[SampleProfileLoader] Fix integer overflow in generateMDProfMetadata (#90217)
[llvm-project.git] / libclc / generic / lib / math / clc_pow.cl
blob02063a2e6b3e592d2036462a85e33aba41f3da82
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
25 #include "config.h"
26 #include "math.h"
27 #include "tables.h"
28 #include "../clcmacro.h"
31 compute pow using log and exp
32 x^y = exp(y * log(x))
34 we take care not to lose precision in the intermediate steps
36 When computing log, calculate it in splits,
38 r = f * (p_invead + p_inv_tail)
39 r = rh + rt
41 calculate log polynomial using r, in end addition, do
42 poly = poly + ((rh-r) + rt)
44 lth = -r
45 ltt = ((xexp * log2_t) - poly) + logT
46 lt = lth + ltt
48 lh = (xexp * log2_h) + logH
49 l = lh + lt
51 Calculate final log answer as gh and gt,
52 gh = l & higher-half bits
53 gt = (((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh))
55 yh = y & higher-half bits
56 yt = y - yh
58 Before entering computation of exp,
59 vs = ((yt*gt + yt*gh) + yh*gt)
60 v = vs + yh*gh
61 vt = ((yh*gh - v) + vs)
63 In calculation of exp, add vt to r that is used for poly
64 At the end of exp, do
65 ((((expT * poly) + expT) + expH*poly) + expH)
68 _CLC_DEF _CLC_OVERLOAD float __clc_pow(float x, float y)
71 int ix = as_int(x);
72 int ax = ix & EXSIGNBIT_SP32;
73 int xpos = ix == ax;
75 int iy = as_int(y);
76 int ay = iy & EXSIGNBIT_SP32;
77 int ypos = iy == ay;
79 /* Extra precise log calculation
80 * First handle case that x is close to 1
82 float r = 1.0f - as_float(ax);
83 int near1 = fabs(r) < 0x1.0p-4f;
84 float r2 = r*r;
86 /* Coefficients are just 1/3, 1/4, 1/5 and 1/6 */
87 float poly = mad(r,
88 mad(r,
89 mad(r,
90 mad(r, 0x1.24924ap-3f, 0x1.555556p-3f),
91 0x1.99999ap-3f),
92 0x1.000000p-2f),
93 0x1.555556p-2f);
95 poly *= r2*r;
97 float lth_near1 = -r2 * 0.5f;
98 float ltt_near1 = -poly;
99 float lt_near1 = lth_near1 + ltt_near1;
100 float lh_near1 = -r;
101 float l_near1 = lh_near1 + lt_near1;
103 /* Computations for x not near 1 */
104 int m = (int)(ax >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
105 float mf = (float)m;
106 int ixs = as_int(as_float(ax | 0x3f800000) - 1.0f);
107 float mfs = (float)((ixs >> EXPSHIFTBITS_SP32) - 253);
108 int c = m == -127;
109 int ixn = c ? ixs : ax;
110 float mfn = c ? mfs : mf;
112 int indx = (ixn & 0x007f0000) + ((ixn & 0x00008000) << 1);
114 /* F - Y */
115 float f = as_float(0x3f000000 | indx) - as_float(0x3f000000 | (ixn & MANTBITS_SP32));
117 indx = indx >> 16;
118 float2 tv = USE_TABLE(log_inv_tbl_ep, indx);
119 float rh = f * tv.s0;
120 float rt = f * tv.s1;
121 r = rh + rt;
123 poly = mad(r, mad(r, 0x1.0p-2f, 0x1.555556p-2f), 0x1.0p-1f) * (r*r);
124 poly += (rh - r) + rt;
126 const float LOG2_HEAD = 0x1.62e000p-1f; /* 0.693115234 */
127 const float LOG2_TAIL = 0x1.0bfbe8p-15f; /* 0.0000319461833 */
128 tv = USE_TABLE(loge_tbl, indx);
129 float lth = -r;
130 float ltt = mad(mfn, LOG2_TAIL, -poly) + tv.s1;
131 float lt = lth + ltt;
132 float lh = mad(mfn, LOG2_HEAD, tv.s0);
133 float l = lh + lt;
135 /* Select near 1 or not */
136 lth = near1 ? lth_near1 : lth;
137 ltt = near1 ? ltt_near1 : ltt;
138 lt = near1 ? lt_near1 : lt;
139 lh = near1 ? lh_near1 : lh;
140 l = near1 ? l_near1 : l;
142 float gh = as_float(as_int(l) & 0xfffff000);
143 float gt = ((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh);
145 float yh = as_float(iy & 0xfffff000);
147 float yt = y - yh;
149 float ylogx_s = mad(gt, yh, mad(gh, yt, yt*gt));
150 float ylogx = mad(yh, gh, ylogx_s);
151 float ylogx_t = mad(yh, gh, -ylogx) + ylogx_s;
153 /* Extra precise exp of ylogx */
154 const float R_64_BY_LOG2 = 0x1.715476p+6f; /* 64/log2 : 92.332482616893657 */
155 int n = convert_int(ylogx * R_64_BY_LOG2);
156 float nf = (float) n;
158 int j = n & 0x3f;
159 m = n >> 6;
160 int m2 = m << EXPSHIFTBITS_SP32;
162 const float R_LOG2_BY_64_LD = 0x1.620000p-7f; /* log2/64 lead: 0.0108032227 */
163 const float R_LOG2_BY_64_TL = 0x1.c85fdep-16f; /* log2/64 tail: 0.0000272020388 */
164 r = mad(nf, -R_LOG2_BY_64_TL, mad(nf, -R_LOG2_BY_64_LD, ylogx)) + ylogx_t;
166 /* Truncated Taylor series for e^r */
167 poly = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r);
169 tv = USE_TABLE(exp_tbl_ep, j);
171 float expylogx = mad(tv.s0, poly, mad(tv.s1, poly, tv.s1)) + tv.s0;
172 float sexpylogx = expylogx * as_float(0x1 << (m + 149));
173 float texpylogx = as_float(as_int(expylogx) + m2);
174 expylogx = m < -125 ? sexpylogx : texpylogx;
176 /* Result is +-Inf if (ylogx + ylogx_t) > 128*log2 */
177 expylogx = (ylogx > 0x1.62e430p+6f) | (ylogx == 0x1.62e430p+6f & ylogx_t > -0x1.05c610p-22f) ? as_float(PINFBITPATT_SP32) : expylogx;
179 /* Result is 0 if ylogx < -149*log2 */
180 expylogx = ylogx < -0x1.9d1da0p+6f ? 0.0f : expylogx;
182 /* Classify y:
183 * inty = 0 means not an integer.
184 * inty = 1 means odd integer.
185 * inty = 2 means even integer.
188 int yexp = (int)(ay >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32 + 1;
189 int mask = (1 << (24 - yexp)) - 1;
190 int yodd = ((iy >> (24 - yexp)) & 0x1) != 0;
191 int inty = yodd ? 1 : 2;
192 inty = (iy & mask) != 0 ? 0 : inty;
193 inty = yexp < 1 ? 0 : inty;
194 inty = yexp > 24 ? 2 : inty;
196 float signval = as_float((as_uint(expylogx) ^ SIGNBIT_SP32));
197 expylogx = ((inty == 1) & !xpos) ? signval : expylogx;
198 int ret = as_int(expylogx);
200 /* Corner case handling */
201 ret = (!xpos & (inty == 0)) ? QNANBITPATT_SP32 : ret;
202 ret = ax < 0x3f800000 & iy == NINFBITPATT_SP32 ? PINFBITPATT_SP32 : ret;
203 ret = ax > 0x3f800000 & iy == NINFBITPATT_SP32 ? 0 : ret;
204 ret = ax < 0x3f800000 & iy == PINFBITPATT_SP32 ? 0 : ret;
205 ret = ax > 0x3f800000 & iy == PINFBITPATT_SP32 ? PINFBITPATT_SP32 : ret;
206 int xinf = xpos ? PINFBITPATT_SP32 : NINFBITPATT_SP32;
207 ret = ((ax == 0) & !ypos & (inty == 1)) ? xinf : ret;
208 ret = ((ax == 0) & !ypos & (inty != 1)) ? PINFBITPATT_SP32 : ret;
209 int xzero = xpos ? 0 : 0x80000000;
210 ret = ((ax == 0) & ypos & (inty == 1)) ? xzero : ret;
211 ret = ((ax == 0) & ypos & (inty != 1)) ? 0 : ret;
212 ret = ((ax == 0) & (iy == NINFBITPATT_SP32)) ? PINFBITPATT_SP32 : ret;
213 ret = ((ix == 0xbf800000) & (ay == PINFBITPATT_SP32)) ? 0x3f800000 : ret;
214 ret = ((ix == NINFBITPATT_SP32) & !ypos & (inty == 1)) ? 0x80000000 : ret;
215 ret = ((ix == NINFBITPATT_SP32) & !ypos & (inty != 1)) ? 0 : ret;
216 ret = ((ix == NINFBITPATT_SP32) & ypos & (inty == 1)) ? NINFBITPATT_SP32 : ret;
217 ret = ((ix == NINFBITPATT_SP32) & ypos & (inty != 1)) ? PINFBITPATT_SP32 : ret;
218 ret = ((ix == PINFBITPATT_SP32) & !ypos) ? 0 : ret;
219 ret = ((ix == PINFBITPATT_SP32) & ypos) ? PINFBITPATT_SP32 : ret;
220 ret = (ax > PINFBITPATT_SP32) ? ix : ret;
221 ret = (ay > PINFBITPATT_SP32) ? iy : ret;
222 ret = ay == 0 ? 0x3f800000 : ret;
223 ret = ix == 0x3f800000 ? 0x3f800000 : ret;
225 return as_float(ret);
227 _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_pow, float, float)
229 #ifdef cl_khr_fp64
230 _CLC_DEF _CLC_OVERLOAD double __clc_pow(double x, double y)
232 const double real_log2_tail = 5.76999904754328540596e-08;
233 const double real_log2_lead = 6.93147122859954833984e-01;
235 long ux = as_long(x);
236 long ax = ux & (~SIGNBIT_DP64);
237 int xpos = ax == ux;
239 long uy = as_long(y);
240 long ay = uy & (~SIGNBIT_DP64);
241 int ypos = ay == uy;
243 // Extended precision log
244 double v, vt;
246 int exp = (int)(ax >> 52) - 1023;
247 int mask_exp_1023 = exp == -1023;
248 double xexp = (double) exp;
249 long mantissa = ax & 0x000FFFFFFFFFFFFFL;
251 long temp_ux = as_long(as_double(0x3ff0000000000000L | mantissa) - 1.0);
252 exp = ((temp_ux & 0x7FF0000000000000L) >> 52) - 2045;
253 double xexp1 = (double) exp;
254 long mantissa1 = temp_ux & 0x000FFFFFFFFFFFFFL;
256 xexp = mask_exp_1023 ? xexp1 : xexp;
257 mantissa = mask_exp_1023 ? mantissa1 : mantissa;
259 long rax = (mantissa & 0x000ff00000000000) + ((mantissa & 0x0000080000000000) << 1);
260 int index = rax >> 44;
262 double F = as_double(rax | 0x3FE0000000000000L);
263 double Y = as_double(mantissa | 0x3FE0000000000000L);
264 double f = F - Y;
265 double2 tv = USE_TABLE(log_f_inv_tbl, index);
266 double log_h = tv.s0;
267 double log_t = tv.s1;
268 double f_inv = (log_h + log_t) * f;
269 double r1 = as_double(as_long(f_inv) & 0xfffffffff8000000L);
270 double r2 = fma(-F, r1, f) * (log_h + log_t);
271 double r = r1 + r2;
273 double poly = fma(r,
274 fma(r,
275 fma(r,
276 fma(r, 1.0/7.0, 1.0/6.0),
277 1.0/5.0),
278 1.0/4.0),
279 1.0/3.0);
280 poly = poly * r * r * r;
282 double hr1r1 = 0.5*r1*r1;
283 double poly0h = r1 + hr1r1;
284 double poly0t = r1 - poly0h + hr1r1;
285 poly = fma(r1, r2, fma(0.5*r2, r2, poly)) + r2 + poly0t;
287 tv = USE_TABLE(powlog_tbl, index);
288 log_h = tv.s0;
289 log_t = tv.s1;
291 double resT_t = fma(xexp, real_log2_tail, + log_t) - poly;
292 double resT = resT_t - poly0h;
293 double resH = fma(xexp, real_log2_lead, log_h);
294 double resT_h = poly0h;
296 double H = resT + resH;
297 double H_h = as_double(as_long(H) & 0xfffffffff8000000L);
298 double T = (resH - H + resT) + (resT_t - (resT + resT_h)) + (H - H_h);
299 H = H_h;
301 double y_head = as_double(uy & 0xfffffffff8000000L);
302 double y_tail = y - y_head;
304 double temp = fma(y_tail, H, fma(y_head, T, y_tail*T));
305 v = fma(y_head, H, temp);
306 vt = fma(y_head, H, -v) + temp;
309 // Now calculate exp of (v,vt)
311 double expv;
313 const double max_exp_arg = 709.782712893384;
314 const double min_exp_arg = -745.1332191019411;
315 const double sixtyfour_by_lnof2 = 92.33248261689366;
316 const double lnof2_by_64_head = 0.010830424260348081;
317 const double lnof2_by_64_tail = -4.359010638708991e-10;
319 double temp = v * sixtyfour_by_lnof2;
320 int n = (int)temp;
321 double dn = (double)n;
322 int j = n & 0x0000003f;
323 int m = n >> 6;
325 double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j);
326 double f1 = tv.s0;
327 double f2 = tv.s1;
328 double f = f1 + f2;
330 double r1 = fma(dn, -lnof2_by_64_head, v);
331 double r2 = dn * lnof2_by_64_tail;
332 double r = (r1 + r2) + vt;
334 double q = fma(r,
335 fma(r,
336 fma(r,
337 fma(r, 1.38889490863777199667e-03, 8.33336798434219616221e-03),
338 4.16666666662260795726e-02),
339 1.66666666665260878863e-01),
340 5.00000000000000008883e-01);
341 q = fma(r*r, q, r);
343 expv = fma(f, q, f2) + f1;
344 expv = ldexp(expv, m);
346 expv = v > max_exp_arg ? as_double(0x7FF0000000000000L) : expv;
347 expv = v < min_exp_arg ? 0.0 : expv;
350 // See whether y is an integer.
351 // inty = 0 means not an integer.
352 // inty = 1 means odd integer.
353 // inty = 2 means even integer.
355 int inty;
357 int yexp = (int)(ay >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64 + 1;
358 inty = yexp < 1 ? 0 : 2;
359 inty = yexp > 53 ? 2 : inty;
360 long mask = (1L << (53 - yexp)) - 1L;
361 int inty1 = (((ay & ~mask) >> (53 - yexp)) & 1L) == 1L ? 1 : 2;
362 inty1 = (ay & mask) != 0 ? 0 : inty1;
363 inty = !(yexp < 1) & !(yexp > 53) ? inty1 : inty;
366 expv *= (inty == 1) & !xpos ? -1.0 : 1.0;
368 long ret = as_long(expv);
370 // Now all the edge cases
371 ret = !xpos & (inty == 0) ? QNANBITPATT_DP64 : ret;
372 ret = ax < 0x3ff0000000000000L & uy == NINFBITPATT_DP64 ? PINFBITPATT_DP64 : ret;
373 ret = ax > 0x3ff0000000000000L & uy == NINFBITPATT_DP64 ? 0L : ret;
374 ret = ax < 0x3ff0000000000000L & uy == PINFBITPATT_DP64 ? 0L : ret;
375 ret = ax > 0x3ff0000000000000L & uy == PINFBITPATT_DP64 ? PINFBITPATT_DP64 : ret;
376 long xinf = xpos ? PINFBITPATT_DP64 : NINFBITPATT_DP64;
377 ret = ((ax == 0L) & !ypos & (inty == 1)) ? xinf : ret;
378 ret = ((ax == 0L) & !ypos & (inty != 1)) ? PINFBITPATT_DP64 : ret;
379 long xzero = xpos ? 0L : 0x8000000000000000L;
380 ret = ((ax == 0L) & ypos & (inty == 1)) ? xzero : ret;
381 ret = ((ax == 0L) & ypos & (inty != 1)) ? 0L : ret;
382 ret = ((ax == 0L) & (uy == NINFBITPATT_DP64)) ? PINFBITPATT_DP64 : ret;
383 ret = ((ux == 0xbff0000000000000L) & (ay == PINFBITPATT_DP64)) ? 0x3ff0000000000000L : ret;
384 ret = ((ux == NINFBITPATT_DP64) & !ypos & (inty == 1)) ? 0x8000000000000000L : ret;
385 ret = ((ux == NINFBITPATT_DP64) & !ypos & (inty != 1)) ? 0L : ret;
386 ret = ((ux == NINFBITPATT_DP64) & ypos & (inty == 1)) ? NINFBITPATT_DP64 : ret;
387 ret = ((ux == NINFBITPATT_DP64) & ypos & (inty != 1)) ? PINFBITPATT_DP64 : ret;
388 ret = (ux == PINFBITPATT_DP64) & !ypos ? 0L : ret;
389 ret = (ux == PINFBITPATT_DP64) & ypos ? PINFBITPATT_DP64 : ret;
390 ret = ax > PINFBITPATT_DP64 ? ux : ret;
391 ret = ay > PINFBITPATT_DP64 ? uy : ret;
392 ret = ay == 0L ? 0x3ff0000000000000L : ret;
393 ret = ux == 0x3ff0000000000000L ? 0x3ff0000000000000L : ret;
395 return as_double(ret);
397 _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_pow, double, double)
398 #endif