[SampleProfileLoader] Fix integer overflow in generateMDProfMetadata (#90217)
[llvm-project.git] / libclc / generic / lib / math / clc_exp10.cl
blobc6a9476939b56353a7d3d665888872f2eaa0b0cc
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
25 #include "config.h"
26 #include "math.h"
27 #include "tables.h"
28 #include "../clcmacro.h"
30 // Algorithm:
32 // e^x = 2^(x/ln(2)) = 2^(x*(64/ln(2))/64)
34 // x*(64/ln(2)) = n + f, |f| <= 0.5, n is integer
35 // n = 64*m + j, 0 <= j < 64
37 // e^x = 2^((64*m + j + f)/64)
38 // = (2^m) * (2^(j/64)) * 2^(f/64)
39 // = (2^m) * (2^(j/64)) * e^(f*(ln(2)/64))
41 // f = x*(64/ln(2)) - n
42 // r = f*(ln(2)/64) = x - n*(ln(2)/64)
44 // e^x = (2^m) * (2^(j/64)) * e^r
46 // (2^(j/64)) is precomputed
48 // e^r = 1 + r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5!
49 // e^r = 1 + q
51 // q = r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5!
53 // e^x = (2^m) * ( (2^(j/64)) + q*(2^(j/64)) )
55 _CLC_DEF _CLC_OVERLOAD float __clc_exp10(float x)
57 const float X_MAX = 0x1.344134p+5f; // 128*log2/log10 : 38.53183944498959
58 const float X_MIN = -0x1.66d3e8p+5f; // -149*log2/log10 : -44.8534693539332
60 const float R_64_BY_LOG10_2 = 0x1.a934f0p+7f; // 64*log10/log2 : 212.6033980727912
61 const float R_LOG10_2_BY_64_LD = 0x1.340000p-8f; // log2/(64 * log10) lead : 0.004699707
62 const float R_LOG10_2_BY_64_TL = 0x1.04d426p-18f; // log2/(64 * log10) tail : 0.00000388665057
63 const float R_LN10 = 0x1.26bb1cp+1f;
65 int return_nan = isnan(x);
66 int return_inf = x > X_MAX;
67 int return_zero = x < X_MIN;
69 int n = convert_int(x * R_64_BY_LOG10_2);
71 float fn = (float)n;
72 int j = n & 0x3f;
73 int m = n >> 6;
74 int m2 = m << EXPSHIFTBITS_SP32;
75 float r;
77 r = R_LN10 * mad(fn, -R_LOG10_2_BY_64_TL, mad(fn, -R_LOG10_2_BY_64_LD, x));
79 // Truncated Taylor series for e^r
80 float z2 = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r);
82 float two_to_jby64 = USE_TABLE(exp_tbl, j);
83 z2 = mad(two_to_jby64, z2, two_to_jby64);
85 float z2s = z2 * as_float(0x1 << (m + 149));
86 float z2n = as_float(as_int(z2) + m2);
87 z2 = m <= -126 ? z2s : z2n;
90 z2 = return_inf ? as_float(PINFBITPATT_SP32) : z2;
91 z2 = return_zero ? 0.0f : z2;
92 z2 = return_nan ? x : z2;
93 return z2;
95 _CLC_UNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_exp10, float)
97 #ifdef cl_khr_fp64
98 _CLC_DEF _CLC_OVERLOAD double __clc_exp10(double x)
100 const double X_MAX = 0x1.34413509f79ffp+8; // 1024*ln(2)/ln(10)
101 const double X_MIN = -0x1.434e6420f4374p+8; // -1074*ln(2)/ln(10)
103 const double R_64_BY_LOG10_2 = 0x1.a934f0979a371p+7; // 64*ln(10)/ln(2)
104 const double R_LOG10_2_BY_64_LD = 0x1.3441350000000p-8; // head ln(2)/(64*ln(10))
105 const double R_LOG10_2_BY_64_TL = 0x1.3ef3fde623e25p-37; // tail ln(2)/(64*ln(10))
106 const double R_LN10 = 0x1.26bb1bbb55516p+1; // ln(10)
108 int n = convert_int(x * R_64_BY_LOG10_2);
110 double dn = (double)n;
112 int j = n & 0x3f;
113 int m = n >> 6;
115 double r = R_LN10 * fma(-R_LOG10_2_BY_64_TL, dn, fma(-R_LOG10_2_BY_64_LD, dn, x));
117 // 6 term tail of Taylor expansion of e^r
118 double z2 = r * fma(r,
119 fma(r,
120 fma(r,
121 fma(r,
122 fma(r, 0x1.6c16c16c16c17p-10, 0x1.1111111111111p-7),
123 0x1.5555555555555p-5),
124 0x1.5555555555555p-3),
125 0x1.0000000000000p-1),
126 1.0);
128 double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j);
129 z2 = fma(tv.s0 + tv.s1, z2, tv.s1) + tv.s0;
131 int small_value = (m < -1022) || ((m == -1022) && (z2 < 1.0));
133 int n1 = m >> 2;
134 int n2 = m-n1;
135 double z3= z2 * as_double(((long)n1 + 1023) << 52);
136 z3 *= as_double(((long)n2 + 1023) << 52);
138 z2 = ldexp(z2, m);
139 z2 = small_value ? z3: z2;
141 z2 = isnan(x) ? x : z2;
143 z2 = x > X_MAX ? as_double(PINFBITPATT_DP64) : z2;
144 z2 = x < X_MIN ? 0.0 : z2;
146 return z2;
148 _CLC_UNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_exp10, double)
149 #endif