PPC64_ADDR16:
833 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
834 break;
835 case ELF::R_PPC64_ADDR16_DS:
836 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
837 break;
838 case ELF::R_PPC64_ADDR16_LO:
839 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
840 break;
841 case ELF::R_PPC64_ADDR16_LO_DS:
842 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
843 break;
844 case ELF::R_PPC64_ADDR16_HI:
845 case ELF::R_PPC64_ADDR16_HIGH:
846 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
847 break;
848 case ELF::R_PPC64_ADDR16_HA:
849 case ELF::R_PPC64_ADDR16_HIGHA:
850 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
851 break;
852 case ELF::R_PPC64_ADDR16_HIGHER:
853 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
854 break;
855 case ELF::R_PPC64_ADDR16_HIGHERA:
856 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
857 break;
858 case ELF::R_PPC64_ADDR16_HIGHEST:
859 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
860 break;
861 case ELF::R_PPC64_ADDR16_HIGHESTA:
862 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
863 break;
864 case ELF::R_PPC64_ADDR14: {
865 assert(((Value + Addend) & 3) == 0);
866 // Preserve the AA/LK bits in the branch instruction
867 uint8_t aalk = *(LocalAddress + 3);
868 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
869 } break;
870 case ELF::R_PPC64_REL16_LO: {
871 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
872 uint64_t Delta = Value - FinalAddress + Addend;
873 writeInt16BE(LocalAddress, applyPPClo(Delta));
874 } break;
875 case ELF::R_PPC64_REL16_HI: {
876 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
877 uint64_t Delta = Value - FinalAddress + Addend;
878 writeInt16BE(LocalAddress, applyPPChi(Delta));
879 } break;
880 case ELF::R_PPC64_REL16_HA: {
881 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
882 uint64_t Delta = Value - FinalAddress + Addend;
883 writeInt16BE(LocalAddress, applyPPCha(Delta));
884 } break;
885 case ELF::R_PPC64_ADDR32: {
886 int64_t Result = static_cast<int64_t>(Value + Addend);
887 if (SignExtend64<32>(Result) != Result)
888 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
889 writeInt32BE(LocalAddress, Result);
890 } break;
891 case ELF::R_PPC64_REL24: {
892 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
893 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
894 if (SignExtend64<26>(delta) != delta)
895 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
896 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
897 uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
898 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
899 } break;
900 case ELF::R_PPC64_REL32: {
901 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
902 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
903 if (SignExtend64<32>(delta) != delta)
904 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
905 writeInt32BE(LocalAddress, delta);
906 } break;
907 case ELF::R_PPC64_REL64: {
908 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
909 uint64_t Delta = Value - FinalAddress + Addend;
910 writeInt64BE(LocalAddress, Delta);
911 } break;
912 case ELF::R_PPC64_ADDR64:
913 writeInt64BE(LocalAddress, Value + Addend);
914 break;
918 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
919 uint64_t Offset, uint64_t Value,
920 uint32_t Type, int64_t Addend) {
921 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
922 switch (Type) {
923 default:
924 report_fatal_error("Relocation type not implemented yet!");
925 break;
926 case ELF::R_390_PC16DBL:
927 case ELF::R_390_PLT16DBL: {
928 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
929 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
930 writeInt16BE(LocalAddress, Delta / 2);
931 break;
933 case ELF::R_390_PC32DBL:
934 case ELF::R_390_PLT32DBL: {
935 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
936 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
937 writeInt32BE(LocalAddress, Delta / 2);
938 break;
940 case ELF::R_390_PC16: {
941 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
942 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
943 writeInt16BE(LocalAddress, Delta);
944 break;
946 case ELF::R_390_PC32: {
947 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
948 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
949 writeInt32BE(LocalAddress, Delta);
950 break;
952 case ELF::R_390_PC64: {
953 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
954 writeInt64BE(LocalAddress, Delta);
955 break;
957 case ELF::R_390_8:
958 *LocalAddress = (uint8_t)(Value + Addend);
959 break;
960 case ELF::R_390_16:
961 writeInt16BE(LocalAddress, Value + Addend);
962 break;
963 case ELF::R_390_32:
964 writeInt32BE(LocalAddress, Value + Addend);
965 break;
966 case ELF::R_390_64:
967 writeInt64BE(LocalAddress, Value + Addend);
968 break;
972 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
973 uint64_t Offset, uint64_t Value,
974 uint32_t Type, int64_t Addend) {
975 bool isBE = Arch == Triple::bpfeb;
977 switch (Type) {
978 default:
979 report_fatal_error("Relocation type not implemented yet!");
980 break;
981 case ELF::R_BPF_NONE:
982 case ELF::R_BPF_64_64:
983 case ELF::R_BPF_64_32:
984 case ELF::R_BPF_64_NODYLD32:
985 break;
986 case ELF::R_BPF_64_ABS64: {
987 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
988 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
989 << format("%p\n", Section.getAddressWithOffset(Offset)));
990 break;
992 case ELF::R_BPF_64_ABS32: {
993 Value += Addend;
994 assert(Value <= UINT32_MAX);
995 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
996 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
997 << format("%p\n", Section.getAddressWithOffset(Offset)));
998 break;
1003 // The target location for the relocation is described by RE.SectionID and
1004 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
1005 // SectionEntry has three members describing its location.
1006 // SectionEntry::Address is the address at which the section has been loaded
1007 // into memory in the current (host) process. SectionEntry::LoadAddress is the
1008 // address that the section will have in the target process.
1009 // SectionEntry::ObjAddress is the address of the bits for this section in the
1010 // original emitted object image (also in the current address space).
1012 // Relocations will be applied as if the section were loaded at
1013 // SectionEntry::LoadAddress, but they will be applied at an address based
1014 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
1015 // Target memory contents if they are required for value calculations.
1017 // The Value parameter here is the load address of the symbol for the
1018 // relocation to be applied. For relocations which refer to symbols in the
1019 // current object Value will be the LoadAddress of the section in which
1020 // the symbol resides (RE.Addend provides additional information about the
1021 // symbol location). For external symbols, Value will be the address of the
1022 // symbol in the target address space.
1023 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1024 uint64_t Value) {
1025 const SectionEntry &Section = Sections[RE.SectionID];
1026 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1027 RE.SymOffset, RE.SectionID);
1030 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1031 uint64_t Offset, uint64_t Value,
1032 uint32_t Type, int64_t Addend,
1033 uint64_t SymOffset, SID SectionID) {
1034 switch (Arch) {
1035 case Triple::x86_64:
1036 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1037 break;
1038 case Triple::x86:
1039 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1040 (uint32_t)(Addend & 0xffffffffL));
1041 break;
1042 case Triple::aarch64:
1043 case Triple::aarch64_be:
1044 resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1045 break;
1046 case Triple::arm: // Fall through.
1047 case Triple::armeb:
1048 case Triple::thumb:
1049 case Triple::thumbeb:
1050 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1051 (uint32_t)(Addend & 0xffffffffL));
1052 break;
1053 case Triple::ppc: // Fall through.
1054 case Triple::ppcle:
1055 resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1056 break;
1057 case Triple::ppc64: // Fall through.
1058 case Triple::ppc64le:
1059 resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1060 break;
1061 case Triple::systemz:
1062 resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1063 break;
1064 case Triple::bpfel:
1065 case Triple::bpfeb:
1066 resolveBPFRelocation(Section, Offset, Value, Type, Addend);
1067 break;
1068 default:
1069 llvm_unreachable("Unsupported CPU type!");
1073 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1074 return (void *)(Sections[SectionID].getObjAddress() + Offset);
1077 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1078 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1079 if (Value.SymbolName)
1080 addRelocationForSymbol(RE, Value.SymbolName);
1081 else
1082 addRelocationForSection(RE, Value.SectionID);
1085 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1086 bool IsLocal) const {
1087 switch (RelType) {
1088 case ELF::R_MICROMIPS_GOT16:
1089 if (IsLocal)
1090 return ELF::R_MICROMIPS_LO16;
1091 break;
1092 case ELF::R_MICROMIPS_HI16:
1093 return ELF::R_MICROMIPS_LO16;
1094 case ELF::R_MIPS_GOT16:
1095 if (IsLocal)
1096 return ELF::R_MIPS_LO16;
1097 break;
1098 case ELF::R_MIPS_HI16:
1099 return ELF::R_MIPS_LO16;
1100 case ELF::R_MIPS_PCHI16:
1101 return ELF::R_MIPS_PCLO16;
1102 default:
1103 break;
1105 return ELF::R_MIPS_NONE;
1108 // Sometimes we don't need to create thunk for a branch.
1109 // This typically happens when branch target is located
1110 // in the same object file. In such case target is either
1111 // a weak symbol or symbol in a different executable section.
1112 // This function checks if branch target is located in the
1113 // same object file and if distance between source and target
1114 // fits R_AARCH64_CALL26 relocation. If both conditions are
1115 // met, it emits direct jump to the target and returns true.
1116 // Otherwise false is returned and thunk is created.
1117 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1118 unsigned SectionID, relocation_iterator RelI,
1119 const RelocationValueRef &Value) {
1120 uint64_t Address;
1121 if (Value.SymbolName) {
1122 auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1124 // Don't create direct branch for external symbols.
1125 if (Loc == GlobalSymbolTable.end())
1126 return false;
1128 const auto &SymInfo = Loc->second;
1129 Address =
1130 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1131 SymInfo.getOffset()));
1132 } else {
1133 Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1135 uint64_t Offset = RelI->getOffset();
1136 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1138 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1139 // If distance between source and target is out of range then we should
1140 // create thunk.
1141 if (!isInt<28>(Address + Value.Addend - SourceAddress))
1142 return false;
1144 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1145 Value.Addend);
1147 return true;
1150 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1151 const RelocationValueRef &Value,
1152 relocation_iterator RelI,
1153 StubMap &Stubs) {
1155 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1156 SectionEntry &Section = Sections[SectionID];
1158 uint64_t Offset = RelI->getOffset();
1159 unsigned RelType = RelI->getType();
1160 // Look for an existing stub.
1161 StubMap::const_iterator i = Stubs.find(Value);
1162 if (i != Stubs.end()) {
1163 resolveRelocation(Section, Offset,
1164 (uint64_t)Section.getAddressWithOffset(i->second),
1165 RelType, 0);
1166 LLVM_DEBUG(dbgs() << " Stub function found\n");
1167 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1168 // Create a new stub function.
1169 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1170 Stubs[Value] = Section.getStubOffset();
1171 uint8_t *StubTargetAddr = createStubFunction(
1172 Section.getAddressWithOffset(Section.getStubOffset()));
1174 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1175 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1176 RelocationEntry REmovk_g2(SectionID,
1177 StubTargetAddr - Section.getAddress() + 4,
1178 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1179 RelocationEntry REmovk_g1(SectionID,
1180 StubTargetAddr - Section.getAddress() + 8,
1181 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1182 RelocationEntry REmovk_g0(SectionID,
1183 StubTargetAddr - Section.getAddress() + 12,
1184 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1186 if (Value.SymbolName) {
1187 addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1188 addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1189 addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1190 addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1191 } else {
1192 addRelocationForSection(REmovz_g3, Value.SectionID);
1193 addRelocationForSection(REmovk_g2, Value.SectionID);
1194 addRelocationForSection(REmovk_g1, Value.SectionID);
1195 addRelocationForSection(REmovk_g0, Value.SectionID);
1197 resolveRelocation(Section, Offset,
1198 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1199 Section.getStubOffset())),
1200 RelType, 0);
1201 Section.advanceStubOffset(getMaxStubSize());
1205 Expected<relocation_iterator>
1206 RuntimeDyldELF::processRelocationRef(
1207 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1208 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1209 const auto &Obj = cast<ELFObjectFileBase>(O);
1210 uint64_t RelType = RelI->getType();
1211 int64_t Addend = 0;
1212 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1213 Addend = *AddendOrErr;
1214 else
1215 consumeError(AddendOrErr.takeError());
1216 elf_symbol_iterator Symbol = RelI->getSymbol();
1218 // Obtain the symbol name which is referenced in the relocation
1219 StringRef TargetName;
1220 if (Symbol != Obj.symbol_end()) {
1221 if (auto TargetNameOrErr = Symbol->getName())
1222 TargetName = *TargetNameOrErr;
1223 else
1224 return TargetNameOrErr.takeError();
1226 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1227 << " TargetName: " << TargetName << "\n");
1228 RelocationValueRef Value;
1229 // First search for the symbol in the local symbol table
1230 SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1232 // Search for the symbol in the global symbol table
1233 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1234 if (Symbol != Obj.symbol_end()) {
1235 gsi = GlobalSymbolTable.find(TargetName.data());
1236 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1237 if (!SymTypeOrErr) {
1238 std::string Buf;
1239 raw_string_ostream OS(Buf);
1240 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1241 report_fatal_error(Twine(OS.str()));
1243 SymType = *SymTypeOrErr;
1245 if (gsi != GlobalSymbolTable.end()) {
1246 const auto &SymInfo = gsi->second;
1247 Value.SectionID = SymInfo.getSectionID();
1248 Value.Offset = SymInfo.getOffset();
1249 Value.Addend = SymInfo.getOffset() + Addend;
1250 } else {
1251 switch (SymType) {
1252 case SymbolRef::ST_Debug: {
1253 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1254 // and can be changed by another developers. Maybe best way is add
1255 // a new symbol type ST_Section to SymbolRef and use it.
1256 auto SectionOrErr = Symbol->getSection();
1257 if (!SectionOrErr) {
1258 std::string Buf;
1259 raw_string_ostream OS(Buf);
1260 logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1261 report_fatal_error(Twine(OS.str()));
1263 section_iterator si = *SectionOrErr;
1264 if (si == Obj.section_end())
1265 llvm_unreachable("Symbol section not found, bad object file format!");
1266 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1267 bool isCode = si->isText();
1268 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1269 ObjSectionToID))
1270 Value.SectionID = *SectionIDOrErr;
1271 else
1272 return SectionIDOrErr.takeError();
1273 Value.Addend = Addend;
1274 break;
1276 case SymbolRef::ST_Data:
1277 case SymbolRef::ST_Function:
1278 case SymbolRef::ST_Unknown: {
1279 Value.SymbolName = TargetName.data();
1280 Value.Addend = Addend;
1282 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1283 // will manifest here as a NULL symbol name.
1284 // We can set this as a valid (but empty) symbol name, and rely
1285 // on addRelocationForSymbol to handle this.
1286 if (!Value.SymbolName)
1287 Value.SymbolName = "";
1288 break;
1290 default:
1291 llvm_unreachable("Unresolved symbol type!");
1292 break;
1296 uint64_t Offset = RelI->getOffset();
1298 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1299 << "\n");
1300 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1301 if ((RelType == ELF::R_AARCH64_CALL26 ||
1302 RelType == ELF::R_AARCH64_JUMP26) &&
1303 MemMgr.allowStubAllocation()) {
1304 resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1305 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1306 // Create new GOT entry or find existing one. If GOT entry is
1307 // to be created, then we also emit ABS64 relocation for it.
1308 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1309 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1310 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1312 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1313 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1314 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1315 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1316 } else {
1317 processSimpleRelocation(SectionID, Offset, RelType, Value);
1319 } else if (Arch == Triple::arm) {
1320 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1321 RelType == ELF::R_ARM_JUMP24) {
1322 // This is an ARM branch relocation, need to use a stub function.
1323 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1324 SectionEntry &Section = Sections[SectionID];
1326 // Look for an existing stub.
1327 StubMap::const_iterator i = Stubs.find(Value);
1328 if (i != Stubs.end()) {
1329 resolveRelocation(
1330 Section, Offset,
1331 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1332 RelType, 0);
1333 LLVM_DEBUG(dbgs() << " Stub function found\n");
1334 } else {
1335 // Create a new stub function.
1336 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1337 Stubs[Value] = Section.getStubOffset();
1338 uint8_t *StubTargetAddr = createStubFunction(
1339 Section.getAddressWithOffset(Section.getStubOffset()));
1340 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1341 ELF::R_ARM_ABS32, Value.Addend);
1342 if (Value.SymbolName)
1343 addRelocationForSymbol(RE, Value.SymbolName);
1344 else
1345 addRelocationForSection(RE, Value.SectionID);
1347 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1348 Section.getAddressWithOffset(
1349 Section.getStubOffset())),
1350 RelType, 0);
1351 Section.advanceStubOffset(getMaxStubSize());
1353 } else {
1354 uint32_t *Placeholder =
1355 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1356 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1357 RelType == ELF::R_ARM_ABS32) {
1358 Value.Addend += *Placeholder;
1359 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1360 // See ELF for ARM documentation
1361 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1363 processSimpleRelocation(SectionID, Offset, RelType, Value);
1365 } else if (IsMipsO32ABI) {
1366 uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1367 computePlaceholderAddress(SectionID, Offset));
1368 uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1369 if (RelType == ELF::R_MIPS_26) {
1370 // This is an Mips branch relocation, need to use a stub function.
1371 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1372 SectionEntry &Section = Sections[SectionID];
1374 // Extract the addend from the instruction.
1375 // We shift up by two since the Value will be down shifted again
1376 // when applying the relocation.
1377 uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1379 Value.Addend += Addend;
1381 // Look up for existing stub.
1382 StubMap::const_iterator i = Stubs.find(Value);
1383 if (i != Stubs.end()) {
1384 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1385 addRelocationForSection(RE, SectionID);
1386 LLVM_DEBUG(dbgs() << " Stub function found\n");
1387 } else {
1388 // Create a new stub function.
1389 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1390 Stubs[Value] = Section.getStubOffset();
1392 unsigned AbiVariant = Obj.getPlatformFlags();
1394 uint8_t *StubTargetAddr = createStubFunction(
1395 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1397 // Creating Hi and Lo relocations for the filled stub instructions.
1398 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1399 ELF::R_MIPS_HI16, Value.Addend);
1400 RelocationEntry RELo(SectionID,
1401 StubTargetAddr - Section.getAddress() + 4,
1402 ELF::R_MIPS_LO16, Value.Addend);
1404 if (Value.SymbolName) {
1405 addRelocationForSymbol(REHi, Value.SymbolName);
1406 addRelocationForSymbol(RELo, Value.SymbolName);
1407 } else {
1408 addRelocationForSection(REHi, Value.SectionID);
1409 addRelocationForSection(RELo, Value.SectionID);
1412 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1413 addRelocationForSection(RE, SectionID);
1414 Section.advanceStubOffset(getMaxStubSize());
1416 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1417 int64_t Addend = (Opcode & 0x0000ffff) << 16;
1418 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1419 PendingRelocs.push_back(std::make_pair(Value, RE));
1420 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1421 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1422 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1423 const RelocationValueRef &MatchingValue = I->first;
1424 RelocationEntry &Reloc = I->second;
1425 if (MatchingValue == Value &&
1426 RelType == getMatchingLoRelocation(Reloc.RelType) &&
1427 SectionID == Reloc.SectionID) {
1428 Reloc.Addend += Addend;
1429 if (Value.SymbolName)
1430 addRelocationForSymbol(Reloc, Value.SymbolName);
1431 else
1432 addRelocationForSection(Reloc, Value.SectionID);
1433 I = PendingRelocs.erase(I);
1434 } else
1435 ++I;
1437 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1438 if (Value.SymbolName)
1439 addRelocationForSymbol(RE, Value.SymbolName);
1440 else
1441 addRelocationForSection(RE, Value.SectionID);
1442 } else {
1443 if (RelType == ELF::R_MIPS_32)
1444 Value.Addend += Opcode;
1445 else if (RelType == ELF::R_MIPS_PC16)
1446 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1447 else if (RelType == ELF::R_MIPS_PC19_S2)
1448 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1449 else if (RelType == ELF::R_MIPS_PC21_S2)
1450 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1451 else if (RelType == ELF::R_MIPS_PC26_S2)
1452 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1453 processSimpleRelocation(SectionID, Offset, RelType, Value);
1455 } else if (IsMipsN32ABI || IsMipsN64ABI) {
1456 uint32_t r_type = RelType & 0xff;
1457 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1458 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1459 || r_type == ELF::R_MIPS_GOT_DISP) {
1460 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1461 if (i != GOTSymbolOffsets.end())
1462 RE.SymOffset = i->second;
1463 else {
1464 RE.SymOffset = allocateGOTEntries(1);
1465 GOTSymbolOffsets[TargetName] = RE.SymOffset;
1467 if (Value.SymbolName)
1468 addRelocationForSymbol(RE, Value.SymbolName);
1469 else
1470 addRelocationForSection(RE, Value.SectionID);
1471 } else if (RelType == ELF::R_MIPS_26) {
1472 // This is an Mips branch relocation, need to use a stub function.
1473 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1474 SectionEntry &Section = Sections[SectionID];
1476 // Look up for existing stub.
1477 StubMap::const_iterator i = Stubs.find(Value);
1478 if (i != Stubs.end()) {
1479 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1480 addRelocationForSection(RE, SectionID);
1481 LLVM_DEBUG(dbgs() << " Stub function found\n");
1482 } else {
1483 // Create a new stub function.
1484 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1485 Stubs[Value] = Section.getStubOffset();
1487 unsigned AbiVariant = Obj.getPlatformFlags();
1489 uint8_t *StubTargetAddr = createStubFunction(
1490 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1492 if (IsMipsN32ABI) {
1493 // Creating Hi and Lo relocations for the filled stub instructions.
1494 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1495 ELF::R_MIPS_HI16, Value.Addend);
1496 RelocationEntry RELo(SectionID,
1497 StubTargetAddr - Section.getAddress() + 4,
1498 ELF::R_MIPS_LO16, Value.Addend);
1499 if (Value.SymbolName) {
1500 addRelocationForSymbol(REHi, Value.SymbolName);
1501 addRelocationForSymbol(RELo, Value.SymbolName);
1502 } else {
1503 addRelocationForSection(REHi, Value.SectionID);
1504 addRelocationForSection(RELo, Value.SectionID);
1506 } else {
1507 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1508 // instructions.
1509 RelocationEntry REHighest(SectionID,
1510 StubTargetAddr - Section.getAddress(),
1511 ELF::R_MIPS_HIGHEST, Value.Addend);
1512 RelocationEntry REHigher(SectionID,
1513 StubTargetAddr - Section.getAddress() + 4,
1514 ELF::R_MIPS_HIGHER, Value.Addend);
1515 RelocationEntry REHi(SectionID,
1516 StubTargetAddr - Section.getAddress() + 12,
1517 ELF::R_MIPS_HI16, Value.Addend);
1518 RelocationEntry RELo(SectionID,
1519 StubTargetAddr - Section.getAddress() + 20,
1520 ELF::R_MIPS_LO16, Value.Addend);
1521 if (Value.SymbolName) {
1522 addRelocationForSymbol(REHighest, Value.SymbolName);
1523 addRelocationForSymbol(REHigher, Value.SymbolName);
1524 addRelocationForSymbol(REHi, Value.SymbolName);
1525 addRelocationForSymbol(RELo, Value.SymbolName);
1526 } else {
1527 addRelocationForSection(REHighest, Value.SectionID);
1528 addRelocationForSection(REHigher, Value.SectionID);
1529 addRelocationForSection(REHi, Value.SectionID);
1530 addRelocationForSection(RELo, Value.SectionID);
1533 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1534 addRelocationForSection(RE, SectionID);
1535 Section.advanceStubOffset(getMaxStubSize());
1537 } else {
1538 processSimpleRelocation(SectionID, Offset, RelType, Value);
1541 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1542 if (RelType == ELF::R_PPC64_REL24) {
1543 // Determine ABI variant in use for this object.
1544 unsigned AbiVariant = Obj.getPlatformFlags();
1545 AbiVariant &= ELF::EF_PPC64_ABI;
1546 // A PPC branch relocation will need a stub function if the target is
1547 // an external symbol (either Value.SymbolName is set, or SymType is
1548 // Symbol::ST_Unknown) or if the target address is not within the
1549 // signed 24-bits branch address.
1550 SectionEntry &Section = Sections[SectionID];
1551 uint8_t *Target = Section.getAddressWithOffset(Offset);
1552 bool RangeOverflow = false;
1553 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1554 if (!IsExtern) {
1555 if (AbiVariant != 2) {
1556 // In the ELFv1 ABI, a function call may point to the .opd entry,
1557 // so the final symbol value is calculated based on the relocation
1558 // values in the .opd section.
1559 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1560 return std::move(Err);
1561 } else {
1562 // In the ELFv2 ABI, a function symbol may provide a local entry
1563 // point, which must be used for direct calls.
1564 if (Value.SectionID == SectionID){
1565 uint8_t SymOther = Symbol->getOther();
1566 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1569 uint8_t *RelocTarget =
1570 Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1571 int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1572 // If it is within 26-bits branch range, just set the branch target
1573 if (SignExtend64<26>(delta) != delta) {
1574 RangeOverflow = true;
1575 } else if ((AbiVariant != 2) ||
1576 (AbiVariant == 2 && Value.SectionID == SectionID)) {
1577 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1578 addRelocationForSection(RE, Value.SectionID);
1581 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1582 RangeOverflow) {
1583 // It is an external symbol (either Value.SymbolName is set, or
1584 // SymType is SymbolRef::ST_Unknown) or out of range.
1585 StubMap::const_iterator i = Stubs.find(Value);
1586 if (i != Stubs.end()) {
1587 // Symbol function stub already created, just relocate to it
1588 resolveRelocation(Section, Offset,
1589 reinterpret_cast<uint64_t>(
1590 Section.getAddressWithOffset(i->second)),
1591 RelType, 0);
1592 LLVM_DEBUG(dbgs() << " Stub function found\n");
1593 } else {
1594 // Create a new stub function.
1595 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1596 Stubs[Value] = Section.getStubOffset();
1597 uint8_t *StubTargetAddr = createStubFunction(
1598 Section.getAddressWithOffset(Section.getStubOffset()),
1599 AbiVariant);
1600 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1601 ELF::R_PPC64_ADDR64, Value.Addend);
1603 // Generates the 64-bits address loads as exemplified in section
1604 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1605 // apply to the low part of the instructions, so we have to update
1606 // the offset according to the target endianness.
1607 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1608 if (!IsTargetLittleEndian)
1609 StubRelocOffset += 2;
1611 RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1612 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1613 RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1614 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1615 RelocationEntry REh(SectionID, StubRelocOffset + 12,
1616 ELF::R_PPC64_ADDR16_HI, Value.Addend);
1617 RelocationEntry REl(SectionID, StubRelocOffset + 16,
1618 ELF::R_PPC64_ADDR16_LO, Value.Addend);
1620 if (Value.SymbolName) {
1621 addRelocationForSymbol(REhst, Value.SymbolName);
1622 addRelocationForSymbol(REhr, Value.SymbolName);
1623 addRelocationForSymbol(REh, Value.SymbolName);
1624 addRelocationForSymbol(REl, Value.SymbolName);
1625 } else {
1626 addRelocationForSection(REhst, Value.SectionID);
1627 addRelocationForSection(REhr, Value.SectionID);
1628 addRelocationForSection(REh, Value.SectionID);
1629 addRelocationForSection(REl, Value.SectionID);
1632 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1633 Section.getAddressWithOffset(
1634 Section.getStubOffset())),
1635 RelType, 0);
1636 Section.advanceStubOffset(getMaxStubSize());
1638 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1639 // Restore the TOC for external calls
1640 if (AbiVariant == 2)
1641 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1642 else
1643 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1646 } else if (RelType == ELF::R_PPC64_TOC16 ||
1647 RelType == ELF::R_PPC64_TOC16_DS ||
1648 RelType == ELF::R_PPC64_TOC16_LO ||
1649 RelType == ELF::R_PPC64_TOC16_LO_DS ||
1650 RelType == ELF::R_PPC64_TOC16_HI ||
1651 RelType == ELF::R_PPC64_TOC16_HA) {
1652 // These relocations are supposed to subtract the TOC address from
1653 // the final value. This does not fit cleanly into the RuntimeDyld
1654 // scheme, since there may be *two* sections involved in determining
1655 // the relocation value (the section of the symbol referred to by the
1656 // relocation, and the TOC section associated with the current module).
1658 // Fortunately, these relocations are currently only ever generated
1659 // referring to symbols that themselves reside in the TOC, which means
1660 // that the two sections are actually the same. Thus they cancel out
1661 // and we can immediately resolve the relocation right now.
1662 switch (RelType) {
1663 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1664 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1665 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1666 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1667 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1668 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1669 default: llvm_unreachable("Wrong relocation type.");
1672 RelocationValueRef TOCValue;
1673 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1674 return std::move(Err);
1675 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1676 llvm_unreachable("Unsupported TOC relocation.");
1677 Value.Addend -= TOCValue.Addend;
1678 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1679 } else {
1680 // There are two ways to refer to the TOC address directly: either
1681 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1682 // ignored), or via any relocation that refers to the magic ".TOC."
1683 // symbols (in which case the addend is respected).
1684 if (RelType == ELF::R_PPC64_TOC) {
1685 RelType = ELF::R_PPC64_ADDR64;
1686 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1687 return std::move(Err);
1688 } else if (TargetName == ".TOC.") {
1689 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1690 return std::move(Err);
1691 Value.Addend += Addend;
1694 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1696 if (Value.SymbolName)
1697 addRelocationForSymbol(RE, Value.SymbolName);
1698 else
1699 addRelocationForSection(RE, Value.SectionID);
1701 } else if (Arch == Triple::systemz &&
1702 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1703 // Create function stubs for both PLT and GOT references, regardless of
1704 // whether the GOT reference is to data or code. The stub contains the
1705 // full address of the symbol, as needed by GOT references, and the
1706 // executable part only adds an overhead of 8 bytes.
1708 // We could try to conserve space by allocating the code and data
1709 // parts of the stub separately. However, as things stand, we allocate
1710 // a stub for every relocation, so using a GOT in JIT code should be
1711 // no less space efficient than using an explicit constant pool.
1712 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1713 SectionEntry &Section = Sections[SectionID];
1715 // Look for an existing stub.
1716 StubMap::const_iterator i = Stubs.find(Value);
1717 uintptr_t StubAddress;
1718 if (i != Stubs.end()) {
1719 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1720 LLVM_DEBUG(dbgs() << " Stub function found\n");
1721 } else {
1722 // Create a new stub function.
1723 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1725 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1726 uintptr_t StubAlignment = getStubAlignment();
1727 StubAddress =
1728 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1729 -StubAlignment;
1730 unsigned StubOffset = StubAddress - BaseAddress;
1732 Stubs[Value] = StubOffset;
1733 createStubFunction((uint8_t *)StubAddress);
1734 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1735 Value.Offset);
1736 if (Value.SymbolName)
1737 addRelocationForSymbol(RE, Value.SymbolName);
1738 else
1739 addRelocationForSection(RE, Value.SectionID);
1740 Section.advanceStubOffset(getMaxStubSize());
1743 if (RelType == ELF::R_390_GOTENT)
1744 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1745 Addend);
1746 else
1747 resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1748 } else if (Arch == Triple::x86_64) {
1749 if (RelType == ELF::R_X86_64_PLT32) {
1750 // The way the PLT relocations normally work is that the linker allocates
1751 // the
1752 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1753 // entry will then jump to an address provided by the GOT. On first call,
1754 // the
1755 // GOT address will point back into PLT code that resolves the symbol. After
1756 // the first call, the GOT entry points to the actual function.
1758 // For local functions we're ignoring all of that here and just replacing
1759 // the PLT32 relocation type with PC32, which will translate the relocation
1760 // into a PC-relative call directly to the function. For external symbols we
1761 // can't be sure the function will be within 2^32 bytes of the call site, so
1762 // we need to create a stub, which calls into the GOT. This case is
1763 // equivalent to the usual PLT implementation except that we use the stub
1764 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1765 // rather than allocating a PLT section.
1766 if (Value.SymbolName && MemMgr.allowStubAllocation()) {
1767 // This is a call to an external function.
1768 // Look for an existing stub.
1769 SectionEntry *Section = &Sections[SectionID];
1770 StubMap::const_iterator i = Stubs.find(Value);
1771 uintptr_t StubAddress;
1772 if (i != Stubs.end()) {
1773 StubAddress = uintptr_t(Section->getAddress()) + i->second;
1774 LLVM_DEBUG(dbgs() << " Stub function found\n");
1775 } else {
1776 // Create a new stub function (equivalent to a PLT entry).
1777 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1779 uintptr_t BaseAddress = uintptr_t(Section->getAddress());
1780 uintptr_t StubAlignment = getStubAlignment();
1781 StubAddress =
1782 (BaseAddress + Section->getStubOffset() + StubAlignment - 1) &
1783 -StubAlignment;
1784 unsigned StubOffset = StubAddress - BaseAddress;
1785 Stubs[Value] = StubOffset;
1786 createStubFunction((uint8_t *)StubAddress);
1788 // Bump our stub offset counter
1789 Section->advanceStubOffset(getMaxStubSize());
1791 // Allocate a GOT Entry
1792 uint64_t GOTOffset = allocateGOTEntries(1);
1793 // This potentially creates a new Section which potentially
1794 // invalidates the Section pointer, so reload it.
1795 Section = &Sections[SectionID];
1797 // The load of the GOT address has an addend of -4
1798 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1799 ELF::R_X86_64_PC32);
1801 // Fill in the value of the symbol we're targeting into the GOT
1802 addRelocationForSymbol(
1803 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1804 Value.SymbolName);
1807 // Make the target call a call into the stub table.
1808 resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1809 Addend);
1810 } else {
1811 Value.Addend += support::ulittle32_t::ref(
1812 computePlaceholderAddress(SectionID, Offset));
1813 processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value);
1815 } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1816 RelType == ELF::R_X86_64_GOTPCRELX ||
1817 RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1818 uint64_t GOTOffset = allocateGOTEntries(1);
1819 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1820 ELF::R_X86_64_PC32);
1822 // Fill in the value of the symbol we're targeting into the GOT
1823 RelocationEntry RE =
1824 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1825 if (Value.SymbolName)
1826 addRelocationForSymbol(RE, Value.SymbolName);
1827 else
1828 addRelocationForSection(RE, Value.SectionID);
1829 } else if (RelType == ELF::R_X86_64_GOT64) {
1830 // Fill in a 64-bit GOT offset.
1831 uint64_t GOTOffset = allocateGOTEntries(1);
1832 resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1833 ELF::R_X86_64_64, 0);
1835 // Fill in the value of the symbol we're targeting into the GOT
1836 RelocationEntry RE =
1837 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1838 if (Value.SymbolName)
1839 addRelocationForSymbol(RE, Value.SymbolName);
1840 else
1841 addRelocationForSection(RE, Value.SectionID);
1842 } else if (RelType == ELF::R_X86_64_GOTPC32) {
1843 // Materialize the address of the base of the GOT relative to the PC.
1844 // This doesn't create a GOT entry, but it does mean we need a GOT
1845 // section.
1846 (void)allocateGOTEntries(0);
1847 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32);
1848 } else if (RelType == ELF::R_X86_64_GOTPC64) {
1849 (void)allocateGOTEntries(0);
1850 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1851 } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1852 // GOTOFF relocations ultimately require a section difference relocation.
1853 (void)allocateGOTEntries(0);
1854 processSimpleRelocation(SectionID, Offset, RelType, Value);
1855 } else if (RelType == ELF::R_X86_64_PC32) {
1856 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1857 processSimpleRelocation(SectionID, Offset, RelType, Value);
1858 } else if (RelType == ELF::R_X86_64_PC64) {
1859 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1860 processSimpleRelocation(SectionID, Offset, RelType, Value);
1861 } else if (RelType == ELF::R_X86_64_GOTTPOFF) {
1862 processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend);
1863 } else if (RelType == ELF::R_X86_64_TLSGD ||
1864 RelType == ELF::R_X86_64_TLSLD) {
1865 // The next relocation must be the relocation for __tls_get_addr.
1866 ++RelI;
1867 auto &GetAddrRelocation = *RelI;
1868 processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend,
1869 GetAddrRelocation);
1870 } else {
1871 processSimpleRelocation(SectionID, Offset, RelType, Value);
1873 } else {
1874 if (Arch == Triple::x86) {
1875 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1877 processSimpleRelocation(SectionID, Offset, RelType, Value);
1879 return ++RelI;
1882 void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID,
1883 uint64_t Offset,
1884 RelocationValueRef Value,
1885 int64_t Addend) {
1886 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
1887 // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
1888 // only mentions one optimization even though there are two different
1889 // code sequences for the Initial Exec TLS Model. We match the code to
1890 // find out which one was used.
1892 // A possible TLS code sequence and its replacement
1893 struct CodeSequence {
1894 // The expected code sequence
1895 ArrayRef<uint8_t> ExpectedCodeSequence;
1896 // The negative offset of the GOTTPOFF relocation to the beginning of
1897 // the sequence
1898 uint64_t TLSSequenceOffset;
1899 // The new code sequence
1900 ArrayRef<uint8_t> NewCodeSequence;
1901 // The offset of the new TPOFF relocation
1902 uint64_t TpoffRelocationOffset;
1905 std::array<CodeSequence, 2> CodeSequences;
1907 // Initial Exec Code Model Sequence
1909 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1910 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
1911 0x00, // mov %fs:0, %rax
1912 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
1913 // %rax
1915 CodeSequences[0].ExpectedCodeSequence =
1916 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1917 CodeSequences[0].TLSSequenceOffset = 12;
1919 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1920 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
1921 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
1923 CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1924 CodeSequences[0].TpoffRelocationOffset = 12;
1927 // Initial Exec Code Model Sequence, II
1929 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1930 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
1931 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax
1933 CodeSequences[1].ExpectedCodeSequence =
1934 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1935 CodeSequences[1].TLSSequenceOffset = 3;
1937 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1938 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop
1939 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
1941 CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1942 CodeSequences[1].TpoffRelocationOffset = 10;
1945 bool Resolved = false;
1946 auto &Section = Sections[SectionID];
1947 for (const auto &C : CodeSequences) {
1948 assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() &&
1949 "Old and new code sequences must have the same size");
1951 if (Offset < C.TLSSequenceOffset ||
1952 (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) >
1953 Section.getSize()) {
1954 // This can't be a matching sequence as it doesn't fit in the current
1955 // section
1956 continue;
1959 auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset;
1960 auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset);
1961 if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) !=
1962 C.ExpectedCodeSequence) {
1963 continue;
1966 memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size());
1968 // The original GOTTPOFF relocation has an addend as it is PC relative,
1969 // so it needs to be corrected. The TPOFF32 relocation is used as an
1970 // absolute value (which is an offset from %fs:0), so remove the addend
1971 // again.
1972 RelocationEntry RE(SectionID,
1973 TLSSequenceStartOffset + C.TpoffRelocationOffset,
1974 ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
1976 if (Value.SymbolName)
1977 addRelocationForSymbol(RE, Value.SymbolName);
1978 else
1979 addRelocationForSection(RE, Value.SectionID);
1981 Resolved = true;
1982 break;
1985 if (!Resolved) {
1986 // The GOTTPOFF relocation was not used in one of the sequences
1987 // described in the spec, so we can't optimize it to a TPOFF
1988 // relocation.
1989 uint64_t GOTOffset = allocateGOTEntries(1);
1990 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1991 ELF::R_X86_64_PC32);
1992 RelocationEntry RE =
1993 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64);
1994 if (Value.SymbolName)
1995 addRelocationForSymbol(RE, Value.SymbolName);
1996 else
1997 addRelocationForSection(RE, Value.SectionID);
2001 void RuntimeDyldELF::processX86_64TLSRelocation(
2002 unsigned SectionID, uint64_t Offset, uint64_t RelType,
2003 RelocationValueRef Value, int64_t Addend,
2004 const RelocationRef &GetAddrRelocation) {
2005 // Since we are statically linking and have no additional DSOs, we can resolve
2006 // the relocation directly without using __tls_get_addr.
2007 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2008 // to replace it with the Local Exec relocation variant.
2010 // Find out whether the code was compiled with the large or small memory
2011 // model. For this we look at the next relocation which is the relocation
2012 // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2013 // small code model, with a 64 bit relocation it's the large code model.
2014 bool IsSmallCodeModel;
2015 // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2016 bool IsGOTPCRel = false;
2018 switch (GetAddrRelocation.getType()) {
2019 case ELF::R_X86_64_GOTPCREL:
2020 case ELF::R_X86_64_REX_GOTPCRELX:
2021 case ELF::R_X86_64_GOTPCRELX:
2022 IsGOTPCRel = true;
2023 LLVM_FALLTHROUGH;
2024 case ELF::R_X86_64_PLT32:
2025 IsSmallCodeModel = true;
2026 break;
2027 case ELF::R_X86_64_PLTOFF64:
2028 IsSmallCodeModel = false;
2029 break;
2030 default:
2031 report_fatal_error(
2032 "invalid TLS relocations for General/Local Dynamic TLS Model: "
2033 "expected PLT or GOT relocation for __tls_get_addr function");
2036 // The negative offset to the start of the TLS code sequence relative to
2037 // the offset of the TLSGD/TLSLD relocation
2038 uint64_t TLSSequenceOffset;
2039 // The expected start of the code sequence
2040 ArrayRef<uint8_t> ExpectedCodeSequence;
2041 // The new TLS code sequence that will replace the existing code
2042 ArrayRef<uint8_t> NewCodeSequence;
2044 if (RelType == ELF::R_X86_64_TLSGD) {
2045 // The offset of the new TPOFF32 relocation (offset starting from the
2046 // beginning of the whole TLS sequence)
2047 uint64_t TpoffRelocOffset;
2049 if (IsSmallCodeModel) {
2050 if (!IsGOTPCRel) {
2051 static const std::initializer_list<uint8_t> CodeSequence = {
2052 0x66, // data16 (no-op prefix)
2053 0x48, 0x8d, 0x3d, 0x00, 0x00,
2054 0x00, 0x00, // lea <disp32>(%rip), %rdi
2055 0x66, 0x66, // two data16 prefixes
2056 0x48, // rex64 (no-op prefix)
2057 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2059 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2060 TLSSequenceOffset = 4;
2061 } else {
2062 // This code sequence is not described in the TLS spec but gcc
2063 // generates it sometimes.
2064 static const std::initializer_list<uint8_t> CodeSequence = {
2065 0x66, // data16 (no-op prefix)
2066 0x48, 0x8d, 0x3d, 0x00, 0x00,
2067 0x00, 0x00, // lea <disp32>(%rip), %rdi
2068 0x66, // data16 prefix (no-op prefix)
2069 0x48, // rex64 (no-op prefix)
2070 0xff, 0x15, 0x00, 0x00, 0x00,
2071 0x00 // call *__tls_get_addr@gotpcrel(%rip)
2073 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2074 TLSSequenceOffset = 4;
2077 // The replacement code for the small code model. It's the same for
2078 // both sequences.
2079 static const std::initializer_list<uint8_t> SmallSequence = {
2080 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2081 0x00, // mov %fs:0, %rax
2082 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2083 // %rax
2085 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2086 TpoffRelocOffset = 12;
2087 } else {
2088 static const std::initializer_list<uint8_t> CodeSequence = {
2089 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2090 // %rdi
2091 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2092 0x00, // movabs $__tls_get_addr@pltoff, %rax
2093 0x48, 0x01, 0xd8, // add %rbx, %rax
2094 0xff, 0xd0 // call *%rax
2096 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2097 TLSSequenceOffset = 3;
2099 // The replacement code for the large code model
2100 static const std::initializer_list<uint8_t> LargeSequence = {
2101 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2102 0x00, // mov %fs:0, %rax
2103 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2104 // %rax
2105 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1)
2107 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2108 TpoffRelocOffset = 12;
2111 // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2112 // The new TPOFF32 relocations is used as an absolute offset from
2113 // %fs:0, so remove the TLSGD/TLSLD addend again.
2114 RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset,
2115 ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2116 if (Value.SymbolName)
2117 addRelocationForSymbol(RE, Value.SymbolName);
2118 else
2119 addRelocationForSection(RE, Value.SectionID);
2120 } else if (RelType == ELF::R_X86_64_TLSLD) {
2121 if (IsSmallCodeModel) {
2122 if (!IsGOTPCRel) {
2123 static const std::initializer_list<uint8_t> CodeSequence = {
2124 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2125 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2127 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2128 TLSSequenceOffset = 3;
2130 // The replacement code for the small code model
2131 static const std::initializer_list<uint8_t> SmallSequence = {
2132 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2133 0x64, 0x48, 0x8b, 0x04, 0x25,
2134 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2136 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2137 } else {
2138 // This code sequence is not described in the TLS spec but gcc
2139 // generates it sometimes.
2140 static const std::initializer_list<uint8_t> CodeSequence = {
2141 0x48, 0x8d, 0x3d, 0x00,
2142 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2143 0xff, 0x15, 0x00, 0x00,
2144 0x00, 0x00 // call
2145 // *__tls_get_addr@gotpcrel(%rip)
2147 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2148 TLSSequenceOffset = 3;
2150 // The replacement is code is just like above but it needs to be
2151 // one byte longer.
2152 static const std::initializer_list<uint8_t> SmallSequence = {
2153 0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2154 0x64, 0x48, 0x8b, 0x04, 0x25,
2155 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2157 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2159 } else {
2160 // This is the same sequence as for the TLSGD sequence with the large
2161 // memory model above
2162 static const std::initializer_list<uint8_t> CodeSequence = {
2163 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2164 // %rdi
2165 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2166 0x48, // movabs $__tls_get_addr@pltoff, %rax
2167 0x01, 0xd8, // add %rbx, %rax
2168 0xff, 0xd0 // call *%rax
2170 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2171 TLSSequenceOffset = 3;
2173 // The replacement code for the large code model
2174 static const std::initializer_list<uint8_t> LargeSequence = {
2175 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2176 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2177 0x00, // 10 byte nop
2178 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2180 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2182 } else {
2183 llvm_unreachable("both TLS relocations handled above");
2186 assert(ExpectedCodeSequence.size() == NewCodeSequence.size() &&
2187 "Old and new code sequences must have the same size");
2189 auto &Section = Sections[SectionID];
2190 if (Offset < TLSSequenceOffset ||
2191 (Offset - TLSSequenceOffset + NewCodeSequence.size()) >
2192 Section.getSize()) {
2193 report_fatal_error("unexpected end of section in TLS sequence");
2196 auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset);
2197 if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) !=
2198 ExpectedCodeSequence) {
2199 report_fatal_error(
2200 "invalid TLS sequence for Global/Local Dynamic TLS Model");
2203 memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size());
2206 size_t RuntimeDyldELF::getGOTEntrySize() {
2207 // We don't use the GOT in all of these cases, but it's essentially free
2208 // to put them all here.
2209 size_t Result = 0;
2210 switch (Arch) {
2211 case Triple::x86_64:
2212 case Triple::aarch64:
2213 case Triple::aarch64_be:
2214 case Triple::ppc64:
2215 case Triple::ppc64le:
2216 case Triple::systemz:
2217 Result = sizeof(uint64_t);
2218 break;
2219 case Triple::x86:
2220 case Triple::arm:
2221 case Triple::thumb:
2222 Result = sizeof(uint32_t);
2223 break;
2224 case Triple::mips:
2225 case Triple::mipsel:
2226 case Triple::mips64:
2227 case Triple::mips64el:
2228 if (IsMipsO32ABI || IsMipsN32ABI)
2229 Result = sizeof(uint32_t);
2230 else if (IsMipsN64ABI)
2231 Result = sizeof(uint64_t);
2232 else
2233 llvm_unreachable("Mips ABI not handled");
2234 break;
2235 default:
2236 llvm_unreachable("Unsupported CPU type!");
2238 return Result;
2241 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
2242 if (GOTSectionID == 0) {
2243 GOTSectionID = Sections.size();
2244 // Reserve a section id. We'll allocate the section later
2245 // once we know the total size
2246 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2248 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
2249 CurrentGOTIndex += no;
2250 return StartOffset;
2253 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
2254 unsigned GOTRelType) {
2255 auto E = GOTOffsetMap.insert({Value, 0});
2256 if (E.second) {
2257 uint64_t GOTOffset = allocateGOTEntries(1);
2259 // Create relocation for newly created GOT entry
2260 RelocationEntry RE =
2261 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
2262 if (Value.SymbolName)
2263 addRelocationForSymbol(RE, Value.SymbolName);
2264 else
2265 addRelocationForSection(RE, Value.SectionID);
2267 E.first->second = GOTOffset;
2270 return E.first->second;
2273 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
2274 uint64_t Offset,
2275 uint64_t GOTOffset,
2276 uint32_t Type) {
2277 // Fill in the relative address of the GOT Entry into the stub
2278 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
2279 addRelocationForSection(GOTRE, GOTSectionID);
2282 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
2283 uint64_t SymbolOffset,
2284 uint32_t Type) {
2285 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
2288 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
2289 ObjSectionToIDMap &SectionMap) {
2290 if (IsMipsO32ABI)
2291 if (!PendingRelocs.empty())
2292 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
2294 // If necessary, allocate the global offset table
2295 if (GOTSectionID != 0) {
2296 // Allocate memory for the section
2297 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
2298 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
2299 GOTSectionID, ".got", false);
2300 if (!Addr)
2301 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
2303 Sections[GOTSectionID] =
2304 SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
2306 // For now, initialize all GOT entries to zero. We'll fill them in as
2307 // needed when GOT-based relocations are applied.
2308 memset(Addr, 0, TotalSize);
2309 if (IsMipsN32ABI || IsMipsN64ABI) {
2310 // To correctly resolve Mips GOT relocations, we need a mapping from
2311 // object's sections to GOTs.
2312 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
2313 SI != SE; ++SI) {
2314 if (SI->relocation_begin() != SI->relocation_end()) {
2315 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
2316 if (!RelSecOrErr)
2317 return make_error<RuntimeDyldError>(
2318 toString(RelSecOrErr.takeError()));
2320 section_iterator RelocatedSection = *RelSecOrErr;
2321 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
2322 assert (i != SectionMap.end());
2323 SectionToGOTMap[i->second] = GOTSectionID;
2326 GOTSymbolOffsets.clear();
2330 // Look for and record the EH frame section.
2331 ObjSectionToIDMap::iterator i, e;
2332 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
2333 const SectionRef &Section = i->first;
2335 StringRef Name;
2336 Expected<StringRef> NameOrErr = Section.getName();
2337 if (NameOrErr)
2338 Name = *NameOrErr;
2339 else
2340 consumeError(NameOrErr.takeError());
2342 if (Name == ".eh_frame") {
2343 UnregisteredEHFrameSections.push_back(i->second);
2344 break;
2348 GOTSectionID = 0;
2349 CurrentGOTIndex = 0;
2351 return Error::success();
2354 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
2355 return Obj.isELF();
2358 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
2359 unsigned RelTy = R.getType();
2360 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
2361 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
2362 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
2364 if (Arch == Triple::x86_64)
2365 return RelTy == ELF::R_X86_64_GOTPCREL ||
2366 RelTy == ELF::R_X86_64_GOTPCRELX ||
2367 RelTy == ELF::R_X86_64_GOT64 ||
2368 RelTy == ELF::R_X86_64_REX_GOTPCRELX;
2369 return false;
2372 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
2373 if (Arch != Triple::x86_64)
2374 return true; // Conservative answer
2376 switch (R.getType()) {
2377 default:
2378 return true; // Conservative answer
2381 case ELF::R_X86_64_GOTPCREL:
2382 case ELF::R_X86_64_GOTPCRELX:
2383 case ELF::R_X86_64_REX_GOTPCRELX:
2384 case ELF::R_X86_64_GOTPC64:
2385 case ELF::R_X86_64_GOT64:
2386 case ELF::R_X86_64_GOTOFF64:
2387 case ELF::R_X86_64_PC32:
2388 case ELF::R_X86_64_PC64:
2389 case ELF::R_X86_64_64:
2390 // We know that these reloation types won't need a stub function. This list
2391 // can be extended as needed.
2392 return false;
2396 } // namespace llvm