Clang] Fix expansion of response files in -Wp after integrated-cc1 change
[llvm-project.git] / llvm / lib / Transforms / Utils / PredicateInfo.cpp
blobdda2867f44b246f17a909fcd6faeeb60f1e74673
1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the PredicateInfo class.
11 //===----------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/PredicateInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/IR/AssemblyAnnotationWriter.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstIterator.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/DebugCounter.h"
36 #include "llvm/Support/FormattedStream.h"
37 #include "llvm/Transforms/Utils.h"
38 #include <algorithm>
39 #define DEBUG_TYPE "predicateinfo"
40 using namespace llvm;
41 using namespace PatternMatch;
42 using namespace llvm::PredicateInfoClasses;
44 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
45 "PredicateInfo Printer", false, false)
46 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
47 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
48 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
49 "PredicateInfo Printer", false, false)
50 static cl::opt<bool> VerifyPredicateInfo(
51 "verify-predicateinfo", cl::init(false), cl::Hidden,
52 cl::desc("Verify PredicateInfo in legacy printer pass."));
53 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
54 "Controls which variables are renamed with predicateinfo");
56 namespace {
57 // Given a predicate info that is a type of branching terminator, get the
58 // branching block.
59 const BasicBlock *getBranchBlock(const PredicateBase *PB) {
60 assert(isa<PredicateWithEdge>(PB) &&
61 "Only branches and switches should have PHIOnly defs that "
62 "require branch blocks.");
63 return cast<PredicateWithEdge>(PB)->From;
66 // Given a predicate info that is a type of branching terminator, get the
67 // branching terminator.
68 static Instruction *getBranchTerminator(const PredicateBase *PB) {
69 assert(isa<PredicateWithEdge>(PB) &&
70 "Not a predicate info type we know how to get a terminator from.");
71 return cast<PredicateWithEdge>(PB)->From->getTerminator();
74 // Given a predicate info that is a type of branching terminator, get the
75 // edge this predicate info represents
76 const std::pair<BasicBlock *, BasicBlock *>
77 getBlockEdge(const PredicateBase *PB) {
78 assert(isa<PredicateWithEdge>(PB) &&
79 "Not a predicate info type we know how to get an edge from.");
80 const auto *PEdge = cast<PredicateWithEdge>(PB);
81 return std::make_pair(PEdge->From, PEdge->To);
85 namespace llvm {
86 namespace PredicateInfoClasses {
87 enum LocalNum {
88 // Operations that must appear first in the block.
89 LN_First,
90 // Operations that are somewhere in the middle of the block, and are sorted on
91 // demand.
92 LN_Middle,
93 // Operations that must appear last in a block, like successor phi node uses.
94 LN_Last
97 // Associate global and local DFS info with defs and uses, so we can sort them
98 // into a global domination ordering.
99 struct ValueDFS {
100 int DFSIn = 0;
101 int DFSOut = 0;
102 unsigned int LocalNum = LN_Middle;
103 // Only one of Def or Use will be set.
104 Value *Def = nullptr;
105 Use *U = nullptr;
106 // Neither PInfo nor EdgeOnly participate in the ordering
107 PredicateBase *PInfo = nullptr;
108 bool EdgeOnly = false;
111 // Perform a strict weak ordering on instructions and arguments.
112 static bool valueComesBefore(OrderedInstructions &OI, const Value *A,
113 const Value *B) {
114 auto *ArgA = dyn_cast_or_null<Argument>(A);
115 auto *ArgB = dyn_cast_or_null<Argument>(B);
116 if (ArgA && !ArgB)
117 return true;
118 if (ArgB && !ArgA)
119 return false;
120 if (ArgA && ArgB)
121 return ArgA->getArgNo() < ArgB->getArgNo();
122 return OI.dfsBefore(cast<Instruction>(A), cast<Instruction>(B));
125 // This compares ValueDFS structures, creating OrderedBasicBlocks where
126 // necessary to compare uses/defs in the same block. Doing so allows us to walk
127 // the minimum number of instructions necessary to compute our def/use ordering.
128 struct ValueDFS_Compare {
129 DominatorTree &DT;
130 OrderedInstructions &OI;
131 ValueDFS_Compare(DominatorTree &DT, OrderedInstructions &OI)
132 : DT(DT), OI(OI) {}
134 bool operator()(const ValueDFS &A, const ValueDFS &B) const {
135 if (&A == &B)
136 return false;
137 // The only case we can't directly compare them is when they in the same
138 // block, and both have localnum == middle. In that case, we have to use
139 // comesbefore to see what the real ordering is, because they are in the
140 // same basic block.
142 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
143 "Equal DFS-in numbers imply equal out numbers");
144 bool SameBlock = A.DFSIn == B.DFSIn;
146 // We want to put the def that will get used for a given set of phi uses,
147 // before those phi uses.
148 // So we sort by edge, then by def.
149 // Note that only phi nodes uses and defs can come last.
150 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
151 return comparePHIRelated(A, B);
153 bool isADef = A.Def;
154 bool isBDef = B.Def;
155 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
156 return std::tie(A.DFSIn, A.LocalNum, isADef) <
157 std::tie(B.DFSIn, B.LocalNum, isBDef);
158 return localComesBefore(A, B);
161 // For a phi use, or a non-materialized def, return the edge it represents.
162 const std::pair<BasicBlock *, BasicBlock *>
163 getBlockEdge(const ValueDFS &VD) const {
164 if (!VD.Def && VD.U) {
165 auto *PHI = cast<PHINode>(VD.U->getUser());
166 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
168 // This is really a non-materialized def.
169 return ::getBlockEdge(VD.PInfo);
172 // For two phi related values, return the ordering.
173 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
174 BasicBlock *ASrc, *ADest, *BSrc, *BDest;
175 std::tie(ASrc, ADest) = getBlockEdge(A);
176 std::tie(BSrc, BDest) = getBlockEdge(B);
178 #ifndef NDEBUG
179 // This function should only be used for values in the same BB, check that.
180 DomTreeNode *DomASrc = DT.getNode(ASrc);
181 DomTreeNode *DomBSrc = DT.getNode(BSrc);
182 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
183 "DFS numbers for A should match the ones of the source block");
184 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
185 "DFS numbers for B should match the ones of the source block");
186 assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
187 #endif
188 (void)ASrc;
189 (void)BSrc;
191 // Use DFS numbers to compare destination blocks, to guarantee a
192 // deterministic order.
193 DomTreeNode *DomADest = DT.getNode(ADest);
194 DomTreeNode *DomBDest = DT.getNode(BDest);
195 unsigned AIn = DomADest->getDFSNumIn();
196 unsigned BIn = DomBDest->getDFSNumIn();
197 bool isADef = A.Def;
198 bool isBDef = B.Def;
199 assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
200 "Def and U cannot be set at the same time");
201 // Now sort by edge destination and then defs before uses.
202 return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
205 // Get the definition of an instruction that occurs in the middle of a block.
206 Value *getMiddleDef(const ValueDFS &VD) const {
207 if (VD.Def)
208 return VD.Def;
209 // It's possible for the defs and uses to be null. For branches, the local
210 // numbering will say the placed predicaeinfos should go first (IE
211 // LN_beginning), so we won't be in this function. For assumes, we will end
212 // up here, beause we need to order the def we will place relative to the
213 // assume. So for the purpose of ordering, we pretend the def is the assume
214 // because that is where we will insert the info.
215 if (!VD.U) {
216 assert(VD.PInfo &&
217 "No def, no use, and no predicateinfo should not occur");
218 assert(isa<PredicateAssume>(VD.PInfo) &&
219 "Middle of block should only occur for assumes");
220 return cast<PredicateAssume>(VD.PInfo)->AssumeInst;
222 return nullptr;
225 // Return either the Def, if it's not null, or the user of the Use, if the def
226 // is null.
227 const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
228 if (Def)
229 return cast<Instruction>(Def);
230 return cast<Instruction>(U->getUser());
233 // This performs the necessary local basic block ordering checks to tell
234 // whether A comes before B, where both are in the same basic block.
235 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
236 auto *ADef = getMiddleDef(A);
237 auto *BDef = getMiddleDef(B);
239 // See if we have real values or uses. If we have real values, we are
240 // guaranteed they are instructions or arguments. No matter what, we are
241 // guaranteed they are in the same block if they are instructions.
242 auto *ArgA = dyn_cast_or_null<Argument>(ADef);
243 auto *ArgB = dyn_cast_or_null<Argument>(BDef);
245 if (ArgA || ArgB)
246 return valueComesBefore(OI, ArgA, ArgB);
248 auto *AInst = getDefOrUser(ADef, A.U);
249 auto *BInst = getDefOrUser(BDef, B.U);
250 return valueComesBefore(OI, AInst, BInst);
254 } // namespace PredicateInfoClasses
256 bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack,
257 const ValueDFS &VDUse) const {
258 if (Stack.empty())
259 return false;
260 // If it's a phi only use, make sure it's for this phi node edge, and that the
261 // use is in a phi node. If it's anything else, and the top of the stack is
262 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
263 // the defs they must go with so that we can know it's time to pop the stack
264 // when we hit the end of the phi uses for a given def.
265 if (Stack.back().EdgeOnly) {
266 if (!VDUse.U)
267 return false;
268 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
269 if (!PHI)
270 return false;
271 // Check edge
272 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
273 if (EdgePred != getBranchBlock(Stack.back().PInfo))
274 return false;
276 // Use dominates, which knows how to handle edge dominance.
277 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
280 return (VDUse.DFSIn >= Stack.back().DFSIn &&
281 VDUse.DFSOut <= Stack.back().DFSOut);
284 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack,
285 const ValueDFS &VD) {
286 while (!Stack.empty() && !stackIsInScope(Stack, VD))
287 Stack.pop_back();
290 // Convert the uses of Op into a vector of uses, associating global and local
291 // DFS info with each one.
292 void PredicateInfo::convertUsesToDFSOrdered(
293 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
294 for (auto &U : Op->uses()) {
295 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
296 ValueDFS VD;
297 // Put the phi node uses in the incoming block.
298 BasicBlock *IBlock;
299 if (auto *PN = dyn_cast<PHINode>(I)) {
300 IBlock = PN->getIncomingBlock(U);
301 // Make phi node users appear last in the incoming block
302 // they are from.
303 VD.LocalNum = LN_Last;
304 } else {
305 // If it's not a phi node use, it is somewhere in the middle of the
306 // block.
307 IBlock = I->getParent();
308 VD.LocalNum = LN_Middle;
310 DomTreeNode *DomNode = DT.getNode(IBlock);
311 // It's possible our use is in an unreachable block. Skip it if so.
312 if (!DomNode)
313 continue;
314 VD.DFSIn = DomNode->getDFSNumIn();
315 VD.DFSOut = DomNode->getDFSNumOut();
316 VD.U = &U;
317 DFSOrderedSet.push_back(VD);
322 // Collect relevant operations from Comparison that we may want to insert copies
323 // for.
324 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
325 auto *Op0 = Comparison->getOperand(0);
326 auto *Op1 = Comparison->getOperand(1);
327 if (Op0 == Op1)
328 return;
329 CmpOperands.push_back(Comparison);
330 // Only want real values, not constants. Additionally, operands with one use
331 // are only being used in the comparison, which means they will not be useful
332 // for us to consider for predicateinfo.
334 if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse())
335 CmpOperands.push_back(Op0);
336 if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse())
337 CmpOperands.push_back(Op1);
340 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
341 void PredicateInfo::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
342 PredicateBase *PB) {
343 auto &OperandInfo = getOrCreateValueInfo(Op);
344 if (OperandInfo.Infos.empty())
345 OpsToRename.push_back(Op);
346 AllInfos.push_back(PB);
347 OperandInfo.Infos.push_back(PB);
350 // Process an assume instruction and place relevant operations we want to rename
351 // into OpsToRename.
352 void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB,
353 SmallVectorImpl<Value *> &OpsToRename) {
354 // See if we have a comparison we support
355 SmallVector<Value *, 8> CmpOperands;
356 SmallVector<Value *, 2> ConditionsToProcess;
357 CmpInst::Predicate Pred;
358 Value *Operand = II->getOperand(0);
359 if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()),
360 m_Cmp(Pred, m_Value(), m_Value()))
361 .match(II->getOperand(0))) {
362 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0));
363 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1));
364 ConditionsToProcess.push_back(Operand);
365 } else if (isa<CmpInst>(Operand)) {
367 ConditionsToProcess.push_back(Operand);
369 for (auto Cond : ConditionsToProcess) {
370 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
371 collectCmpOps(Cmp, CmpOperands);
372 // Now add our copy infos for our operands
373 for (auto *Op : CmpOperands) {
374 auto *PA = new PredicateAssume(Op, II, Cmp);
375 addInfoFor(OpsToRename, Op, PA);
377 CmpOperands.clear();
378 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
379 // Otherwise, it should be an AND.
380 assert(BinOp->getOpcode() == Instruction::And &&
381 "Should have been an AND");
382 auto *PA = new PredicateAssume(BinOp, II, BinOp);
383 addInfoFor(OpsToRename, BinOp, PA);
384 } else {
385 llvm_unreachable("Unknown type of condition");
390 // Process a block terminating branch, and place relevant operations to be
391 // renamed into OpsToRename.
392 void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB,
393 SmallVectorImpl<Value *> &OpsToRename) {
394 BasicBlock *FirstBB = BI->getSuccessor(0);
395 BasicBlock *SecondBB = BI->getSuccessor(1);
396 SmallVector<BasicBlock *, 2> SuccsToProcess;
397 SuccsToProcess.push_back(FirstBB);
398 SuccsToProcess.push_back(SecondBB);
399 SmallVector<Value *, 2> ConditionsToProcess;
401 auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) {
402 for (auto *Succ : SuccsToProcess) {
403 // Don't try to insert on a self-edge. This is mainly because we will
404 // eliminate during renaming anyway.
405 if (Succ == BranchBB)
406 continue;
407 bool TakenEdge = (Succ == FirstBB);
408 // For and, only insert on the true edge
409 // For or, only insert on the false edge
410 if ((isAnd && !TakenEdge) || (isOr && TakenEdge))
411 continue;
412 PredicateBase *PB =
413 new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge);
414 addInfoFor(OpsToRename, Op, PB);
415 if (!Succ->getSinglePredecessor())
416 EdgeUsesOnly.insert({BranchBB, Succ});
420 // Match combinations of conditions.
421 CmpInst::Predicate Pred;
422 bool isAnd = false;
423 bool isOr = false;
424 SmallVector<Value *, 8> CmpOperands;
425 if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()),
426 m_Cmp(Pred, m_Value(), m_Value()))) ||
427 match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()),
428 m_Cmp(Pred, m_Value(), m_Value())))) {
429 auto *BinOp = cast<BinaryOperator>(BI->getCondition());
430 if (BinOp->getOpcode() == Instruction::And)
431 isAnd = true;
432 else if (BinOp->getOpcode() == Instruction::Or)
433 isOr = true;
434 ConditionsToProcess.push_back(BinOp->getOperand(0));
435 ConditionsToProcess.push_back(BinOp->getOperand(1));
436 ConditionsToProcess.push_back(BI->getCondition());
437 } else if (isa<CmpInst>(BI->getCondition())) {
438 ConditionsToProcess.push_back(BI->getCondition());
440 for (auto Cond : ConditionsToProcess) {
441 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
442 collectCmpOps(Cmp, CmpOperands);
443 // Now add our copy infos for our operands
444 for (auto *Op : CmpOperands)
445 InsertHelper(Op, isAnd, isOr, Cmp);
446 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
447 // This must be an AND or an OR.
448 assert((BinOp->getOpcode() == Instruction::And ||
449 BinOp->getOpcode() == Instruction::Or) &&
450 "Should have been an AND or an OR");
451 // The actual value of the binop is not subject to the same restrictions
452 // as the comparison. It's either true or false on the true/false branch.
453 InsertHelper(BinOp, false, false, BinOp);
454 } else {
455 llvm_unreachable("Unknown type of condition");
457 CmpOperands.clear();
460 // Process a block terminating switch, and place relevant operations to be
461 // renamed into OpsToRename.
462 void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB,
463 SmallVectorImpl<Value *> &OpsToRename) {
464 Value *Op = SI->getCondition();
465 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
466 return;
468 // Remember how many outgoing edges there are to every successor.
469 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
470 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
471 BasicBlock *TargetBlock = SI->getSuccessor(i);
472 ++SwitchEdges[TargetBlock];
475 // Now propagate info for each case value
476 for (auto C : SI->cases()) {
477 BasicBlock *TargetBlock = C.getCaseSuccessor();
478 if (SwitchEdges.lookup(TargetBlock) == 1) {
479 PredicateSwitch *PS = new PredicateSwitch(
480 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
481 addInfoFor(OpsToRename, Op, PS);
482 if (!TargetBlock->getSinglePredecessor())
483 EdgeUsesOnly.insert({BranchBB, TargetBlock});
488 // Build predicate info for our function
489 void PredicateInfo::buildPredicateInfo() {
490 DT.updateDFSNumbers();
491 // Collect operands to rename from all conditional branch terminators, as well
492 // as assume statements.
493 SmallVector<Value *, 8> OpsToRename;
494 for (auto DTN : depth_first(DT.getRootNode())) {
495 BasicBlock *BranchBB = DTN->getBlock();
496 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
497 if (!BI->isConditional())
498 continue;
499 // Can't insert conditional information if they all go to the same place.
500 if (BI->getSuccessor(0) == BI->getSuccessor(1))
501 continue;
502 processBranch(BI, BranchBB, OpsToRename);
503 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
504 processSwitch(SI, BranchBB, OpsToRename);
507 for (auto &Assume : AC.assumptions()) {
508 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
509 if (DT.isReachableFromEntry(II->getParent()))
510 processAssume(II, II->getParent(), OpsToRename);
512 // Now rename all our operations.
513 renameUses(OpsToRename);
516 // Create a ssa_copy declaration with custom mangling, because
517 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly:
518 // all unnamed types get mangled to the same string. We use the pointer
519 // to the type as name here, as it guarantees unique names for different
520 // types and we remove the declarations when destroying PredicateInfo.
521 // It is a workaround for PR38117, because solving it in a fully general way is
522 // tricky (FIXME).
523 static Function *getCopyDeclaration(Module *M, Type *Ty) {
524 std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty);
525 return cast<Function>(
526 M->getOrInsertFunction(Name,
527 getType(M->getContext(), Intrinsic::ssa_copy, Ty))
528 .getCallee());
531 // Given the renaming stack, make all the operands currently on the stack real
532 // by inserting them into the IR. Return the last operation's value.
533 Value *PredicateInfo::materializeStack(unsigned int &Counter,
534 ValueDFSStack &RenameStack,
535 Value *OrigOp) {
536 // Find the first thing we have to materialize
537 auto RevIter = RenameStack.rbegin();
538 for (; RevIter != RenameStack.rend(); ++RevIter)
539 if (RevIter->Def)
540 break;
542 size_t Start = RevIter - RenameStack.rbegin();
543 // The maximum number of things we should be trying to materialize at once
544 // right now is 4, depending on if we had an assume, a branch, and both used
545 // and of conditions.
546 for (auto RenameIter = RenameStack.end() - Start;
547 RenameIter != RenameStack.end(); ++RenameIter) {
548 auto *Op =
549 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
550 ValueDFS &Result = *RenameIter;
551 auto *ValInfo = Result.PInfo;
552 // For edge predicates, we can just place the operand in the block before
553 // the terminator. For assume, we have to place it right before the assume
554 // to ensure we dominate all of our uses. Always insert right before the
555 // relevant instruction (terminator, assume), so that we insert in proper
556 // order in the case of multiple predicateinfo in the same block.
557 if (isa<PredicateWithEdge>(ValInfo)) {
558 IRBuilder<> B(getBranchTerminator(ValInfo));
559 Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
560 if (IF->users().empty())
561 CreatedDeclarations.insert(IF);
562 CallInst *PIC =
563 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
564 PredicateMap.insert({PIC, ValInfo});
565 Result.Def = PIC;
566 } else {
567 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
568 assert(PAssume &&
569 "Should not have gotten here without it being an assume");
570 IRBuilder<> B(PAssume->AssumeInst);
571 Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
572 if (IF->users().empty())
573 CreatedDeclarations.insert(IF);
574 CallInst *PIC = B.CreateCall(IF, Op);
575 PredicateMap.insert({PIC, ValInfo});
576 Result.Def = PIC;
579 return RenameStack.back().Def;
582 // Instead of the standard SSA renaming algorithm, which is O(Number of
583 // instructions), and walks the entire dominator tree, we walk only the defs +
584 // uses. The standard SSA renaming algorithm does not really rely on the
585 // dominator tree except to order the stack push/pops of the renaming stacks, so
586 // that defs end up getting pushed before hitting the correct uses. This does
587 // not require the dominator tree, only the *order* of the dominator tree. The
588 // complete and correct ordering of the defs and uses, in dominator tree is
589 // contained in the DFS numbering of the dominator tree. So we sort the defs and
590 // uses into the DFS ordering, and then just use the renaming stack as per
591 // normal, pushing when we hit a def (which is a predicateinfo instruction),
592 // popping when we are out of the dfs scope for that def, and replacing any uses
593 // with top of stack if it exists. In order to handle liveness without
594 // propagating liveness info, we don't actually insert the predicateinfo
595 // instruction def until we see a use that it would dominate. Once we see such
596 // a use, we materialize the predicateinfo instruction in the right place and
597 // use it.
599 // TODO: Use this algorithm to perform fast single-variable renaming in
600 // promotememtoreg and memoryssa.
601 void PredicateInfo::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
602 ValueDFS_Compare Compare(DT, OI);
603 // Compute liveness, and rename in O(uses) per Op.
604 for (auto *Op : OpsToRename) {
605 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
606 unsigned Counter = 0;
607 SmallVector<ValueDFS, 16> OrderedUses;
608 const auto &ValueInfo = getValueInfo(Op);
609 // Insert the possible copies into the def/use list.
610 // They will become real copies if we find a real use for them, and never
611 // created otherwise.
612 for (auto &PossibleCopy : ValueInfo.Infos) {
613 ValueDFS VD;
614 // Determine where we are going to place the copy by the copy type.
615 // The predicate info for branches always come first, they will get
616 // materialized in the split block at the top of the block.
617 // The predicate info for assumes will be somewhere in the middle,
618 // it will get materialized in front of the assume.
619 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
620 VD.LocalNum = LN_Middle;
621 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
622 if (!DomNode)
623 continue;
624 VD.DFSIn = DomNode->getDFSNumIn();
625 VD.DFSOut = DomNode->getDFSNumOut();
626 VD.PInfo = PossibleCopy;
627 OrderedUses.push_back(VD);
628 } else if (isa<PredicateWithEdge>(PossibleCopy)) {
629 // If we can only do phi uses, we treat it like it's in the branch
630 // block, and handle it specially. We know that it goes last, and only
631 // dominate phi uses.
632 auto BlockEdge = getBlockEdge(PossibleCopy);
633 if (EdgeUsesOnly.count(BlockEdge)) {
634 VD.LocalNum = LN_Last;
635 auto *DomNode = DT.getNode(BlockEdge.first);
636 if (DomNode) {
637 VD.DFSIn = DomNode->getDFSNumIn();
638 VD.DFSOut = DomNode->getDFSNumOut();
639 VD.PInfo = PossibleCopy;
640 VD.EdgeOnly = true;
641 OrderedUses.push_back(VD);
643 } else {
644 // Otherwise, we are in the split block (even though we perform
645 // insertion in the branch block).
646 // Insert a possible copy at the split block and before the branch.
647 VD.LocalNum = LN_First;
648 auto *DomNode = DT.getNode(BlockEdge.second);
649 if (DomNode) {
650 VD.DFSIn = DomNode->getDFSNumIn();
651 VD.DFSOut = DomNode->getDFSNumOut();
652 VD.PInfo = PossibleCopy;
653 OrderedUses.push_back(VD);
659 convertUsesToDFSOrdered(Op, OrderedUses);
660 // Here we require a stable sort because we do not bother to try to
661 // assign an order to the operands the uses represent. Thus, two
662 // uses in the same instruction do not have a strict sort order
663 // currently and will be considered equal. We could get rid of the
664 // stable sort by creating one if we wanted.
665 llvm::stable_sort(OrderedUses, Compare);
666 SmallVector<ValueDFS, 8> RenameStack;
667 // For each use, sorted into dfs order, push values and replaces uses with
668 // top of stack, which will represent the reaching def.
669 for (auto &VD : OrderedUses) {
670 // We currently do not materialize copy over copy, but we should decide if
671 // we want to.
672 bool PossibleCopy = VD.PInfo != nullptr;
673 if (RenameStack.empty()) {
674 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
675 } else {
676 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
677 << RenameStack.back().DFSIn << ","
678 << RenameStack.back().DFSOut << ")\n");
681 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
682 << VD.DFSOut << ")\n");
684 bool ShouldPush = (VD.Def || PossibleCopy);
685 bool OutOfScope = !stackIsInScope(RenameStack, VD);
686 if (OutOfScope || ShouldPush) {
687 // Sync to our current scope.
688 popStackUntilDFSScope(RenameStack, VD);
689 if (ShouldPush) {
690 RenameStack.push_back(VD);
693 // If we get to this point, and the stack is empty we must have a use
694 // with no renaming needed, just skip it.
695 if (RenameStack.empty())
696 continue;
697 // Skip values, only want to rename the uses
698 if (VD.Def || PossibleCopy)
699 continue;
700 if (!DebugCounter::shouldExecute(RenameCounter)) {
701 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
702 continue;
704 ValueDFS &Result = RenameStack.back();
706 // If the possible copy dominates something, materialize our stack up to
707 // this point. This ensures every comparison that affects our operation
708 // ends up with predicateinfo.
709 if (!Result.Def)
710 Result.Def = materializeStack(Counter, RenameStack, Op);
712 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
713 << *VD.U->get() << " in " << *(VD.U->getUser())
714 << "\n");
715 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
716 "Predicateinfo def should have dominated this use");
717 VD.U->set(Result.Def);
722 PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) {
723 auto OIN = ValueInfoNums.find(Operand);
724 if (OIN == ValueInfoNums.end()) {
725 // This will grow it
726 ValueInfos.resize(ValueInfos.size() + 1);
727 // This will use the new size and give us a 0 based number of the info
728 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
729 assert(InsertResult.second && "Value info number already existed?");
730 return ValueInfos[InsertResult.first->second];
732 return ValueInfos[OIN->second];
735 const PredicateInfo::ValueInfo &
736 PredicateInfo::getValueInfo(Value *Operand) const {
737 auto OINI = ValueInfoNums.lookup(Operand);
738 assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
739 assert(OINI < ValueInfos.size() &&
740 "Value Info Number greater than size of Value Info Table");
741 return ValueInfos[OINI];
744 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
745 AssumptionCache &AC)
746 : F(F), DT(DT), AC(AC), OI(&DT) {
747 // Push an empty operand info so that we can detect 0 as not finding one
748 ValueInfos.resize(1);
749 buildPredicateInfo();
752 // Remove all declarations we created . The PredicateInfo consumers are
753 // responsible for remove the ssa_copy calls created.
754 PredicateInfo::~PredicateInfo() {
755 // Collect function pointers in set first, as SmallSet uses a SmallVector
756 // internally and we have to remove the asserting value handles first.
757 SmallPtrSet<Function *, 20> FunctionPtrs;
758 for (auto &F : CreatedDeclarations)
759 FunctionPtrs.insert(&*F);
760 CreatedDeclarations.clear();
762 for (Function *F : FunctionPtrs) {
763 assert(F->user_begin() == F->user_end() &&
764 "PredicateInfo consumer did not remove all SSA copies.");
765 F->eraseFromParent();
769 void PredicateInfo::verifyPredicateInfo() const {}
771 char PredicateInfoPrinterLegacyPass::ID = 0;
773 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
774 : FunctionPass(ID) {
775 initializePredicateInfoPrinterLegacyPassPass(
776 *PassRegistry::getPassRegistry());
779 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
780 AU.setPreservesAll();
781 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
782 AU.addRequired<AssumptionCacheTracker>();
785 // Replace ssa_copy calls created by PredicateInfo with their operand.
786 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
787 for (auto I = inst_begin(F), E = inst_end(F); I != E;) {
788 Instruction *Inst = &*I++;
789 const auto *PI = PredInfo.getPredicateInfoFor(Inst);
790 auto *II = dyn_cast<IntrinsicInst>(Inst);
791 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
792 continue;
794 Inst->replaceAllUsesWith(II->getOperand(0));
795 Inst->eraseFromParent();
799 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
800 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
801 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
802 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
803 PredInfo->print(dbgs());
804 if (VerifyPredicateInfo)
805 PredInfo->verifyPredicateInfo();
807 replaceCreatedSSACopys(*PredInfo, F);
808 return false;
811 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
812 FunctionAnalysisManager &AM) {
813 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
814 auto &AC = AM.getResult<AssumptionAnalysis>(F);
815 OS << "PredicateInfo for function: " << F.getName() << "\n";
816 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
817 PredInfo->print(OS);
819 replaceCreatedSSACopys(*PredInfo, F);
820 return PreservedAnalyses::all();
823 /// An assembly annotator class to print PredicateInfo information in
824 /// comments.
825 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
826 friend class PredicateInfo;
827 const PredicateInfo *PredInfo;
829 public:
830 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
832 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
833 formatted_raw_ostream &OS) {}
835 virtual void emitInstructionAnnot(const Instruction *I,
836 formatted_raw_ostream &OS) {
837 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
838 OS << "; Has predicate info\n";
839 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
840 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
841 << " Comparison:" << *PB->Condition << " Edge: [";
842 PB->From->printAsOperand(OS);
843 OS << ",";
844 PB->To->printAsOperand(OS);
845 OS << "] }\n";
846 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
847 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
848 << " Switch:" << *PS->Switch << " Edge: [";
849 PS->From->printAsOperand(OS);
850 OS << ",";
851 PS->To->printAsOperand(OS);
852 OS << "] }\n";
853 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
854 OS << "; assume predicate info {"
855 << " Comparison:" << *PA->Condition << " }\n";
861 void PredicateInfo::print(raw_ostream &OS) const {
862 PredicateInfoAnnotatedWriter Writer(this);
863 F.print(OS, &Writer);
866 void PredicateInfo::dump() const {
867 PredicateInfoAnnotatedWriter Writer(this);
868 F.print(dbgs(), &Writer);
871 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
872 FunctionAnalysisManager &AM) {
873 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
874 auto &AC = AM.getResult<AssumptionAnalysis>(F);
875 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
877 return PreservedAnalyses::all();