1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------===//
9 // This file implements the PredicateInfo class.
11 //===----------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/PredicateInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/IR/AssemblyAnnotationWriter.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstIterator.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/DebugCounter.h"
36 #include "llvm/Support/FormattedStream.h"
37 #include "llvm/Transforms/Utils.h"
39 #define DEBUG_TYPE "predicateinfo"
41 using namespace PatternMatch
;
42 using namespace llvm::PredicateInfoClasses
;
44 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass
, "print-predicateinfo",
45 "PredicateInfo Printer", false, false)
46 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
47 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
48 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass
, "print-predicateinfo",
49 "PredicateInfo Printer", false, false)
50 static cl::opt
<bool> VerifyPredicateInfo(
51 "verify-predicateinfo", cl::init(false), cl::Hidden
,
52 cl::desc("Verify PredicateInfo in legacy printer pass."));
53 DEBUG_COUNTER(RenameCounter
, "predicateinfo-rename",
54 "Controls which variables are renamed with predicateinfo");
57 // Given a predicate info that is a type of branching terminator, get the
59 const BasicBlock
*getBranchBlock(const PredicateBase
*PB
) {
60 assert(isa
<PredicateWithEdge
>(PB
) &&
61 "Only branches and switches should have PHIOnly defs that "
62 "require branch blocks.");
63 return cast
<PredicateWithEdge
>(PB
)->From
;
66 // Given a predicate info that is a type of branching terminator, get the
67 // branching terminator.
68 static Instruction
*getBranchTerminator(const PredicateBase
*PB
) {
69 assert(isa
<PredicateWithEdge
>(PB
) &&
70 "Not a predicate info type we know how to get a terminator from.");
71 return cast
<PredicateWithEdge
>(PB
)->From
->getTerminator();
74 // Given a predicate info that is a type of branching terminator, get the
75 // edge this predicate info represents
76 const std::pair
<BasicBlock
*, BasicBlock
*>
77 getBlockEdge(const PredicateBase
*PB
) {
78 assert(isa
<PredicateWithEdge
>(PB
) &&
79 "Not a predicate info type we know how to get an edge from.");
80 const auto *PEdge
= cast
<PredicateWithEdge
>(PB
);
81 return std::make_pair(PEdge
->From
, PEdge
->To
);
86 namespace PredicateInfoClasses
{
88 // Operations that must appear first in the block.
90 // Operations that are somewhere in the middle of the block, and are sorted on
93 // Operations that must appear last in a block, like successor phi node uses.
97 // Associate global and local DFS info with defs and uses, so we can sort them
98 // into a global domination ordering.
102 unsigned int LocalNum
= LN_Middle
;
103 // Only one of Def or Use will be set.
104 Value
*Def
= nullptr;
106 // Neither PInfo nor EdgeOnly participate in the ordering
107 PredicateBase
*PInfo
= nullptr;
108 bool EdgeOnly
= false;
111 // Perform a strict weak ordering on instructions and arguments.
112 static bool valueComesBefore(OrderedInstructions
&OI
, const Value
*A
,
114 auto *ArgA
= dyn_cast_or_null
<Argument
>(A
);
115 auto *ArgB
= dyn_cast_or_null
<Argument
>(B
);
121 return ArgA
->getArgNo() < ArgB
->getArgNo();
122 return OI
.dfsBefore(cast
<Instruction
>(A
), cast
<Instruction
>(B
));
125 // This compares ValueDFS structures, creating OrderedBasicBlocks where
126 // necessary to compare uses/defs in the same block. Doing so allows us to walk
127 // the minimum number of instructions necessary to compute our def/use ordering.
128 struct ValueDFS_Compare
{
130 OrderedInstructions
&OI
;
131 ValueDFS_Compare(DominatorTree
&DT
, OrderedInstructions
&OI
)
134 bool operator()(const ValueDFS
&A
, const ValueDFS
&B
) const {
137 // The only case we can't directly compare them is when they in the same
138 // block, and both have localnum == middle. In that case, we have to use
139 // comesbefore to see what the real ordering is, because they are in the
142 assert((A
.DFSIn
!= B
.DFSIn
|| A
.DFSOut
== B
.DFSOut
) &&
143 "Equal DFS-in numbers imply equal out numbers");
144 bool SameBlock
= A
.DFSIn
== B
.DFSIn
;
146 // We want to put the def that will get used for a given set of phi uses,
147 // before those phi uses.
148 // So we sort by edge, then by def.
149 // Note that only phi nodes uses and defs can come last.
150 if (SameBlock
&& A
.LocalNum
== LN_Last
&& B
.LocalNum
== LN_Last
)
151 return comparePHIRelated(A
, B
);
155 if (!SameBlock
|| A
.LocalNum
!= LN_Middle
|| B
.LocalNum
!= LN_Middle
)
156 return std::tie(A
.DFSIn
, A
.LocalNum
, isADef
) <
157 std::tie(B
.DFSIn
, B
.LocalNum
, isBDef
);
158 return localComesBefore(A
, B
);
161 // For a phi use, or a non-materialized def, return the edge it represents.
162 const std::pair
<BasicBlock
*, BasicBlock
*>
163 getBlockEdge(const ValueDFS
&VD
) const {
164 if (!VD
.Def
&& VD
.U
) {
165 auto *PHI
= cast
<PHINode
>(VD
.U
->getUser());
166 return std::make_pair(PHI
->getIncomingBlock(*VD
.U
), PHI
->getParent());
168 // This is really a non-materialized def.
169 return ::getBlockEdge(VD
.PInfo
);
172 // For two phi related values, return the ordering.
173 bool comparePHIRelated(const ValueDFS
&A
, const ValueDFS
&B
) const {
174 BasicBlock
*ASrc
, *ADest
, *BSrc
, *BDest
;
175 std::tie(ASrc
, ADest
) = getBlockEdge(A
);
176 std::tie(BSrc
, BDest
) = getBlockEdge(B
);
179 // This function should only be used for values in the same BB, check that.
180 DomTreeNode
*DomASrc
= DT
.getNode(ASrc
);
181 DomTreeNode
*DomBSrc
= DT
.getNode(BSrc
);
182 assert(DomASrc
->getDFSNumIn() == (unsigned)A
.DFSIn
&&
183 "DFS numbers for A should match the ones of the source block");
184 assert(DomBSrc
->getDFSNumIn() == (unsigned)B
.DFSIn
&&
185 "DFS numbers for B should match the ones of the source block");
186 assert(A
.DFSIn
== B
.DFSIn
&& "Values must be in the same block");
191 // Use DFS numbers to compare destination blocks, to guarantee a
192 // deterministic order.
193 DomTreeNode
*DomADest
= DT
.getNode(ADest
);
194 DomTreeNode
*DomBDest
= DT
.getNode(BDest
);
195 unsigned AIn
= DomADest
->getDFSNumIn();
196 unsigned BIn
= DomBDest
->getDFSNumIn();
199 assert((!A
.Def
|| !A
.U
) && (!B
.Def
|| !B
.U
) &&
200 "Def and U cannot be set at the same time");
201 // Now sort by edge destination and then defs before uses.
202 return std::tie(AIn
, isADef
) < std::tie(BIn
, isBDef
);
205 // Get the definition of an instruction that occurs in the middle of a block.
206 Value
*getMiddleDef(const ValueDFS
&VD
) const {
209 // It's possible for the defs and uses to be null. For branches, the local
210 // numbering will say the placed predicaeinfos should go first (IE
211 // LN_beginning), so we won't be in this function. For assumes, we will end
212 // up here, beause we need to order the def we will place relative to the
213 // assume. So for the purpose of ordering, we pretend the def is the assume
214 // because that is where we will insert the info.
217 "No def, no use, and no predicateinfo should not occur");
218 assert(isa
<PredicateAssume
>(VD
.PInfo
) &&
219 "Middle of block should only occur for assumes");
220 return cast
<PredicateAssume
>(VD
.PInfo
)->AssumeInst
;
225 // Return either the Def, if it's not null, or the user of the Use, if the def
227 const Instruction
*getDefOrUser(const Value
*Def
, const Use
*U
) const {
229 return cast
<Instruction
>(Def
);
230 return cast
<Instruction
>(U
->getUser());
233 // This performs the necessary local basic block ordering checks to tell
234 // whether A comes before B, where both are in the same basic block.
235 bool localComesBefore(const ValueDFS
&A
, const ValueDFS
&B
) const {
236 auto *ADef
= getMiddleDef(A
);
237 auto *BDef
= getMiddleDef(B
);
239 // See if we have real values or uses. If we have real values, we are
240 // guaranteed they are instructions or arguments. No matter what, we are
241 // guaranteed they are in the same block if they are instructions.
242 auto *ArgA
= dyn_cast_or_null
<Argument
>(ADef
);
243 auto *ArgB
= dyn_cast_or_null
<Argument
>(BDef
);
246 return valueComesBefore(OI
, ArgA
, ArgB
);
248 auto *AInst
= getDefOrUser(ADef
, A
.U
);
249 auto *BInst
= getDefOrUser(BDef
, B
.U
);
250 return valueComesBefore(OI
, AInst
, BInst
);
254 } // namespace PredicateInfoClasses
256 bool PredicateInfo::stackIsInScope(const ValueDFSStack
&Stack
,
257 const ValueDFS
&VDUse
) const {
260 // If it's a phi only use, make sure it's for this phi node edge, and that the
261 // use is in a phi node. If it's anything else, and the top of the stack is
262 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
263 // the defs they must go with so that we can know it's time to pop the stack
264 // when we hit the end of the phi uses for a given def.
265 if (Stack
.back().EdgeOnly
) {
268 auto *PHI
= dyn_cast
<PHINode
>(VDUse
.U
->getUser());
272 BasicBlock
*EdgePred
= PHI
->getIncomingBlock(*VDUse
.U
);
273 if (EdgePred
!= getBranchBlock(Stack
.back().PInfo
))
276 // Use dominates, which knows how to handle edge dominance.
277 return DT
.dominates(getBlockEdge(Stack
.back().PInfo
), *VDUse
.U
);
280 return (VDUse
.DFSIn
>= Stack
.back().DFSIn
&&
281 VDUse
.DFSOut
<= Stack
.back().DFSOut
);
284 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack
&Stack
,
285 const ValueDFS
&VD
) {
286 while (!Stack
.empty() && !stackIsInScope(Stack
, VD
))
290 // Convert the uses of Op into a vector of uses, associating global and local
291 // DFS info with each one.
292 void PredicateInfo::convertUsesToDFSOrdered(
293 Value
*Op
, SmallVectorImpl
<ValueDFS
> &DFSOrderedSet
) {
294 for (auto &U
: Op
->uses()) {
295 if (auto *I
= dyn_cast
<Instruction
>(U
.getUser())) {
297 // Put the phi node uses in the incoming block.
299 if (auto *PN
= dyn_cast
<PHINode
>(I
)) {
300 IBlock
= PN
->getIncomingBlock(U
);
301 // Make phi node users appear last in the incoming block
303 VD
.LocalNum
= LN_Last
;
305 // If it's not a phi node use, it is somewhere in the middle of the
307 IBlock
= I
->getParent();
308 VD
.LocalNum
= LN_Middle
;
310 DomTreeNode
*DomNode
= DT
.getNode(IBlock
);
311 // It's possible our use is in an unreachable block. Skip it if so.
314 VD
.DFSIn
= DomNode
->getDFSNumIn();
315 VD
.DFSOut
= DomNode
->getDFSNumOut();
317 DFSOrderedSet
.push_back(VD
);
322 // Collect relevant operations from Comparison that we may want to insert copies
324 void collectCmpOps(CmpInst
*Comparison
, SmallVectorImpl
<Value
*> &CmpOperands
) {
325 auto *Op0
= Comparison
->getOperand(0);
326 auto *Op1
= Comparison
->getOperand(1);
329 CmpOperands
.push_back(Comparison
);
330 // Only want real values, not constants. Additionally, operands with one use
331 // are only being used in the comparison, which means they will not be useful
332 // for us to consider for predicateinfo.
334 if ((isa
<Instruction
>(Op0
) || isa
<Argument
>(Op0
)) && !Op0
->hasOneUse())
335 CmpOperands
.push_back(Op0
);
336 if ((isa
<Instruction
>(Op1
) || isa
<Argument
>(Op1
)) && !Op1
->hasOneUse())
337 CmpOperands
.push_back(Op1
);
340 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
341 void PredicateInfo::addInfoFor(SmallVectorImpl
<Value
*> &OpsToRename
, Value
*Op
,
343 auto &OperandInfo
= getOrCreateValueInfo(Op
);
344 if (OperandInfo
.Infos
.empty())
345 OpsToRename
.push_back(Op
);
346 AllInfos
.push_back(PB
);
347 OperandInfo
.Infos
.push_back(PB
);
350 // Process an assume instruction and place relevant operations we want to rename
352 void PredicateInfo::processAssume(IntrinsicInst
*II
, BasicBlock
*AssumeBB
,
353 SmallVectorImpl
<Value
*> &OpsToRename
) {
354 // See if we have a comparison we support
355 SmallVector
<Value
*, 8> CmpOperands
;
356 SmallVector
<Value
*, 2> ConditionsToProcess
;
357 CmpInst::Predicate Pred
;
358 Value
*Operand
= II
->getOperand(0);
359 if (m_c_And(m_Cmp(Pred
, m_Value(), m_Value()),
360 m_Cmp(Pred
, m_Value(), m_Value()))
361 .match(II
->getOperand(0))) {
362 ConditionsToProcess
.push_back(cast
<BinaryOperator
>(Operand
)->getOperand(0));
363 ConditionsToProcess
.push_back(cast
<BinaryOperator
>(Operand
)->getOperand(1));
364 ConditionsToProcess
.push_back(Operand
);
365 } else if (isa
<CmpInst
>(Operand
)) {
367 ConditionsToProcess
.push_back(Operand
);
369 for (auto Cond
: ConditionsToProcess
) {
370 if (auto *Cmp
= dyn_cast
<CmpInst
>(Cond
)) {
371 collectCmpOps(Cmp
, CmpOperands
);
372 // Now add our copy infos for our operands
373 for (auto *Op
: CmpOperands
) {
374 auto *PA
= new PredicateAssume(Op
, II
, Cmp
);
375 addInfoFor(OpsToRename
, Op
, PA
);
378 } else if (auto *BinOp
= dyn_cast
<BinaryOperator
>(Cond
)) {
379 // Otherwise, it should be an AND.
380 assert(BinOp
->getOpcode() == Instruction::And
&&
381 "Should have been an AND");
382 auto *PA
= new PredicateAssume(BinOp
, II
, BinOp
);
383 addInfoFor(OpsToRename
, BinOp
, PA
);
385 llvm_unreachable("Unknown type of condition");
390 // Process a block terminating branch, and place relevant operations to be
391 // renamed into OpsToRename.
392 void PredicateInfo::processBranch(BranchInst
*BI
, BasicBlock
*BranchBB
,
393 SmallVectorImpl
<Value
*> &OpsToRename
) {
394 BasicBlock
*FirstBB
= BI
->getSuccessor(0);
395 BasicBlock
*SecondBB
= BI
->getSuccessor(1);
396 SmallVector
<BasicBlock
*, 2> SuccsToProcess
;
397 SuccsToProcess
.push_back(FirstBB
);
398 SuccsToProcess
.push_back(SecondBB
);
399 SmallVector
<Value
*, 2> ConditionsToProcess
;
401 auto InsertHelper
= [&](Value
*Op
, bool isAnd
, bool isOr
, Value
*Cond
) {
402 for (auto *Succ
: SuccsToProcess
) {
403 // Don't try to insert on a self-edge. This is mainly because we will
404 // eliminate during renaming anyway.
405 if (Succ
== BranchBB
)
407 bool TakenEdge
= (Succ
== FirstBB
);
408 // For and, only insert on the true edge
409 // For or, only insert on the false edge
410 if ((isAnd
&& !TakenEdge
) || (isOr
&& TakenEdge
))
413 new PredicateBranch(Op
, BranchBB
, Succ
, Cond
, TakenEdge
);
414 addInfoFor(OpsToRename
, Op
, PB
);
415 if (!Succ
->getSinglePredecessor())
416 EdgeUsesOnly
.insert({BranchBB
, Succ
});
420 // Match combinations of conditions.
421 CmpInst::Predicate Pred
;
424 SmallVector
<Value
*, 8> CmpOperands
;
425 if (match(BI
->getCondition(), m_And(m_Cmp(Pred
, m_Value(), m_Value()),
426 m_Cmp(Pred
, m_Value(), m_Value()))) ||
427 match(BI
->getCondition(), m_Or(m_Cmp(Pred
, m_Value(), m_Value()),
428 m_Cmp(Pred
, m_Value(), m_Value())))) {
429 auto *BinOp
= cast
<BinaryOperator
>(BI
->getCondition());
430 if (BinOp
->getOpcode() == Instruction::And
)
432 else if (BinOp
->getOpcode() == Instruction::Or
)
434 ConditionsToProcess
.push_back(BinOp
->getOperand(0));
435 ConditionsToProcess
.push_back(BinOp
->getOperand(1));
436 ConditionsToProcess
.push_back(BI
->getCondition());
437 } else if (isa
<CmpInst
>(BI
->getCondition())) {
438 ConditionsToProcess
.push_back(BI
->getCondition());
440 for (auto Cond
: ConditionsToProcess
) {
441 if (auto *Cmp
= dyn_cast
<CmpInst
>(Cond
)) {
442 collectCmpOps(Cmp
, CmpOperands
);
443 // Now add our copy infos for our operands
444 for (auto *Op
: CmpOperands
)
445 InsertHelper(Op
, isAnd
, isOr
, Cmp
);
446 } else if (auto *BinOp
= dyn_cast
<BinaryOperator
>(Cond
)) {
447 // This must be an AND or an OR.
448 assert((BinOp
->getOpcode() == Instruction::And
||
449 BinOp
->getOpcode() == Instruction::Or
) &&
450 "Should have been an AND or an OR");
451 // The actual value of the binop is not subject to the same restrictions
452 // as the comparison. It's either true or false on the true/false branch.
453 InsertHelper(BinOp
, false, false, BinOp
);
455 llvm_unreachable("Unknown type of condition");
460 // Process a block terminating switch, and place relevant operations to be
461 // renamed into OpsToRename.
462 void PredicateInfo::processSwitch(SwitchInst
*SI
, BasicBlock
*BranchBB
,
463 SmallVectorImpl
<Value
*> &OpsToRename
) {
464 Value
*Op
= SI
->getCondition();
465 if ((!isa
<Instruction
>(Op
) && !isa
<Argument
>(Op
)) || Op
->hasOneUse())
468 // Remember how many outgoing edges there are to every successor.
469 SmallDenseMap
<BasicBlock
*, unsigned, 16> SwitchEdges
;
470 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
!= e
; ++i
) {
471 BasicBlock
*TargetBlock
= SI
->getSuccessor(i
);
472 ++SwitchEdges
[TargetBlock
];
475 // Now propagate info for each case value
476 for (auto C
: SI
->cases()) {
477 BasicBlock
*TargetBlock
= C
.getCaseSuccessor();
478 if (SwitchEdges
.lookup(TargetBlock
) == 1) {
479 PredicateSwitch
*PS
= new PredicateSwitch(
480 Op
, SI
->getParent(), TargetBlock
, C
.getCaseValue(), SI
);
481 addInfoFor(OpsToRename
, Op
, PS
);
482 if (!TargetBlock
->getSinglePredecessor())
483 EdgeUsesOnly
.insert({BranchBB
, TargetBlock
});
488 // Build predicate info for our function
489 void PredicateInfo::buildPredicateInfo() {
490 DT
.updateDFSNumbers();
491 // Collect operands to rename from all conditional branch terminators, as well
492 // as assume statements.
493 SmallVector
<Value
*, 8> OpsToRename
;
494 for (auto DTN
: depth_first(DT
.getRootNode())) {
495 BasicBlock
*BranchBB
= DTN
->getBlock();
496 if (auto *BI
= dyn_cast
<BranchInst
>(BranchBB
->getTerminator())) {
497 if (!BI
->isConditional())
499 // Can't insert conditional information if they all go to the same place.
500 if (BI
->getSuccessor(0) == BI
->getSuccessor(1))
502 processBranch(BI
, BranchBB
, OpsToRename
);
503 } else if (auto *SI
= dyn_cast
<SwitchInst
>(BranchBB
->getTerminator())) {
504 processSwitch(SI
, BranchBB
, OpsToRename
);
507 for (auto &Assume
: AC
.assumptions()) {
508 if (auto *II
= dyn_cast_or_null
<IntrinsicInst
>(Assume
))
509 if (DT
.isReachableFromEntry(II
->getParent()))
510 processAssume(II
, II
->getParent(), OpsToRename
);
512 // Now rename all our operations.
513 renameUses(OpsToRename
);
516 // Create a ssa_copy declaration with custom mangling, because
517 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly:
518 // all unnamed types get mangled to the same string. We use the pointer
519 // to the type as name here, as it guarantees unique names for different
520 // types and we remove the declarations when destroying PredicateInfo.
521 // It is a workaround for PR38117, because solving it in a fully general way is
523 static Function
*getCopyDeclaration(Module
*M
, Type
*Ty
) {
524 std::string Name
= "llvm.ssa.copy." + utostr((uintptr_t) Ty
);
525 return cast
<Function
>(
526 M
->getOrInsertFunction(Name
,
527 getType(M
->getContext(), Intrinsic::ssa_copy
, Ty
))
531 // Given the renaming stack, make all the operands currently on the stack real
532 // by inserting them into the IR. Return the last operation's value.
533 Value
*PredicateInfo::materializeStack(unsigned int &Counter
,
534 ValueDFSStack
&RenameStack
,
536 // Find the first thing we have to materialize
537 auto RevIter
= RenameStack
.rbegin();
538 for (; RevIter
!= RenameStack
.rend(); ++RevIter
)
542 size_t Start
= RevIter
- RenameStack
.rbegin();
543 // The maximum number of things we should be trying to materialize at once
544 // right now is 4, depending on if we had an assume, a branch, and both used
545 // and of conditions.
546 for (auto RenameIter
= RenameStack
.end() - Start
;
547 RenameIter
!= RenameStack
.end(); ++RenameIter
) {
549 RenameIter
== RenameStack
.begin() ? OrigOp
: (RenameIter
- 1)->Def
;
550 ValueDFS
&Result
= *RenameIter
;
551 auto *ValInfo
= Result
.PInfo
;
552 // For edge predicates, we can just place the operand in the block before
553 // the terminator. For assume, we have to place it right before the assume
554 // to ensure we dominate all of our uses. Always insert right before the
555 // relevant instruction (terminator, assume), so that we insert in proper
556 // order in the case of multiple predicateinfo in the same block.
557 if (isa
<PredicateWithEdge
>(ValInfo
)) {
558 IRBuilder
<> B(getBranchTerminator(ValInfo
));
559 Function
*IF
= getCopyDeclaration(F
.getParent(), Op
->getType());
560 if (IF
->users().empty())
561 CreatedDeclarations
.insert(IF
);
563 B
.CreateCall(IF
, Op
, Op
->getName() + "." + Twine(Counter
++));
564 PredicateMap
.insert({PIC
, ValInfo
});
567 auto *PAssume
= dyn_cast
<PredicateAssume
>(ValInfo
);
569 "Should not have gotten here without it being an assume");
570 IRBuilder
<> B(PAssume
->AssumeInst
);
571 Function
*IF
= getCopyDeclaration(F
.getParent(), Op
->getType());
572 if (IF
->users().empty())
573 CreatedDeclarations
.insert(IF
);
574 CallInst
*PIC
= B
.CreateCall(IF
, Op
);
575 PredicateMap
.insert({PIC
, ValInfo
});
579 return RenameStack
.back().Def
;
582 // Instead of the standard SSA renaming algorithm, which is O(Number of
583 // instructions), and walks the entire dominator tree, we walk only the defs +
584 // uses. The standard SSA renaming algorithm does not really rely on the
585 // dominator tree except to order the stack push/pops of the renaming stacks, so
586 // that defs end up getting pushed before hitting the correct uses. This does
587 // not require the dominator tree, only the *order* of the dominator tree. The
588 // complete and correct ordering of the defs and uses, in dominator tree is
589 // contained in the DFS numbering of the dominator tree. So we sort the defs and
590 // uses into the DFS ordering, and then just use the renaming stack as per
591 // normal, pushing when we hit a def (which is a predicateinfo instruction),
592 // popping when we are out of the dfs scope for that def, and replacing any uses
593 // with top of stack if it exists. In order to handle liveness without
594 // propagating liveness info, we don't actually insert the predicateinfo
595 // instruction def until we see a use that it would dominate. Once we see such
596 // a use, we materialize the predicateinfo instruction in the right place and
599 // TODO: Use this algorithm to perform fast single-variable renaming in
600 // promotememtoreg and memoryssa.
601 void PredicateInfo::renameUses(SmallVectorImpl
<Value
*> &OpsToRename
) {
602 ValueDFS_Compare
Compare(DT
, OI
);
603 // Compute liveness, and rename in O(uses) per Op.
604 for (auto *Op
: OpsToRename
) {
605 LLVM_DEBUG(dbgs() << "Visiting " << *Op
<< "\n");
606 unsigned Counter
= 0;
607 SmallVector
<ValueDFS
, 16> OrderedUses
;
608 const auto &ValueInfo
= getValueInfo(Op
);
609 // Insert the possible copies into the def/use list.
610 // They will become real copies if we find a real use for them, and never
611 // created otherwise.
612 for (auto &PossibleCopy
: ValueInfo
.Infos
) {
614 // Determine where we are going to place the copy by the copy type.
615 // The predicate info for branches always come first, they will get
616 // materialized in the split block at the top of the block.
617 // The predicate info for assumes will be somewhere in the middle,
618 // it will get materialized in front of the assume.
619 if (const auto *PAssume
= dyn_cast
<PredicateAssume
>(PossibleCopy
)) {
620 VD
.LocalNum
= LN_Middle
;
621 DomTreeNode
*DomNode
= DT
.getNode(PAssume
->AssumeInst
->getParent());
624 VD
.DFSIn
= DomNode
->getDFSNumIn();
625 VD
.DFSOut
= DomNode
->getDFSNumOut();
626 VD
.PInfo
= PossibleCopy
;
627 OrderedUses
.push_back(VD
);
628 } else if (isa
<PredicateWithEdge
>(PossibleCopy
)) {
629 // If we can only do phi uses, we treat it like it's in the branch
630 // block, and handle it specially. We know that it goes last, and only
631 // dominate phi uses.
632 auto BlockEdge
= getBlockEdge(PossibleCopy
);
633 if (EdgeUsesOnly
.count(BlockEdge
)) {
634 VD
.LocalNum
= LN_Last
;
635 auto *DomNode
= DT
.getNode(BlockEdge
.first
);
637 VD
.DFSIn
= DomNode
->getDFSNumIn();
638 VD
.DFSOut
= DomNode
->getDFSNumOut();
639 VD
.PInfo
= PossibleCopy
;
641 OrderedUses
.push_back(VD
);
644 // Otherwise, we are in the split block (even though we perform
645 // insertion in the branch block).
646 // Insert a possible copy at the split block and before the branch.
647 VD
.LocalNum
= LN_First
;
648 auto *DomNode
= DT
.getNode(BlockEdge
.second
);
650 VD
.DFSIn
= DomNode
->getDFSNumIn();
651 VD
.DFSOut
= DomNode
->getDFSNumOut();
652 VD
.PInfo
= PossibleCopy
;
653 OrderedUses
.push_back(VD
);
659 convertUsesToDFSOrdered(Op
, OrderedUses
);
660 // Here we require a stable sort because we do not bother to try to
661 // assign an order to the operands the uses represent. Thus, two
662 // uses in the same instruction do not have a strict sort order
663 // currently and will be considered equal. We could get rid of the
664 // stable sort by creating one if we wanted.
665 llvm::stable_sort(OrderedUses
, Compare
);
666 SmallVector
<ValueDFS
, 8> RenameStack
;
667 // For each use, sorted into dfs order, push values and replaces uses with
668 // top of stack, which will represent the reaching def.
669 for (auto &VD
: OrderedUses
) {
670 // We currently do not materialize copy over copy, but we should decide if
672 bool PossibleCopy
= VD
.PInfo
!= nullptr;
673 if (RenameStack
.empty()) {
674 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
676 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
677 << RenameStack
.back().DFSIn
<< ","
678 << RenameStack
.back().DFSOut
<< ")\n");
681 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD
.DFSIn
<< ","
682 << VD
.DFSOut
<< ")\n");
684 bool ShouldPush
= (VD
.Def
|| PossibleCopy
);
685 bool OutOfScope
= !stackIsInScope(RenameStack
, VD
);
686 if (OutOfScope
|| ShouldPush
) {
687 // Sync to our current scope.
688 popStackUntilDFSScope(RenameStack
, VD
);
690 RenameStack
.push_back(VD
);
693 // If we get to this point, and the stack is empty we must have a use
694 // with no renaming needed, just skip it.
695 if (RenameStack
.empty())
697 // Skip values, only want to rename the uses
698 if (VD
.Def
|| PossibleCopy
)
700 if (!DebugCounter::shouldExecute(RenameCounter
)) {
701 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
704 ValueDFS
&Result
= RenameStack
.back();
706 // If the possible copy dominates something, materialize our stack up to
707 // this point. This ensures every comparison that affects our operation
708 // ends up with predicateinfo.
710 Result
.Def
= materializeStack(Counter
, RenameStack
, Op
);
712 LLVM_DEBUG(dbgs() << "Found replacement " << *Result
.Def
<< " for "
713 << *VD
.U
->get() << " in " << *(VD
.U
->getUser())
715 assert(DT
.dominates(cast
<Instruction
>(Result
.Def
), *VD
.U
) &&
716 "Predicateinfo def should have dominated this use");
717 VD
.U
->set(Result
.Def
);
722 PredicateInfo::ValueInfo
&PredicateInfo::getOrCreateValueInfo(Value
*Operand
) {
723 auto OIN
= ValueInfoNums
.find(Operand
);
724 if (OIN
== ValueInfoNums
.end()) {
726 ValueInfos
.resize(ValueInfos
.size() + 1);
727 // This will use the new size and give us a 0 based number of the info
728 auto InsertResult
= ValueInfoNums
.insert({Operand
, ValueInfos
.size() - 1});
729 assert(InsertResult
.second
&& "Value info number already existed?");
730 return ValueInfos
[InsertResult
.first
->second
];
732 return ValueInfos
[OIN
->second
];
735 const PredicateInfo::ValueInfo
&
736 PredicateInfo::getValueInfo(Value
*Operand
) const {
737 auto OINI
= ValueInfoNums
.lookup(Operand
);
738 assert(OINI
!= 0 && "Operand was not really in the Value Info Numbers");
739 assert(OINI
< ValueInfos
.size() &&
740 "Value Info Number greater than size of Value Info Table");
741 return ValueInfos
[OINI
];
744 PredicateInfo::PredicateInfo(Function
&F
, DominatorTree
&DT
,
746 : F(F
), DT(DT
), AC(AC
), OI(&DT
) {
747 // Push an empty operand info so that we can detect 0 as not finding one
748 ValueInfos
.resize(1);
749 buildPredicateInfo();
752 // Remove all declarations we created . The PredicateInfo consumers are
753 // responsible for remove the ssa_copy calls created.
754 PredicateInfo::~PredicateInfo() {
755 // Collect function pointers in set first, as SmallSet uses a SmallVector
756 // internally and we have to remove the asserting value handles first.
757 SmallPtrSet
<Function
*, 20> FunctionPtrs
;
758 for (auto &F
: CreatedDeclarations
)
759 FunctionPtrs
.insert(&*F
);
760 CreatedDeclarations
.clear();
762 for (Function
*F
: FunctionPtrs
) {
763 assert(F
->user_begin() == F
->user_end() &&
764 "PredicateInfo consumer did not remove all SSA copies.");
765 F
->eraseFromParent();
769 void PredicateInfo::verifyPredicateInfo() const {}
771 char PredicateInfoPrinterLegacyPass::ID
= 0;
773 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
775 initializePredicateInfoPrinterLegacyPassPass(
776 *PassRegistry::getPassRegistry());
779 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
780 AU
.setPreservesAll();
781 AU
.addRequiredTransitive
<DominatorTreeWrapperPass
>();
782 AU
.addRequired
<AssumptionCacheTracker
>();
785 // Replace ssa_copy calls created by PredicateInfo with their operand.
786 static void replaceCreatedSSACopys(PredicateInfo
&PredInfo
, Function
&F
) {
787 for (auto I
= inst_begin(F
), E
= inst_end(F
); I
!= E
;) {
788 Instruction
*Inst
= &*I
++;
789 const auto *PI
= PredInfo
.getPredicateInfoFor(Inst
);
790 auto *II
= dyn_cast
<IntrinsicInst
>(Inst
);
791 if (!PI
|| !II
|| II
->getIntrinsicID() != Intrinsic::ssa_copy
)
794 Inst
->replaceAllUsesWith(II
->getOperand(0));
795 Inst
->eraseFromParent();
799 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function
&F
) {
800 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
801 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
802 auto PredInfo
= std::make_unique
<PredicateInfo
>(F
, DT
, AC
);
803 PredInfo
->print(dbgs());
804 if (VerifyPredicateInfo
)
805 PredInfo
->verifyPredicateInfo();
807 replaceCreatedSSACopys(*PredInfo
, F
);
811 PreservedAnalyses
PredicateInfoPrinterPass::run(Function
&F
,
812 FunctionAnalysisManager
&AM
) {
813 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
814 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
815 OS
<< "PredicateInfo for function: " << F
.getName() << "\n";
816 auto PredInfo
= std::make_unique
<PredicateInfo
>(F
, DT
, AC
);
819 replaceCreatedSSACopys(*PredInfo
, F
);
820 return PreservedAnalyses::all();
823 /// An assembly annotator class to print PredicateInfo information in
825 class PredicateInfoAnnotatedWriter
: public AssemblyAnnotationWriter
{
826 friend class PredicateInfo
;
827 const PredicateInfo
*PredInfo
;
830 PredicateInfoAnnotatedWriter(const PredicateInfo
*M
) : PredInfo(M
) {}
832 virtual void emitBasicBlockStartAnnot(const BasicBlock
*BB
,
833 formatted_raw_ostream
&OS
) {}
835 virtual void emitInstructionAnnot(const Instruction
*I
,
836 formatted_raw_ostream
&OS
) {
837 if (const auto *PI
= PredInfo
->getPredicateInfoFor(I
)) {
838 OS
<< "; Has predicate info\n";
839 if (const auto *PB
= dyn_cast
<PredicateBranch
>(PI
)) {
840 OS
<< "; branch predicate info { TrueEdge: " << PB
->TrueEdge
841 << " Comparison:" << *PB
->Condition
<< " Edge: [";
842 PB
->From
->printAsOperand(OS
);
844 PB
->To
->printAsOperand(OS
);
846 } else if (const auto *PS
= dyn_cast
<PredicateSwitch
>(PI
)) {
847 OS
<< "; switch predicate info { CaseValue: " << *PS
->CaseValue
848 << " Switch:" << *PS
->Switch
<< " Edge: [";
849 PS
->From
->printAsOperand(OS
);
851 PS
->To
->printAsOperand(OS
);
853 } else if (const auto *PA
= dyn_cast
<PredicateAssume
>(PI
)) {
854 OS
<< "; assume predicate info {"
855 << " Comparison:" << *PA
->Condition
<< " }\n";
861 void PredicateInfo::print(raw_ostream
&OS
) const {
862 PredicateInfoAnnotatedWriter
Writer(this);
863 F
.print(OS
, &Writer
);
866 void PredicateInfo::dump() const {
867 PredicateInfoAnnotatedWriter
Writer(this);
868 F
.print(dbgs(), &Writer
);
871 PreservedAnalyses
PredicateInfoVerifierPass::run(Function
&F
,
872 FunctionAnalysisManager
&AM
) {
873 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
874 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
875 std::make_unique
<PredicateInfo
>(F
, DT
, AC
)->verifyPredicateInfo();
877 return PreservedAnalyses::all();