[SampleProfileLoader] Fix integer overflow in generateMDProfMetadata (#90217)
[llvm-project.git] / libclc / generic / lib / math / clc_powr.cl
blobef97d3c322bd6b0a203e49cde1ab82aae94adce6
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
25 #include "config.h"
26 #include "math.h"
27 #include "tables.h"
28 #include "../clcmacro.h"
30 // compute pow using log and exp
31 // x^y = exp(y * log(x))
33 // we take care not to lose precision in the intermediate steps
35 // When computing log, calculate it in splits,
37 // r = f * (p_invead + p_inv_tail)
38 // r = rh + rt
40 // calculate log polynomial using r, in end addition, do
41 // poly = poly + ((rh-r) + rt)
43 // lth = -r
44 // ltt = ((xexp * log2_t) - poly) + logT
45 // lt = lth + ltt
47 // lh = (xexp * log2_h) + logH
48 // l = lh + lt
50 // Calculate final log answer as gh and gt,
51 // gh = l & higher-half bits
52 // gt = (((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh))
54 // yh = y & higher-half bits
55 // yt = y - yh
57 // Before entering computation of exp,
58 // vs = ((yt*gt + yt*gh) + yh*gt)
59 // v = vs + yh*gh
60 // vt = ((yh*gh - v) + vs)
62 // In calculation of exp, add vt to r that is used for poly
63 // At the end of exp, do
64 // ((((expT * poly) + expT) + expH*poly) + expH)
66 _CLC_DEF _CLC_OVERLOAD float __clc_powr(float x, float y)
68 int ix = as_int(x);
69 int ax = ix & EXSIGNBIT_SP32;
70 int xpos = ix == ax;
72 int iy = as_int(y);
73 int ay = iy & EXSIGNBIT_SP32;
74 int ypos = iy == ay;
76 // Extra precise log calculation
77 // First handle case that x is close to 1
78 float r = 1.0f - as_float(ax);
79 int near1 = fabs(r) < 0x1.0p-4f;
80 float r2 = r*r;
82 // Coefficients are just 1/3, 1/4, 1/5 and 1/6
83 float poly = mad(r,
84 mad(r,
85 mad(r,
86 mad(r, 0x1.24924ap-3f, 0x1.555556p-3f),
87 0x1.99999ap-3f),
88 0x1.000000p-2f),
89 0x1.555556p-2f);
91 poly *= r2*r;
93 float lth_near1 = -r2 * 0.5f;
94 float ltt_near1 = -poly;
95 float lt_near1 = lth_near1 + ltt_near1;
96 float lh_near1 = -r;
97 float l_near1 = lh_near1 + lt_near1;
99 // Computations for x not near 1
100 int m = (int)(ax >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
101 float mf = (float)m;
102 int ixs = as_int(as_float(ax | 0x3f800000) - 1.0f);
103 float mfs = (float)((ixs >> EXPSHIFTBITS_SP32) - 253);
104 int c = m == -127;
105 int ixn = c ? ixs : ax;
106 float mfn = c ? mfs : mf;
108 int indx = (ixn & 0x007f0000) + ((ixn & 0x00008000) << 1);
110 // F - Y
111 float f = as_float(0x3f000000 | indx) - as_float(0x3f000000 | (ixn & MANTBITS_SP32));
113 indx = indx >> 16;
114 float2 tv = USE_TABLE(log_inv_tbl_ep, indx);
115 float rh = f * tv.s0;
116 float rt = f * tv.s1;
117 r = rh + rt;
119 poly = mad(r, mad(r, 0x1.0p-2f, 0x1.555556p-2f), 0x1.0p-1f) * (r*r);
120 poly += (rh - r) + rt;
122 const float LOG2_HEAD = 0x1.62e000p-1f; // 0.693115234
123 const float LOG2_TAIL = 0x1.0bfbe8p-15f; // 0.0000319461833
124 tv = USE_TABLE(loge_tbl, indx);
125 float lth = -r;
126 float ltt = mad(mfn, LOG2_TAIL, -poly) + tv.s1;
127 float lt = lth + ltt;
128 float lh = mad(mfn, LOG2_HEAD, tv.s0);
129 float l = lh + lt;
131 // Select near 1 or not
132 lth = near1 ? lth_near1 : lth;
133 ltt = near1 ? ltt_near1 : ltt;
134 lt = near1 ? lt_near1 : lt;
135 lh = near1 ? lh_near1 : lh;
136 l = near1 ? l_near1 : l;
138 float gh = as_float(as_int(l) & 0xfffff000);
139 float gt = ((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh);
141 float yh = as_float(iy & 0xfffff000);
143 float yt = y - yh;
145 float ylogx_s = mad(gt, yh, mad(gh, yt, yt*gt));
146 float ylogx = mad(yh, gh, ylogx_s);
147 float ylogx_t = mad(yh, gh, -ylogx) + ylogx_s;
149 // Extra precise exp of ylogx
150 const float R_64_BY_LOG2 = 0x1.715476p+6f; // 64/log2 : 92.332482616893657
151 int n = convert_int(ylogx * R_64_BY_LOG2);
152 float nf = (float) n;
154 int j = n & 0x3f;
155 m = n >> 6;
156 int m2 = m << EXPSHIFTBITS_SP32;
158 const float R_LOG2_BY_64_LD = 0x1.620000p-7f; // log2/64 lead: 0.0108032227
159 const float R_LOG2_BY_64_TL = 0x1.c85fdep-16f; // log2/64 tail: 0.0000272020388
160 r = mad(nf, -R_LOG2_BY_64_TL, mad(nf, -R_LOG2_BY_64_LD, ylogx)) + ylogx_t;
162 // Truncated Taylor series for e^r
163 poly = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r);
165 tv = USE_TABLE(exp_tbl_ep, j);
167 float expylogx = mad(tv.s0, poly, mad(tv.s1, poly, tv.s1)) + tv.s0;
168 float sexpylogx = expylogx * as_float(0x1 << (m + 149));
169 float texpylogx = as_float(as_int(expylogx) + m2);
170 expylogx = m < -125 ? sexpylogx : texpylogx;
172 // Result is +-Inf if (ylogx + ylogx_t) > 128*log2
173 expylogx = ((ylogx > 0x1.62e430p+6f) | (ylogx == 0x1.62e430p+6f & ylogx_t > -0x1.05c610p-22f)) ? as_float(PINFBITPATT_SP32) : expylogx;
175 // Result is 0 if ylogx < -149*log2
176 expylogx = ylogx < -0x1.9d1da0p+6f ? 0.0f : expylogx;
178 // Classify y:
179 // inty = 0 means not an integer.
180 // inty = 1 means odd integer.
181 // inty = 2 means even integer.
183 int yexp = (int)(ay >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32 + 1;
184 int mask = (1 << (24 - yexp)) - 1;
185 int yodd = ((iy >> (24 - yexp)) & 0x1) != 0;
186 int inty = yodd ? 1 : 2;
187 inty = (iy & mask) != 0 ? 0 : inty;
188 inty = yexp < 1 ? 0 : inty;
189 inty = yexp > 24 ? 2 : inty;
191 float signval = as_float((as_uint(expylogx) ^ SIGNBIT_SP32));
192 expylogx = ((inty == 1) & !xpos) ? signval : expylogx;
193 int ret = as_int(expylogx);
195 // Corner case handling
196 ret = ax < 0x3f800000 & iy == NINFBITPATT_SP32 ? PINFBITPATT_SP32 : ret;
197 ret = ax < 0x3f800000 & iy == PINFBITPATT_SP32 ? 0 : ret;
198 ret = ax == 0x3f800000 & ay < PINFBITPATT_SP32 ? 0x3f800000 : ret;
199 ret = ax == 0x3f800000 & ay == PINFBITPATT_SP32 ? QNANBITPATT_SP32 : ret;
200 ret = ax > 0x3f800000 & iy == NINFBITPATT_SP32 ? 0 : ret;
201 ret = ax > 0x3f800000 & iy == PINFBITPATT_SP32 ? PINFBITPATT_SP32 : ret;
202 ret = ((ix < PINFBITPATT_SP32) & (ay == 0)) ? 0x3f800000 : ret;
203 ret = ((ax == PINFBITPATT_SP32) & !ypos) ? 0 : ret;
204 ret = ((ax == PINFBITPATT_SP32) & ypos) ? PINFBITPATT_SP32 : ret;
205 ret = ((ax == PINFBITPATT_SP32) & (iy == PINFBITPATT_SP32)) ? PINFBITPATT_SP32 : ret;
206 ret = ((ax == PINFBITPATT_SP32) & (ay == 0)) ? QNANBITPATT_SP32 : ret;
207 ret = ((ax == 0) & !ypos) ? PINFBITPATT_SP32 : ret;
208 ret = ((ax == 0) & ypos) ? 0 : ret;
209 ret = ((ax == 0) & (ay == 0)) ? QNANBITPATT_SP32 : ret;
210 ret = ((ax != 0) & !xpos) ? QNANBITPATT_SP32 : ret;
211 ret = ax > PINFBITPATT_SP32 ? ix : ret;
212 ret = ay > PINFBITPATT_SP32 ? iy : ret;
214 return as_float(ret);
216 _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_powr, float, float)
218 #ifdef cl_khr_fp64
219 _CLC_DEF _CLC_OVERLOAD double __clc_powr(double x, double y)
221 const double real_log2_tail = 5.76999904754328540596e-08;
222 const double real_log2_lead = 6.93147122859954833984e-01;
224 long ux = as_long(x);
225 long ax = ux & (~SIGNBIT_DP64);
226 int xpos = ax == ux;
228 long uy = as_long(y);
229 long ay = uy & (~SIGNBIT_DP64);
230 int ypos = ay == uy;
232 // Extended precision log
233 double v, vt;
235 int exp = (int)(ax >> 52) - 1023;
236 int mask_exp_1023 = exp == -1023;
237 double xexp = (double) exp;
238 long mantissa = ax & 0x000FFFFFFFFFFFFFL;
240 long temp_ux = as_long(as_double(0x3ff0000000000000L | mantissa) - 1.0);
241 exp = ((temp_ux & 0x7FF0000000000000L) >> 52) - 2045;
242 double xexp1 = (double) exp;
243 long mantissa1 = temp_ux & 0x000FFFFFFFFFFFFFL;
245 xexp = mask_exp_1023 ? xexp1 : xexp;
246 mantissa = mask_exp_1023 ? mantissa1 : mantissa;
248 long rax = (mantissa & 0x000ff00000000000) + ((mantissa & 0x0000080000000000) << 1);
249 int index = rax >> 44;
251 double F = as_double(rax | 0x3FE0000000000000L);
252 double Y = as_double(mantissa | 0x3FE0000000000000L);
253 double f = F - Y;
254 double2 tv = USE_TABLE(log_f_inv_tbl, index);
255 double log_h = tv.s0;
256 double log_t = tv.s1;
257 double f_inv = (log_h + log_t) * f;
258 double r1 = as_double(as_long(f_inv) & 0xfffffffff8000000L);
259 double r2 = fma(-F, r1, f) * (log_h + log_t);
260 double r = r1 + r2;
262 double poly = fma(r,
263 fma(r,
264 fma(r,
265 fma(r, 1.0/7.0, 1.0/6.0),
266 1.0/5.0),
267 1.0/4.0),
268 1.0/3.0);
269 poly = poly * r * r * r;
271 double hr1r1 = 0.5*r1*r1;
272 double poly0h = r1 + hr1r1;
273 double poly0t = r1 - poly0h + hr1r1;
274 poly = fma(r1, r2, fma(0.5*r2, r2, poly)) + r2 + poly0t;
276 tv = USE_TABLE(powlog_tbl, index);
277 log_h = tv.s0;
278 log_t = tv.s1;
280 double resT_t = fma(xexp, real_log2_tail, + log_t) - poly;
281 double resT = resT_t - poly0h;
282 double resH = fma(xexp, real_log2_lead, log_h);
283 double resT_h = poly0h;
285 double H = resT + resH;
286 double H_h = as_double(as_long(H) & 0xfffffffff8000000L);
287 double T = (resH - H + resT) + (resT_t - (resT + resT_h)) + (H - H_h);
288 H = H_h;
290 double y_head = as_double(uy & 0xfffffffff8000000L);
291 double y_tail = y - y_head;
293 double temp = fma(y_tail, H, fma(y_head, T, y_tail*T));
294 v = fma(y_head, H, temp);
295 vt = fma(y_head, H, -v) + temp;
298 // Now calculate exp of (v,vt)
300 double expv;
302 const double max_exp_arg = 709.782712893384;
303 const double min_exp_arg = -745.1332191019411;
304 const double sixtyfour_by_lnof2 = 92.33248261689366;
305 const double lnof2_by_64_head = 0.010830424260348081;
306 const double lnof2_by_64_tail = -4.359010638708991e-10;
308 double temp = v * sixtyfour_by_lnof2;
309 int n = (int)temp;
310 double dn = (double)n;
311 int j = n & 0x0000003f;
312 int m = n >> 6;
314 double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j);
315 double f1 = tv.s0;
316 double f2 = tv.s1;
317 double f = f1 + f2;
319 double r1 = fma(dn, -lnof2_by_64_head, v);
320 double r2 = dn * lnof2_by_64_tail;
321 double r = (r1 + r2) + vt;
323 double q = fma(r,
324 fma(r,
325 fma(r,
326 fma(r, 1.38889490863777199667e-03, 8.33336798434219616221e-03),
327 4.16666666662260795726e-02),
328 1.66666666665260878863e-01),
329 5.00000000000000008883e-01);
330 q = fma(r*r, q, r);
332 expv = fma(f, q, f2) + f1;
333 expv = ldexp(expv, m);
335 expv = v > max_exp_arg ? as_double(0x7FF0000000000000L) : expv;
336 expv = v < min_exp_arg ? 0.0 : expv;
339 // See whether y is an integer.
340 // inty = 0 means not an integer.
341 // inty = 1 means odd integer.
342 // inty = 2 means even integer.
344 int inty;
346 int yexp = (int)(ay >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64 + 1;
347 inty = yexp < 1 ? 0 : 2;
348 inty = yexp > 53 ? 2 : inty;
349 long mask = (1L << (53 - yexp)) - 1L;
350 int inty1 = (((ay & ~mask) >> (53 - yexp)) & 1L) == 1L ? 1 : 2;
351 inty1 = (ay & mask) != 0 ? 0 : inty1;
352 inty = !(yexp < 1) & !(yexp > 53) ? inty1 : inty;
355 expv *= ((inty == 1) & !xpos) ? -1.0 : 1.0;
357 long ret = as_long(expv);
359 // Now all the edge cases
360 ret = ax < 0x3ff0000000000000L & uy == NINFBITPATT_DP64 ? PINFBITPATT_DP64 : ret;
361 ret = ax < 0x3ff0000000000000L & uy == PINFBITPATT_DP64 ? 0L : ret;
362 ret = ax == 0x3ff0000000000000L & ay < PINFBITPATT_DP64 ? 0x3ff0000000000000L : ret;
363 ret = ax == 0x3ff0000000000000L & ay == PINFBITPATT_DP64 ? QNANBITPATT_DP64 : ret;
364 ret = ax > 0x3ff0000000000000L & uy == NINFBITPATT_DP64 ? 0L : ret;
365 ret = ax > 0x3ff0000000000000L & uy == PINFBITPATT_DP64 ? PINFBITPATT_DP64 : ret;
366 ret = ux < PINFBITPATT_DP64 & ay == 0L ? 0x3ff0000000000000L : ret;
367 ret = ((ax == PINFBITPATT_DP64) & !ypos) ? 0L : ret;
368 ret = ((ax == PINFBITPATT_DP64) & ypos) ? PINFBITPATT_DP64 : ret;
369 ret = ((ax == PINFBITPATT_DP64) & (uy == PINFBITPATT_DP64)) ? PINFBITPATT_DP64 : ret;
370 ret = ((ax == PINFBITPATT_DP64) & (ay == 0L)) ? QNANBITPATT_DP64 : ret;
371 ret = ((ax == 0L) & !ypos) ? PINFBITPATT_DP64 : ret;
372 ret = ((ax == 0L) & ypos) ? 0L : ret;
373 ret = ((ax == 0L) & (ay == 0L)) ? QNANBITPATT_DP64 : ret;
374 ret = ((ax != 0L) & !xpos) ? QNANBITPATT_DP64 : ret;
375 ret = ax > PINFBITPATT_DP64 ? ux : ret;
376 ret = ay > PINFBITPATT_DP64 ? uy : ret;
378 return as_double(ret);
380 _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_powr, double, double)
381 #endif