2 * Copyright
(c) 2014 Advanced Micro Devices
, Inc.
4 * Permission is hereby granted
, free of charge
, to any person obtaining a copy
5 * of this software and associated documentation files
(the "Software"), to deal
6 * in the Software without restriction
, including without limitation the rights
7 * to use
, copy
, modify
, merge
, publish
, distribute
, sublicense
, and
/or sell
8 * copies of the Software
, and to permit persons to whom the Software is
9 * furnished to do so
, subject to the following conditions
:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED
"AS IS", WITHOUT WARRANTY OF ANY KIND
, EXPRESS OR
15 * IMPLIED
, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM
, DAMAGES OR OTHER
18 * LIABILITY
, WHETHER IN AN ACTION OF CONTRACT
, TORT OR OTHERWISE
, ARISING FROM
,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 #include
"../clcmacro.h"
30 // compute pow using log and exp
31 // x^y
= exp
(y * log
(x))
33 // we take care not to lose precision in the intermediate steps
35 // When computing log
, calculate it in splits
,
37 // r
= f
* (p_invead + p_inv_tail
)
40 // calculate log polynomial using r
, in end addition
, do
41 // poly
= poly
+ ((rh-r) + rt
)
44 // ltt
= ((xexp * log2_t
) - poly
) + logT
47 // lh
= (xexp * log2_h
) + logH
50 // Calculate final log answer as gh and gt
,
51 // gh
= l
& higher-half bits
52 // gt
= (((ltt -
(lt - lth
)) + ((lh - l
) + lt
)) + (l - gh
))
54 // yh
= y
& higher-half bits
57 // Before entering computation of exp
,
58 // vs
= ((yt*gt
+ yt
*gh
) + yh
*gt
)
60 // vt
= ((yh*gh - v
) + vs
)
62 // In calculation of exp
, add vt to r that is used for poly
63 // At the end of exp
, do
64 // ((((expT * poly
) + expT
) + expH
*poly
) + expH
)
66 _CLC_DEF _CLC_OVERLOAD float __clc_powr
(float x
, float y
)
69 int ax
= ix
& EXSIGNBIT_SP32
;
73 int ay
= iy
& EXSIGNBIT_SP32
;
76 // Extra precise log calculation
77 // First handle case that x is close to
1
78 float r
= 1.0f - as_float
(ax);
79 int near1
= fabs
(r) < 0x1.0p-4f
;
82 // Coefficients are just
1/3, 1/4, 1/5 and
1/6
86 mad
(r, 0x1.24924ap-3f
, 0x1.555556p-3f
),
93 float lth_near1
= -r2
* 0.5f
;
94 float ltt_near1
= -poly
;
95 float lt_near1
= lth_near1
+ ltt_near1
;
97 float l_near1
= lh_near1
+ lt_near1
;
99 // Computations for x not near
1
100 int m
= (int)(ax >> EXPSHIFTBITS_SP32
) - EXPBIAS_SP32
;
102 int ixs
= as_int
(as_float(ax |
0x3f800000) -
1.0f
);
103 float mfs
= (float)((ixs >> EXPSHIFTBITS_SP32
) -
253);
105 int ixn
= c ? ixs
: ax
;
106 float mfn
= c ? mfs
: mf
;
108 int indx
= (ixn & 0x007f0000) + ((ixn & 0x00008000) << 1);
111 float f
= as_float
(0x3f000000 | indx
) - as_float
(0x3f000000 |
(ixn & MANTBITS_SP32
));
114 float2 tv
= USE_TABLE
(log_inv_tbl_ep, indx
);
115 float rh
= f
* tv.s0
;
116 float rt
= f
* tv.s1
;
119 poly
= mad
(r, mad
(r, 0x1.0p-2f
, 0x1.555556p-2f
), 0x1.0p-1f
) * (r*r
);
120 poly
+= (rh - r
) + rt
;
122 const float LOG2_HEAD
= 0x1.62e000p-1f
; // 0.693115234
123 const float LOG2_TAIL
= 0x1.0bfbe8p-15f
; // 0.0000319461833
124 tv
= USE_TABLE
(loge_tbl, indx
);
126 float ltt
= mad
(mfn, LOG2_TAIL
, -poly
) + tv.s1
;
127 float lt
= lth
+ ltt
;
128 float lh
= mad
(mfn, LOG2_HEAD
, tv.s0
);
131 // Select near
1 or not
132 lth
= near1 ? lth_near1
: lth
;
133 ltt
= near1 ? ltt_near1
: ltt
;
134 lt
= near1 ? lt_near1
: lt
;
135 lh
= near1 ? lh_near1
: lh
;
136 l
= near1 ? l_near1
: l
;
138 float gh
= as_float
(as_int(l) & 0xfffff000);
139 float gt
= ((ltt -
(lt - lth
)) + ((lh - l
) + lt
)) + (l - gh
);
141 float yh
= as_float
(iy & 0xfffff000);
145 float ylogx_s
= mad
(gt, yh
, mad
(gh, yt
, yt
*gt
));
146 float ylogx
= mad
(yh, gh
, ylogx_s
);
147 float ylogx_t
= mad
(yh, gh
, -ylogx
) + ylogx_s
;
149 // Extra precise exp of ylogx
150 const float R_64_BY_LOG2
= 0x1.715476p
+6f
; // 64/log2 : 92.332482616893657
151 int n
= convert_int
(ylogx * R_64_BY_LOG2
);
152 float nf
= (float) n
;
156 int m2
= m
<< EXPSHIFTBITS_SP32
;
158 const float R_LOG2_BY_64_LD
= 0x1.620000p-7f
; // log2/64 lead: 0.0108032227
159 const float R_LOG2_BY_64_TL
= 0x1.c85fdep-16f
; // log2/64 tail: 0.0000272020388
160 r
= mad
(nf, -R_LOG2_BY_64_TL
, mad
(nf, -R_LOG2_BY_64_LD
, ylogx
)) + ylogx_t
;
162 // Truncated Taylor series for e^r
163 poly
= mad
(mad(mad(r, 0x1.555556p-5f
, 0x1.555556p-3f
), r
, 0x1.000000p-1f
), r
*r
, r
);
165 tv
= USE_TABLE
(exp_tbl_ep, j
);
167 float expylogx
= mad
(tv.s0
, poly
, mad
(tv.s1
, poly
, tv.s1
)) + tv.s0
;
168 float sexpylogx
= expylogx
* as_float
(0x1 << (m + 149));
169 float texpylogx
= as_float
(as_int(expylogx) + m2
);
170 expylogx
= m
< -
125 ? sexpylogx
: texpylogx
;
172 // Result is
+-Inf if
(ylogx + ylogx_t
) > 128*log2
173 expylogx
= ((ylogx > 0x1.62e430p
+6f
) |
(ylogx == 0x1.62e430p
+6f
& ylogx_t
> -
0x1.05c610p-22f
)) ? as_float
(PINFBITPATT_SP32) : expylogx
;
175 // Result is
0 if ylogx
< -
149*log2
176 expylogx
= ylogx
< -
0x1.9d1da0p
+6f ?
0.0f
: expylogx
;
179 // inty
= 0 means not an integer.
180 // inty
= 1 means odd integer.
181 // inty
= 2 means even integer.
183 int yexp
= (int)(ay >> EXPSHIFTBITS_SP32
) - EXPBIAS_SP32
+ 1;
184 int mask
= (1 << (24 - yexp
)) -
1;
185 int yodd
= ((iy >> (24 - yexp
)) & 0x1) != 0;
186 int inty
= yodd ?
1 : 2;
187 inty
= (iy & mask
) != 0 ?
0 : inty
;
188 inty
= yexp
< 1 ?
0 : inty
;
189 inty
= yexp
> 24 ?
2 : inty
;
191 float signval
= as_float
((as_uint(expylogx) ^ SIGNBIT_SP32
));
192 expylogx
= ((inty == 1) & !xpos
) ? signval
: expylogx
;
193 int ret
= as_int
(expylogx);
195 // Corner case handling
196 ret
= ax
< 0x3f800000 & iy
== NINFBITPATT_SP32 ? PINFBITPATT_SP32
: ret
;
197 ret
= ax
< 0x3f800000 & iy
== PINFBITPATT_SP32 ?
0 : ret
;
198 ret
= ax
== 0x3f800000 & ay
< PINFBITPATT_SP32 ?
0x3f800000 : ret
;
199 ret
= ax
== 0x3f800000 & ay
== PINFBITPATT_SP32 ? QNANBITPATT_SP32
: ret
;
200 ret
= ax
> 0x3f800000 & iy
== NINFBITPATT_SP32 ?
0 : ret
;
201 ret
= ax
> 0x3f800000 & iy
== PINFBITPATT_SP32 ? PINFBITPATT_SP32
: ret
;
202 ret
= ((ix < PINFBITPATT_SP32
) & (ay == 0)) ?
0x3f800000 : ret
;
203 ret
= ((ax == PINFBITPATT_SP32
) & !ypos
) ?
0 : ret
;
204 ret
= ((ax == PINFBITPATT_SP32
) & ypos
) ? PINFBITPATT_SP32
: ret
;
205 ret
= ((ax == PINFBITPATT_SP32
) & (iy == PINFBITPATT_SP32
)) ? PINFBITPATT_SP32
: ret
;
206 ret
= ((ax == PINFBITPATT_SP32
) & (ay == 0)) ? QNANBITPATT_SP32
: ret
;
207 ret
= ((ax == 0) & !ypos
) ? PINFBITPATT_SP32
: ret
;
208 ret
= ((ax == 0) & ypos
) ?
0 : ret
;
209 ret
= ((ax == 0) & (ay == 0)) ? QNANBITPATT_SP32
: ret
;
210 ret
= ((ax != 0) & !xpos
) ? QNANBITPATT_SP32
: ret
;
211 ret
= ax
> PINFBITPATT_SP32 ? ix
: ret
;
212 ret
= ay
> PINFBITPATT_SP32 ? iy
: ret
;
214 return as_float
(ret);
216 _CLC_BINARY_VECTORIZE
(_CLC_DEF _CLC_OVERLOAD
, float
, __clc_powr
, float
, float
)
219 _CLC_DEF _CLC_OVERLOAD double __clc_powr
(double x
, double y
)
221 const double real_log2_tail
= 5.76999904754328540596e-08;
222 const double real_log2_lead
= 6.93147122859954833984e-01;
224 long ux
= as_long
(x);
225 long ax
= ux
& (~SIGNBIT_DP64
);
228 long uy
= as_long
(y);
229 long ay
= uy
& (~SIGNBIT_DP64
);
232 // Extended precision log
235 int exp
= (int)(ax >> 52) -
1023;
236 int mask_exp_1023
= exp
== -
1023;
237 double xexp
= (double) exp
;
238 long mantissa
= ax
& 0x000FFFFFFFFFFFFFL
;
240 long temp_ux
= as_long
(as_double(0x3ff0000000000000L | mantissa
) -
1.0);
241 exp
= ((temp_ux & 0x7FF0000000000000L
) >> 52) -
2045;
242 double xexp1
= (double) exp
;
243 long mantissa1
= temp_ux
& 0x000FFFFFFFFFFFFFL
;
245 xexp
= mask_exp_1023 ? xexp1
: xexp
;
246 mantissa
= mask_exp_1023 ? mantissa1
: mantissa
;
248 long rax
= (mantissa & 0x000ff00000000000) + ((mantissa & 0x0000080000000000) << 1);
249 int index
= rax
>> 44;
251 double F
= as_double
(rax |
0x3FE0000000000000L
);
252 double Y
= as_double
(mantissa |
0x3FE0000000000000L
);
254 double2 tv
= USE_TABLE
(log_f_inv_tbl, index
);
255 double log_h
= tv.s0
;
256 double log_t
= tv.s1
;
257 double f_inv
= (log_h + log_t
) * f
;
258 double r1
= as_double
(as_long(f_inv) & 0xfffffffff8000000L
);
259 double r2
= fma
(-F, r1
, f
) * (log_h + log_t
);
265 fma
(r, 1.0/7.0, 1.0/6.0),
269 poly
= poly
* r
* r
* r
;
271 double hr1r1
= 0.5*r1
*r1
;
272 double poly0h
= r1
+ hr1r1
;
273 double poly0t
= r1 - poly0h
+ hr1r1
;
274 poly
= fma
(r1, r2
, fma
(0.5
*r2
, r2
, poly
)) + r2
+ poly0t
;
276 tv
= USE_TABLE
(powlog_tbl, index
);
280 double resT_t
= fma
(xexp, real_log2_tail
, + log_t
) - poly
;
281 double resT
= resT_t - poly0h
;
282 double resH
= fma
(xexp, real_log2_lead
, log_h
);
283 double resT_h
= poly0h
;
285 double H
= resT
+ resH
;
286 double H_h
= as_double
(as_long(H) & 0xfffffffff8000000L
);
287 double T
= (resH - H
+ resT
) + (resT_t -
(resT + resT_h
)) + (H - H_h
);
290 double y_head
= as_double
(uy & 0xfffffffff8000000L
);
291 double y_tail
= y - y_head
;
293 double temp
= fma
(y_tail, H
, fma
(y_head, T
, y_tail
*T
));
294 v
= fma
(y_head, H
, temp
);
295 vt
= fma
(y_head, H
, -v
) + temp
;
298 // Now calculate exp of
(v,vt
)
302 const double max_exp_arg
= 709.782712893384;
303 const double min_exp_arg
= -
745.1332191019411;
304 const double sixtyfour_by_lnof2
= 92.33248261689366;
305 const double lnof2_by_64_head
= 0.010830424260348081;
306 const double lnof2_by_64_tail
= -
4.359010638708991e-10;
308 double temp
= v
* sixtyfour_by_lnof2
;
310 double dn
= (double)n
;
311 int j
= n
& 0x0000003f;
314 double2 tv
= USE_TABLE
(two_to_jby64_ep_tbl, j
);
319 double r1
= fma
(dn, -lnof2_by_64_head
, v
);
320 double r2
= dn
* lnof2_by_64_tail
;
321 double r
= (r1 + r2
) + vt
;
326 fma
(r, 1.38889490863777199667e-03, 8.33336798434219616221e-03),
327 4.16666666662260795726e-02),
328 1.66666666665260878863e-01),
329 5.00000000000000008883e-01);
332 expv
= fma
(f, q
, f2
) + f1
;
333 expv
= ldexp
(expv, m
);
335 expv
= v
> max_exp_arg ? as_double
(0x7FF0000000000000L) : expv
;
336 expv
= v
< min_exp_arg ?
0.0 : expv
;
339 // See whether y is an integer.
340 // inty
= 0 means not an integer.
341 // inty
= 1 means odd integer.
342 // inty
= 2 means even integer.
346 int yexp
= (int)(ay >> EXPSHIFTBITS_DP64
) - EXPBIAS_DP64
+ 1;
347 inty
= yexp
< 1 ?
0 : 2;
348 inty
= yexp
> 53 ?
2 : inty
;
349 long mask
= (1L << (53 - yexp
)) -
1L;
350 int inty1
= (((ay & ~mask
) >> (53 - yexp
)) & 1L) == 1L ?
1 : 2;
351 inty1
= (ay & mask
) != 0 ?
0 : inty1
;
352 inty
= !(yexp < 1) & !(yexp > 53) ? inty1
: inty
;
355 expv
*= ((inty == 1) & !xpos
) ? -
1.0 : 1.0;
357 long ret
= as_long
(expv);
359 // Now all the edge cases
360 ret
= ax
< 0x3ff0000000000000L
& uy
== NINFBITPATT_DP64 ? PINFBITPATT_DP64
: ret
;
361 ret
= ax
< 0x3ff0000000000000L
& uy
== PINFBITPATT_DP64 ?
0L : ret
;
362 ret
= ax
== 0x3ff0000000000000L
& ay
< PINFBITPATT_DP64 ?
0x3ff0000000000000L
: ret
;
363 ret
= ax
== 0x3ff0000000000000L
& ay
== PINFBITPATT_DP64 ? QNANBITPATT_DP64
: ret
;
364 ret
= ax
> 0x3ff0000000000000L
& uy
== NINFBITPATT_DP64 ?
0L : ret
;
365 ret
= ax
> 0x3ff0000000000000L
& uy
== PINFBITPATT_DP64 ? PINFBITPATT_DP64
: ret
;
366 ret
= ux
< PINFBITPATT_DP64
& ay
== 0L ?
0x3ff0000000000000L
: ret
;
367 ret
= ((ax == PINFBITPATT_DP64
) & !ypos
) ?
0L : ret
;
368 ret
= ((ax == PINFBITPATT_DP64
) & ypos
) ? PINFBITPATT_DP64
: ret
;
369 ret
= ((ax == PINFBITPATT_DP64
) & (uy == PINFBITPATT_DP64
)) ? PINFBITPATT_DP64
: ret
;
370 ret
= ((ax == PINFBITPATT_DP64
) & (ay == 0L)) ? QNANBITPATT_DP64
: ret
;
371 ret
= ((ax == 0L) & !ypos
) ? PINFBITPATT_DP64
: ret
;
372 ret
= ((ax == 0L) & ypos
) ?
0L : ret
;
373 ret
= ((ax == 0L) & (ay == 0L)) ? QNANBITPATT_DP64
: ret
;
374 ret
= ((ax != 0L) & !xpos
) ? QNANBITPATT_DP64
: ret
;
375 ret
= ax
> PINFBITPATT_DP64 ? ux
: ret
;
376 ret
= ay
> PINFBITPATT_DP64 ? uy
: ret
;
378 return as_double
(ret);
380 _CLC_BINARY_VECTORIZE
(_CLC_DEF _CLC_OVERLOAD
, double
, __clc_powr
, double
, double
)