1 //===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "SchedClassResolution.h"
10 #include "BenchmarkResult.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/MC/MCAsmInfo.h"
13 #include "llvm/Support/FormatVariadic.h"
15 #include <unordered_set>
21 // Return the non-redundant list of WriteProcRes used by the given sched class.
22 // The scheduling model for LLVM is such that each instruction has a certain
23 // number of uops which consume resources which are described by WriteProcRes
24 // entries. Each entry describe how many cycles are spent on a specific ProcRes
26 // For example, an instruction might have 3 uOps, one dispatching on P0
27 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
28 // Note that LLVM additionally denormalizes resource consumption to include
29 // usage of super resources by subresources. So in practice if there exists a
30 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
31 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
32 // by P06 are also consumed by P016. In the figure below, parenthesized cycles
33 // denote implied usage of superresources by subresources:
38 // =============================
40 // Eventually we end up with three entries for the WriteProcRes of the
42 // {ProcResIdx=1, Cycles=1} // P0
43 // {ProcResIdx=7, Cycles=3} // P06
44 // {ProcResIdx=10, Cycles=3} // P016
46 // Note that in this case, P016 does not contribute any cycles, so it would
47 // be removed by this function.
48 // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
49 static SmallVector
<MCWriteProcResEntry
, 8>
50 getNonRedundantWriteProcRes(const MCSchedClassDesc
&SCDesc
,
51 const MCSubtargetInfo
&STI
) {
52 SmallVector
<MCWriteProcResEntry
, 8> Result
;
53 const auto &SM
= STI
.getSchedModel();
54 const unsigned NumProcRes
= SM
.getNumProcResourceKinds();
56 // This assumes that the ProcResDescs are sorted in topological order, which
57 // is guaranteed by the tablegen backend.
58 SmallVector
<float, 32> ProcResUnitUsage(NumProcRes
);
59 for (const auto *WPR
= STI
.getWriteProcResBegin(&SCDesc
),
60 *const WPREnd
= STI
.getWriteProcResEnd(&SCDesc
);
61 WPR
!= WPREnd
; ++WPR
) {
62 const MCProcResourceDesc
*const ProcResDesc
=
63 SM
.getProcResource(WPR
->ProcResourceIdx
);
64 if (ProcResDesc
->SubUnitsIdxBegin
== nullptr) {
65 // This is a ProcResUnit.
66 Result
.push_back({WPR
->ProcResourceIdx
, WPR
->Cycles
});
67 ProcResUnitUsage
[WPR
->ProcResourceIdx
] += WPR
->Cycles
;
69 // This is a ProcResGroup. First see if it contributes any cycles or if
70 // it has cycles just from subunits.
71 float RemainingCycles
= WPR
->Cycles
;
72 for (const auto *SubResIdx
= ProcResDesc
->SubUnitsIdxBegin
;
73 SubResIdx
!= ProcResDesc
->SubUnitsIdxBegin
+ ProcResDesc
->NumUnits
;
75 RemainingCycles
-= ProcResUnitUsage
[*SubResIdx
];
77 if (RemainingCycles
< 0.01f
) {
78 // The ProcResGroup contributes no cycles of its own.
81 // The ProcResGroup contributes `RemainingCycles` cycles of its own.
82 Result
.push_back({WPR
->ProcResourceIdx
,
83 static_cast<uint16_t>(std::round(RemainingCycles
))});
84 // Spread the remaining cycles over all subunits.
85 for (const auto *SubResIdx
= ProcResDesc
->SubUnitsIdxBegin
;
86 SubResIdx
!= ProcResDesc
->SubUnitsIdxBegin
+ ProcResDesc
->NumUnits
;
88 ProcResUnitUsage
[*SubResIdx
] += RemainingCycles
/ ProcResDesc
->NumUnits
;
95 // Distributes a pressure budget as evenly as possible on the provided subunits
96 // given the already existing port pressure distribution.
98 // The algorithm is as follows: while there is remaining pressure to
99 // distribute, find the subunits with minimal pressure, and distribute
100 // remaining pressure equally up to the pressure of the unit with
101 // second-to-minimal pressure.
102 // For example, let's assume we want to distribute 2*P1256
103 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
104 // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
105 // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
106 // RemainingPressure = 2.0
107 // We sort the subunits by pressure:
108 // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
109 // We'll first start by the subunits with minimal pressure, which are at
110 // the beginning of the sorted array. In this example there is one (P2).
111 // The subunit with second-to-minimal pressure is the next one in the
112 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
114 // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
115 // RemainingPressure = 1.9
116 // We repeat this process: distribute 0.2 pressure on each of the minimal
117 // P2 and P1, decrease budget by 2*0.2:
118 // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
119 // RemainingPressure = 1.5
120 // There are no second-to-minimal subunits so we just share the remaining
121 // budget (1.5 cycles) equally:
122 // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
123 // RemainingPressure = 0.0
124 // We stop as there is no remaining budget to distribute.
125 static void distributePressure(float RemainingPressure
,
126 SmallVector
<uint16_t, 32> Subunits
,
127 SmallVector
<float, 32> &DensePressure
) {
128 // Find the number of subunits with minimal pressure (they are at the
130 sort(Subunits
, [&DensePressure
](const uint16_t A
, const uint16_t B
) {
131 return DensePressure
[A
] < DensePressure
[B
];
133 const auto getPressureForSubunit
= [&DensePressure
,
134 &Subunits
](size_t I
) -> float & {
135 return DensePressure
[Subunits
[I
]];
137 size_t NumMinimalSU
= 1;
138 while (NumMinimalSU
< Subunits
.size() &&
139 getPressureForSubunit(NumMinimalSU
) == getPressureForSubunit(0)) {
142 while (RemainingPressure
> 0.0f
) {
143 if (NumMinimalSU
== Subunits
.size()) {
144 // All units are minimal, just distribute evenly and be done.
145 for (size_t I
= 0; I
< NumMinimalSU
; ++I
) {
146 getPressureForSubunit(I
) += RemainingPressure
/ NumMinimalSU
;
150 // Distribute the remaining pressure equally.
151 const float MinimalPressure
= getPressureForSubunit(NumMinimalSU
- 1);
152 const float SecondToMinimalPressure
= getPressureForSubunit(NumMinimalSU
);
153 assert(MinimalPressure
< SecondToMinimalPressure
);
154 const float Increment
= SecondToMinimalPressure
- MinimalPressure
;
155 if (RemainingPressure
<= NumMinimalSU
* Increment
) {
156 // There is not enough remaining pressure.
157 for (size_t I
= 0; I
< NumMinimalSU
; ++I
) {
158 getPressureForSubunit(I
) += RemainingPressure
/ NumMinimalSU
;
162 // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
163 for (size_t I
= 0; I
< NumMinimalSU
; ++I
) {
164 getPressureForSubunit(I
) = SecondToMinimalPressure
;
165 RemainingPressure
-= SecondToMinimalPressure
;
167 while (NumMinimalSU
< Subunits
.size() &&
168 getPressureForSubunit(NumMinimalSU
) == SecondToMinimalPressure
) {
174 std::vector
<std::pair
<uint16_t, float>>
175 computeIdealizedProcResPressure(const MCSchedModel
&SM
,
176 SmallVector
<MCWriteProcResEntry
, 8> WPRS
) {
177 // DensePressure[I] is the port pressure for Proc Resource I.
178 SmallVector
<float, 32> DensePressure(SM
.getNumProcResourceKinds());
179 sort(WPRS
, [](const MCWriteProcResEntry
&A
, const MCWriteProcResEntry
&B
) {
180 return A
.ProcResourceIdx
< B
.ProcResourceIdx
;
182 for (const MCWriteProcResEntry
&WPR
: WPRS
) {
183 // Get units for the entry.
184 const MCProcResourceDesc
*const ProcResDesc
=
185 SM
.getProcResource(WPR
.ProcResourceIdx
);
186 if (ProcResDesc
->SubUnitsIdxBegin
== nullptr) {
187 // This is a ProcResUnit.
188 DensePressure
[WPR
.ProcResourceIdx
] += WPR
.Cycles
;
190 // This is a ProcResGroup.
191 SmallVector
<uint16_t, 32> Subunits(ProcResDesc
->SubUnitsIdxBegin
,
192 ProcResDesc
->SubUnitsIdxBegin
+
193 ProcResDesc
->NumUnits
);
194 distributePressure(WPR
.Cycles
, Subunits
, DensePressure
);
197 // Turn dense pressure into sparse pressure by removing zero entries.
198 std::vector
<std::pair
<uint16_t, float>> Pressure
;
199 for (unsigned I
= 0, E
= SM
.getNumProcResourceKinds(); I
< E
; ++I
) {
200 if (DensePressure
[I
] > 0.0f
)
201 Pressure
.emplace_back(I
, DensePressure
[I
]);
206 ResolvedSchedClass::ResolvedSchedClass(const MCSubtargetInfo
&STI
,
207 unsigned ResolvedSchedClassId
,
209 : SchedClassId(ResolvedSchedClassId
),
210 SCDesc(STI
.getSchedModel().getSchedClassDesc(ResolvedSchedClassId
)),
211 WasVariant(WasVariant
),
212 NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc
, STI
)),
213 IdealizedProcResPressure(computeIdealizedProcResPressure(
214 STI
.getSchedModel(), NonRedundantWriteProcRes
)) {
215 assert((SCDesc
== nullptr || !SCDesc
->isVariant()) &&
216 "ResolvedSchedClass should never be variant");
219 static unsigned ResolveVariantSchedClassId(const MCSubtargetInfo
&STI
,
220 const MCInstrInfo
&InstrInfo
,
221 unsigned SchedClassId
,
223 const auto &SM
= STI
.getSchedModel();
224 while (SchedClassId
&& SM
.getSchedClassDesc(SchedClassId
)->isVariant()) {
225 SchedClassId
= STI
.resolveVariantSchedClass(SchedClassId
, &MCI
, &InstrInfo
,
226 SM
.getProcessorID());
231 std::pair
<unsigned /*SchedClassId*/, bool /*WasVariant*/>
232 ResolvedSchedClass::resolveSchedClassId(const MCSubtargetInfo
&SubtargetInfo
,
233 const MCInstrInfo
&InstrInfo
,
235 unsigned SchedClassId
= InstrInfo
.get(MCI
.getOpcode()).getSchedClass();
236 const bool WasVariant
= SchedClassId
&& SubtargetInfo
.getSchedModel()
237 .getSchedClassDesc(SchedClassId
)
240 ResolveVariantSchedClassId(SubtargetInfo
, InstrInfo
, SchedClassId
, MCI
);
241 return std::make_pair(SchedClassId
, WasVariant
);
244 // Returns a ProxResIdx by id or name.
245 static unsigned findProcResIdx(const MCSubtargetInfo
&STI
,
246 const StringRef NameOrId
) {
247 // Interpret the key as an ProcResIdx.
248 unsigned ProcResIdx
= 0;
249 if (to_integer(NameOrId
, ProcResIdx
, 10))
251 // Interpret the key as a ProcRes name.
252 const auto &SchedModel
= STI
.getSchedModel();
253 for (int I
= 0, E
= SchedModel
.getNumProcResourceKinds(); I
< E
; ++I
) {
254 if (NameOrId
== SchedModel
.getProcResource(I
)->Name
)
260 std::vector
<BenchmarkMeasure
> ResolvedSchedClass::getAsPoint(
261 InstructionBenchmark::ModeE Mode
, const MCSubtargetInfo
&STI
,
262 ArrayRef
<PerInstructionStats
> Representative
) const {
263 const size_t NumMeasurements
= Representative
.size();
265 std::vector
<BenchmarkMeasure
> SchedClassPoint(NumMeasurements
);
267 if (Mode
== InstructionBenchmark::Latency
) {
268 assert(NumMeasurements
== 1 && "Latency is a single measure.");
269 BenchmarkMeasure
&LatencyMeasure
= SchedClassPoint
[0];
272 LatencyMeasure
.PerInstructionValue
= 0.0;
274 for (unsigned I
= 0; I
< SCDesc
->NumWriteLatencyEntries
; ++I
) {
275 const MCWriteLatencyEntry
*const WLE
=
276 STI
.getWriteLatencyEntry(SCDesc
, I
);
277 LatencyMeasure
.PerInstructionValue
=
278 std::max
<double>(LatencyMeasure
.PerInstructionValue
, WLE
->Cycles
);
280 } else if (Mode
== InstructionBenchmark::Uops
) {
281 for (auto I
: zip(SchedClassPoint
, Representative
)) {
282 BenchmarkMeasure
&Measure
= std::get
<0>(I
);
283 const PerInstructionStats
&Stats
= std::get
<1>(I
);
285 StringRef Key
= Stats
.key();
286 uint16_t ProcResIdx
= findProcResIdx(STI
, Key
);
287 if (ProcResIdx
> 0) {
288 // Find the pressure on ProcResIdx `Key`.
289 const auto ProcResPressureIt
=
290 llvm::find_if(IdealizedProcResPressure
,
291 [ProcResIdx
](const std::pair
<uint16_t, float> &WPR
) {
292 return WPR
.first
== ProcResIdx
;
294 Measure
.PerInstructionValue
=
295 ProcResPressureIt
== IdealizedProcResPressure
.end()
297 : ProcResPressureIt
->second
;
298 } else if (Key
== "NumMicroOps") {
299 Measure
.PerInstructionValue
= SCDesc
->NumMicroOps
;
301 errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
307 } else if (Mode
== InstructionBenchmark::InverseThroughput
) {
308 assert(NumMeasurements
== 1 && "Inverse Throughput is a single measure.");
309 BenchmarkMeasure
&RThroughputMeasure
= SchedClassPoint
[0];
311 RThroughputMeasure
.PerInstructionValue
=
312 MCSchedModel::getReciprocalThroughput(STI
, *SCDesc
);
314 llvm_unreachable("unimplemented measurement matching mode");
317 return SchedClassPoint
;
320 } // namespace exegesis