1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements functions and classes used to support LTO.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/LTO/LTO.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
19 #include "llvm/Analysis/StackSafetyAnalysis.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Bitcode/BitcodeReader.h"
23 #include "llvm/Bitcode/BitcodeWriter.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/AutoUpgrade.h"
27 #include "llvm/IR/DiagnosticPrinter.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMRemarkStreamer.h"
30 #include "llvm/IR/LegacyPassManager.h"
31 #include "llvm/IR/Mangler.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/LTO/LTOBackend.h"
34 #include "llvm/LTO/SummaryBasedOptimizations.h"
35 #include "llvm/Linker/IRMover.h"
36 #include "llvm/MC/TargetRegistry.h"
37 #include "llvm/Object/IRObjectFile.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/FileSystem.h"
41 #include "llvm/Support/ManagedStatic.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/Path.h"
44 #include "llvm/Support/SHA1.h"
45 #include "llvm/Support/SourceMgr.h"
46 #include "llvm/Support/ThreadPool.h"
47 #include "llvm/Support/Threading.h"
48 #include "llvm/Support/TimeProfiler.h"
49 #include "llvm/Support/VCSRevision.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Target/TargetMachine.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Transforms/IPO.h"
54 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
55 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
56 #include "llvm/Transforms/Utils/FunctionImportUtils.h"
57 #include "llvm/Transforms/Utils/SplitModule.h"
63 using namespace object
;
65 #define DEBUG_TYPE "lto"
68 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden
,
69 cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
71 /// Enable global value internalization in LTO.
72 cl::opt
<bool> EnableLTOInternalization(
73 "enable-lto-internalization", cl::init(true), cl::Hidden
,
74 cl::desc("Enable global value internalization in LTO"));
76 // Computes a unique hash for the Module considering the current list of
77 // export/import and other global analysis results.
78 // The hash is produced in \p Key.
79 void llvm::computeLTOCacheKey(
80 SmallString
<40> &Key
, const Config
&Conf
, const ModuleSummaryIndex
&Index
,
81 StringRef ModuleID
, const FunctionImporter::ImportMapTy
&ImportList
,
82 const FunctionImporter::ExportSetTy
&ExportList
,
83 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
84 const GVSummaryMapTy
&DefinedGlobals
,
85 const std::set
<GlobalValue::GUID
> &CfiFunctionDefs
,
86 const std::set
<GlobalValue::GUID
> &CfiFunctionDecls
) {
87 // Compute the unique hash for this entry.
88 // This is based on the current compiler version, the module itself, the
89 // export list, the hash for every single module in the import list, the
90 // list of ResolvedODR for the module, and the list of preserved symbols.
93 // Start with the compiler revision
94 Hasher
.update(LLVM_VERSION_STRING
);
96 Hasher
.update(LLVM_REVISION
);
99 // Include the parts of the LTO configuration that affect code generation.
100 auto AddString
= [&](StringRef Str
) {
102 Hasher
.update(ArrayRef
<uint8_t>{0});
104 auto AddUnsigned
= [&](unsigned I
) {
106 support::endian::write32le(Data
, I
);
107 Hasher
.update(ArrayRef
<uint8_t>{Data
, 4});
109 auto AddUint64
= [&](uint64_t I
) {
111 support::endian::write64le(Data
, I
);
112 Hasher
.update(ArrayRef
<uint8_t>{Data
, 8});
115 // FIXME: Hash more of Options. For now all clients initialize Options from
116 // command-line flags (which is unsupported in production), but may set
117 // RelaxELFRelocations. The clang driver can also pass FunctionSections,
118 // DataSections and DebuggerTuning via command line flags.
119 AddUnsigned(Conf
.Options
.RelaxELFRelocations
);
120 AddUnsigned(Conf
.Options
.FunctionSections
);
121 AddUnsigned(Conf
.Options
.DataSections
);
122 AddUnsigned((unsigned)Conf
.Options
.DebuggerTuning
);
123 for (auto &A
: Conf
.MAttrs
)
126 AddUnsigned(*Conf
.RelocModel
);
130 AddUnsigned(*Conf
.CodeModel
);
133 AddUnsigned(Conf
.CGOptLevel
);
134 AddUnsigned(Conf
.CGFileType
);
135 AddUnsigned(Conf
.OptLevel
);
136 AddUnsigned(Conf
.UseNewPM
);
137 AddUnsigned(Conf
.Freestanding
);
138 AddString(Conf
.OptPipeline
);
139 AddString(Conf
.AAPipeline
);
140 AddString(Conf
.OverrideTriple
);
141 AddString(Conf
.DefaultTriple
);
142 AddString(Conf
.DwoDir
);
144 // Include the hash for the current module
145 auto ModHash
= Index
.getModuleHash(ModuleID
);
146 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&ModHash
[0], sizeof(ModHash
)));
148 std::vector
<uint64_t> ExportsGUID
;
149 ExportsGUID
.reserve(ExportList
.size());
150 for (const auto &VI
: ExportList
) {
151 auto GUID
= VI
.getGUID();
152 ExportsGUID
.push_back(GUID
);
155 // Sort the export list elements GUIDs.
156 llvm::sort(ExportsGUID
);
157 for (uint64_t GUID
: ExportsGUID
) {
158 // The export list can impact the internalization, be conservative here
159 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&GUID
, sizeof(GUID
)));
162 // Include the hash for every module we import functions from. The set of
163 // imported symbols for each module may affect code generation and is
164 // sensitive to link order, so include that as well.
165 using ImportMapIteratorTy
= FunctionImporter::ImportMapTy::const_iterator
;
166 std::vector
<ImportMapIteratorTy
> ImportModulesVector
;
167 ImportModulesVector
.reserve(ImportList
.size());
169 for (ImportMapIteratorTy It
= ImportList
.begin(); It
!= ImportList
.end();
171 ImportModulesVector
.push_back(It
);
173 llvm::sort(ImportModulesVector
,
174 [](const ImportMapIteratorTy
&Lhs
, const ImportMapIteratorTy
&Rhs
)
175 -> bool { return Lhs
->getKey() < Rhs
->getKey(); });
176 for (const ImportMapIteratorTy
&EntryIt
: ImportModulesVector
) {
177 auto ModHash
= Index
.getModuleHash(EntryIt
->first());
178 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&ModHash
[0], sizeof(ModHash
)));
180 AddUint64(EntryIt
->second
.size());
181 for (auto &Fn
: EntryIt
->second
)
185 // Include the hash for the resolved ODR.
186 for (auto &Entry
: ResolvedODR
) {
187 Hasher
.update(ArrayRef
<uint8_t>((const uint8_t *)&Entry
.first
,
188 sizeof(GlobalValue::GUID
)));
189 Hasher
.update(ArrayRef
<uint8_t>((const uint8_t *)&Entry
.second
,
190 sizeof(GlobalValue::LinkageTypes
)));
193 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
194 // defined in this module.
195 std::set
<GlobalValue::GUID
> UsedCfiDefs
;
196 std::set
<GlobalValue::GUID
> UsedCfiDecls
;
198 // Typeids used in this module.
199 std::set
<GlobalValue::GUID
> UsedTypeIds
;
201 auto AddUsedCfiGlobal
= [&](GlobalValue::GUID ValueGUID
) {
202 if (CfiFunctionDefs
.count(ValueGUID
))
203 UsedCfiDefs
.insert(ValueGUID
);
204 if (CfiFunctionDecls
.count(ValueGUID
))
205 UsedCfiDecls
.insert(ValueGUID
);
208 auto AddUsedThings
= [&](GlobalValueSummary
*GS
) {
210 AddUnsigned(GS
->getVisibility());
211 AddUnsigned(GS
->isLive());
212 AddUnsigned(GS
->canAutoHide());
213 for (const ValueInfo
&VI
: GS
->refs()) {
214 AddUnsigned(VI
.isDSOLocal(Index
.withDSOLocalPropagation()));
215 AddUsedCfiGlobal(VI
.getGUID());
217 if (auto *GVS
= dyn_cast
<GlobalVarSummary
>(GS
)) {
218 AddUnsigned(GVS
->maybeReadOnly());
219 AddUnsigned(GVS
->maybeWriteOnly());
221 if (auto *FS
= dyn_cast
<FunctionSummary
>(GS
)) {
222 for (auto &TT
: FS
->type_tests())
223 UsedTypeIds
.insert(TT
);
224 for (auto &TT
: FS
->type_test_assume_vcalls())
225 UsedTypeIds
.insert(TT
.GUID
);
226 for (auto &TT
: FS
->type_checked_load_vcalls())
227 UsedTypeIds
.insert(TT
.GUID
);
228 for (auto &TT
: FS
->type_test_assume_const_vcalls())
229 UsedTypeIds
.insert(TT
.VFunc
.GUID
);
230 for (auto &TT
: FS
->type_checked_load_const_vcalls())
231 UsedTypeIds
.insert(TT
.VFunc
.GUID
);
232 for (auto &ET
: FS
->calls()) {
233 AddUnsigned(ET
.first
.isDSOLocal(Index
.withDSOLocalPropagation()));
234 AddUsedCfiGlobal(ET
.first
.getGUID());
239 // Include the hash for the linkage type to reflect internalization and weak
240 // resolution, and collect any used type identifier resolutions.
241 for (auto &GS
: DefinedGlobals
) {
242 GlobalValue::LinkageTypes Linkage
= GS
.second
->linkage();
244 ArrayRef
<uint8_t>((const uint8_t *)&Linkage
, sizeof(Linkage
)));
245 AddUsedCfiGlobal(GS
.first
);
246 AddUsedThings(GS
.second
);
249 // Imported functions may introduce new uses of type identifier resolutions,
250 // so we need to collect their used resolutions as well.
251 for (auto &ImpM
: ImportList
)
252 for (auto &ImpF
: ImpM
.second
) {
253 GlobalValueSummary
*S
= Index
.findSummaryInModule(ImpF
, ImpM
.first());
255 // If this is an alias, we also care about any types/etc. that the aliasee
257 if (auto *AS
= dyn_cast_or_null
<AliasSummary
>(S
))
258 AddUsedThings(AS
->getBaseObject());
261 auto AddTypeIdSummary
= [&](StringRef TId
, const TypeIdSummary
&S
) {
264 AddUnsigned(S
.TTRes
.TheKind
);
265 AddUnsigned(S
.TTRes
.SizeM1BitWidth
);
267 AddUint64(S
.TTRes
.AlignLog2
);
268 AddUint64(S
.TTRes
.SizeM1
);
269 AddUint64(S
.TTRes
.BitMask
);
270 AddUint64(S
.TTRes
.InlineBits
);
272 AddUint64(S
.WPDRes
.size());
273 for (auto &WPD
: S
.WPDRes
) {
274 AddUnsigned(WPD
.first
);
275 AddUnsigned(WPD
.second
.TheKind
);
276 AddString(WPD
.second
.SingleImplName
);
278 AddUint64(WPD
.second
.ResByArg
.size());
279 for (auto &ByArg
: WPD
.second
.ResByArg
) {
280 AddUint64(ByArg
.first
.size());
281 for (uint64_t Arg
: ByArg
.first
)
283 AddUnsigned(ByArg
.second
.TheKind
);
284 AddUint64(ByArg
.second
.Info
);
285 AddUnsigned(ByArg
.second
.Byte
);
286 AddUnsigned(ByArg
.second
.Bit
);
291 // Include the hash for all type identifiers used by this module.
292 for (GlobalValue::GUID TId
: UsedTypeIds
) {
293 auto TidIter
= Index
.typeIds().equal_range(TId
);
294 for (auto It
= TidIter
.first
; It
!= TidIter
.second
; ++It
)
295 AddTypeIdSummary(It
->second
.first
, It
->second
.second
);
298 AddUnsigned(UsedCfiDefs
.size());
299 for (auto &V
: UsedCfiDefs
)
302 AddUnsigned(UsedCfiDecls
.size());
303 for (auto &V
: UsedCfiDecls
)
306 if (!Conf
.SampleProfile
.empty()) {
307 auto FileOrErr
= MemoryBuffer::getFile(Conf
.SampleProfile
);
309 Hasher
.update(FileOrErr
.get()->getBuffer());
311 if (!Conf
.ProfileRemapping
.empty()) {
312 FileOrErr
= MemoryBuffer::getFile(Conf
.ProfileRemapping
);
314 Hasher
.update(FileOrErr
.get()->getBuffer());
319 Key
= toHex(Hasher
.result());
322 static void thinLTOResolvePrevailingGUID(
323 const Config
&C
, ValueInfo VI
,
324 DenseSet
<GlobalValueSummary
*> &GlobalInvolvedWithAlias
,
325 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
327 function_ref
<void(StringRef
, GlobalValue::GUID
, GlobalValue::LinkageTypes
)>
329 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
330 GlobalValue::VisibilityTypes Visibility
=
331 C
.VisibilityScheme
== Config::ELF
? VI
.getELFVisibility()
332 : GlobalValue::DefaultVisibility
;
333 for (auto &S
: VI
.getSummaryList()) {
334 GlobalValue::LinkageTypes OriginalLinkage
= S
->linkage();
335 // Ignore local and appending linkage values since the linker
336 // doesn't resolve them.
337 if (GlobalValue::isLocalLinkage(OriginalLinkage
) ||
338 GlobalValue::isAppendingLinkage(S
->linkage()))
340 // We need to emit only one of these. The prevailing module will keep it,
341 // but turned into a weak, while the others will drop it when possible.
342 // This is both a compile-time optimization and a correctness
343 // transformation. This is necessary for correctness when we have exported
344 // a reference - we need to convert the linkonce to weak to
345 // ensure a copy is kept to satisfy the exported reference.
346 // FIXME: We may want to split the compile time and correctness
347 // aspects into separate routines.
348 if (isPrevailing(VI
.getGUID(), S
.get())) {
349 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage
)) {
350 S
->setLinkage(GlobalValue::getWeakLinkage(
351 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage
)));
352 // The kept copy is eligible for auto-hiding (hidden visibility) if all
353 // copies were (i.e. they were all linkonce_odr global unnamed addr).
354 // If any copy is not (e.g. it was originally weak_odr), then the symbol
355 // must remain externally available (e.g. a weak_odr from an explicitly
356 // instantiated template). Additionally, if it is in the
357 // GUIDPreservedSymbols set, that means that it is visibile outside
358 // the summary (e.g. in a native object or a bitcode file without
359 // summary), and in that case we cannot hide it as it isn't possible to
361 S
->setCanAutoHide(VI
.canAutoHide() &&
362 !GUIDPreservedSymbols
.count(VI
.getGUID()));
364 if (C
.VisibilityScheme
== Config::FromPrevailing
)
365 Visibility
= S
->getVisibility();
367 // Alias and aliasee can't be turned into available_externally.
368 else if (!isa
<AliasSummary
>(S
.get()) &&
369 !GlobalInvolvedWithAlias
.count(S
.get()))
370 S
->setLinkage(GlobalValue::AvailableExternallyLinkage
);
372 // For ELF, set visibility to the computed visibility from summaries. We
373 // don't track visibility from declarations so this may be more relaxed than
374 // the most constraining one.
375 if (C
.VisibilityScheme
== Config::ELF
)
376 S
->setVisibility(Visibility
);
378 if (S
->linkage() != OriginalLinkage
)
379 recordNewLinkage(S
->modulePath(), VI
.getGUID(), S
->linkage());
382 if (C
.VisibilityScheme
== Config::FromPrevailing
) {
383 for (auto &S
: VI
.getSummaryList()) {
384 GlobalValue::LinkageTypes OriginalLinkage
= S
->linkage();
385 if (GlobalValue::isLocalLinkage(OriginalLinkage
) ||
386 GlobalValue::isAppendingLinkage(S
->linkage()))
388 S
->setVisibility(Visibility
);
393 /// Resolve linkage for prevailing symbols in the \p Index.
395 // We'd like to drop these functions if they are no longer referenced in the
396 // current module. However there is a chance that another module is still
397 // referencing them because of the import. We make sure we always emit at least
399 void llvm::thinLTOResolvePrevailingInIndex(
400 const Config
&C
, ModuleSummaryIndex
&Index
,
401 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
403 function_ref
<void(StringRef
, GlobalValue::GUID
, GlobalValue::LinkageTypes
)>
405 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
406 // We won't optimize the globals that are referenced by an alias for now
407 // Ideally we should turn the alias into a global and duplicate the definition
409 DenseSet
<GlobalValueSummary
*> GlobalInvolvedWithAlias
;
410 for (auto &I
: Index
)
411 for (auto &S
: I
.second
.SummaryList
)
412 if (auto AS
= dyn_cast
<AliasSummary
>(S
.get()))
413 GlobalInvolvedWithAlias
.insert(&AS
->getAliasee());
415 for (auto &I
: Index
)
416 thinLTOResolvePrevailingGUID(C
, Index
.getValueInfo(I
),
417 GlobalInvolvedWithAlias
, isPrevailing
,
418 recordNewLinkage
, GUIDPreservedSymbols
);
421 static bool isWeakObjectWithRWAccess(GlobalValueSummary
*GVS
) {
422 if (auto *VarSummary
= dyn_cast
<GlobalVarSummary
>(GVS
->getBaseObject()))
423 return !VarSummary
->maybeReadOnly() && !VarSummary
->maybeWriteOnly() &&
424 (VarSummary
->linkage() == GlobalValue::WeakODRLinkage
||
425 VarSummary
->linkage() == GlobalValue::LinkOnceODRLinkage
);
429 static void thinLTOInternalizeAndPromoteGUID(
430 ValueInfo VI
, function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
431 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
433 for (auto &S
: VI
.getSummaryList()) {
434 if (isExported(S
->modulePath(), VI
)) {
435 if (GlobalValue::isLocalLinkage(S
->linkage()))
436 S
->setLinkage(GlobalValue::ExternalLinkage
);
437 } else if (EnableLTOInternalization
&&
438 // Ignore local and appending linkage values since the linker
439 // doesn't resolve them.
440 !GlobalValue::isLocalLinkage(S
->linkage()) &&
441 (!GlobalValue::isInterposableLinkage(S
->linkage()) ||
442 isPrevailing(VI
.getGUID(), S
.get())) &&
443 S
->linkage() != GlobalValue::AppendingLinkage
&&
444 // We can't internalize available_externally globals because this
445 // can break function pointer equality.
446 S
->linkage() != GlobalValue::AvailableExternallyLinkage
&&
447 // Functions and read-only variables with linkonce_odr and
448 // weak_odr linkage can be internalized. We can't internalize
449 // linkonce_odr and weak_odr variables which are both modified
450 // and read somewhere in the program because reads and writes
451 // will become inconsistent.
452 !isWeakObjectWithRWAccess(S
.get()))
453 S
->setLinkage(GlobalValue::InternalLinkage
);
457 // Update the linkages in the given \p Index to mark exported values
458 // as external and non-exported values as internal.
459 void llvm::thinLTOInternalizeAndPromoteInIndex(
460 ModuleSummaryIndex
&Index
,
461 function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
462 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
464 for (auto &I
: Index
)
465 thinLTOInternalizeAndPromoteGUID(Index
.getValueInfo(I
), isExported
,
469 // Requires a destructor for std::vector<InputModule>.
470 InputFile::~InputFile() = default;
472 Expected
<std::unique_ptr
<InputFile
>> InputFile::create(MemoryBufferRef Object
) {
473 std::unique_ptr
<InputFile
> File(new InputFile
);
475 Expected
<IRSymtabFile
> FOrErr
= readIRSymtab(Object
);
477 return FOrErr
.takeError();
479 File
->TargetTriple
= FOrErr
->TheReader
.getTargetTriple();
480 File
->SourceFileName
= FOrErr
->TheReader
.getSourceFileName();
481 File
->COFFLinkerOpts
= FOrErr
->TheReader
.getCOFFLinkerOpts();
482 File
->DependentLibraries
= FOrErr
->TheReader
.getDependentLibraries();
483 File
->ComdatTable
= FOrErr
->TheReader
.getComdatTable();
485 for (unsigned I
= 0; I
!= FOrErr
->Mods
.size(); ++I
) {
486 size_t Begin
= File
->Symbols
.size();
487 for (const irsymtab::Reader::SymbolRef
&Sym
:
488 FOrErr
->TheReader
.module_symbols(I
))
489 // Skip symbols that are irrelevant to LTO. Note that this condition needs
490 // to match the one in Skip() in LTO::addRegularLTO().
491 if (Sym
.isGlobal() && !Sym
.isFormatSpecific())
492 File
->Symbols
.push_back(Sym
);
493 File
->ModuleSymIndices
.push_back({Begin
, File
->Symbols
.size()});
496 File
->Mods
= FOrErr
->Mods
;
497 File
->Strtab
= std::move(FOrErr
->Strtab
);
498 return std::move(File
);
501 StringRef
InputFile::getName() const {
502 return Mods
[0].getModuleIdentifier();
505 BitcodeModule
&InputFile::getSingleBitcodeModule() {
506 assert(Mods
.size() == 1 && "Expect only one bitcode module");
510 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel
,
512 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel
),
513 Ctx(Conf
), CombinedModule(std::make_unique
<Module
>("ld-temp.o", Ctx
)),
514 Mover(std::make_unique
<IRMover
>(*CombinedModule
)) {}
516 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend
)
517 : Backend(Backend
), CombinedIndex(/*HaveGVs*/ false) {
520 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
523 LTO::LTO(Config Conf
, ThinBackend Backend
,
524 unsigned ParallelCodeGenParallelismLevel
)
525 : Conf(std::move(Conf
)),
526 RegularLTO(ParallelCodeGenParallelismLevel
, this->Conf
),
527 ThinLTO(std::move(Backend
)) {}
529 // Requires a destructor for MapVector<BitcodeModule>.
530 LTO::~LTO() = default;
532 // Add the symbols in the given module to the GlobalResolutions map, and resolve
534 void LTO::addModuleToGlobalRes(ArrayRef
<InputFile::Symbol
> Syms
,
535 ArrayRef
<SymbolResolution
> Res
,
536 unsigned Partition
, bool InSummary
) {
537 auto *ResI
= Res
.begin();
538 auto *ResE
= Res
.end();
540 const Triple
TT(RegularLTO
.CombinedModule
->getTargetTriple());
541 for (const InputFile::Symbol
&Sym
: Syms
) {
542 assert(ResI
!= ResE
);
543 SymbolResolution Res
= *ResI
++;
545 StringRef Name
= Sym
.getName();
546 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the
547 // way they are handled by lld), otherwise we can end up with two
548 // global resolutions (one with and one for a copy of the symbol without).
549 if (TT
.isOSBinFormatCOFF() && Name
.startswith("__imp_"))
550 Name
= Name
.substr(strlen("__imp_"));
551 auto &GlobalRes
= GlobalResolutions
[Name
];
552 GlobalRes
.UnnamedAddr
&= Sym
.isUnnamedAddr();
553 if (Res
.Prevailing
) {
554 assert(!GlobalRes
.Prevailing
&&
555 "Multiple prevailing defs are not allowed");
556 GlobalRes
.Prevailing
= true;
557 GlobalRes
.IRName
= std::string(Sym
.getIRName());
558 } else if (!GlobalRes
.Prevailing
&& GlobalRes
.IRName
.empty()) {
559 // Sometimes it can be two copies of symbol in a module and prevailing
560 // symbol can have no IR name. That might happen if symbol is defined in
561 // module level inline asm block. In case we have multiple modules with
562 // the same symbol we want to use IR name of the prevailing symbol.
563 // Otherwise, if we haven't seen a prevailing symbol, set the name so that
564 // we can later use it to check if there is any prevailing copy in IR.
565 GlobalRes
.IRName
= std::string(Sym
.getIRName());
568 // Set the partition to external if we know it is re-defined by the linker
569 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
570 // regular object, is referenced from llvm.compiler.used/llvm.used, or was
571 // already recorded as being referenced from a different partition.
572 if (Res
.LinkerRedefined
|| Res
.VisibleToRegularObj
|| Sym
.isUsed() ||
573 (GlobalRes
.Partition
!= GlobalResolution::Unknown
&&
574 GlobalRes
.Partition
!= Partition
)) {
575 GlobalRes
.Partition
= GlobalResolution::External
;
577 // First recorded reference, save the current partition.
578 GlobalRes
.Partition
= Partition
;
580 // Flag as visible outside of summary if visible from a regular object or
581 // from a module that does not have a summary.
582 GlobalRes
.VisibleOutsideSummary
|=
583 (Res
.VisibleToRegularObj
|| Sym
.isUsed() || !InSummary
);
585 GlobalRes
.ExportDynamic
|= Res
.ExportDynamic
;
589 static void writeToResolutionFile(raw_ostream
&OS
, InputFile
*Input
,
590 ArrayRef
<SymbolResolution
> Res
) {
591 StringRef Path
= Input
->getName();
593 auto ResI
= Res
.begin();
594 for (const InputFile::Symbol
&Sym
: Input
->symbols()) {
595 assert(ResI
!= Res
.end());
596 SymbolResolution Res
= *ResI
++;
598 OS
<< "-r=" << Path
<< ',' << Sym
.getName() << ',';
601 if (Res
.FinalDefinitionInLinkageUnit
)
603 if (Res
.VisibleToRegularObj
)
605 if (Res
.LinkerRedefined
)
610 assert(ResI
== Res
.end());
613 Error
LTO::add(std::unique_ptr
<InputFile
> Input
,
614 ArrayRef
<SymbolResolution
> Res
) {
615 assert(!CalledGetMaxTasks
);
617 if (Conf
.ResolutionFile
)
618 writeToResolutionFile(*Conf
.ResolutionFile
, Input
.get(), Res
);
620 if (RegularLTO
.CombinedModule
->getTargetTriple().empty()) {
621 RegularLTO
.CombinedModule
->setTargetTriple(Input
->getTargetTriple());
622 if (Triple(Input
->getTargetTriple()).isOSBinFormatELF())
623 Conf
.VisibilityScheme
= Config::ELF
;
626 const SymbolResolution
*ResI
= Res
.begin();
627 for (unsigned I
= 0; I
!= Input
->Mods
.size(); ++I
)
628 if (Error Err
= addModule(*Input
, I
, ResI
, Res
.end()))
631 assert(ResI
== Res
.end());
632 return Error::success();
635 Error
LTO::addModule(InputFile
&Input
, unsigned ModI
,
636 const SymbolResolution
*&ResI
,
637 const SymbolResolution
*ResE
) {
638 Expected
<BitcodeLTOInfo
> LTOInfo
= Input
.Mods
[ModI
].getLTOInfo();
640 return LTOInfo
.takeError();
642 if (EnableSplitLTOUnit
.hasValue()) {
643 // If only some modules were split, flag this in the index so that
644 // we can skip or error on optimizations that need consistently split
645 // modules (whole program devirt and lower type tests).
646 if (EnableSplitLTOUnit
.getValue() != LTOInfo
->EnableSplitLTOUnit
)
647 ThinLTO
.CombinedIndex
.setPartiallySplitLTOUnits();
649 EnableSplitLTOUnit
= LTOInfo
->EnableSplitLTOUnit
;
651 BitcodeModule BM
= Input
.Mods
[ModI
];
652 auto ModSyms
= Input
.module_symbols(ModI
);
653 addModuleToGlobalRes(ModSyms
, {ResI
, ResE
},
654 LTOInfo
->IsThinLTO
? ThinLTO
.ModuleMap
.size() + 1 : 0,
655 LTOInfo
->HasSummary
);
657 if (LTOInfo
->IsThinLTO
)
658 return addThinLTO(BM
, ModSyms
, ResI
, ResE
);
660 RegularLTO
.EmptyCombinedModule
= false;
661 Expected
<RegularLTOState::AddedModule
> ModOrErr
=
662 addRegularLTO(BM
, ModSyms
, ResI
, ResE
);
664 return ModOrErr
.takeError();
666 if (!LTOInfo
->HasSummary
)
667 return linkRegularLTO(std::move(*ModOrErr
), /*LivenessFromIndex=*/false);
669 // Regular LTO module summaries are added to a dummy module that represents
670 // the combined regular LTO module.
671 if (Error Err
= BM
.readSummary(ThinLTO
.CombinedIndex
, "", -1ull))
673 RegularLTO
.ModsWithSummaries
.push_back(std::move(*ModOrErr
));
674 return Error::success();
677 // Checks whether the given global value is in a non-prevailing comdat
678 // (comdat containing values the linker indicated were not prevailing,
679 // which we then dropped to available_externally), and if so, removes
680 // it from the comdat. This is called for all global values to ensure the
681 // comdat is empty rather than leaving an incomplete comdat. It is needed for
682 // regular LTO modules, in case we are in a mixed-LTO mode (both regular
683 // and thin LTO modules) compilation. Since the regular LTO module will be
684 // linked first in the final native link, we want to make sure the linker
685 // doesn't select any of these incomplete comdats that would be left
686 // in the regular LTO module without this cleanup.
688 handleNonPrevailingComdat(GlobalValue
&GV
,
689 std::set
<const Comdat
*> &NonPrevailingComdats
) {
690 Comdat
*C
= GV
.getComdat();
694 if (!NonPrevailingComdats
.count(C
))
697 // Additionally need to drop externally visible global values from the comdat
698 // to available_externally, so that there aren't multiply defined linker
700 if (!GV
.hasLocalLinkage())
701 GV
.setLinkage(GlobalValue::AvailableExternallyLinkage
);
703 if (auto GO
= dyn_cast
<GlobalObject
>(&GV
))
704 GO
->setComdat(nullptr);
707 // Add a regular LTO object to the link.
708 // The resulting module needs to be linked into the combined LTO module with
710 Expected
<LTO::RegularLTOState::AddedModule
>
711 LTO::addRegularLTO(BitcodeModule BM
, ArrayRef
<InputFile::Symbol
> Syms
,
712 const SymbolResolution
*&ResI
,
713 const SymbolResolution
*ResE
) {
714 RegularLTOState::AddedModule Mod
;
715 Expected
<std::unique_ptr
<Module
>> MOrErr
=
716 BM
.getLazyModule(RegularLTO
.Ctx
, /*ShouldLazyLoadMetadata*/ true,
717 /*IsImporting*/ false);
719 return MOrErr
.takeError();
720 Module
&M
= **MOrErr
;
721 Mod
.M
= std::move(*MOrErr
);
723 if (Error Err
= M
.materializeMetadata())
724 return std::move(Err
);
727 ModuleSymbolTable SymTab
;
728 SymTab
.addModule(&M
);
730 for (GlobalVariable
&GV
: M
.globals())
731 if (GV
.hasAppendingLinkage())
732 Mod
.Keep
.push_back(&GV
);
734 DenseSet
<GlobalObject
*> AliasedGlobals
;
735 for (auto &GA
: M
.aliases())
736 if (GlobalObject
*GO
= GA
.getAliaseeObject())
737 AliasedGlobals
.insert(GO
);
739 // In this function we need IR GlobalValues matching the symbols in Syms
740 // (which is not backed by a module), so we need to enumerate them in the same
741 // order. The symbol enumeration order of a ModuleSymbolTable intentionally
742 // matches the order of an irsymtab, but when we read the irsymtab in
743 // InputFile::create we omit some symbols that are irrelevant to LTO. The
744 // Skip() function skips the same symbols from the module as InputFile does
745 // from the symbol table.
746 auto MsymI
= SymTab
.symbols().begin(), MsymE
= SymTab
.symbols().end();
748 while (MsymI
!= MsymE
) {
749 auto Flags
= SymTab
.getSymbolFlags(*MsymI
);
750 if ((Flags
& object::BasicSymbolRef::SF_Global
) &&
751 !(Flags
& object::BasicSymbolRef::SF_FormatSpecific
))
758 std::set
<const Comdat
*> NonPrevailingComdats
;
759 SmallSet
<StringRef
, 2> NonPrevailingAsmSymbols
;
760 for (const InputFile::Symbol
&Sym
: Syms
) {
761 assert(ResI
!= ResE
);
762 SymbolResolution Res
= *ResI
++;
764 assert(MsymI
!= MsymE
);
765 ModuleSymbolTable::Symbol Msym
= *MsymI
++;
768 if (GlobalValue
*GV
= Msym
.dyn_cast
<GlobalValue
*>()) {
769 if (Res
.Prevailing
) {
770 if (Sym
.isUndefined())
772 Mod
.Keep
.push_back(GV
);
773 // For symbols re-defined with linker -wrap and -defsym options,
774 // set the linkage to weak to inhibit IPO. The linkage will be
775 // restored by the linker.
776 if (Res
.LinkerRedefined
)
777 GV
->setLinkage(GlobalValue::WeakAnyLinkage
);
779 GlobalValue::LinkageTypes OriginalLinkage
= GV
->getLinkage();
780 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage
))
781 GV
->setLinkage(GlobalValue::getWeakLinkage(
782 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage
)));
783 } else if (isa
<GlobalObject
>(GV
) &&
784 (GV
->hasLinkOnceODRLinkage() || GV
->hasWeakODRLinkage() ||
785 GV
->hasAvailableExternallyLinkage()) &&
786 !AliasedGlobals
.count(cast
<GlobalObject
>(GV
))) {
787 // Any of the above three types of linkage indicates that the
788 // chosen prevailing symbol will have the same semantics as this copy of
789 // the symbol, so we may be able to link it with available_externally
790 // linkage. We will decide later whether to do that when we link this
791 // module (in linkRegularLTO), based on whether it is undefined.
792 Mod
.Keep
.push_back(GV
);
793 GV
->setLinkage(GlobalValue::AvailableExternallyLinkage
);
795 NonPrevailingComdats
.insert(GV
->getComdat());
796 cast
<GlobalObject
>(GV
)->setComdat(nullptr);
799 // Set the 'local' flag based on the linker resolution for this symbol.
800 if (Res
.FinalDefinitionInLinkageUnit
) {
801 GV
->setDSOLocal(true);
802 if (GV
->hasDLLImportStorageClass())
803 GV
->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
804 DefaultStorageClass
);
806 } else if (auto *AS
= Msym
.dyn_cast
<ModuleSymbolTable::AsmSymbol
*>()) {
807 // Collect non-prevailing symbols.
809 NonPrevailingAsmSymbols
.insert(AS
->first
);
811 llvm_unreachable("unknown symbol type");
814 // Common resolution: collect the maximum size/alignment over all commons.
815 // We also record if we see an instance of a common as prevailing, so that
816 // if none is prevailing we can ignore it later.
817 if (Sym
.isCommon()) {
818 // FIXME: We should figure out what to do about commons defined by asm.
819 // For now they aren't reported correctly by ModuleSymbolTable.
820 auto &CommonRes
= RegularLTO
.Commons
[std::string(Sym
.getIRName())];
821 CommonRes
.Size
= std::max(CommonRes
.Size
, Sym
.getCommonSize());
822 MaybeAlign
SymAlign(Sym
.getCommonAlignment());
824 CommonRes
.Align
= max(*SymAlign
, CommonRes
.Align
);
825 CommonRes
.Prevailing
|= Res
.Prevailing
;
829 if (!M
.getComdatSymbolTable().empty())
830 for (GlobalValue
&GV
: M
.global_values())
831 handleNonPrevailingComdat(GV
, NonPrevailingComdats
);
833 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm
835 if (!M
.getModuleInlineAsm().empty()) {
836 std::string NewIA
= ".lto_discard";
837 if (!NonPrevailingAsmSymbols
.empty()) {
838 // Don't dicard a symbol if there is a live .symver for it.
839 ModuleSymbolTable::CollectAsmSymvers(
840 M
, [&](StringRef Name
, StringRef Alias
) {
841 if (!NonPrevailingAsmSymbols
.count(Alias
))
842 NonPrevailingAsmSymbols
.erase(Name
);
844 NewIA
+= " " + llvm::join(NonPrevailingAsmSymbols
, ", ");
847 M
.setModuleInlineAsm(NewIA
+ M
.getModuleInlineAsm());
850 assert(MsymI
== MsymE
);
851 return std::move(Mod
);
854 Error
LTO::linkRegularLTO(RegularLTOState::AddedModule Mod
,
855 bool LivenessFromIndex
) {
856 std::vector
<GlobalValue
*> Keep
;
857 for (GlobalValue
*GV
: Mod
.Keep
) {
858 if (LivenessFromIndex
&& !ThinLTO
.CombinedIndex
.isGUIDLive(GV
->getGUID())) {
859 if (Function
*F
= dyn_cast
<Function
>(GV
)) {
860 if (DiagnosticOutputFile
) {
861 if (Error Err
= F
->materialize())
863 OptimizationRemarkEmitter
ORE(F
, nullptr);
864 ORE
.emit(OptimizationRemark(DEBUG_TYPE
, "deadfunction", F
)
865 << ore::NV("Function", F
)
866 << " not added to the combined module ");
872 if (!GV
->hasAvailableExternallyLinkage()) {
877 // Only link available_externally definitions if we don't already have a
879 GlobalValue
*CombinedGV
=
880 RegularLTO
.CombinedModule
->getNamedValue(GV
->getName());
881 if (CombinedGV
&& !CombinedGV
->isDeclaration())
887 return RegularLTO
.Mover
->move(std::move(Mod
.M
), Keep
,
888 [](GlobalValue
&, IRMover::ValueAdder
) {},
889 /* IsPerformingImport */ false);
892 // Add a ThinLTO module to the link.
893 Error
LTO::addThinLTO(BitcodeModule BM
, ArrayRef
<InputFile::Symbol
> Syms
,
894 const SymbolResolution
*&ResI
,
895 const SymbolResolution
*ResE
) {
897 BM
.readSummary(ThinLTO
.CombinedIndex
, BM
.getModuleIdentifier(),
898 ThinLTO
.ModuleMap
.size()))
901 for (const InputFile::Symbol
&Sym
: Syms
) {
902 assert(ResI
!= ResE
);
903 SymbolResolution Res
= *ResI
++;
905 if (!Sym
.getIRName().empty()) {
906 auto GUID
= GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
907 Sym
.getIRName(), GlobalValue::ExternalLinkage
, ""));
908 if (Res
.Prevailing
) {
909 ThinLTO
.PrevailingModuleForGUID
[GUID
] = BM
.getModuleIdentifier();
911 // For linker redefined symbols (via --wrap or --defsym) we want to
912 // switch the linkage to `weak` to prevent IPOs from happening.
913 // Find the summary in the module for this very GV and record the new
914 // linkage so that we can switch it when we import the GV.
915 if (Res
.LinkerRedefined
)
916 if (auto S
= ThinLTO
.CombinedIndex
.findSummaryInModule(
917 GUID
, BM
.getModuleIdentifier()))
918 S
->setLinkage(GlobalValue::WeakAnyLinkage
);
921 // If the linker resolved the symbol to a local definition then mark it
922 // as local in the summary for the module we are adding.
923 if (Res
.FinalDefinitionInLinkageUnit
) {
924 if (auto S
= ThinLTO
.CombinedIndex
.findSummaryInModule(
925 GUID
, BM
.getModuleIdentifier())) {
926 S
->setDSOLocal(true);
932 if (!ThinLTO
.ModuleMap
.insert({BM
.getModuleIdentifier(), BM
}).second
)
933 return make_error
<StringError
>(
934 "Expected at most one ThinLTO module per bitcode file",
935 inconvertibleErrorCode());
937 if (!Conf
.ThinLTOModulesToCompile
.empty()) {
938 if (!ThinLTO
.ModulesToCompile
)
939 ThinLTO
.ModulesToCompile
= ModuleMapType();
940 // This is a fuzzy name matching where only modules with name containing the
941 // specified switch values are going to be compiled.
942 for (const std::string
&Name
: Conf
.ThinLTOModulesToCompile
) {
943 if (BM
.getModuleIdentifier().contains(Name
)) {
944 ThinLTO
.ModulesToCompile
->insert({BM
.getModuleIdentifier(), BM
});
945 llvm::errs() << "[ThinLTO] Selecting " << BM
.getModuleIdentifier()
951 return Error::success();
954 unsigned LTO::getMaxTasks() const {
955 CalledGetMaxTasks
= true;
956 auto ModuleCount
= ThinLTO
.ModulesToCompile
? ThinLTO
.ModulesToCompile
->size()
957 : ThinLTO
.ModuleMap
.size();
958 return RegularLTO
.ParallelCodeGenParallelismLevel
+ ModuleCount
;
961 // If only some of the modules were split, we cannot correctly handle
962 // code that contains type tests or type checked loads.
963 Error
LTO::checkPartiallySplit() {
964 if (!ThinLTO
.CombinedIndex
.partiallySplitLTOUnits())
965 return Error::success();
967 Function
*TypeTestFunc
= RegularLTO
.CombinedModule
->getFunction(
968 Intrinsic::getName(Intrinsic::type_test
));
969 Function
*TypeCheckedLoadFunc
= RegularLTO
.CombinedModule
->getFunction(
970 Intrinsic::getName(Intrinsic::type_checked_load
));
972 // First check if there are type tests / type checked loads in the
973 // merged regular LTO module IR.
974 if ((TypeTestFunc
&& !TypeTestFunc
->use_empty()) ||
975 (TypeCheckedLoadFunc
&& !TypeCheckedLoadFunc
->use_empty()))
976 return make_error
<StringError
>(
977 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
978 inconvertibleErrorCode());
980 // Otherwise check if there are any recorded in the combined summary from the
982 for (auto &P
: ThinLTO
.CombinedIndex
) {
983 for (auto &S
: P
.second
.SummaryList
) {
984 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
987 if (!FS
->type_test_assume_vcalls().empty() ||
988 !FS
->type_checked_load_vcalls().empty() ||
989 !FS
->type_test_assume_const_vcalls().empty() ||
990 !FS
->type_checked_load_const_vcalls().empty() ||
991 !FS
->type_tests().empty())
992 return make_error
<StringError
>(
993 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
994 inconvertibleErrorCode());
997 return Error::success();
1000 Error
LTO::run(AddStreamFn AddStream
, FileCache Cache
) {
1001 // Compute "dead" symbols, we don't want to import/export these!
1002 DenseSet
<GlobalValue::GUID
> GUIDPreservedSymbols
;
1003 DenseMap
<GlobalValue::GUID
, PrevailingType
> GUIDPrevailingResolutions
;
1004 for (auto &Res
: GlobalResolutions
) {
1005 // Normally resolution have IR name of symbol. We can do nothing here
1006 // otherwise. See comments in GlobalResolution struct for more details.
1007 if (Res
.second
.IRName
.empty())
1010 GlobalValue::GUID GUID
= GlobalValue::getGUID(
1011 GlobalValue::dropLLVMManglingEscape(Res
.second
.IRName
));
1013 if (Res
.second
.VisibleOutsideSummary
&& Res
.second
.Prevailing
)
1014 GUIDPreservedSymbols
.insert(GUID
);
1016 if (Res
.second
.ExportDynamic
)
1017 DynamicExportSymbols
.insert(GUID
);
1019 GUIDPrevailingResolutions
[GUID
] =
1020 Res
.second
.Prevailing
? PrevailingType::Yes
: PrevailingType::No
;
1023 auto isPrevailing
= [&](GlobalValue::GUID G
) {
1024 auto It
= GUIDPrevailingResolutions
.find(G
);
1025 if (It
== GUIDPrevailingResolutions
.end())
1026 return PrevailingType::Unknown
;
1029 computeDeadSymbolsWithConstProp(ThinLTO
.CombinedIndex
, GUIDPreservedSymbols
,
1030 isPrevailing
, Conf
.OptLevel
> 0);
1032 // Setup output file to emit statistics.
1033 auto StatsFileOrErr
= setupStatsFile(Conf
.StatsFile
);
1034 if (!StatsFileOrErr
)
1035 return StatsFileOrErr
.takeError();
1036 std::unique_ptr
<ToolOutputFile
> StatsFile
= std::move(StatsFileOrErr
.get());
1038 Error Result
= runRegularLTO(AddStream
);
1040 Result
= runThinLTO(AddStream
, Cache
, GUIDPreservedSymbols
);
1043 PrintStatisticsJSON(StatsFile
->os());
1048 Error
LTO::runRegularLTO(AddStreamFn AddStream
) {
1049 // Setup optimization remarks.
1050 auto DiagFileOrErr
= lto::setupLLVMOptimizationRemarks(
1051 RegularLTO
.CombinedModule
->getContext(), Conf
.RemarksFilename
,
1052 Conf
.RemarksPasses
, Conf
.RemarksFormat
, Conf
.RemarksWithHotness
,
1053 Conf
.RemarksHotnessThreshold
);
1055 return DiagFileOrErr
.takeError();
1056 DiagnosticOutputFile
= std::move(*DiagFileOrErr
);
1058 // Finalize linking of regular LTO modules containing summaries now that
1059 // we have computed liveness information.
1060 for (auto &M
: RegularLTO
.ModsWithSummaries
)
1061 if (Error Err
= linkRegularLTO(std::move(M
),
1062 /*LivenessFromIndex=*/true))
1065 // Ensure we don't have inconsistently split LTO units with type tests.
1066 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take
1067 // this path both cases but eventually this should be split into two and
1068 // do the ThinLTO checks in `runThinLTO`.
1069 if (Error Err
= checkPartiallySplit())
1072 // Make sure commons have the right size/alignment: we kept the largest from
1073 // all the prevailing when adding the inputs, and we apply it here.
1074 const DataLayout
&DL
= RegularLTO
.CombinedModule
->getDataLayout();
1075 for (auto &I
: RegularLTO
.Commons
) {
1076 if (!I
.second
.Prevailing
)
1077 // Don't do anything if no instance of this common was prevailing.
1079 GlobalVariable
*OldGV
= RegularLTO
.CombinedModule
->getNamedGlobal(I
.first
);
1080 if (OldGV
&& DL
.getTypeAllocSize(OldGV
->getValueType()) == I
.second
.Size
) {
1081 // Don't create a new global if the type is already correct, just make
1082 // sure the alignment is correct.
1083 OldGV
->setAlignment(I
.second
.Align
);
1087 ArrayType::get(Type::getInt8Ty(RegularLTO
.Ctx
), I
.second
.Size
);
1088 auto *GV
= new GlobalVariable(*RegularLTO
.CombinedModule
, Ty
, false,
1089 GlobalValue::CommonLinkage
,
1090 ConstantAggregateZero::get(Ty
), "");
1091 GV
->setAlignment(I
.second
.Align
);
1093 OldGV
->replaceAllUsesWith(ConstantExpr::getBitCast(GV
, OldGV
->getType()));
1094 GV
->takeName(OldGV
);
1095 OldGV
->eraseFromParent();
1097 GV
->setName(I
.first
);
1101 // If allowed, upgrade public vcall visibility metadata to linkage unit
1102 // visibility before whole program devirtualization in the optimizer.
1103 updateVCallVisibilityInModule(*RegularLTO
.CombinedModule
,
1104 Conf
.HasWholeProgramVisibility
,
1105 DynamicExportSymbols
);
1107 if (Conf
.PreOptModuleHook
&&
1108 !Conf
.PreOptModuleHook(0, *RegularLTO
.CombinedModule
))
1109 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1111 if (!Conf
.CodeGenOnly
) {
1112 for (const auto &R
: GlobalResolutions
) {
1113 if (!R
.second
.isPrevailingIRSymbol())
1115 if (R
.second
.Partition
!= 0 &&
1116 R
.second
.Partition
!= GlobalResolution::External
)
1120 RegularLTO
.CombinedModule
->getNamedValue(R
.second
.IRName
);
1121 // Ignore symbols defined in other partitions.
1122 // Also skip declarations, which are not allowed to have internal linkage.
1123 if (!GV
|| GV
->hasLocalLinkage() || GV
->isDeclaration())
1125 GV
->setUnnamedAddr(R
.second
.UnnamedAddr
? GlobalValue::UnnamedAddr::Global
1126 : GlobalValue::UnnamedAddr::None
);
1127 if (EnableLTOInternalization
&& R
.second
.Partition
== 0)
1128 GV
->setLinkage(GlobalValue::InternalLinkage
);
1131 RegularLTO
.CombinedModule
->addModuleFlag(Module::Error
, "LTOPostLink", 1);
1133 if (Conf
.PostInternalizeModuleHook
&&
1134 !Conf
.PostInternalizeModuleHook(0, *RegularLTO
.CombinedModule
))
1135 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1138 if (!RegularLTO
.EmptyCombinedModule
|| Conf
.AlwaysEmitRegularLTOObj
) {
1140 backend(Conf
, AddStream
, RegularLTO
.ParallelCodeGenParallelismLevel
,
1141 *RegularLTO
.CombinedModule
, ThinLTO
.CombinedIndex
))
1145 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1148 static const char *libcallRoutineNames
[] = {
1149 #define HANDLE_LIBCALL(code, name) name,
1150 #include "llvm/IR/RuntimeLibcalls.def"
1151 #undef HANDLE_LIBCALL
1154 ArrayRef
<const char*> LTO::getRuntimeLibcallSymbols() {
1155 return makeArrayRef(libcallRoutineNames
);
1158 /// This class defines the interface to the ThinLTO backend.
1159 class lto::ThinBackendProc
{
1162 ModuleSummaryIndex
&CombinedIndex
;
1163 const StringMap
<GVSummaryMapTy
> &ModuleToDefinedGVSummaries
;
1166 ThinBackendProc(const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1167 const StringMap
<GVSummaryMapTy
> &ModuleToDefinedGVSummaries
)
1168 : Conf(Conf
), CombinedIndex(CombinedIndex
),
1169 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries
) {}
1171 virtual ~ThinBackendProc() {}
1172 virtual Error
start(
1173 unsigned Task
, BitcodeModule BM
,
1174 const FunctionImporter::ImportMapTy
&ImportList
,
1175 const FunctionImporter::ExportSetTy
&ExportList
,
1176 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1177 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) = 0;
1178 virtual Error
wait() = 0;
1179 virtual unsigned getThreadCount() = 0;
1183 class InProcessThinBackend
: public ThinBackendProc
{
1184 ThreadPool BackendThreadPool
;
1185 AddStreamFn AddStream
;
1187 std::set
<GlobalValue::GUID
> CfiFunctionDefs
;
1188 std::set
<GlobalValue::GUID
> CfiFunctionDecls
;
1190 Optional
<Error
> Err
;
1194 InProcessThinBackend(
1195 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1196 ThreadPoolStrategy ThinLTOParallelism
,
1197 const StringMap
<GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1198 AddStreamFn AddStream
, FileCache Cache
)
1199 : ThinBackendProc(Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
),
1200 BackendThreadPool(ThinLTOParallelism
), AddStream(std::move(AddStream
)),
1201 Cache(std::move(Cache
)) {
1202 for (auto &Name
: CombinedIndex
.cfiFunctionDefs())
1203 CfiFunctionDefs
.insert(
1204 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name
)));
1205 for (auto &Name
: CombinedIndex
.cfiFunctionDecls())
1206 CfiFunctionDecls
.insert(
1207 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name
)));
1210 Error
runThinLTOBackendThread(
1211 AddStreamFn AddStream
, FileCache Cache
, unsigned Task
, BitcodeModule BM
,
1212 ModuleSummaryIndex
&CombinedIndex
,
1213 const FunctionImporter::ImportMapTy
&ImportList
,
1214 const FunctionImporter::ExportSetTy
&ExportList
,
1215 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1216 const GVSummaryMapTy
&DefinedGlobals
,
1217 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) {
1218 auto RunThinBackend
= [&](AddStreamFn AddStream
) {
1219 LTOLLVMContext
BackendContext(Conf
);
1220 Expected
<std::unique_ptr
<Module
>> MOrErr
= BM
.parseModule(BackendContext
);
1222 return MOrErr
.takeError();
1224 return thinBackend(Conf
, Task
, AddStream
, **MOrErr
, CombinedIndex
,
1225 ImportList
, DefinedGlobals
, &ModuleMap
);
1228 auto ModuleID
= BM
.getModuleIdentifier();
1230 if (!Cache
|| !CombinedIndex
.modulePaths().count(ModuleID
) ||
1231 all_of(CombinedIndex
.getModuleHash(ModuleID
),
1232 [](uint32_t V
) { return V
== 0; }))
1233 // Cache disabled or no entry for this module in the combined index or
1235 return RunThinBackend(AddStream
);
1237 SmallString
<40> Key
;
1238 // The module may be cached, this helps handling it.
1239 computeLTOCacheKey(Key
, Conf
, CombinedIndex
, ModuleID
, ImportList
,
1240 ExportList
, ResolvedODR
, DefinedGlobals
, CfiFunctionDefs
,
1242 Expected
<AddStreamFn
> CacheAddStreamOrErr
= Cache(Task
, Key
);
1243 if (Error Err
= CacheAddStreamOrErr
.takeError())
1245 AddStreamFn
&CacheAddStream
= *CacheAddStreamOrErr
;
1247 return RunThinBackend(CacheAddStream
);
1249 return Error::success();
1253 unsigned Task
, BitcodeModule BM
,
1254 const FunctionImporter::ImportMapTy
&ImportList
,
1255 const FunctionImporter::ExportSetTy
&ExportList
,
1256 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1257 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) override
{
1258 StringRef ModulePath
= BM
.getModuleIdentifier();
1259 assert(ModuleToDefinedGVSummaries
.count(ModulePath
));
1260 const GVSummaryMapTy
&DefinedGlobals
=
1261 ModuleToDefinedGVSummaries
.find(ModulePath
)->second
;
1262 BackendThreadPool
.async(
1263 [=](BitcodeModule BM
, ModuleSummaryIndex
&CombinedIndex
,
1264 const FunctionImporter::ImportMapTy
&ImportList
,
1265 const FunctionImporter::ExportSetTy
&ExportList
,
1266 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
>
1268 const GVSummaryMapTy
&DefinedGlobals
,
1269 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) {
1270 if (LLVM_ENABLE_THREADS
&& Conf
.TimeTraceEnabled
)
1271 timeTraceProfilerInitialize(Conf
.TimeTraceGranularity
,
1273 Error E
= runThinLTOBackendThread(
1274 AddStream
, Cache
, Task
, BM
, CombinedIndex
, ImportList
, ExportList
,
1275 ResolvedODR
, DefinedGlobals
, ModuleMap
);
1277 std::unique_lock
<std::mutex
> L(ErrMu
);
1279 Err
= joinErrors(std::move(*Err
), std::move(E
));
1283 if (LLVM_ENABLE_THREADS
&& Conf
.TimeTraceEnabled
)
1284 timeTraceProfilerFinishThread();
1286 BM
, std::ref(CombinedIndex
), std::ref(ImportList
), std::ref(ExportList
),
1287 std::ref(ResolvedODR
), std::ref(DefinedGlobals
), std::ref(ModuleMap
));
1288 return Error::success();
1291 Error
wait() override
{
1292 BackendThreadPool
.wait();
1294 return std::move(*Err
);
1296 return Error::success();
1299 unsigned getThreadCount() override
{
1300 return BackendThreadPool
.getThreadCount();
1303 } // end anonymous namespace
1305 ThinBackend
lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism
) {
1306 return [=](const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1307 const StringMap
<GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1308 AddStreamFn AddStream
, FileCache Cache
) {
1309 return std::make_unique
<InProcessThinBackend
>(
1310 Conf
, CombinedIndex
, Parallelism
, ModuleToDefinedGVSummaries
, AddStream
,
1315 // Given the original \p Path to an output file, replace any path
1316 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the
1317 // resulting directory if it does not yet exist.
1318 std::string
lto::getThinLTOOutputFile(const std::string
&Path
,
1319 const std::string
&OldPrefix
,
1320 const std::string
&NewPrefix
) {
1321 if (OldPrefix
.empty() && NewPrefix
.empty())
1323 SmallString
<128> NewPath(Path
);
1324 llvm::sys::path::replace_path_prefix(NewPath
, OldPrefix
, NewPrefix
);
1325 StringRef ParentPath
= llvm::sys::path::parent_path(NewPath
.str());
1326 if (!ParentPath
.empty()) {
1327 // Make sure the new directory exists, creating it if necessary.
1328 if (std::error_code EC
= llvm::sys::fs::create_directories(ParentPath
))
1329 llvm::errs() << "warning: could not create directory '" << ParentPath
1330 << "': " << EC
.message() << '\n';
1332 return std::string(NewPath
.str());
1336 class WriteIndexesThinBackend
: public ThinBackendProc
{
1337 std::string OldPrefix
, NewPrefix
;
1338 bool ShouldEmitImportsFiles
;
1339 raw_fd_ostream
*LinkedObjectsFile
;
1340 lto::IndexWriteCallback OnWrite
;
1343 WriteIndexesThinBackend(
1344 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1345 const StringMap
<GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1346 std::string OldPrefix
, std::string NewPrefix
, bool ShouldEmitImportsFiles
,
1347 raw_fd_ostream
*LinkedObjectsFile
, lto::IndexWriteCallback OnWrite
)
1348 : ThinBackendProc(Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
),
1349 OldPrefix(OldPrefix
), NewPrefix(NewPrefix
),
1350 ShouldEmitImportsFiles(ShouldEmitImportsFiles
),
1351 LinkedObjectsFile(LinkedObjectsFile
), OnWrite(OnWrite
) {}
1354 unsigned Task
, BitcodeModule BM
,
1355 const FunctionImporter::ImportMapTy
&ImportList
,
1356 const FunctionImporter::ExportSetTy
&ExportList
,
1357 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1358 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) override
{
1359 StringRef ModulePath
= BM
.getModuleIdentifier();
1360 std::string NewModulePath
=
1361 getThinLTOOutputFile(std::string(ModulePath
), OldPrefix
, NewPrefix
);
1363 if (LinkedObjectsFile
)
1364 *LinkedObjectsFile
<< NewModulePath
<< '\n';
1366 std::map
<std::string
, GVSummaryMapTy
> ModuleToSummariesForIndex
;
1367 gatherImportedSummariesForModule(ModulePath
, ModuleToDefinedGVSummaries
,
1368 ImportList
, ModuleToSummariesForIndex
);
1371 raw_fd_ostream
OS(NewModulePath
+ ".thinlto.bc", EC
,
1372 sys::fs::OpenFlags::OF_None
);
1374 return errorCodeToError(EC
);
1375 WriteIndexToFile(CombinedIndex
, OS
, &ModuleToSummariesForIndex
);
1377 if (ShouldEmitImportsFiles
) {
1378 EC
= EmitImportsFiles(ModulePath
, NewModulePath
+ ".imports",
1379 ModuleToSummariesForIndex
);
1381 return errorCodeToError(EC
);
1385 OnWrite(std::string(ModulePath
));
1386 return Error::success();
1389 Error
wait() override
{ return Error::success(); }
1391 // WriteIndexesThinBackend should always return 1 to prevent module
1392 // re-ordering and avoid non-determinism in the final link.
1393 unsigned getThreadCount() override
{ return 1; }
1395 } // end anonymous namespace
1397 ThinBackend
lto::createWriteIndexesThinBackend(
1398 std::string OldPrefix
, std::string NewPrefix
, bool ShouldEmitImportsFiles
,
1399 raw_fd_ostream
*LinkedObjectsFile
, IndexWriteCallback OnWrite
) {
1400 return [=](const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1401 const StringMap
<GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1402 AddStreamFn AddStream
, FileCache Cache
) {
1403 return std::make_unique
<WriteIndexesThinBackend
>(
1404 Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
, OldPrefix
, NewPrefix
,
1405 ShouldEmitImportsFiles
, LinkedObjectsFile
, OnWrite
);
1409 Error
LTO::runThinLTO(AddStreamFn AddStream
, FileCache Cache
,
1410 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
1411 timeTraceProfilerBegin("ThinLink", StringRef(""));
1412 auto TimeTraceScopeExit
= llvm::make_scope_exit([]() {
1413 if (llvm::timeTraceProfilerEnabled())
1414 llvm::timeTraceProfilerEnd();
1416 if (ThinLTO
.ModuleMap
.empty())
1417 return Error::success();
1419 if (ThinLTO
.ModulesToCompile
&& ThinLTO
.ModulesToCompile
->empty()) {
1420 llvm::errs() << "warning: [ThinLTO] No module compiled\n";
1421 return Error::success();
1424 if (Conf
.CombinedIndexHook
&&
1425 !Conf
.CombinedIndexHook(ThinLTO
.CombinedIndex
, GUIDPreservedSymbols
))
1426 return Error::success();
1428 // Collect for each module the list of function it defines (GUID ->
1430 StringMap
<GVSummaryMapTy
>
1431 ModuleToDefinedGVSummaries(ThinLTO
.ModuleMap
.size());
1432 ThinLTO
.CombinedIndex
.collectDefinedGVSummariesPerModule(
1433 ModuleToDefinedGVSummaries
);
1434 // Create entries for any modules that didn't have any GV summaries
1435 // (either they didn't have any GVs to start with, or we suppressed
1436 // generation of the summaries because they e.g. had inline assembly
1437 // uses that couldn't be promoted/renamed on export). This is so
1438 // InProcessThinBackend::start can still launch a backend thread, which
1439 // is passed the map of summaries for the module, without any special
1440 // handling for this case.
1441 for (auto &Mod
: ThinLTO
.ModuleMap
)
1442 if (!ModuleToDefinedGVSummaries
.count(Mod
.first
))
1443 ModuleToDefinedGVSummaries
.try_emplace(Mod
.first
);
1445 // Synthesize entry counts for functions in the CombinedIndex.
1446 computeSyntheticCounts(ThinLTO
.CombinedIndex
);
1448 StringMap
<FunctionImporter::ImportMapTy
> ImportLists(
1449 ThinLTO
.ModuleMap
.size());
1450 StringMap
<FunctionImporter::ExportSetTy
> ExportLists(
1451 ThinLTO
.ModuleMap
.size());
1452 StringMap
<std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
>> ResolvedODR
;
1455 ThinLTO
.CombinedIndex
.dumpSCCs(outs());
1457 std::set
<GlobalValue::GUID
> ExportedGUIDs
;
1459 // If allowed, upgrade public vcall visibility to linkage unit visibility in
1460 // the summaries before whole program devirtualization below.
1461 updateVCallVisibilityInIndex(ThinLTO
.CombinedIndex
,
1462 Conf
.HasWholeProgramVisibility
,
1463 DynamicExportSymbols
);
1465 // Perform index-based WPD. This will return immediately if there are
1466 // no index entries in the typeIdMetadata map (e.g. if we are instead
1467 // performing IR-based WPD in hybrid regular/thin LTO mode).
1468 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> LocalWPDTargetsMap
;
1469 runWholeProgramDevirtOnIndex(ThinLTO
.CombinedIndex
, ExportedGUIDs
,
1470 LocalWPDTargetsMap
);
1472 if (Conf
.OptLevel
> 0)
1473 ComputeCrossModuleImport(ThinLTO
.CombinedIndex
, ModuleToDefinedGVSummaries
,
1474 ImportLists
, ExportLists
);
1476 // Figure out which symbols need to be internalized. This also needs to happen
1477 // at -O0 because summary-based DCE is implemented using internalization, and
1478 // we must apply DCE consistently with the full LTO module in order to avoid
1479 // undefined references during the final link.
1480 for (auto &Res
: GlobalResolutions
) {
1481 // If the symbol does not have external references or it is not prevailing,
1482 // then not need to mark it as exported from a ThinLTO partition.
1483 if (Res
.second
.Partition
!= GlobalResolution::External
||
1484 !Res
.second
.isPrevailingIRSymbol())
1486 auto GUID
= GlobalValue::getGUID(
1487 GlobalValue::dropLLVMManglingEscape(Res
.second
.IRName
));
1488 // Mark exported unless index-based analysis determined it to be dead.
1489 if (ThinLTO
.CombinedIndex
.isGUIDLive(GUID
))
1490 ExportedGUIDs
.insert(GUID
);
1493 // Any functions referenced by the jump table in the regular LTO object must
1495 for (auto &Def
: ThinLTO
.CombinedIndex
.cfiFunctionDefs())
1496 ExportedGUIDs
.insert(
1497 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def
)));
1498 for (auto &Decl
: ThinLTO
.CombinedIndex
.cfiFunctionDecls())
1499 ExportedGUIDs
.insert(
1500 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl
)));
1502 auto isExported
= [&](StringRef ModuleIdentifier
, ValueInfo VI
) {
1503 const auto &ExportList
= ExportLists
.find(ModuleIdentifier
);
1504 return (ExportList
!= ExportLists
.end() && ExportList
->second
.count(VI
)) ||
1505 ExportedGUIDs
.count(VI
.getGUID());
1508 // Update local devirtualized targets that were exported by cross-module
1509 // importing or by other devirtualizations marked in the ExportedGUIDs set.
1510 updateIndexWPDForExports(ThinLTO
.CombinedIndex
, isExported
,
1511 LocalWPDTargetsMap
);
1513 auto isPrevailing
= [&](GlobalValue::GUID GUID
,
1514 const GlobalValueSummary
*S
) {
1515 return ThinLTO
.PrevailingModuleForGUID
[GUID
] == S
->modulePath();
1517 thinLTOInternalizeAndPromoteInIndex(ThinLTO
.CombinedIndex
, isExported
,
1520 auto recordNewLinkage
= [&](StringRef ModuleIdentifier
,
1521 GlobalValue::GUID GUID
,
1522 GlobalValue::LinkageTypes NewLinkage
) {
1523 ResolvedODR
[ModuleIdentifier
][GUID
] = NewLinkage
;
1525 thinLTOResolvePrevailingInIndex(Conf
, ThinLTO
.CombinedIndex
, isPrevailing
,
1526 recordNewLinkage
, GUIDPreservedSymbols
);
1528 thinLTOPropagateFunctionAttrs(ThinLTO
.CombinedIndex
, isPrevailing
);
1530 generateParamAccessSummary(ThinLTO
.CombinedIndex
);
1532 if (llvm::timeTraceProfilerEnabled())
1533 llvm::timeTraceProfilerEnd();
1535 TimeTraceScopeExit
.release();
1537 std::unique_ptr
<ThinBackendProc
> BackendProc
=
1538 ThinLTO
.Backend(Conf
, ThinLTO
.CombinedIndex
, ModuleToDefinedGVSummaries
,
1542 ThinLTO
.ModulesToCompile
? *ThinLTO
.ModulesToCompile
: ThinLTO
.ModuleMap
;
1544 auto ProcessOneModule
= [&](int I
) -> Error
{
1545 auto &Mod
= *(ModuleMap
.begin() + I
);
1546 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for
1547 // combined module and parallel code generation partitions.
1548 return BackendProc
->start(RegularLTO
.ParallelCodeGenParallelismLevel
+ I
,
1549 Mod
.second
, ImportLists
[Mod
.first
],
1550 ExportLists
[Mod
.first
], ResolvedODR
[Mod
.first
],
1554 if (BackendProc
->getThreadCount() == 1) {
1555 // Process the modules in the order they were provided on the command-line.
1556 // It is important for this codepath to be used for WriteIndexesThinBackend,
1557 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same
1558 // order as the inputs, which otherwise would affect the final link order.
1559 for (int I
= 0, E
= ModuleMap
.size(); I
!= E
; ++I
)
1560 if (Error E
= ProcessOneModule(I
))
1563 // When executing in parallel, process largest bitsize modules first to
1564 // improve parallelism, and avoid starving the thread pool near the end.
1565 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out
1567 std::vector
<BitcodeModule
*> ModulesVec
;
1568 ModulesVec
.reserve(ModuleMap
.size());
1569 for (auto &Mod
: ModuleMap
)
1570 ModulesVec
.push_back(&Mod
.second
);
1571 for (int I
: generateModulesOrdering(ModulesVec
))
1572 if (Error E
= ProcessOneModule(I
))
1575 return BackendProc
->wait();
1578 Expected
<std::unique_ptr
<ToolOutputFile
>> lto::setupLLVMOptimizationRemarks(
1579 LLVMContext
&Context
, StringRef RemarksFilename
, StringRef RemarksPasses
,
1580 StringRef RemarksFormat
, bool RemarksWithHotness
,
1581 Optional
<uint64_t> RemarksHotnessThreshold
, int Count
) {
1582 std::string Filename
= std::string(RemarksFilename
);
1583 // For ThinLTO, file.opt.<format> becomes
1584 // file.opt.<format>.thin.<num>.<format>.
1585 if (!Filename
.empty() && Count
!= -1)
1587 (Twine(Filename
) + ".thin." + llvm::utostr(Count
) + "." + RemarksFormat
)
1590 auto ResultOrErr
= llvm::setupLLVMOptimizationRemarks(
1591 Context
, Filename
, RemarksPasses
, RemarksFormat
, RemarksWithHotness
,
1592 RemarksHotnessThreshold
);
1593 if (Error E
= ResultOrErr
.takeError())
1594 return std::move(E
);
1597 (*ResultOrErr
)->keep();
1602 Expected
<std::unique_ptr
<ToolOutputFile
>>
1603 lto::setupStatsFile(StringRef StatsFilename
) {
1604 // Setup output file to emit statistics.
1605 if (StatsFilename
.empty())
1608 llvm::EnableStatistics(false);
1611 std::make_unique
<ToolOutputFile
>(StatsFilename
, EC
, sys::fs::OF_None
);
1613 return errorCodeToError(EC
);
1616 return std::move(StatsFile
);
1619 // Compute the ordering we will process the inputs: the rough heuristic here
1620 // is to sort them per size so that the largest module get schedule as soon as
1621 // possible. This is purely a compile-time optimization.
1622 std::vector
<int> lto::generateModulesOrdering(ArrayRef
<BitcodeModule
*> R
) {
1623 std::vector
<int> ModulesOrdering
;
1624 ModulesOrdering
.resize(R
.size());
1625 std::iota(ModulesOrdering
.begin(), ModulesOrdering
.end(), 0);
1626 llvm::sort(ModulesOrdering
, [&](int LeftIndex
, int RightIndex
) {
1627 auto LSize
= R
[LeftIndex
]->getBuffer().size();
1628 auto RSize
= R
[RightIndex
]->getBuffer().size();
1629 return LSize
> RSize
;
1631 return ModulesOrdering
;