1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/BinaryFormat/ELF.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MemoryBuffer.h"
26 using namespace llvm::object
;
27 using namespace llvm::support::endian
;
29 #define DEBUG_TYPE "dyld"
31 static void or32le(void *P
, int32_t V
) { write32le(P
, read32le(P
) | V
); }
33 static void or32AArch64Imm(void *L
, uint64_t Imm
) {
34 or32le(L
, (Imm
& 0xFFF) << 10);
37 template <class T
> static void write(bool isBE
, void *P
, T V
) {
38 isBE
? write
<T
, support::big
>(P
, V
) : write
<T
, support::little
>(P
, V
);
41 static void write32AArch64Addr(void *L
, uint64_t Imm
) {
42 uint32_t ImmLo
= (Imm
& 0x3) << 29;
43 uint32_t ImmHi
= (Imm
& 0x1FFFFC) << 3;
44 uint64_t Mask
= (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L
, (read32le(L
) & ~Mask
) | ImmLo
| ImmHi
);
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val
, int Start
, int End
) {
51 uint64_t Mask
= ((uint64_t)1 << (End
+ 1 - Start
)) - 1;
52 return (Val
>> Start
) & Mask
;
57 template <class ELFT
> class DyldELFObject
: public ELFObjectFile
<ELFT
> {
58 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
60 typedef typename
ELFT::uint addr_type
;
62 DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
);
65 static Expected
<std::unique_ptr
<DyldELFObject
>>
66 create(MemoryBufferRef Wrapper
);
68 void updateSectionAddress(const SectionRef
&Sec
, uint64_t Addr
);
70 void updateSymbolAddress(const SymbolRef
&SymRef
, uint64_t Addr
);
72 // Methods for type inquiry through isa, cast and dyn_cast
73 static bool classof(const Binary
*v
) {
74 return (isa
<ELFObjectFile
<ELFT
>>(v
) &&
75 classof(cast
<ELFObjectFile
<ELFT
>>(v
)));
77 static bool classof(const ELFObjectFile
<ELFT
> *v
) {
78 return v
->isDyldType();
84 // The MemoryBuffer passed into this constructor is just a wrapper around the
85 // actual memory. Ultimately, the Binary parent class will take ownership of
86 // this MemoryBuffer object but not the underlying memory.
88 DyldELFObject
<ELFT
>::DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
)
89 : ELFObjectFile
<ELFT
>(std::move(Obj
)) {
90 this->isDyldELFObject
= true;
94 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
95 DyldELFObject
<ELFT
>::create(MemoryBufferRef Wrapper
) {
96 auto Obj
= ELFObjectFile
<ELFT
>::create(Wrapper
);
97 if (auto E
= Obj
.takeError())
99 std::unique_ptr
<DyldELFObject
<ELFT
>> Ret(
100 new DyldELFObject
<ELFT
>(std::move(*Obj
)));
101 return std::move(Ret
);
104 template <class ELFT
>
105 void DyldELFObject
<ELFT
>::updateSectionAddress(const SectionRef
&Sec
,
107 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
109 const_cast<Elf_Shdr
*>(reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
111 // This assumes the address passed in matches the target address bitness
112 // The template-based type cast handles everything else.
113 shdr
->sh_addr
= static_cast<addr_type
>(Addr
);
116 template <class ELFT
>
117 void DyldELFObject
<ELFT
>::updateSymbolAddress(const SymbolRef
&SymRef
,
120 Elf_Sym
*sym
= const_cast<Elf_Sym
*>(
121 ELFObjectFile
<ELFT
>::getSymbol(SymRef
.getRawDataRefImpl()));
123 // This assumes the address passed in matches the target address bitness
124 // The template-based type cast handles everything else.
125 sym
->st_value
= static_cast<addr_type
>(Addr
);
128 class LoadedELFObjectInfo final
129 : public LoadedObjectInfoHelper
<LoadedELFObjectInfo
,
130 RuntimeDyld::LoadedObjectInfo
> {
132 LoadedELFObjectInfo(RuntimeDyldImpl
&RTDyld
, ObjSectionToIDMap ObjSecToIDMap
)
133 : LoadedObjectInfoHelper(RTDyld
, std::move(ObjSecToIDMap
)) {}
135 OwningBinary
<ObjectFile
>
136 getObjectForDebug(const ObjectFile
&Obj
) const override
;
139 template <typename ELFT
>
140 static Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
141 createRTDyldELFObject(MemoryBufferRef Buffer
, const ObjectFile
&SourceObject
,
142 const LoadedELFObjectInfo
&L
) {
143 typedef typename
ELFT::Shdr Elf_Shdr
;
144 typedef typename
ELFT::uint addr_type
;
146 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>> ObjOrErr
=
147 DyldELFObject
<ELFT
>::create(Buffer
);
148 if (Error E
= ObjOrErr
.takeError())
151 std::unique_ptr
<DyldELFObject
<ELFT
>> Obj
= std::move(*ObjOrErr
);
153 // Iterate over all sections in the object.
154 auto SI
= SourceObject
.section_begin();
155 for (const auto &Sec
: Obj
->sections()) {
156 Expected
<StringRef
> NameOrErr
= Sec
.getName();
158 consumeError(NameOrErr
.takeError());
162 if (*NameOrErr
!= "") {
163 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
164 Elf_Shdr
*shdr
= const_cast<Elf_Shdr
*>(
165 reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
167 if (uint64_t SecLoadAddr
= L
.getSectionLoadAddress(*SI
)) {
168 // This assumes that the address passed in matches the target address
169 // bitness. The template-based type cast handles everything else.
170 shdr
->sh_addr
= static_cast<addr_type
>(SecLoadAddr
);
176 return std::move(Obj
);
179 static OwningBinary
<ObjectFile
>
180 createELFDebugObject(const ObjectFile
&Obj
, const LoadedELFObjectInfo
&L
) {
181 assert(Obj
.isELF() && "Not an ELF object file.");
183 std::unique_ptr
<MemoryBuffer
> Buffer
=
184 MemoryBuffer::getMemBufferCopy(Obj
.getData(), Obj
.getFileName());
186 Expected
<std::unique_ptr
<ObjectFile
>> DebugObj(nullptr);
187 handleAllErrors(DebugObj
.takeError());
188 if (Obj
.getBytesInAddress() == 4 && Obj
.isLittleEndian())
190 createRTDyldELFObject
<ELF32LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
191 else if (Obj
.getBytesInAddress() == 4 && !Obj
.isLittleEndian())
193 createRTDyldELFObject
<ELF32BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
194 else if (Obj
.getBytesInAddress() == 8 && !Obj
.isLittleEndian())
196 createRTDyldELFObject
<ELF64BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
197 else if (Obj
.getBytesInAddress() == 8 && Obj
.isLittleEndian())
199 createRTDyldELFObject
<ELF64LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
201 llvm_unreachable("Unexpected ELF format");
203 handleAllErrors(DebugObj
.takeError());
204 return OwningBinary
<ObjectFile
>(std::move(*DebugObj
), std::move(Buffer
));
207 OwningBinary
<ObjectFile
>
208 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile
&Obj
) const {
209 return createELFDebugObject(Obj
, *this);
212 } // anonymous namespace
216 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager
&MemMgr
,
217 JITSymbolResolver
&Resolver
)
218 : RuntimeDyldImpl(MemMgr
, Resolver
), GOTSectionID(0), CurrentGOTIndex(0) {}
219 RuntimeDyldELF::~RuntimeDyldELF() {}
221 void RuntimeDyldELF::registerEHFrames() {
222 for (int i
= 0, e
= UnregisteredEHFrameSections
.size(); i
!= e
; ++i
) {
223 SID EHFrameSID
= UnregisteredEHFrameSections
[i
];
224 uint8_t *EHFrameAddr
= Sections
[EHFrameSID
].getAddress();
225 uint64_t EHFrameLoadAddr
= Sections
[EHFrameSID
].getLoadAddress();
226 size_t EHFrameSize
= Sections
[EHFrameSID
].getSize();
227 MemMgr
.registerEHFrames(EHFrameAddr
, EHFrameLoadAddr
, EHFrameSize
);
229 UnregisteredEHFrameSections
.clear();
232 std::unique_ptr
<RuntimeDyldELF
>
233 llvm::RuntimeDyldELF::create(Triple::ArchType Arch
,
234 RuntimeDyld::MemoryManager
&MemMgr
,
235 JITSymbolResolver
&Resolver
) {
238 return std::make_unique
<RuntimeDyldELF
>(MemMgr
, Resolver
);
242 case Triple::mips64el
:
243 return std::make_unique
<RuntimeDyldELFMips
>(MemMgr
, Resolver
);
247 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>
248 RuntimeDyldELF::loadObject(const object::ObjectFile
&O
) {
249 if (auto ObjSectionToIDOrErr
= loadObjectImpl(O
))
250 return std::make_unique
<LoadedELFObjectInfo
>(*this, *ObjSectionToIDOrErr
);
253 raw_string_ostream
ErrStream(ErrorStr
);
254 logAllUnhandledErrors(ObjSectionToIDOrErr
.takeError(), ErrStream
);
259 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry
&Section
,
260 uint64_t Offset
, uint64_t Value
,
261 uint32_t Type
, int64_t Addend
,
262 uint64_t SymOffset
) {
265 report_fatal_error("Relocation type not implemented yet!");
267 case ELF::R_X86_64_NONE
:
269 case ELF::R_X86_64_8
: {
271 assert((int64_t)Value
<= INT8_MAX
&& (int64_t)Value
>= INT8_MIN
);
272 uint8_t TruncatedAddr
= (Value
& 0xFF);
273 *Section
.getAddressWithOffset(Offset
) = TruncatedAddr
;
274 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
275 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
278 case ELF::R_X86_64_16
: {
280 assert((int64_t)Value
<= INT16_MAX
&& (int64_t)Value
>= INT16_MIN
);
281 uint16_t TruncatedAddr
= (Value
& 0xFFFF);
282 support::ulittle16_t::ref(Section
.getAddressWithOffset(Offset
)) =
284 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
285 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
288 case ELF::R_X86_64_64
: {
289 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
291 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
292 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
295 case ELF::R_X86_64_32
:
296 case ELF::R_X86_64_32S
: {
298 assert((Type
== ELF::R_X86_64_32
&& (Value
<= UINT32_MAX
)) ||
299 (Type
== ELF::R_X86_64_32S
&&
300 ((int64_t)Value
<= INT32_MAX
&& (int64_t)Value
>= INT32_MIN
)));
301 uint32_t TruncatedAddr
= (Value
& 0xFFFFFFFF);
302 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
304 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
305 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
308 case ELF::R_X86_64_PC8
: {
309 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
310 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
311 assert(isInt
<8>(RealOffset
));
312 int8_t TruncOffset
= (RealOffset
& 0xFF);
313 Section
.getAddress()[Offset
] = TruncOffset
;
316 case ELF::R_X86_64_PC32
: {
317 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
318 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
319 assert(isInt
<32>(RealOffset
));
320 int32_t TruncOffset
= (RealOffset
& 0xFFFFFFFF);
321 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
325 case ELF::R_X86_64_PC64
: {
326 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
327 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
328 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
330 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset
) << " at "
331 << format("%p\n", FinalAddress
));
334 case ELF::R_X86_64_GOTOFF64
: {
335 // Compute Value - GOTBase.
336 uint64_t GOTBase
= 0;
337 for (const auto &Section
: Sections
) {
338 if (Section
.getName() == ".got") {
339 GOTBase
= Section
.getLoadAddressWithOffset(0);
343 assert(GOTBase
!= 0 && "missing GOT");
344 int64_t GOTOffset
= Value
- GOTBase
+ Addend
;
345 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) = GOTOffset
;
348 case ELF::R_X86_64_DTPMOD64
: {
349 // We only have one DSO, so the module id is always 1.
350 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) = 1;
353 case ELF::R_X86_64_DTPOFF64
:
354 case ELF::R_X86_64_TPOFF64
: {
355 // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
356 // offset in the *initial* TLS block. Since we are statically linking, all
357 // TLS blocks already exist in the initial block, so resolve both
358 // relocations equally.
359 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
363 case ELF::R_X86_64_DTPOFF32
:
364 case ELF::R_X86_64_TPOFF32
: {
365 // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
366 // be resolved equally.
367 int64_t RealValue
= Value
+ Addend
;
368 assert(RealValue
>= INT32_MIN
&& RealValue
<= INT32_MAX
);
369 int32_t TruncValue
= RealValue
;
370 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
377 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry
&Section
,
378 uint64_t Offset
, uint32_t Value
,
379 uint32_t Type
, int32_t Addend
) {
381 case ELF::R_386_32
: {
382 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
386 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
387 // reach any 32 bit address.
388 case ELF::R_386_PLT32
:
389 case ELF::R_386_PC32
: {
390 uint32_t FinalAddress
=
391 Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
392 uint32_t RealOffset
= Value
+ Addend
- FinalAddress
;
393 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
398 // There are other relocation types, but it appears these are the
399 // only ones currently used by the LLVM ELF object writer
400 report_fatal_error("Relocation type not implemented yet!");
405 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry
&Section
,
406 uint64_t Offset
, uint64_t Value
,
407 uint32_t Type
, int64_t Addend
) {
408 uint32_t *TargetPtr
=
409 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
410 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
411 // Data should use target endian. Code should always use little endian.
412 bool isBE
= Arch
== Triple::aarch64_be
;
414 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
415 << format("%llx", Section
.getAddressWithOffset(Offset
))
416 << " FinalAddress: 0x" << format("%llx", FinalAddress
)
417 << " Value: 0x" << format("%llx", Value
) << " Type: 0x"
418 << format("%x", Type
) << " Addend: 0x"
419 << format("%llx", Addend
) << "\n");
423 report_fatal_error("Relocation type not implemented yet!");
425 case ELF::R_AARCH64_NONE
:
427 case ELF::R_AARCH64_ABS16
: {
428 uint64_t Result
= Value
+ Addend
;
429 assert(static_cast<int64_t>(Result
) >= INT16_MIN
&& Result
< UINT16_MAX
);
430 write(isBE
, TargetPtr
, static_cast<uint16_t>(Result
& 0xffffU
));
433 case ELF::R_AARCH64_ABS32
: {
434 uint64_t Result
= Value
+ Addend
;
435 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&& Result
< UINT32_MAX
);
436 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
439 case ELF::R_AARCH64_ABS64
:
440 write(isBE
, TargetPtr
, Value
+ Addend
);
442 case ELF::R_AARCH64_PLT32
: {
443 uint64_t Result
= Value
+ Addend
- FinalAddress
;
444 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&&
445 static_cast<int64_t>(Result
) <= INT32_MAX
);
446 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
));
449 case ELF::R_AARCH64_PREL32
: {
450 uint64_t Result
= Value
+ Addend
- FinalAddress
;
451 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&&
452 static_cast<int64_t>(Result
) <= UINT32_MAX
);
453 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
456 case ELF::R_AARCH64_PREL64
:
457 write(isBE
, TargetPtr
, Value
+ Addend
- FinalAddress
);
459 case ELF::R_AARCH64_CONDBR19
: {
460 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
462 assert(isInt
<21>(BranchImm
));
463 *TargetPtr
&= 0xff00001fU
;
464 // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
465 or32le(TargetPtr
, (BranchImm
& 0x001FFFFC) << 3);
468 case ELF::R_AARCH64_TSTBR14
: {
469 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
471 assert(isInt
<16>(BranchImm
));
473 *TargetPtr
&= 0xfff8001fU
;
474 // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
475 or32le(TargetPtr
, (BranchImm
& 0x0FFFFFFC) << 3);
478 case ELF::R_AARCH64_CALL26
: // fallthrough
479 case ELF::R_AARCH64_JUMP26
: {
480 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
482 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
484 // "Check that -2^27 <= result < 2^27".
485 assert(isInt
<28>(BranchImm
));
486 or32le(TargetPtr
, (BranchImm
& 0x0FFFFFFC) >> 2);
489 case ELF::R_AARCH64_MOVW_UABS_G3
:
490 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF000000000000) >> 43);
492 case ELF::R_AARCH64_MOVW_UABS_G2_NC
:
493 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF00000000) >> 27);
495 case ELF::R_AARCH64_MOVW_UABS_G1_NC
:
496 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF0000) >> 11);
498 case ELF::R_AARCH64_MOVW_UABS_G0_NC
:
499 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF) << 5);
501 case ELF::R_AARCH64_ADR_PREL_PG_HI21
: {
502 // Operation: Page(S+A) - Page(P)
504 ((Value
+ Addend
) & ~0xfffULL
) - (FinalAddress
& ~0xfffULL
);
506 // Check that -2^32 <= X < 2^32
507 assert(isInt
<33>(Result
) && "overflow check failed for relocation");
509 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
510 // from bits 32:12 of X.
511 write32AArch64Addr(TargetPtr
, Result
>> 12);
514 case ELF::R_AARCH64_ADD_ABS_LO12_NC
:
516 // Immediate goes in bits 21:10 of LD/ST instruction, taken
517 // from bits 11:0 of X
518 or32AArch64Imm(TargetPtr
, Value
+ Addend
);
520 case ELF::R_AARCH64_LDST8_ABS_LO12_NC
:
522 // Immediate goes in bits 21:10 of LD/ST instruction, taken
523 // from bits 11:0 of X
524 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 0, 11));
526 case ELF::R_AARCH64_LDST16_ABS_LO12_NC
:
528 // Immediate goes in bits 21:10 of LD/ST instruction, taken
529 // from bits 11:1 of X
530 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 1, 11));
532 case ELF::R_AARCH64_LDST32_ABS_LO12_NC
:
534 // Immediate goes in bits 21:10 of LD/ST instruction, taken
535 // from bits 11:2 of X
536 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 2, 11));
538 case ELF::R_AARCH64_LDST64_ABS_LO12_NC
:
540 // Immediate goes in bits 21:10 of LD/ST instruction, taken
541 // from bits 11:3 of X
542 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 3, 11));
544 case ELF::R_AARCH64_LDST128_ABS_LO12_NC
:
546 // Immediate goes in bits 21:10 of LD/ST instruction, taken
547 // from bits 11:4 of X
548 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 4, 11));
550 case ELF::R_AARCH64_LD_PREL_LO19
: {
551 // Operation: S + A - P
552 uint64_t Result
= Value
+ Addend
- FinalAddress
;
554 // "Check that -2^20 <= result < 2^20".
555 assert(isInt
<21>(Result
));
557 *TargetPtr
&= 0xff00001fU
;
558 // Immediate goes in bits 23:5 of LD imm instruction, taken
559 // from bits 20:2 of X
560 *TargetPtr
|= ((Result
& 0xffc) << (5 - 2));
563 case ELF::R_AARCH64_ADR_PREL_LO21
: {
564 // Operation: S + A - P
565 uint64_t Result
= Value
+ Addend
- FinalAddress
;
567 // "Check that -2^20 <= result < 2^20".
568 assert(isInt
<21>(Result
));
570 *TargetPtr
&= 0x9f00001fU
;
571 // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
572 // from bits 20:0 of X
573 *TargetPtr
|= ((Result
& 0xffc) << (5 - 2));
574 *TargetPtr
|= (Result
& 0x3) << 29;
580 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry
&Section
,
581 uint64_t Offset
, uint32_t Value
,
582 uint32_t Type
, int32_t Addend
) {
583 // TODO: Add Thumb relocations.
584 uint32_t *TargetPtr
=
585 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
586 uint32_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
589 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
590 << Section
.getAddressWithOffset(Offset
)
591 << " FinalAddress: " << format("%p", FinalAddress
)
592 << " Value: " << format("%x", Value
)
593 << " Type: " << format("%x", Type
)
594 << " Addend: " << format("%x", Addend
) << "\n");
598 llvm_unreachable("Not implemented relocation type!");
600 case ELF::R_ARM_NONE
:
602 // Write a 31bit signed offset
603 case ELF::R_ARM_PREL31
:
604 support::ulittle32_t::ref
{TargetPtr
} =
605 (support::ulittle32_t::ref
{TargetPtr
} & 0x80000000) |
606 ((Value
- FinalAddress
) & ~0x80000000);
608 case ELF::R_ARM_TARGET1
:
609 case ELF::R_ARM_ABS32
:
610 support::ulittle32_t::ref
{TargetPtr
} = Value
;
612 // Write first 16 bit of 32 bit value to the mov instruction.
613 // Last 4 bit should be shifted.
614 case ELF::R_ARM_MOVW_ABS_NC
:
615 case ELF::R_ARM_MOVT_ABS
:
616 if (Type
== ELF::R_ARM_MOVW_ABS_NC
)
617 Value
= Value
& 0xFFFF;
618 else if (Type
== ELF::R_ARM_MOVT_ABS
)
619 Value
= (Value
>> 16) & 0xFFFF;
620 support::ulittle32_t::ref
{TargetPtr
} =
621 (support::ulittle32_t::ref
{TargetPtr
} & ~0x000F0FFF) | (Value
& 0xFFF) |
622 (((Value
>> 12) & 0xF) << 16);
624 // Write 24 bit relative value to the branch instruction.
625 case ELF::R_ARM_PC24
: // Fall through.
626 case ELF::R_ARM_CALL
: // Fall through.
627 case ELF::R_ARM_JUMP24
:
628 int32_t RelValue
= static_cast<int32_t>(Value
- FinalAddress
- 8);
629 RelValue
= (RelValue
& 0x03FFFFFC) >> 2;
630 assert((support::ulittle32_t::ref
{TargetPtr
} & 0xFFFFFF) == 0xFFFFFE);
631 support::ulittle32_t::ref
{TargetPtr
} =
632 (support::ulittle32_t::ref
{TargetPtr
} & 0xFF000000) | RelValue
;
637 void RuntimeDyldELF::setMipsABI(const ObjectFile
&Obj
) {
638 if (Arch
== Triple::UnknownArch
||
639 !StringRef(Triple::getArchTypePrefix(Arch
)).equals("mips")) {
640 IsMipsO32ABI
= false;
641 IsMipsN32ABI
= false;
642 IsMipsN64ABI
= false;
645 if (auto *E
= dyn_cast
<ELFObjectFileBase
>(&Obj
)) {
646 unsigned AbiVariant
= E
->getPlatformFlags();
647 IsMipsO32ABI
= AbiVariant
& ELF::EF_MIPS_ABI_O32
;
648 IsMipsN32ABI
= AbiVariant
& ELF::EF_MIPS_ABI2
;
650 IsMipsN64ABI
= Obj
.getFileFormatName().equals("elf64-mips");
653 // Return the .TOC. section and offset.
654 Error
RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase
&Obj
,
655 ObjSectionToIDMap
&LocalSections
,
656 RelocationValueRef
&Rel
) {
657 // Set a default SectionID in case we do not find a TOC section below.
658 // This may happen for references to TOC base base (sym@toc, .odp
659 // relocation) without a .toc directive. In this case just use the
660 // first section (which is usually the .odp) since the code won't
661 // reference the .toc base directly.
662 Rel
.SymbolName
= nullptr;
665 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
666 // order. The TOC starts where the first of these sections starts.
667 for (auto &Section
: Obj
.sections()) {
668 Expected
<StringRef
> NameOrErr
= Section
.getName();
670 return NameOrErr
.takeError();
671 StringRef SectionName
= *NameOrErr
;
673 if (SectionName
== ".got"
674 || SectionName
== ".toc"
675 || SectionName
== ".tocbss"
676 || SectionName
== ".plt") {
677 if (auto SectionIDOrErr
=
678 findOrEmitSection(Obj
, Section
, false, LocalSections
))
679 Rel
.SectionID
= *SectionIDOrErr
;
681 return SectionIDOrErr
.takeError();
686 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
687 // thus permitting a full 64 Kbytes segment.
690 return Error::success();
693 // Returns the sections and offset associated with the ODP entry referenced
695 Error
RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase
&Obj
,
696 ObjSectionToIDMap
&LocalSections
,
697 RelocationValueRef
&Rel
) {
698 // Get the ELF symbol value (st_value) to compare with Relocation offset in
700 for (section_iterator si
= Obj
.section_begin(), se
= Obj
.section_end();
703 Expected
<section_iterator
> RelSecOrErr
= si
->getRelocatedSection();
705 report_fatal_error(Twine(toString(RelSecOrErr
.takeError())));
707 section_iterator RelSecI
= *RelSecOrErr
;
708 if (RelSecI
== Obj
.section_end())
711 Expected
<StringRef
> NameOrErr
= RelSecI
->getName();
713 return NameOrErr
.takeError();
714 StringRef RelSectionName
= *NameOrErr
;
716 if (RelSectionName
!= ".opd")
719 for (elf_relocation_iterator i
= si
->relocation_begin(),
720 e
= si
->relocation_end();
722 // The R_PPC64_ADDR64 relocation indicates the first field
724 uint64_t TypeFunc
= i
->getType();
725 if (TypeFunc
!= ELF::R_PPC64_ADDR64
) {
730 uint64_t TargetSymbolOffset
= i
->getOffset();
731 symbol_iterator TargetSymbol
= i
->getSymbol();
733 if (auto AddendOrErr
= i
->getAddend())
734 Addend
= *AddendOrErr
;
736 return AddendOrErr
.takeError();
742 // Just check if following relocation is a R_PPC64_TOC
743 uint64_t TypeTOC
= i
->getType();
744 if (TypeTOC
!= ELF::R_PPC64_TOC
)
747 // Finally compares the Symbol value and the target symbol offset
748 // to check if this .opd entry refers to the symbol the relocation
750 if (Rel
.Addend
!= (int64_t)TargetSymbolOffset
)
753 section_iterator TSI
= Obj
.section_end();
754 if (auto TSIOrErr
= TargetSymbol
->getSection())
757 return TSIOrErr
.takeError();
758 assert(TSI
!= Obj
.section_end() && "TSI should refer to a valid section");
760 bool IsCode
= TSI
->isText();
761 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, *TSI
, IsCode
,
763 Rel
.SectionID
= *SectionIDOrErr
;
765 return SectionIDOrErr
.takeError();
766 Rel
.Addend
= (intptr_t)Addend
;
767 return Error::success();
770 llvm_unreachable("Attempting to get address of ODP entry!");
773 // Relocation masks following the #lo(value), #hi(value), #ha(value),
774 // #higher(value), #highera(value), #highest(value), and #highesta(value)
775 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
778 static inline uint16_t applyPPClo(uint64_t value
) { return value
& 0xffff; }
780 static inline uint16_t applyPPChi(uint64_t value
) {
781 return (value
>> 16) & 0xffff;
784 static inline uint16_t applyPPCha (uint64_t value
) {
785 return ((value
+ 0x8000) >> 16) & 0xffff;
788 static inline uint16_t applyPPChigher(uint64_t value
) {
789 return (value
>> 32) & 0xffff;
792 static inline uint16_t applyPPChighera (uint64_t value
) {
793 return ((value
+ 0x8000) >> 32) & 0xffff;
796 static inline uint16_t applyPPChighest(uint64_t value
) {
797 return (value
>> 48) & 0xffff;
800 static inline uint16_t applyPPChighesta (uint64_t value
) {
801 return ((value
+ 0x8000) >> 48) & 0xffff;
804 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry
&Section
,
805 uint64_t Offset
, uint64_t Value
,
806 uint32_t Type
, int64_t Addend
) {
807 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
810 report_fatal_error("Relocation type not implemented yet!");
812 case ELF::R_PPC_ADDR16_LO
:
813 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
815 case ELF::R_PPC_ADDR16_HI
:
816 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
818 case ELF::R_PPC_ADDR16_HA
:
819 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
824 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry
&Section
,
825 uint64_t Offset
, uint64_t Value
,
826 uint32_t Type
, int64_t Addend
) {
827 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
830 report_fatal_error("Relocation type not implemented yet!");
832 case ELF::R_PPC64_ADDR16
:
833 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
835 case ELF::R_PPC64_ADDR16_DS
:
836 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
838 case ELF::R_PPC64_ADDR16_LO
:
839 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
841 case ELF::R_PPC64_ADDR16_LO_DS
:
842 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
844 case ELF::R_PPC64_ADDR16_HI
:
845 case ELF::R_PPC64_ADDR16_HIGH
:
846 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
848 case ELF::R_PPC64_ADDR16_HA
:
849 case ELF::R_PPC64_ADDR16_HIGHA
:
850 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
852 case ELF::R_PPC64_ADDR16_HIGHER
:
853 writeInt16BE(LocalAddress
, applyPPChigher(Value
+ Addend
));
855 case ELF::R_PPC64_ADDR16_HIGHERA
:
856 writeInt16BE(LocalAddress
, applyPPChighera(Value
+ Addend
));
858 case ELF::R_PPC64_ADDR16_HIGHEST
:
859 writeInt16BE(LocalAddress
, applyPPChighest(Value
+ Addend
));
861 case ELF::R_PPC64_ADDR16_HIGHESTA
:
862 writeInt16BE(LocalAddress
, applyPPChighesta(Value
+ Addend
));
864 case ELF::R_PPC64_ADDR14
: {
865 assert(((Value
+ Addend
) & 3) == 0);
866 // Preserve the AA/LK bits in the branch instruction
867 uint8_t aalk
= *(LocalAddress
+ 3);
868 writeInt16BE(LocalAddress
+ 2, (aalk
& 3) | ((Value
+ Addend
) & 0xfffc));
870 case ELF::R_PPC64_REL16_LO
: {
871 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
872 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
873 writeInt16BE(LocalAddress
, applyPPClo(Delta
));
875 case ELF::R_PPC64_REL16_HI
: {
876 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
877 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
878 writeInt16BE(LocalAddress
, applyPPChi(Delta
));
880 case ELF::R_PPC64_REL16_HA
: {
881 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
882 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
883 writeInt16BE(LocalAddress
, applyPPCha(Delta
));
885 case ELF::R_PPC64_ADDR32
: {
886 int64_t Result
= static_cast<int64_t>(Value
+ Addend
);
887 if (SignExtend64
<32>(Result
) != Result
)
888 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
889 writeInt32BE(LocalAddress
, Result
);
891 case ELF::R_PPC64_REL24
: {
892 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
893 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
894 if (SignExtend64
<26>(delta
) != delta
)
895 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
896 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
897 uint32_t Inst
= readBytesUnaligned(LocalAddress
, 4);
898 writeInt32BE(LocalAddress
, (Inst
& 0xFC000003) | (delta
& 0x03FFFFFC));
900 case ELF::R_PPC64_REL32
: {
901 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
902 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
903 if (SignExtend64
<32>(delta
) != delta
)
904 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
905 writeInt32BE(LocalAddress
, delta
);
907 case ELF::R_PPC64_REL64
: {
908 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
909 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
910 writeInt64BE(LocalAddress
, Delta
);
912 case ELF::R_PPC64_ADDR64
:
913 writeInt64BE(LocalAddress
, Value
+ Addend
);
918 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry
&Section
,
919 uint64_t Offset
, uint64_t Value
,
920 uint32_t Type
, int64_t Addend
) {
921 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
924 report_fatal_error("Relocation type not implemented yet!");
926 case ELF::R_390_PC16DBL
:
927 case ELF::R_390_PLT16DBL
: {
928 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
929 assert(int16_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC16DBL overflow");
930 writeInt16BE(LocalAddress
, Delta
/ 2);
933 case ELF::R_390_PC32DBL
:
934 case ELF::R_390_PLT32DBL
: {
935 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
936 assert(int32_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC32DBL overflow");
937 writeInt32BE(LocalAddress
, Delta
/ 2);
940 case ELF::R_390_PC16
: {
941 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
942 assert(int16_t(Delta
) == Delta
&& "R_390_PC16 overflow");
943 writeInt16BE(LocalAddress
, Delta
);
946 case ELF::R_390_PC32
: {
947 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
948 assert(int32_t(Delta
) == Delta
&& "R_390_PC32 overflow");
949 writeInt32BE(LocalAddress
, Delta
);
952 case ELF::R_390_PC64
: {
953 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
954 writeInt64BE(LocalAddress
, Delta
);
958 *LocalAddress
= (uint8_t)(Value
+ Addend
);
961 writeInt16BE(LocalAddress
, Value
+ Addend
);
964 writeInt32BE(LocalAddress
, Value
+ Addend
);
967 writeInt64BE(LocalAddress
, Value
+ Addend
);
972 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry
&Section
,
973 uint64_t Offset
, uint64_t Value
,
974 uint32_t Type
, int64_t Addend
) {
975 bool isBE
= Arch
== Triple::bpfeb
;
979 report_fatal_error("Relocation type not implemented yet!");
981 case ELF::R_BPF_NONE
:
982 case ELF::R_BPF_64_64
:
983 case ELF::R_BPF_64_32
:
984 case ELF::R_BPF_64_NODYLD32
:
986 case ELF::R_BPF_64_ABS64
: {
987 write(isBE
, Section
.getAddressWithOffset(Offset
), Value
+ Addend
);
988 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
989 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
992 case ELF::R_BPF_64_ABS32
: {
994 assert(Value
<= UINT32_MAX
);
995 write(isBE
, Section
.getAddressWithOffset(Offset
), static_cast<uint32_t>(Value
));
996 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value
) << " at "
997 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
1003 // The target location for the relocation is described by RE.SectionID and
1004 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
1005 // SectionEntry has three members describing its location.
1006 // SectionEntry::Address is the address at which the section has been loaded
1007 // into memory in the current (host) process. SectionEntry::LoadAddress is the
1008 // address that the section will have in the target process.
1009 // SectionEntry::ObjAddress is the address of the bits for this section in the
1010 // original emitted object image (also in the current address space).
1012 // Relocations will be applied as if the section were loaded at
1013 // SectionEntry::LoadAddress, but they will be applied at an address based
1014 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
1015 // Target memory contents if they are required for value calculations.
1017 // The Value parameter here is the load address of the symbol for the
1018 // relocation to be applied. For relocations which refer to symbols in the
1019 // current object Value will be the LoadAddress of the section in which
1020 // the symbol resides (RE.Addend provides additional information about the
1021 // symbol location). For external symbols, Value will be the address of the
1022 // symbol in the target address space.
1023 void RuntimeDyldELF::resolveRelocation(const RelocationEntry
&RE
,
1025 const SectionEntry
&Section
= Sections
[RE
.SectionID
];
1026 return resolveRelocation(Section
, RE
.Offset
, Value
, RE
.RelType
, RE
.Addend
,
1027 RE
.SymOffset
, RE
.SectionID
);
1030 void RuntimeDyldELF::resolveRelocation(const SectionEntry
&Section
,
1031 uint64_t Offset
, uint64_t Value
,
1032 uint32_t Type
, int64_t Addend
,
1033 uint64_t SymOffset
, SID SectionID
) {
1035 case Triple::x86_64
:
1036 resolveX86_64Relocation(Section
, Offset
, Value
, Type
, Addend
, SymOffset
);
1039 resolveX86Relocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
1040 (uint32_t)(Addend
& 0xffffffffL
));
1042 case Triple::aarch64
:
1043 case Triple::aarch64_be
:
1044 resolveAArch64Relocation(Section
, Offset
, Value
, Type
, Addend
);
1046 case Triple::arm
: // Fall through.
1049 case Triple::thumbeb
:
1050 resolveARMRelocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
1051 (uint32_t)(Addend
& 0xffffffffL
));
1053 case Triple::ppc
: // Fall through.
1055 resolvePPC32Relocation(Section
, Offset
, Value
, Type
, Addend
);
1057 case Triple::ppc64
: // Fall through.
1058 case Triple::ppc64le
:
1059 resolvePPC64Relocation(Section
, Offset
, Value
, Type
, Addend
);
1061 case Triple::systemz
:
1062 resolveSystemZRelocation(Section
, Offset
, Value
, Type
, Addend
);
1066 resolveBPFRelocation(Section
, Offset
, Value
, Type
, Addend
);
1069 llvm_unreachable("Unsupported CPU type!");
1073 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID
, uint64_t Offset
) const {
1074 return (void *)(Sections
[SectionID
].getObjAddress() + Offset
);
1077 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID
, uint64_t Offset
, unsigned RelType
, RelocationValueRef Value
) {
1078 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
, Value
.Offset
);
1079 if (Value
.SymbolName
)
1080 addRelocationForSymbol(RE
, Value
.SymbolName
);
1082 addRelocationForSection(RE
, Value
.SectionID
);
1085 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType
,
1086 bool IsLocal
) const {
1088 case ELF::R_MICROMIPS_GOT16
:
1090 return ELF::R_MICROMIPS_LO16
;
1092 case ELF::R_MICROMIPS_HI16
:
1093 return ELF::R_MICROMIPS_LO16
;
1094 case ELF::R_MIPS_GOT16
:
1096 return ELF::R_MIPS_LO16
;
1098 case ELF::R_MIPS_HI16
:
1099 return ELF::R_MIPS_LO16
;
1100 case ELF::R_MIPS_PCHI16
:
1101 return ELF::R_MIPS_PCLO16
;
1105 return ELF::R_MIPS_NONE
;
1108 // Sometimes we don't need to create thunk for a branch.
1109 // This typically happens when branch target is located
1110 // in the same object file. In such case target is either
1111 // a weak symbol or symbol in a different executable section.
1112 // This function checks if branch target is located in the
1113 // same object file and if distance between source and target
1114 // fits R_AARCH64_CALL26 relocation. If both conditions are
1115 // met, it emits direct jump to the target and returns true.
1116 // Otherwise false is returned and thunk is created.
1117 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1118 unsigned SectionID
, relocation_iterator RelI
,
1119 const RelocationValueRef
&Value
) {
1121 if (Value
.SymbolName
) {
1122 auto Loc
= GlobalSymbolTable
.find(Value
.SymbolName
);
1124 // Don't create direct branch for external symbols.
1125 if (Loc
== GlobalSymbolTable
.end())
1128 const auto &SymInfo
= Loc
->second
;
1130 uint64_t(Sections
[SymInfo
.getSectionID()].getLoadAddressWithOffset(
1131 SymInfo
.getOffset()));
1133 Address
= uint64_t(Sections
[Value
.SectionID
].getLoadAddress());
1135 uint64_t Offset
= RelI
->getOffset();
1136 uint64_t SourceAddress
= Sections
[SectionID
].getLoadAddressWithOffset(Offset
);
1138 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1139 // If distance between source and target is out of range then we should
1141 if (!isInt
<28>(Address
+ Value
.Addend
- SourceAddress
))
1144 resolveRelocation(Sections
[SectionID
], Offset
, Address
, RelI
->getType(),
1150 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID
,
1151 const RelocationValueRef
&Value
,
1152 relocation_iterator RelI
,
1155 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1156 SectionEntry
&Section
= Sections
[SectionID
];
1158 uint64_t Offset
= RelI
->getOffset();
1159 unsigned RelType
= RelI
->getType();
1160 // Look for an existing stub.
1161 StubMap::const_iterator i
= Stubs
.find(Value
);
1162 if (i
!= Stubs
.end()) {
1163 resolveRelocation(Section
, Offset
,
1164 (uint64_t)Section
.getAddressWithOffset(i
->second
),
1166 LLVM_DEBUG(dbgs() << " Stub function found\n");
1167 } else if (!resolveAArch64ShortBranch(SectionID
, RelI
, Value
)) {
1168 // Create a new stub function.
1169 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1170 Stubs
[Value
] = Section
.getStubOffset();
1171 uint8_t *StubTargetAddr
= createStubFunction(
1172 Section
.getAddressWithOffset(Section
.getStubOffset()));
1174 RelocationEntry
REmovz_g3(SectionID
, StubTargetAddr
- Section
.getAddress(),
1175 ELF::R_AARCH64_MOVW_UABS_G3
, Value
.Addend
);
1176 RelocationEntry
REmovk_g2(SectionID
,
1177 StubTargetAddr
- Section
.getAddress() + 4,
1178 ELF::R_AARCH64_MOVW_UABS_G2_NC
, Value
.Addend
);
1179 RelocationEntry
REmovk_g1(SectionID
,
1180 StubTargetAddr
- Section
.getAddress() + 8,
1181 ELF::R_AARCH64_MOVW_UABS_G1_NC
, Value
.Addend
);
1182 RelocationEntry
REmovk_g0(SectionID
,
1183 StubTargetAddr
- Section
.getAddress() + 12,
1184 ELF::R_AARCH64_MOVW_UABS_G0_NC
, Value
.Addend
);
1186 if (Value
.SymbolName
) {
1187 addRelocationForSymbol(REmovz_g3
, Value
.SymbolName
);
1188 addRelocationForSymbol(REmovk_g2
, Value
.SymbolName
);
1189 addRelocationForSymbol(REmovk_g1
, Value
.SymbolName
);
1190 addRelocationForSymbol(REmovk_g0
, Value
.SymbolName
);
1192 addRelocationForSection(REmovz_g3
, Value
.SectionID
);
1193 addRelocationForSection(REmovk_g2
, Value
.SectionID
);
1194 addRelocationForSection(REmovk_g1
, Value
.SectionID
);
1195 addRelocationForSection(REmovk_g0
, Value
.SectionID
);
1197 resolveRelocation(Section
, Offset
,
1198 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(
1199 Section
.getStubOffset())),
1201 Section
.advanceStubOffset(getMaxStubSize());
1205 Expected
<relocation_iterator
>
1206 RuntimeDyldELF::processRelocationRef(
1207 unsigned SectionID
, relocation_iterator RelI
, const ObjectFile
&O
,
1208 ObjSectionToIDMap
&ObjSectionToID
, StubMap
&Stubs
) {
1209 const auto &Obj
= cast
<ELFObjectFileBase
>(O
);
1210 uint64_t RelType
= RelI
->getType();
1212 if (Expected
<int64_t> AddendOrErr
= ELFRelocationRef(*RelI
).getAddend())
1213 Addend
= *AddendOrErr
;
1215 consumeError(AddendOrErr
.takeError());
1216 elf_symbol_iterator Symbol
= RelI
->getSymbol();
1218 // Obtain the symbol name which is referenced in the relocation
1219 StringRef TargetName
;
1220 if (Symbol
!= Obj
.symbol_end()) {
1221 if (auto TargetNameOrErr
= Symbol
->getName())
1222 TargetName
= *TargetNameOrErr
;
1224 return TargetNameOrErr
.takeError();
1226 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType
<< " Addend: " << Addend
1227 << " TargetName: " << TargetName
<< "\n");
1228 RelocationValueRef Value
;
1229 // First search for the symbol in the local symbol table
1230 SymbolRef::Type SymType
= SymbolRef::ST_Unknown
;
1232 // Search for the symbol in the global symbol table
1233 RTDyldSymbolTable::const_iterator gsi
= GlobalSymbolTable
.end();
1234 if (Symbol
!= Obj
.symbol_end()) {
1235 gsi
= GlobalSymbolTable
.find(TargetName
.data());
1236 Expected
<SymbolRef::Type
> SymTypeOrErr
= Symbol
->getType();
1237 if (!SymTypeOrErr
) {
1239 raw_string_ostream
OS(Buf
);
1240 logAllUnhandledErrors(SymTypeOrErr
.takeError(), OS
);
1241 report_fatal_error(Twine(OS
.str()));
1243 SymType
= *SymTypeOrErr
;
1245 if (gsi
!= GlobalSymbolTable
.end()) {
1246 const auto &SymInfo
= gsi
->second
;
1247 Value
.SectionID
= SymInfo
.getSectionID();
1248 Value
.Offset
= SymInfo
.getOffset();
1249 Value
.Addend
= SymInfo
.getOffset() + Addend
;
1252 case SymbolRef::ST_Debug
: {
1253 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1254 // and can be changed by another developers. Maybe best way is add
1255 // a new symbol type ST_Section to SymbolRef and use it.
1256 auto SectionOrErr
= Symbol
->getSection();
1257 if (!SectionOrErr
) {
1259 raw_string_ostream
OS(Buf
);
1260 logAllUnhandledErrors(SectionOrErr
.takeError(), OS
);
1261 report_fatal_error(Twine(OS
.str()));
1263 section_iterator si
= *SectionOrErr
;
1264 if (si
== Obj
.section_end())
1265 llvm_unreachable("Symbol section not found, bad object file format!");
1266 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1267 bool isCode
= si
->isText();
1268 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, (*si
), isCode
,
1270 Value
.SectionID
= *SectionIDOrErr
;
1272 return SectionIDOrErr
.takeError();
1273 Value
.Addend
= Addend
;
1276 case SymbolRef::ST_Data
:
1277 case SymbolRef::ST_Function
:
1278 case SymbolRef::ST_Unknown
: {
1279 Value
.SymbolName
= TargetName
.data();
1280 Value
.Addend
= Addend
;
1282 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1283 // will manifest here as a NULL symbol name.
1284 // We can set this as a valid (but empty) symbol name, and rely
1285 // on addRelocationForSymbol to handle this.
1286 if (!Value
.SymbolName
)
1287 Value
.SymbolName
= "";
1291 llvm_unreachable("Unresolved symbol type!");
1296 uint64_t Offset
= RelI
->getOffset();
1298 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID
<< " Offset: " << Offset
1300 if ((Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)) {
1301 if ((RelType
== ELF::R_AARCH64_CALL26
||
1302 RelType
== ELF::R_AARCH64_JUMP26
) &&
1303 MemMgr
.allowStubAllocation()) {
1304 resolveAArch64Branch(SectionID
, Value
, RelI
, Stubs
);
1305 } else if (RelType
== ELF::R_AARCH64_ADR_GOT_PAGE
) {
1306 // Create new GOT entry or find existing one. If GOT entry is
1307 // to be created, then we also emit ABS64 relocation for it.
1308 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1309 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1310 ELF::R_AARCH64_ADR_PREL_PG_HI21
);
1312 } else if (RelType
== ELF::R_AARCH64_LD64_GOT_LO12_NC
) {
1313 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1314 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1315 ELF::R_AARCH64_LDST64_ABS_LO12_NC
);
1317 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1319 } else if (Arch
== Triple::arm
) {
1320 if (RelType
== ELF::R_ARM_PC24
|| RelType
== ELF::R_ARM_CALL
||
1321 RelType
== ELF::R_ARM_JUMP24
) {
1322 // This is an ARM branch relocation, need to use a stub function.
1323 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1324 SectionEntry
&Section
= Sections
[SectionID
];
1326 // Look for an existing stub.
1327 StubMap::const_iterator i
= Stubs
.find(Value
);
1328 if (i
!= Stubs
.end()) {
1331 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(i
->second
)),
1333 LLVM_DEBUG(dbgs() << " Stub function found\n");
1335 // Create a new stub function.
1336 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1337 Stubs
[Value
] = Section
.getStubOffset();
1338 uint8_t *StubTargetAddr
= createStubFunction(
1339 Section
.getAddressWithOffset(Section
.getStubOffset()));
1340 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1341 ELF::R_ARM_ABS32
, Value
.Addend
);
1342 if (Value
.SymbolName
)
1343 addRelocationForSymbol(RE
, Value
.SymbolName
);
1345 addRelocationForSection(RE
, Value
.SectionID
);
1347 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1348 Section
.getAddressWithOffset(
1349 Section
.getStubOffset())),
1351 Section
.advanceStubOffset(getMaxStubSize());
1354 uint32_t *Placeholder
=
1355 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID
, Offset
));
1356 if (RelType
== ELF::R_ARM_PREL31
|| RelType
== ELF::R_ARM_TARGET1
||
1357 RelType
== ELF::R_ARM_ABS32
) {
1358 Value
.Addend
+= *Placeholder
;
1359 } else if (RelType
== ELF::R_ARM_MOVW_ABS_NC
|| RelType
== ELF::R_ARM_MOVT_ABS
) {
1360 // See ELF for ARM documentation
1361 Value
.Addend
+= (int16_t)((*Placeholder
& 0xFFF) | (((*Placeholder
>> 16) & 0xF) << 12));
1363 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1365 } else if (IsMipsO32ABI
) {
1366 uint8_t *Placeholder
= reinterpret_cast<uint8_t *>(
1367 computePlaceholderAddress(SectionID
, Offset
));
1368 uint32_t Opcode
= readBytesUnaligned(Placeholder
, 4);
1369 if (RelType
== ELF::R_MIPS_26
) {
1370 // This is an Mips branch relocation, need to use a stub function.
1371 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1372 SectionEntry
&Section
= Sections
[SectionID
];
1374 // Extract the addend from the instruction.
1375 // We shift up by two since the Value will be down shifted again
1376 // when applying the relocation.
1377 uint32_t Addend
= (Opcode
& 0x03ffffff) << 2;
1379 Value
.Addend
+= Addend
;
1381 // Look up for existing stub.
1382 StubMap::const_iterator i
= Stubs
.find(Value
);
1383 if (i
!= Stubs
.end()) {
1384 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1385 addRelocationForSection(RE
, SectionID
);
1386 LLVM_DEBUG(dbgs() << " Stub function found\n");
1388 // Create a new stub function.
1389 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1390 Stubs
[Value
] = Section
.getStubOffset();
1392 unsigned AbiVariant
= Obj
.getPlatformFlags();
1394 uint8_t *StubTargetAddr
= createStubFunction(
1395 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1397 // Creating Hi and Lo relocations for the filled stub instructions.
1398 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1399 ELF::R_MIPS_HI16
, Value
.Addend
);
1400 RelocationEntry
RELo(SectionID
,
1401 StubTargetAddr
- Section
.getAddress() + 4,
1402 ELF::R_MIPS_LO16
, Value
.Addend
);
1404 if (Value
.SymbolName
) {
1405 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1406 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1408 addRelocationForSection(REHi
, Value
.SectionID
);
1409 addRelocationForSection(RELo
, Value
.SectionID
);
1412 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1413 addRelocationForSection(RE
, SectionID
);
1414 Section
.advanceStubOffset(getMaxStubSize());
1416 } else if (RelType
== ELF::R_MIPS_HI16
|| RelType
== ELF::R_MIPS_PCHI16
) {
1417 int64_t Addend
= (Opcode
& 0x0000ffff) << 16;
1418 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1419 PendingRelocs
.push_back(std::make_pair(Value
, RE
));
1420 } else if (RelType
== ELF::R_MIPS_LO16
|| RelType
== ELF::R_MIPS_PCLO16
) {
1421 int64_t Addend
= Value
.Addend
+ SignExtend32
<16>(Opcode
& 0x0000ffff);
1422 for (auto I
= PendingRelocs
.begin(); I
!= PendingRelocs
.end();) {
1423 const RelocationValueRef
&MatchingValue
= I
->first
;
1424 RelocationEntry
&Reloc
= I
->second
;
1425 if (MatchingValue
== Value
&&
1426 RelType
== getMatchingLoRelocation(Reloc
.RelType
) &&
1427 SectionID
== Reloc
.SectionID
) {
1428 Reloc
.Addend
+= Addend
;
1429 if (Value
.SymbolName
)
1430 addRelocationForSymbol(Reloc
, Value
.SymbolName
);
1432 addRelocationForSection(Reloc
, Value
.SectionID
);
1433 I
= PendingRelocs
.erase(I
);
1437 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1438 if (Value
.SymbolName
)
1439 addRelocationForSymbol(RE
, Value
.SymbolName
);
1441 addRelocationForSection(RE
, Value
.SectionID
);
1443 if (RelType
== ELF::R_MIPS_32
)
1444 Value
.Addend
+= Opcode
;
1445 else if (RelType
== ELF::R_MIPS_PC16
)
1446 Value
.Addend
+= SignExtend32
<18>((Opcode
& 0x0000ffff) << 2);
1447 else if (RelType
== ELF::R_MIPS_PC19_S2
)
1448 Value
.Addend
+= SignExtend32
<21>((Opcode
& 0x0007ffff) << 2);
1449 else if (RelType
== ELF::R_MIPS_PC21_S2
)
1450 Value
.Addend
+= SignExtend32
<23>((Opcode
& 0x001fffff) << 2);
1451 else if (RelType
== ELF::R_MIPS_PC26_S2
)
1452 Value
.Addend
+= SignExtend32
<28>((Opcode
& 0x03ffffff) << 2);
1453 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1455 } else if (IsMipsN32ABI
|| IsMipsN64ABI
) {
1456 uint32_t r_type
= RelType
& 0xff;
1457 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1458 if (r_type
== ELF::R_MIPS_CALL16
|| r_type
== ELF::R_MIPS_GOT_PAGE
1459 || r_type
== ELF::R_MIPS_GOT_DISP
) {
1460 StringMap
<uint64_t>::iterator i
= GOTSymbolOffsets
.find(TargetName
);
1461 if (i
!= GOTSymbolOffsets
.end())
1462 RE
.SymOffset
= i
->second
;
1464 RE
.SymOffset
= allocateGOTEntries(1);
1465 GOTSymbolOffsets
[TargetName
] = RE
.SymOffset
;
1467 if (Value
.SymbolName
)
1468 addRelocationForSymbol(RE
, Value
.SymbolName
);
1470 addRelocationForSection(RE
, Value
.SectionID
);
1471 } else if (RelType
== ELF::R_MIPS_26
) {
1472 // This is an Mips branch relocation, need to use a stub function.
1473 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1474 SectionEntry
&Section
= Sections
[SectionID
];
1476 // Look up for existing stub.
1477 StubMap::const_iterator i
= Stubs
.find(Value
);
1478 if (i
!= Stubs
.end()) {
1479 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1480 addRelocationForSection(RE
, SectionID
);
1481 LLVM_DEBUG(dbgs() << " Stub function found\n");
1483 // Create a new stub function.
1484 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1485 Stubs
[Value
] = Section
.getStubOffset();
1487 unsigned AbiVariant
= Obj
.getPlatformFlags();
1489 uint8_t *StubTargetAddr
= createStubFunction(
1490 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1493 // Creating Hi and Lo relocations for the filled stub instructions.
1494 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1495 ELF::R_MIPS_HI16
, Value
.Addend
);
1496 RelocationEntry
RELo(SectionID
,
1497 StubTargetAddr
- Section
.getAddress() + 4,
1498 ELF::R_MIPS_LO16
, Value
.Addend
);
1499 if (Value
.SymbolName
) {
1500 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1501 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1503 addRelocationForSection(REHi
, Value
.SectionID
);
1504 addRelocationForSection(RELo
, Value
.SectionID
);
1507 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1509 RelocationEntry
REHighest(SectionID
,
1510 StubTargetAddr
- Section
.getAddress(),
1511 ELF::R_MIPS_HIGHEST
, Value
.Addend
);
1512 RelocationEntry
REHigher(SectionID
,
1513 StubTargetAddr
- Section
.getAddress() + 4,
1514 ELF::R_MIPS_HIGHER
, Value
.Addend
);
1515 RelocationEntry
REHi(SectionID
,
1516 StubTargetAddr
- Section
.getAddress() + 12,
1517 ELF::R_MIPS_HI16
, Value
.Addend
);
1518 RelocationEntry
RELo(SectionID
,
1519 StubTargetAddr
- Section
.getAddress() + 20,
1520 ELF::R_MIPS_LO16
, Value
.Addend
);
1521 if (Value
.SymbolName
) {
1522 addRelocationForSymbol(REHighest
, Value
.SymbolName
);
1523 addRelocationForSymbol(REHigher
, Value
.SymbolName
);
1524 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1525 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1527 addRelocationForSection(REHighest
, Value
.SectionID
);
1528 addRelocationForSection(REHigher
, Value
.SectionID
);
1529 addRelocationForSection(REHi
, Value
.SectionID
);
1530 addRelocationForSection(RELo
, Value
.SectionID
);
1533 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1534 addRelocationForSection(RE
, SectionID
);
1535 Section
.advanceStubOffset(getMaxStubSize());
1538 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1541 } else if (Arch
== Triple::ppc64
|| Arch
== Triple::ppc64le
) {
1542 if (RelType
== ELF::R_PPC64_REL24
) {
1543 // Determine ABI variant in use for this object.
1544 unsigned AbiVariant
= Obj
.getPlatformFlags();
1545 AbiVariant
&= ELF::EF_PPC64_ABI
;
1546 // A PPC branch relocation will need a stub function if the target is
1547 // an external symbol (either Value.SymbolName is set, or SymType is
1548 // Symbol::ST_Unknown) or if the target address is not within the
1549 // signed 24-bits branch address.
1550 SectionEntry
&Section
= Sections
[SectionID
];
1551 uint8_t *Target
= Section
.getAddressWithOffset(Offset
);
1552 bool RangeOverflow
= false;
1553 bool IsExtern
= Value
.SymbolName
|| SymType
== SymbolRef::ST_Unknown
;
1555 if (AbiVariant
!= 2) {
1556 // In the ELFv1 ABI, a function call may point to the .opd entry,
1557 // so the final symbol value is calculated based on the relocation
1558 // values in the .opd section.
1559 if (auto Err
= findOPDEntrySection(Obj
, ObjSectionToID
, Value
))
1560 return std::move(Err
);
1562 // In the ELFv2 ABI, a function symbol may provide a local entry
1563 // point, which must be used for direct calls.
1564 if (Value
.SectionID
== SectionID
){
1565 uint8_t SymOther
= Symbol
->getOther();
1566 Value
.Addend
+= ELF::decodePPC64LocalEntryOffset(SymOther
);
1569 uint8_t *RelocTarget
=
1570 Sections
[Value
.SectionID
].getAddressWithOffset(Value
.Addend
);
1571 int64_t delta
= static_cast<int64_t>(Target
- RelocTarget
);
1572 // If it is within 26-bits branch range, just set the branch target
1573 if (SignExtend64
<26>(delta
) != delta
) {
1574 RangeOverflow
= true;
1575 } else if ((AbiVariant
!= 2) ||
1576 (AbiVariant
== 2 && Value
.SectionID
== SectionID
)) {
1577 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1578 addRelocationForSection(RE
, Value
.SectionID
);
1581 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
) ||
1583 // It is an external symbol (either Value.SymbolName is set, or
1584 // SymType is SymbolRef::ST_Unknown) or out of range.
1585 StubMap::const_iterator i
= Stubs
.find(Value
);
1586 if (i
!= Stubs
.end()) {
1587 // Symbol function stub already created, just relocate to it
1588 resolveRelocation(Section
, Offset
,
1589 reinterpret_cast<uint64_t>(
1590 Section
.getAddressWithOffset(i
->second
)),
1592 LLVM_DEBUG(dbgs() << " Stub function found\n");
1594 // Create a new stub function.
1595 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1596 Stubs
[Value
] = Section
.getStubOffset();
1597 uint8_t *StubTargetAddr
= createStubFunction(
1598 Section
.getAddressWithOffset(Section
.getStubOffset()),
1600 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1601 ELF::R_PPC64_ADDR64
, Value
.Addend
);
1603 // Generates the 64-bits address loads as exemplified in section
1604 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1605 // apply to the low part of the instructions, so we have to update
1606 // the offset according to the target endianness.
1607 uint64_t StubRelocOffset
= StubTargetAddr
- Section
.getAddress();
1608 if (!IsTargetLittleEndian
)
1609 StubRelocOffset
+= 2;
1611 RelocationEntry
REhst(SectionID
, StubRelocOffset
+ 0,
1612 ELF::R_PPC64_ADDR16_HIGHEST
, Value
.Addend
);
1613 RelocationEntry
REhr(SectionID
, StubRelocOffset
+ 4,
1614 ELF::R_PPC64_ADDR16_HIGHER
, Value
.Addend
);
1615 RelocationEntry
REh(SectionID
, StubRelocOffset
+ 12,
1616 ELF::R_PPC64_ADDR16_HI
, Value
.Addend
);
1617 RelocationEntry
REl(SectionID
, StubRelocOffset
+ 16,
1618 ELF::R_PPC64_ADDR16_LO
, Value
.Addend
);
1620 if (Value
.SymbolName
) {
1621 addRelocationForSymbol(REhst
, Value
.SymbolName
);
1622 addRelocationForSymbol(REhr
, Value
.SymbolName
);
1623 addRelocationForSymbol(REh
, Value
.SymbolName
);
1624 addRelocationForSymbol(REl
, Value
.SymbolName
);
1626 addRelocationForSection(REhst
, Value
.SectionID
);
1627 addRelocationForSection(REhr
, Value
.SectionID
);
1628 addRelocationForSection(REh
, Value
.SectionID
);
1629 addRelocationForSection(REl
, Value
.SectionID
);
1632 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1633 Section
.getAddressWithOffset(
1634 Section
.getStubOffset())),
1636 Section
.advanceStubOffset(getMaxStubSize());
1638 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
)) {
1639 // Restore the TOC for external calls
1640 if (AbiVariant
== 2)
1641 writeInt32BE(Target
+ 4, 0xE8410018); // ld r2,24(r1)
1643 writeInt32BE(Target
+ 4, 0xE8410028); // ld r2,40(r1)
1646 } else if (RelType
== ELF::R_PPC64_TOC16
||
1647 RelType
== ELF::R_PPC64_TOC16_DS
||
1648 RelType
== ELF::R_PPC64_TOC16_LO
||
1649 RelType
== ELF::R_PPC64_TOC16_LO_DS
||
1650 RelType
== ELF::R_PPC64_TOC16_HI
||
1651 RelType
== ELF::R_PPC64_TOC16_HA
) {
1652 // These relocations are supposed to subtract the TOC address from
1653 // the final value. This does not fit cleanly into the RuntimeDyld
1654 // scheme, since there may be *two* sections involved in determining
1655 // the relocation value (the section of the symbol referred to by the
1656 // relocation, and the TOC section associated with the current module).
1658 // Fortunately, these relocations are currently only ever generated
1659 // referring to symbols that themselves reside in the TOC, which means
1660 // that the two sections are actually the same. Thus they cancel out
1661 // and we can immediately resolve the relocation right now.
1663 case ELF::R_PPC64_TOC16
: RelType
= ELF::R_PPC64_ADDR16
; break;
1664 case ELF::R_PPC64_TOC16_DS
: RelType
= ELF::R_PPC64_ADDR16_DS
; break;
1665 case ELF::R_PPC64_TOC16_LO
: RelType
= ELF::R_PPC64_ADDR16_LO
; break;
1666 case ELF::R_PPC64_TOC16_LO_DS
: RelType
= ELF::R_PPC64_ADDR16_LO_DS
; break;
1667 case ELF::R_PPC64_TOC16_HI
: RelType
= ELF::R_PPC64_ADDR16_HI
; break;
1668 case ELF::R_PPC64_TOC16_HA
: RelType
= ELF::R_PPC64_ADDR16_HA
; break;
1669 default: llvm_unreachable("Wrong relocation type.");
1672 RelocationValueRef TOCValue
;
1673 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, TOCValue
))
1674 return std::move(Err
);
1675 if (Value
.SymbolName
|| Value
.SectionID
!= TOCValue
.SectionID
)
1676 llvm_unreachable("Unsupported TOC relocation.");
1677 Value
.Addend
-= TOCValue
.Addend
;
1678 resolveRelocation(Sections
[SectionID
], Offset
, Value
.Addend
, RelType
, 0);
1680 // There are two ways to refer to the TOC address directly: either
1681 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1682 // ignored), or via any relocation that refers to the magic ".TOC."
1683 // symbols (in which case the addend is respected).
1684 if (RelType
== ELF::R_PPC64_TOC
) {
1685 RelType
= ELF::R_PPC64_ADDR64
;
1686 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1687 return std::move(Err
);
1688 } else if (TargetName
== ".TOC.") {
1689 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1690 return std::move(Err
);
1691 Value
.Addend
+= Addend
;
1694 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1696 if (Value
.SymbolName
)
1697 addRelocationForSymbol(RE
, Value
.SymbolName
);
1699 addRelocationForSection(RE
, Value
.SectionID
);
1701 } else if (Arch
== Triple::systemz
&&
1702 (RelType
== ELF::R_390_PLT32DBL
|| RelType
== ELF::R_390_GOTENT
)) {
1703 // Create function stubs for both PLT and GOT references, regardless of
1704 // whether the GOT reference is to data or code. The stub contains the
1705 // full address of the symbol, as needed by GOT references, and the
1706 // executable part only adds an overhead of 8 bytes.
1708 // We could try to conserve space by allocating the code and data
1709 // parts of the stub separately. However, as things stand, we allocate
1710 // a stub for every relocation, so using a GOT in JIT code should be
1711 // no less space efficient than using an explicit constant pool.
1712 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1713 SectionEntry
&Section
= Sections
[SectionID
];
1715 // Look for an existing stub.
1716 StubMap::const_iterator i
= Stubs
.find(Value
);
1717 uintptr_t StubAddress
;
1718 if (i
!= Stubs
.end()) {
1719 StubAddress
= uintptr_t(Section
.getAddressWithOffset(i
->second
));
1720 LLVM_DEBUG(dbgs() << " Stub function found\n");
1722 // Create a new stub function.
1723 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1725 uintptr_t BaseAddress
= uintptr_t(Section
.getAddress());
1726 uintptr_t StubAlignment
= getStubAlignment();
1728 (BaseAddress
+ Section
.getStubOffset() + StubAlignment
- 1) &
1730 unsigned StubOffset
= StubAddress
- BaseAddress
;
1732 Stubs
[Value
] = StubOffset
;
1733 createStubFunction((uint8_t *)StubAddress
);
1734 RelocationEntry
RE(SectionID
, StubOffset
+ 8, ELF::R_390_64
,
1736 if (Value
.SymbolName
)
1737 addRelocationForSymbol(RE
, Value
.SymbolName
);
1739 addRelocationForSection(RE
, Value
.SectionID
);
1740 Section
.advanceStubOffset(getMaxStubSize());
1743 if (RelType
== ELF::R_390_GOTENT
)
1744 resolveRelocation(Section
, Offset
, StubAddress
+ 8, ELF::R_390_PC32DBL
,
1747 resolveRelocation(Section
, Offset
, StubAddress
, RelType
, Addend
);
1748 } else if (Arch
== Triple::x86_64
) {
1749 if (RelType
== ELF::R_X86_64_PLT32
) {
1750 // The way the PLT relocations normally work is that the linker allocates
1752 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1753 // entry will then jump to an address provided by the GOT. On first call,
1755 // GOT address will point back into PLT code that resolves the symbol. After
1756 // the first call, the GOT entry points to the actual function.
1758 // For local functions we're ignoring all of that here and just replacing
1759 // the PLT32 relocation type with PC32, which will translate the relocation
1760 // into a PC-relative call directly to the function. For external symbols we
1761 // can't be sure the function will be within 2^32 bytes of the call site, so
1762 // we need to create a stub, which calls into the GOT. This case is
1763 // equivalent to the usual PLT implementation except that we use the stub
1764 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1765 // rather than allocating a PLT section.
1766 if (Value
.SymbolName
&& MemMgr
.allowStubAllocation()) {
1767 // This is a call to an external function.
1768 // Look for an existing stub.
1769 SectionEntry
*Section
= &Sections
[SectionID
];
1770 StubMap::const_iterator i
= Stubs
.find(Value
);
1771 uintptr_t StubAddress
;
1772 if (i
!= Stubs
.end()) {
1773 StubAddress
= uintptr_t(Section
->getAddress()) + i
->second
;
1774 LLVM_DEBUG(dbgs() << " Stub function found\n");
1776 // Create a new stub function (equivalent to a PLT entry).
1777 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1779 uintptr_t BaseAddress
= uintptr_t(Section
->getAddress());
1780 uintptr_t StubAlignment
= getStubAlignment();
1782 (BaseAddress
+ Section
->getStubOffset() + StubAlignment
- 1) &
1784 unsigned StubOffset
= StubAddress
- BaseAddress
;
1785 Stubs
[Value
] = StubOffset
;
1786 createStubFunction((uint8_t *)StubAddress
);
1788 // Bump our stub offset counter
1789 Section
->advanceStubOffset(getMaxStubSize());
1791 // Allocate a GOT Entry
1792 uint64_t GOTOffset
= allocateGOTEntries(1);
1793 // This potentially creates a new Section which potentially
1794 // invalidates the Section pointer, so reload it.
1795 Section
= &Sections
[SectionID
];
1797 // The load of the GOT address has an addend of -4
1798 resolveGOTOffsetRelocation(SectionID
, StubOffset
+ 2, GOTOffset
- 4,
1799 ELF::R_X86_64_PC32
);
1801 // Fill in the value of the symbol we're targeting into the GOT
1802 addRelocationForSymbol(
1803 computeGOTOffsetRE(GOTOffset
, 0, ELF::R_X86_64_64
),
1807 // Make the target call a call into the stub table.
1808 resolveRelocation(*Section
, Offset
, StubAddress
, ELF::R_X86_64_PC32
,
1811 Value
.Addend
+= support::ulittle32_t::ref(
1812 computePlaceholderAddress(SectionID
, Offset
));
1813 processSimpleRelocation(SectionID
, Offset
, ELF::R_X86_64_PC32
, Value
);
1815 } else if (RelType
== ELF::R_X86_64_GOTPCREL
||
1816 RelType
== ELF::R_X86_64_GOTPCRELX
||
1817 RelType
== ELF::R_X86_64_REX_GOTPCRELX
) {
1818 uint64_t GOTOffset
= allocateGOTEntries(1);
1819 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1820 ELF::R_X86_64_PC32
);
1822 // Fill in the value of the symbol we're targeting into the GOT
1823 RelocationEntry RE
=
1824 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1825 if (Value
.SymbolName
)
1826 addRelocationForSymbol(RE
, Value
.SymbolName
);
1828 addRelocationForSection(RE
, Value
.SectionID
);
1829 } else if (RelType
== ELF::R_X86_64_GOT64
) {
1830 // Fill in a 64-bit GOT offset.
1831 uint64_t GOTOffset
= allocateGOTEntries(1);
1832 resolveRelocation(Sections
[SectionID
], Offset
, GOTOffset
,
1833 ELF::R_X86_64_64
, 0);
1835 // Fill in the value of the symbol we're targeting into the GOT
1836 RelocationEntry RE
=
1837 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1838 if (Value
.SymbolName
)
1839 addRelocationForSymbol(RE
, Value
.SymbolName
);
1841 addRelocationForSection(RE
, Value
.SectionID
);
1842 } else if (RelType
== ELF::R_X86_64_GOTPC32
) {
1843 // Materialize the address of the base of the GOT relative to the PC.
1844 // This doesn't create a GOT entry, but it does mean we need a GOT
1846 (void)allocateGOTEntries(0);
1847 resolveGOTOffsetRelocation(SectionID
, Offset
, Addend
, ELF::R_X86_64_PC32
);
1848 } else if (RelType
== ELF::R_X86_64_GOTPC64
) {
1849 (void)allocateGOTEntries(0);
1850 resolveGOTOffsetRelocation(SectionID
, Offset
, Addend
, ELF::R_X86_64_PC64
);
1851 } else if (RelType
== ELF::R_X86_64_GOTOFF64
) {
1852 // GOTOFF relocations ultimately require a section difference relocation.
1853 (void)allocateGOTEntries(0);
1854 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1855 } else if (RelType
== ELF::R_X86_64_PC32
) {
1856 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1857 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1858 } else if (RelType
== ELF::R_X86_64_PC64
) {
1859 Value
.Addend
+= support::ulittle64_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1860 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1861 } else if (RelType
== ELF::R_X86_64_GOTTPOFF
) {
1862 processX86_64GOTTPOFFRelocation(SectionID
, Offset
, Value
, Addend
);
1863 } else if (RelType
== ELF::R_X86_64_TLSGD
||
1864 RelType
== ELF::R_X86_64_TLSLD
) {
1865 // The next relocation must be the relocation for __tls_get_addr.
1867 auto &GetAddrRelocation
= *RelI
;
1868 processX86_64TLSRelocation(SectionID
, Offset
, RelType
, Value
, Addend
,
1871 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1874 if (Arch
== Triple::x86
) {
1875 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1877 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1882 void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID
,
1884 RelocationValueRef Value
,
1886 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
1887 // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
1888 // only mentions one optimization even though there are two different
1889 // code sequences for the Initial Exec TLS Model. We match the code to
1890 // find out which one was used.
1892 // A possible TLS code sequence and its replacement
1893 struct CodeSequence
{
1894 // The expected code sequence
1895 ArrayRef
<uint8_t> ExpectedCodeSequence
;
1896 // The negative offset of the GOTTPOFF relocation to the beginning of
1898 uint64_t TLSSequenceOffset
;
1899 // The new code sequence
1900 ArrayRef
<uint8_t> NewCodeSequence
;
1901 // The offset of the new TPOFF relocation
1902 uint64_t TpoffRelocationOffset
;
1905 std::array
<CodeSequence
, 2> CodeSequences
;
1907 // Initial Exec Code Model Sequence
1909 static const std::initializer_list
<uint8_t> ExpectedCodeSequenceList
= {
1910 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
1911 0x00, // mov %fs:0, %rax
1912 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
1915 CodeSequences
[0].ExpectedCodeSequence
=
1916 ArrayRef
<uint8_t>(ExpectedCodeSequenceList
);
1917 CodeSequences
[0].TLSSequenceOffset
= 12;
1919 static const std::initializer_list
<uint8_t> NewCodeSequenceList
= {
1920 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
1921 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
1923 CodeSequences
[0].NewCodeSequence
= ArrayRef
<uint8_t>(NewCodeSequenceList
);
1924 CodeSequences
[0].TpoffRelocationOffset
= 12;
1927 // Initial Exec Code Model Sequence, II
1929 static const std::initializer_list
<uint8_t> ExpectedCodeSequenceList
= {
1930 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
1931 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax
1933 CodeSequences
[1].ExpectedCodeSequence
=
1934 ArrayRef
<uint8_t>(ExpectedCodeSequenceList
);
1935 CodeSequences
[1].TLSSequenceOffset
= 3;
1937 static const std::initializer_list
<uint8_t> NewCodeSequenceList
= {
1938 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop
1939 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
1941 CodeSequences
[1].NewCodeSequence
= ArrayRef
<uint8_t>(NewCodeSequenceList
);
1942 CodeSequences
[1].TpoffRelocationOffset
= 10;
1945 bool Resolved
= false;
1946 auto &Section
= Sections
[SectionID
];
1947 for (const auto &C
: CodeSequences
) {
1948 assert(C
.ExpectedCodeSequence
.size() == C
.NewCodeSequence
.size() &&
1949 "Old and new code sequences must have the same size");
1951 if (Offset
< C
.TLSSequenceOffset
||
1952 (Offset
- C
.TLSSequenceOffset
+ C
.NewCodeSequence
.size()) >
1953 Section
.getSize()) {
1954 // This can't be a matching sequence as it doesn't fit in the current
1959 auto TLSSequenceStartOffset
= Offset
- C
.TLSSequenceOffset
;
1960 auto *TLSSequence
= Section
.getAddressWithOffset(TLSSequenceStartOffset
);
1961 if (ArrayRef
<uint8_t>(TLSSequence
, C
.ExpectedCodeSequence
.size()) !=
1962 C
.ExpectedCodeSequence
) {
1966 memcpy(TLSSequence
, C
.NewCodeSequence
.data(), C
.NewCodeSequence
.size());
1968 // The original GOTTPOFF relocation has an addend as it is PC relative,
1969 // so it needs to be corrected. The TPOFF32 relocation is used as an
1970 // absolute value (which is an offset from %fs:0), so remove the addend
1972 RelocationEntry
RE(SectionID
,
1973 TLSSequenceStartOffset
+ C
.TpoffRelocationOffset
,
1974 ELF::R_X86_64_TPOFF32
, Value
.Addend
- Addend
);
1976 if (Value
.SymbolName
)
1977 addRelocationForSymbol(RE
, Value
.SymbolName
);
1979 addRelocationForSection(RE
, Value
.SectionID
);
1986 // The GOTTPOFF relocation was not used in one of the sequences
1987 // described in the spec, so we can't optimize it to a TPOFF
1989 uint64_t GOTOffset
= allocateGOTEntries(1);
1990 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1991 ELF::R_X86_64_PC32
);
1992 RelocationEntry RE
=
1993 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_TPOFF64
);
1994 if (Value
.SymbolName
)
1995 addRelocationForSymbol(RE
, Value
.SymbolName
);
1997 addRelocationForSection(RE
, Value
.SectionID
);
2001 void RuntimeDyldELF::processX86_64TLSRelocation(
2002 unsigned SectionID
, uint64_t Offset
, uint64_t RelType
,
2003 RelocationValueRef Value
, int64_t Addend
,
2004 const RelocationRef
&GetAddrRelocation
) {
2005 // Since we are statically linking and have no additional DSOs, we can resolve
2006 // the relocation directly without using __tls_get_addr.
2007 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2008 // to replace it with the Local Exec relocation variant.
2010 // Find out whether the code was compiled with the large or small memory
2011 // model. For this we look at the next relocation which is the relocation
2012 // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2013 // small code model, with a 64 bit relocation it's the large code model.
2014 bool IsSmallCodeModel
;
2015 // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2016 bool IsGOTPCRel
= false;
2018 switch (GetAddrRelocation
.getType()) {
2019 case ELF::R_X86_64_GOTPCREL
:
2020 case ELF::R_X86_64_REX_GOTPCRELX
:
2021 case ELF::R_X86_64_GOTPCRELX
:
2024 case ELF::R_X86_64_PLT32
:
2025 IsSmallCodeModel
= true;
2027 case ELF::R_X86_64_PLTOFF64
:
2028 IsSmallCodeModel
= false;
2032 "invalid TLS relocations for General/Local Dynamic TLS Model: "
2033 "expected PLT or GOT relocation for __tls_get_addr function");
2036 // The negative offset to the start of the TLS code sequence relative to
2037 // the offset of the TLSGD/TLSLD relocation
2038 uint64_t TLSSequenceOffset
;
2039 // The expected start of the code sequence
2040 ArrayRef
<uint8_t> ExpectedCodeSequence
;
2041 // The new TLS code sequence that will replace the existing code
2042 ArrayRef
<uint8_t> NewCodeSequence
;
2044 if (RelType
== ELF::R_X86_64_TLSGD
) {
2045 // The offset of the new TPOFF32 relocation (offset starting from the
2046 // beginning of the whole TLS sequence)
2047 uint64_t TpoffRelocOffset
;
2049 if (IsSmallCodeModel
) {
2051 static const std::initializer_list
<uint8_t> CodeSequence
= {
2052 0x66, // data16 (no-op prefix)
2053 0x48, 0x8d, 0x3d, 0x00, 0x00,
2054 0x00, 0x00, // lea <disp32>(%rip), %rdi
2055 0x66, 0x66, // two data16 prefixes
2056 0x48, // rex64 (no-op prefix)
2057 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2059 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2060 TLSSequenceOffset
= 4;
2062 // This code sequence is not described in the TLS spec but gcc
2063 // generates it sometimes.
2064 static const std::initializer_list
<uint8_t> CodeSequence
= {
2065 0x66, // data16 (no-op prefix)
2066 0x48, 0x8d, 0x3d, 0x00, 0x00,
2067 0x00, 0x00, // lea <disp32>(%rip), %rdi
2068 0x66, // data16 prefix (no-op prefix)
2069 0x48, // rex64 (no-op prefix)
2070 0xff, 0x15, 0x00, 0x00, 0x00,
2071 0x00 // call *__tls_get_addr@gotpcrel(%rip)
2073 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2074 TLSSequenceOffset
= 4;
2077 // The replacement code for the small code model. It's the same for
2079 static const std::initializer_list
<uint8_t> SmallSequence
= {
2080 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2081 0x00, // mov %fs:0, %rax
2082 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2085 NewCodeSequence
= ArrayRef
<uint8_t>(SmallSequence
);
2086 TpoffRelocOffset
= 12;
2088 static const std::initializer_list
<uint8_t> CodeSequence
= {
2089 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2091 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2092 0x00, // movabs $__tls_get_addr@pltoff, %rax
2093 0x48, 0x01, 0xd8, // add %rbx, %rax
2094 0xff, 0xd0 // call *%rax
2096 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2097 TLSSequenceOffset
= 3;
2099 // The replacement code for the large code model
2100 static const std::initializer_list
<uint8_t> LargeSequence
= {
2101 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2102 0x00, // mov %fs:0, %rax
2103 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2105 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1)
2107 NewCodeSequence
= ArrayRef
<uint8_t>(LargeSequence
);
2108 TpoffRelocOffset
= 12;
2111 // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2112 // The new TPOFF32 relocations is used as an absolute offset from
2113 // %fs:0, so remove the TLSGD/TLSLD addend again.
2114 RelocationEntry
RE(SectionID
, Offset
- TLSSequenceOffset
+ TpoffRelocOffset
,
2115 ELF::R_X86_64_TPOFF32
, Value
.Addend
- Addend
);
2116 if (Value
.SymbolName
)
2117 addRelocationForSymbol(RE
, Value
.SymbolName
);
2119 addRelocationForSection(RE
, Value
.SectionID
);
2120 } else if (RelType
== ELF::R_X86_64_TLSLD
) {
2121 if (IsSmallCodeModel
) {
2123 static const std::initializer_list
<uint8_t> CodeSequence
= {
2124 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2125 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2127 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2128 TLSSequenceOffset
= 3;
2130 // The replacement code for the small code model
2131 static const std::initializer_list
<uint8_t> SmallSequence
= {
2132 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2133 0x64, 0x48, 0x8b, 0x04, 0x25,
2134 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2136 NewCodeSequence
= ArrayRef
<uint8_t>(SmallSequence
);
2138 // This code sequence is not described in the TLS spec but gcc
2139 // generates it sometimes.
2140 static const std::initializer_list
<uint8_t> CodeSequence
= {
2141 0x48, 0x8d, 0x3d, 0x00,
2142 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2143 0xff, 0x15, 0x00, 0x00,
2145 // *__tls_get_addr@gotpcrel(%rip)
2147 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2148 TLSSequenceOffset
= 3;
2150 // The replacement is code is just like above but it needs to be
2152 static const std::initializer_list
<uint8_t> SmallSequence
= {
2153 0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2154 0x64, 0x48, 0x8b, 0x04, 0x25,
2155 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2157 NewCodeSequence
= ArrayRef
<uint8_t>(SmallSequence
);
2160 // This is the same sequence as for the TLSGD sequence with the large
2161 // memory model above
2162 static const std::initializer_list
<uint8_t> CodeSequence
= {
2163 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2165 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2166 0x48, // movabs $__tls_get_addr@pltoff, %rax
2167 0x01, 0xd8, // add %rbx, %rax
2168 0xff, 0xd0 // call *%rax
2170 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2171 TLSSequenceOffset
= 3;
2173 // The replacement code for the large code model
2174 static const std::initializer_list
<uint8_t> LargeSequence
= {
2175 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2176 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2177 0x00, // 10 byte nop
2178 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2180 NewCodeSequence
= ArrayRef
<uint8_t>(LargeSequence
);
2183 llvm_unreachable("both TLS relocations handled above");
2186 assert(ExpectedCodeSequence
.size() == NewCodeSequence
.size() &&
2187 "Old and new code sequences must have the same size");
2189 auto &Section
= Sections
[SectionID
];
2190 if (Offset
< TLSSequenceOffset
||
2191 (Offset
- TLSSequenceOffset
+ NewCodeSequence
.size()) >
2192 Section
.getSize()) {
2193 report_fatal_error("unexpected end of section in TLS sequence");
2196 auto *TLSSequence
= Section
.getAddressWithOffset(Offset
- TLSSequenceOffset
);
2197 if (ArrayRef
<uint8_t>(TLSSequence
, ExpectedCodeSequence
.size()) !=
2198 ExpectedCodeSequence
) {
2200 "invalid TLS sequence for Global/Local Dynamic TLS Model");
2203 memcpy(TLSSequence
, NewCodeSequence
.data(), NewCodeSequence
.size());
2206 size_t RuntimeDyldELF::getGOTEntrySize() {
2207 // We don't use the GOT in all of these cases, but it's essentially free
2208 // to put them all here.
2211 case Triple::x86_64
:
2212 case Triple::aarch64
:
2213 case Triple::aarch64_be
:
2215 case Triple::ppc64le
:
2216 case Triple::systemz
:
2217 Result
= sizeof(uint64_t);
2222 Result
= sizeof(uint32_t);
2225 case Triple::mipsel
:
2226 case Triple::mips64
:
2227 case Triple::mips64el
:
2228 if (IsMipsO32ABI
|| IsMipsN32ABI
)
2229 Result
= sizeof(uint32_t);
2230 else if (IsMipsN64ABI
)
2231 Result
= sizeof(uint64_t);
2233 llvm_unreachable("Mips ABI not handled");
2236 llvm_unreachable("Unsupported CPU type!");
2241 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no
) {
2242 if (GOTSectionID
== 0) {
2243 GOTSectionID
= Sections
.size();
2244 // Reserve a section id. We'll allocate the section later
2245 // once we know the total size
2246 Sections
.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2248 uint64_t StartOffset
= CurrentGOTIndex
* getGOTEntrySize();
2249 CurrentGOTIndex
+= no
;
2253 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef
&Value
,
2254 unsigned GOTRelType
) {
2255 auto E
= GOTOffsetMap
.insert({Value
, 0});
2257 uint64_t GOTOffset
= allocateGOTEntries(1);
2259 // Create relocation for newly created GOT entry
2260 RelocationEntry RE
=
2261 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, GOTRelType
);
2262 if (Value
.SymbolName
)
2263 addRelocationForSymbol(RE
, Value
.SymbolName
);
2265 addRelocationForSection(RE
, Value
.SectionID
);
2267 E
.first
->second
= GOTOffset
;
2270 return E
.first
->second
;
2273 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID
,
2277 // Fill in the relative address of the GOT Entry into the stub
2278 RelocationEntry
GOTRE(SectionID
, Offset
, Type
, GOTOffset
);
2279 addRelocationForSection(GOTRE
, GOTSectionID
);
2282 RelocationEntry
RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset
,
2283 uint64_t SymbolOffset
,
2285 return RelocationEntry(GOTSectionID
, GOTOffset
, Type
, SymbolOffset
);
2288 Error
RuntimeDyldELF::finalizeLoad(const ObjectFile
&Obj
,
2289 ObjSectionToIDMap
&SectionMap
) {
2291 if (!PendingRelocs
.empty())
2292 return make_error
<RuntimeDyldError
>("Can't find matching LO16 reloc");
2294 // If necessary, allocate the global offset table
2295 if (GOTSectionID
!= 0) {
2296 // Allocate memory for the section
2297 size_t TotalSize
= CurrentGOTIndex
* getGOTEntrySize();
2298 uint8_t *Addr
= MemMgr
.allocateDataSection(TotalSize
, getGOTEntrySize(),
2299 GOTSectionID
, ".got", false);
2301 return make_error
<RuntimeDyldError
>("Unable to allocate memory for GOT!");
2303 Sections
[GOTSectionID
] =
2304 SectionEntry(".got", Addr
, TotalSize
, TotalSize
, 0);
2306 // For now, initialize all GOT entries to zero. We'll fill them in as
2307 // needed when GOT-based relocations are applied.
2308 memset(Addr
, 0, TotalSize
);
2309 if (IsMipsN32ABI
|| IsMipsN64ABI
) {
2310 // To correctly resolve Mips GOT relocations, we need a mapping from
2311 // object's sections to GOTs.
2312 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
2314 if (SI
->relocation_begin() != SI
->relocation_end()) {
2315 Expected
<section_iterator
> RelSecOrErr
= SI
->getRelocatedSection();
2317 return make_error
<RuntimeDyldError
>(
2318 toString(RelSecOrErr
.takeError()));
2320 section_iterator RelocatedSection
= *RelSecOrErr
;
2321 ObjSectionToIDMap::iterator i
= SectionMap
.find(*RelocatedSection
);
2322 assert (i
!= SectionMap
.end());
2323 SectionToGOTMap
[i
->second
] = GOTSectionID
;
2326 GOTSymbolOffsets
.clear();
2330 // Look for and record the EH frame section.
2331 ObjSectionToIDMap::iterator i
, e
;
2332 for (i
= SectionMap
.begin(), e
= SectionMap
.end(); i
!= e
; ++i
) {
2333 const SectionRef
&Section
= i
->first
;
2336 Expected
<StringRef
> NameOrErr
= Section
.getName();
2340 consumeError(NameOrErr
.takeError());
2342 if (Name
== ".eh_frame") {
2343 UnregisteredEHFrameSections
.push_back(i
->second
);
2349 CurrentGOTIndex
= 0;
2351 return Error::success();
2354 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile
&Obj
) const {
2358 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef
&R
) const {
2359 unsigned RelTy
= R
.getType();
2360 if (Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)
2361 return RelTy
== ELF::R_AARCH64_ADR_GOT_PAGE
||
2362 RelTy
== ELF::R_AARCH64_LD64_GOT_LO12_NC
;
2364 if (Arch
== Triple::x86_64
)
2365 return RelTy
== ELF::R_X86_64_GOTPCREL
||
2366 RelTy
== ELF::R_X86_64_GOTPCRELX
||
2367 RelTy
== ELF::R_X86_64_GOT64
||
2368 RelTy
== ELF::R_X86_64_REX_GOTPCRELX
;
2372 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef
&R
) const {
2373 if (Arch
!= Triple::x86_64
)
2374 return true; // Conservative answer
2376 switch (R
.getType()) {
2378 return true; // Conservative answer
2381 case ELF::R_X86_64_GOTPCREL
:
2382 case ELF::R_X86_64_GOTPCRELX
:
2383 case ELF::R_X86_64_REX_GOTPCRELX
:
2384 case ELF::R_X86_64_GOTPC64
:
2385 case ELF::R_X86_64_GOT64
:
2386 case ELF::R_X86_64_GOTOFF64
:
2387 case ELF::R_X86_64_PC32
:
2388 case ELF::R_X86_64_PC64
:
2389 case ELF::R_X86_64_64
:
2390 // We know that these reloation types won't need a stub function. This list
2391 // can be extended as needed.