[Flang] remove whole-archive option for AIX linker (#76039)
[llvm-project.git] / clang / lib / Sema / SemaCUDA.cpp
blob6a66ecf6f94c178da3dbf86687175c4f63d76f7d
1 //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements semantic analysis for CUDA constructs.
10 ///
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/Cuda.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/Sema.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "clang/Sema/Template.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include <optional>
27 using namespace clang;
29 template <typename AttrT> static bool hasExplicitAttr(const VarDecl *D) {
30 if (!D)
31 return false;
32 if (auto *A = D->getAttr<AttrT>())
33 return !A->isImplicit();
34 return false;
37 void Sema::PushForceCUDAHostDevice() {
38 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
39 ForceCUDAHostDeviceDepth++;
42 bool Sema::PopForceCUDAHostDevice() {
43 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
44 if (ForceCUDAHostDeviceDepth == 0)
45 return false;
46 ForceCUDAHostDeviceDepth--;
47 return true;
50 ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
51 MultiExprArg ExecConfig,
52 SourceLocation GGGLoc) {
53 FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
54 if (!ConfigDecl)
55 return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
56 << getCudaConfigureFuncName());
57 QualType ConfigQTy = ConfigDecl->getType();
59 DeclRefExpr *ConfigDR = new (Context)
60 DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
61 MarkFunctionReferenced(LLLLoc, ConfigDecl);
63 return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
64 /*IsExecConfig=*/true);
67 Sema::CUDAFunctionTarget
68 Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) {
69 bool HasHostAttr = false;
70 bool HasDeviceAttr = false;
71 bool HasGlobalAttr = false;
72 bool HasInvalidTargetAttr = false;
73 for (const ParsedAttr &AL : Attrs) {
74 switch (AL.getKind()) {
75 case ParsedAttr::AT_CUDAGlobal:
76 HasGlobalAttr = true;
77 break;
78 case ParsedAttr::AT_CUDAHost:
79 HasHostAttr = true;
80 break;
81 case ParsedAttr::AT_CUDADevice:
82 HasDeviceAttr = true;
83 break;
84 case ParsedAttr::AT_CUDAInvalidTarget:
85 HasInvalidTargetAttr = true;
86 break;
87 default:
88 break;
92 if (HasInvalidTargetAttr)
93 return CFT_InvalidTarget;
95 if (HasGlobalAttr)
96 return CFT_Global;
98 if (HasHostAttr && HasDeviceAttr)
99 return CFT_HostDevice;
101 if (HasDeviceAttr)
102 return CFT_Device;
104 return CFT_Host;
107 template <typename A>
108 static bool hasAttr(const Decl *D, bool IgnoreImplicitAttr) {
109 return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
110 return isa<A>(Attribute) &&
111 !(IgnoreImplicitAttr && Attribute->isImplicit());
115 Sema::CUDATargetContextRAII::CUDATargetContextRAII(Sema &S_,
116 CUDATargetContextKind K,
117 Decl *D)
118 : S(S_) {
119 SavedCtx = S.CurCUDATargetCtx;
120 assert(K == CTCK_InitGlobalVar);
121 auto *VD = dyn_cast_or_null<VarDecl>(D);
122 if (VD && VD->hasGlobalStorage() && !VD->isStaticLocal()) {
123 auto Target = CFT_Host;
124 if ((hasAttr<CUDADeviceAttr>(VD, /*IgnoreImplicit=*/true) &&
125 !hasAttr<CUDAHostAttr>(VD, /*IgnoreImplicit=*/true)) ||
126 hasAttr<CUDASharedAttr>(VD, /*IgnoreImplicit=*/true) ||
127 hasAttr<CUDAConstantAttr>(VD, /*IgnoreImplicit=*/true))
128 Target = CFT_Device;
129 S.CurCUDATargetCtx = {Target, K, VD};
133 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
134 Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D,
135 bool IgnoreImplicitHDAttr) {
136 // Code that lives outside a function gets the target from CurCUDATargetCtx.
137 if (D == nullptr)
138 return CurCUDATargetCtx.Target;
140 if (D->hasAttr<CUDAInvalidTargetAttr>())
141 return CFT_InvalidTarget;
143 if (D->hasAttr<CUDAGlobalAttr>())
144 return CFT_Global;
146 if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
147 if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
148 return CFT_HostDevice;
149 return CFT_Device;
150 } else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) {
151 return CFT_Host;
152 } else if ((D->isImplicit() || !D->isUserProvided()) &&
153 !IgnoreImplicitHDAttr) {
154 // Some implicit declarations (like intrinsic functions) are not marked.
155 // Set the most lenient target on them for maximal flexibility.
156 return CFT_HostDevice;
159 return CFT_Host;
162 /// IdentifyTarget - Determine the CUDA compilation target for this variable.
163 Sema::CUDAVariableTarget Sema::IdentifyCUDATarget(const VarDecl *Var) {
164 if (Var->hasAttr<HIPManagedAttr>())
165 return CVT_Unified;
166 // Only constexpr and const variabless with implicit constant attribute
167 // are emitted on both sides. Such variables are promoted to device side
168 // only if they have static constant intializers on device side.
169 if ((Var->isConstexpr() || Var->getType().isConstQualified()) &&
170 Var->hasAttr<CUDAConstantAttr>() &&
171 !hasExplicitAttr<CUDAConstantAttr>(Var))
172 return CVT_Both;
173 if (Var->hasAttr<CUDADeviceAttr>() || Var->hasAttr<CUDAConstantAttr>() ||
174 Var->hasAttr<CUDASharedAttr>() ||
175 Var->getType()->isCUDADeviceBuiltinSurfaceType() ||
176 Var->getType()->isCUDADeviceBuiltinTextureType())
177 return CVT_Device;
178 // Function-scope static variable without explicit device or constant
179 // attribute are emitted
180 // - on both sides in host device functions
181 // - on device side in device or global functions
182 if (auto *FD = dyn_cast<FunctionDecl>(Var->getDeclContext())) {
183 switch (IdentifyCUDATarget(FD)) {
184 case CFT_HostDevice:
185 return CVT_Both;
186 case CFT_Device:
187 case CFT_Global:
188 return CVT_Device;
189 default:
190 return CVT_Host;
193 return CVT_Host;
196 // * CUDA Call preference table
198 // F - from,
199 // T - to
200 // Ph - preference in host mode
201 // Pd - preference in device mode
202 // H - handled in (x)
203 // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
205 // | F | T | Ph | Pd | H |
206 // |----+----+-----+-----+-----+
207 // | d | d | N | N | (c) |
208 // | d | g | -- | -- | (a) |
209 // | d | h | -- | -- | (e) |
210 // | d | hd | HD | HD | (b) |
211 // | g | d | N | N | (c) |
212 // | g | g | -- | -- | (a) |
213 // | g | h | -- | -- | (e) |
214 // | g | hd | HD | HD | (b) |
215 // | h | d | -- | -- | (e) |
216 // | h | g | N | N | (c) |
217 // | h | h | N | N | (c) |
218 // | h | hd | HD | HD | (b) |
219 // | hd | d | WS | SS | (d) |
220 // | hd | g | SS | -- |(d/a)|
221 // | hd | h | SS | WS | (d) |
222 // | hd | hd | HD | HD | (b) |
224 Sema::CUDAFunctionPreference
225 Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
226 const FunctionDecl *Callee) {
227 assert(Callee && "Callee must be valid.");
229 // Treat ctor/dtor as host device function in device var initializer to allow
230 // trivial ctor/dtor without device attr to be used. Non-trivial ctor/dtor
231 // will be diagnosed by checkAllowedCUDAInitializer.
232 if (Caller == nullptr && CurCUDATargetCtx.Kind == CTCK_InitGlobalVar &&
233 CurCUDATargetCtx.Target == CFT_Device &&
234 (isa<CXXConstructorDecl>(Callee) || isa<CXXDestructorDecl>(Callee)))
235 return CFP_HostDevice;
237 CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
238 CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
240 // If one of the targets is invalid, the check always fails, no matter what
241 // the other target is.
242 if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
243 return CFP_Never;
245 // (a) Can't call global from some contexts until we support CUDA's
246 // dynamic parallelism.
247 if (CalleeTarget == CFT_Global &&
248 (CallerTarget == CFT_Global || CallerTarget == CFT_Device))
249 return CFP_Never;
251 // (b) Calling HostDevice is OK for everyone.
252 if (CalleeTarget == CFT_HostDevice)
253 return CFP_HostDevice;
255 // (c) Best case scenarios
256 if (CalleeTarget == CallerTarget ||
257 (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
258 (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
259 return CFP_Native;
261 // HipStdPar mode is special, in that assessing whether a device side call to
262 // a host target is deferred to a subsequent pass, and cannot unambiguously be
263 // adjudicated in the AST, hence we optimistically allow them to pass here.
264 if (getLangOpts().HIPStdPar &&
265 (CallerTarget == CFT_Global || CallerTarget == CFT_Device ||
266 CallerTarget == CFT_HostDevice) &&
267 CalleeTarget == CFT_Host)
268 return CFP_HostDevice;
270 // (d) HostDevice behavior depends on compilation mode.
271 if (CallerTarget == CFT_HostDevice) {
272 // It's OK to call a compilation-mode matching function from an HD one.
273 if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
274 (!getLangOpts().CUDAIsDevice &&
275 (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
276 return CFP_SameSide;
278 // Calls from HD to non-mode-matching functions (i.e., to host functions
279 // when compiling in device mode or to device functions when compiling in
280 // host mode) are allowed at the sema level, but eventually rejected if
281 // they're ever codegened. TODO: Reject said calls earlier.
282 return CFP_WrongSide;
285 // (e) Calling across device/host boundary is not something you should do.
286 if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
287 (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
288 (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
289 return CFP_Never;
291 llvm_unreachable("All cases should've been handled by now.");
294 template <typename AttrT> static bool hasImplicitAttr(const FunctionDecl *D) {
295 if (!D)
296 return false;
297 if (auto *A = D->getAttr<AttrT>())
298 return A->isImplicit();
299 return D->isImplicit();
302 bool Sema::isCUDAImplicitHostDeviceFunction(const FunctionDecl *D) {
303 bool IsImplicitDevAttr = hasImplicitAttr<CUDADeviceAttr>(D);
304 bool IsImplicitHostAttr = hasImplicitAttr<CUDAHostAttr>(D);
305 return IsImplicitDevAttr && IsImplicitHostAttr;
308 void Sema::EraseUnwantedCUDAMatches(
309 const FunctionDecl *Caller,
310 SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
311 if (Matches.size() <= 1)
312 return;
314 using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
316 // Gets the CUDA function preference for a call from Caller to Match.
317 auto GetCFP = [&](const Pair &Match) {
318 return IdentifyCUDAPreference(Caller, Match.second);
321 // Find the best call preference among the functions in Matches.
322 CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
323 Matches.begin(), Matches.end(),
324 [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
326 // Erase all functions with lower priority.
327 llvm::erase_if(Matches,
328 [&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
331 /// When an implicitly-declared special member has to invoke more than one
332 /// base/field special member, conflicts may occur in the targets of these
333 /// members. For example, if one base's member __host__ and another's is
334 /// __device__, it's a conflict.
335 /// This function figures out if the given targets \param Target1 and
336 /// \param Target2 conflict, and if they do not it fills in
337 /// \param ResolvedTarget with a target that resolves for both calls.
338 /// \return true if there's a conflict, false otherwise.
339 static bool
340 resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
341 Sema::CUDAFunctionTarget Target2,
342 Sema::CUDAFunctionTarget *ResolvedTarget) {
343 // Only free functions and static member functions may be global.
344 assert(Target1 != Sema::CFT_Global);
345 assert(Target2 != Sema::CFT_Global);
347 if (Target1 == Sema::CFT_HostDevice) {
348 *ResolvedTarget = Target2;
349 } else if (Target2 == Sema::CFT_HostDevice) {
350 *ResolvedTarget = Target1;
351 } else if (Target1 != Target2) {
352 return true;
353 } else {
354 *ResolvedTarget = Target1;
357 return false;
360 bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
361 CXXSpecialMember CSM,
362 CXXMethodDecl *MemberDecl,
363 bool ConstRHS,
364 bool Diagnose) {
365 // If the defaulted special member is defined lexically outside of its
366 // owning class, or the special member already has explicit device or host
367 // attributes, do not infer.
368 bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent();
369 bool HasH = MemberDecl->hasAttr<CUDAHostAttr>();
370 bool HasD = MemberDecl->hasAttr<CUDADeviceAttr>();
371 bool HasExplicitAttr =
372 (HasD && !MemberDecl->getAttr<CUDADeviceAttr>()->isImplicit()) ||
373 (HasH && !MemberDecl->getAttr<CUDAHostAttr>()->isImplicit());
374 if (!InClass || HasExplicitAttr)
375 return false;
377 std::optional<CUDAFunctionTarget> InferredTarget;
379 // We're going to invoke special member lookup; mark that these special
380 // members are called from this one, and not from its caller.
381 ContextRAII MethodContext(*this, MemberDecl);
383 // Look for special members in base classes that should be invoked from here.
384 // Infer the target of this member base on the ones it should call.
385 // Skip direct and indirect virtual bases for abstract classes.
386 llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
387 for (const auto &B : ClassDecl->bases()) {
388 if (!B.isVirtual()) {
389 Bases.push_back(&B);
393 if (!ClassDecl->isAbstract()) {
394 llvm::append_range(Bases, llvm::make_pointer_range(ClassDecl->vbases()));
397 for (const auto *B : Bases) {
398 const RecordType *BaseType = B->getType()->getAs<RecordType>();
399 if (!BaseType) {
400 continue;
403 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
404 Sema::SpecialMemberOverloadResult SMOR =
405 LookupSpecialMember(BaseClassDecl, CSM,
406 /* ConstArg */ ConstRHS,
407 /* VolatileArg */ false,
408 /* RValueThis */ false,
409 /* ConstThis */ false,
410 /* VolatileThis */ false);
412 if (!SMOR.getMethod())
413 continue;
415 CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod());
416 if (!InferredTarget) {
417 InferredTarget = BaseMethodTarget;
418 } else {
419 bool ResolutionError = resolveCalleeCUDATargetConflict(
420 *InferredTarget, BaseMethodTarget, &*InferredTarget);
421 if (ResolutionError) {
422 if (Diagnose) {
423 Diag(ClassDecl->getLocation(),
424 diag::note_implicit_member_target_infer_collision)
425 << (unsigned)CSM << *InferredTarget << BaseMethodTarget;
427 MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
428 return true;
433 // Same as for bases, but now for special members of fields.
434 for (const auto *F : ClassDecl->fields()) {
435 if (F->isInvalidDecl()) {
436 continue;
439 const RecordType *FieldType =
440 Context.getBaseElementType(F->getType())->getAs<RecordType>();
441 if (!FieldType) {
442 continue;
445 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
446 Sema::SpecialMemberOverloadResult SMOR =
447 LookupSpecialMember(FieldRecDecl, CSM,
448 /* ConstArg */ ConstRHS && !F->isMutable(),
449 /* VolatileArg */ false,
450 /* RValueThis */ false,
451 /* ConstThis */ false,
452 /* VolatileThis */ false);
454 if (!SMOR.getMethod())
455 continue;
457 CUDAFunctionTarget FieldMethodTarget =
458 IdentifyCUDATarget(SMOR.getMethod());
459 if (!InferredTarget) {
460 InferredTarget = FieldMethodTarget;
461 } else {
462 bool ResolutionError = resolveCalleeCUDATargetConflict(
463 *InferredTarget, FieldMethodTarget, &*InferredTarget);
464 if (ResolutionError) {
465 if (Diagnose) {
466 Diag(ClassDecl->getLocation(),
467 diag::note_implicit_member_target_infer_collision)
468 << (unsigned)CSM << *InferredTarget << FieldMethodTarget;
470 MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
471 return true;
477 // If no target was inferred, mark this member as __host__ __device__;
478 // it's the least restrictive option that can be invoked from any target.
479 bool NeedsH = true, NeedsD = true;
480 if (InferredTarget) {
481 if (*InferredTarget == CFT_Device)
482 NeedsH = false;
483 else if (*InferredTarget == CFT_Host)
484 NeedsD = false;
487 // We either setting attributes first time, or the inferred ones must match
488 // previously set ones.
489 if (NeedsD && !HasD)
490 MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
491 if (NeedsH && !HasH)
492 MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
494 return false;
497 bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
498 if (!CD->isDefined() && CD->isTemplateInstantiation())
499 InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
501 // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
502 // empty at a point in the translation unit, if it is either a
503 // trivial constructor
504 if (CD->isTrivial())
505 return true;
507 // ... or it satisfies all of the following conditions:
508 // The constructor function has been defined.
509 // The constructor function has no parameters,
510 // and the function body is an empty compound statement.
511 if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
512 return false;
514 // Its class has no virtual functions and no virtual base classes.
515 if (CD->getParent()->isDynamicClass())
516 return false;
518 // Union ctor does not call ctors of its data members.
519 if (CD->getParent()->isUnion())
520 return true;
522 // The only form of initializer allowed is an empty constructor.
523 // This will recursively check all base classes and member initializers
524 if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
525 if (const CXXConstructExpr *CE =
526 dyn_cast<CXXConstructExpr>(CI->getInit()))
527 return isEmptyCudaConstructor(Loc, CE->getConstructor());
528 return false;
530 return false;
532 return true;
535 bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
536 // No destructor -> no problem.
537 if (!DD)
538 return true;
540 if (!DD->isDefined() && DD->isTemplateInstantiation())
541 InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
543 // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
544 // empty at a point in the translation unit, if it is either a
545 // trivial constructor
546 if (DD->isTrivial())
547 return true;
549 // ... or it satisfies all of the following conditions:
550 // The destructor function has been defined.
551 // and the function body is an empty compound statement.
552 if (!DD->hasTrivialBody())
553 return false;
555 const CXXRecordDecl *ClassDecl = DD->getParent();
557 // Its class has no virtual functions and no virtual base classes.
558 if (ClassDecl->isDynamicClass())
559 return false;
561 // Union does not have base class and union dtor does not call dtors of its
562 // data members.
563 if (DD->getParent()->isUnion())
564 return true;
566 // Only empty destructors are allowed. This will recursively check
567 // destructors for all base classes...
568 if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
569 if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
570 return isEmptyCudaDestructor(Loc, RD->getDestructor());
571 return true;
573 return false;
575 // ... and member fields.
576 if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
577 if (CXXRecordDecl *RD = Field->getType()
578 ->getBaseElementTypeUnsafe()
579 ->getAsCXXRecordDecl())
580 return isEmptyCudaDestructor(Loc, RD->getDestructor());
581 return true;
583 return false;
585 return true;
588 namespace {
589 enum CUDAInitializerCheckKind {
590 CICK_DeviceOrConstant, // Check initializer for device/constant variable
591 CICK_Shared, // Check initializer for shared variable
594 bool IsDependentVar(VarDecl *VD) {
595 if (VD->getType()->isDependentType())
596 return true;
597 if (const auto *Init = VD->getInit())
598 return Init->isValueDependent();
599 return false;
602 // Check whether a variable has an allowed initializer for a CUDA device side
603 // variable with global storage. \p VD may be a host variable to be checked for
604 // potential promotion to device side variable.
606 // CUDA/HIP allows only empty constructors as initializers for global
607 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
608 // __shared__ variables whether they are local or not (they all are implicitly
609 // static in CUDA). One exception is that CUDA allows constant initializers
610 // for __constant__ and __device__ variables.
611 bool HasAllowedCUDADeviceStaticInitializer(Sema &S, VarDecl *VD,
612 CUDAInitializerCheckKind CheckKind) {
613 assert(!VD->isInvalidDecl() && VD->hasGlobalStorage());
614 assert(!IsDependentVar(VD) && "do not check dependent var");
615 const Expr *Init = VD->getInit();
616 auto IsEmptyInit = [&](const Expr *Init) {
617 if (!Init)
618 return true;
619 if (const auto *CE = dyn_cast<CXXConstructExpr>(Init)) {
620 return S.isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
622 return false;
624 auto IsConstantInit = [&](const Expr *Init) {
625 assert(Init);
626 ASTContext::CUDAConstantEvalContextRAII EvalCtx(S.Context,
627 /*NoWronSidedVars=*/true);
628 return Init->isConstantInitializer(S.Context,
629 VD->getType()->isReferenceType());
631 auto HasEmptyDtor = [&](VarDecl *VD) {
632 if (const auto *RD = VD->getType()->getAsCXXRecordDecl())
633 return S.isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
634 return true;
636 if (CheckKind == CICK_Shared)
637 return IsEmptyInit(Init) && HasEmptyDtor(VD);
638 return S.LangOpts.GPUAllowDeviceInit ||
639 ((IsEmptyInit(Init) || IsConstantInit(Init)) && HasEmptyDtor(VD));
641 } // namespace
643 void Sema::checkAllowedCUDAInitializer(VarDecl *VD) {
644 // Return early if VD is inside a non-instantiated template function since
645 // the implicit constructor is not defined yet.
646 if (const FunctionDecl *FD =
647 dyn_cast_or_null<FunctionDecl>(VD->getDeclContext()))
648 if (FD->isDependentContext())
649 return;
651 // Do not check dependent variables since the ctor/dtor/initializer are not
652 // determined. Do it after instantiation.
653 if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage() ||
654 IsDependentVar(VD))
655 return;
656 const Expr *Init = VD->getInit();
657 bool IsSharedVar = VD->hasAttr<CUDASharedAttr>();
658 bool IsDeviceOrConstantVar =
659 !IsSharedVar &&
660 (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>());
661 if (IsDeviceOrConstantVar || IsSharedVar) {
662 if (HasAllowedCUDADeviceStaticInitializer(
663 *this, VD, IsSharedVar ? CICK_Shared : CICK_DeviceOrConstant))
664 return;
665 Diag(VD->getLocation(),
666 IsSharedVar ? diag::err_shared_var_init : diag::err_dynamic_var_init)
667 << Init->getSourceRange();
668 VD->setInvalidDecl();
669 } else {
670 // This is a host-side global variable. Check that the initializer is
671 // callable from the host side.
672 const FunctionDecl *InitFn = nullptr;
673 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
674 InitFn = CE->getConstructor();
675 } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
676 InitFn = CE->getDirectCallee();
678 if (InitFn) {
679 CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
680 if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
681 Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
682 << InitFnTarget << InitFn;
683 Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
684 VD->setInvalidDecl();
690 void Sema::CUDARecordImplicitHostDeviceFuncUsedByDevice(
691 const FunctionDecl *Callee) {
692 FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
693 if (!Caller)
694 return;
696 if (!isCUDAImplicitHostDeviceFunction(Callee))
697 return;
699 CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
701 // Record whether an implicit host device function is used on device side.
702 if (CallerTarget != CFT_Device && CallerTarget != CFT_Global &&
703 (CallerTarget != CFT_HostDevice ||
704 (isCUDAImplicitHostDeviceFunction(Caller) &&
705 !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.count(Caller))))
706 return;
708 getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.insert(Callee);
711 // With -fcuda-host-device-constexpr, an unattributed constexpr function is
712 // treated as implicitly __host__ __device__, unless:
713 // * it is a variadic function (device-side variadic functions are not
714 // allowed), or
715 // * a __device__ function with this signature was already declared, in which
716 // case in which case we output an error, unless the __device__ decl is in a
717 // system header, in which case we leave the constexpr function unattributed.
719 // In addition, all function decls are treated as __host__ __device__ when
720 // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
721 // #pragma clang force_cuda_host_device_begin/end
722 // pair).
723 void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
724 const LookupResult &Previous) {
725 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
727 if (ForceCUDAHostDeviceDepth > 0) {
728 if (!NewD->hasAttr<CUDAHostAttr>())
729 NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
730 if (!NewD->hasAttr<CUDADeviceAttr>())
731 NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
732 return;
735 // If a template function has no host/device/global attributes,
736 // make it implicitly host device function.
737 if (getLangOpts().OffloadImplicitHostDeviceTemplates &&
738 !NewD->hasAttr<CUDAHostAttr>() && !NewD->hasAttr<CUDADeviceAttr>() &&
739 !NewD->hasAttr<CUDAGlobalAttr>() &&
740 (NewD->getDescribedFunctionTemplate() ||
741 NewD->isFunctionTemplateSpecialization())) {
742 NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
743 NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
744 return;
747 if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
748 NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
749 NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
750 return;
752 // Is D a __device__ function with the same signature as NewD, ignoring CUDA
753 // attributes?
754 auto IsMatchingDeviceFn = [&](NamedDecl *D) {
755 if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
756 D = Using->getTargetDecl();
757 FunctionDecl *OldD = D->getAsFunction();
758 return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
759 !OldD->hasAttr<CUDAHostAttr>() &&
760 !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
761 /* ConsiderCudaAttrs = */ false);
763 auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
764 if (It != Previous.end()) {
765 // We found a __device__ function with the same name and signature as NewD
766 // (ignoring CUDA attrs). This is an error unless that function is defined
767 // in a system header, in which case we simply return without making NewD
768 // host+device.
769 NamedDecl *Match = *It;
770 if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
771 Diag(NewD->getLocation(),
772 diag::err_cuda_unattributed_constexpr_cannot_overload_device)
773 << NewD;
774 Diag(Match->getLocation(),
775 diag::note_cuda_conflicting_device_function_declared_here);
777 return;
780 NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
781 NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
784 // TODO: `__constant__` memory may be a limited resource for certain targets.
785 // A safeguard may be needed at the end of compilation pipeline if
786 // `__constant__` memory usage goes beyond limit.
787 void Sema::MaybeAddCUDAConstantAttr(VarDecl *VD) {
788 // Do not promote dependent variables since the cotr/dtor/initializer are
789 // not determined. Do it after instantiation.
790 if (getLangOpts().CUDAIsDevice && !VD->hasAttr<CUDAConstantAttr>() &&
791 !VD->hasAttr<CUDASharedAttr>() &&
792 (VD->isFileVarDecl() || VD->isStaticDataMember()) &&
793 !IsDependentVar(VD) &&
794 ((VD->isConstexpr() || VD->getType().isConstQualified()) &&
795 HasAllowedCUDADeviceStaticInitializer(*this, VD,
796 CICK_DeviceOrConstant))) {
797 VD->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext()));
801 Sema::SemaDiagnosticBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
802 unsigned DiagID) {
803 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
804 FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true);
805 SemaDiagnosticBuilder::Kind DiagKind = [&] {
806 if (!CurFunContext)
807 return SemaDiagnosticBuilder::K_Nop;
808 switch (CurrentCUDATarget()) {
809 case CFT_Global:
810 case CFT_Device:
811 return SemaDiagnosticBuilder::K_Immediate;
812 case CFT_HostDevice:
813 // An HD function counts as host code if we're compiling for host, and
814 // device code if we're compiling for device. Defer any errors in device
815 // mode until the function is known-emitted.
816 if (!getLangOpts().CUDAIsDevice)
817 return SemaDiagnosticBuilder::K_Nop;
818 if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
819 return SemaDiagnosticBuilder::K_Immediate;
820 return (getEmissionStatus(CurFunContext) ==
821 FunctionEmissionStatus::Emitted)
822 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
823 : SemaDiagnosticBuilder::K_Deferred;
824 default:
825 return SemaDiagnosticBuilder::K_Nop;
827 }();
828 return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this);
831 Sema::SemaDiagnosticBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
832 unsigned DiagID) {
833 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
834 FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true);
835 SemaDiagnosticBuilder::Kind DiagKind = [&] {
836 if (!CurFunContext)
837 return SemaDiagnosticBuilder::K_Nop;
838 switch (CurrentCUDATarget()) {
839 case CFT_Host:
840 return SemaDiagnosticBuilder::K_Immediate;
841 case CFT_HostDevice:
842 // An HD function counts as host code if we're compiling for host, and
843 // device code if we're compiling for device. Defer any errors in device
844 // mode until the function is known-emitted.
845 if (getLangOpts().CUDAIsDevice)
846 return SemaDiagnosticBuilder::K_Nop;
847 if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
848 return SemaDiagnosticBuilder::K_Immediate;
849 return (getEmissionStatus(CurFunContext) ==
850 FunctionEmissionStatus::Emitted)
851 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
852 : SemaDiagnosticBuilder::K_Deferred;
853 default:
854 return SemaDiagnosticBuilder::K_Nop;
856 }();
857 return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this);
860 bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
861 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
862 assert(Callee && "Callee may not be null.");
864 const auto &ExprEvalCtx = currentEvaluationContext();
865 if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated())
866 return true;
868 // FIXME: Is bailing out early correct here? Should we instead assume that
869 // the caller is a global initializer?
870 FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
871 if (!Caller)
872 return true;
874 // If the caller is known-emitted, mark the callee as known-emitted.
875 // Otherwise, mark the call in our call graph so we can traverse it later.
876 bool CallerKnownEmitted =
877 getEmissionStatus(Caller) == FunctionEmissionStatus::Emitted;
878 SemaDiagnosticBuilder::Kind DiagKind = [this, Caller, Callee,
879 CallerKnownEmitted] {
880 switch (IdentifyCUDAPreference(Caller, Callee)) {
881 case CFP_Never:
882 case CFP_WrongSide:
883 assert(Caller && "Never/wrongSide calls require a non-null caller");
884 // If we know the caller will be emitted, we know this wrong-side call
885 // will be emitted, so it's an immediate error. Otherwise, defer the
886 // error until we know the caller is emitted.
887 return CallerKnownEmitted
888 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
889 : SemaDiagnosticBuilder::K_Deferred;
890 default:
891 return SemaDiagnosticBuilder::K_Nop;
893 }();
895 if (DiagKind == SemaDiagnosticBuilder::K_Nop) {
896 // For -fgpu-rdc, keep track of external kernels used by host functions.
897 if (LangOpts.CUDAIsDevice && LangOpts.GPURelocatableDeviceCode &&
898 Callee->hasAttr<CUDAGlobalAttr>() && !Callee->isDefined())
899 getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Callee);
900 return true;
903 // Avoid emitting this error twice for the same location. Using a hashtable
904 // like this is unfortunate, but because we must continue parsing as normal
905 // after encountering a deferred error, it's otherwise very tricky for us to
906 // ensure that we only emit this deferred error once.
907 if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
908 return true;
910 SemaDiagnosticBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
911 << IdentifyCUDATarget(Callee) << /*function*/ 0 << Callee
912 << IdentifyCUDATarget(Caller);
913 if (!Callee->getBuiltinID())
914 SemaDiagnosticBuilder(DiagKind, Callee->getLocation(),
915 diag::note_previous_decl, Caller, *this)
916 << Callee;
917 return DiagKind != SemaDiagnosticBuilder::K_Immediate &&
918 DiagKind != SemaDiagnosticBuilder::K_ImmediateWithCallStack;
921 // Check the wrong-sided reference capture of lambda for CUDA/HIP.
922 // A lambda function may capture a stack variable by reference when it is
923 // defined and uses the capture by reference when the lambda is called. When
924 // the capture and use happen on different sides, the capture is invalid and
925 // should be diagnosed.
926 void Sema::CUDACheckLambdaCapture(CXXMethodDecl *Callee,
927 const sema::Capture &Capture) {
928 // In host compilation we only need to check lambda functions emitted on host
929 // side. In such lambda functions, a reference capture is invalid only
930 // if the lambda structure is populated by a device function or kernel then
931 // is passed to and called by a host function. However that is impossible,
932 // since a device function or kernel can only call a device function, also a
933 // kernel cannot pass a lambda back to a host function since we cannot
934 // define a kernel argument type which can hold the lambda before the lambda
935 // itself is defined.
936 if (!LangOpts.CUDAIsDevice)
937 return;
939 // File-scope lambda can only do init captures for global variables, which
940 // results in passing by value for these global variables.
941 FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
942 if (!Caller)
943 return;
945 // In device compilation, we only need to check lambda functions which are
946 // emitted on device side. For such lambdas, a reference capture is invalid
947 // only if the lambda structure is populated by a host function then passed
948 // to and called in a device function or kernel.
949 bool CalleeIsDevice = Callee->hasAttr<CUDADeviceAttr>();
950 bool CallerIsHost =
951 !Caller->hasAttr<CUDAGlobalAttr>() && !Caller->hasAttr<CUDADeviceAttr>();
952 bool ShouldCheck = CalleeIsDevice && CallerIsHost;
953 if (!ShouldCheck || !Capture.isReferenceCapture())
954 return;
955 auto DiagKind = SemaDiagnosticBuilder::K_Deferred;
956 if (Capture.isVariableCapture() && !getLangOpts().HIPStdPar) {
957 SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
958 diag::err_capture_bad_target, Callee, *this)
959 << Capture.getVariable();
960 } else if (Capture.isThisCapture()) {
961 // Capture of this pointer is allowed since this pointer may be pointing to
962 // managed memory which is accessible on both device and host sides. It only
963 // results in invalid memory access if this pointer points to memory not
964 // accessible on device side.
965 SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
966 diag::warn_maybe_capture_bad_target_this_ptr, Callee,
967 *this);
971 void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
972 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
973 if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
974 return;
975 Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
976 Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
979 void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
980 const LookupResult &Previous) {
981 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
982 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
983 for (NamedDecl *OldND : Previous) {
984 FunctionDecl *OldFD = OldND->getAsFunction();
985 if (!OldFD)
986 continue;
988 CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
989 // Don't allow HD and global functions to overload other functions with the
990 // same signature. We allow overloading based on CUDA attributes so that
991 // functions can have different implementations on the host and device, but
992 // HD/global functions "exist" in some sense on both the host and device, so
993 // should have the same implementation on both sides.
994 if (NewTarget != OldTarget &&
995 ((NewTarget == CFT_HostDevice &&
996 !(LangOpts.OffloadImplicitHostDeviceTemplates &&
997 isCUDAImplicitHostDeviceFunction(NewFD) &&
998 OldTarget == CFT_Device)) ||
999 (OldTarget == CFT_HostDevice &&
1000 !(LangOpts.OffloadImplicitHostDeviceTemplates &&
1001 isCUDAImplicitHostDeviceFunction(OldFD) &&
1002 NewTarget == CFT_Device)) ||
1003 (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
1004 !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
1005 /* ConsiderCudaAttrs = */ false)) {
1006 Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
1007 << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
1008 Diag(OldFD->getLocation(), diag::note_previous_declaration);
1009 NewFD->setInvalidDecl();
1010 break;
1015 template <typename AttrTy>
1016 static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
1017 const FunctionDecl &TemplateFD) {
1018 if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
1019 AttrTy *Clone = Attribute->clone(S.Context);
1020 Clone->setInherited(true);
1021 FD->addAttr(Clone);
1025 void Sema::inheritCUDATargetAttrs(FunctionDecl *FD,
1026 const FunctionTemplateDecl &TD) {
1027 const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
1028 copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD);
1029 copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD);
1030 copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD);
1033 std::string Sema::getCudaConfigureFuncName() const {
1034 if (getLangOpts().HIP)
1035 return getLangOpts().HIPUseNewLaunchAPI ? "__hipPushCallConfiguration"
1036 : "hipConfigureCall";
1038 // New CUDA kernel launch sequence.
1039 if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(),
1040 CudaFeature::CUDA_USES_NEW_LAUNCH))
1041 return "__cudaPushCallConfiguration";
1043 // Legacy CUDA kernel configuration call
1044 return "cudaConfigureCall";